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MAXIMAL L2-REGULARITY IN NONLINEAR GRADIENT SYSTEMS
AND PERTURBATIONS OF SUBLINEAR GROWTH

WOLFGANG ARENDT AND DANIEL HAUER

The nonlinear semigroup generated by the subdifferential of a convex lower semicontinuous function ϕ
has a smoothing effect, discovered by Haïm Brezis, which implies maximal regularity for the evolution
equation. We use this and Schaefer’s fixed point theorem to solve the evolution equation perturbed by a
Nemytskii operator of sublinear growth. For this, we need that the sublevel sets of ϕ are not only closed,
but even compact. We apply our results to the p-Laplacian and also to the Dirichlet-to-Neumann operator
with respect to p-harmonic functions.

1. Introduction

Let H be a real Hilbert space, ϕ : H → (−∞,+∞] a proper, convex, lower semicontinuous function,
A = ∂ϕ the subdifferential of ϕ, and D(ϕ) := {u ∈ H | ϕ(u) < +∞} the effective domain of ϕ (see
Section 2 for more details). Then A is a maximal monotone (in general, multivalued) operator on H for
which the following remarkable well-posedness result holds.

Theorem 1.1 [Brezis 1971]. Let u0 ∈ D(ϕ) and f ∈ L2(0, T ; H). Then, there exists a unique u ∈
H 1

loc((0, T ]; H)∩C([0, T ]; H) such that{
u̇(t)+ Au(t) 3 f (t) a.e. on (0, T ),

u(0)= u0.
(1-1)

If u ∈ D(ϕ) then u̇ ∈ L2(0, T ; H).

Our aim in this article is to establish existence of solutions of a perturbed version of (1-1) and to show
that these solutions have the same regularity result as in Theorem 1.1. We fix T > 0, and denote by H the
space L2(0, T ; H) and by ‖·‖H the norm ‖·‖L2(0,T ;H). Then for f ∈H and u0 ∈ H, we call a function
u : [0, T ] → H a (strong) solution of (1-1) if u ∈ H 1

loc((0, T ]; H)∩C([0, T ]; H), u(0)= u0 and for a.e.
t ∈ (0, T ) we have u(t) ∈ D(A) and f (t)− u̇(t) ∈ Au(t).

Now, let G :H→H be a continuous mapping satisfying the sublinear growth condition

‖Gv(t)‖H ≤ L ‖v(t)‖H + b(t) a.e. on (0, T ) and for all v ∈H, (1-2)
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for some L , b ∈ L2(0, T ) satisfying b(t)≥ 0 for a.e. t ∈ (0, T ). Here we let Gv(t) := (G(v))(t) to use
less heavy notation. Then we study the evolution problem{

u̇(t)+ Au(t) 3 Gu(t) a.e. on (0, T ),
u(0)= u0.

(1-3)

Note that Gu ∈H. Thus, the inclusion in (1-3) means that Gu(t)− u̇(t) ∈ Au(t) a.e. on (0, T ).
For proving existence of solutions to (1-3), we will use a compactness argument in form of Schaefer’s

fixed point theorem (see Theorem 2.1 in Section 2). Recall that lower semicontinuity of ϕ is equivalent to
saying that the sublevel sets Ec := {u ∈ H | ϕ(u)≤ c}, c ∈ R, are closed. We will assume more, namely,
compactness of the sublevel sets Ec. In fact, we need this assumption only for the shifted function ϕω
given by ϕω(u)= ϕ(u)+ 1

2ω‖u‖
2
H , u ∈ H, which is important for applications. Then our main result says

the following.

Theorem 1.2. Let ϕ : H → (−∞,+∞] be a proper function such that for some ω ≥ 0, ϕω is convex
and has compact sublevel sets. Let A = ∂ϕ and G : H→ H be a continuous mapping satisfying (1-2).
Then for every u0 ∈ D(ϕ) and f ∈H, there exists u ∈ H 1

loc((0, T ]; H)∩C([0, T ]; H) solving (1-3). In
particular, if u0 ∈ D(ϕ), then u ∈ H 1(0, T ; H).

We show in Example 3.3 that the solution is not unique in general. Further, we have the following
regularity result for the composition ϕ ◦ u and a uniform estimate.

