
PURE and APPLIED
ANALYSIS

msp

ALEX BARNETT, CHARLES L. EPSTEIN,
LESLIE GREENGARD, SHIDONG JIANG AND JUN WANG

EXPLICIT UNCONDITIONALLY STABLE METHODS
FOR THE HEAT EQUATION VIA POTENTIAL THEORY

vol. 1 no. 4 2019



PURE and APPLIED
ANALYSIS
Vol. 1, No. 4, 2019
dx.doi.org/10.2140/paa.2019.1.709

msp

EXPLICIT UNCONDITIONALLY STABLE METHODS
FOR THE HEAT EQUATION VIA POTENTIAL THEORY

ALEX BARNETT, CHARLES L. EPSTEIN, LESLIE GREENGARD, SHIDONG JIANG AND JUN WANG

We study the stability properties of explicit marching schemes for second-kind Volterra integral equations
that arise when solving boundary value problems for the heat equation by means of potential theory. It is
well known that explicit finite-difference or finite-element schemes for the heat equation are stable only
if the time step 1t is of the order O(1x2), where 1x is the finest spatial grid spacing. In contrast, for
the Dirichlet and Neumann problems on the unit ball in all dimensions d ≥ 1, we show that the simplest
Volterra marching scheme, i.e., the forward Euler scheme, is unconditionally stable. Our proof is based
on an explicit spectral radius bound of the marching matrix, leading to an estimate that an L2-norm of
the solution to the integral equation is bounded by cd T d/2 times the norm of the right-hand side. For the
Robin problem on the half-space in any dimension, with constant Robin (heat transfer) coefficient κ , we
exhibit a constant C such that the forward Euler scheme is stable if1t <C/κ2, independent of any spatial
discretization. This relies on new lower bounds on the spectrum of real symmetric Toeplitz matrices
defined by convex sequences. Finally, we show that the forward Euler scheme is unconditionally stable
for the Dirichlet problem on any smooth convex domain in any dimension, in the L∞-norm.

1. Introduction

In this paper, we study the stability of integral equation methods for the heat equation

∂u
∂t
(x, t)−α1u(x, t)= F(x, t),

u(x, 0)= u0(x)
(1)

for 0 ≤ t ≤ T, subject to suitable boundary conditions, in a smooth domain D ⊂ Rd. Without loss of
generality, we will assume that the diffusion coefficient (thermal conductivity) α is 1 in most of our
discussion. We consider three standard boundary conditions: the Dirichlet boundary condition

u(x, t)= f (x, t)|x∈0,t>0, x ∈ 0 = ∂D, (2)

the Neumann boundary condition
∂u(x, t)
∂νx

= g(x, t)|x∈0, t>0, x ∈ 0, (3)

and the Robin boundary condition
∂u(x, t)
∂νx

+ κu(x, t)= h(x, t)|x∈0, t>0, x ∈ 0. (4)
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Here, κ > 0 is the heat transfer coefficient, and (4) models heat transfer via Newton’s law of cooling
[Crank 1956]. For all three boundary conditions, we assume that proper compatibility conditions are
satisfied between the initial and boundary data.

Before turning to the integral equation framework, we briefly review the finite-difference approach.
For this, we assume we are given a spatial mesh discretizing the domain D with grid points xn and seek to
approximate the solution un

m ≈ u(xn, tm) at time steps t0, t1, . . . , tN with tm = m1t . Two of the simplest
schemes for solving (1) are the forward and backward Euler methods:

um+1
n − um

n

1t
=1h[u]mn + F(xn, tm) and

um+1
n − um

n

1t
=1h[u]m+1

n + F(xn, tm),

respectively. Here 1h[u]mn denotes the finite-difference approximation of the Laplacian evaluated at the
grid point xn at time tm . It is well known that the backward Euler scheme is unconditionally stable,
while, in d dimensions, the forward Euler scheme requires that the time step satisfy the condition
1t < 1/(2d)1x2 for the case of the standard second-order finite-difference Laplacian stencil on a uniform
spatial grid with step size 1x in each direction; see, for example, [Thomas 1995, p. 158]. The constraint
changes when using less standard stencils. For nonuniform grids, the time-step restriction is more
complicated to analyze, but generally requires that 1t =O(h2

min), where hmin is the finest mesh spacing
in the discretization.

The backward Euler scheme is implicit and requires the solution of a large sparse linear system at
each time step tm . The forward Euler scheme, on the other hand, is explicit and inexpensive. The
stability restriction, however, forces extremely small time steps to be taken, making long-time simulations
impractical. This has spurred the development of a variety of alternative approaches, including locally
one-dimensional schemes, alternating-direction implicit methods, etc. [Peaceman and Rachford 1955].

When finite-difference methods are used to solve general initial-boundary value problems, GKSO
(Gustafsson–Kreiss–Sundström–Osher) theory plays a critical role [Gustafsson et al. 1995; 1972; Osher
1969; Strikwerda 1989; Trefethen 1983] and requires that the interior marching scheme be Cauchy stable
(that is, beyond the stability condition above, the discrete boundary conditions must satisfy additional
criteria). In short, stability imposes rather intricate constraints on the coupling between the interior
marching scheme and the boundary conditions themselves. Similar considerations are involved when
using finite-element methods.

An alternative to direct discretization of the governing PDE is to recast the problem as a boundary
integral equation using heat potentials [Kress 1989; Pogorzelski 1966]. The Green’s function for the heat
equation is

G(x, t)=
1

(4π t)d/2
e−|x|

2/(4t), x ∈ Rd . (5)

We assume that the boundary 0 of D is at least C2, and let σ be a square integrable function on 0×[0, T ].
Then the single-layer heat potential S is defined by the formula

S[σ ](x, t)=
∫ t

0

∫
0

G(x− y, t − τ)σ ( y, τ ) ds( y) dτ (6)
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and the double-layer heat potential D is defined by

D[σ ](x, t)=
∫ t

0

∫
0

∂G(x− y, t − τ)
∂ν( y)

σ ( y, τ ) ds( y) dτ, (7)

where ν( y) is the unit outward normal vector at y ∈ 0. The initial potential is defined by

I[u0](x, t)=
∫

D
G(x− y, t − τ)u0( y) d y (8)

and the volume potential is defined by

V[F](x, t)=
∫ t

0

∫
D

G(x− y, t − τ)F( y, τ ) d y dτ. (9)

By the linearity of the problem, we may decompose the solution into

u(x, t)= u(F)(x, t)+ u(B)(x, t), (10)

where all initial and volume data is captured by the free-space volume forced term

u(F)(x, t)= I[u0](x, t)+V[F](x, t), (11)

while u(B) is the solution to a pure boundary value problem with zero initial data, zero volume forcing,
and modified boundary data. Note that u(F) needs only evaluation of initial and volume potentials; it
requires no linear solve. Thus, there is no stability issue with u(F), and its error is simply the quadrature
error in evaluating the integrals that appear in (8) and (9). In other words, unlike finite-difference or
finite-element methods, the volume part is completely decoupled from the boundary part in integral
equation methods from the perspective of stability analysis.

For the Dirichlet problem, we proceed by representing u(B)(x, t) as a double-layer potential with
unknown density σ . The jump relation (see Section 2) then leads to the second-kind Volterra equation(

−
1
2 +D

)
[σ ](x, t)= f̃ (x, t), (x, t) ∈ 0×[0, T ], (12)

where D is interpreted in a principal-value sense, and the corrected data is

f̃ (x, t) := f (x, t)− u(F)(x, t), x ∈ 0.

The main objective of this paper is to demonstrate certain advantages of integral equation methods by
giving, for several combinations of archetypal geometries and boundary conditions, rigorous stability
bounds for the simplest explicit time-marching scheme, namely the forward Euler scheme. This scheme
is derived by assuming σ( y, t) is piecewise constant over each time interval [ j1t, ( j + 1)1t), taking on
the value σ( y, j1t). For (12), this leads to a marching scheme of the form

σ(x, n1t)= 2
n−1∑
j=0

∫ ( j+1)1t

j1t

∫
0

∂G(x− y, n1t − τ)
∂ν( y)

σ ( y, j1t) ds( y) dτ − 2 f̃ (x, n1t), (13)

where n = 1, 2, . . . . This falls into the class of collocation schemes [Kress 1989, §13.3], as well as
convolution quadrature schemes [Lubich 1986]. It is explicit, since σ(x, n1t) does not appear on the
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right-hand side. It is also first-order accurate (e.g., see Section 5.1). For the Neumann and Robin problems,
second-kind Volterra equations are obtained by representing u(B)(x, t) instead as a single-layer potential;
other than a change of kernel, the forward Euler scheme remains the same.

The principal reason that integral equation methods have received relatively little attention for solving
the heat equation has been that direct evaluation of layer (or volume) potentials requires quadratic work
in the total number of unknowns as well as the design of suitable quadrature rules. Recent advances
in fast algorithms for heat potentials, however, have removed this obstacle. We refer the reader to the
papers [Greengard and Strain 1990; 1991; Greengard and Sun 1998; Ibáñez and Power 2002; Lubich
and Ostermann 1993; Lubich and Schneider 1992; Strain 1994; Tausch 2007; Wang 2017; Wang and
Greengard 2018; Wang et al. ≥ 2019] for further discussion.

We now summarize the results in this paper. Perhaps the simplest geometry is the half-space D =
Rd
+
:= {x=(x1, x2, . . . , xd) ∈ Rd

| xd ≥ 0}, with 0 = ∂D = Rd−1. It is easy to check that the integral
kernel of D is identically zero on 0, so (12) reduces to

σ(x, t)=−2 f̃ (x, t). (14)

This is an analytic solution, so that stability follows trivially. A similar trivial analytic solution arises when
the single-layer potential is used to solve the Neumann problem on the half-space. Thus, we consider the
Dirichlet and Neumann problems on possibly the next-simplest domain, the unit ball Bd

⊂Rd (i.e., 0 is the
unit sphere Sd−1). For both these latter cases, we show that the forward Euler scheme is unconditionally
stable in all dimensions d ≥ 1. Specifically, we show that for T ≥ 1,

‖σ‖2 ≤ cd T d/2
‖ f̃ ‖2 (15)

for all N and 1t such that N1t ≤ T. Here N is the total number of time steps, 1t is the time-step size,
‖ · ‖2 denotes a space-time L2-norm,1 and cd is a positive constant depending on d . The estimate (15) is
obtained by a Gershgorin spectral radius bound of the marching matrix; we show that this is no longer
tight for the Dirichlet problem if a fairly mild condition is imposed on 1t . Indeed, we are able to show
the improved estimate in two dimensions,

‖σ‖2 ≤ 7‖ f̃ ‖2 (16)

for 1t ≤ 1 and any N.
Returning to the d-dimensional half-space, the simplest boundary condition for which the integral

equation is nontrivial is the Robin condition. We show that here the forward Euler scheme has a time-step
restriction determined by the physical parameter κ , namely 1t < π/(c2κ2) with c = 3−

√
2. Finally,

considering more general domains, we prove that the forward Euler scheme for the Dirichlet problem is
unconditionally stable for smooth convex domains in all dimensions, in the L∞-norm.

