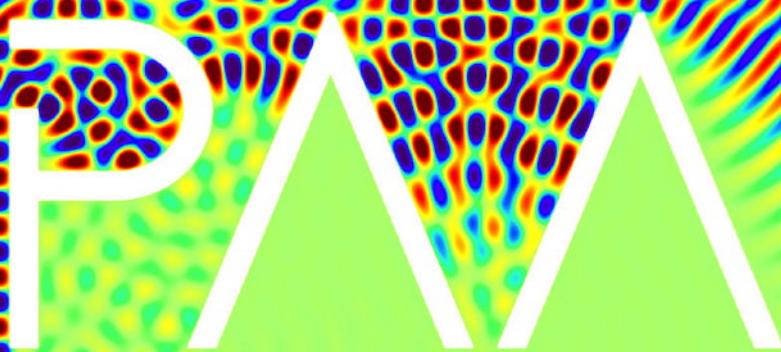


PURE and APPLIED ANALYSIS



WOLFGANG ARENDT AND DANIEL HAUER

MAXIMAL L^2 -REGULARITY IN NONLINEAR GRADIENT
SYSTEMS
AND PERTURBATIONS OF SUBLINEAR GROWTH

MAXIMAL L^2 -REGULARITY IN NONLINEAR GRADIENT SYSTEMS AND PERTURBATIONS OF SUBLINEAR GROWTH

WOLFGANG ARENDT AND DANIEL HAUER

The nonlinear semigroup generated by the subdifferential of a convex lower semicontinuous function φ has a smoothing effect, discovered by Haïm Brezis, which implies maximal regularity for the evolution equation. We use this and Schaefer's fixed point theorem to solve the evolution equation perturbed by a Nemytskii operator of sublinear growth. For this, we need that the sublevel sets of φ are not only closed, but even compact. We apply our results to the p -Laplacian and also to the Dirichlet-to-Neumann operator with respect to p -harmonic functions.

1. Introduction

Let H be a real Hilbert space, $\varphi : H \rightarrow (-\infty, +\infty]$ a proper, convex, lower semicontinuous function, $A = \partial\varphi$ the subdifferential of φ , and $D(\varphi) := \{u \in H \mid \varphi(u) < +\infty\}$ the effective domain of φ (see [Section 2](#) for more details). Then A is a maximal monotone (in general, multivalued) operator on H for which the following remarkable well-posedness result holds.

Theorem 1.1 [Brezis 1971]. *Let $u_0 \in \overline{D(\varphi)}$ and $f \in L^2(0, T; H)$. Then, there exists a unique $u \in H_{\text{loc}}^1((0, T]; H) \cap C([0, T]; H)$ such that*

$$\begin{cases} \dot{u}(t) + Au(t) \ni f(t) & \text{a.e. on } (0, T), \\ u(0) = u_0. \end{cases} \quad (1-1)$$

If $u \in D(\varphi)$ then $\dot{u} \in L^2(0, T; H)$.

Our aim in this article is to establish existence of solutions of a perturbed version of (1-1) and to show that these solutions have the same regularity result as in [Theorem 1.1](#). We fix $T > 0$, and denote by \mathcal{H} the space $L^2(0, T; H)$ and by $\|\cdot\|_{\mathcal{H}}$ the norm $\|\cdot\|_{L^2(0, T; H)}$. Then for $f \in \mathcal{H}$ and $u_0 \in H$, we call a function $u : [0, T] \rightarrow H$ a *(strong) solution* of (1-1) if $u \in H_{\text{loc}}^1((0, T]; H) \cap C([0, T]; H)$, $u(0) = u_0$ and for a.e. $t \in (0, T)$ we have $u(t) \in D(A)$ and $f(t) - \dot{u}(t) \in Au(t)$.

Now, let $G : \mathcal{H} \rightarrow \mathcal{H}$ be a continuous mapping satisfying the *sublinear* growth condition

$$\|Gv(t)\|_H \leq L \|v(t)\|_H + b(t) \quad \text{a.e. on } (0, T) \text{ and for all } v \in \mathcal{H}, \quad (1-2)$$

Hauer is very grateful for the warm hospitality received during his visits at the University of Ulm.

MSC2010: 35K92, 35K58, 47H20, 47H10.

Keywords: nonlinear semigroups, subdifferential, Schaefer's fixed point theorem, existence, smoothing effect, perturbation, compact sublevel sets.

for some $L, b \in L^2(0, T)$ satisfying $b(t) \geq 0$ for a.e. $t \in (0, T)$. Here we let $Gv(t) := (G(v))(t)$ to use less heavy notation. Then we study the evolution problem

$$\begin{cases} \dot{u}(t) + Au(t) \ni Gu(t) & \text{a.e. on } (0, T), \\ u(0) = u_0. \end{cases} \quad (1-3)$$

Note that $Gu \in \mathcal{H}$. Thus, the inclusion in (1-3) means that $Gu(t) - \dot{u}(t) \in Au(t)$ a.e. on $(0, T)$.

For proving existence of solutions to (1-3), we will use a compactness argument in form of Schaefer's fixed point theorem (see [Theorem 2.1 in Section 2](#)). Recall that lower semicontinuity of φ is equivalent to saying that the sublevel sets $E_c := \{u \in H \mid \varphi(u) \leq c\}$, $c \in \mathbb{R}$, are closed. We will assume more, namely, compactness of the sublevel sets E_c . In fact, we need this assumption only for the shifted function φ_ω given by $\varphi_\omega(u) = \varphi(u) + \frac{1}{2}\omega\|u\|_H^2$, $u \in H$, which is important for applications. Then our main result says the following.

Theorem 1.2. *Let $\varphi : H \rightarrow (-\infty, +\infty]$ be a proper function such that for some $\omega \geq 0$, φ_ω is convex and has compact sublevel sets. Let $A = \partial\varphi$ and $G : \mathcal{H} \rightarrow \mathcal{H}$ be a continuous mapping satisfying (1-2). Then for every $u_0 \in \overline{D(\varphi)}$ and $f \in \mathcal{H}$, there exists $u \in H_{\text{loc}}^1((0, T]; H) \cap C([0, T]; H)$ solving (1-3). In particular, if $u_0 \in D(\varphi)$, then $u \in H^1(0, T; H)$.*

We show in [Example 3.3](#) that the solution is not unique in general. Further, we have the following regularity result for the composition $\varphi \circ u$ and a uniform estimate.

Remark 1.3. Suppose, the hypotheses of [Theorem 1.2](#) hold. Then every solution u of (1-3) satisfies

$$\varphi \circ u \in W_{\text{loc}}^{1,1}((0, T]) \cap L^1(0, T)$$

and

$$\|u(t)\|_H \leq (\|u_0\|_H^2 + \|b\|_{L^2(0,T)}^2)^{1/2} e^{(2L+1+2\omega)/2 t} \quad \text{for all } t \in [0, T]. \quad (1-4)$$

As application, we consider $H = L^2(\Omega)$ and G a Nemytskii operator. The operator A may be the p -Laplacian ($1 \leq p < +\infty$) with possibly lower-order terms and equipped with some boundary conditions (Dirichlet, Neumann, or Robin, see [\[Coulhon and Hauer 2016\]](#)) or a p -version of the Dirichlet-to-Neumann operator considered recently in [\[Hauer 2015\]](#) and via the abstract theory of j -elliptic functions (see [\[Arendt and ter Elst 2011; 2012; Chill et al. 2016\]](#)).

