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THE HYPERBOLIC YANG-MILLS EQUATION IN THE CALORIC GAUGE:
LOCAL WELL-POSEDNESS AND CONTROL
OF ENERGY-DISPERSED SOLUTIONS

SUNG-JIN OH AND DANIEL TATARU

This is the second part in a four-paper sequence, which establishes the threshold conjecture and the soliton
bubbling vs. scattering dichotomy for the hyperbolic Yang—Mills equation in the (44 1)-dimensional
space-time. This paper provides the key gauge-dependent analysis of the hyperbolic Yang—Mills equation.

We consider topologically trivial solutions in the caloric gauge, which was defined in the first paper
of the sequence using the Yang—Mills heat flow. In this gauge, we establish a strong form of local
well-posedness, where the time of existence is bounded from below by the energy concentration scale.
Moreover, we show that regularity and dispersive properties of the solution persist as long as energy
dispersion is small. We also observe that fixed-time regularity (but not dispersive) properties in the caloric
gauge may be transferred to the temporal gauge without any loss, proving as a consequence small-data
global well-posedness in the temporal gauge.

We use the results in this paper in subsequent papers to prove the sharp threshold theorem in caloric
gauge in the trivial topological class, and the dichotomy theorem in arbitrary topological classes.
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1. Introduction

In this paper, along with the companion papers [Oh and Tataru 2017a; 2017b; 2019a], we consider the
hyperbolic Yang—Mills equation in the (4+1)-dimensional Minkowski space with a compact semisimple
structure group.
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In [Oh and Tataru 2017b], we defined the notion of caloric gauge with the help of the Yang—Mills heat
flow on R%, and showed that every subthreshold connection admits a caloric gauge representative (see
Section 1B below for a review). The first main result of the present paper (Theorem 1.13) is a strong form of
local well-posedness of the hyperbolic Yang—Mills equation in the manifold of caloric gauge connections,
where the time of existence is estimated from below by the scale of energy concentration. The second main
result (Theorem 1.16) asserts that regularity and dispersive behaviors persist as long as a certain quantity
called energy dispersion, which measures a certain type of nondispersive concentration, remains small.

While the caloric gauge reveals the fine cancellation structure of the Yang—Mills equation, and is thus
suitable for dispersive analysis at low regularity, it has the drawback that causality is lost. As a remedy,
we also show that regularity (but not dispersive) properties in the caloric gauge may be transferred to
the temporal gauge. As a corollary, we also obtain small-data global well-posedness of the hyperbolic
Yang-Mills equation in the temporal gauge (Theorem 1.18).

In the subsequent papers in the sequence [Oh and Tataru 2017a; 2019a], we use the results proved in
this paper to establish the threshold theorem (i.e., global well-posedness and scattering for subthreshold
data) in the caloric gauge, as well as the soliton bubbling vs. scattering dichotomy theorem for general
finite-energy solutions, formulated in a more gauge-covariant fashion. An overview of the entire series is
provided in [Oh and Tataru 2019b].

1A. Hyperbolic Yang-Mills equation on R174. Our set-up is as follows. Let G be a compact noncom-
mutative Lie group and g its associated Lie algebra. We denote by Ad(O)X = OXO~! the adjoint (or
conjugation) action of G on g and by ad(X)Y = [X, Y] the Lie bracket on g. We use the notation (X, Y')
for a bi-invariant inner product on g,

([X,Y),Z)=(X,[Y,Z]), X,Y,Zegy,
or equivalently
(X,Y)=(Ad(0)X,Ad(0)Y), X,Yeg, O€QaG.

If G is semisimple then one can take (X, Y) = —tr(ad(X) ad(Y)), i.e., the negative of the Killing form
on g, which is then positive definite, However, a bi-invariant inner product on g exists for any compact
Lie group G.

Let R'™# be the (44 1)-dimensional Minkowski space equipped with the Minkowski metric, which

L ,x4). The coordinate x°

takes the form diag(—1, +1,..., 4+1) in the rectangular coordinates (xo, X
serves the role of time, and we will often write x® = ¢. Throughout this paper, we will use the standard
convention for raising or lowering indices using the Minkowski metric, and summing up repeated upper
and lower indices.

Our objects of study are connection 1-forms A on R!*# taking values in the Lie algebra g. They define
covariant differentiation operators D, = D ,(LA) = d,, + Ay (in coordinates) acting on sections of any
vector bundle with structure group G. The commutator D, D, — D, D, yields the curvature 2-form

Fuv = F[A] v, which is given in terms of A,, by the formula

Fuy = 0,4, —0vA, + [Au, Ay
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Given a G -valued function O on R!'*#, we introduce the notation
0., =9,007".
The pointwise action of O on the vector bundle induces a gauge transformation for A and F, namely
Ay 04,071 -9,007" = Ad(0)A;, — 0.y,  Fyup+> OF,, 07" = Ad(O) F.

In view of this transformation property, F' may be viewed as a 2-form taking values in the G -vector
bundle with fiber g, where G acts on g by the adjoint action (geometrically, the adjoint vector bundle).
Thus the covariant derivative D, acts on F by

DMFaﬂ = (BM + ad(AM))Faﬂ = auFaﬂ + [AM’ Faﬂ]-
The hyperbolic Yang—Mills equation on R'*# is the Euler—Lagrange equation associated with the
formal Lagrangian action functional

1

L(A) = (Fop, F*P) dx dt,
2 Jpi+4

which takes the form

D%F,p =0. (1-1)

Clearly, (1-1) is invariant under gauge transformations. This equation possesses a conserved energy,
given by

Enxra (A) = / D |Fapl* dx. (1-2)
{t}xR4 a<B

Furthermore, both the equation (1-1) and the energy (1-2) are invariant under the scaling
A(t,x) = AA(At, Ax) (A >0).

Hence, the hyperbolic Yang—Mills equation is energy critical in dimension (4 + 1), which is the reason
why we focus on this dimension in the present series of papers.

We are interested in the initial value problem for (1-1). For this purpose, we first formulate a gauge-
covariant notion of an initial data set. We say that a pair (a, e) of a connection 1-form a and a g-valued
1-form e on R* is an initial data set for a solution A to (1-1) if

(Aj, Foj) Mi=0y= (a;, ej).

Here and throughout this paper, roman letter indices stand for the spatial coordinates x!, ..., x% Note
that (1-1) with 8 = 0 imposes the condition that

D/ej=0dej +[a’ ej]=0. (1-3)

This equation is the Gauss (or the constraint) equation for (1-1).
It turns out that (1-3) characterizes precisely those pairs (a, e) which can arise as an initial data set.
Thus we make the following definition:



236 SUNG-JIN OH AND DANIEL TATARU

Definition 1.1. (1) A regular initial data set for the hyperbolic Yang—Mills equation is a pair (a, e) €
HYN x HN=1 (N > 2) which has finite energy (i.e., F[a] € L?) and satisfies the constraint equation (1-3).

loc
(2) A finite-energy initial data set is a pair (a, e) € 1’-.11})C x L? which has finite energy (i.e., F[a] € L?)
and satisfies the constraint equation (1-3).

In this paper, we make an additional assumption that a decays suitably at infinity:
acH'. (1-4)

This assumption turns out to be equivalent to the requirement that a is topologically trivial [Oh and Tataru
2019a]. As this property is conserved under any continuous evolution in time, this is the natural setting
for scattering and thus for the threshold conjecture for (1-1), which is one main subject of the final paper
[Oh and Tataru 2017a] of the series.

The hyperbolic Yang—Mills equation (1-1), when naively viewed as an evolution equation for A, fails
to be locally well-posed; to restore (at least formally) well-posedness, we need to fix the gauge invariance.

There are several classical interesting gauge choices which can be made here, for instance the Coulomb
gauge 3/ A ;i =0, the temporal gauge A9 = 0 and the Lorenz gauge 0* Ay = 0. For a more detailed
discussion and comparison of these gauges we refer the reader to our first article [Oh and Tataru 2017b].

However, the main gauge choice we use in this paper is the so-called caloric gauge, which was defined
in the first paper of the series [Oh and Tataru 2017b] with the help of a parabolic analogue of (1-1),
namely the Yang—Mills heat flow. This is the subject of our next discussion.

1B. Yang-Mills heat flow and the caloric gauge. Let a be a connection 1-form on R* (in short, a spatial
connection). We say that a connection A = A(x, s) on R* x J (where J is a subinterval of [0, 00)) is a
(covariant) Yang—Mills heat flow development of a if it solves

Fs; = D'Fy;, A(s=0)=a. (1-5)
This equation is invariant under gauge transformations on R* x J. Under the local caloric gauge condition
As =0, (1-6)

the forward-in-s initial value problem for (1-5) is locally well-posed [Oh and Tataru 2017b, Theorem 2.7]
in H'. We remark that the evolution (1-5) under the gauge (1-6) is precisely the gradient flow for the
(spatial) energy

el@) =3 [ | (Fyelal, F¥lal) dx = A4§|ak[a]|2dx.

The key controlling norm for the Yang—Mills heat flow in the local caloric gauge is || F|| L3(J:L3)
which is both scale- and gauge-invariant.

Theorem 1.2 [Oh and Tataru 2017b]. Consider a Yang—Mills heat flow A € Cs(J; H') in the local
caloric gauge satisfying
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When J = [0, so) for so < 00, A can be extended past sg as a (well-posed) Yang—Mills heat flow. When
J = [0, 00), the solution has the property that the limit

i 46) = e

exists in HY. The limiting connection is flat (F|aco] = 0) and the map a + deo is locally Lipschitz
in H, HN (N > 1) and H' N HN (N > 2). Denoting by O(a) a gauge transformation satisfying
0719, 0 = aco, the map a +— O(a) is continuous from H' to H? up to constant conjugations.

In the case when the Yang—Mills heat flow with initial data @ admits a global solution with finite
L3 norm for the curvature as in (1-7), we define the caloric size Q(a) of a as

Q@) = 1F 73 g3 (1-8)
We note that this is a gauge-invariant quantity.

Remark 1.3. Here we need to clarify the topology on the (nonlinear) space of gauge transformations.
We will say that a sequence om converges to O if there exists a sequence 0™ of gauge transformations
so that O™ (0™)~1 are constant and so that we have

e pointwise convergence,’

d(0™,0)—0 inL2,

e convergence of derivatives,
~(n L
O;(x)—>0;x in H'.

A simple but important case in which (1-7) holds with J = [0, o0) is when the initial energy & (a) is
sufficiently small. The same conclusion holds as long as & (a) is below any nontrivial connection a € H!
satisfying the harmonic Yang—Mills equation

D'Fy =0. (1-9)

The above assertion is closely related to the topological class of connections. Relaxing the requirement
acH' toae H}

1oc allows also topologically nontrivial initial data sets, in which case the ground state

energy
Egs =inf{&(a):a € Hkl)C is nontrivial and solves (1-9)} (1-10)

is nonzero, and the minimum is attained for a special class of solutions called instantons. However, within
the trivial topological class we have

2EGgs <inf{&.(a) :a € H' is nontrivial and solves (1-9)}. (1-11)

We further remark that in order for a connection a to have Q(a) finite, it must be topologically trivial.
Because of this, the present paper is limited to topologically trivial connections, which are simply defined

IThe functions O™ are uniformly bounded in BMO so this property essentially provides the additional information that in
some sense the local averages converge as well.
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by the requirement that a € H' in a suitable gauge. For an extended discussion and further references we
refer the reader to our next article in the series [Oh and Tataru 2019a].
In view of this discussion, the following result is natural:

Theorem 1.4 (threshold theorem for the Yang—Mills heat flow on R* [Oh and Tataru 2017b]). Assume
that a is topologically trivial and that
Ee (a) <2FEgs.

Then the solution to (1-5) exists globally on [0, 00). Moreover, there exists a nondecreasing function
Q(-):[0,2Egs) — [0, 00) such that
Q(a) < Q(&e(a)).

We now return to the discussion of an arbitrary (not necessarily subthreshold) spatial connection a,
whose Yang—Mills heat flow development satisfies (1-7) with J = [0, co). Since the limiting connection
Ao 1s flat, it must be gauge equivalent to the zero connection. This motivates the following definition of
the caloric gauge:

Definition 1.5 (caloric gauge). We say that a connection a; € H' is caloric if J = [0, 00) and ag in
Theorem 1.2 is equal to zero. We denote the set of all such connections by C. More quantitatively, we
denote by Cg the set of all caloric connections whose Yang—Mills heat flow development satisfies

Qa) = Q. (1-12)
Given a connection a € H! satisfying (1-7) with J = [0, 00), note that
Cal(a); = Ad(O(a))a; — O(a);;

is its caloric representative, which is unique up to constant conjugations.

To solve the Yang—Mills equation in the caloric gauge, we need to view the family C of the caloric
gauge connections as an infinite-dimensional manifold. Here the H! topology is no longer sufficient, so
we introduce the slightly stronger topology

H={acH" |alg <co}. wherellallg = lall g+ Y I @) 2.
J
Here, { P;} refer to the standard Littlewood—Paley projections to dyadic frequency annuli on R*. It turns
out that every caloric connection belongs to H, which reflects the fact, to be discussed in Section 3 in
greater detail, that caloric connections satisfy a nonlinear form of the Coulomb gauge condition. Moreover,
the following theorem holds.

Theorem 1.6. (1) For a connection a € C with energy £ and caloric size Q we have

lala <eo 1.