Firstly, in Section 2 we summarize the necessary properties of layer potentials. Then in Section 3 we
present a lower bound for the spectrum of a Toeplitz operator defined by a convex sequence; this will be
needed later to handle cases where the sequences are not summable and thus Gershgorin is inapplicable.

1Explicitly, ‖σ‖22 :=
∑N

j=0
∫
0 σ(x, j1t)2 ds( y); i.e., the norm is l2 in time [0, T ] but L2 over the surface 0.
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The Dirichlet and Neumann problems on the unit ball are then treated in Section 4, the Robin problem on
the half-space in Section 5, and the Dirichlet problem on C1 convex domains in Section 6. We conclude
in Section 7. Finally, the Appendix covers estimates on special functions used in the body of the paper.

2. Properties of heat potentials

By construction, the single and double-layer heat potentials (6) and (7) satisfy the heat equation. They also
satisfy certain well-known jump conditions when the target point x approaches the boundary from either
side [Kress 1989; Pogorzelski 1966]. In particular, for x0 ∈ 0, the normal derivative of the single-layer
potential S[σ ] satisfies the relation

lim
ε→0+

∂S[σ ](x0± εν(x0), t)
∂ν(x0)

=∓
1
2σ(x0, t)+Sν[σ ](x0, t), (17)

and the double-layer potential D[σ ] satisfies the relation

lim
ε→0+

D[σ ](x0± εν(x0), t)=± 1
2σ(x0, t)+D[σ ](x0, t), (18)

where both Sν[σ ](x0, t) and D[σ ](x0, t) are interpreted in the Cauchy principal value sense. If we
represent the solution to the heat equation (1) via a double-layer potential u(x, t)= D[σ ](x, t), then the
integral equation (12) follows immediately from the jump relation (18).

The kernel of the double-layer potential is given explicitly by

∂G(x− y, t − τ)
∂ν( y)

=
(x− y) · ν( y)

2d+1πd/2(t − τ)1+d/2 e−|x− y|2/(4(t−τ)) (19)

and the kernel of Sν is given by

∂G(x− y, t − τ)
∂ν(x)

=−
(x− y) · ν(x)

2d+1πd/2(t − τ)1+d/2 e−|x− y|2/(4(t−τ)).

Finally, the initial potential (8) is well known to satisfy the homogeneous heat equation with initial
data u0(x), while the volume potential (9) satisfies the inhomogeneous heat equation

∂u
∂t
(x, t)−1u(x, t)= F(x, t),

with zero initial data.

Remark 1. Using these properties, it is straightforward to see that representing the solution to the
Dirichlet problem in the form

u(x, t)= D[σ ](x, t)+ I[u0](x, t)+V[F](x, t)

leads to the integral equation (12), with the only unknown corresponding to the double-layer density σ .

Remark 2. On the unit sphere Sd−1, ν( y) = y and |x| = | y| = 1. Thus, (x− y) · ν( y) = −(1− x · y),
|x− y|2 = 2(1− x · y), and (19) reduces to

∂G(x− y, t − τ)
∂ν( y)

=−
1− x · y

2d+1πd/2(t − τ)1+d/2 e−(1−x· y)/(2(t−τ)). (20)
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3. Spectral bounds for real symmetric Toeplitz operators

Although for many of the later results we can use simple Gershgorin spectral bounds for matrices, for the
tight bound for the zeroth mode of the d = 2 Dirichlet disc (Section 4.2.2), and the Robin case in the
half-space (Section 5), a more delicate spectral bound on Toeplitz matrices is needed.

Let S1 be the unit circle in the complex plane, parametrized by polar angle θ with normalized arc-length
measure dλ= 1

2π dθ . For any f in the Hilbert space L2(S1), we write

f (θ)=
∞∑

n=−∞

fneinθ , (21)

in terms of the orthogonal basis {einθ
}n∈Z, where fn (n ∈ Z) is the n-th Fourier coefficient of f defined by

fn =
1

2π

∫ 2π

0
f (θ)e−inθ dθ.

The Hardy space H 2 is defined by

H 2
= { f ∈ L2(S1) | fn = 0, n < 0},

and we let P denote the orthogonal projection of L2(S1) onto H 2. The Toeplitz operator T f : H 2
→ H 2,

with symbol f ∈ L∞(S1), is defined by

T f (u)= P( f u).

The operator T f is closely related to an infinite-dimensional Toeplitz matrix with entries ti j , i, j ∈N,
that satisfy ti j = ti+1, j+1 for all i, j . That is, the matrix is constant along diagonals and determined by a
two-sided sequence (tn)n∈Z with ti j = ti− j . The Fourier transform maps T f onto the class of Toeplitz
matrices on l2(Z+); that is, if (T f (u))n denotes the n-th Fourier coefficient of T f (u), then

(T f (u))n =
{∑∞

m=0 fn−mum, n ≥ 0,
0, n < 0,

where um is the m-th Fourier coefficient of u.

Definition 3. A sequence {an}n∈Z+ is said to be convex if δ2an ≥ 0 for every n > 0, where δ2an :=

an−1− 2an + an+1 is the central second difference.

Recall that for n ∈ Z+ the Fejér kernel Fn(x) is defined to be

Fn(θ)=

n∑
j=−n

(
1−

| j |
n+ 1

)
ei jθ
=

1
n+ 1

(
sin
( 1

2(n+ 1)θ
)

sin
( 1

2θ
) )2

.

The following theorem can be found in [Katznelson 1968, Chapter I, Theorem 4.1].

Theorem 4. If an→ 0 and the sequence {an}n∈Z+ is convex, then the series

v(θ)=

∞∑
n=1

n(δ2an)Fn−1(θ) (22)

converges in L1([−π, π]) to a nonnegative function, which is continuous except at 0, such that vn = an .
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It is often the case that the function v(θ) blows up as θ → 0. Using the elementary estimate on the
Fejér kernel

Fn(θ)≤min
{
(n+ 1),

π2

(n+ 1)θ2

}
[Katznelson 1968, Chapter I, (3.10)] and the fact that, for a convex sequence tending to zero, we have
limn→∞ n(an − an+1)= 0, one can show that

lim
θ→0

θv(θ)= 0. (23)

Bounds on the spectrum of finite Toeplitz matrices are of interest in many applications [Dembo 1988;
Hertz 1992; Laudadio et al. 2008; Melman 1999]. When a real symmetric Toeplitz operator (or matrix)
is generated by a positive sequence, the Gershgorin circle theorem [Thomas 1995, §3.3] often gives a
satisfactory upper bound on its spectral radius or the largest eigenvalue. Curiously, satisfactory lower
bounds on the smallest eigenvalue do not seem to be available. The following theorem leads to a tight
lower bound on the smallest eigenvalue of a real symmetric Toeplitz matrix, defined by a convex sequence,
even when the operator it defines is unbounded.

Theorem 5. Suppose that {vn}n∈N is a convex sequence and limn→∞ vn = 0. Set v0 = 2v1− v2, and let
v(θ) be the nonnegative function defined by the sequence {vn}n∈Z+ as in Theorem 4. Suppose that V is the
self-adjoint Toeplitz matrix defined by Vi i = 0 and Vi j = v|i− j |. Then, for any u ∈ CN, we have the lower
bound

〈V u, u〉 ≥ (v2− 2v1)‖u‖2.

Proof. For a finite-length vector u = (u0, . . . , uN , 0, 0, . . . )n∈Z+ , define the function

u(θ)=
N∑

n=0

uneinθ . (24)

Theorem 4 implies

0≤ 1
2π

∫ 2π

0
v(θ)|u(θ)|2 dθ = 1

2π

∫ 2π

0
v(θ)

∑
0≤ j,k≤N

u j ūkei( j−k)θ dθ

=

∑
0≤ j,k≤N

vk− j u j ūk = 〈V u, u〉+ (2v1− v2)‖u‖2. �

Remark 6. If VN is the upper-left N×N principal submatrix of V, then, by an application of the
Rayleigh–Ritz theorem, its spectrum is bounded below by v2− 2v1.

Remark 7. For certain applications, the sequence {vn}n∈N generating Tv is not convex. In this case,
one may consider an operator of the form, cI + Tv + Ta , with c and {an}n∈N chosen so that (c, v1+ a1,

v2+a2, . . . ) is a convex sequence. If Ta is a bounded operator, then the previous theorem implies a lower
bound on the spectrum of V :

〈V u, u〉 ≥ −(c+‖Ta‖)‖u‖2 for u ∈ CN .
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Remark 8. If the function v(θ) defined in (22) is unbounded, then the Toeplitz operator Tv that it defines
is not a bounded operator and is not defined on all of H 2. The discussion above easily applies to show
that this operator is defined on a dense subset, and its closure is self-adjoint: (23) implies that if u ∈ H 2,
then v(1− eiθ )u ∈ L2. Thus, Tvw = P(vw) ∈ H 2 for w in the subspace (1− eiθ )H 2. It is not difficult to
see that this subspace is dense. If u ∈ H 2 and r > 1, then(

1− eiθ

r − eiθ

)
u ∈ H 2 and lim

r→1+

∥∥∥∥(1− eiθ

r − eiθ

)
u− u

∥∥∥∥
2
= 0.

Since 〈Tvw,w〉≥0, forw in this domain, the Friedrichs extension of Tv is a closed self-adjoint, nonnegative
operator defined on a dense subspace Dv ⊂ H 2.

4. The Dirichlet and Neumann problems on the unit ball Bd

We consider first the forward Euler scheme (13) for the Dirichlet problem (12). For general d ≥ 1, our
approximation of the unknown density σ is piecewise constant in time,

σ( y, τ )= σ( y, tj )= σj ( y), τ ∈ [tj , t j+1) for j = 0, 1, . . . ,

where tj = j1t . We restate (13) in the form

−
1
2σj (x)+

j−1∑
k=0

V j−k[σk](x)= f j (x) := f (x, j1t) (25)

for j = 0, 1, 2, . . . , where the tilde has been dropped from f , and where the action of each spatial integral
operator V j−k : C(0)→ C(0) is defined by

V j−k[σk](x)=
∫
0

V j−k(x, y)σk( y) ds( y).