2. Preliminaries

In this section, we define the precise setting used throughout this paper and explain our main tools: Schaefer's fixed point theorem and Brezis' L^2 -maximal regularity result for semiconvex functions.

We begin by recalling that a mapping \mathcal{T} defined on a Banach space X is called *compact* if \mathcal{T} maps bounded sets into relatively compact sets.

Theorem 2.1 (Schaefer's fixed point theorem [\[1955\]](#)). *Let X be a Banach space and $\mathcal{T} : X \rightarrow X$ be continuous and compact. Assume that the “Schaefer set”*

$$\mathcal{S} := \{u \in X \mid \text{there exists } \lambda \in [0, 1] \text{ such that } u = \lambda \mathcal{T}u\}$$

is bounded in X . Then \mathcal{T} has a fixed point.

This result is a special case of *Leray–Schauder* degree theory, but Schaefer [1955] gave a most elegant proof, which also is valid in locally convex spaces; see also [Arendt and Chill 2010; Evans 2010, §9.2.2].

Given a function $\varphi : H \rightarrow (-\infty, +\infty]$, we call the set $D(\varphi) := \{u \in H \mid \varphi(u) < +\infty\}$ the *effective domain* of φ , and φ is said to be *proper* if $D(\varphi)$ is nonempty. Further, we say that φ is *lower semicontinuous* if for every $c \in \mathbb{R}$ the sublevel set

$$E_c := \{u \in D(\varphi) \mid \varphi(u) \leq c\}$$

is closed in H , and φ is *semiconvex* if there exists an $\omega \in \mathbb{R}$ such that the shifted function $\varphi_\omega : H \rightarrow (-\infty, +\infty]$ defined by

$$\varphi_\omega(u) := \varphi(u) + \frac{1}{2}\omega\|u\|_H^2, \quad u \in H,$$

is convex. Then, φ_ω is convex for all $\hat{\omega} \geq \omega$, and φ_ω is lower semicontinuous if and only if φ is lower semicontinuous.

Given a function $\varphi : H \rightarrow (-\infty, +\infty]$, its *subdifferential* $A = \partial\varphi$ is defined by

$$\partial\varphi = \left\{ (u, h) \in H \times H \mid \liminf_{t \downarrow 0} \frac{\varphi(u + tv) - \varphi(u)}{t} \geq (h, v)_H \text{ for all } v \in D(\varphi) \right\},$$

which, if φ_ω is convex, reduces to

$$\partial\varphi = \{(u, h) \in H \times H \mid \varphi_\omega(u + v) - \varphi_\omega(u) \geq (h + \omega u, v)_H \text{ for all } v \in D(\varphi)\}.$$

It is standard to identify a (possibly multivalued) operator A on H with its graph and for every $u \in H$, one sets $Au := \{v \in H \mid (u, v) \in A\}$ and calls $D(A) := \{u \in H \mid Au \neq \emptyset\}$ the *domain* of A and $\text{Rg}(A) := \bigcup_{u \in D(A)} Au$ the *range* of A .

Now, suppose $\varphi : H \rightarrow (-\infty, +\infty]$ is proper, lower semicontinuous, and semiconvex; more precisely, let us fix $\omega \in \mathbb{R}$ such that φ_ω is convex. Then the subdifferential $\partial\varphi_\omega$ of φ_ω is a simple perturbation of $\partial\varphi$, namely $\partial\varphi_\omega = \partial\varphi + \omega I$. For this reason, Brezis' well-posedness result (Theorem 1.1) remains true; see [Brezis 1973, Proposition 3.12]. In addition, it is not difficult to verify that each solution of (1-1) satisfies (2-2) and the estimates (2-3)–(2-6) below. For later use, we summarize these results in one theorem.

Theorem 2.2 (Brezis' L^2 -maximal regularity for semiconvex φ). *Let $u_0 \in \overline{D(\varphi)}$ and $f \in \mathcal{H}$. Then, there exists a unique $u \in H_{\text{loc}}^1((0, T]; H) \cap C([0, T]; H)$ satisfying*

$$\begin{cases} \dot{u}(t) + Au(t) \ni f(t) & \text{a.e. on } (0, T), \\ u(0) = u_0. \end{cases} \quad (2-1)$$

Moreover,

$$\varphi \circ u \in W_{\text{loc}}^{1,1}((0, T]) \cap L^1(0, T), \quad (2-2)$$

$$\|u(t)\|_H \leq \left(\|u_0\|_H^2 + \int_0^T \|f(s)\|_H^2 \, ds \right)^{1/2} e^{(1+2\omega)/2t} \quad \text{for every } t \in (0, T], \quad (2-3)$$

$$\int_0^T \varphi(u(s)) \, ds \leq \frac{1}{2} \|f\|_{\mathcal{H}}^2 + \frac{1}{2}(1 + \omega) \|u\|_{\mathcal{H}}^2 + \frac{1}{2} \|u_0\|_H^2, \quad (2-4)$$

$$t\varphi(u(t)) \leq \int_0^T \varphi(u(s)) \, ds + \frac{1}{2} \|\sqrt{\cdot} f\|_{\mathcal{H}}^2 \quad \text{for every } t \in (0, T], \quad (2-5)$$

$$\|\sqrt{\cdot} \dot{u}\|_{\mathcal{H}}^2 \leq 2 \int_0^T \varphi(u(t)) dt + \|\sqrt{\cdot} f\|_{\mathcal{H}}^2. \quad (2-6)$$

Finally, if $u_0 \in D(\varphi)$, then $u \in H^1(0, T; H)$.

Remark 2.3 (maximal L^2 -regularity). If $u_0 \in H$ such that $\varphi(u_0)$ is finite, then [Theorem 1.1](#) (or [Theorem 2.2](#)) says that for every $f \in L^2(0, T; H)$, the unique solution u of [\(1-1\)](#) has its time derivative $\dot{u} \in L^2(0, T; H)$ and hence by the differential inclusion

$$\dot{u}(t) + Au(t) \ni f(t) \quad \text{a.e. on } (0, T), \quad (2-7)$$

and also $Au \in L^2(0, T; H)$. In other words, for $f \in L^2(0, T; H)$, \dot{u} and $Au \in L^2(0, T; H)$ admit the maximal possible regularity. For this reason, we call this property *maximal L^2 -regularity*, as it is customary for generators of holomorphic semigroups on Hilbert spaces; see [\[Arendt 2004\]](#) for a survey on this subject.