(2) Consider a connection a € H (not necessarily caloric) satisfying (1-12). Then O(a) in Theorem 1.2
may be uniquely fixed by imposing lim|y| oo O(a) = 1. Such a map a — O(a) is locally C ! from H to
H2NC° and also from HN to H>n AN +1 (N >2).
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Essentially as a corollary, we have:
Theorem 1.7. The set C is an infinite-dimensional C' submanifold of H.

The spatial components of finite-energy Yang—Mills waves will be continuous functions of time which
take values into C. They are however not C'! in time; instead their time derivative will merely belong to L2.
Because of this, we need to take the closure of its tangent space 7'C (which a priori is a closed subspace
of H) in L2 This is denoted by TaLz(Z . It is also convenient to have a direct way of characterizing this
space; that is naturally done via the linearization of (1-5):

Definition 1.8. For a caloric gauge connection a € C, we say that L? 3 b € TaLZC if and only if the
solution to the linearized local caloric gauge Yang—Mills heat flow equation

35 B = [B/, Fyj1+ D/ (DyBj — D;By). Bi(s =0) = by, (1-13)
(where D = D @) satisfies
lim B(s) =0.
§—>00

We say that (a, b) € TLZCQ ifaeCgandb e Tach, and we say that (a,b) € TL’CifaeCandbe TaLZC.
A key property of the tangent space TaLzC is the following nonlinear div-curl-type decomposition:

Theorem 1.9. Let a € Cg with energy E. Then for each e € L? there exists a unique decomposition
e=b—DWay, beTlC ageH', (1-14)

with the corresponding bound
1612 + llaoll 1 Se.0 llellz2 (1-15)

A hyperbolic Yang—Mill connection consists not only of spatial components (the sole subject of
discussion so far), but also of a temporal component. As in the Coulomb gauge, we will consider the
spatial components of the connection as the dynamic variables, which satisfy a system of wave equations.
The temporal components, on the other hand, will be viewed as an auxiliary variable determined from the
spatial components. This point of view motivates the following definition.

Definition 1.10 (initial data in the caloric gauge). An initial data for the Yang—Mills equation in the
. . . L2
caloric gauge is a pair (a, b) where (a,b) € T=C.
The notion of covariant Yang—Mills initial data (Definition 1.1) is connected to the preceding definition

by the following result proved in [Oh and Tataru 2017b] (which motivates the notation in Theorem 1.9):

Theorem 1.11. (1) Given any Yang—Mills initial data pair (a,e) € HY x L? such that the Yang—Mills
heat flow development of a satisfies (1-12), there exists a caloric gauge Yang—Mills data (@, b) € TL¢
and ag € H', so that the initial data pair (a, é) is gauge equivalent to (a, e), where

ék = bk — D,(f)ao.
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In addition, (a, b) and ag are unique up to constant conjugations, and depend continuously on (a, e)
in the corresponding quotient topology. Further, the map (a,e) — (@, b) is locally C' in the stronger
topology* H x L?> — H x L2, as well as in more regular spaces HY x HN =1 — HN x HN=1 (N >2).

(2) Given any caloric gauge data (a, b) € TLZC, there exists a unique ag € H*, with Lipschitz dependence
on (a,b) € H' x L2 so that

er = by — Dlga)ao
satisfies the constraint equation (1-3). Further, the map (a,b) — ag is also Lipschitz from HN x HN~1
to HY for N > 3.

Remark 1.12. The caloric gauge just described is a global version of a local caloric gauge previously
introduced by Oh [2014; 2015], and is based on an idea by Tao [2004] in his study of the energy-critical
wave maps into the hyperbolic space [Tao 2008a; 2008b; 2008c; 2009a; 2009b].

1C. The main results. The first main result is a strong gauge-dependent local well-posedness theorem
for the Yang—Mills equation as an evolution in the manifold of caloric connections. To state this result,
we define the energy concentration scale r. of a Yang—Mills initial data set (a, e) with threshold e, (or
the e«-energy concentration scale) to be

ré* =ré*la,e] = sup{r : £p, (a,e) < £2}.

Theorem 1.13 (local well-posedness in caloric gauge). There exists a nonincreasing function €«(E, Q) >0
and a nondecreasing function M« (E, Q) > 0 such that the Yang—Mills equation in the caloric gauge is
locally well-posed on the time interval of length r. = r&* (€, Q) for initial data (a, e) with energy < £
and a € Cg. More precisely, the following statements hold:

(1) (regular data) Let (a, e) be a smooth initial data set with energy < &, where a € Cg. Then there
exists a unique smooth solution Ay x to the Yang—Mills equation in caloric gauge on I = [—r¢, r¢]
such that (Aj, Foj) Ii=0y= (a;.ej).

(2) (rough data) The data-to-solution map admits a continuous extension
Cx L%3(a,e) > (Ax, 9 4y) € C(I, T C)
in the class of initial data with energy < £, a € Cg and energy concentration scale > r.

(3) (a priori bound) The solution defined as above obeys the a priori bound
[Axlls1 < M« (€. Q).

(4) (weak Lipschitz dependence) Let (a’, ') € C x L? be another initial data set with energy concentration
scale > r.. For o <1 close to 1, we have the global bound

IAx — A llso 1) S.e.0).0 1@.€) = (@' )l goy gro-1-

2Here we impose again the condition lim| |00 O(a) = I in order to fix the choice of O(a).
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The a priori bound (3) is highly gauge-dependent and has strong consequences. The S !-norm, which
is essentially the same as in [Krieger et al. 2015] and is recalled in Section 4A below, serves the role
of a controlling (or scattering) norm for the Yang—Mills equation in the caloric gauge. As we will see
in Section 5, finiteness of the S!-norm implies fine properties of the solution itself, such as frequency
envelope control, persistence of regularity, continuation and scattering towards endpoints of 7, and also
for those nearby, such as weak Lipschitz dependence and local-in-time continuous dependence.

Theorem 1.13 implies small energy global well-posedness in the caloric gauge, analogous to the similar
Coulomb gauge result in [Krieger and Tataru 2017]:

Corollary 1.14. If the energy of the initial data set is smaller than &2 := min{1, e2(1, Q(1))}, then the
corresponding solution Ay x in the caloric gauge exists globally and obeys

[ 4xlls17(—00,00)] = M(E)-

Moreover, if the initial data set (a, e) has subthreshold energy, then by Theorem 1.4 we have a € Co
with Q@ < Q(&). Therefore, we immediately obtain:

Corollary 1.15. For initial data with subthreshold energy, the conclusions of Theorem 1.13 hold with &,
M. and r. depending only on the energy £.

The local well-posedness result (Theorem 1.13) provides a basic framework for considering dynamics
of the Yang—M ills equation in the manifold of caloric connections C. The second main result, which we
now state, is a continuation/scattering criterion for this equation in terms of smallness of a quantity called
energy dispersion (denoted by ED[/] below).

Theorem 1.16 (regularity and scattering of energy-dispersed YM solutions). There exists a nonincreasing
function (€, Q) > 0 and a nondecreasing function M (E, Q) such that if A; x is a solution (in the sense of
Theorem 1.13) to the Yang—Mills equation in caloric gauge on I with energy < £ and with initial caloric
size Q that obeys
I Flleptr) = sup 27| P Fll (g ety < £(E- Q).
€

then it satisfies the a priori bound
[Axlsipy = M(E, Q).
as well as

sup Q(A(0)) <« 1.

tel

By finiteness of the S!'-norm, 4,y may be continued as a solution to the Yang—Mills equation in the
caloric gauge past finite endpoints of /, and scatters in some sense towards the infinite endpoints; see
Remarks 5.2 and 5.3.

Remark 1.17. In contrast to Theorem 1.13, in Theorem 1.16 the dependence on Q is very mild. This
feature is due to the fact that small energy dispersion, combined with the energy bound, implies that Q
must be either very large or very small; see Lemma 5.10 below. In particular if £ is subthreshold then the
dependence on Q above can be omitted altogether.
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While powerful conclusions about the solution (represented by the S !-norm bound) can be made in
the caloric gauge, it has the disadvantage that the causality (or the finite speed of propagation) property is
lost. To remedy this, we also establish small-data well-posedness result in the temporal gauge Ag = 0:

Theorem 1.18. If the energy of the initial data set is smaller than &2 (as in Corollary 1.14), then the
corresponding solution (A; x, 0t Az x) in the temporal gauge Ao = 0 exists globally in C;(R; H'x L?).
The solution is unique among the local-in-time limits of smooth solutions, and it depends continuously on
data (a,e) € H' x L2

In fact, Theorem 1.18 is a consequence of Corollary 1.14, after the observation that the gauge transfor-
mation from the caloric gauge to the temporal gauge obeys optimal regularity bounds; see Theorem 5.1
(10) below. We note that the strong dispersive S'-norm bound for A is generally lost in the temporal
gauge, as some part of the solution is merely transported (instead of solving a wave equation).

Theorem 1.18 is used in the third paper [Oh and Tataru 2019a] of the sequence to establish the large-data
local theory for the (44 1)-dimensional Yang—Mills equation in arbitrary topological classes. Then in
the fourth paper [Oh and Tataru 2017a], this theory is put together with Theorems 1.13 and 1.16 to
establish global well-posedness and scattering in the caloric gauge for data with subthreshold energy
(often called the threshold theorem in the literature), as well as a bubbling vs. scattering dichotomy for
arbitrary finite-energy solutions, formulated in a gauge-covariant sense.

Remark 1.19. Within the setup of this paper, one could in effect easily relax the hypothesis of the above
theorem, and show that temporal gauge solutions exist for as long as caloric solutions exist. We do not
pursue this, as our primary interest in terms of the temporal gauge is to use it for solutions which are not
necessarily caloric. These matters are further discussed in our third and fourth papers [Oh and Tataru
2017a; 2019a].

The overall strategy for the proofs originated from the work of Sterbenz and the second author on
the energy-critical wave maps [Sterbenz and Tataru 2010a; 2010b] and was adapted to the case of the
energy-critical Maxwell-Klein—-Gordon (MKG) equation, which is a simpler model for Yang—Mills, in our
previous works [Oh and Tataru 2016a; 2016b; 2018]. We also note an alternative independent approach
for the energy-critical wave maps [Krieger and Schlag 2012] and MKG [Krieger and Lithrmann 2015]
based on the Kenig—Merle method [2008; 2006]. A more extensive historical perspective is provided in
the fourth paper [Oh and Tataru 2017a].

In [Oh and Tataru 2016b; 2018], the analogues of Theorems 1.13 and 1.16 (respectively) were proved
using distinct strategies. However, here we derive both main results (see Section 7 for details) from the
following single a priori estimate concerning regular solutions, whose proof is the central goal of this paper:

Theorem 1.20. There exist nonincreasing functions (&, Q), T(E, Q) > 0 as well as a nondecreasing
Sfunction M(E, Q) such that if A; x is a regular solution to the Yang—Mills equation in caloric gauge on
with energy < & such that Ax € Co forallt € I, and moreover

sup 272 || P F | oo sty < €(6.Q) and || <27"T(€.Q)

k>m
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for some m € Z, then it satisfies the a priori bound
[Axllsipry = M(E, Q).

In words, for a regular solution with small energy dispersion only at certain frequency 2 and above,
an a priori S'-norm bound holds on time intervals of the corresponding scale O(27™).

1D. Overview of the paper. Section 2: In this section, we collect some notation and conventions used
throughout this paper for the reader’s convenience. Some basic concepts, such as disposability, dyadic
function spaces, frequency envelopes, etc., are also described.

After Section 2, the paper is organized into two tiers. The first tier consists of Sections 3 to 7, and its
goal is to describe the large-scale proof of the main results, assuming the validity of certain linear and
multilinear estimates collected in Section 4.

Section 3: Here, we recall from [Oh and Tataru 2017b] further results concerning the Yang—Mills heat
flow and the caloric gauge. First, we state some quantitative bounds for the Yang—Mills heat flow and
its linearization in the caloric gauge, using the language of frequency envelopes (Section 3A). Next, we
derive the wave equation satisfied by A, and A (s) (s > 0) in the caloric gauge (Section 3B). In this
process we use the dynamic Yang—Mills heat flow (3-5), which is the Yang—Mills heat flow augmented
with a heat evolution (in s) for the temporal component.

Section 4: We first describe the fine function space framework for analyzing the hyperbolic Yang—Mills
equation in the caloric gauge (Section 4A). The main function spaces are identical to those in [Krieger
et al. 2015; Oh and Tataru 2018; Krieger and Tataru 2017], which in turn have their roots in the works on
wave maps [Tataru 2001; Tao 2001]. We also explain the three main sources of smallness in our analysis:
divisibility, small energy dispersion and short time interval. Then we state the linear and multilinear
estimates needed for the proof of the main theorems (Sections 4B and 4C); it is the goal of the second
tier of the paper (described below) to prove them. The primary estimates here are the bilinear null form
estimates, which in the context of our function spaces have their origin in [Krieger et al. 2015; Oh and
Tataru 2018; Krieger and Tataru 2017]. The bilinear null structure of the Yang—Mills nonlinearities was
first described in [Klainerman and Machedon 1994]; a secondary trilinear null structure, which also plays
a role here, was discovered in [Machedon and Sterbenz 2004] in the (MKG) context.