Here the operator kernel is itself the integral of the heat kernel over one time-step,

V j−k(x, y)=
∫ (k+1)1t

k1t

∂G(x− y, j1t − τ)
∂ν( y)

dτ.

Due to time-shift invariance, a simpler way to write the spatial kernel is

Vl(x, y)=
∫ 1t

0

∂G(x− y, l1t − τ)
∂ν( y)

dτ, l ≥ 1,

and V0(x, y) is set identically to 0. For initialization of time-stepping we set σ0 ≡ f0 ≡ 0.

4.1. The Dirichlet problem in one dimension. The boundary 0 of the unit ball in one dimension consists
of only two points x =±1. Let the time-stepped density at these two points be σ± = {σ±j }

N
j=0 and the

data f ± = { f ±j }
N
j=0. We will stack each pair into a single column, e.g., [σ−, σ+]T. Recalling (14), the

density at each boundary point is trivially coupled to the data at that same point; however, the coupling to
the other boundary point will involve the double-layer kernel acting at a distance of 2. Thus, (25) becomes
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a 2×2 system with trivial diagonal blocks and Toeplitz off-diagonal blocks. Namely, after N time-steps
the stacked vectors are related by [

−
1
2 I V
V −

1
2 I

] [
σ−

σ+

]
=

[
f −

f +

]
, (26)

where I is the size-(N+1) identity matrix. Here the action of the lower-triangular Toeplitz matrix
V ∈ R(N+1)×(N+1) is given by

[V σ±]j =

j−1∑
k=0

v j−kσ
±

k for j = 1, . . . , N ,

with the convolution coefficients {vl} given by

vl =−

∫ 1t

0
γ (l1t − τ) dτ, l ≥ 1, and v0 = 0. (27)

Here the underlying kernel is the double-layer acting at a distance of 2,

γ (t) :=
1

2
√
π

t−3/2e−1/t , t > 0. (28)

We denote the symmetric part of V by W and make its dependence on N and 1t explicit; thus

W (N ;1t) := 1
2(V + V T ). (29)

We have the following lemma.

Lemma 9. Fix T > 0. Then, for any N and1t with N1t ≤ T, the spectral radius ρ(N ;1t) of the matrix
W (N ;1t) has the bound

ρ(N ;1t)≤ C1(T ), (30)

where

C1(T ) :=
∫ T

0
γ (T − τ) dτ =

1
2
√
π

∫
∞

1/T

1
√

u
e−u du < 1

2
. (31)

Proof. Using the Gershgorin circle theorem [Thomas 1995, §3.3] and the fact that the diagonal entries of
W are all zero, we have

ρ(N ;1t)≤max
i

N+1∑
j=1

|wi j | ≤ 2
N∑

l=1

1
2 |vl | ≤

N∑
l=1

|vl |. (32)

Now setting t = N1t , we may collapse this sum into a single integral
N∑

l=1

|vl | =

N∑
l=1

∫ 1t

0
γ (l1t − τ) dτ =

N∑
k=1

∫ 1t

0
γ (N1t − (k− 1)1t − τ) dτ

=

N∑
k=1

∫ k1t

(k−1)1t
γ (N1t − τ) dτ =

∫ N1t

0
γ (N1t − τ) dτ = C1(N1t)
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according to the definition (31) of the function C1. Combining the last two results we have ρ(N ;1t)≤
C1(N1t). The expression in (31) follows from the change of variables u = 1/(T − τ). A further change
of variables x =

√
u leads to

C1(T )=
1
√
π

∫
∞

1/
√

T
e−x2

dx <
1
√
π

∫
∞

0
e−x2

dx = 1
2

for all T > 0. (33)

Finally, the above expression shows that C1(T ) is a monotonically nondecreasing function of T, so that
ρ(N ;1t)≤ C1(N1t)≤ C1(T ). �

It is clear from (26) that to get a stability bound we need to control the gap between C1(T ) and 1
2 . For

T ≥ 1, this turns out to shrink only polynomially in T :

1
2
−C1(T )=

1
2
√
π

∫ 1/T

0

1
√

u
e−u du >

1
2e
√
π

∫ 1/T

0

1
√

u
du =

1

e
√
πT

. (34)

This very easily allows us to prove the following.

Theorem 10. Suppose that T ≥ 1. Then, using ‖ · ‖ for the l2-norm in R2(N+1),

‖[σ−, σ+]‖ ≤ e
√
πT ‖[ f +, f −]‖ (35)

for all N and 1t such that N1t ≤ T. That is, for the d = 1 unit ball where 0 = {−1, 1}, the forward
Euler scheme for solving the second-kind Volterra integral equation (12) is unconditionally stable on any
finite time interval [0, T ].

Proof. We use a technique that will recur throughout this paper: we take the inner product of (26) with
−[σ−, σ+]T, giving

1
2‖[σ

+, σ−]‖2− 2〈Wσ+, σ−〉 = −(〈 f +, σ+〉+ 〈 f −, σ−〉). (36)

Applying the Cauchy–Schwarz inequality and (30) to the second term on the left side, and Cauchy–Schwarz
to the right-hand side, we obtain

1
2‖[σ

+, σ−]‖2− 2C1(T )‖σ+‖ · ‖σ−‖ ≤ ‖[σ+, σ−]‖ · ‖[ f +, f −]‖.

Using the arithmetic-geometric mean inequality on the left-hand side of this estimate gives( 1
2 −C1(T )

)
‖[σ+, σ−]‖2 ≤ ‖[σ+, σ−]‖ · ‖[ f +, f −]‖.

Finally dividing by
( 1

2 −C1(T )
)
‖[σ+, σ−]‖ and applying (34) gives

‖[σ−, σ+]‖ ≤
1

1
2 −C1(T )

‖[ f +, f −]‖ ≤ e
√
πT ‖[ f +, f −]‖,

which completes the proof. �
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4.2. The Dirichlet problem in two dimensions. We now consider (25) when 0 is the unit circle S1. We
decompose both σj ( y) and f j (x) into Fourier series:

σj ( y)=
+∞∑

n=−∞

σ n
j einφ, y = (cosφ, sinφ),

f j (x)=
+∞∑

n=−∞

f n
j einθ , x = (cos θ, sin θ).

From (20), writing s = θ −φ, the n-th Fourier mode of the kernel is∫
S1

∂G(x− y, t − τ)
∂ν( y)

einφ dφ =
∫ 2π

0
−

1− cos(θ −φ)
8π(t − τ)2

e−(1−cos(θ−φ))/(2(t−τ))einφ dφ

=−γn(t − τ)einθ , (37)

where, noting that the imaginary part of e−ins cancels by symmetry, we have

γn(t) :=
1

8π t2

∫ 2π

0
(1− cos(s))e−(1−cos(s))/(2t) cos(ns) ds, t > 0. (38)

Since {einθ
} are orthonormal, each Fourier mode evolves independently. The marching scheme (or

recurrence) (25) for the n-th mode is then

−
1
2σ

n
j −

j−1∑
k=0

vn
j−kσ

n
k = f n

j , j = 0, 1, 2, . . . , (39)

where the convolution coefficient vn
l is given by the formula

vn
l =

∫ 1t

0
γn(l1t − τ) dτ, l ≥ 1, (40)

and we set vn
0 = 0. The system (39) for j = 0, 1, . . . , N can be written in matrix-vector form(

−
1
2 I − V n)σ n

= f n, (41)

where I is the (N+1)×(N+1) identity matrix, V n
∈R(N+1)×(N+1) with entries vn

j,k=v
n
j−k , σ n

={σ n
j }

N
j=0,

and f n
= { f n

j }
N
j=0. As before, we denote the symmetric part of V n by W n,

W n(N ;1t) :=
V n
+ (V n)T

2
=

1
2


0 vn

1 vn
2 · · · vn

N
vn

1 0 vn
1 · · · v

n
N−1

...
...

...
...

...

vn
N vn

N−1 · · · v
n
1 0

 . (42)

4.2.1. Stability analysis. We now prove two key results. The first is that the forward Euler scheme is
unconditionally stable for any fixed time interval [0, T ] (Theorem 13). The second is that, when 1t < 1,
we have the stronger result that the L2-norm of the solution is bounded by a constant multiple of the
L2-norm of f . We require the following lemma.
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Lemma 11. Fix T > 0. Then, for any N and 1t with N1t ≤ T, and all n ∈ Z, the spectral radius
ρn(N ;1t) of the matrix W n(N ;1t) has the bound

ρn(N ;1t)≤ C2(T ), (43)

where, in terms of the definition (38),

C2(T ) :=
∫ T

0
γ0(T − τ) dτ = 1

4π

∫ 2π

0
e−(1−cos(s))/(2T ) ds < 1

2
. (44)

Proof. Let n ∈ Z. Since the integrand in (38), excluding the cos ns factor, is nonnegative, we observe
that |γn(t)| ≤ γ0(t), so |vn

l | ≤ v
0
l for all l ≥ 1. Using this, the Gershgorin theorem, and the fact that the

diagonal entries of W n are all zero, we have

ρn(N ;1t)≤max
i

N+1∑
j=1

|wn
i j | ≤ 2

N∑
l=1

1
2 |v

n
l | ≤

N∑
l=1

v0
l . (45)

Now setting t = N1t , we may collapse this sum into a single integral
N∑

l=1

v0
l =

N∑
l=1

∫ 1t

0
γ0(l1t − τ) dτ =

N∑
k=1

∫ 1t

0
γ0(N1t − (k− 1)1t − τ) dτ

=

N∑
k=1

∫ k1t

(k−1)1t
γ0(N1t − τ) dτ =

∫ N1t

0
γ0(N1t − τ) dτ = C2(N1t)

according to the definition (44) of the function C2. Combining the last two results we have ρn(N ;1t)≤
C2(N1t). To prove the expression in (44) we insert (38), interchange the order of integration and apply
the change of variables λ= (1− cos(s))/(2(T − τ)); thus

C2(T ) :=
∫ T

0
γ0(T − τ) dτ =

∫ T

0

1
8π(T − τ)2

∫ 2π

0
(1− cos(s))e−(1−cos(s))/(2(T−τ)) ds dτ

=
1

4π

∫ 2π

0
e−(1−cos(s))/(2T ) ds < 1

2
for all T > 0.

Finally, the expression above shows that C2(T ) is a monotonically increasing function of T, so that
ρn(N ;1t)≤ C2(N1t)≤ C2(T ). �

Analogous to before, it is clear from (41) that to get a stability bound we need to bound from below
the gap between C2(T ) and 1

2 . This motivates the following.