Given $\omega \in \mathbb{R}$, we say that the shifted function $\varphi_\omega : H \rightarrow (-\infty, +\infty]$ has *compact sublevel sets* if

$$E_{\omega, c} := \{u \in D(\varphi) \mid \varphi_\omega(u) \leq c\} \quad \text{is compact in } H \text{ for every } c \in \mathbb{R}. \quad (2-8)$$

Remark 2.4. We emphasize that condition [\(2-8\)](#) does not imply that φ has compact sublevel sets. This becomes more clear if one considers as φ the function associated with the negative *Neumann p -Laplacian* $-\Delta_p^N$ on a bounded, open subset Ω of \mathbb{R}^d with a Lipschitz boundary $\partial\Omega$. For $\max\{1, 2d/(d+2)\} < p < \infty$, $d \geq 1$, let $V = W^{1,p}(\Omega)$, $H = L^2(\Omega)$, and $\varphi : H \rightarrow (-\infty, +\infty]$ be given by

$$\varphi(u) := \begin{cases} \frac{1}{p} \int_{\Omega} |\nabla u|^p dx & \text{if } u \in V, \\ +\infty & \text{if } u \in H \setminus V \end{cases} \quad (2-9)$$

for every $u \in H$. Then, for every $c > 0$, the sublevel set $E_{0,c}$ of φ contains the sequence $(u_n)_{n \geq 0}$ of constant functions $u_n \equiv n$, which does not admit any convergent subsequence in H . On the other hand, for every $\omega > 0$ and $c > 0$, the sublevel set $E_{\omega,c}$ is a bounded set in V and by Rellich–Kondrachov compactness, $V \hookrightarrow H$ by a compact embedding. Thus, for every $\omega > 0$ and $c > 0$, the sublevel set $E_{\omega,c}$ is compact in $L^2(\Omega)$.

3. An example and nonuniqueness

The main example of perturbations G allowed in [Theorem 1.2](#) are Nemytskii operators on the space $\mathcal{H} = L^2(0, T; L^2(\Omega))$. Let $\Omega \subseteq \mathbb{R}^d$ be open and $g : (0, T) \times \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a *Carathéodory function*, that is,

- $g(\cdot, \cdot, v) : (0, T) \times \Omega \rightarrow \mathbb{R}$ is measurable for all $v \in \mathbb{R}$,
- $g(t, x, \cdot) : \mathbb{R} \rightarrow \mathbb{R}$ is continuous for a.e. $(t, x) \in (0, T) \times \Omega$.

Assume furthermore g has *sublinear growth*; that is, there exist $L \geq 0$ and $b \in L^2(0, T; L^2(\Omega))$ such that

$$|g(t, x, v)| \leq L|v| + b(t, x) \quad \text{for all } v \in \mathbb{R}, \text{ a.e. } (t, x) \in (0, T) \times \Omega. \quad (3-1)$$

Proposition 3.1. *Let $\mathcal{H} = L^2(0, T; L^2(\Omega))$. Then, the relation*

$$Gv(t, x) := g(t, x, v(t, x)) \quad \text{for a.e. } (t, x) \in (0, T) \times \Omega \text{ and every } v \in \mathcal{H}, \quad (3-2)$$

defines a continuous operator $G : \mathcal{H} \rightarrow \mathcal{H}$ of sublinear growth [\(1-2\)](#).

The proof of [Proposition 3.1](#) is standard (see [\[Zeidler 1990, Proposition 26.7\]](#)) if one uses that $f_n \rightarrow f$ in \mathcal{H} if and only if each subsequence of $(f_n)_{n \geq 1}$ has a dominated subsequence converging to f a.e. (which is well known from the completeness proof of L^2).

For illustrating the theory developed in this paper, we consider the following standard example: the *Dirichlet p -Laplacian* perturbed by a lower-order term.

Example 3.2. Let Ω be an open, bounded subset of \mathbb{R}^d , $d \geq 1$, $H = L^2(\Omega)$, and for $2d/(d+2) \leq p < \infty$, let $V = W_0^{1,p}(\Omega)$ be the closure of $C_c^1(\Omega)$ equipped with respect to the norm $\|u\|_V := \|\nabla u\|_{L^p(\Omega; \mathbb{R}^d)}$. Then, one has that V is continuously embedded into H (see [\[Brezis 2011, Theorem 9.16\]](#)); we write for this $V \hookrightarrow H$.

Further, let $f = \beta + f_1$ be the sum of a maximal monotone graph β of \mathbb{R} satisfying $(0, 0) \in \beta$ and a *Lipschitz–Carathéodory function* $f_1 : \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ satisfying $f_1(x, 0) = 0$; that is, for a.e. $x \in \Omega$, the function $f_1(x, \cdot)$ is Lipschitz continuous (with constant $\omega > 0$) uniformly for a.e. $x \in \Omega$, and $f_1(\cdot, u)$ is measurable on Ω for every $u \in \mathbb{R}$. Then, there is a proper, convex and lower semicontinuous function $j : \mathbb{R} \rightarrow (-\infty, +\infty]$ satisfying $j(0) = 0$ and $\partial j = \beta$ in \mathbb{R} ; see [\[Barbu 2010, Example 1, p. 53\]](#). We set

$$\begin{aligned} F_1(u) &= \int_0^{u(x)} f_1(\cdot, s) \, ds, \quad \varphi_2(u) := \begin{cases} \int_{\Omega} j(u(x)) \, dx & \text{if } j(u) \in L^1(\Omega), \\ +\infty & \text{if otherwise,} \end{cases} \\ F(u) &= \varphi_2(u) + \int_{\Omega} F_1(u(x)) \, dx \end{aligned} \tag{3-3}$$

for every $u \in H$. Further, let $\varphi_1 : H \rightarrow (-\infty, +\infty]$ be given by

$$\varphi_1(u) = \begin{cases} \frac{1}{p} \int_{\Omega} |\nabla u|^p \, dx + \int_{\Omega} F_1(u) \, dx & \text{if } u \in V, \\ +\infty & \text{if } u \in H \setminus V \end{cases}$$

for every $u \in H$. Then the domain $D(\varphi_1)$ of φ_1 is V . The function φ_1 is lower semicontinuous on H and is proper, $\varphi_{1,\omega}$ is convex, and for every $u \in V$, φ_1 is Gâteaux-differentiable with

$$D_v \varphi_1(u) = \lim_{t \rightarrow 0+} \frac{\varphi_1(u + tv) - \varphi_1(u)}{t} = \int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla v + f_1(x, u) v \, dx$$

for every $v \in V$. Since V is dense in H , the subdifferential operator $\partial \varphi_1$ is a single-valued operator on H with domain

$$\begin{aligned} D(\partial \varphi_1) &= \{u \in V \mid \text{there exists } h \in H \text{ such that } D_v \varphi_1(u) = \int_{\Omega} hv \, dx \text{ for all } v \in V\}, \\ \partial \varphi_1(u) &= h = -\Delta_p u + f_1(x, u) \quad \text{in } \mathcal{D}'(\Omega). \end{aligned}$$