Section 5: We prove a strong structure theorem for a solution to the hyperbolic Yang—Mills equation in
the caloric gauge with finite S'-norm (Section 5SA). In particular, it reduces the tedious task of controlling
various parts of a solution A, x to proving a single S !-norm bound for the spatial components 4. We also
consider the effect of small inhomogeneous energy dispersion on a correspondingly short time interval
(Section 5B). The analysis is repeated for the dynamic Yang—Mills heat flow of a solution (Section 5C).

Section 6: We prove the central result, Theorem 1.20, by an induction-on-energy argument. The argument
is similar to [Oh and Tataru 2018], which in turn was based on the work [Sterbenz and Tataru 2010a],
with modifications to handle the low frequencies with possibly large energy dispersion with the short
length of the time interval (see, in particular, scenario (1) in Section 6B).
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Section 7: Here, we derive the main theorems stated in Section 1C from Theorem 1.20. The key point in
the derivation of Theorem 1.13 is the simple fact that energy dispersion is small for frequencies above
the inverse of the energy-concentration scale (Section 7B). Theorem 1.16 follows essentially by scaling
(Section 7C).

The second tier consists of Sections 8 to 11. Here, we provide proofs of the estimates stated in
Section 4.

Section 8: The goal of this section is to prove all multilinear estimates stated in Section 4. The proofs
proceed in two stages: In the first stage, we assume global-in-time dyadic (in spatial frequency) estimates
(Section 8B), and derive the interval-localized frequency envelope bounds stated in Section 4 (Section 8C).
A key technical issue in interval localization is to deal with modulation projections, which are nonlocal
in time. In the second stage, we establish the global-in-time dyadic estimates (Section 8D). Much is
borrowed from the previous works [Krieger et al. 2015; Oh and Tataru 2018; Krieger and Tataru 2017].

Section 9: We begin this section by reducing the proof of the key linear estimates in Section 4 to
construction of a parametrix for the paradifferential d’Alembertian O + 2 ) ", ad(P<—, Py A)0% Py
(Section 9A). As in [Krieger and Tataru 2017], the parametrix is constructed via conjugation of the free-
wave propagator by a pseudodifferential renormalization operator. We define and state the key properties
of the renormalization operator (Section 9C), and establish the desired estimates for the parametrix
assuming these properties (Section 9D).

Section 10: Here, we prove the mapping properties of the renormalization operator claimed in Section 9.
The key difference from [Krieger and Tataru 2017] lies in the source of smallness: whereas smallness
of the S'-norm of A was used in that paper, in this paper we rely instead on largeness of the frequency
gap « in the paradifferential d’ Alembertian. The idea of exploiting a large frequency gap was used in
[Sterbenz and Tataru 2010a; Oh and Tataru 2018].

Section 11: Finally, we estimate the error for conjugation of the paradifferential d’ Alembertian by the
renormalization operator claimed in Section 9, thereby completing our parametrix construction. One
aspect of our proof that differs from the previous works [Sterbenz and Tataru 2010a; Oh and Tataru 2018]
is that, in addition to the large frequency gap «, we need to use smallness of a divisible norm (weaker
than S!) of A, which requires a careful interval localization procedure (Sections 11C and 11D).

2. Notation, conventions and other preliminaries

2A. Notation and conventions. Here we collect some notation and conventions used in this paper.

e The symbols <, =, < and > are defined with their usual meanings, where the implicit constants in
these notations are allowed to vary from line to line.

e By A<g Band A <fg B, wemeanthat A <Cg B and A <cg B, respectively, where Cg = C0(1+E)C1
and cg = Cy 1(1+ E)~C for some constants Cy, C; > 0 that are again allowed to vary from line to line.

e Foru € gand O € G, define ad(u) = [u,-] and Ad(O) = O(-)O~!, both of which are in End(g).
Recall the minus Killing form, which is invariant under Ad(O) and ad(X). On g, define |- |4 on g by the
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minus Killing form. On End(g), use the induced metric |@|gna(g) = SUPy [, <1 lau|g. By Ad-invariance,
|Ad(O)algna(g) = la Ad(0_1)|End(g) = |a|gnd(g)-

e We use the notation B, (x) for the ball of radius r centered at x. We write | Z(§, )| for the angular
distance |€/[§] —n/[nl|, and | £(C. C")| for infgec, nec'| £(5. M)

 We use the notation V = 9, x, D,, =i~ 19,,. Also, for D and A we often suppress the subscript x and
write D = Dy and A = Ay.

e We say that a multilinear operator O(u1, ..., Un) is disposable if its kernel is translation-invariant and
has mass < 1. In particular, we have

01, ...,um)lly < llutllx, - lumlx,,
for any translation-invariant spaces X1, ..., X, Y provided that a product estimate
lur - umly < llurllx, - [umlx,,
holds for any functions u; € X1,..., Uy, € Xm.

e We often use the “duality” pairing

// uogOWy,...,u,)dxdt

so as to have symmetry among u¢ and the inputs. Indeed, we have

zyszth.”,um)dxdt::[V OEL, ..., E™)iig(EYi (EY) - i1, (E™)dE dt.
EO+E!I++EM=0

e We define O* as

i-th entry

//uoO*f(ul,..., um)dtdx—//u O(ul,..., ye o Um)dt dx.

e By a bilinear operator (of g-valued functions) with symbol m(&, n) = m®® (&, n) (which is a complex-
valued 4 x 4-matrix), we mean an expression of the form

d§dn

@n)¥

For a scalar-valued symbol m (€, ), we implicitly associate the corresponding multiple of the identity

m® (&, n) = m(€, n)8°®.
If £ were symmetric, then the symbol m(&, n) would be antisymmetric in €, 7, in the sense that
m® (€, 1) = —m®2(n, £); this is due to the antisymmetry of the Lie bracket.

Sa.b) = // (m (& )a (£). by () €+ = 454N

2B. Basic multipliers and function spaces. Here we provide the definitions of basic multipliers and
function spaces. For the more elaborate frequency projections and function spaces for the hyperbolic
Yang—Mills equation, see Section 4A.
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e Given a function space X (on either R? or R1*¢), we define the space £7 X by
lellDs e =D Il Peull}
k

(with the usual modification for p = 00), where Py (k € Z) are the usual Littlewood—Paley projections to
dyadic frequency annuli.

o For a spatial 1-form A, we define PA to be its Leray projection, i.e., the L2-projection to divergence-free
vector fields:

PiA=A; 4+ (—A)719;8%4,.
We write P].J-A =A; - P;A.
e For a space-time 1-form Ay, we introduce the notation Py A = (PA)y by defining

PiA,, a=jcfl,.. . 4,

PyA =
* Ao, a=0.
We also define POJ;A = (P1A)y = Ay — Py A.

e We denote by W2 the homogeneous L?-Sobolev space with regularity o. In the case p = 2, we
simply write H = W2,

e The mixed space-time norm L?Wxg’r of functions on R'*¢ is often abbreviated as LI W
2C. Frequency envelopes. To provide more accurate versions of many of our estimates and results we
use the language of frequency envelopes.

Definition 2.1. Given a translation-invariant space of functions X, we say that a sequence ¢y, is a frequency
envelope for a function u € X if

(i) the dyadic pieces of u satisfy
| Prullx < ck,
(ii) the sequence cj is slowly varying,

278Gk < Tk <8G—R) sk
¢j

Here § is a small positive universal constant. For some of the results we need to relax the slowly
varying property in a quantitative way. Fixing a universal small constant 0 < ¢ < 1, we set:
Definition 2.2. Let 01,07 > 0. A frequency envelope ¢y, is called (—o71, 0)-admissible if

21 (1=a)(—k) < Gk <om(=a)G=k) ;5
~ Cj ~ b

When o1 = 03, we simply say that cj is o-admissible.

Another situation that will occur frequently is that where we have a reference frequency envelope ¢y,
and then a secondary envelope dj describing properties which apply on a background controlled by cy.
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In this context the envelope dj often cannot be chosen arbitrarily but instead must be in a constrained
range depending on cj. To address such matters we set:

Definition 2.3. We say that the envelope dj, is o-compatible with ¢y, if we have
Cr 220(1_8)(‘j_k)dj < dg.
Jj<k
We will often replace envelopes dj which do not satisfy the above compatibility condition by slightly
larger envelopes that do:

Lemma 2.4 [Oh and Tataru 2017b, Lemma 3.5]. Assume that ¢ and dj, are (—o1, S) envelopes, and
also that cy, is bounded. Then for 6 < o (1 — ¢) the envelope

er =di +ck Z 2&(j_k)dj
j<k
is o-compatible with c. The implicit constant in Definition 2.3 is bounded above by 1+ Cg (1—g)—g ||| goo-

Finally we need the following additional frequency envelope notation:

(c-d)x = cpdk, a<i = Zaj, c,[f] = sup Z(I_S)G(j_k)q (o >0).

j<k <k
2D. Global small constants. In this paper, we use a string of global small constants 81, ..., §¢, 67 with
the hierarchy
0<8s =07 K6 K5 K s K03 K K01 K K 1. 2-1)

These are fixed from right to left, so that
841 < 8190,
The role of each constant is roughly as follows:

e §p: for definition of functions spaces, such as Str! and by, by, Po in Section 4.

e §;: for all bounds from other papers, such as [Oh and Tataru 2017b; 2018; Krieger and Tataru 2017];
also for all dyadic gains in explicit nonlinearities (Section 8) and for energy dispersion gains in the
Str! norm (4-21).

e §5: for energy dispersion, frequency gap and off-diagonal gains in Section 4.
e §3: for frequency envelope admissibility range in Section 4.

* §4: for energy dispersion and frequency gap gains in Section 5.

* §5: for frequency envelope admissibility range in Section 5.

* J¢: for energy dispersion and frequency gap gains in Section 6.

e §,: for frequency envelope admissibility range in Section 6.

We use an additional set of small constants in our parametrix construction (Sections 9-11), which are
fixed after §; but before §5.
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3. Yang-Mills heat flow and the caloric gauge

In this section, which is a continuation of Section 1B, we recall the results from the first paper [Oh and
Tataru 2017b] that are needed in the present paper.

In Section 3A, we state quantitative bounds for the Yang—Mills heat flow (and its linearization) in
the caloric gauge, using the language of frequency envelopes. Section 3B is concerned with the task
of interpreting the hyperbolic Yang—Mills equation in the caloric gauge as a system of nonlinear wave
equations for A.

3A. Frequency envelope bounds in the caloric gauge. We begin with frequency envelope bounds for
the caloric gauge Yang—Mills heat flow and its linearization.

Proposition 3.1 [Oh and Tataru 2017b, Proposition 7.27]. Let (a,b) € TchQ with & = Eq(a), and let
(A, B) be the solution to (1-5) and (1-13) with (a, b) as data. Let ¢y be a (=61, S)-frequency envelope in
H' x L2 for (a,b), and let cZ’p be a (=81, S)-frequency envelope in WP x WO ~LP for (a, b) which is
81-compatible with cy. Define

A(s) = A(s) —e*2a, B(s) = B(s) —e*2b. (3-1)
Then the following properties hold:

(1) We have
1PLA )| g1 + |1 P B($) 2 Seon (272Ks )81 22Ky =N (2, (3-2)

(2) For (o, p) and (01, p1) satisfying

es

4 -1 4 4
1505;—051, 2+C51§p§C51, 0<o01=<0-—cs, Z—01:2(E—0), (3-3)

Pl Wo1:2P1 NS,Q,N 2 s 2 N C ) . (3—4)

A central object of the remainder of this section is the dynamic Yang—Mills heat flow for space-time
connections, which is an augmentation of (1-5) with an equation for the temporal component. More
precisely, we say that a pair (A4g, A) of a g-valued function Ao and a connection A4 on R* x J (where J
is a subinterval of [0, 00)) is the dynamic Yang-Mills heat flow development of (ag, a) if

Fyo = D Frg. (Ao, A)(s = 0) = (ao. a). (3-5)

This flow is well-defined as long as the spatial and s-components of A are well-defined as a solution to
(1-5). In particular, if a € C, then (Ag, A) exists on [0, 00), limg—so0 Ag = 0 in H'! and limg— 00 Foj =0
in L2. Moreover, the following proposition holds.

Proposition 3.2 [Oh and Tataru 2017b, Propositions 7.7 and 8.9]. Let a € Cg and e € L? satisfy
Il f, e)||1242 < &. Consider also ag € H' and b € TaLzC which obeys e = b — Dayg (see Theorem 1.9), and

let (Ag, A) be a caloric gauge solution to (3-5) with data (ag, a). Then the following properties hold.
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(1) The spatial 1-form Bj(s) = Fo;(s) — D; Ao(s) obeys the linearized Yang—Mills heat flow in the
caloric gauge with B;(0) = b;. Moreover,

[AG g1 + 1B L2 e 0 IS 0)llz2- (3-6)
(2) Let di be a §1-frequency envelope for ( f.e) in W2, Then
_ _ _ 1
27K P A) oo + 272K PiB(s) e e o.n (2%55) 7N (dp)2. (3-7)
(3) Let ¢ be a (=81, S)-frequency envelope for (a,b) in H' x L2 Then
ok —1\— _ 1
I PeA@) g1+ I PeBO) 2 Seow 27757712 ) N (dp)Zer,  (3-9)
; ; ok —1\— _ 1
| Ped’ A4 ()l + 1Ped” B (9]l -1 Seow 27K 2%5) N (dp)2er. (-9
where A, B are as in (3-1).

