e e

y

” PURE and APPLIED

[
e
de
° @
Be
- B n > ' LR
* L4 ’ . . © ..
~ L . ® @
p i P : T LN ) 'y I
& ) “FY I 1 L) Trrrry. ‘X2 1111 LF ..
7/ : B eer 2200 foacnsnsss e
7/ :;2:;;’ /,j,,,_ L AL LY
’ e "'"".-.oo I

72 XN 4D
4 r F 4 & & l/, .1 _-l -~ I
k:f/ = ﬁéw )
/ ” . o VooV /igamame 79000000000y /
7 ’/ D7, 090V, Jea0p; e e
/f % oD " 20000 g etony 0000000y
@@

---------
Ll

MAXIMAL L2-REGULARITY IN NONLINEAR GRADIENT
SYSTEMS
AND PERTURBATIONS OF SUBLINEAR GROWTH



PURE and APPLIIlED

Vol. 2, No. 1, 2020
dx.doi.org/10.2140/paa.2020.2.23

MAXIMAL L2-REGULARITY IN NONLINEAR GRADIENT SYSTEMS
AND PERTURBATIONS OF SUBLINEAR GROWTH

WOLFGANG ARENDT AND DANIEL HAUER

The nonlinear semigroup generated by the subdifferential of a convex lower semicontinuous function ¢
has a smoothing effect, discovered by Haim Brezis, which implies maximal regularity for the evolution
equation. We use this and Schaefer’s fixed point theorem to solve the evolution equation perturbed by a
Nemytskii operator of sublinear growth. For this, we need that the sublevel sets of ¢ are not only closed,
but even compact. We apply our results to the p-Laplacian and also to the Dirichlet-to-Neumann operator
with respect to p-harmonic functions.

1. Introduction

Let H be a real Hilbert space, ¢ : H — (—00, +00] a proper, convex, lower semicontinuous function,
A = d¢ the subdifferential of ¢, and D(¢) := {u € H | ¢(u) < +00} the effective domain of ¢ (see
Section 2 for more details). Then A is a maximal monotone (in general, multivalued) operator on H for
which the following remarkable well-posedness result holds.

Theorem 1.1 [Brezis 1971]. Let ug € D(¢) and f € L*(0, T; H). Then, there exists a unique u €
H! .((0,T]; HYNC([0, T1; H) such that

{L't(t) +Au(t)> f(t) a.e on(0,T),

u(0) = ug. (-

Ifu € D(¢) thenii € L*(0, T; H).

Our aim in this article is to establish existence of solutions of a perturbed version of (1-1) and to show
that these solutions have the same regularity result as in Theorem 1.1. We fix T > 0, and denote by # the
space L*(0,T; H) and by |-l the norm ||| ;20,7 &y- Then for f € H and up € H, we call a function
u: 10, T] — H a (strong) solution of (1-1) if u € Hl})C((O, T, HYNC(O0,T]; H), u(0) = up and for a.e.
t €(0,T) we have u(t) € D(A) and f(t) —u(t) € Au(t).

Now, let G : H — H be a continuous mapping satisfying the sublinear growth condition

IGv(@®)lg <L|lv@®)||lg +b(t) ae.on (0,T) and forall veH, (1-2)
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for some L, b € L*>(0, T) satisfying b(¢) > O for a.e. t € (0, T'). Here we let Gu(t) := (G (v))(¢) to use
less heavy notation. Then we study the evolution problem
() + Au(t) 2 Gu(t) a.e.on (0,7),
{ u(0) = uop.
Note that Gu € H. Thus, the inclusion in (1-3) means that Gu(t) — u(t) € Au(t) a.e. on (0, T).
For proving existence of solutions to (1-3), we will use a compactness argument in form of Schaefer’s

(1-3)

fixed point theorem (see Theorem 2.1 in Section 2). Recall that lower semicontinuity of ¢ is equivalent to
saying that the sublevel sets E. :={u € H | ¢(u) <c}, c € R, are closed. We will assume more, namely,
compactness of the sublevel sets E.. In fact, we need this assumption only for the shifted function ¢,,
given by ¢, (1) = @(u) + %wllu ||%,, u € H, which is important for applications. Then our main result says
the following.