Remark 1.3. Suppose, the hypotheses of Theorem 1.2 hold. Then every solution u of (1-3) satisfies

ϕ ◦ u ∈W 1,1
loc ((0, T ])∩ L1(0, T )

and
‖u(t)‖H ≤ (‖u0‖

2
H +‖b‖

2
L2(0,T ))

1/2 e(2L+1+2ω)/2 t for all t ∈ [0, T ]. (1-4)

As application, we consider H = L2(�) and G a Nemytskii operator. The operator A may be the
p-Laplacian (1≤ p<+∞) with possibly lower-order terms and equipped with some boundary conditions
(Dirichlet, Neumann, or Robin, see [Coulhon and Hauer 2016]) or a p-version of the Dirichlet-to-Neumann
operator considered recently in [Hauer 2015] and via the abstract theory of j-elliptic functions (see
[Arendt and ter Elst 2011; 2012; Chill et al. 2016]).

2. Preliminaries

In this section, we define the precise setting used throughout this paper and explain our main tools:
Schaefer’s fixed point theorem and Brezis’ L2-maximal regularity result for semiconvex functions.

We begin by recalling that a mapping T defined on a Banach space X is called compact if T maps
bounded sets into relatively compact sets.

Theorem 2.1 (Schaefer’s fixed point theorem [1955]). Let X be a Banach space and T : X → X be
continuous and compact. Assume that the “Schaefer set”

S := {u ∈ X | there exists λ ∈ [0, 1] such that u = λT u}

is bounded in X. Then T has a fixed point.
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This result is a special case of Leray–Schauder degree theory, but Schaefer [1955] gave a most elegant
proof, which also is valid in locally convex spaces; see also [Arendt and Chill 2010; Evans 2010, §9.2.2].

Given a function ϕ : H → (−∞,+∞], we call the set D(ϕ) := {u ∈ H | ϕ(u) < +∞} the effective
domain of ϕ, and ϕ is said to be proper if D(ϕ) is nonempty. Further, we say that ϕ is lower semicontinuous
if for every c ∈ R the sublevel set

Ec := {u ∈ D(ϕ) | ϕ(u)≤ c}

is closed in H, and ϕ is semiconvex if there exists an ω ∈ R such that the shifted function ϕω : H →
(−∞,+∞] defined by

ϕω(u) := ϕ(u)+ 1
2ω‖u‖

2
H , u ∈ H,

is convex. Then, ϕω̂ is convex for all ŵ ≥ ω, and ϕω is lower semicontinuous if and only if ϕ is lower
semicontinuous.

Given a function ϕ : H → (−∞,+∞], its subdifferential A = ∂ϕ is defined by

∂ϕ =

{
(u, h) ∈ H × H

∣∣∣∣ lim inf
t↓0

ϕ(u+ tv)−ϕ(u)
t

≥ (h, v)H for all v ∈ D(ϕ)
}
,

which, if ϕω is convex, reduces to

∂ϕ = {(u, h) ∈ H × H | ϕω(u+ v)−ϕω(u)≥ (h+ωu, v)H for all v ∈ D(ϕ)}.

It is standard to identify a (possibly multivalued) operator A on H with its graph and for every u ∈ H,
one sets Au := {v ∈ H | (u, v) ∈ A} and calls D(A) := {u ∈ H | Au 6=∅} the domain of A and Rg(A) :=⋃

u∈D(A)Au the range of A.
Now, suppose ϕ : H → (−∞,+∞] is proper, lower semicontinuous, and semiconvex; more precisely,

let us fix ω ∈ R such that ϕω is convex. Then the subdifferential ∂ϕω of ϕω is a simple perturbation of ∂ϕ,
namely ∂ϕω = ∂ϕ+ωI. For this reason, Brezis’ well-posedness result (Theorem 1.1) remains true; see
[Brezis 1973, Proposition 3.12]. In addition, it is not difficult to verify that each solution of (1-1) satis-
fies (2-2) and the estimates (2-3)–(2-6) below. For later use, we summarize these results in one theorem.

Theorem 2.2 (Brezis’ L2-maximal regularity for semiconvex ϕ). Let u0 ∈ D(ϕ) and f ∈H. Then, there
exists a unique u ∈ H 1

loc((0, T ]; H)∩C([0, T ]; H) satisfying{
u̇(t)+ Au(t) 3 f (t) a.e. on (0, T ),

u(0)= u0.
(2-1)

Moreover,
ϕ ◦ u ∈W 1,1

loc ((0, T ])∩ L1(0, T ), (2-2)

‖u(t)‖H ≤

(
‖u0‖

2
H +

∫ T

0
‖ f (s)‖2H ds

)1/2

e(1+2ω)/2t for every t ∈ (0, T ], (2-3)∫ T

0
ϕ(u(s)) ds ≤ 1

2‖ f ‖2H+
1
2(1+ω)‖u‖

2
H+

1
2‖u0‖

2
H , (2-4)

tϕ(u(t))≤
∫ T

0
ϕ(u(s)) ds+ 1

2‖
√
· f ‖2H for every t ∈ (0, T ], (2-5)
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‖
√
· u̇‖2H ≤ 2

∫ T

0
ϕ(u(t)) dt +‖

√
· f ‖2H. (2-6)

Finally, if u0 ∈ D(ϕ), then u ∈ H 1(0, T ; H).