3B. Wave equation for A in caloric gauge. Here, and in the rest of this paper, we shift the notation
and denote by A; y = A; x(t, x), instead of (ag,a), the space-time connection on / x R* (viewed as
{s = 0}). For the spatial components, we omit the subscript x and write A, (¢, x) = A(¢, x). We write
Af x,5(8) = At x,5(t, x,5) for the dynamic Yang—Mills heat flow of A; x (¢, x).

In this subsection, we recall from [Oh and Tataru 2017b] the interpretation of the hyperbolic Yang—Mills
equations for a space-time connection A; x in the caloric gauge as a hyperbolic evolution for the spatial
components A augmented with nonlinear expressions of 8ZAg, Ag and dgAg in terms of (A4, d; A); see
Theorem 3.5. An analogous hyperbolic equation holds for the dynamic Yang—Mills heat flow development
A x(s) of A; x in the caloric gauge, which may be thought of as a gauge-covariant regularization of A4;
see Theorem 3.6.

We present explicit expressions for the quadratic nonlinearities, for which we need to reveal the null
structure in order to handle them, and state stronger bounds for the remaining higher order nonlinearities.
For economy of notation in the latter task, we introduce the following definition:

Definition 3.3. Let X, Y be dyadic norms.

e Amap F : X — Y is said to be envelope-preserving of order > n (n € N with n > 2) if the following
property holds: Let ¢ be a (=81, S)-frequency envelope for a in X. Then

“F(a)”Y(c[z;l])n_lC Slalx 1-

e Amap F : X — Y is said to be Lipschitz envelope-preserving of order > n if, in addition to being
envelope-preserving of order > n, the following additional property holds: Let ¢ be a common §;-
frequency envelope for a1 and a; in X, and let d be a §;-frequency envelope for a; —a; in X that is
81-compatible with ¢. Then

| P (F (a1) — F (a2))lvx Sy lix.lasly €5 >k

where e = dy + cr(c-d)<k.
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Remark 3.4. The modified envelope e appears since the maps F that arise below are defined on a
nonlinear manifold, namely, spatial connections a on a time interval / such that (a, d;a)(t) € TL?C for
each fixed time. We remark moreover that if the frequency envelopes ¢ and d are £?-summable, which is
usually the case in practice, then F (a) and F (a1) — F (a3) belong to £1Y.

We also need to introduce the nonsharp Strichartz spaces Str and Str!, which scale like L°°L? and
L®H, respectively. We define

—50}, (3-10)

!
Iulsie = sup{ Il o *

as well as

ullg,r = IVullse- 3-11)

Conditions in (3-10) ensure that the (p, ¢, 0)’s are Strichartz exponents, but away from the sharp endpoints.
These norms have two key properties:

e They are divisible in time, i.e., can be made small by subdividing the time interval.
e Saturating the associated Strichartz inequalities requires strong pointwise concentration (i.e., small

energy dispersion).

In [Oh and Tataru 2017b], we have shown that the spatial components of the Yang—Mills equation
D%*Fjq =0 (j €{1,2,3,4}) may be interpreted as a system of wave equation for the spatial components
A = Ay, where the temporal component Ay is determined in terms of (A, d; A), as follows:

Theorem 3.5 [Oh and Tataru 2017b, Theorem 9.1]. Let A; x =(Ao,A)eC:(I; HIXCQ) with (0; Ag,0:A) €

Ci(I; LZXTAlé)CQ) be a solution to (1-1) with energy E. Then its spatial components A = Ay satisfy an

equation of the form
O4A; = Pj[A,0x Al +2A719, 004, 34 A) + R (A), (3-12)
together with a compatibility condition
3¢ A, = DA(A) := Q(A, A) + DA3(A). (3-13)

Moreover, the temporal component Ay and its time derivative 0; Ao admit the expressions

Ao =Ao(A):= ATA, 0, A1+ 2071 Q(A,0,4) + AJ(A), (3-14)
9, Ao = DAg(A) := —2A"1Q(3,;A4,0;A) + DA} (A). (3-15)
Here P is the Leray projector, and Q is a symmetric> bilinear form with symbol
£ = Inl?
0N =5 o (3-16)
2161 +nl?)

30Observe here that the symbol of @ is odd, but this is combined with the antisymmetry of the Lie brackets appearing in the
bilinear form.
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Moreover, R;(t), DA3(1), Ag(t) and DAS(Z) are uniquely determined by (A, 0; A)(t) € TL?C, and are
Lipschitz envelope-preserving maps of order > 3 on the spaces

Ri(t): H' - H™!, (3-17)
DA3(t): H' - L2, (3-18)
A3@):H' - H', (3-19)
DA3(t): H' — L. (3-20)

Finally, on any interval I € R, R;, DA 3, A(3) and DAg are Lipschitz envelope-preserving maps of
order > 3 (with bounds independent of 1) on the spaces

Rj :St'[I]— L'L2 N L2H2[1], (3-21)
DA% Su'[l]— L'H' N L2H2[1], (3-22)
Ad:su'[I]— L'H2 N L2H2[1], (3-23)
DA :Sul[I] - L'H' N L2H2[1). (3-24)

All implicit constants depend on Q and &.

Next, we consider the dynamic Yang—Mills heat flow A; x(s) of A; x in the caloric gauge. For s > 0, we
have D Fop(s) = we # 0 in general. We expect the “heat-wave commutator” wy (called the Yang-Mills
tension field) to be concentrated primarily at frequency comparable to s~1/2_ Indeed, the following
theorem holds.

Theorem 3.6 [Oh and Tataru 2017b, Theorem 9.3]. Let A; x = (Ao, A)eC;({; HIXCQ) with (0; Ag,0:A) €
C:(I; szTAI‘(?)CQ) be a solution to (1-1) with energy . Let A; x(s) = A x(t, x, s) be the dynamic Yang—
Mills heat flow development of A; x in the caloric gauge. Then the spatial components A(s) = Ax(s) of
Ay x(s) satisfy an equation of the form

OagsyAj(s) = Pi[A(s), 0x A(s)] + 24719, Q (9% A(s), da A(5)) + R; (A(s))
+ Pjw2(3;A4,0;A,5) + Rj:5s(A), (3-25)

together with the compatibility condition
3*Ay(s) = DA(A(s)). (3-26)
Moreover, the temporal component Ay(s) and its time derivative 0; Ao (s) admit the expansions

Ao(s) = Ao(A(5)) + Ao;s(A) 1= Ao(A(s)) + AT wi(A, A, 5) + Ag.(A), (3-27)
3;Ag(s) = DA (A(s)) + DAg:5(A). (3-28)
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Here P, Q, R;, DA, Ao and DA are as before, and the wz are defined as

w3(A, B,s) =—2W(3; A4, AB,s), (3-29)
w3 (A, B.s) =—2W (8,A4.0;0; B —20x9;B;.s), (3-30)
where W (-, -,s) is a bilinear form with symbol
1
W(En.9) = =5 e R = e @), (3-31)
‘N

Moreover, Rj5(t), Ag;s (t) and DA o.5(t) are uniquely determined by (A, d; A)(t) € TLZCfor each s > 0,
and satisfy the following properties:

* Rj(t): H' — H™V is a Lipschitz map with output concentrated at frequency s~2. More precisely,
(1=sA)NRj.(r) : HY — 2781k g=1=81, (3-32)
. A(3);s (t): HY — H"' is a Lipschitz map with output concentrated at frequency s~V/2; i.e.,
(1—sA)NVAZ () : H' — 270k©) 101, (3-33)
e DAg(2): H' — L2 is a Lipschitz map with output concentrated at frequency s~V2 e,
(1—sA)NDAg(t): H' - 2758*k6& g=61, (3-34)

Finally, on any time interval I C R (with bounds independent of I), R; s, Ag. s and DA ;s satisfy the
following properties:

* Rjis :Str'[1]— LY L2NL2H~Y/2[I]is a Lipschitz map with output concentrated at frequency s ~/2; i.e.,

(1=sA)N Ry Stel[1] — 27 8% (L =81 o L2 =278y, (3-35)
. Ag;s Strl[f]— L! HzﬂL2H3/2[l] is a Lipschitz map with output concentrated at frequency s~V2 e,
(1—sA)N AG, : St [1] — 27k (L1 20 0 L2H2730[1). (3-36)

* DAgy: Str'[I] — L2HY2[I] is a Lipschitz map with output concentrated at frequency s~/2; i.e.,
(1—5sA)YN DA : Str![I] — 27 51k© 2 fra=u ). (3-37)

All implicit constants depend on Q and &.
Remark 3.7. Some notable features of Theorem 3.6 are as follows:

» Compared with the prior result, here we have additional contributions Ry.s, Ao;s and DAg;s as well
as the w terms. These have the downside that they depend on A and d; A at s = O rather than A(s) and
d; A(s). The redeeming feature is that these terms will not only be small due to the energy dispersion, but

also, critically, concentrated at frequency s~U2,

e The other change here is due to the inhomogeneous terms wg; these are matched in the Ay (s) and the
Ao(s) equations, and will interact in the trilinear analysis (see Proposition 4.29 below).

e For the new error terms here we do not need to worry about difference bounds; see Section 6 below.
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4. Summary of function spaces and estimates

In this section, we summarize the properties of the function spaces and the estimates needed to analyze
the hyperbolic Yang—Mills equation in the caloric gauge, as given by Theorems 3.5 and 3.6.

4A. Function spaces. The aim of this subsection is to give precise definitions of the fine functions spaces
used to analyze caloric Yang—Mills waves.

4A1. Frequency projections. We start with a brief discussion of various frequency projections. Let
mo : R — R be a smooth nonnegative even bump function supported on {x € R: |x| € (27!,22)} such
that {my = mo(-/2%)}xez is a partition of unity on R. For k € Z, recall that Py was defined as the
multiplier on R* with symbol Py (§) = my (|€|). Given j € Z and a sign &, we introduce the modulation
projections Q]jE and Q;, which are multipliers on R!*4 with symbols

OF (&) =m; e FIE),  Q;(x.§) =m;(lt| - €D

We also define Qf L Qf i O<j, Q> etc. in the obvious manner. To connect Q]j.E with Q;, we introduce

the sharp time-frequency cutoffs O, which are multipliers on R!*# with symbols

QE(1,€) = X(0.00) (£7).

Note that P Q*Q; = P Q5 for j <k.

For £ € —N, consider a collection of directions w € S C R*, which are maximally separated with
distance ~ 2% To each such an w, we associate a smooth cutoff function m{ supported on a cap of
radius ~ 2¢ centered at w, with the property that ) my, = 1. Let P/ be the multiplier on R* with

rio-($)

Given k' € Z and ' € —N, consider rectangular boxes Cy:(¢) of dimensions 2%" x (2%’

symbol

+Z/)3 (where
the 2¥’-side lies along the radial direction), which cover R*\ {|x| < 2¥'} and have finite overlap with
each other. Let m¢,, (¢ b a partition of unity adapted to {Cr(£))}, and we define the multiplier Pe, )

on R* with symbol
Pe,n(§) = me,, ) (6).

For convenience, when k’ = k, we choose the covering and the partition of unity so that Py, PP = Pr P 1)

We now discuss the boundedness properties of the frequency projections. For any k € Z, let P/ <k
denote one of the dyadic frequency projections { P, P }. Let QJ.D <j denote one of the modulation
projections QF, Qi: iz Q; or Q<. Let w be an angular sector of size ~ 2t (te—N),andCa rectangular
box of the form Cy/(¢') (k' € Z, £’ € —N). Then the following statements hold:

e The multipliers Py/<g, Pr/<x P;° and P are disposable.

* The multiplier P ;<x QJ.E/| y is disposable if j > k + O(1); see [Tao 2001, Lemma 3]. For general
J.k € Z, it is straightforward to check that Py QJ.E/' < has a kernel with mass O(24*—7)+),



254 SUNG-JIN OH AND DANIEL TATARU

e The multiplier Py/<x Qﬁ' <j is bounded on L? L? for any 1 < p < o0; see [Tao 2001, Lemma 4].
e The multiplier Pg/<x P/’ Qﬁﬂ. is disposable if j > k + 2£ 4+ O(1); see [Tao 2001, Lemma 6].

4A2. Function spaces on the whole space-time. Here, we define the global-in-time function spaces used
in this work. Unless otherwise stated, all spaces below are defined for functions on R!*#. We remark
that all of them are translation-invariant.

We first define the space X, ’b, equipped with the norm

2
. = 3 22 (Z(zbf 1P quuLsz)r)

k J
when 1 <r < o0o. As usual, we replace the £”-sum by the supremum in j when r = co. The spaces X il;
are defined similarly, with Q; replaced by Q]j.t.
We are now ready to introduce the function spaces in earnest, which are all defined in terms of
(semi-)normes.