The operator $\partial \varphi_1$ is the negative *Dirichlet p -Laplacian* $-\Delta_p^D$ on Ω with a *Lipschitz continuous lower-order term* f_1 . Next, we add the function φ_2 given by (3-3) to φ_1 . For this, note that φ_2 is proper (since for $u_0 \equiv 0$, we have $\varphi_2(u_0) = 0$ with $\text{int}(D(\varphi_2)) \neq \emptyset$, convex (since j is convex), and lower semicontinuous on H . Thus, the function $\varphi : H \rightarrow (-\infty, +\infty]$, given by

$$\varphi(u) = \varphi_1(u) + \varphi_2(u) \quad \text{for every } u \in H, \tag{3-4}$$

is convex, lower semicontinuous, and proper with domain $D(\varphi) = \{u \in V \mid j(u) \in L^1(\Omega)\}$, and the operator $A = \partial\varphi$ is given by

$$D(A) = \{u \in D(\varphi) \mid \text{there exists } h \in H \text{ such that } D_v\varphi(u) = \int_{\Omega} hv \, dx \text{ for all } v \in D(\varphi)\},$$

$$Au = h = -\Delta_p u + \beta(u) + f_1(x, u).$$

Here, we note that

$$\overline{D(A)} = \overline{D(\varphi)} = \{u \in H \mid j(u(x)) \in \overline{D(\beta)} \text{ for a.e. } x \in \Omega\}.$$

Due to [Theorem 2.1](#), for every $u_0 \in \overline{D(\varphi)}$ and $f \in \mathcal{H}$, there is a unique solution $u \in H_{\text{loc}}^1((0, T]; H) \cap C([0, T]; H)$ of the parabolic boundary-value problem

$$\begin{cases} \partial_t u(t) - \Delta_p u(t) + \beta(u(t)) + f_1(\cdot, u(t)) \ni f(t) & \text{on } (0, T) \times \Omega, \\ u(t) = 0 & \text{on } (0, T) \times \partial\Omega, \\ u(0) = u_0 & \text{on } \Omega. \end{cases}$$

Here, we write $\partial_t u(t)$ instead of $\dot{u}(t)$ since we rewrote the abstract Cauchy problem [\(1-1\)](#) as an explicit parabolic partial differential equation.

If $\max\{1, 2d/(d+2)\} < p < \infty$, then for the Lipschitz constant ω of f_1 , we have φ_{ω} is convex, and for every $c > 0$ the sublevel set $E_{\omega, c}$ is compact in $L^2(\Omega)$. Furthermore, let $g : (0, T) \times \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a Carathéodory function with sublinear growth and $u_0 \in \overline{D(\varphi)}$. Then, there is at least one solution $u \in H_{\text{loc}}^1((0, T]; H) \cap C([0, T]; H)$ of the parabolic boundary-value problem

$$\begin{cases} \partial_t u(t, \cdot) - \Delta_p u(t, \cdot) + \beta(u(t, \cdot)) + f_1(\cdot, u(t, \cdot)) \ni g(t, \cdot, u(t, \cdot)) & \text{on } (0, T) \times \Omega, \\ u(t, \cdot) = 0 & \text{on } (0, T) \times \partial\Omega, \\ u(0, \cdot) = u_0 & \text{on } \Omega. \end{cases}$$

In general, the solutions u to the Cauchy problem [\(1-3\)](#) are not unique. We give an example.

Example 3.3 (nonuniqueness). Let $g(u) = \sqrt{|u|}$, $u \in \mathbb{R}$, and Ω be an open and bounded subset of \mathbb{R}^d , $d \geq 1$, with a Lipschitz boundary $\partial\Omega$. Then, there are $L, b > 0$ such that \hat{g} satisfies

$$|g(u)| \leq L |u| + b \quad \text{for every } u \in \mathbb{R}.$$

Thus, for $H = L^2(\Omega)$ and $\mathcal{H} = L^2((0, T) \times \Omega)$, the associated Nemytskii operator $G : \mathcal{H} \rightarrow \mathcal{H}$ defined by [\(3-2\)](#) satisfies the sublinear growth condition [\(1-2\)](#).

Further, for $\max\{1, 2d/(d+2)\} < p < +\infty$, let $\varphi : L^2(\Omega) \rightarrow (-\infty, +\infty]$ be the energy function [\(2-9\)](#) associated with the negative Neumann p -Laplacian $-\Delta_p^N$ on Ω . Then, by [Theorem 1.2](#), for every $u_0 \in L^2(\Omega)$ and every $T > 0$, there is a solution $u \in H_{\text{loc}}^1((0, T]; L^2(\Omega)) \cap C([0, T]; L^2(\Omega))$ of

$$\begin{cases} \partial_t u(t, \cdot) - \Delta_p^N u(t, \cdot) = \sqrt{|u|(t, \cdot)} & \text{in } (0, T) \times \Omega, \\ |\nabla u(t, \cdot)|^{p-2} D_v u(t, \cdot) = 0 & \text{on } (0, T) \times \partial\Omega, \\ u(0) = u_0 & \text{on } \Omega. \end{cases} \quad (3-5)$$

Here, $|\nabla u|^{p-2} D_v u$ denotes the (weak) conormal derivative of u on $\partial\Omega$; see [\[Coulhon and Hauer 2016\]](#).

Now, for the initial value $u_0 \equiv 0$ on Ω , the constant zero function $u \equiv 0$ is certainly a solution of (3-5). For constructing a nontrivial solution of (3-5) with initial value $u_0 \equiv 0$, let $w \in C^1[0, T]$ be a nontrivial solution of the classical ordinary differential equation

$$w' = \sqrt{|w|} \quad \text{on } (0, T), \quad w(0) = 0, \quad (3-6)$$

For instance, one nontrivial solution is $w(t) = \frac{1}{4}t^2$. Since for every constant $c \in \mathbb{R}$ we have $-\Delta_p^N(c\mathbb{1}_\Omega) = 0$, the function $u(t) := w(t)$ is another nontrivial solution of (3-5) with initial value $u_0 \equiv 0$.

4. Proof of the main result

We now give the proof of [Theorem 1.2](#). After possibly replacing φ by a translation, we may always assume without loss of generality that $0 \in D(\partial\varphi_\omega)$ and φ_ω attains a minimum at 0 with $\varphi_\omega(0) = 0$; for further details see [\[Barbu 2010, p. 159\]](#). By the convexity of φ_ω , this implies $(0, 0) \in \omega I_H + A$, that is,

$$(h + \omega u, u)_H \geq 0 \quad \text{for all } (u, h) \in A. \quad (4-1)$$

For the proof of [Theorem 1.2](#), we need some auxiliary results. The first concerns continuity and is standard; see [\[Bénilan et al. ca. 1990, \(6.5\), p. 87\]](#) or [\[Barbu 2010, \(4.2\), p. 128\]](#).