Theorem 1.2. Let ¢ : H — (—00, +00] be a proper function such that for some w > 0, @, is convex
and has compact sublevel sets. Let A = 0¢ and G : H — H be a continuous mapping satisfying (1-2).
Then for every ugy € ZT(/)) and f € H, there exists u € HILC((O, T); HYNC(0, T); H) solving (1-3). In
particular, if ug € D(¢), thenu € H'(0, T; H).

We show in Example 3.3 that the solution is not unique in general. Further, we have the following
regularity result for the composition ¢ o # and a uniform estimate.

Remark 1.3. Suppose, the hypotheses of Theorem 1.2 hold. Then every solution u of (1-3) satisfies
goue Wyl (0, TYNLYO, T)

and
lu@la < (luoliyy + 1b117 27" €220 forall 1 € [0, T]. (1-4)

As application, we consider H = L?(2) and G a Nemytskii operator. The operator A may be the
p-Laplacian (1 < p < 4-00) with possibly lower-order terms and equipped with some boundary conditions
(Dirichlet, Neumann, or Robin, see [Coulhon and Hauer 2016]) or a p-version of the Dirichlet-to-Neumann
operator considered recently in [Hauer 2015] and via the abstract theory of j-elliptic functions (see
[Arendt and ter Elst 2011; 2012; Chill et al. 2016]).

2. Preliminaries

In this section, we define the precise setting used throughout this paper and explain our main tools:
Schaefer’s fixed point theorem and Brezis’ L?-maximal regularity result for semiconvex functions.

We begin by recalling that a mapping 7 defined on a Banach space X is called compact if T maps
bounded sets into relatively compact sets.

Theorem 2.1 (Schaefer’s fixed point theorem [1955]). Let X be a Banach space and T : X — X be

continuous and compact. Assume that the “Schaefer set”
S :={u € X | there exists A € [0, 1] such that u = AT u}
is bounded in X. Then T has a fixed point.
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This result is a special case of Leray—Schauder degree theory, but Schaefer [1955] gave a most elegant
proof, which also is valid in locally convex spaces; see also [Arendt and Chill 2010; Evans 2010, §9.2.2].

Given a function ¢ : H — (—00, +00], we call the set D(¢) :={u € H | ¢(u) < +00} the effective
domain of ¢, and g is said to be proper if D(¢) is nonempty. Further, we say that ¢ is lower semicontinuous
if for every ¢ € R the sublevel set

E.:={ueD(p)|pu) =c}
is closed in H, and ¢ is semiconvex if there exists an @ € R such that the shifted function ¢, : H —

(—o00, +00] defined by
Yo(u) =)+ tolul}, ueH,

is convex. Then, ¢, is convex for all w > w, and ¢, is lower semicontinuous if and only if ¢ is lower
semicontinuous.
Given a function ¢ : H — (—00, 400], its subdifferential A = d¢ is defined by

l‘ R
limui)nf(p(u + ”t) O h vy forall v e D((p)},
t

Bgoz{(u,h)EHxH

which, if ¢, is convex, reduces to
0p={(m,h)e Hx H|@,(u+v)—@,u) > (h+owu,v)y forall ve D(p)}.

It is standard to identify a (possibly multivalued) operator A on H with its graph and for every u € H,
one sets Au:={ve H|(u,v) € A} and calls D(A) :={u € H | Au # @} the domain of A and Rg(A) :=
Uuep(a)Au the range of A.

Now, suppose ¢ : H — (—00, +00] is proper, lower semicontinuous, and semiconvex; more precisely,
let us fix w € R such that ¢, is convex. Then the subdifferential d¢,, of ¢, is a simple perturbation of d¢,
namely d¢,, = d¢ + wl. For this reason, Brezis’ well-posedness result (Theorem 1.1) remains true; see
[Brezis 1973, Proposition 3.12]. In addition, it is not difficult to verify that each solution of (1-1) satis-
fies (2-2) and the estimates (2-3)—(2-6) below. For later use, we summarize these results in one theorem.