Proposition 12. C2(T )=
1
2

e−1/(2T ) I0

( 1
2T

)
, (46)

where In( · ) is the modified regular Bessel function of order n (see the Appendix). For T ≥ 1,

1
2
−C2(T )≥

1
10T

. (47)

Proof. Equation (46) follows from the integral representation of I0(x) in (102), and (47) follows from the
facts that I0(x)≤ 1+ 1

2 x2 [Olver et al. 2010, §10.25.2] and e−x
≤ 1− 1

2 x for x ≤ 1. �
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Theorem 13. Suppose that T ≥ 1. Then for all n ∈ Z,

‖σ n
‖ ≤ 10T ‖ f n

‖ (48)

for all N and 1t such that N1t ≤ T. That is, when 0 is the unit circle S1, the forward Euler scheme
for solving the second-kind Volterra integral equation (12) is unconditionally stable on any finite time
interval [0, T ].

Proof. Since we are working in the Fourier domain, σ n and f n are complex-valued. Thus, we split (41)
into two independent real systems (

−
1
2 I − V n)σ n

r = f n
r ,(

−
1
2 I − V n)σ n

i = f n
i ,

(49)

where σ n
r and σ n

i are the real and imaginary part of σ n, respectively.
Multiplying both sides of the first equation in (49) by −(σ n

r )
T, we have

1
2‖σ

n
r ‖

2
+ (σ n

r )
T V nσ n

r =
1
2‖σ

n
r ‖

2
+ (σ n

r )
T W nσ n

r =−(σ
n
r )

T f n
r . (50)

Applying (43) on the left side (50) and the Cauchy–Schwartz inequality on the right side, we obtain( 1
2 −C2(T )

)
‖σ n

r ‖
2
≤

1
2‖σ

n
r ‖

2
+ (σ n

r )
T W nσ n

r =−(σ
n
r )

T f n
r ≤ ‖σ

n
r ‖‖ f n

r ‖.

That is, finally applying Proposition 12,

‖σ n
r ‖ ≤

1
1
2 −C2(T )

‖ f n
r ‖ ≤ 10T ‖ f n

r ‖.

A similar result holds for ‖σ n
i ‖. As ‖σ n

‖ =

√

‖σ n
r ‖

2
+‖σ n

i ‖
2, these two inequalities give (48). �

4.2.2. Tighter bounds. We now show that the dependence on T in (48) can be removed when the time
step satisfies1t ≤ 1. This is a physically reasonable requirement since we have assumed that the diffusion
coefficient is 1, and the domain has area of order 1. We first provide a bound on ρn(N ;1t) for n 6= 0
that is independent of the total time N1t .

Lemma 14. Let N and 1t > 0 be arbitrary, and let ρn(N ;1t) be the spectral radius of W n(N ;1t)
defined in (42). Then for all n 6= 0,

ρn(N ;1t)≤
1

2|n| + 1
. (51)

Proof. Clearly, it is sufficient to prove (51) for n > 0. For this, let us note that substituting (38) into (40),
exchanging the order of integration, and making the change of variables λ= (1− cos(s))/(2(l1t − τ)),
we obtain

vn
l =


1

4π

∫ 2π

0
e−(1−cos(s))/(21t) cos(ns) ds, l = 1,

1
4π

∫ 2π

0
(e−(1−cos(s))/(2l1t)

− e−(1−cos(s))/(2(l−1)1t)) cos(ns) ds, l > 1.
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By the integral representation (102) of In , we have

vn
l =


1
2

e−1/(21t) I|n|
( 1

21t

)
, l = 1,

1
2

(
e−1/(2l1t) I|n|

( 1
2l1t

)
− e−1/(2(l−1)1t) I|n|

( 1
2(l−1)1t

))
, l > 1.

(52)

From (52), defining in(x) := e−x In(x) and xl = 1/(2l1t), we consider the sum

Sn = 2
N∑

l=1

|vn
l | = in(x1)+

N∑
l=2

|in(xl)− in(xl−1)|. (53)

By Lemma 33 (see the Appendix), the function in(x) assumes its unique maximum at rn > 0; it increases
monotonically on [0, rn] and decreases monotonically on [rn,+∞). We now consider (53) on a case-by-
case basis.

(a) All xl lie on [0, rn]: Since xl < xl−1 and in(x) increases on [0, rn], we have

Sn ≤ in(x1)−

N∑
l=2

(in(xl)− in(xl−1))= 2in(x1)− in(xN )≤ 2in(x1) <
2

2n+1
,

where the last inequality follows from (106).

(b) All xl lie on [rn,∞): In this case, we have

Sn ≤ in(x1)+

N∑
l=2

(in(xl)− in(xl−1))= in(xN ) <
1

2n+1
.

(c) x1 > · · ·> xm ≥ rn > xm+1 > · · ·> xN : In this case, we have

Sn ≤ in(x1)+

m∑
l=2

(in(xl)− in(xl−1))+ |in(xm)− in(xm+1)| −

N∑
l=m+2

(in(xl)− in(xl−1))

= in(xm)+ |in(xm)− in(xm+1)| + in(xm+1)− in(xN )

< in(xm)+ |in(xm)− in(xm+1)| + in(xm+1)

= 2 max(in(xm), in(xm+1)) <
2

2n+1
.

By (45) we have

ρn(N ;1t)≤
N∑

l=1

|vn
l | =

1
2 Sn <

1
2n+1

,

completing the proof. �

Corollary 15. For all n 6= 0,

‖σ n
‖ ≤

1
1
2 − 1/(2|n| + 1)

‖ f n
‖ ≤ 6‖ f n

‖.

Thus, all nonzero modes are unconditionally stable. The zeroth Fourier mode is a bit more subtle, and
requires the convex sequence results of Section 3. It brings in a weak restriction on 1t , as follows.
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Lemma 16. Suppose that a = 0.05 and 1t ≤ 1. Then c2 I +W 0
+ aW 1 is a positive definite matrix if

c2 =
1
2 e−1/2 I0

( 1
2

)
+

1
6a ≈ 0.33085 . . . . (54)

Proof. Define the sequence yj =
1
2(v

0
j + av1

j ) for j ≥ 1 and y0 = c2. Theorem 5 then shows that a
sufficient condition for the positive semidefiniteness of c2 I +W 0

+ aW 1 is that the sequence {yj } j∈Z+

is convex. But y1 =
1
4 f (x1) and yj =

1
4( f (x j )− f (x j−1)) ( j > 1), where f is the function defined in

Lemma 39, and x j = 2 j1t . That is, yj is the first-order difference of f . Furthermore, the convexity of
{yj } j∈N is equivalent to the nonnegativity of the third order difference of f , which follows from the fact
that f ′′′(x) > 0 for all x > 0 as proved in Lemma 39. For j = 0, the convexity of the sequence requires
that one choose c2 such that

c2+ y2 = y0+ y2 ≥ 2y1. (55)

By the integral representation (102) of I0, it is easy to see that e−x I0(x) is strictly decreasing. Thus, we
have e−1/2 I0

( 1
2

)
≥ e−1/(21t) I0(1/(21t)) for 1t ≤ 1. Furthermore,

max
[0,∞)

e−x I1(x) < 1
3

by (106). Hence, (55) is achieved by choosing

c2 =
1
2 e−1/2 I0

( 1
2

)
+

1
6a > 2y1 =

1
2 e−1/(21t)

(
I0

(
1

21t

)
+ I1

(
1

21t

))
for 1t ≤ 1. �

Corollary 17. Suppose that 1t ≤ 1. Then, for arbitrary N,

‖σ 0
‖ ≤ 7‖ f 0

‖.

Proof. Set a = 0.05. By Lemma 16, the smallest eigenvalue of W 0 is bounded by

λ0
min ≥−c2− aλ1

max ≥−c2− aρ1 ≥−c2−
1
3a.

Thus a simple bound using the value of c2 from Lemma 16 is

7‖σ 0
‖

2
≤
( 1

2 − c2−
1
3a
)
‖σ 0
‖

2
≤

1
2‖σ

0
‖

2
+ (σ 0)T W 0σ 0

=−(σ 0)T f 0

≤ ‖σ 0
‖‖ f 0
‖.

completing the proof. �

4.3. The Dirichlet problem in higher dimensions. In dimensions d > 2, we consider the Dirichlet
problem on the unit ball, with data specified on the unit sphere Sd−1. The unknown density σ is
decomposed using the corresponding spherical harmonics [Morimoto 1998]:

σ( y, τ )=
∞∑

n=0

an,d∑
m=1

σ nm(τ )Y m
n ( y), y ∈ Sd−1

⊂ Rd , τ ≥ 0

where
an,d = (2n+ d − 2)

(n+ d − 3)!
n! (d − 2)!

.
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Here, an,d is the dimension of Hn(Sd−1), the space of homogeneous harmonic polynomials of degree n
on Rd, whose restrictions to the unit sphere are spanned by {Y m

n }, the spherical harmonics of degree n.
When d= 3, an,d = 2n+1, the inner summation is usually written as

∑n
m=−n , and the spherical harmonics

Y m
n (θ, φ) are defined by

Y m
n (θ, φ)=

√
2n+ 1

4π

√
(n− |m|)!
(n+ |m|)!

P |m|n (cos θ)eimφ,

where Pm
n (cos θ) is the associated Legendre polynomial [Olver et al. 2010, §18.3] of degree n and order m.

The spherical harmonics admit the integral representation [Morimoto 1998]

Y m
n (x)=

an,d

ωd

∫
Sd−1

Pn,d−1(x · y)Y m
n ( y) d S( y), (56)

where ωd is the area of Sd−1 defined in (87), and the Pn,d−1 are Gegenbauer polynomials [loc. cit.,
Chapter 2] (also called ultraspherical polynomials), defined by the Rodrigues formula

Pn,d−1(t)=
(−1)n

2n

0
( 1

2(d − 1)
)

0
(
n+ 1

2(d − 1)
) 1
(1− t2)(d−3)/2

dn

dtn (1− t2)n+(d−3)/2. (57)

The Funk–Hecke formula [loc. cit., Theorem 2.39] states that∫
Sd−1

f (x · z)Pn,d−1( y · z) d S(z)= βn,d−1 Pn,d−1(x · y), (58)

where

βn,d−1 = ωd−1

∫ 1

−1
Pn,d−1(t) f (t)(1− t2)(d−3)/2 dt

and f is any measurable function such that∫ 1

−1
| f (t)|(1− t2)(d−3)/2 dt <∞.

In d = 3 this reduces to f ∈ L1
[−1, 1].