Core nonlinearity norm N. We define
-1
N=L'L>4+ X2
This norm scales like L1 L2 We also define Noo = L1 L2 + X>7'/?. Note that N = N4 N N—. Moreover,
we have the embeddings
0,—1 0,—1 01 0,—1
X, CENCXoo * X, "SENCX .
The inclusions on the left are obvious, whereas the inclusions on the right follow from Bernstein in time.
We omit the proofs.
Core solution norm S. We define

2 2 Osl an, s
eld = luld,.  Sk=S{"NXee? NSNS,
k

where S ]iq is related to square function bounds,
3
—3k
lullsga =2710% lull 10/, 2
and S,i” and S an are essentially as in [Krieger et al. 2015, equations (6)—(8)]:
_(p_1_4
lulse = sup  27CT5T DR Lo,
(P.@):5+55<3

2 _ )] 2
||u||52"g = EUP E ||P( Q<k+2€u||5;(v(z):
<0

—2k -3k +
Il ) = Nl + 272 ulfop +27 3 _I10Ful}, b
+
+ sup > (n Peyull g + 270 Py cerulye

k'<k, /<0 Cpr (€

k+24<k’+0/ <k+£ + 2—2k/—k2—é/ || PCk/ (e/)u ||22Lm

43K +E) ZII QiPck/(ﬁ’)””;Wj(E))'
+
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Here, the NE and P W;F (€) are the null frame spaces [Tataru 2001; Tao 2001], defined by

14
u ., = inf u® ||, 2 do’,
| ”PW“’ © u=/u®’ /I.a)—w’lszf I ”Liw’L(()iw/)J-

lullve = sup] W“’””Lc%"Li,g

where the L norm is with respect to the variable taﬂf =t+w-x, the L; | norm is defined on each
{taj)E = const}, and ¥, denotes the tangential derivatives to {taj)E = const}.

In the last two lines of the definition of S’ ({), the restrictions kK <k, <0andk’+0 <k+¢
ensure that rectangular boxes of the form Ci/(¢) fit in the frequency support of Pp. The restriction
k 4+ 2 <k’ + €' is imposed by the main parametrix estimate (see Section 10H or [Krieger et al. 2015,
Section 11]), to ensure square-summability in Cy/ (£').

The null frame spaces in S’({) allow one to exploit transversality in frequency space, and play
an important role in the proof of the trilinear null form estimate; see [Krieger et al. 2015, equations
(136)—(138)] and Proposition 8.18 below. On the other hand, the L?L*®-norm for Pck/(e')u allows us to
gain the dimensions of Ci/({’).

Remark 4.1. For the reader who is familiar with the function space framework in [Krieger et al. 2015],
we point out that our S”(£) is slightly stronger than that in [loc. cit.]. More precisely, instead of
27K =Dk~ P (pryull 2o as in our definition, it is 27K ~/2K|[ P | pnull;2;  in [loc. cit.].
However, we note that the extra factor 2~ (1/2¢ ig actually present in the main parametrix estimate in
[loc. cit., Subsection 11.3].

Remark 4.2. The square function norm S;:q is new here in the structure of the S norm. It plays no
role in the study of the solutions for the hyperbolic Yang—Mills equation in the caloric gauge, i.e., in
Theorems 1.13 and 1.16. Instead, it is only needed in order to justify the transition to the temporal gauge
in Theorem 1.18.

This norm scales like L°° L2 Moreover, it obeys the embeddings
Xt cs,. s cxXe.
For k, k" € 7 satisfying k’ < k and ¢’ < —5, we define
112, (e, oy = 273Kl 6 + 272K F278 2,

+ s (||Q<,~u||iooLz+2—2"||Q<,-u||%VE
Jilj—(k+20)|<5 A+ -
+ 2~ U o .
10750

The virtue of this norm is that it is square-summable in boxes of the form Cy/(¢'):

Lemma 4.3. For any k,k’, ¢’ such that k' < k and {' < 0, we have

Do Pl ey S I3, (4-1)
Cce{Crr ()}
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Proof. The desired square-summability estimates for the L>°L?, NE and P W} components follow
immediately from the definition of S an D Si. For the L?L® and L? L components, we write

U= Q iy + Qspry20uU.

For the former we use S an, and for the latter we simply note that, by Bernstein,

~3k —k'—Lkp—L1v
2760 Qzkryae Peyyttllipzpe +277 7252720 | Qo pr 20 Poy eyt 2o < 1 Pey eyt liyo.1/2,
which is clearly square-summable. O

Sharp solution norm S¥. We define
lull gz =27 (I Voo 2 + 1Ot w),

Il 53, = lullzoorz + 1D F [DDull,.

both of which scale like L°° L2 These norms are used in the parametrix construction in Section 9.

Remark 4.4. Again for the reader familiar with [Krieger et al. 2015], we note that our definition of S; f
differs from that in [loc. cit.] by a factor of 2k (in [loc. cit.], S # scales like L H! ).

Scattering (or controlling) norm S'. Given any o € R, we define S% = £257, i.e.,

lulfe =D I Peullss.  lullsg =27 Vulls +10ul 2 5-1/2). (4-2)

This norm scales like L H. The norm S will be the main scattering (or controlling) norm, in the sense
that finiteness of this norm for a caloric Yang—Mills wave would imply finer properties of the solution
itself and those nearby (see Theorem 5.1 below).

X7 b.p -type norms. To close the estimates for caloric Yang—Mills waves, we need norms which glve

additional control* off the characteristic cone (i.e., “high” modulation regime). We use an L? LY
generalization of the usual L?1.2-based X% -norm, defined as follows: forg,b € R, 1 < p,r < o0, let

1 1
2\ \r
Il =2 (22 (ZnPkQ, Lot ) ). @3)
J

where p’ p% is the dual Lebesgue exponent of p. The cases p = oo and r = oo are defined in

the obvious manner. We also define the dyadic norm (X :b.p )k by replacing Q; by Qi in the above
definition.
When p = 2, by orthogonality we have

1
lggoey, =25 ( L@ 1@l )

J

“#In particular, with £!-summability in dyadic frequencies.
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Analogous identities hold for X i’]i’z. To be consistent with the usual notation, we will often omit the

exponents p and r when they are equal to 2, i.e., XZ¥ = X302 xob = Xg’b’z, Xi’l; = Xi’l:’z and
Xa,b _ Xo,b,z ’ ’

+ T T2 -

Before we introduce the specific norms we use, for logical clarity, we first fix the parameters that will
be used. We introduce bg, by and pg, which are smaller than but close to %, % and oo, respectively. More
precisely, we fix

1 1 1
bO_Z_SO’ b1—§—1050, 1—%—580,
so that
1 1 1 1 1
0< 5 —bo< 7. 2(Z—b0)<1—%<ﬁ, (4-4)
1 1 1
Z<b1<§—(l—%). (4-5)
We define

17 laz) = 1Q<k+c flly-—s/4-ro.-3r4+00.1.
”“”Zl = |||:|u|||:|zl = || Q <k4cully,~1/4-1g.1/4410.1.
k k X,

Note that the Z ]1 -norm scales like L% H 1. As in [Krieger et al. 2015; Krieger and Tataru 2017], this norm
is used as an auxiliary device to control the bulk of nonlinearities (i.e., the part where the secondary null

structure is not necessary) when reiterating the Yang—Mills equations; see the proofs of Propositions 4.23—
4.29 in Section 8.

Remark 4.5. The Z!-norm used in [Krieger et al. 2015] corresponds to the case by = 0. Therefore, our
ZY-norm is weaker than the Z!-norm in [loc. cit.]. This modification is made to handle the contribution
of 071 P[A%, 0y A] in the reiteration procedure; see Proposition 4.22.

Next, we also define

||f||(\:|2},0)k = ||Q<k+Cf||X%273/p0+(1/47;90)90,71/27(1/47b0>90,p0,

where 6y = 2(% — %), as well as the intermediate norm

||f||(|:|211g0)k = ”Q<k+Cf||X15/4—3/170+(1/4—b0)90.—1/4—(1/4—b0)00,p0.

These norms scale like L! L2 Clearly, (DZ},O)k - (DZ},O)k. Given any caloric Yang—Mills wave A
with a finite S'-norm, we will put OPA in ¢!0Z} and OPA € £'0Z} : see Proposition 5.4.
Note that the following embeddings hold:

PeQ;L'L* c24U-POz) (4-6)
_1 ~
X 2NOZE € (OZp ) € (OZ} ) (4-7)

Estimate (4-6) follows from Bernstein, whereas the first embedding in (4-7) follows by a simple interpo-
lation argument. We omit the straightforward proofs.
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Finally, as in [Krieger and Tataru 2017], we also need to use the function space
EIX—%-i-b],—b]

which also scales like L' L2 Given any caloric Yang—Mills wave A with a finite S !-norm, we will be able
to place OPA in {1 X —1/2+b1,=b1_ This bound, in turn, is used crucially in the parametrix construction.

High-modulation norms X' and X! for 1-forms. In our analysis below, we need to use different high-
modulation norms for the Leray projection PA than for the general components of a caloric Yang—Mills
wave. Hence it is convenient to define norms for 1-forms with this distinction built in.

Let A and G be spatial 1-forms on R! 4. We define

”G”DX}( = ||G||L2H—1/2 + ||G||L9/51.'1—4/9 + ||PG||(|:|ZII,0),(-
For any o € R, we define
IGllaxg =2 IGlgxr.  I4llxg = 184]oxg.
Similarly, we define
||G|||:|5(‘11 =Gl 2512+ Gl o5 g—as0 + ||PG||(|:|ZII,O),€’

as well as X ¢ and X % Given any caloric Yang-Mills wave A with a finite S L_norm, we will place (14
successively in £1 OX! and 04 € 00X see Proposition 5.4.
We have the embeddings

Pe(L'LANL2H™2) € (OX ') € @K .
Since L'L? C N, it follows that
1Glvnoxt SNGllpiz2nz28-1/2 (4-8)
Strengthened solution norm S. Putting together S and X!, for a 1-form A on R!*#, we define
|4llsy = I 4llsg + 104l o
Core elliptic norm Y. We return to functions ¥ on R!'T4. We define

lully, = lull 212 + ||u||LpOW2—3/P0~P6’
where po was fixed in (4-4) above. This norm scales like L™ L2

Main elliptic norm Y 1. For o € R, we define

2 2 k —k
lulyo = ZIIPkullylg, lullyg =27 (lully, + 275 100ull 2 g1/2)-
k

This norm scales like L% H°. We will put the elliptic components Ag and P14 = A=19,8¢4, of a
caloric Yang-Mills wave in Y 1.
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4A3. Interval localization and extension. So far, the function spaces have been defined over the whole
space-time R!*4. In our analysis, we also need to consider localization of these spaces on finite time
intervals. We use the same set-up as [Oh and Tataru 2018; Krieger and Tataru 2017].

For most of our function spaces (with the important exceptions of Z ;70’ 21170’ X land X 1. see below),

we take a simple route and define the interval-localized counterparts by restriction. In particular, given a
time interval I C R, we define

u = inf
I ”SU[I] HeSo u=ii |

I

lilse, lullspy=_ inf  lills, [ flwgg= . inf [l 4-9)
neSwu=uls feN:f=f1I1

An important technical question then is that of finding a common extension procedure outside / which
preserves these norms. The following proposition provides an answer.

Proposition 4.6. Let I be a time interval.

(1) Let x1 be the characteristic function of 1. Then we have the bounds

Ixrulls S lulls. lxr fliv <07 llw- (4-10)

For a fixed function f on RY*4, the norms || x1 f | N and | /| w1 are also continuous as a function
of the endpoints of I. We also have the linear estimates

IVallsgr) <NVu©Ollz2 + 10wl vz, (4-11)
el gy SUVHOL2 + 1500l g2 12 (4-12)

(2) Consider any partition I =\, Ix. Then the N and L2H~Y2 gre interval square divisible, i.e.,
DA g S W D1 v S U2 oy (4-13)
k k
and the S and S are interval square summable, i.e.,
el < el Muldag S el (4-14)
k k

For a proof, we refer to [Oh and Tataru 2018, Proposition 3.3].

Remark 4.7. As a consequence of part (1), up to equivalent norms, we can replace the arbitrary extension
in (4-9) by the zero extension in the case of S and N, and by the homogeneous waves with (¢, d;¢) at
each endpoint as data outside / in the case of S.

The elliptic norms Y and Y ! only involve spatial multipliers and norms of the form L? L4, so their
interval-localization Y [/] and Y ![/] are obviously defined (either by restriction, or using the L? L4[I]-
norm; both are equivalent). In particular, in the case of Y, observe that

lullyry = lxrully <luly.

so the zero extension can be used.
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On the other hand, given a function u on I, we directly define the ||u||(Z]170)k[1] (resp. ||u ”(Zp )]1([1]) to

0
be ||ue’“||(z})0)k[1] (resp. ||ue’“||(zp0)]1<[1]), l)vhere u
waves. Equivalently, for (DZ},O)k and (O Z},O)k, we define

et is the extension of u outside / by homogeneous

”f”(DZ},O)k[I] = ”XIf”(DZ}JO)k’ ||f||(|:|§})0)k[1] = ”XIf”(DZ;lm)k'
Accordingly, we define

”G”DX}C[I] = ||G||L21.'171/2[1] + ||G||L9/51.'1—4/9[1] + ”XIPG”(DZ}DO),C’ ”A”X}C[I] = ”DA”DX}C[I]’

and similarly for OX '[/] and X '[/].

The advantage of this definition is clear: We may thus use a common extension procedure (namely,
by homogeneous waves) for S! and X!. The price we pay is that in estimating the IZIZII,O— and the
DZII,O -norms, we need to carefully absorb the sharp time cutoff ;.

4A4. Sources of smallness: divisibility, energy dispersion and short time interval. In this work, we rely
on several sources of smallness for analysis of caloric Yang—Mills waves.