Lemma 4.1. *Let $f_1, f_2 \in \mathcal{H}$ and $u_1, u_2 \in H^1(0, T; H)$ such that*

$$\begin{aligned} \dot{u}_1 + Au_1 &\ni f_1 && \text{on } (0, T), \\ \dot{u}_2 + Au_2 &\ni f_2 && \text{on } (0, T). \end{aligned}$$

Then,

$$\|u_1(t) - u_2(t)\|_H \leq e^{\omega t} \|u_1(0) - u_2(0)\|_H + \int_0^t e^{\omega(t-s)} \|f_1(s) - f_2(s)\|_H \, ds \quad (4-2)$$

for every $t \in [0, T]$.

Next, we establish the compactness of the *solution operator* P associated with evolution problem (1-1). We recall that the closure $\overline{D(\varphi)}$ in H of the effective domain of a semiconvex function φ is a convex subset of H .

Lemma 4.2. *Let $P : \overline{D(\varphi)} \times \mathcal{H} \rightarrow \mathcal{H}$ be the mapping defined by*

$$P(u_0, f) = \text{solution } u \text{ of (1-1) for every } u_0 \in \overline{D(\varphi)} \text{ and } f \in \mathcal{H}.$$

Then, P is continuous and compact.

Proof. (a) By [Lemma 4.1](#), the map P is continuous from $\overline{D(\varphi)} \times \mathcal{H}$ to \mathcal{H} .

(b) We show that P is compact. Let $(u_n^{(0)})_{n \geq 1} \subseteq \overline{D(\varphi)}$ and $(f_n)_{n \geq 1} \subseteq \mathcal{H}$ such that $\|u_n^{(0)}\|_H + \|f_n\|_{\mathcal{H}} \leq c$ and $u_n = P(u_n^{(0)}, f_n)$ for every $n \geq 1$. Then, by (2-3), (2-4) and by (2-6), for every $\delta \in (0, T)$, there is a $c_\delta > 0$ such that

$$\sup_{n \geq 1} \|u_n\|_{H^1(\delta, T; H)} \leq c_\delta.$$

Since $H^1(\delta, T; H) \hookrightarrow C^{1/2}([\delta, T]; H)$, the sequence $(u_n)_{n \geq 1}$ is equicontinuous on $[\delta, T]$ for each $0 < \delta < T$. Choose a countable dense subset $D := \{t_m \mid m \in \mathbb{N}\}$ of $(0, T]$. Let $m \geq 1$. Then by (2-5),

$$\sup_{n \geq 1} \varphi(u_n(t_m)) \quad \text{is finite}$$

and since by (2-3), $(u_n(t_m))_{n \geq 1}$ is bounded in H , there is a $c' > 0$ such that $(u_n(t_m))_{n \geq 1}$ is in the sublevel set $E_{\omega, c'}$. Thus and by the assumption (2-8), $(u_n(t_m))_{n \geq 1}$ has a convergent subsequence in H . By Cantor's diagonalization argument, we find a subsequence $(u_{n_k})_{k \geq 1}$ of $(u_n)_{n \geq 1}$ such that

$$\lim_{k \rightarrow +\infty} u_{n_k}(t_m) \quad \text{exists in } H \text{ for all } m \in \mathbb{N}.$$

It follows from the equicontinuity of $(u_{n_k})_{k \geq 1}$ that u_{n_k} converges in $C([\delta, T]; H)$ for all $\delta \in (0, T]$. In particular, $(u_{n_k}(t))_{k \geq 1}$ converges in H for every $t \in (0, T)$ and by (2-3), $(u_{n_k})_{k \geq 1}$ is uniformly bounded in $L^\infty(0, T; H)$. Thus, it follows from Lebesgue's dominated convergence theorem that $u_{n_k} = P(u_{n_k}^{(0)}, f_{n_k})$ converges in \mathcal{H} . \square

Remark 4.3. In the previous proof, we have actually shown that P is compact from $\overline{D(\varphi)} \times \mathcal{H}$ into the Fréchet space $C((0, T]; H)$.

With these preliminaries, we can now give the proof of our main result. Here, we were inspired by the linear case [Arendt and Chill 2010].

Proof of Theorem 1.2. First, let $u_0 \in \overline{D(\varphi)}$.

For $v \in \mathcal{H}$, one has $Gv \in \mathcal{H}$ and so, by Brezis' maximal L^2 -regularity result (Theorem 2.2), there is a unique solution $u \in H_{\text{loc}}^1((0, T]; H) \cap C([0, T]; H)$ of the evolution problem

$$\begin{cases} \dot{u}(t) + Au(t) \ni Gv(t) & \text{a.e. on } (0, T), \\ u(0) = u_0. \end{cases}$$

Let $\mathcal{T}v := P(u_0, Gv)$. Then by the continuity and linear growth of G and since $P(u_0, \cdot) : \mathcal{H} \rightarrow \mathcal{H}$ is continuous and compact (Lemma 4.2), the mapping $\mathcal{T} : \mathcal{H} \rightarrow \mathcal{H}$ is continuous and compact.

(a) We consider the Schaefer set

$$\mathcal{S} := \{u \in \mathcal{H} \mid \text{there exists } \lambda \in [0, 1] \text{ such that } u = \lambda \mathcal{T}u\}.$$

We show that \mathcal{S} is bounded in \mathcal{H} . Let $u \in \mathcal{S}$. We may assume that $\lambda \in (0, 1]$; otherwise, $u \equiv 0$. Then, $u \in H_{\text{loc}}^1((0, T]; H) \cap C([0, T]; H)$ and

$$\begin{cases} \dot{u}/\lambda + A(u/\lambda) \ni Gu & \text{on } (0, T), \\ u(0) = u_0. \end{cases}$$

It follows from (4-1) that

$$\left(-\frac{\dot{u}}{\lambda}(t) + Gu(t) + \omega \frac{u}{\lambda}(t), \frac{u}{\lambda} \right)_H \geq 0 \quad \text{for a.e. } t \in (0, T).$$

Thus and by (1-2),

$$\begin{aligned} \frac{d}{dt} \frac{1}{2} \|u(t)\|_H^2 &= (\dot{u}(t), u(t))_H = (\dot{u}(t) - \lambda Gu(t) - \omega \lambda u(t), u(t))_H + (\lambda Gu(t) + \omega \lambda u(t), u(t))_H \\ &\leq (\lambda Gu(t) + \omega \lambda u(t), u(t))_H \\ &\leq \lambda (\|Gu(t)\|_H \|u(t)\|_H + \omega \|u(t)\|_H^2) \\ &\leq \lambda (L \|u(t)\|_H^2 + b(t) \|u(t)\|_H + \omega \|u(t)\|_H^2) \\ &\leq (2L + 1 + 2\omega) \frac{1}{2} \|u(t)\|_H^2 + \frac{1}{2} b^2(t) \end{aligned}$$

for a.e. $t \in (0, T)$. It follows from Gronwall's lemma that (1-4) holds for every $t \in [0, T]$. Thus, \mathcal{S} is bounded in \mathcal{H} . Now, Schaefer's fixed point theorem implies that there exists $u \in \mathcal{H}$ such that $u = \mathcal{T}u$; that is, $u \in H_{\text{loc}}^1((0, T]; H) \cap C([0, T]; H)$ is a solution of the evolution problem (1-3).