Theorem 2.2 (Brezis’ L2-maximal regularity for semiconvex ¢). Let ug € D(¢) and f € H. Then, there
exists a unique u € HILC((O, T); HYNC([O0, T]; H) satisfying

{L't(t) +Au(t)> f(t) a.e.on(0,T), 2-1)
u(0) = uyg.
Moreover,
pouec Wh(©O, THNLYO,T), (2-2)
T 1/2
lu()|lg < (nuonz + / £ ()13 ds) 22 for every t € (0, T, (2-3)
0
T
fo @u(s))ds < 2115, + A+ o) lullf, + Sluoll,. (2-4)

T
1ou(r)) S/O ou(s))ds + 3/~ FlI3, foreveryt (0, T], (2-5)



26 WOLFGANG ARENDT AND DANIEL HAUER

T
Wil < 2/0 o) dr + IV f 12, 2-6)

Finally, ifug € D(¢), thenu € H'(0, T; H).

Remark 2.3 (maximal Lz—regularity). If ug € H such that ¢ (ug) is finite, then Theorem 1.1 (or Theorem 2.2)
says that for every f € L%(0, T; H), the unique solution u of (1-1) has its time derivative u € L%, T; H)
and hence by the differential inclusion

u(t)+ Au(t) > f(tr) a.e.on (0,7), 2-7)

and also Au € L%(0, T; H). In other words, for f e L%(0,T; H), i and Au € L*(0, T; H) admit the
maximal possible regularity. For this reason, we call this property maximal L>-regularity, as it is customary
for generators of holomorphic semigroups on Hilbert spaces; see [Arendt 2004] for a survey on this subject.

Given w € R, we say that the shifted function ¢, : H — (—00, +00] has compact sublevel sets if
E,.:={ueD(p)|¢,(u) <c} iscompactin H for every c € R. (2-8)

Remark 2.4. We emphasize that condition (2-8) does not imply that ¢ has compact sublevel sets. This
becomes more clear if one considers as ¢ the function associated with the negative Neumann p-Laplacian
—A’\;, on a bounded, open subset 2 of R? with a Lipschitz boundary 9€2. For max{1, 2d/(d+2)} < p < o0,
d>1,let V=W'r(Q), H=L*(Q),and ¢ : H — (—00, +-00] be given by
%fﬂwuvﬂ dx ifueV,

~+00 ifue H\V

for every u € H. Then, for every ¢ > 0, the sublevel set Ey . of ¢ contains the sequence (u,),>0 of

o) = { (2-9)

constant functions u#, = n, which does not admit any convergent subsequence in H. On the other hand,
for every w > 0 and ¢ > 0, the sublevel set E, . is a bounded set in V and by Rellich-Kondrachov
compactness, V < H by a compact embedding. Thus, for every w > 0 and ¢ > 0, the sublevel set E,, .
is compact in L*(S).

3. An example and nonuniqueness

The main example of perturbations G allowed in Theorem 1.2 are Nemytskii operators on the space
H=L*0,T; L*(Q)). Let Q CR? be open and g : (0, T) x 2 x R — R be a Carathéodory function, that is,

e g(+,-,v):(0,T) x Q = Ris measurable for all v € R,
e g(t,x,-):R— Ris continuous for a.e. (t, x) € (0, T) x 2.
Assume furthermore g has sublinear growth; that is, there exist L > 0 and b € L2(0, T; L*(S2)) such that
lg(t,x,v)| < L|v|+b(,x) forallveR, ae.(t,x) e (0,T) x Q. (3-1)
Proposition 3.1. Let H = L*(0, T; L*(R2)). Then, the relation
Gu(t,x) :=g(t,x,v(t,x)) forae. (t,x)€ (0,T)x Q2 andeveryv € H, (3-2)

defines a continuous operator G : H — H of sublinear growth (1-2).
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The proof of Proposition 3.1 is standard (see [Zeidler 1990, Proposition 26.7]) if one uses that f,, — f
in ‘H if and only if each subsequence of ( f;,),>1 has a dominated subsequence converging to f a.e. (which
is well known from the completeness proof of L?).