One important source of smallness is divisibility, which refers to the property of a norm on an
interval that it can be made arbitrarily small by splitting the interval into a controlled number of pieces.
Unfortunately, our main function space S![/] is far from satisfying such a property (see, however,
Theorem 5.1(6) below), which causes considerable difficulty. Our workaround, as in [Oh and Tataru
2018], is to utilize a weaker yet divisible norm

_s
lullpsipry = NP7 Vull 2oy + I Vullgeorsy + 18wl 2 g—1/247- (4-15)
Another important source of smallness is energy dispersion:

Definition 4.8. Given any m € Z, we define the energy dispersion below scale 2~ (or above frequency 2")
of u of orders 0 and 1 to be, respectively,

el = sup 272"+ 272K Pl oo poopy. (4-16)
kez
ellgpr g7y := sup 2~ 2"+ 272KV Pra]| oo poopy. (4-17)
- kez
The quantity || - [|gp..,,[7] (resp. | - ||ED1> o 77) 18 used at the level of the curvature F' (resp. the connec-

tion A). As we work mostly at the level of the connection, unless stated otherwise, by energy dispersion
we usually refer to the order-1 case.

Clearly, EDlzm [1] fails to be useful at frequencies below O(2™). In this regime, we exploit instead the
length || of the time interval as a source of smallness. Due to the scaling property of [J, we must require
2™ |1 ] to be sufficiently small. To conveniently pack together the previous two concepts, we introduce the
notion of an (¢, M )-energy-dispersed function on an interval.

Definition 4.9 ((e, M )-energy-dispersed function on an interval). Let / be a time interval, and let
u € S[I]. We will say that the pair (u, /) is (g, M )-energy-dispersed if there exists some m € Z and
M > 0 such that the following properties hold:
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e (S'-norm bound)

lullsiry <M. (4-18)

e (small energy dispersion)
lullgpy,, iy < M. (4-19)

¢ (high-modulation bound)
||IZIu||L2H_1/2[1] <eM. (4-20)

e (short time interval) |/ | < &2™"™.
Observe (by interpolation) that if (u, 1) is (g, M )-energy-dispersed, then

Sl}ip”Pku”Strl[l] <cshm. (4-21)

Finally, we state a proposition showing how the norms DS![/] and EDIZm [/] behave under the
extension procedure described above. Given an interval I/, we denote by )(]I‘ a generalized cutoff function
adapted to the scale 27k

x5(0) = (1 + 2k dist(e, 1))V, (4-22)
where N is a sufficiently large number. Let us recall [Oh and Tataru 2018, Proposition 3.4]:>

Proposition 4.10. Letk € Z, k > 0 and I be a time interval such that |I| > 27%%. Consider a function
uy on I localized at frequency 2% and denote by u?’“ its extension outside I as homogeneous waves. Then

we have

— 1 1 4
27K VS e Sv 265 (gl + 2270 |0ug 21200, (4-23)
272K X VUS| poo oo < 272K | Vg | Loo Looprs (4-24)

where (q, 1) is any pair of admissible Strichartz exponents on R1 4,

Remark 4.11. Since 27¥] X]I‘ V] =27%V X];) is simply multiplication by another generalized cutoff
function adapted to the frequency scale 2K, the conclusions of Proposition 4.10 also hold with )(’I‘ 27k Vugt
replaced by 27%V/( X]IC u$*) on the left-hand sides.

4B. Estimates for quadratic nonlinearities. Here we state estimates for the quadratic nonlinearities in
Theorems 3.5 and 3.6. All estimates stated here are proved in Section 8C.

Throughout this and the next subsections, we will denote by A a g-valued spatial 1-form A = A; dx’
on I x R* for some time interval /. To denote a g-valued space-time 1-form, we use the notation
Afx = Aq dx® We will use B (resp. By x) to denote® another g-valued spatial (resp. space-time) 1-form
on I x R* Unless otherwise stated, all frequency envelopes will be assumed to be §3-admissible.

3To be pedantic, [Oh and Tataru 2018, Proposition 3.4] only corresponds to the case k¥ = 0. However, the required modification
of the proof is straightforward.

®Note that this convention is different from [Oh and Tataru 2017b] and Section 3, where B was reserved for caloric
gauge-linearized Yang—Mills heat flows.
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We begin with the quadratic nonlinearities in the equations for Ag, d; A9 and 3¢ A4,. We introduce the
notation

MG(A, B) =[Ag. 0, BY], (4-25)
DME(A, B) = —20(0; 4,9, B). (4-26)

These are the main quadratic nonlinearities in the A Ag and Ad; Ag equations, respectively. The estimates
that we need for these nonlinearities are as follows.

Proposition 4.12. We have the fixed-time bounds

DI MG(A. BYOl 2, < 1AW g 19 BO)] 2 (4-27)
DI DMG(A BY D)2 < 118:ADNI218:BO) 2. (4-28)

and the space-time bounds
DI MG By, i1y S WAllsp il Bllsyy. (4-29)

11D MEAL B 20y + IIDI2DMEAL B g1z S WAl 1Bl iy (4-30)
Moreover, for any k > 0, the nonlinearity M?3 o(A, B) admits the splitting
MG(A. B) = MGz (A, B) + Mo (A, B),
where the small part obeys the improved bound
1D ME2 (A B)llyutn) S 27 N Allga ) 1Bl 5111y (4-31)
and the large part is bounded by divisible norms of A and B:
|||D|_1M0 1arge(A, B)”ch[l] N 2CK||A||Dsg[1]”B||DS611[1]- (4-32)

Finally, if either
”A”SC‘ =1 and (B, 1) is (e, M)-energy-dispersed, or

”B”SL‘. =1 and (A, 1) is (e, M)-energy-dispersed,

then we have

I1DIT*MB(A, B)lly, iy S €52 M, (4-33)
|||D|_2DM (A4, B)||L2H‘/2[1] 58 2M. (4-34)

The remaining quadratic nonlinearities in the equations for Ag and 3¢ 4, involve Q, and they obey
simpler estimates.

Proposition 4.13. For o = 0 or 1, we have the fixed-time bound

D177 Q (A, 97 B)Y()] 2, < 1AW g2 1107 Bl g1—o (4-35)
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and the space-time bounds

|| |D|_0Q(A7 a?B)||ng(}§2[1] < ”A”Str}.[l] ||B||Str‘11[1]7

11DI7 Q(A. 8 B)lly i + 1D17 1 @(A. 62 Bl 22511y < 14l psa 1Bl sy 1

Finally, if either
<1 an 1) is (e, M )-energy-dispersed, or
A sl 1 d (B, 1)i M di d
<1 an , 1) is (e, M)-energy-dispersed,
B sl 1 d (A 1)i M gy-dispersed
then
I1DI77 Q(A.87 B)lly, ) < 6™ M.

Also for the quadratic part Ag of Ap, given by

AZ(A, A) = ATV([4,0,4]) +20(4, 9, 4),

we have the following additional property, which will be used in the proof of Theorem 1.18:

Proposition 4.14. For the quadratic form Ag we have
IIDPAGA Bl 1210y S IV All s IV B llgsa-
For the quadratic nonlinearity in the [J4 A; equation, we introduce the notation

P;M?(A, B) = P;[Ay, 0, BY],
P M?(A,B) =2A7"0,Q (3% 4, 05 A),
so that (3-12) becomes

Oadj = PjM(A, A)+ P M(A, A) + R; (A, 9, A).
Proposition 4.15. We have the fixed-time bounds
IPAM(A, BYOl s S IAWD 32 1BO] 1.
|PMP(4, B)Oll -1 S IVADIlL2IVBO) 2

and space-time bounds
| PMP (A B)lwnx et < 1405271 Bl i1,
IPEMP (A, B) | (woox yean) S 14lls il Bllsy -

In particular, the L2H Y2 norms are bounded by the Str!-norms of A and B:
IPAMCA B2 12y S Il ) Bl 1y

IPEAM A B 2oy 5 WA st 1B sy oy

263

(4-36)
(4-37)

(4-38)

(4-39)

(4-40)
(4-41)

(4-42)
(4-43)

(4-44)
(4-45)
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Moreover, for any k > 0, the terms Pj M?(A, B) and P/-J‘MZ(A, B) admit the splittings

PjMZ(A, B) = small(A B) + PJ Mﬁ‘ée(A B)
P M2 (A.B) = PJ'M (4, B) + Pj-Mj% (A, B),

smal

so that the N -norms of the small parts obey the improved bounds

IPME2(A. BNy S 2724 Allgipp 1 B sy
| P MG (A B) .o <272 Al 51 1 Bl g1y

and those of the large parts are bounded by divisible norms of A and B:

| P Mo (A BN, o111 < 2“1 Al sy 1Bl psi -
| P Migee(A B Ineat) < 29I A1 psp | Bllpsy iz
Finally, if either
||A||§g[1] <1 and (B,I)is (e, M)-energy-dispersed, or
||B||§é[1] <1 and (A,I)is (e, M)-energy-dispersed,

then

2 8
| PM (A’B)”(NHL2H—1/2)C[I] SeM,
”PLMZ(A,B)||(NQL2H—1/2)C[]] < e2M.

(4-46)
(4-47)

(4-48)
(4-49)

(4-50)
(4-51)

We end this subsection with bilinear estimates for wg and w2, which arise in the equation for a dynamic

Yang-Mills heat flow of a caloric Yang—Mills wave.

Proposition 4.16. For any s > 0, we have the fixed-time bound
I1DI7! Prwg(A. B.s)(1)2 < (2%5) 71027257 2 eiedie|9: A0 12 BO g
and the space-time bounds

11017 Pew (A, B.s)l| 2 gz < 27%5) 710@ 7257 2 il Al (11| B s 11
11017 Prewg (4. B.o) v < (2%5) 710272557 "2 epdie | All sy | Bll s -

Moreover, if (B, I) is (¢, M )-energy-dispersed, then
IIDI™! Prwd(A. B. s)|ly(ry < 6%2(2%%s) 7100272 ™) "2 || All g1 M.
Proposition 4.17. For any s > 0, we have the fixed-time bound

| P Pw3 (A, B.s)(0)] -1 < (2%5) 710272 ™) ™R erdi [VAD I 2 IVBO) 2

(4-52)

(4-53)
(4-54)

(4-55)

(4-56)
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and the space-time bounds
||PkPwi(A, B, S)HLZH—I/Z[]]
< (@) 700 T R adi (VA VP 40,2 172y, i | Bllsit e (4-57)
| Px Pw3 (A, B.s) ||y nox (1]
< (2%K) 71027 2 di (A P sy 1 Bls . (4-58)
Moreover, if (B, 1) is (¢, M )-energy-dispersed, then
||PkPw)2c(Av B, S)HNmLszl/z[]]
< (%) TR 2 (R N Allga iy + IV P ANl g2 M. (4-59)
4C. Estimates for the covariant wave operator. We now state estimates concerning the covariant wave
operator [14. All estimates stated here without proofs are proved in Section 8C, with the exceptions of

Theorem 4.24 and Proposition 4.25, which are proved in Section 9.
We begin by expanding [14 B to

O4B =0B +2[Ay,0*B] + [0* Ay, B] + [A%,[Ay, B]].
We have the following simple fixed-time estimates for (4 — .

Proposition 4.18. Forany «, B8,y € {0, 1,..., 4}, we have the fixed-time bounds

lAa. 8 BI®) ] -1 < (A0, O g2 IVBO 2. (4-60)
110 A BYO | 53 < (IAD g + 13 Ao L) IBO) 1. (4-61)
NAD JAP BN -y < 145" ADYON gl (A5 AP O | B g (4-62)
and the space-time bounds
1A 8Bl 2 =172y S 1 Allsut gy | Bl 1) (4-63)
1140, 00 BTl L2 =172 T IV Aoll 2 g2y I Bllswt 111 (4-64)
100 Aa. Blll 2 -1720) S NV A0, VPEA | 2121 B et 1 (4-65)

1
1AL TAP BNO 2120y S NV AL VADY O 12 1250011
2
X< (VAP VADY D) L2 1 /2,500 |1 B st ) (4-66)
In order to proceed, we recall the notation Py A = (PA), for a space-time 1-form A; x:

PiA,, a=jefl, .. . 4,

P,A =
* Ao, o =0.

We also write Py A = (PLA)y = Ay — Py A.
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Given a parameter « € N, we furthermore decompose 2[Ay, 3% B] so that

O4B = OB + 2[4y, 9*B] +Rem) B

(4-67)
= OB + Diff}s , B + Diff’ , , B +Rem’y”> B + Rem} B,
where”’

Diff 4 = Y " 2[Pj_ PuA. 9" P B), (4-68)

k
Diff§ | , =Y " 2[Pj_ Py A.0* P B]. (4-69)

k
Rem’y® = "2[Psi_ Aa. 0* P B], (4-70)
Rem} B = [g"‘Aa, B] + [A%,[Ag. B]]. (4-71)

We now turn to the bounds for each part of the decomposition (4-67). For a fixed B € S![I], we
introduce the nonlinear maps

Rem*(A4)B = —[DAo(A), B] + [DA(A4), B] - [Ao(4), [A0(4), B]] + 4", [4¢, B]], (4-72)

Rem; (4) B = —[DAg;5(4), B] - [Ao;s(4), [Ao;s(A), B]], (4-73)

defined for spatial connections A on [ such that (A4, d; A)(¢) € TL?C for each fixed time ¢ € I. In view
of Theorems 3.5 and 3.6, for a caloric Yang—Mills wave A we have

RemiB = Rem3 (A)B’
Rem},) B = Rem’(A(s)) B + Rem(A4)B.
The nonlinear maps Rem>(A) B and Remg’ (A) B are well-behaved:

Proposition 4.19. Suppose that A(t) € Cg for every t € 1. Then the following properties hold with bounds
depending on Q, but otherwise independent of I :

o Let ¢ and d be (=8, S)-frequency envelopes for A and B in Str'[I], respectively. Then
8 8 8
| Pe (Rem® (A) B)| 1 212 12017 Sl Al (C/[c M2 4 ckcI[c 2]dl£ 2] (4-74)

o Forafixed A € Str'[I], Rem3(A)B is linear in B. On the other hand, for a fixed B with || B lserpry < 1
Rem3(-)B : Str!'[I]— L'L? N L2H~Y/2[]] is Lipschitz envelope-preserving.
o For a fixed A € Str'[I], Remg’ (A)B is linear in B. On the other hand, for a fixed B € S'[I] with
||B||5trl[1] <1, Remg(A)B is a Lipschitz map

Rem3(A)B : Str![[] — L' L2 N L2H 2 []] (4-75)

7 Although the definition depends on the whole space-time connection At x, we deviate from our convention and simply write
seek serk K,2 . .
Diff PA> Diff Pl Rem 7 etc. to avoid cluttered notation.
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with output concentrated at frequency s~12)

(1—sA)NRem3(4) B : Str! [I] — 272K LV =02 [ 2 g=3702 ), (4-76)
Next, we consider the term

2[Aq, 8% B] = Diff , B + Diff*

pLaB+ Remfl’zB.