Remark 2.3 (maximal L2-regularity). If u0∈H such that ϕ(u0) is finite, then Theorem 1.1 (or Theorem 2.2)
says that for every f ∈ L2(0, T ; H), the unique solution u of (1-1) has its time derivative u̇ ∈ L2(0, T ; H)
and hence by the differential inclusion

u̇(t)+ Au(t) 3 f (t) a.e. on (0, T ), (2-7)

and also Au ∈ L2(0, T ; H). In other words, for f ∈ L2(0, T ; H), u̇ and Au ∈ L2(0, T ; H) admit the
maximal possible regularity. For this reason, we call this property maximal L2-regularity, as it is customary
for generators of holomorphic semigroups on Hilbert spaces; see [Arendt 2004] for a survey on this subject.

Given ω ∈ R, we say that the shifted function ϕω : H → (−∞,+∞] has compact sublevel sets if

Eω,c := {u ∈ D(ϕ) | ϕω(u)≤ c} is compact in H for every c ∈ R. (2-8)

Remark 2.4. We emphasize that condition (2-8) does not imply that ϕ has compact sublevel sets. This
becomes more clear if one considers as ϕ the function associated with the negative Neumann p-Laplacian
−1N

p on a bounded, open subset� of Rd with a Lipschitz boundary ∂�. For max{1, 2d/(d+2)}< p<∞,
d ≥ 1, let V =W 1,p(�), H = L2(�), and ϕ : H → (−∞,+∞] be given by

ϕ(u) :=
{ 1

p

∫
�
|∇u|p dx if u ∈ V,

+∞ if u ∈ H \ V
(2-9)

for every u ∈ H. Then, for every c > 0, the sublevel set E0,c of ϕ contains the sequence (un)n≥0 of
constant functions un ≡ n, which does not admit any convergent subsequence in H. On the other hand,
for every ω > 0 and c > 0, the sublevel set Eω,c is a bounded set in V and by Rellich–Kondrachov
compactness, V ↪→ H by a compact embedding. Thus, for every ω > 0 and c > 0, the sublevel set Eω,c
is compact in L2(�).

3. An example and nonuniqueness

The main example of perturbations G allowed in Theorem 1.2 are Nemytskii operators on the space
H= L2(0, T ; L2(�)). Let�⊆Rd be open and g : (0, T )×�×R→R be a Carathéodory function, that is,

• g( · , ·, v) : (0, T )×�→ R is measurable for all v ∈ R,

• g(t, x, · ) : R→ R is continuous for a.e. (t, x) ∈ (0, T )×�.

Assume furthermore g has sublinear growth; that is, there exist L ≥ 0 and b ∈ L2(0, T ; L2(�)) such that

|g(t, x, v)| ≤ L |v| + b(t, x) for all v ∈ R, a.e. (t, x) ∈ (0, T )×�. (3-1)

Proposition 3.1. Let H= L2(0, T ; L2(�)). Then, the relation

Gv(t, x) := g(t, x, v(t, x)) for a.e. (t, x) ∈ (0, T )×� and every v ∈H, (3-2)

defines a continuous operator G :H→H of sublinear growth (1-2).
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The proof of Proposition 3.1 is standard (see [Zeidler 1990, Proposition 26.7]) if one uses that fn→ f
in H if and only if each subsequence of ( fn)n≥1 has a dominated subsequence converging to f a.e. (which
is well known from the completeness proof of L2).

For illustrating the theory developed in this paper, we consider the following standard example: the
Dirichlet p-Laplacian perturbed by a lower-order term.

Example 3.2. Let� be an open, bounded subset of Rd , d ≥ 1, H = L2(�), and for 2d/(d+2)≤ p<∞,
let V = W 1,p

0 (�) be the closure of C1
c (�) equipped with respect to the norm ‖u‖V := ‖∇u‖L p(�;Rd ).