For illustrating the theory developed in this paper, we consider the following standard example: the
Dirichlet p-Laplacian perturbed by a lower-order term.

Example 3.2. Let Q be an open, bounded subset of RY, d > 1, H = L*(2), and for 2d /(d +2) < p < oo,
let V = Wol’p(Q) be the closure of Cg (€2) equipped with respect to the norm |ully = [|Vullpr(q:rd)-
Then, one has that V is continuously embedded into H (see [Brezis 2011, Theorem 9.16]); we write for
this V — H.

Further, let f = B8 + f) be the sum of a maximal monotone graph 8 of R satisfying (0, 0) € 8 and
a Lipschitz—Carathéodory function f1:Q x R — R satisfying fi(x, 0) = 0; that is, for a.e. x € €2, the
function fi(x, -) is Lipschitz continuous (with constant @ > 0) uniformly for a.e. x € @, and fi(-, u) is
measurable on €2 for every u € R. Then, there is a proper, convex and lower semicontinuous function
j iR — (=00, +00] satisfying j(0) =0 and dj = 8 in R; see [Barbu 2010, Example 1, p. 53]. We set

u(x)
Fi(u) = fi(-, s)ds, (pz(u);z{

0

Jo i) dx if j(u) e L'(Q),

+00 if otherwise, (3-3)

F(u) = ¢2(u) +/Q Fi(u(x))dx

for every u € H. Further, let ¢ : H — (—00, +00] be given by

L folVul? dx+ fo Frw)ydx ifueV,

(p](”):{Jroo ifuecH\V

for every u € H. Then the domain D(p;) of ¢ is V. The function ¢; is lower semicontinuous on H and
is proper, ¢ 4, is convex, and for every u € V, ¢; is Gateaux-differentiable with

t J—
Dv(pl(u):[hm 1(u+1v) — 1 (u) _

/ IVulP2VuVu + fi(x, u) vdx
—0+ t Q

for every v € V. Since V is dense in H, the subdifferential operator d¢; is a single-valued operator on H
with domain

D(0¢1) = {u € V | there exists & € H such that D, ¢, (u) = [, hvdx for all v e V},

dp1(w) =h=—Apu+ fi(x,u) inD'(Q).
The operator d¢; is the negative Dirichlet p-Laplacian —Alp) on Q2 with a Lipschitz continuous lower-order
term f1. Next, we add the function ¢, given by (3-3) to ¢;. For this, note that ¢, is proper (since for

ug =0, we have ¢, (ug) = 0) with int(D(¢;)) # &, convex (since j is convex), and lower semicontinuous
on H. Thus, the function ¢ : H — (—00, +00], given by

o) =@ () +¢r(u) foreveryu € H, (3-4)
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is convex, lower semicontinuous, and proper with domain D(p) ={u € V | j(u) € L'()}, and the
operator A = d¢ is given by

D(A) = {u € D(p) ‘ there exists 4 € H such that D,p(u) = fQ hvdx forall v e D(go)},
Au=h=—Apu+ Bu)+ fi(x,u).

Here, we note that

D(A)=D(p)={ue H| ju(x)) € D(B) for a.e. x € Q}.
Due to Theorem 2.1, for every ug € D(¢) and f € H, there is a unique solution u € Hlf)C((O, T, H)N
C([0, T]; H) of the parabolic boundary-value problem

du(t) — Apu(t) + () + fi(-,u(®) > f(r) on(0,T) x €2,
u)=0 on (0, 7T) x 0€2,
u(0) = up on €.
Here, we write d;u(¢) instead of #(¢) since we rewrote the abstract Cauchy problem (1-1) as an explicit
parabolic partial differential equation.
If max{1, 2d/(d +2)} < p < oo, then for the Lipschitz constant w of f}, we have ¢, is convex, and
for every ¢ > O the sublevel set E,, . is compact in L%(Q). Furthermore, let g : (0, 7) x @ x R — R
be a Carathéodory function with sublinear growth and ug € D(¢). Then, there is at least one solution

ue HILC((O, T]; HYNC([0, T]; H) of the parabolic boundary-value problem
atu(tv ) - A]?u(t9 )+ﬁ(l/l(t, ))+fl( ) M(t, )) > g(t9 Yy u(t7 )) on (07 T) X Qv
u,-)=0 on (0, T) x 0%2,
u0, ) =ug on £2.