We begin with Remfl’zB, which obeys analogous bounds as PM?(A, B) and P-M?(A, B) (see
Proposition 4.15).

Proposition 4.20. For any « > 0, the term Remfl’zB obeys the bound
2
||Remf1 B||(Nm|:|;(1)cd[1] < 2CK(||A||Sg [1] + ||(PJ'A» AO)”YCl [1])||B||s£11[1]- 4-77)

-1/2

In particular, its L?H -norm is bounded by

IRemy* Bll 2 =127 S (Al sy + 1V PLA Y A0) 2 12y, (1) 1B st 17 (4-78)
Furthermore, Remfl’zB admits the splitting
Remﬁ’zB = Remﬁ’j an B Remﬁ’ja o B
so that the N -norm of the small part obeys the improved bound
IRem§ 2 i BllNeat S 27 I Al 51 Bllsy . (4-79)
and that of the large part is bounded by a divisible norm of (Ao, A):
IRem’y?, o Bllnea111 S 25 (1Al psy 1y + IV PLEA VA | 12y (I Bllsr g (4-80)

Finally, if (B, I) is (¢, M )-energy-dispersed, then

2
IRemy* Bl e r2 172,111

S Q7K 429462 | A g M+ 2K [(VPHA, VA 2 1y M- (4-81)

It remains to consider the paradifferential terms. The term Diff f, 1 4B can be handled using the
following estimate, in combination with (3-22) and Proposition 4.12:

Proposition 4.21. For any « > 0, we have
||Diff§u_AB||(X—1/2+b1~—b1mjl(l)cd[]] < ||PJ‘A||Y01 [1]||B||sal,[1]- (4-82)

Moreover, we have
IDiE, 4 Bllziz2 51 S 1P Al ceepnlBllsi. (4-83)

Jr =( Z ak’)ek-

k'<k—«

where



268 SUNG-JIN OH AND DANIEL TATARU

The only remaining term is the paradifferential term Diff} ; B. We first state the high-modulation
bounds.
Proposition 4.22. For any « > 0, consider the splitting Diffp , = Diffy + Diffp _,, where

Diff§ B =—) 2[P_t_cAo.d;PxB]. Diffy ,B = 2[Pj_,PyA. 0" PB].
k k

For Difty, B, we have the bound

IDIEES, Bl 17201~ nrx 1egr) S 1Aollya gy Bll sy (4-84)

On the other hand, for Diffp_4 B, we have the bounds

||Diff;xAB||(|j)?l)cd[1] ~ ||Ax||s(1[1]||B||S;[1]7 (4-85)
IDiffp aBlloxheatn) S 14x (51020, Bllsy i (4-86)
||Diff11<>xAB||(X—1/2+b1-—b1)c.d[1] < ||Ax||(Sln;(1)C[I]||B||S;[1]- (4-87)

Next, we consider the N N L2H /2 norm of Diff pAB. The contribution of each Littlewood—Paley
projection Py, PA is perturbative, as the following proposition states:

Proposition 4.23. Let A; x be a caloric Yang—Mills wave on an interval I obeying

Al <M. (4-88)

Then for any k > 0 and ko € Z, we have
||DiffI}CJkOPAB||(NQL2H—1/2)d[1] <M ”B”Si[l]' (4-89)

However, we cannot sum up in ko. The proper way to handle Diff 5 , is not to regard it as a perturbative
nonlinearity, but rather as a part of the underlying linear operator. Indeed, for the operator O + Diff 4,
we have the following well-posedness result:

Theorem 4.24. Let A; x be a caloric Yang—Mills wave on an interval I obeying (4-88). Consider the
following initial value problem on I x R*:

OB + Diff B = G,

4-90
(B.3:B)(to) = (Bo. By). (4-50)

for some g-valued spatial 1-form G € N N L2H~Y2[I], (By, B1) € H' x L? and 1ty € I.

Then for k > k1 (M), where k1 (M) > 1 is some function independent of A; x, there exists a unique
solution B € S1[I] to (4-90). Moreover, for any admissible frequency envelope c, the solution obeys the
bound

1Blls2 0y <a 1Bo. Bl g2y, + 16l wazz -2y, 117 (4-91)

As a quick corollary of Propositions 4.19—4.20 and Theorem 4.24, we obtain well-posedness of the
initial value problem associated to [14; see Theorem 5.1(1) below.
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Theorem 4.24 is proved in Sections 9, 10 and 11. The main ingredient for the proof is construction of
a parametrix for [J 4 Diff ; by renormalization with a pseudodifferential gauge transformation; for a
more detailed discussion, see Section 9.

The paradifferential wave equation (4-90) leads to the following weak divisibility property of the S
norm, which will later play an important role in the energy induction argument.

Proposition 4.25. Let A; x be a caloric Yang—Mills wave on an interval I which obeys (4-88) for some
M > 0. Let B € S[I] be a solution to the paradifferential wave equation (4-90) with the source
G € N N L2H~Y2[[], which obeys the bound

sup[(B,9;B)(1)||l2 < E (4-92)

tel

for some E > 0. Then there exists a partition I =_J;c; I; such that

IBllsiz,) SE 1 fori €I, (4-93)
where

<
#L SEM.IBlg1 1G] yarz —1/20 |

The proof of this proposition also involves the parametrix construction (see Sections 9, 10 and 11), as
well as Proposition 4.23.

We now state additional estimates satisfied by Diffp ,, which are needed to analyze the difference
of two solutions (or even approximate solutions). For this purpose, it is necessary to exploit the so-
called secondary null structure of the Yang—Mills equation, which becomes available after reiterating the
equations for PA.

We begin with simple bilinear estimates, which allow us to peel off the nonessential parts (in particular,
the contribution of the cubic and higher-order nonlinearities) of Ag and PA.

Proposition 4.26. We have
DIt Bllyez2 -1y, (1 S 1ol z1 goerzz vy, 1B lsp - (4-94)
||Difff>XAB||(NanH71/z)f[1] < ([PA[tolll (15 r2y, T IOPAl L 2Bl g2y (4-95)

where

Jr =( > ak’)ek-

k’'<k—«k

The contribution of the quadratic nonlinearities M(Z) and M? in the equations for A¢ and Ay, respec-
tively, cannot be treated separately. This is precisely where we exploit the secondary null structure, which
only manifests itself after combining the contribution of these nonlinearities in Diff} ,.

Proposition 4.27. Let
Ado=[BDE 9, B, (4-96)
OPA=P[BDL 3, BP),  PAlrg] =0, (4-97)
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where B B@ ¢ SY[[]. Then we have

IDitES 4 Bl wnz2 12,01 S 1BP s BP sy Bllsapry. (4-98)

where

Jr =( Z Ck’dk’)ek-

k'<k—k
Next, we turn to the contribution of terms of the form [A, 0* A] in the equation for Py A. The frequency
envelope bound for this term is slightly involved, because it does not obey a good N -norm estimate.

Proposition 4.28. Let Ag = 0 and

N
OP4; =Y P[BID.9*BIP).  PAl] =0, (4-99)
n=1
where
1
18" Olgs, i1y +1Bg ™ PEB" D)llys 1y < 1 1B @ g1 =< 1. (4-100)
Assume furthermore that
[PAllgip=1. lBllgiy=1 (4-101)
Then we have
”Diff}c’xAB”(NmLZH—l/Z)f[I] <, (4-102)

where
N
fre = ( Z (agr + Z c,’c’/d,’c',))ek.
k'<k—k n=1

Next, we state a trilinear estimate for Diff  ; in the presence of wi which is analogous to Proposition 4.27.
This is needed for analyzing the dynamic Yang—Mills heat flow of a caloric Yang-Mills wave.

Proposition 4.29. Let
Ado=w3(BW, B ), (4-103)

OPA = Pw2(BW,B@ s5), PA[tg] =0, (4-104)
where BM e S1[11, PLBMW e Y1[I] and B® e S[I]. Then we have

IDit5 4 Bllwnz2r-172), 11 Sz B sipy + 1P BWyap B st Bllspy - (4-105)

where

£ =( > (szzk’)—“’(s—12—2k’)—52ck,dk,)ek.

k’'<k—«k

Finally, we end this subsection with auxiliary estimates for Diffp ,, which are needed to justify
approximate linear energy conservation for the paradifferential wave equation.
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Proposition 4.30. Let « > 10. We have
DI (. Diff 41B lIneg <272 (1P Al 30y + 1D Aol 2 oI By (4-106)
Moreover, consider the L?-adjoint of Diffp 4, which is given by

(Diffp,)*B = Y Pxd*[PoyA<k—c. Bl.

k
Then we have

|(DifF§ 4)* B = it 4 By, 1) S 2 (1PAcl 307y + 1 DAoll 2 g oI Bllsr g (4-107)

5. Structure of caloric Yang—Mills waves

In this section, we use the results stated in Section 4 to study properties of subthreshold caloric Yang—Mills
waves satisfying an a priori S'-norm bound on an interval.

5A. Structure of a caloric Yang-Mills wave with finite S'-norm. The following theorem provides
detailed properties of a caloric Yang—Mills wave with finite S'-norm. It will be useful for the proof of
the key regularity result (Theorem 6.1), as well as the main results stated in Section 1C.

For a regular solution to the Yang—Mills equation in the caloric gauge, we have seen in Theorem 3.5 that
(3-12), (3-13), (3-14) and (3-15) are satisfied. More generally, we say that a one-parameter family A ()
(t € I) of connections in C (which is quite rough in general) solves the Yang—Mills equation in the caloric
gauge, or in short that A4 is a caloric Yang—Mills wave if (A, d; A) € L*°(I; Tch) and satisfies (3-12),
(3-13), (3-14) and (3-15).

Theorem 5.1. Let A be a caloric Yang—Mills wave on a time interval I with energy £ obeying
At)eCq foralltel, (5-1)
[Allsif =M (5-2)

for some 0 < @, M < o0. Let ¢ be a §5-frequency envelope for the initial data (A, d; A)(to) (to € 1) in
H' x L2 Then the following properties hold.:

(1) (linear well-posedness for U 4) The initial value problem for the linear equation

Ouu=f (5-3)
is well-posed. Moreover,
el gy iy S0 16 8000l gy 12y, + 1 w2 sr-172y, 01 (5-4)
for any 85-frequency envelope d.
(2) (frequency envelope bound)
||A||scl[1] + |||:|AA||(NQL2H*1/2)C‘2[]] SMeol (5-5)

(3) (elliptic component bounds)
l4olly gy + 1P Ally 1 Sme 1. (5-6)
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(4) (high modulation bounds)
||DA||DX22[1] + ||DA||X:21/2+/31,7191[1] <m,ol. (5-7)
(5) (paradifferential formulation) For any k > 10,
. C
|| DA + leff)AA”(NmLzH_]/z)cz [I] sM,Q 2 K. (5'8)
(6) (weak divisibility) There exists a partition I = ;<7 I; so that #I <pr.0 1 and
[Allsir <e 1. (5-9)
(7) (persistence of regularity) If (A,3;A)(to) € HN x HN=1 (N > 1), then A € SN N S[I] and
Ao € YN nY[I]. Moreover,
IAllsvasiny + 1Aolly ¥ ayipry Smon 1(A 3: ) (o)l v x gv—1)n g1 xL2)- (5-10)

For the subsequent properties, let A be another caloric Yang—Mills wave on I obeying the same conditions

(5-1) and (5-2).
(8) (weak Lipschitz dependence on data) For o < 1 sufficiently close to 1, we have
14— Allsor Sm.o (A=A, 0:(A= 0, A) (10| o ro—1- (5-11)
(9) (elliptic component bound for the transport equation)
||A0||(|D|—2L§Ltl)c2[1] Smeol (5-12)
Moreover, if dy, is a 8s-frequency envelope for A — A in S'[I], then
140 = Aol p-222 211y S0 1 (5-13)
where ey, = ¢ + ¢ (c - d)sk-

Remark 5.2. The frequency envelope bound (5-5) implies a uniform-in-time positive lower bound on the
energy concentration scale r.; see Lemma 7.8 below. As a consequence, once Theorem 1.13 is proved,
finiteness of the S'-norm would imply that solution can be continued past finite endpoints of / (we note,
however, that Theorem 5.1 will be used in the proof of Theorem 1.13).