Then, one has that V is continuously embedded into H (see [Brezis 2011, Theorem 9.16]); we write for
this V ↪→ H.

Further, let f = β + f1 be the sum of a maximal monotone graph β of R satisfying (0, 0) ∈ β and
a Lipschitz–Carathéodory function f1 : �×R→ R satisfying f1(x, 0) = 0; that is, for a.e. x ∈ �, the
function f1(x, · ) is Lipschitz continuous (with constant ω > 0) uniformly for a.e. x ∈�, and f1( · , u) is
measurable on � for every u ∈ R. Then, there is a proper, convex and lower semicontinuous function
j : R→ (−∞,+∞] satisfying j (0)= 0 and ∂ j = β in R; see [Barbu 2010, Example 1, p. 53]. We set

F1(u)=
∫ u(x)

0
f1( · , s) ds, ϕ2(u) :=

{∫
�

j (u(x)) dx if j (u) ∈ L1(�),
+∞ if otherwise,

F(u)= ϕ2(u)+
∫
�

F1(u(x)) dx
(3-3)

for every u ∈ H. Further, let ϕ1 : H → (−∞,+∞] be given by

ϕ1(u)=
{ 1

p

∫
�
|∇u|p dx +

∫
�

F1(u) dx if u ∈ V,
+∞ if u ∈ H \ V

for every u ∈ H. Then the domain D(ϕ1) of ϕ1 is V. The function ϕ1 is lower semicontinuous on H and
is proper, ϕ1,ω is convex, and for every u ∈ V, ϕ1 is Gâteaux-differentiable with

Dvϕ1(u)= lim
t→0+

ϕ1(u+ tv)−ϕ1(u)
t

=

∫
�

|∇u|p−2
∇u∇v+ f1(x, u) v dx

for every v ∈ V. Since V is dense in H, the subdifferential operator ∂ϕ1 is a single-valued operator on H
with domain

D(∂ϕ1)=
{
u ∈ V

∣∣ there exists h ∈ H such that Dνϕ1(u)=
∫
�

hv dx for all v ∈ V
}
,

∂ϕ1(u)= h =−1pu+ f1(x, u) in D′(�).

The operator ∂ϕ1 is the negative Dirichlet p-Laplacian−1D
p on� with a Lipschitz continuous lower-order

term f1. Next, we add the function ϕ2 given by (3-3) to ϕ1. For this, note that ϕ2 is proper (since for
u0 ≡ 0, we have ϕ2(u0)= 0) with int(D(ϕ2)) 6=∅, convex (since j is convex), and lower semicontinuous
on H. Thus, the function ϕ : H → (−∞,+∞], given by

ϕ(u)= ϕ1(u)+ϕ2(u) for every u ∈ H, (3-4)
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is convex, lower semicontinuous, and proper with domain D(ϕ) = {u ∈ V | j (u) ∈ L1(�)}, and the
operator A = ∂ϕ is given by

D(A)=
{
u ∈ D(ϕ)

∣∣ there exists h ∈ H such that Dνϕ(u)=
∫
�

hv dx for all v ∈ D(ϕ)
}
,

Au = h =−1pu+β(u)+ f1(x, u).

Here, we note that

D(A)= D(ϕ)= {u ∈ H | j (u(x)) ∈ D(β) for a.e. x ∈�}.

Due to Theorem 2.1, for every u0 ∈ D(ϕ) and f ∈H, there is a unique solution u ∈ H 1
loc((0, T ]; H)∩

C([0, T ]; H) of the parabolic boundary-value problem
∂t u(t)−1pu(t)+β(u(t))+ f1( · , u(t)) 3 f (t) on (0, T )×�,

u(t)= 0 on (0, T )× ∂�,
u(0)= u0 on �.

Here, we write ∂t u(t) instead of u̇(t) since we rewrote the abstract Cauchy problem (1-1) as an explicit
parabolic partial differential equation.

If max{1, 2d/(d + 2)}< p <∞, then for the Lipschitz constant ω of f1, we have ϕω is convex, and
for every c > 0 the sublevel set Eω,c is compact in L2(�). Furthermore, let g : (0, T )×�×R→ R

be a Carathéodory function with sublinear growth and u0 ∈ D(ϕ). Then, there is at least one solution
u ∈ H 1

loc((0, T ]; H)∩C([0, T ]; H) of the parabolic boundary-value problem
∂t u(t, · )−1pu(t, · )+β(u(t, · ))+ f1( · , u(t, · )) 3 g(t, ·, u(t, · )) on (0, T )×�,

u(t, · )= 0 on (0, T )× ∂�,
u(0, · )= u0 on �.