In general, the solutions u to the Cauchy problem (1-3) are not unique. We give an example.

Example 3.3 (nonuniqueness). Let g(u) = +/|u|, u € R, and 2 be an open and bounded subset of R4,
d > 1, with a Lipschitz boundary d2. Then, there are L, b > 0 such that g satisfies

lg(u)| < L|u|+b forevery u € R.

Thus, for H = L*(Q) and # = L%((0, T) x ), the associated Nemytskii operator G : H — H defined
by (3-2) satisfies the sublinear growth condition (1-2).

Further, for max{1, 2d/(d +2)} < p < 400, let ¢ : L?*(§) — (—o00, +00] be the energy function (2-9)
associated with the negative Neumann p-Laplacian —A{X on 2. Then, by Theorem 1.2, for every
up € L*(Q) and every T > 0, there is a solution u € HILC((O, T1; L>(2))NC([0, T1; L*(RQ)) of

8,u(t,-)—A1Zu(t,-)=«/|u|(t,-) in (0, T) x €,
|Vu(t, - )|P2Dyu(t, ) =0 on (0,7T) x 082, (3-5)
u(0) =ug on Q.

Here, |Vu|?~2D,u denotes the (weak) conormal derivative of u on 9<2; see [Coulhon and Hauer 2016].
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Now, for the initial value ¢ = 0 on €2, the constant zero function u = 0 is certainly a solution of (3-5).
For constructing a nontrivial solution of (3-5) with initial value uy =0, let w € C'[0, T be a nontrivial
solution of the classical ordinary differential equation

w' =4/|lw| on (0, T), w0) =0, (3-6)

For instance, one nontrivial solution is w(¢) = }Ltz. Since for every constant ¢ € R we have —Aﬁ (clg) =0,
the function u(¢) := w(¢) is another nontrivial solution of (3-5) with initial value uy = 0.

4. Proof of the main result

We now give the proof of Theorem 1.2. After possibly replacing ¢ by a translation, we may always
assume without loss of generality that 0 € D(d¢,,) and ¢,, attains a minimum at 0 with ¢,,(0) = 0; for
further details see [Barbu 2010, p. 159]. By the convexity of ¢,,, this implies (0, 0) € wly + A, that is,

(h+owu,u)yy >0 forall (u, h) € A. 4-1)

For the proof of Theorem 1.2, we need some auxiliary results. The first concerns continuity and is
standard; see [Bénilan et al. ca. 1990, (6.5), p. 87] or [Barbu 2010, (4.2), p. 128].

Lemmad4.1. Let fi, fp e Handu,u; € H' (0, T:; H) such that
uy+Au; > fi on(0,7),

uy+Aury> fr on(0,T).
Then,

lur(t) —ua ()|l g < e [lu1(0) — uz(0)|| g + /O eI fi(s) — fo(s)] g ds (4-2)

foreveryt €[0,T].

Next, we establish the compactness of the solution operator P associated with evolution problem (1-1).
We recall that the closure D(¢) in H of the effective domain of a semiconvex function ¢ is a convex
subset of H.

Lemma 4.2. Let P : D(¢) x H — H be the mapping defined by

P(ug, f) = solution u of (1-1)  for every ug € D(¢) and f € H.
Then, P is continuous and compact.
Proof. (a) By Lemma 4.1, the map P is continuous from D(¢) x H to H.