We compute the double-layer heat potential nm-th Fourier mode,∫
Sd−1

∂G(x− y, t − τ)
∂ν( y)

Y m
n ( y) d S( y)=−

∫
Sd−1

1− x · y
2d+1πd/2(t − τ)1+d/2 e−(1−x· y)/(2(t−τ))Y m

n ( y) d S( y)

=−
an,d

ωd

∫
Sd−1

γn,d(t − τ)Pn,d−1(x · z)Y m
n (z) d S(z)

=−γn,d(t − τ)Y m
n (x), (59)

where, by analogy with (38),

γn,d(t) :=
ωd−1

2d+1πd/2t (d+2)/2

∫ 1

−1
(1− x)e−(1−x)/(2t)Pn,d−1(x)(1− x2)(d−3)/2 dx . (60)

The third equality makes use of (56), (58), and exchanging the order of integration. The last step follows
again from (56). Notice that γn,d does not depend on the order m.
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Since the {Y m
n } form an orthonormal basis for functions in L2(Sd−1) and (59) shows that each spherical

harmonic evolves independently under the action of the double-layer heat potential operator, we may
consider the time evolution for each mode nm separately.

For the forward Euler scheme, we again assume that σ(x, t) takes the constant value σj (x)=σ(x, j1t)
over each interval [ j1t, ( j + 1)1t], j = 0, 1, . . . . Equivalently, each spherical harmonic mode σ nm(t)
takes the constant value σ nm

j = σ
nm( j1t) over the interval. A straightforward calculation leads to the

following recurrence for the nm-th spherical harmonic mode, analogous to (39):

−
1
2µj −

j−1∑
k=0

vn
j−kµk = gj , j = 0, 1, 2, . . . , (61)

where we use the abbreviations µj := σ
nm
j , gj = f nm

j , and the matrix elements

vn
l =

∫ 1t

0
γn,d(l1t − τ) dτ, l > 0, (62)

involve the kernel modes (60), and, as before, vn
0 = 0.

4.3.1. Stability analysis. The normalization in (57) leads to [Morimoto 1980; Müller 1966]

|Pn,d−1(x)| ≤ 1= P0,d−1(x), x ∈ [−1, 1].

As the other terms in (60) are nonnegative, we have

|γn,d(t − τ)| ≤ γ0,d(t − τ), t − τ > 0.

An almost identical proof to that of Lemma 11 leads to the following lemma.

Lemma 18. Fix T > 0. Then, for any N and 1t with N1t ≤ T, and all n ∈ Z+, the spectral radius
ρn,d(N ;1t) of the symmetric Toeplitz matrix W n(N ;1t), as defined by (42), with vn

l given by (62), has
the bound

ρn,d(N ;1t)≤ Cd(T ),

where

Cd(T ) :=
∫ T

0

ωd−1

2d+1πd/2(T − τ)(d+2)/2

∫ 1

−1

(1− x)
e(1−x)/(2(T−τ)) (1− x2)(d−3)/2 dx dτ < 1

2 .

As before, we are also able to bound from below the gap between Cd(T ) and 1
2 , given a weak

condition on T. For this, we interchange the order of integration and apply the change of variable
λ= (1− x)/(2(T − τ)), giving

Cd(T )=
∫ 1

−1

ωd−1

2d+1πd/2

(1+ x)(d−3)/2
√

1− x

(
2d/2

∫
∞

(1−x)/(2T )
λd/2e−λ dλ

)
dx

and
1
2 −Cd(T )=

1

2d/2√π0
( 1

2(d − 1)
) ∫ 1

−1

(1+ x)(d−3)/2
√

1− x

(∫ (1−x)/(2T )

0
λd/2e−λ dλ

)
dx .
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Assume now T ≥ 1. Then for x ∈ [−1, 1], we have (1 − x)/(2T ) ≤ 1. Thus, e−λ ≥ e−1 for λ ∈
[0, (1− x)/(2T )] and

1
2 −Cd(T )≥

1

2d/2√π0
( 1

2(d − 1)
) ∫ 1

−1

(1+ x)(d−3)/2
√

1− x

(
1
e

∫ (1−x)/(2T )

0
λd/2 dλ

)
dx

=
1

ed2d−1√π0
( 1

2(d − 1)
)
T d/2

∫ 1

−1
(1− x2)(d−3)/2(1− x) dx

=
2

ed2d−1√π0
( 1

2(d − 1)
)
T d/2

∫ 1

0
(1− x2)(d−3)/2 dx

=
2

ed2d−1√π0
( 1

2(d − 1)
)
T d/2

∫ π/2

0
cosd−2(θ) dθ

=
1

ed2d−10
( 1

2 d
)
T d/2

, (63)

where the last equality follows from an integral identity in [Gradshteyn and Ryzhik 2014, §3.62].
Armed with this polynomial control of the gap, and following the same reasoning as used to show (48),

we obtain the following theorem regarding the stability of the forward Euler scheme in higher dimensions.

Theorem 19. Fix d > 2 and T ≥ 1. For all n = 0, 1, . . . and m = 1, . . . , an,d ,

‖σ nm
‖ ≤

1
1
2 −Cd(T )

‖ f nm
‖ ≤ ed2d−10

( 1
2 d
)
T d/2
‖ f nm

‖ (64)

for all N and 1t such that N1t ≤ T. That is, when 0 is the unit sphere Sd−1, the forward Euler scheme
for solving the second-kind Volterra integral equation (12) is unconditionally stable on any finite time
interval [0, T ].

Remark 20. When d = 2, Hn is spanned by einθ and e−inθ. The decomposition of L2(S1) into spherical
harmonics is the usual Fourier series expansion. And if we identify Pn,1(x) with the Chebyshev polyno-
mials Tn(x), then all calculations in this subsection are valid for d = 2. We instead presented the analysis
in two dimensions using the usual Fourier series for the reader’s convenience.

Remark 21. It is easy to see that the bound (64) actually also includes the cases of d = 1 and d = 2
proved earlier, and thus holds for all d ≥ 1.

4.4. The Neumann problem on the unit ball. For the Neumann condition (3), we represent u(B) as the
single-layer potential S[σ ]. The jump relation (17) leads to the second-kind Volterra integral equation( 1

2 +Sν

)
[σ ](x, t)= g̃(x, t), (x, t) ∈ 0×[0, T ], (65)

where Sν indicates the normal derivative of the single-layer with respect to the target point, restricted to 0,
interpreted in a principal value sense, as in Section 2. In (65) the right-hand side is the corrected data

g̃(x, t) := g(x, t)−
∂u(F)(x, t)

∂ν
, x ∈ 0.
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On the unit sphere Sd−1, straightforward calculation shows that the kernel of the double-layer potential D
is exactly the same as that of Sν . Thus, the forward Euler scheme for (65) leads to the identical marching
matrix except a sign change in diagonal entries. Since we prove the bound (64) by bounding the spectral
radius of the marching matrix excluding the diagonal part, we observe that (64) holds as well for (65) with
f replaced by g̃. This leads to the unconditional stability of the forward Euler scheme for the Neumann
problem on the unit ball, for all d ≥ 1.

5. The Robin problem on the half-space

For the Robin boundary condition (4), we also represent u(B) via a single-layer potential S[σ ]. The jump
relation (17) leads to the second-kind Volterra equation( 1

2 +Sν + κS
)
[σ ](x, t)= h̃(x, t), (x, t) ∈ 0×[0, T ], (66)

with corrected Robin data

h̃(x, t) := h(x, t)−
∂u(F)(x, t)

∂ν
− κu(F)(x, t). (67)

When D = Rd
+

, where 0 is naturally identified as Rd−1
⊂ Rd, the kernel of Sν is identically zero due to

the fact that (x− y) · νx = 0. Thus, (66) reduces to( 1
2 + κS

)
[σ ](x, t)= h̃(x, t), (x, t) ∈ Rd−1

×[0, T ]. (68)

Here we assume that h̃ is sufficiently smooth and decays sufficiently fast at infinity so that the problem is
well-posed.

5.1. The Robin problem in one dimension. In one dimension, the boundary 0 of the half-line consists
of a single point x = 0. The integral equation (68) reduces to the Abel integral equation (multiplying
both sides by 2, and denoting the right-hand side by f instead):

σ(t)+
κ
√
π

∫ t

0

σ(τ)
√

t − τ
dτ = 2 f (t). (69)

Before discretizing, we show stability of the continuous problem for κ > 0. The Riemann–Liouville
fractional integral operator Rα is defined by the formula

Rα[g](t)=
1

0(α)

∫ t

0

g(τ )
(t − τ)1−α

dτ, α ∈ (0, 1),

where 0(α) is the gamma function (88). Thus, the integral operator on the left side of (69) is simply(
0
( 1

2

)
κ/
√
π
)
R1/2 = κR1/2. For all real functions g, the operator Rα satisfies the positivity property

[Mustapha and Schötzau 2014, Lemma 3.1]∫ T

0
g(t)Rα[g](t) dt ≥ 0. (70)
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Taking the inner product of (69) with σ over a fixed interval [0, T ], and using (70), gives

‖σ‖2L2([0,T ]) ≤ 2(σ, f )≤ 2‖σ‖L2([0,T ])‖ f ‖L2([0,T ]),

where Cauchy–Schwartz was used in the last step. So on any finite interval [0, T ] this gives the continuous
version of the L2 stability bound

‖σ‖ ≤ 2‖ f ‖.

We now proceed to discretization. Recall that the forward Euler scheme uses a piecewise constant
approximation σ(t) ≈ σm := σ(tm) on [tm, tm+1) on the uniform grid tm = m1t . Then performing the
integrals exactly in (69) gives the explicit marching rule

σn = 2 fn −

n−1∑
m=0

vn−mσm, n = 1, . . . , N , (71)

with the lower-triangular Toeplitz matrix weights

vj = 2
√

h(
√

j −
√

j − 1)=
2
√

h
√

j +
√

j − 1
, j = 1, 2, . . . , (72)

and where fn := f (tn) and h := κ21t/π . For smooth solutions σ ∈ C1([0, T ]), this rule can be proved
to be first-order accurate by combining compactness of the integral operator, Céa’s lemma, and noting
that the piecewise constant approximant has error O(1t); see [Kress 1989, §13.1–3].

For initialization, as before we set σ0= f0=0, and define the vectors σ and f by {σn}
N
n=0, { fn}Nn=0∈RN+1,

respectively. Using this notation, (71) takes the form of the lower-triangular Toeplitz linear system

(I + V )σ = 2 f , (73)

where V ∈ R(N+1)×(N+1) has elements vn,m = vn−m for n > m, and vn,m = 0 otherwise. Here, vn is
defined in (72) with h = κ21t/π .