(b) Let $u_0 \in D(\varphi)$. Then, by the first part of this proof, there is a solution $u \in H_{\text{loc}}^1((0, T]; H) \cap C([0, T]; H)$ of the evolution problem (1-3). However, by Brezis' maximal regularity result applied to $f = Gu \in \mathcal{H}$, it follows that $u \in H^1(0, T; H)$. \square

5. Application to j -elliptic functions

In Examples 3.2 and 3.3, V is a Banach space injected in H . Recently, in Chill, Hauer and Kennedy [Chill et al. 2016] extended results of [Arendt and ter Elst 2011; 2012] to a nonlinear framework of j -elliptic functions $\varphi : V \rightarrow (-\infty, +\infty]$ generating a quasimaximal monotone operator $\partial_j \varphi$ on H , where $j : V \rightarrow H$ is just a linear operator which is not necessarily injective. This enabled the authors of [Chill et al. 2016] to show that several coupled parabolic-elliptic systems can be realized as a gradient system in a Hilbert space H and to extend the linear variational theory of the Dirichlet-to-Neumann operator to the nonlinear p -Laplace operator; see also [Belhachmi and Chill 2015; 2018] for further applications and extensions of this theory.

The aim of this section is to illustrate that Theorem 1.2 of Section 3 can also be applied to the framework of j -elliptic functions.

Let us briefly recall some basic notions and facts about j -elliptic functions from [Chill et al. 2016]. Let V be a real locally convex topological vector space and $j : V \rightarrow H$ be a linear operator which is merely weak-to-weak continuous (and, in general, not injective). Given a function $\varphi : V \rightarrow (-\infty, +\infty]$, the j -subdifferential is the operator

$$\partial_j \varphi := \left\{ (u, f) \in H \times H \mid \begin{array}{l} \text{there exists } \hat{u} \in D(\varphi) \text{ such that } j(\hat{u}) = u \text{ and for every } \hat{v} \in V \\ \liminf_{t \searrow 0} (\varphi(\hat{u} + t\hat{v}) - \varphi(\hat{u}))/t \geq (f, j(\hat{v}))_H \end{array} \right\}.$$

The function φ is called j -semiconvex if there exists $\omega \in \mathbb{R}$ such that the “shifted” function $\varphi_\omega : V \rightarrow (-\infty, +\infty]$ given by

$$\varphi(\hat{u}) + \frac{1}{2}\omega \|j(\hat{u})\|_H^2 \quad \text{for every } \hat{u} \in V$$

is convex. If $V = H$ and $j = I_H$, then j -semiconvex functions φ are the semiconvex ones (see Section 1). The function φ is called j -elliptic if there exists $\omega \geq 0$ such that φ_ω is convex and for every $c \in \mathbb{R}$, the sublevel sets $\{\hat{u} \in V \mid \varphi_\omega(\hat{u}) \leq c\}$ are relatively weakly compact. Finally, we say that the function φ is lower semicontinuous if the sublevel sets $\{\varphi \leq c\}$ are closed in the topology of V for every $c \in \mathbb{R}$. It was highlighted in [Chill et al. 2016, Lemma 2.2] that:

(a) If φ is j -semiconvex, then there is an $\omega \in \mathbb{R}$ such that

$$\partial_j \varphi = \left\{ (u, f) \in H \times H \mid \begin{array}{l} \text{there exists } \hat{u} \in D(\varphi) \text{ such that } j(\hat{u}) = u \text{ and for every } \hat{v} \in V \\ \varphi_\omega(\hat{u} + \hat{v}) - \varphi_\omega(\hat{u}) \geq (f + \omega j(\hat{u}), j(\hat{v}))_H \end{array} \right\}.$$

(b) If φ is Gâteaux differentiable with directional derivative $D_{\hat{v}}\varphi$, ($\hat{v} \in V$), then

$$\partial_j \varphi = \left\{ (u, f) \in H \times H \mid \begin{array}{l} \text{there exists } \hat{u} \in D(\varphi) \text{ such that } j(\hat{u}) = u \text{ and for every } \hat{v} \in V \\ D_{\hat{v}}\varphi(\hat{u}) = (f, j(\hat{v}))_H \end{array} \right\}.$$

The main result in [Chill et al. 2016] is that the j -subdifferential $\partial_j \varphi$ of a j -elliptic function φ is already a classical subdifferential. More precisely, the following holds.

Theorem 5.1 [Chill et al. 2016, Corollary 2.7]. *Let $\varphi : V \rightarrow (-\infty, +\infty]$ be proper, lower semicontinuous, and j -elliptic. Then there is a proper, lower semicontinuous, semiconvex function $\varphi^H : H \rightarrow (-\infty, +\infty]$ such that $\partial_j \varphi = \partial \varphi^H$. The function φ^H is unique up to an additive constant.*

Thus the operator $A = \partial_j \varphi$ has the properties of maximal regularity we used before. The following result gives a description of φ^H in the convex case and will be important for our intentions in this paper.

Theorem 5.2 [Chill et al. 2016, Theorem 2.9]. *Assume that $\varphi : V \rightarrow (-\infty, +\infty]$ is convex, proper, lower semicontinuous and j -elliptic, and let $\varphi^H : H \rightarrow (-\infty, +\infty]$ be the function from Theorem 5.1. Then, there is a constant $c \in \mathbb{R}$ such that*

$$\varphi^H(u) = c + \inf_{\hat{u} \in j^{-1}(\{u\})} \varphi(\hat{u}) \quad \text{for every } u \in H,$$

with effective domain $D(\varphi^H) = j(D(\varphi))$.

For our perturbation result, we need the compactness of the sublevel sets of φ^H . With the help of Theorem 5.2 we can establish a criterion in terms of the given φ for this property.

Lemma 5.3. *Let $\varphi : V \rightarrow (-\infty, +\infty]$ be proper, lower semicontinuous j -semiconvex, and j -elliptic. Assume that*

$$j : V \rightarrow H \text{ maps weakly relatively compact sets of } V \text{ into relatively norm-compact sets of } H. \quad (5-1)$$

Then there is an $\omega \geq 0$ such that for every $c \in \mathbb{R}$ the sublevel set

$$E_{\omega, c} = \{u \in H \mid \varphi_{\omega}^H(u) \leq c\} \quad \text{is compact in } H.$$

Remark 5.4. If V is a normed space, then by the Eberlein–Šmulian theorem hypothesis (5-1) is equivalent to j maps weakly convergent sequences in V to norm convergent sequences in H . This in turn is equivalent to j being compact if V is reflexive.