(b) We show that P is compact. Let (5 )u=1 S D(@) and (fy)n=1 € H such that [|us || + || full2 < ¢
and u, = P(u,go), fn) for every n > 1. Then, by (2-3), (2-4) and by (2-6), for every § € (0, T'), there is a
¢s > 0 such that

supllun | g5, 7: 1y =< Cs-
n>1

Since H'(8, T; H) < C'*([8, T1; H), the sequence (i;),>1 is equicontinuous on [§, T] for each
0 < § < T. Choose a countable dense subset D := {t,, | m € N} of (0, T']. Let m > 1. Then by (2-5),
sup @(uy, (t,)) is finite

n>1
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and since by (2-3), (u,(t))n>1 is bounded in H, there is a ¢’ > 0 such that (u,(t,,)),>1 is in the sublevel
set E,, . Thus and by the assumption (2-8), (4, (#,,)),>1 has a convergent subsequence in H. By Cantor’s
diagonalization argument, we find a subsequence (u,, )k>1 of (4,),>1 such that

lim wu, (t,) existsin H forallm € N.
k——+o00

It follows from the equicontinuity of (u,, )i>1 that u,, converges in C([8, T]; H) forall § € (0, T']. In

particular, (u,, (t))r>1 converges in H for every t € (0, T') and by (2-3), (1, )x>1 is uniformly bounded in
L°°(0, T; H). Thus, it follows from Lebesgue’s dominated convergence theorem that u,, = P(ufl(z), Ju)
converges in H. (I

Remark 4.3. In the previous proof, we have actually shown that P is compact from D(p) x H into the
Fréchet space C((0, T]; H).

With these preliminaries, we can now give the proof of our main result. Here, we were inspired by the
linear case [Arendt and Chill 2010].

Proof of Theorem 1.2. First, let ug € D(p).
For v € H, one has Gv € H and so, by Brezis’ maximal L>-regularity result (Theorem 2.2), there is a
unique solution u € Hltc((O, T]; HYNC([0, T]; H) of the evolution problem

u(t)+ Au(t) > Gv(t) ae.on (0,7),
u(0) = uyg.

Let 7v := P(up, Gv). Then by the continuity and linear growth of G and since P (ug, -) : H — H is

continuous and compact (Lemma 4.2), the mapping 7 : H — H is continuous and compact.

(a) We consider the Schaefer set

S :={u € H | there exists A € [0, 1] such that u = AT u}.
We show that S is bounded in H. Let u € S. We may assume that A € (0, 1]; otherwise, u = 0. Then,
ueH! ((0,T]; H)NC([0, T]; H) and

u/,A+Aw/r)>Gu on(0,T7T),
u(0) = uyg.
It follows from (4-1) that
u u u
(_X(t) + Gu(t) —i—a)x(t), X) >0 forae. te (0, 7).

H
Thus and by (1-2),

Su®y = @@, u®)a = @) — AGu(t) — oru(t), ut)) g + (AGu(t) + wiu(t), u(t)) u
< (AGu(t) + wiu(t), u(t))y
< MIGuO e @l + e |lu@)ll7)
< ML uOlly + 5O lu@ g+ lu@]7)
< QL+ 1420) Slu@® |3 + 1% (1)
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for a.e. t € (0, T). It follows from Gronwall’s lemma that (1-4) holds for every ¢ € [0, T]. Thus, S is
bounded in H. Now, Schaefer’s fixed point theorem implies that there exists u € H such that u = Tu;
thatis, u € H! ((0, T]; H)NC([0, T]; H) is a solution of the evolution problem (1-3).

loc

(b) Let ug € D(¢). Then, by the first part of this proof, there is a solution u € Hl})C((O, T; H)N
C ([0, T]; H) of the evolution problem (1-3). However, by Brezis’ maximal regularity result applied to
f = Gu € H, it follows that u € H'(0, T; H). O

5. Application to j-elliptic functions

In Examples 3.2 and 3.3, V is a Banach space injected in H. Recently, in Chill, Hauer and Kennedy
[Chill et al. 2016] extended results of [Arendt and ter Elst 2011; 2012] to a nonlinear framework of
Jj-elliptic functions ¢ : V — (—00, +00] generating a quasimaximal monotone operator ;¢ on H, where
j :V — H isjust a linear operator which is not necessarily injective. This enabled the authors of [Chill
et al. 2016] to show that several coupled parabolic-elliptic systems can be realized as a gradient system in
a Hilbert space H and to extend the linear variational theory of the Dirichlet-to-Neumann operator to the
nonlinear p-Laplace operator; see also [Belhachmi and Chill 2015; 2018] for further applications and
extensions of this theory.