There is a substantial literature on the numerical analysis and stability of Volterra equations in the
one-dimensional setting. For a discussion of convergence theory and step-size control, see [Baker 2000;
Jones and McKee 1985; Brunner 2004]. Much work on stability has been devoted to an analysis of the
model problem

y(t)+
∫ t

0
[λ0+ λ1(t − τ)]y(τ ) dτ = f (t),

or to problems with a continuous kernel [Jones and McKee 1985; Messina and Vecchio 2017]. In [Lubich
1983a], a more relevant stability result is obtained for systems of the form (73), but assuming that the
sequence {vj } is in l1, which is not the case here.

For previous work on Abel-type equations with singular kernels, we refer the reader to [Eggermont 1984;
Lubich 1983b; 1985; Vögeli et al. 2018]. These papers, however, are mostly concerned with implicit march-
ing schemes. An exception is [Lubich 1986], which does a careful stability analysis for a variety of schemes
and makes clear the connection between completely monotonic sequences and stability. An interesting
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result from that paper is Corollary 2.2, which states that “the stability region of an explicit convolution quad-
rature . . . is bounded”. Theorem 22 below, which is consistent with Lubich’s result, gives a precise value
for the time-step restriction. It also guarantees that σ decays once the right-hand side f has switched off.

Theorem 22. There is a constant 0< c < 3−
√

2 such that, for any N and any f ∈ RN+1, the solution
to (73) obeys

‖σ‖ ≤
2

1− c
√

h
‖ f ‖, (74)

where ‖ · ‖ denotes the l2-norm. That is, the marching scheme (71) is stable for h < 0.39 < (1/c)2 or
1t < π/(c2κ2), where κ is the heat transfer coefficient.

Proof. We first show that there exists a constant c > 0 such that

σ T V σ ≥−c
√

h‖σ‖2 for any σ ∈ RN+1, (75)

i.e., that the smallest eigenvalue of V is bounded from below. Writing
√

hWN+1 :=
1
2(V + V T ) as the

scaled symmetric part of V, note that σ T V σ =
√

hσ T WN+1σ , and that WN+1 is independent of the time
step. Note that WN+1 is the (N+1)×(N+1) upper-left principal submatrix of the infinite symmetric
Toeplitz matrix Tv, defined by the sequence 0, v1, v2, . . . , with

vj =
1

√
j +
√

j − 1
=
√

j −
√

j − 1, j ∈ N.

It is straightforward to check that the sequence {vj } j∈N is convex and that lim j→∞ vj = 0. By Theorem 5
and Remark 6, we have

σ T WN+1σ ≥ (v2− 2v1)‖σ‖
2.

That is, (75) holds if c = 2v1− v2 = 3−
√

2. To complete the proof, take the inner product of (73) with
σ to get

‖σ‖2+ σ T V σ = 2σ T f .

Applying (75) to the left-hand side and the Cauchy–Schwarz inequality to the right-hand side, we have

(1− c
√

h)‖σ‖2 ≤ 2‖σ‖‖ f ‖,

from which (74) follows for any σ 6= 0. It holds trivially when σ = 0. �

Remark 23. The above proof gives c = 3−
√

2 ≈ 1.5858. By numerically computing the smallest
eigenvalue of successively larger Toeplitz matrices V, or, better, by evaluating v(π)= 2

∑
j>0(−1) j−1vj ,

one can obtain an optimal estimate of c ≈ 1.52041925043874. We omit the details of this computation
and mention it only to illustrate that the explicit bound is within about 4% of the optimal one.

Remark 24. With unit diffusion constant, the transfer coefficient κ has units (length)−1. Thus our
time-step condition 1t < π/(cκ)2 is proportional to the square of the physical length 1/κ . Although
reminiscent of the explicit finite-difference stability condition 1t < c1x2, our stability condition is, by
contrast, independent of any spatial discretization. (Indeed, in practice the only spatial discretization
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needed would be quadrature to evaluate (11) to get f (t), as in (67). With f (t) computed, there is no
spatial variable left to discretize.)

5.2. The Robin problem in higher dimensions. In higher dimensions d ≥ 2, the boundary 0 of the
half-space Rd

+
can be identified as Rd−1 by natural embedding. The integral equation (68) is rewritten as

σ(x, t)+
κ
√
π

∫ t

0

1
√

t − τ

∫
Rd−1

1
(4π(t − τ))(d−1)/2 e−|x− y|2/(4(t−τ))σ( y, τ ) d y dτ = 2 f (x, t), (76)

where x, y ∈ Rd−1. Again we have multiplied both sides by 2 and denote the right-hand side by f . We
observe that the kernel inside the spatial integral on the left side of (76) is exactly the heat kernel in Rd−1.
It is well known that the Fourier transform of the heat kernel G(x, t) in Rd−1 is simply e−|ξ |

2t, in terms
of the Fourier variable ξ ∈ Rd−1. Using this fact and that the convolution in physical space becomes
pointwise multiplication in frequency, and taking the Fourier transform in Rd−1 of both sides of (76), we
obtain

σ̂ (ξ , t)+
κ
√
π

∫ t

0

e−|ξ |
2(t−τ)

√
t − τ

σ̂ (ξ , τ ) dτ = 2 f̂ (ξ , t), ξ ∈ Rd−1. (77)

Note that in the special case ξ = 0 this recovers (69).
Fixing ξ , we proceed much as in the one-dimensional case. That is, we approximate σ̂ (ξ , t) by a

constant σ̂m(ξ) := σ̂m(ξ , tm) on [tm, tm+1) with tm = m1t , and perform the integrals exactly. Let us
define the vectors σ̂ (ξ) and f̂ (ξ) by {σ̂n(ξ)}

N
n=0, { f̂n(ξ)}

N
n=0 ∈ RN+1, respectively. Using this notation,

the forward Euler scheme for (77) takes the form of the lower-triangular Toeplitz linear system

(I + V̂ (ξ))σ̂ (ξ)= 2 f̂ (ξ), (78)

where V̂ (ξ) ∈ R(N+1)×(N+1) has elements vn,m(ξ)= vn−m(ξ) for n > m, and vn,m = 0 otherwise. Here,
vn is defined by

vn(ξ)= 2
√

h
1

2
√
1t

∫ 1t

0

e−|ξ |
2(n1t−τ)

√
n1t − τ

dτ, (79)

with, as before, h = κ21t/π .

Lemma 25. For any 1t > 0 and any fixed ξ , the sequence {vn(ξ)}n∈N is convex.

Proof. Let x = |ξ |21t . Applying the change of variables u = n− τ/1t on the integral in (79) leads to

vn(ξ)=
√

h
∫ n

n−1

e−xu
√

u
du. (80)

Thus, in order to show that {vn(ξ)}n∈N is a convex sequence, we only need to show that the function

g(t)=
∫ t

t−1

e−xu
√

u
du

is convex for t ≥ 1. Here x ≥ 0 is a fixed parameter. Differentiating g(t) twice leads to

g′′(t)= p′(t)− p′(t − 1),
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with

p(t)=
e−xt
√

t
.

Now

p′′(t)=
3e−t x

4t5/2 +
xe−t x

t3/2 +
x2e−t x
√

t
,

which is positive for any x ≥ 0 and t > 0. This shows that p′(t) is monotonically increasing for t > 0.
Thus, p′(t) > p′(t − 1) for t ≥ 1, and g′′(t) > 0 for t ≥ 1, completing the proof. �

Lemma 26. For any ξ ∈ Rd−1,

v2(ξ)− 2v1(ξ)≥ v2(0)− 2v1(0)=−2(3−
√

2)
√

h. (81)

Proof. Using the expression (80), we only need to show that

f (x) :=
∫ 2

1

e−xu
√

u
du− 2

∫ 1

0

e−xu
√

u
du ≥ f (0)

for x ≥ 0. For this, we calculate

f ′(x)= 2
∫ 1

0

√
ue−xu du−

∫ 2

1

√
ue−xu du

= 3
∫ 1

0

√
ue−xu du−

∫ 2

0

√
ue−xu du

= 3
∫ 1

0

√
ue−xu du− 2

√
2
∫ 1

0

√
ue−2xu du

> 2
√

2
∫ 1

0

√
ue−xu(1− e−xu) du ≥ 0 for x ≥ 0.

That is, f is monotonically increasing for x ≥ 0, completing the proof. �

Lemma 25 together with Theorem 5 and Remark 6 leads to

σ̂ (ξ)T V̂ (ξ)σ̂ (ξ)≥ 1
2(v2(ξ)− 2v1(ξ))‖σ̂ (ξ)‖

2 for any ξ ∈ Rd−1. (82)

Combining the above estimate with (81), we obtain

σ̂ (ξ)T V̂ (ξ)σ̂ (ξ)≥−c
√

h‖σ̂ (ξ)‖2 for any ξ ∈ Rd−1, (83)

where

c = 3−
√

2. (84)

An argument similar to that in the proof of Theorem 13 then gives

‖σ̂ (ξ)‖ ≤
2

1− c
√

h
‖ f̂ (ξ)‖ for any ξ ∈ Rd−1. (85)
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Taking the L2-norm in Fourier space and then applying the Plancherel theorem, we have

‖σ‖ ≤
2

1− c
√

h
‖ f ‖. (86)

That is, we obtain exactly the same bound (74) as in one dimension, which shows that the forward Euler
scheme is stable for (76) if 1t < π/(c2κ2), where κ is the heat transfer coefficient.

Remark 27. In the limit κ→ 0, the scheme is unconditionally stable. This is to be expected, since when
κ = 0, the Robin boundary condition becomes a Neumann condition and the integral equation (68) yields
the analytic solution σ(x, t)= 2h̃(x, t).

6. The Dirichlet problem on an arbitrary smooth convex domain

We now study the stability property of the forward Euler scheme (13) for the Dirichlet problem on an
arbitrary C1 convex domain, i.e., the boundary integral equation (12).