In general, the solutions u to the Cauchy problem (1-3) are not unique. We give an example.

Example 3.3 (nonuniqueness). Let g(u) =
√
|u|, u ∈ R, and � be an open and bounded subset of Rd,

d ≥ 1, with a Lipschitz boundary ∂�. Then, there are L , b > 0 such that ĝ satisfies

|g(u)| ≤ L |u| + b for every u ∈ R.

Thus, for H = L2(�) and H= L2((0, T )×�), the associated Nemytskii operator G :H→H defined
by (3-2) satisfies the sublinear growth condition (1-2).

Further, for max{1, 2d/(d+2)}< p<+∞, let ϕ : L2(�)→ (−∞,+∞] be the energy function (2-9)
associated with the negative Neumann p-Laplacian −1N

p on �. Then, by Theorem 1.2, for every
u0 ∈ L2(�) and every T > 0, there is a solution u ∈ H 1

loc((0, T ]; L2(�))∩C([0, T ]; L2(�)) of
∂t u(t, · )−1N

pu(t, · )=
√
|u|(t, · ) in (0, T )×�,

|∇u(t, · )|p−2 Dνu(t, · )= 0 on (0, T )× ∂�,
u(0)= u0 on �.

(3-5)

Here, |∇u|p−2 Dνu denotes the (weak) conormal derivative of u on ∂�; see [Coulhon and Hauer 2016].
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Now, for the initial value u0 ≡ 0 on �, the constant zero function u ≡ 0 is certainly a solution of (3-5).
For constructing a nontrivial solution of (3-5) with initial value u0 ≡ 0, let w ∈ C1

[0, T ] be a nontrivial
solution of the classical ordinary differential equation

w′ =
√
|w| on (0, T ), w(0)= 0, (3-6)

For instance, one nontrivial solution is w(t)= 1
4 t2. Since for every constant c∈R we have−1N

p(c1�)= 0,
the function u(t) := w(t) is another nontrivial solution of (3-5) with initial value u0 ≡ 0.

4. Proof of the main result

We now give the proof of Theorem 1.2. After possibly replacing ϕ by a translation, we may always
assume without loss of generality that 0 ∈ D(∂ϕω) and ϕω attains a minimum at 0 with ϕω(0)= 0; for
further details see [Barbu 2010, p. 159]. By the convexity of ϕω, this implies (0, 0) ∈ ωIH + A, that is,

(h+ωu, u)H ≥ 0 for all (u, h) ∈ A. (4-1)

For the proof of Theorem 1.2, we need some auxiliary results. The first concerns continuity and is
standard; see [Bénilan et al. ca. 1990, (6.5), p. 87] or [Barbu 2010, (4.2), p. 128].

Lemma 4.1. Let f1, f2 ∈H and u1, u2 ∈ H 1(0, T ; H) such that

u̇1+ Au1 3 f1 on (0, T ),

u̇2+ Au2 3 f2 on (0, T ).
Then,

‖u1(t)− u2(t)‖H ≤ eωt
‖u1(0)− u2(0)‖H +

∫ t

0
eω(t−s)

‖ f1(s)− f2(s)‖H ds (4-2)

for every t ∈ [0, T ].

Next, we establish the compactness of the solution operator P associated with evolution problem (1-1).
We recall that the closure D(ϕ) in H of the effective domain of a semiconvex function ϕ is a convex
subset of H.

Lemma 4.2. Let P : D(ϕ)×H→H be the mapping defined by

P(u0, f )= solution u of (1-1) for every u0 ∈ D(ϕ) and f ∈H.

Then, P is continuous and compact.

Proof. (a) By Lemma 4.1, the map P is continuous from D(ϕ)×H to H.

(b) We show that P is compact. Let (u(0)n )n≥1 ⊆ D(ϕ) and ( fn)n≥1 ⊆H such that ‖u(0)n ‖H +‖ fn‖H ≤ c
and un = P(u(0)n , fn) for every n ≥ 1. Then, by (2-3), (2-4) and by (2-6), for every δ ∈ (0, T ), there is a
cδ > 0 such that

sup
n≥1
‖un‖H1(δ,T ;H) ≤ cδ.