The aim of this section is to illustrate that Theorem 1.2 of Section 3 can also be applied to the framework
of j-elliptic functions.

Let us briefly recall some basic notions and facts about j-elliptic functions from [Chill et al. 2016].
Let V be a real locally convex topological vector space and j : V — H be a linear operator which is
merely weak-to-weak continuous (and, in general, not injective). Given a function ¢ : V — (—00, 4+00],
the j-subdifferential is the operator

90 :(u, F e HxH ‘ there exists i € D(¢) such that j (i) = u and for every v € V }

liminfo(@ (i +10) — @)/t = (f, j(O)u
The function ¢ is called j-semiconvex if there exists w € R such that the “shifted” function ¢, : V —
(=00, +00] given by

o) + %a) ||j(ﬁ)||%, forevery i eV
is convex. If V = H and j = Iy, then j-semiconvex functions ¢ are the semiconvex ones (see Section 1).
The function ¢ is called j-elliptic if there exists w > 0 such that ¢, is convex and for every c € R, the
sublevel sets {it € V | ¢, (u) < c} are relatively weakly compact. Finally, we say that the function ¢ is

lower semicontinuous if the sublevel sets {¢ < c} are closed in the topology of V for every c € R. It was
highlighted in [Chill et al. 2016, Lemma 2.2] that:

(a) If ¢ is j-semiconvex, then there is an @ € R such that

8.,-<p={(u,f)eHxH

there exists # € D(¢) such that j (&) = u and for every v € V }
Pt +0) — ¢, (1) > (f +wj@), j(O)u
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(b) If ¢ is Gateaux differentiable with directional derivative D;¢p, (0 € V), then

8j<p:{(u,f)eHxH

there exists & € D(¢) such that j (i) = u and for every 0 € V
Diyp(it) = (f, j(O)n }
The main result in [Chill et al. 2016] is that the j-subdifferential 9;¢ of a j-elliptic function ¢ is
already a classical subdifferential. More precisely, the following holds.

Theorem 5.1 [Chill et al. 2016, Corollary 2.7]. Let ¢ : V — (—00, +00] be proper, lower semicontinuous,
and j-elliptic. Then there is a proper, lower semicontinuous, semiconvex function o' : H — (—00, +00]
such that ;¢ = d@™. The function ¢ is unique up to an additive constant.

Thus the operator A = 9;¢ has the properties of maximal regularity we used before. The following
result gives a description of ¢!’ in the convex case and will be important for our intentions in this paper.

Theorem 5.2 [Chill et al. 2016, Theorem 2.9]. Assume that ¢ : V — (—00, +00] is convex, proper, lower
semicontinuous and j-elliptic, and let o™ : H — (—00, +00] be the function from Theorem 5.1. Then,
there is a constant ¢ € R such that

olwy=c+ inf @) foreveryueH,
iej=t({u})

iej~1{u
with effective domain D (™) = j(D(p)).
For our perturbation result, we need the compactness of the sublevel sets of ¢*. With the help of
Theorem 5.2 we can establish a criterion in terms of the given ¢ for this property.

Lemma 5.3. Let ¢ : V — (—00, +00] be proper, lower semicontinuous j-semiconvex, and j-elliptic.
Assume that

j ' V.— H maps weakly relatively compact sets of V into relatively norm-compact sets of H.  (5-1)
Then there is an w > 0 such that for every c € R the sublevel set
E,.={ueH)| (pf(u) <c} iscompactin H.

Remark 5.4. If V is a normed space, then by the Eberlein—-Smulian theorem hypothesis (5-1) is equivalent
to j maps weakly convergent sequences in V to norm convergent sequences in H. This in turn is equivalent
to j being compact if V is reflexive.