We first establish a connection between the heat kernel and the Laplace kernel. The Green’s function
for the Laplace equation in Rd is

GL(x, y)=


−

1
2π ln |x− y|, d = 2,

1
(d−2)ωd

1
|x− y|d−2 , d ≥ 3,

where

ωd =
2πd/2

0
( 1

2 d
) (87)

is the area of the unit sphere Sd−1
⊂ Rd. Here 0 is the gamma function defined by the formula

0(z)=
∫
∞

0
x z−1e−x dx . (88)

The kernel of the Laplace double-layer potential operator is given by

∂GL(x− y)
∂ν( y)

=
0
( 1

2 d
)

2πd/2

(x− y) · ν( y)
|x− y|d

. (89)

It is well known to satisfy Gauss’ lemma [Kress 1989]:∫
0

∂GL(x− y)
∂ν( y)

d S( y)=− 1
2 , x ∈ 0. (90)

Lemma 28. lim
t→∞

∫ t

0

∂G(x− y, t − τ)
∂ν( y)

dτ =
∂GL(x− y)
∂ν( y)

. (91)

Proof. By (19), we have∫ t

0

∂G(x− y, t − τ)
∂ν( y)

dτ =
(x− y) · ν( y)

2d+1πd/2

∫ t

0

1
(t − τ)1+d/2 e−|x− y|2/(4(t−τ)) dτ.
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The change of variables λ= |x− y|2/(4(t − τ)) leads to∫ t

0

∂G(x− y, t − τ)
∂ν( y)

dτ =
(x− y) · ν( y)
2πd/2|x− y|d

∫
∞

|x− y|2/(4t)
λd/2−1e−λ dλ. (92)

Taking the limit t→∞ and using the definition of the gamma function (88), we obtain (91). �

The following provides the key ingredient for the stability of the forward Euler scheme in an arbitrary
smooth convex domain.

Lemma 29. Suppose that D ⊂ Rd is a C1 convex domain and 0 is its boundary. Then

∂G(x− y, t − τ)
∂ν( y)

≤ 0,
∂GL(x− y)
∂ν( y)

≤ 0, x, y ∈ 0, (93)

and

lim
t→∞

∫ t

0

∫
0

∂G(x− y, t − τ)
∂ν( y)

d S( y) dτ =− 1
2 , x ∈ 0. (94)

For t ∈ (0,∞), define

Cd(t)=
∥∥∥∥∫ t

0

∫
0

∣∣∣∣∂G(x− y, t − τ)
∂ν( y)

∣∣∣∣ d S( y) dτ
∥∥∥∥
∞

. (95)

Then Cd(t) is a monotonic increasing function of t and

Cd(t) < 1
2 . (96)

Proof. Equation (93) follows from the expressions (19) and (89) and the fact that x · y ≤ 0 for x, y ∈ 0
when D is convex due to the convex separation theorem [Boyd and Vandenberghe 2004]; (94) follows
from (90) and (91). The monotonic increasing property of Cd(t) follows from (92) and the fact that the
integrand is of the same sign everywhere by (93). Finally, (96) is a simple consequence of (93) and (94). �

Recall that the forward Euler scheme (13) for the Dirichlet problem is

1
2σ(x, n1t)=

n−1∑
j=0

∫ ( j+1)1t

j1t

∫
0

∂G(x− y, n1t − τ)
∂ν( y)

σ ( y, j1t) ds( y) dτ − f (x, n1t). (97)

Here we have dropped the tilde from f again.

Theorem 30. Let D ⊂ Rd be a bounded, convex domain with C1-boundary. Fix T > 0. The solution σ
to (97) satisfies

‖σ‖∞ ≤
1

1
2 −Cd(T )

‖ f ‖∞ (98)

for any N and 1t such that N1t ≤ T. Here Cd(T ) is defined in (95), ‖ · ‖∞ denotes the L∞-norm in
space and the l∞-norm in the discrete temporal variable. In other words, the forward scheme (13) is
unconditionally stable on [0, T ] for any T > 0.



734 ALEX BARNETT, CHARLES L. EPSTEIN, LESLIE GREENGARD, SHIDONG JIANG AND JUN WANG

Proof. Taking the absolute value on both sides of (97), we have

1
2 |σ(x, n1t)| ≤

n−1∑
j=0

∫ ( j+1)1t

j1t

∫
0

∣∣∣∣∂G(x− y, n1t − τ)
∂ν( y)

σ ( y, j1t)
∣∣∣∣ ds( y) dτ + | f (x, n1t)|

≤

n−1∑
j=0

∫ ( j+1)1t

j1t
‖σ( · , j1t)‖∞

∫
0

∣∣∣∣∂G(x− y, n1t − τ)
∂ν( y)

∣∣∣∣ ds( y) dτ +‖ f ( · , n1t)‖∞

≤ ‖σ‖∞

n−1∑
j=0

∫ ( j+1)1t

j1t

∫
0

∣∣∣∣∂G(x− y, n1t − τ)
∂ν( y)

∣∣∣∣ ds( y) dτ +‖ f ‖∞

= ‖σ‖∞

∫ (n−1)1t

0

∫
0

∣∣∣∣∂G(x− y, n1t − τ)
∂ν( y)

∣∣∣∣ ds( y) dτ +‖ f ‖∞, (99)

where the first inequality follows from the triangle inequality, the second one follows from taking the
L∞-norm in the spatial variable for both σ and f , and the third one follows from taking the maximum
norm in the discrete temporal variable. We continue our calculation

1
2 |σ(x, n1t)| ≤ ‖σ‖∞

∫ n1t

0

∫
0

∣∣∣∣∂G(x− y, n1t − τ)
∂ν( y)

∣∣∣∣ ds( y) dτ +‖ f ‖∞

≤ Cd(T )‖σ‖∞+‖ f ‖∞. (100)

Since the inequality above is valid for any x ∈ 0 and any n such that n1t ≤ T, its left-hand side can be
replaced by 1

2‖σ‖∞, completing the proof. �

Remark 31. It is clear that the L∞ bound (96) for the Dirichlet problem on a convex domain is less
informative than the L2 bound (64) for the unit ball since (64) bounds 1/

( 1
2 −Cd(T )

)
explicitly by

ed2d−10
( 1

2 d
)
T d/2. The L2-bounds also allow for potentially unbounded data, with a finite square norm.

7. Conclusions and further remarks

We have analyzed the stability of the forward Euler scheme for solving the Dirichlet and Neumann
problems for the heat equation in the unit ball, with data specified on the unit sphere Sd−1

⊂ Rd, using
second-kind Volterra time-domain boundary integral equations. While finite-difference methods require
that the Courant number 1t/(1x)2 be O(1), we have shown that integral equation methods can be both
explicit and unconditionally stable for any fixed final time T.

We have also studied the Robin problem on the half-space in all dimensions and shown that stability of
the forward Euler scheme follows if1t <π/(c2κ2), where c= 3−

√
2 and κ is the heat transfer coefficient.

As pointed out in Remark 23, this bound is very close to the optimal bound where c≈ 1.52041925043874.
A critical element in the proof of unconditional stability of the forward Euler scheme is the pointwise

nonpositivity of the double-layer heat kernel on the unit sphere Sd−1, a property which extends to any
convex domain. Combining this with the elementary fact that a unit double-layer density generates a surface
potential approaching −1

2 enabled us to extend this stability result to arbitrary smooth convex domains,
in the Dirichlet case and the L∞-norm, albeit with a less informative bound on the norm of the solution.
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A key ingredient in the Robin proofs was a bound on the smallest eigenvalue of real symmetric Toeplitz
matrices via the convexity of the associated sequence. This may be of independent interest in signal
processing applications. Another ingredient for the proofs was a tight rational function bound for the
ratio of modified Bessel functions of the first kind with large positive real argument, which may be of
interest in its own right. A detailed analysis combining these ingredients showed that in the Dirichlet disc
(d = 2), the density is bounded in norm by the data, uniformly in time, so long as 1t ≤ 1.

While this paper is purely analytic, we note that the numerical experiments in [Wang 2017] are
consistent with the theory presented here. More detailed experiments will be reported in a forthcoming
paper [Wang et al. ≥ 2019] that considers the full initial-boundary value problem including forcing terms.

Some other questions arise naturally from our study. First, for the Dirichlet problem on the unit ball in
higher dimensions, one may ask whether the scheme is stable for all time given some mild constraint
on 1t . Second, one may ask about the stability analysis of the Robin problem on the unit ball in all
dimensions. Third, it is natural to inquire about the stability of other explicit time-marching schemes such
as Adams–Bashforth multistep methods or explicit Runge–Kutta methods. Fourth, it would be interesting
to see if the convexity assumption could be relaxed, and stability proved for arbitrary, sufficiently smooth
domains. Integral equation methods become difficult to analyze when the boundary of the domain is not
at least C1. We are currently investigating these issues and will report our findings in the future.

8. Appendix: Properties of the modified Bessel functions of the first kind

The modified Bessel function of the first kind Iν(x) is defined by the formula [Olver et al. 2010, Chapter 10]

Iν(z)=
(1

2 z
)ν ∞∑

k=0

( 1
2 z
)2k

k!0(ν+ k+ 1)
.

It satisfies the recurrence relations [loc. cit., §10.29.2]

I ′ν(z)= Iν−1(z)−
ν

z
Iν(z), I ′ν(z)= Iν+1(z)+

ν

z
Iν(z). (101)

When ν is fixed and x→∞ [loc. cit., §10.30.4],

Iν(x)∼
ex
√

2πx
, x ∈ R.

When ν is an integer n, the function In admits the integral representation [loc. cit., §10.32.3]

In(z)=
1
π

∫ π

0
ez cos θ cos(nθ) dθ. (102)

The following results can be found in [Yang and Zheng 2017].

Lemma 32. Let Wν(x) = x Iν(x)/(Iν+1(x)) and Sp,ν = W 2
ν (x) − 2pWν(x) − x2. Then Sν,ν−1(x) is

monotonically decreasing from 0 to −∞ on (0,∞) for ν > 1
2 ,

ν− 1
2 +

√
x2
+ ν2
−

1
4 ≤Wν−1(x)≤ ν− 1

2 +

√
x2
+
(
ν+ 1

2

)2
, (103)
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and
ν− 1+

√
x2+ (ν+ 1)2 ≤Wν−1(x) (104)

for ν ≥ 1
2 , with x ∈ (0,∞).

Lemma 33. Let n be a positive integer. Then:

(a) There is only one zero rn for the equation

I ′n(x)
In(x)

= 1

on (0,+∞). Furthermore,
max

(
n2
−

1
2 ,

1
2 n2
+ n

)
≤ rn ≤ n2

+ n. (105)

(b) The function e−x In(x) increases monotonically on [0, rn] and decreases monotonically on [rn,+∞).

(c) The maximum value of e−x In(x) on [0,∞) satisfies

max
[0,+∞)

e−x In(x) <
1

2n+ 1
. (106)

Proof. (a) Using the recurrence (101), we have

Wn−1(x)= x
I ′n(x)
In(x)

+ n.

Thus,

Sn,n−1(x)= x2
(

I ′n(x)
In(x)

)2

− x2
− n2.