Proof of Lemma 5.3. By hypothesis, there is an $\omega \geq 0$ such that φ_{ω} is convex, lower semicontinuous, and for every $c \in \mathbb{R}$, the sublevel sets $\{\hat{u} \in V \mid \varphi_{\omega}(\hat{u}) \leq c\}$ are weakly relatively compact and closed. By Theorem 5.1, there is a lower semicontinuous, proper function $\varphi^H : H \rightarrow (-\infty, +\infty]$ such that φ_{ω}^H is convex and $\partial \varphi_{\omega}^H = \partial_j \varphi_{\omega}$. Applying Theorem 5.2 to φ_{ω} and φ_{ω}^H , we have

$$\varphi_{\omega}^H(u) = d + \inf_{\hat{u} \in j^{-1}(\{u\})} \varphi_{\omega}(\hat{u}) \quad \text{for every } u \in H \quad (5-2)$$

and some constant $d \in \mathbb{R}$. For $c \in \mathbb{R}$, let $(u_n)_{n \geq 1}$ be an arbitrary sequence in $E_{\omega, c}$. By (5-2), for every $n \in \mathbb{N}$, there is a $\hat{u}_n \in j^{-1}(\{u_n\})$ such that

$$d + \varphi_{\omega}(\hat{u}_n) \leq c + 1.$$

By hypothesis, all sublevel sets of φ_ω are weakly relatively compact in V . Thus, by our hypothesis, the image under j is relatively compact in H . Consequently, there are a subsequence $(u_{n_l})_{l \geq 1}$ of $(u_n)_{n \geq 1}$ and a $u \in H$ such that $u_{n_l} = j(\hat{u}_{n_l}) \rightarrow u$ in H as $l \rightarrow +\infty$. Since $\varphi_\omega^H(u_{n_l}) \leq c$ and since φ^H is lower semicontinuous, it follows that $\varphi^H(u) \leq c$. This shows that $E_{\omega,c}$ is compact. \square

Now, applying [Lemma 5.3](#) to [Theorem 1.2](#), we can state the following existence theorem.

Theorem 5.5. *Let $\varphi : V \rightarrow (-\infty, +\infty]$ be proper, lower semicontinuous j -semiconvex, and j -elliptic. Assume that the mapping j satisfies [\(5-1\)](#) and let $G : \mathcal{H} \rightarrow \mathcal{H}$ be a continuous mapping of sublinear growth [\(1-2\)](#). Then, for $A = \partial_j \varphi$ the nonlinear evolution problem [\(1-3\)](#) admits for every $u_0 \in \overline{j(D(\varphi))}$ and $f \in \mathcal{H}$ at least one solution $u \in H_{\text{loc}}^1((0, T]; H) \cap C([0, T]; H)$. In particular, $\varphi \circ u$ belongs to $W_{\text{loc}}^{1,1}((0, T]) \cap L^1(0, T)$ and inequality [\(1-4\)](#) holds. If $u_0 \in j(D(\varphi))$, then problem [\(1-3\)](#) has a solution $u \in H^1(0, T; H)$.*

We complete this section by considering the following evolution problem involving the *Dirichlet-to-Neumann operator* associated with the p -Laplacian; see [\[Hauer 2015; Chill et al. 2016\]](#).

Example 5.6. Let Ω be a bounded domain with a Lipschitz continuous boundary $\partial\Omega$. Then, for $2d/(d+1) < p < +\infty$, the trace operator $\text{Tr} : W^{1,p}(\Omega) \rightarrow L^2(\partial\Omega)$ is a completely continuous operator (see [\[Nečas 1967, Théorème 6.2\]](#) for the case $p < d$; the other cases $p = d$ and $p > d$ can be deduced from [Conséquences 6.2 and 6.3](#) of the same work). Now, we take

$$V = W^{1,p}(\Omega), \quad H = L^2(\partial\Omega), \quad \text{and} \quad j = \text{Tr}.$$

Then, j is a linear bounded mapping satisfying hypothesis [\(5-1\)](#). In fact, j is a prototype of a noninjective mapping. Furthermore, let $\varphi : V \rightarrow \mathbb{R}$ be the function given by

$$\varphi(\hat{u}) = \frac{1}{p} \int_{\Omega} |\nabla \hat{u}|^p \, dx \quad \text{for every } \hat{u} \in V.$$

Then, φ is continuously differentiable on V and convex. Thus, the Tr -subdifferential operator $\partial_{\text{Tr}}\varphi$ is given by

$$\partial_{\text{Tr}}\varphi = \left\{ (u, f) \in H \times H \mid \begin{array}{l} \text{there exists } \hat{u} \in V \text{ such that } \text{Tr}(\hat{u}) = u \text{ and for every } \hat{v} \in V \\ \int_{\Omega} |\nabla \hat{u}|^{p-2} \nabla \hat{u} \nabla \hat{v} \, dx = (f, j(\hat{v}))_H \end{array} \right\}.$$

Moreover, by [\[Hauer 2015, inequality \(20\)\]](#), for any $\omega > 0$, the shifted function φ_ω has bounded sublevel sets in V . Since V is reflexive, every sublevel set of φ_ω is weakly compact in V . In addition, by [Lemma 2.1](#) of the same work, $j(D(\varphi))$ is dense in H .

Now, let $g : (0, T) \times \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a Carathéodory function with sublinear growth. Then by [Theorem 5.5](#), for every $u_0 \in L^2(\partial\Omega)$, there is at least one solution $u \in H_{\text{loc}}^1((0, T]; L^2(\partial\Omega)) \cap C([0, T]; L^2(\partial\Omega))$ of the elliptic-parabolic boundary-value problem

$$\begin{cases} -\Delta_p \hat{u}(t, \cdot) = 0 & \text{on } (0, T) \times \Omega, \\ \partial_t u(t, \cdot) + |\nabla u(t, \cdot)|^{p-2} \frac{\partial}{\partial \nu} u(t, \cdot) = g(t, \cdot, u(t, \cdot)) & \text{on } (0, T) \times \partial\Omega, \\ u(t, \cdot) = \hat{u}(t, \cdot) & \text{on } (0, T) \times \partial\Omega, \\ u(0, \cdot) = u_0 & \text{on } \partial\Omega. \end{cases}$$

References

[Arendt 2004] W. Arendt, “Semigroups and evolution equations: functional calculus, regularity and kernel estimates”, pp. 1–85 in *Evolutionary equations, Vol. I*, edited by C. M. Dafermos and E. Feireisl, North-Holland, Amsterdam, 2004. [MR](#) [Zbl](#)

[Arendt and Chill 2010] W. Arendt and R. Chill, “Global existence for quasilinear diffusion equations in isotropic nondivergence form”, *Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)* **9**:3 (2010), 523–539. [MR](#) [Zbl](#)

[Arendt and ter Elst 2011] W. Arendt and A. F. M. ter Elst, “The Dirichlet-to-Neumann operator on rough domains”, *J. Differential Equations* **251**:8 (2011), 2100–2124. [MR](#) [Zbl](#)

[Arendt and ter Elst 2012] W. Arendt and A. F. M. ter Elst, “Sectorial forms and degenerate differential operators”, *J. Operator Theory* **67**:1 (2012), 33–72. [MR](#) [Zbl](#)

[Barbu 2010] V. Barbu, *Nonlinear differential equations of monotone types in Banach spaces*, Springer, 2010. [MR](#) [Zbl](#)

[Belhachmi and Chill 2015] Z. Belhachmi and R. Chill, “Application of the j -subgradient in a problem of electropermeabilization”, *J. Elliptic Parabol. Equ.* **1** (2015), 13–29. [MR](#) [Zbl](#)

[Belhachmi and Chill 2018] Z. Belhachmi and R. Chill, “The bidomain problem as a gradient system”, 2018. [arXiv](#)

[Bénilan et al. ca. 1990] P. Bénilan, M. G. Crandall, and A. Pazy, “Evolution problems governed by accretive operators”, unpublished manuscript, ca. 1990.