Since H 1(δ, T ; H) ↪→ C1/2([δ, T ]; H), the sequence (un)n≥1 is equicontinuous on [δ, T ] for each
0< δ < T. Choose a countable dense subset D := {tm | m ∈ N} of (0, T ]. Let m ≥ 1. Then by (2-5),

sup
n≥1

ϕ(un(tm)) is finite
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and since by (2-3), (un(tm))n≥1 is bounded in H, there is a c′ > 0 such that (un(tm))n≥1 is in the sublevel
set Eω,c′ . Thus and by the assumption (2-8), (un(tm))n≥1 has a convergent subsequence in H. By Cantor’s
diagonalization argument, we find a subsequence (unk )k≥1 of (un)n≥1 such that

lim
k→+∞

unk (tm) exists in H for all m ∈ N.

It follows from the equicontinuity of (unk )k≥1 that unk converges in C([δ, T ]; H) for all δ ∈ (0, T ]. In
particular, (unk (t))k≥1 converges in H for every t ∈ (0, T ) and by (2-3), (unk )k≥1 is uniformly bounded in
L∞(0, T ; H). Thus, it follows from Lebesgue’s dominated convergence theorem that unk = P(u(0)nk , fnk )

converges in H. �

Remark 4.3. In the previous proof, we have actually shown that P is compact from D(ϕ)×H into the
Fréchet space C((0, T ]; H).

With these preliminaries, we can now give the proof of our main result. Here, we were inspired by the
linear case [Arendt and Chill 2010].

Proof of Theorem 1.2. First, let u0 ∈ D(ϕ).
For v ∈H, one has Gv ∈H and so, by Brezis’ maximal L2-regularity result (Theorem 2.2), there is a

unique solution u ∈ H 1
loc((0, T ]; H)∩C([0, T ]; H) of the evolution problem{

u̇(t)+ Au(t) 3 Gv(t) a.e. on (0, T ),
u(0)= u0.

Let T v := P(u0,Gv). Then by the continuity and linear growth of G and since P(u0, · ) : H→ H is
continuous and compact (Lemma 4.2), the mapping T :H→H is continuous and compact.

(a) We consider the Schaefer set

S := {u ∈H | there exists λ ∈ [0, 1] such that u = λT u}.

We show that S is bounded in H. Let u ∈ S. We may assume that λ ∈ (0, 1]; otherwise, u ≡ 0. Then,
u ∈ H 1

loc((0, T ]; H)∩C([0, T ]; H) and{
u̇/λ+ A(u/λ) 3 Gu on (0, T ),

u(0)= u0.

It follows from (4-1) that(
−

u̇
λ
(t)+Gu(t)+ω

u
λ
(t),

u
λ

)
H
≥ 0 for a.e. t ∈ (0, T ).

Thus and by (1-2),
d
dt

1
2‖u(t)‖

2
H = (u̇(t), u(t))H = (u̇(t)− λGu(t)−ωλu(t), u(t))H + (λGu(t)+ωλu(t), u(t))H

≤ (λGu(t)+ωλu(t), u(t))H

≤ λ(‖Gu(t)‖H ‖u(t)‖H +ω ‖u(t)‖2H )

≤ λ(L ‖u(t)‖2H + b(t) ‖u(t)‖H +ω ‖u(t)‖2H )

≤ (2L + 1+ 2ω) 1
2‖u(t)‖

2
H +

1
2 b2(t)
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for a.e. t ∈ (0, T ). It follows from Gronwall’s lemma that (1-4) holds for every t ∈ [0, T ]. Thus, S is
bounded in H. Now, Schaefer’s fixed point theorem implies that there exists u ∈H such that u = T u;
that is, u ∈ H 1

loc((0, T ]; H)∩C([0, T ]; H) is a solution of the evolution problem (1-3).

(b) Let u0 ∈ D(ϕ). Then, by the first part of this proof, there is a solution u ∈ H 1
loc((0, T ]; H) ∩

C([0, T ]; H) of the evolution problem (1-3). However, by Brezis’ maximal regularity result applied to
f = Gu ∈H, it follows that u ∈ H 1(0, T ; H). �

5. Application to j -elliptic functions

In Examples 3.2 and 3.3, V is a Banach space injected in H. Recently, in Chill, Hauer and Kennedy
[Chill et al. 2016] extended results of [Arendt and ter Elst 2011; 2012] to a nonlinear framework of
j -elliptic functions ϕ : V → (−∞,+∞] generating a quasimaximal monotone operator ∂ jϕ on H, where
j : V → H is just a linear operator which is not necessarily injective. This enabled the authors of [Chill
et al. 2016] to show that several coupled parabolic-elliptic systems can be realized as a gradient system in
a Hilbert space H and to extend the linear variational theory of the Dirichlet-to-Neumann operator to the
nonlinear p-Laplace operator; see also [Belhachmi and Chill 2015; 2018] for further applications and
extensions of this theory.