When I ′n(x)/In(x) = 1, we have Sn,n−1 = −n2. By the monotonicity and the range of Sn,n−1(x),
Sn,n−1 takes the value −n2 at only one point and we denote that point by rn .

Substituting x=rn into (103) and (104) with I ′n(rn)/In(rn)=1 and simplifying the resulting expressions,
we obtain (105).

(b) We have
d

dx
(e−x In(x))= e−x In(x)

(
I ′n(x)
In(x)

− 1
)
.

Using (103), it follows that I ′n(x)/In(x)> 1 for x < n2
−

1
2 and I ′n(x)/In(x)< 1 for x > n2

+n. Combining
these facts with (a), we have I ′n(x)/In(x) > 1 for x < rn and I ′n(x)/In(x) < 1 for x > rn . That is,

d
dx
(e−x In(x)) > 0 for x < rn,

d
dx
(e−x In(x)) < 0 for x > rn,

which completes the proof of (b).

(c) By the identity §10.35.5 in [Olver et al. 2010], we have

1= e−x
(

I0(x)+ 2
∞∑

k=1

Ik(x)
)
.
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Section 10.37 of [loc. cit.] states that for fixed x > 0, the function Iν(x) is positive and decreasing for
0< ν <∞. Hence,

1> e−x
(

In(x)+ 2
n∑

k=1

In(x)
)
= (2n+ 1)e−x In(x),

which completes the proof. �

The following lemma about differential inequalities can be found in [Hartman 1964, Chapter III, §4].

Lemma 34 [Petrovitch 1901]. Suppose that f (y, t) is continuous in an open domain D. Suppose further
that y is the solution to the Cauchy problem

y′(t)= f (y(t), t), y(t0)= y0, (y0, t0) ∈ D.

(a) (increasing t) Suppose that u satisfies the inequalities

u′(t)≥ f (u(t), t), t ∈ (t0, t0+ δ)(δ > 0)

u(t0)≥ y(t0).
(107)

Then

u(t)≥ y(t), t ∈ [t0, t0+ δ]. (108)

The inequality in (108) is reversed if both inequalities in (107) are reversed.

(b) (decreasing t) Suppose that u satisfies the inequalities

u′(t)≤ f (u(t), t), t ∈ (t0− δ, t0)(δ > 0)

u(t0)≥ y(t0).
(109)

Then

u(t)≥ y(t), t ∈ [t0− δ, t0]. (110)

The inequality in (110) is reversed if both inequalities in (109) are reversed.

Lemma 35. Let
g0(x)= (4x − 3)I0(x)− (4x − 1)I1(x). (111)

Then g0(x) has a unique zero, denoted as x∗, on
( 3

4 ,∞
)
. Furthermore, g0(x)< 0 on

[ 3
4 , x∗

)
and g0(x)> 0

on (x∗,∞).

Proof. Let rν(x)= Iν(x)/Iν+1(x). In particular,

r0(x)=
I0(x)
I1(x)

.

From Section 10.37 of [Olver et al. 2010], we know that Iν(x) is positive and increasing on (0,∞) for
fixed ν ≥ 0 and Iν(x) is decreasing on 0< ν <∞ for fixed x . Thus, rν(x) > 1 on (0,∞) for ν ≥ 0. Let

l0(x)=
4x − 1
4x − 3

.
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Then it is clear that the sign of g0(x) is determined by comparing r0(x)with l0(x). First, limx→3/4+ l0(x)=
+∞ and thus l0(x)> r0(x) as x→ 3

4
+

. Second, the series expansion of l0(x) and the asymptotic expansion
of r0(x) are

l0(x)= 1+
1

2x
+

3
8x2 +

9
32x3 +

27
128x4 +

81
512x5 + O

(
1
x6

)
,

r0(x)= 1+
1

2x
+

3
8x2 +

3
8x3 +

63
128x4 +

27
32x5 + O

(
1
x6

)
.

Hence, r0(x) > l0(x) as x→∞. Combining these two facts, there is at least one point x∗ ∈
( 3

4 ,∞
)

where
r0(x∗)= l0(x∗). Or equivalently,

g0(x∗)= 0.

By the recurrence relations (101), rν satisfies the Riccati equation

r ′ν(x)= 1+
2ν+ 1

x
rν(x)− r2

ν (x).

In particular, for ν = 0,

r ′0(x)= 1+
1
x

r0(x)− r2
0 (x).

We now calculate

l ′0(x)−
(

1+
1
x

l0(x)− l2
0(x)

)
=−

3
x(4x − 3)2

< 0, x ∈
( 3

4 ,∞
)
.

By Lemma 34, we have

l0(x)≤ u0(x), x ≥ x∗; l0(x)≥ r0(x), x ∈
( 3

4 , x∗
)
.

Equivalently,
g0(x)≥ 0, x ≥ x∗; g0(x) < 0, x ∈

[3
4 , x∗

)
,

completing the proof. �

Remark 36. Numerical computation shows that x∗ u 1.452165365078841 . . . .

Corollary 37. Let

h0(x)= (x − 2)g0(x)= (x − 2)[(4x − 3)I0(x)− (4x − 1)I1(x)], (112)

where g0(x) is defined in (111). Then h0(x)≥ 0 on
[3

4 , x∗
]

and [2,∞), and h0(x)≤ 0 on [x∗, 2).

Lemma 38. Let
h1(x)= (4x2

− 7x)I1(x)− (4x2
− 9x + 3)I0(x). (113)

Then h1(x) > 0 on
[3

4 ,∞
)
.

Proof. Let x∗1 =
1
8(
√

33+ 9)= 1.843 . . . be the larger root of 4x2
− 9x + 3. Then 4x2

− 9x + 3> 0 for
x > x∗1 and 4x2

− 9x + 3< 0 for x ∈
[3

4 , x∗1
)
. We break

[ 3
4 ,∞

)
into several subintervals and show the

positivity of h1(x) on each subinterval.
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(a) x ∈ [x∗1 ,∞). Let

u0(x)=
4x2
− 7x

4x2− 9x + 3
.

Then

u′0(x)−
(
1+ 1

x
u0(x)− u2

0(x)
)
=

3(x − 3)

(4x2− 9x + 3)2
, (114)

which is greater than zero if x > 3 and less than zero if x < 3. At x = 3, we have u0(3) = 5
4 = 1.25

and r0(3) = 1.23459 . . . < 1.25 = u0(3). Thus, using Lemma 34 in the increasing direction we have
r0(x) < u0(x) on [3,∞); and using Lemma 34 in the decreasing direction, we still have r0(x) < u0(x)
on [x∗1 , 3). Equivalently, h1(x) > 0 on [x∗1 ,∞).

(b) x ∈
[7

4 , x∗1
]
. On this subinterval, we have 4x2

− 7x ≥ 0 and −4x2
+ 9x − 3≥ 0. Hence, h1(x) > 0,

since I1(x) and I0(x) are always positive on [0,∞).

(c) x ∈
[ 3

4 ,
7
4

]
. By (114), we have u′0(x)− (1+ (1/x)u0(x)− u2

0(x))≤ 0 on
[ 3

4 ,
7
4

]
. Also, u0

( 3
4

)
= 2<

r0
(3

4

)
= 2.8 . . . . Using Lemma 34, we have r0(x) > u0(x), or equivalently h1(x) > 0 on

[ 3
4 ,

7
4

]
. �

Lemma 39. Let f0(x)= e−1/x I0(1/x), f1(x)= e−1/x I1(1/x), and f (x)= f0(x)+a f1(x) with a= 0.05.
Then f ′′′(x) > 0 on (0,∞).

Proof. Using the recurrence relation (101), we obtain

f ′′′0 (x)=
1
x4 e−1/x h0

(
1
x

)
,

where h0(x) is defined in (112). Similarly,

f ′′′1 (x)=
1
x4 e−1/x h1

(
1
x

)
,

where h1(x) is defined in (113). Thus, in order to show that f ′′′(x) > 0 on (0,∞), we only need to show
that h0(x)+ ah1(x) > 0 on (0,∞).

We break it into several steps.

(a) x ∈
[
0, 1

4

]
. On this interval, 3− 4x ≥ 2, 0≤ 1− 4x ≤ 1, and 2− x ≥ 1.75; thus

h0(x)≥ 1.75(2I0(x)− I1(x)) > 1.75I0(x).

Also 4x2
− 7x ≥ −1.5, 4x2

− 9x + 3 ≤ 3; thus h1(x) ≥ −1.5I1(x)− 3I0(x) > −4.5I0(x). Combining
these results, we have

h0(x)+ ah1(x) > (1.75+ 0.05× (−4.5))I0(x) > 0.

(b) 1
4≤ x≤ 1

8(9−
√

33)<0.5. On this interval, 3−4x>1, 4x−1≥0, and 2−x>1.5; thus h0(x)>1.5I0(x).
Also 4x2

−7x >−2.5 and 0≤ 4x2
−9x+3≤ 1; thus h1(x)>−2.5I1(x)− I0(x)>−3.5I0(x). Combining

these results, we have

h0(x)+ ah1(x) > (1.5+ 0.05× (−3.5))I0(x) > 0.
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(c) 1
8(9−

√
33)≤ x ≤ 3

4 . On this interval, 3−4x ≥ 0, 4x−1> 0.6, and 2− x > 1; thus h0(x) > 0.6I1(x).
Also 4x2

− 7x ≥−3 and −(4x2
− 9x + 3)≥ 0; thus h1(x)≥−3I1(x). Combining these results, we have

h0(x)+ ah1(x) > (0.6− 0.05× 3)I1(x) > 0.

(d) x ∈
[ 3

4 , x∗
]
∪ [2,∞). On these two subintervals, both h0(x) and h1(x) are positive by Corollary 37

and Lemma 38. Thus h0(x)+ ah1(x) > 0.

(e) x ∈ (x∗, 2). We calculate
h′1(x)= (x − 3)g0(x),

where g0(x) is defined in (111). By Lemma 35, g0(x) > 0 on (x∗,∞). Thus, h′1(x) < 0 on (x∗, 2). This
shows that h1(x) > h1(2)≈ 0.901688 on (x∗, 2). On the other hand, it is straightforward to show that
g′0(x) > 0 and g′′0 (x) < 0 on (x∗, 2). Hence, h′′0(x) = g′′0 (x)(x − 2)+ 2g′0(x) > 0 on (x∗, 2), indicating
that h0(x) achieves its minimum at exactly one point. Numerical calculation shows that

min
x∈(x∗,2)

h0(x)≈−0.043 . . . >−0.044.

Hence,
h0(x)+ ah1(x)≥ min

x∈(x∗,2)
h0(x)+ 0.05× h1(2) > 0. �
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