Proof of Lemma 5.3. By hypothesis, there is an w > 0 such that ¢, is convex, lower semicontinuous,
and for every ¢ € R, the sublevel sets {i € V | ¢, (u) < ¢} are weakly relatively compact and closed. By
Theorem 5.1, there is a lower semicontinuous, proper function ¢ : H — (—00, +-00] such that ¢ is
convex and dg!! =9 i%w- Applying Theorem 5.2 to ¢, and @l we have

o u)y=d+ inf ¢,@) foreveryueH (5-2)
D

aej = ({u
and some constant d € R. For ¢ € R, let (u,),>; be an arbitrary sequence in E, . By (5-2), for every
n €N, there is a i1, € j~'({u,}) such that

d+(pw(ﬁn) <c+1.
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By hypothesis, all sublevel sets of ¢,, are weakly relatively compact in V. Thus, by our hypothesis, the
image under j is relatively compact in H. Consequently, there are a subsequence (uy,);>1 Of (Un)n>1
and a u € H such that u,, = j(ii,) — u in H as | — +o0. Since ¢ (u,,) < ¢ and since ¢’ is lower
semicontinuous, it follows that ¢ (1) < c. This shows that E, . is compact. O

Now, applying Lemma 5.3 to Theorem 1.2, we can state the following existence theorem.

Theorem 5.5. Let ¢ : V — (—00, +00] be proper, lower semicontinuous j-semiconvex, and j-elliptic.
Assume that the mapping j satisfies (5-1) and let G : H — H be a continuous mapping of sublinear
growth (1-2). Then, for A = ;¢ the nonlinear evolution problem (1-3) admits for every ug € j(D(¢))
and f € H at least one solution u € Hlloc((O, T]; HYyNC(0, T); H). In particular, ¢ o u belongs to
WIL’Cl ((0, T) NLY(0, T) and inequality (1-4) holds. If ug € j (D()), then problem (1-3) has a solution
ue HY0,T; H).

We complete this section by considering the following evolution problem involving the Dirichlet-to-
Neumann operator associated with the p-Laplacian; see [Hauer 2015; Chill et al. 2016].

Example 5.6. Let Q be a bounded domain with a Lipschitz continuous boundary 9€2. Then, for
2d/(d +1) < p < 400, the trace operator Tr : wWhr(Q) — L?(0Q) is a completely continuous operator
(see [Necas 1967, Théoreme 6.2] for the case p < d; the other cases p =d and p > d can be deduced
from Conséquences 6.2 and 6.3 of the same work). Now, we take

V=wir(Q), H=L*®Q), and j=Tr.

Then, j is a linear bounded mapping satisfying hypothesis (5-1). In fact, j is a prototype of a noninjective
mapping. Furthermore, let ¢ : V — R be the function given by

o) = % / |[Vi|P dx forevery i€ V.
Q

Then, ¢ is continuously differentiable on V and convex. Thus, the Tr-subdifferential operator d1.¢ is
given by

oy = {(u,f)eHxH

there exists & € V such that Tr(i) = u and for every v € V
JoIValP2Vavidx = (f, j )y ‘

Moreover, by [Hauer 2015, inequality (20)], for any w > 0, the shifted function ¢, has bounded sublevel
sets in V. Since V is reflexive, every sublevel set of ¢,, is weakly compact in V. In addition, by Lemma 2.1
of the same work, j(D(¢)) is dense in H.

Now, let g: (0, T) x 2 xR — R be a Carathéodory function with sublinear growth. Then by Theorem 5.5,
for every ug € L*(dR), there is at least one solution u € H,! .((0, T1; L>(d)) N C ([0, T]; L*(3K2)) of
the elliptic-parabolic boundary-value problem

—Api(t,-)=0 on (0,7) x £,
du(t, )+ |Vult, NP 22u@, ) =g(t, -, u(t,-)) on(,T)x L,
u(t, ) =u(t,-) on (0,7T) x 0L,

u(0, ) =ug on 0€2.
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