The aim of this section is to illustrate that Theorem 1.2 of Section 3 can also be applied to the framework
of j-elliptic functions.

Let us briefly recall some basic notions and facts about j-elliptic functions from [Chill et al. 2016].
Let V be a real locally convex topological vector space and j : V → H be a linear operator which is
merely weak-to-weak continuous (and, in general, not injective). Given a function ϕ : V → (−∞,+∞],
the j -subdifferential is the operator

∂ jϕ :=

{
(u, f ) ∈ H × H

∣∣∣∣ there exists û ∈ D(ϕ) such that j (û)= u and for every v̂ ∈ V
lim inft↘0(ϕ(û+ t v̂)−ϕ(û))/t ≥ ( f, j (v̂))H

}
.

The function ϕ is called j -semiconvex if there exists ω ∈ R such that the “shifted” function ϕω : V →
(−∞,+∞] given by

ϕ(û)+ 1
2ω ‖ j (û)‖2H for every û ∈ V

is convex. If V = H and j = IH , then j -semiconvex functions ϕ are the semiconvex ones (see Section 1).
The function ϕ is called j -elliptic if there exists ω ≥ 0 such that ϕω is convex and for every c ∈ R, the
sublevel sets {û ∈ V | ϕω(u) ≤ c} are relatively weakly compact. Finally, we say that the function ϕ is
lower semicontinuous if the sublevel sets {ϕ ≤ c} are closed in the topology of V for every c ∈ R. It was
highlighted in [Chill et al. 2016, Lemma 2.2] that:

(a) If ϕ is j-semiconvex, then there is an ω ∈ R such that

∂ jϕ =

{
(u, f ) ∈ H × H

∣∣∣∣ there exists û ∈ D(ϕ) such that j (û)= u and for every v̂ ∈ V
ϕω(û+ v̂)−ϕω(û)≥ ( f +ω j (û), j (v̂))H

}
.
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(b) If ϕ is Gâteaux differentiable with directional derivative Dv̂ϕ, (v̂ ∈ V ), then

∂ jϕ =

{
(u, f ) ∈ H × H

∣∣∣∣ there exists û ∈ D(ϕ) such that j (û)= u and for every v̂ ∈ V
Dv̂ϕ(û)= ( f, j (v̂))H

}
.

The main result in [Chill et al. 2016] is that the j-subdifferential ∂ jϕ of a j-elliptic function ϕ is
already a classical subdifferential. More precisely, the following holds.

Theorem 5.1 [Chill et al. 2016, Corollary 2.7]. Let ϕ : V→ (−∞,+∞] be proper, lower semicontinuous,
and j-elliptic. Then there is a proper, lower semicontinuous, semiconvex function ϕH

: H → (−∞,+∞]

such that ∂ jϕ = ∂ϕ
H. The function ϕH is unique up to an additive constant.

Thus the operator A = ∂ jϕ has the properties of maximal regularity we used before. The following
result gives a description of ϕH in the convex case and will be important for our intentions in this paper.

Theorem 5.2 [Chill et al. 2016, Theorem 2.9]. Assume that ϕ : V → (−∞,+∞] is convex, proper, lower
semicontinuous and j-elliptic, and let ϕH

: H → (−∞,+∞] be the function from Theorem 5.1. Then,
there is a constant c ∈ R such that

ϕH (u)= c+ inf
û∈ j−1({u})

ϕ(û) for every u ∈ H ,

with effective domain D(ϕH )= j (D(ϕ)).

For our perturbation result, we need the compactness of the sublevel sets of ϕH. With the help of
Theorem 5.2 we can establish a criterion in terms of the given ϕ for this property.

Lemma 5.3. Let ϕ : V → (−∞,+∞] be proper, lower semicontinuous j-semiconvex, and j-elliptic.
Assume that

j : V → H maps weakly relatively compact sets of V into relatively norm-compact sets of H. (5-1)

Then there is an ω ≥ 0 such that for every c ∈ R the sublevel set

Eω,c = {u ∈ H | ϕH
ω (u)≤ c} is compact in H.

Remark 5.4. If V is a normed space, then by the Eberlein–Šmulian theorem hypothesis (5-1) is equivalent
to j maps weakly convergent sequences in V to norm convergent sequences in H . This in turn is equivalent
to j being compact if V is reflexive.