[Brezis 1971] H. Brézis, “Propriétés régularisantes de certains semi-groupes non linéaires”, *Israel J. Math.* **9** (1971), 513–534. [MR](#) [Zbl](#)

[Brezis 1973] H. Brézis, *Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert*, North-Holland Mathematics Studies **5**, North-Holland, Amsterdam, 1973. [MR](#) [Zbl](#)

[Brezis 2011] H. Brezis, *Functional analysis, Sobolev spaces and partial differential equations*, Springer, 2011. [MR](#) [Zbl](#)

[Chill et al. 2016] R. Chill, D. Hauer, and J. Kennedy, “Nonlinear semigroups generated by j -elliptic functionals”, *J. Math. Pures Appl. (9)* **105**:3 (2016), 415–450. [MR](#) [Zbl](#)

[Coulhon and Hauer 2016] T. Coulhon and D. Hauer, “Regularisation effects of nonlinear semigroups”, preprint, 2016. To appear in *BCAM Springer Briefs*. [arXiv](#)

[Evans 2010] L. C. Evans, *Partial differential equations*, 2nd ed., Graduate Studies in Mathematics **19**, American Mathematical Society, Providence, RI, 2010. [MR](#) [Zbl](#)

[Hauer 2015] D. Hauer, “The p -Dirichlet-to-Neumann operator with applications to elliptic and parabolic problems”, *J. Differential Equations* **259**:8 (2015), 3615–3655. [MR](#) [Zbl](#)

[Nečas 1967] J. Nečas, *Les méthodes directes en théorie des équations elliptiques*, Masson et Cie, Paris, 1967. [MR](#) [Zbl](#)

[Schaefer 1955] H. Schaefer, “Über die Methode der a priori-Schranken”, *Math. Ann.* **129** (1955), 415–416. [MR](#) [Zbl](#)

[Zeidler 1990] E. Zeidler, *Nonlinear functional analysis and its applications, II/B: Nonlinear monotone operators*, Springer, 1990. [MR](#) [Zbl](#)

Received 14 Feb 2019. Revised 3 Aug 2019. Accepted 9 Sep 2019.

WOLFGANG ARENDT: [wolfgang.arendt@uni-ulm.de](mailto:wolfgangarendt@uni-ulm.de)
 Institute of Applied Analysis, University of Ulm, Ulm, Germany

DANIEL HAUER: daniel.hauer@sydney.edu.au
 School of Mathematics and Statistics, The University of Sydney, Sydney, Australia

PURE and APPLIED ANALYSIS

msp.org/paa

EDITORS-IN-CHIEF

Charles L. Epstein	University of Pennsylvania cle@math.upenn.edu
Maciej Zworski	University of California at Berkeley zworski@math.berkeley.edu

EDITORIAL BOARD

Sir John M. Ball	University of Oxford ball@maths.ox.ac.uk
Michael P. Brenner	Harvard University brenner@seas.harvard.edu
Charles Fefferman	Princeton University cf@math.princeton.edu
Susan Friedlander	University of Southern California susanfri@usc.edu
Anna Gilbert	University of Michigan annacg@umich.edu
Leslie F. Greengard	Courant Institute, New York University, and Flatiron Institute, Simons Foundation greengard@cims.nyu.edu
Yan Guo	Brown University yan_guo@brown.edu
Claude Le Bris	CERMICS - ENPC lebris@cermics.enpc.fr
Robert J. McCann	University of Toronto mccann@math.toronto.edu
Michael O'Neil	Courant Institute, New York University oneil@cims.nyu.edu
Jill Pipher	Brown University jill_pipher@brown.edu
Johannes Sjöstrand	Université de Dijon johannes.sjstrand@u-bourgogne.fr
Vladimir Šverák	University of Minnesota sverak@math.umn.edu
Daniel Tataru	University of California at Berkeley tataru@berkeley.edu
Michael I. Weinstein	Columbia University miw2103@columbia.edu
Jon Wilkening	University of California at Berkeley wilken@math.berkeley.edu
Enrique Zuazua	DeustoTech-Bilbao, and Universidad Autónoma de Madrid enrique.zuazua@deusto.es

PRODUCTION

Silvio Levy	(Scientific Editor) production@msp.org
-------------	---

Cover image: The figure shows the outgoing scattered field produced by scattering a plane wave, coming from the northwest, off of the (stylized) letters P A A. The total field satisfies the homogeneous Dirichlet condition on the boundary of the letters. It is based on a numerical computation by Mike O'Neil of the Courant Institute.

See inside back cover or msp.org/paa for submission instructions.

The subscription price for 2020 is US \$505/year for the electronic version, and \$565/year (+\$25, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Pure and Applied Analysis (ISSN 2578-5885 electronic, 2578-5893 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

PAA peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY
 mathematical sciences publishers
nonprofit scientific publishing
<http://msp.org/>

© 2020 Mathematical Sciences Publishers

PURE and APPLIED ANALYSIS

vol. 2 no. 1 2020

Emergence of nontrivial minimizers for the three-dimensional Ohta–Kawasaki energy	1
HANS KNÜPFER, CYRILL B. MURATOV and MATTEO NOVAGA	
Maximal L^2 -regularity in nonlinear gradient systems and perturbations of sublinear growth	23
WOLFGANG ARENDT and DANIEL HAUER	
The local density approximation in density functional theory	35
MATHIEU LEWIN, ELLIOTT H. LIEB and ROBERT SEIRINGER	
Sparse bounds for the discrete spherical maximal functions	75
ROBERT KESLER, MICHAEL T. LACEY and DARÍO MENA	
Characterization by observability inequalities of controllability and stabilization properties	93
EMMANUEL TRÉLAT, GENGSHENG WANG and YASHAN XU	
Stationary compressible Navier–Stokes equations with inflow condition in domains with piecewise analytical boundaries	123
PIOTR B. MUCHA and TOMASZ PIASECKI	
Optimal constants in nontrapping resolvent estimates and applications in numerical analysis	157
JEFFREY GALKOWSKI, EUAN A. SPENCE and JARED WUNSCH	