Proof of Lemma 5.3. By hypothesis, there is an ω ≥ 0 such that ϕω is convex, lower semicontinuous,
and for every c ∈ R, the sublevel sets {û ∈ V | ϕω(u)≤ c} are weakly relatively compact and closed. By
Theorem 5.1, there is a lower semicontinuous, proper function ϕH

: H → (−∞,+∞] such that ϕH
ω is

convex and ∂ϕH
ω = ∂ jϕω. Applying Theorem 5.2 to ϕω and ϕH

ω , we have

ϕH
ω (u)= d + inf

û∈ j−1({u})
ϕω(û) for every u ∈ H (5-2)

and some constant d ∈ R. For c ∈ R, let (un)n≥1 be an arbitrary sequence in Eω,c. By (5-2), for every
n ∈ N, there is a ûn ∈ j−1({un}) such that

d +ϕω(ûn)≤ c+ 1.
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By hypothesis, all sublevel sets of ϕω are weakly relatively compact in V. Thus, by our hypothesis, the
image under j is relatively compact in H. Consequently, there are a subsequence (unl )l≥1 of (un)n≥1

and a u ∈ H such that unl = j (ûnl )→ u in H as l→+∞. Since ϕH
ω (unl ) ≤ c and since ϕH is lower

semicontinuous, it follows that ϕH (u)≤ c. This shows that Eω,c is compact. �

Now, applying Lemma 5.3 to Theorem 1.2, we can state the following existence theorem.

Theorem 5.5. Let ϕ : V → (−∞,+∞] be proper, lower semicontinuous j-semiconvex, and j-elliptic.
Assume that the mapping j satisfies (5-1) and let G : H→ H be a continuous mapping of sublinear
growth (1-2). Then, for A = ∂ jϕ the nonlinear evolution problem (1-3) admits for every u0 ∈ j (D(ϕ))
and f ∈ H at least one solution u ∈ H 1

loc((0, T ]; H) ∩ C([0, T ]; H). In particular, ϕ ◦ u belongs to
W 1,1

loc ((0, T ])∩ L1(0, T ) and inequality (1-4) holds. If u0 ∈ j (D(ϕ)), then problem (1-3) has a solution
u ∈ H 1(0, T ; H).

We complete this section by considering the following evolution problem involving the Dirichlet-to-
Neumann operator associated with the p-Laplacian; see [Hauer 2015; Chill et al. 2016].

Example 5.6. Let � be a bounded domain with a Lipschitz continuous boundary ∂�. Then, for
2d/(d + 1) < p <+∞, the trace operator Tr :W 1,p(�)→ L2(∂�) is a completely continuous operator
(see [Nečas 1967, Théorème 6.2] for the case p < d; the other cases p = d and p > d can be deduced
from Conséquences 6.2 and 6.3 of the same work). Now, we take

V =W 1,p(�), H = L2(∂�), and j = Tr .

Then, j is a linear bounded mapping satisfying hypothesis (5-1). In fact, j is a prototype of a noninjective
mapping. Furthermore, let ϕ : V → R be the function given by

ϕ(û)= 1
p

∫
�

|∇û|p dx for every û ∈ V.

Then, ϕ is continuously differentiable on V and convex. Thus, the Tr-subdifferential operator ∂Trϕ is
given by

∂Trϕ =

{
(u, f ) ∈ H × H

∣∣∣∣ there exists û ∈ V such that Tr(û)= u and for every v̂ ∈ V∫
�
|∇û|p−2

∇û∇v̂ dx = ( f, j (v̂))H

}
.

Moreover, by [Hauer 2015, inequality (20)], for any ω > 0, the shifted function ϕω has bounded sublevel
sets in V. Since V is reflexive, every sublevel set of ϕω is weakly compact in V. In addition, by Lemma 2.1
of the same work, j (D(ϕ)) is dense in H.

Now, let g : (0, T )×�×R→R be a Carathéodory function with sublinear growth. Then by Theorem 5.5,
for every u0 ∈ L2(∂�), there is at least one solution u ∈ H 1

loc((0, T ]; L2(∂�))∩C([0, T ]; L2(∂�)) of
the elliptic-parabolic boundary-value problem

−1pû(t, · )= 0 on (0, T )×�,
∂t u(t, · )+ |∇u(t, · )|p−2 ∂

∂ν
u(t, · )= g(t, ·, u(t, · )) on (0, T )× ∂�,
u(t, · )= û(t, · ) on (0, T )× ∂�,
u(0, · )= u0 on ∂�.
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