Remark 5.3. The combination of (1), (2) and the divisibility of the norm N N L2H~Y/2[I] (see
Proposition 4.6) show that a finite S!'-norm Yang-Mills wave on I exhibits some modified scattering
behavior, i.e., that each A; tends to a homogeneous solution to the equation CJ4u = 0 towards infinite
endpoints of 1.

We start by establishing some weaker derived bounds.

Proposition 5.4. Let A be a caloric Yang—Mills wave on a time interval I, which obeys A(t) € Cqg for all
t €1 and || Al g1 ;] < M. Let ¢ be a Cés-frequency envelope for A in S, ie., ”A”SJ. i =1
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(1) The following derived bounds for A; x hold:
”AO”YCIz[I] + ||PJ_A||Y612[1] sM,Q I, (5']4)
”DA”DXZ-Z[I] + |||:|A||XC—21/2+b1,—b1[1] <Ml (5-15)

(2) Let A be another caloric Yang—Mills wave on I that also obeys ||/4f||51[1] < M. Letd be a §5-
frequency envelope for the difference A— A in SY[I]; i.e., ||[A — /I”S; (1] < 1. Then we have

|40 = Aollyapy + I1PHA= PLAllyy 1y Sao 1. (5-16)
10A = Dl sy + 10 = Dlly—1/2400 -1 ) S 1. (5-17)
where e, = dy + ci (¢ - d)fk-

As a quick consequence of Proposition 5.4, we see that any caloric Yang—Mills wave A with A(t) € Cg
forall 7 € I and ||A| g1;;] < M obeys

[Allsi Sm.e 1.

Remark 5.5. The reason why we state these weaker bounds as a separate proposition is for logical
clarity. As will be evident, the proof of Proposition 5.4 depends only on Propositions 4.12—4.22. In
fact, after these propositions are established in Section 8, Proposition 5.4 will be used in the proofs of
Proposition 4.23, Theorem 4.24 and Proposition 4.25 in Sections 8 and 9.

Proof of Proposition 5.4. Since A is a caloric Yang—Mills wave, Theorem 3.5 determines Ag, dg A and
P ;-A = A"19; 3¢ Ay in terms of A. To derive the equation for 9, P+ A, we first compute

9, 0°

9, PtA=0, A= AT19, 9% (Fog + d¢ Ao + [Ag, Ao))

= A7 9, (D  For + Ao + 0 [Ag, Ao] — A%, Foql).
By the constraint equation, we have DZFO ¢ = 0. Expanding Fy, in terms of A; x, we arrive at
0, P A =0; Ao+ A0, (8T Ag. Aol —[A%. 9, Ag] +[AY, 9 Ao] — (4%, [Ao. AclD). (5-18)

The rest of the proof consists of combining Theorem 3.5 with Propositions 4.12, 4.13 and 4.22 in the
right order. We first sketch the proof of the nondifference bounds (5-14)—(5-15). We begin by verifying that

I1D1Aolly 117 + |||D|PJ_A||Y02[I] <Mool
Indeed, by the mapping properties in Theorem 3.5 and the embeddings
L'H'nL2H? C,

the contributions of AS in Ag and DA in P14 are handled easily. For the quadratic nonlinearities, we
apply (4-29) for Ay, (4-37) with 0 = 0 for P14 and o =1 for Ay.
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Next, we show that

19¢Aoll 2 gy 207y + 19 P All o 12y S 1

For 0; Ay, we use Theorem 3.5 for DAg and (4-30) for the quadratic nonlinearity. For 9, PLA, we
estimate the right-hand side of (5-18), where we use the Y [/]-norm bound for A that was just established.
We now consider [1A. We first prove the weaker bound

”DA”D)'(’CIZ[]] <Mool (5-19)
By the mapping properties in Theorem 3.5 and the embeddings
L'L2N LA~ cOx!nx—2+tbu—bi c Ot

the contribution of R; is acceptable in both cases. For the quadratic nonlinearities P M? 4+ P+ M2, and
the contribution of JA — 4 A, we apply (4-42), (4-43), (4-74), (4-77), (4-84) and (4-85); note that we
need to use (5-14) in both (4-77) and (4-84).

We are ready to prove (5-17). The desired estimate for the (01X ![/]-norm follows by repeating
the preceding argument with (4-85) replaced by (4-86), and using (5-19). On the other hand, for the
OX ~1/2+b1,=b1[[]-norm, we replace (4-85) by (4-87) instead, and use the [1X ' [/]-norm bound that we
have just proved.

Finally, the proof of the difference bounds (5-16)—(5-17) proceeds similarly, taking the difference of
each of the equations (3-12)—(3-15). We leave the details to the reader. O

We now prove Theorem 5.1, using the estimates stated in Section 4.

Proof of Theorem 5.1. Throughout this proof, we omit the dependence of constants on Q.

Proof of (1): We begin with a 14 decomposition which will be repeatedly used in the sequel. Given
k > 10, we write

04 = O+ Diff% , — R,
where, using the decomposition in (4-67), the remainder RY is given by
RS = Diff | , —Rem’y” —Rem'y”.
Lemma 5.6. Let J C I. Let d be a §s-frequency envelope for u in S'[J]. Then we have

“R:;u”(NﬂLZH—I/Z)d[J] <M (Z_SZKHAHSI[J] + ZCKC(A’ J))”u”S}I[J]’ (5-20)
with

C(A, 1) = 1P Allyipgy + 1P Allgr g1 oopsy + [ Allggipr) + IV PEAV Ao) L2 oy (5-21)
Proof. We successively bound the three terms in RY as follows. For the first of them we have

||Diff;)LAu”(NnLZH—l/Z)d[J] <M (”PJ_A”Yl[J] + ”PJ_A||€1L1L°°[J])||u||Sé[,]]»
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using the bounds (4-82) and (4-83), and noting that the second norm of A is estimated using (4-37) for
the quadratic part and (3-22) by
IP~Allg1 g1 poopsy Sa 1.

For the second term in Rl’f1 in (5-22) we have

IRemly®ull v p2 172y, 00y SM 22 Al 51007 + 2K CCA Il 157,
as a consequence of (4-78), (4-79) and (4-80).
Finally, for the third term in R we have
IRemly ull oy vp2 fr-1/2y, 1) SM I Allsrpyllullsy i
due to (4-74). O
To prove (1) we rewrite (5-3) in the form
(O + Diff% Ju = f — R&u. (5-22)

The important fact is that all the A norms in C (A4, J) except for S! are divisible norms, and also
controlled by M. On the other hand the S norm of A4 has the redeeming 2782k factor. To proceed we
choose « large enough,

k <M, 0 1.

Then we can subdivide the interval 7 =} e Jk so that #7 <y 1, and so that in each interval J; we
have smallness,

”RZM“(NQLZH—I/Z)L{[JJ.] <M ||”||S(5[Jj]- (5-23)

A second consequence of our choice for « is that Theorem 4.24 applies. Then we can successively
apply Theorem 4.24 in each interval Ji, treating R perturbatively.

Proof of (2): The argument here is similar to the previous one. For any interval J C I and any (=85, N)-
frequency envelope d for A in S 1 [J] we can use the bounds (4-44)—(4-49) and (3-21) to estimate

10aAll ynr2p-12), 0y SM Q7 [ Al 51007+ 29| Allpsi Al g1 1. (5-24)

As before we use the divisibility of the DS! norm to partition the interval / into finitely many sub-
intervals Jz, whose number depends only on M, and so that in each subinterval we have

2_82K||A||S1[J] +2°%|| Al psip <€ <m0 L.

We now specialize the choice of d, choosing it to be a minimal §5-frequency envelope for A in the
first interval Jq. Applying the result in part (1) in J; we conclude that

d Smoc+ed,

which by the smallness of ¢ implies that d Sps.o ¢. Then we reiterate.

Proofs of (3) and (4): These follow from (5-5) and Proposition 5.4.
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Proof of (5): This is obtained by combining the bound (5-20) for J = I and u = A with the bound (5-24).
Proof of (6): In view of (5), this is a direct consequence of Proposition 4.25.

Proof of (7): We use frequency envelopes. It suffices to show that if ¢z is a (—85, S)-frequency envelope
for the initial data in the energy space then C (M )cy is a frequency envelope for 4 in S and Ag in Y 1.
We begin with a version of Lemma 5.6:

Lemma 5.7. Let J C I. Let d = d(J) be a (=85, S)-frequency envelope for A in S'[J]. Then we have

VRS All vz -2y, 1) SM Q2 [ Allspgy +29KC(A T Al g1 (5-25)

Proof. The same argument as in the proof of (5-8) applies for the first term in RY, as there the output
frequency and the u input frequency are the same. On the other hand for the two remaining terms, the
frequency envelope d is inherited from the highest frequency input; see Propositions 4.19, 4.20. O

Combining the bound in the lemma with (5-24) we obtain the estimate
|||:|A + Difff’AA”(NmL2H—l/2)d[_]] <M (2_82K||A||S1[J] + 2CKC(A, J))”A”,gé[,]]- (5-26)

Now we can conclude as in the proof of (2). We first choose « large enough so that Theorem 4.24
applies, and also so that

272 Al g1y <

Then we divide the interval [ into finitely many subintervals (again, depending only on M and Q) so that
for each subinterval J we have

24| Allpsipy <u 1.
Thus, for each subinterval J we have ensured that

Let ¢, be a (=485, S)-frequency envelope for the initial data in the energy space, Then applying
Theorem 4.24 in the first interval J; we conclude that

| PrAllsips,) Sm.o ek +ede, & <m 1, (5-27)

for any (—8s, S)-frequency envelope dj for A in S'[J;]. In particular if dj is a minimal (-85, S)-
frequency envelope for A in S![J;] then we obtain
di Sm ¢k +edk,
which leads to
di <M, Ck,

i.e., the desired bound in J1. We now reiterate this bound in successive intervals J;. Finally, the Y bound
follows as in (3).
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Proof of (8): Assume 0 < 1 — 0 < §5. We write the equation for §4 = A — A in the form

s opk _ K
a +D1ffP/I)8A = F*,
where

F* =Diffy A+ (R{A— REA) + (O4A— 04 4). (5-28)

We claim that we can estimate the terms in F* as follows:

DI cAllyoinr2 go—i-12pyy S 27 (| Allg1 + [ Alls)II8Al 5o 17, (5-29)
IRGA— RS All o112 fro1-1217) SM 264(C(A, ) + C(4, 1)) |I8A 50111, (5-30)
0044 — DAA||NJ_IHL2HU_I_I/2[,] <m (C(A, )+ C(A, )))|I8A so1s]- (5-31)

We first show how to conclude the proof of (8) using (5-29), (5-30) and (5-31). As in the proofs of
(1), (2) and (7), we first choose « large enough, k¥ >>,s 1. Then we use divisibility for the expressions
C(A,J) and C(A, J) in order to divide the interval  into subintervals J i so that on each subinterval F*
is perturbative, i.e.,

||FKllNo—lnL2H0—1—1/2[_]j] LMk ||5A||SU[J,-]-

Finally, we apply Theorem 4.24 successively on the intervals J;; then (8) follows.

It remains to prove the bounds (5-29), (5-30) and (5-31). The bounds (5-30) and (5-31) are the
difference counterparts of (5-25) and (5-24), respectively, and are proved in a very similar fashion. Details
are omitted. We only remark that the requirement o < 1 is not needed here, and that these bounds hold
for any 85-admissible frequency envelope ci for §4 in S

We now turn our attention to the novel part of the argument, which is the bound for Diff ; A_p AA' It
is here that the condition o < 1 pays a critical role. This is done in the next lemma. For later use we
state the result in a more general fashion. This will be needed again in the proof of Proposition 6.4. A

variation of the same argument will also be needed in Proposition 6.3.

Lemma 5.8. Let J C I. Let ¢k, dy, by be frequency envelopes for A, A, respectively §A and B in S[J].

Then the expression Diff ; 4_p gB can be estimated as
||Diff;A_PgB ||(NnL2H—1/2)f[J] SM,Q 270k ”514”55[]] B ”S; [J1° (5-32)
where f is given by
fi= (X dutertedan)he (533
k'<k—k

Before proving the lemma we show that it implies (5-29). To measure §4 in S° we can choose the
frequency envelope dj, with the property that 2C~V% g, is a (—=§, 1 — o + §)-admissible envelope with
§ < %(1 —0), 6 < 65, and so that

1841130y ~ Y QR
k
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Then we have
1
fie Su di—ccx Sp 272074y
and (5-29) follows. We return to the proof of the lemma:

Proof of Lemma 5.8. We first recall the equations for PAx and Ag. Following Theorem 3.5, these have

the form
OPAy, = P[AY, 0, A)] —2P[Ay, 3 Ax] + P(R(A) + Ay, [AY, AL])).

' (5-34)
AAg =A% 0xAgl + Q(A,30A4) + AA].
Based on these equations we consider the following decomposition of PA = (PAy, Ap):
PA = (AT AFainy 4 (42,0) + (43, AD),
where the three components are determined by the following three sets of equations:
04 = P[4, 8,4, A™"[0] =0,
AADEN = (459, Ay,
A% =0, and
0A2 = —2P[Ay,3%Ax],  A2[0] =0,
and finally
043 = P(R(A) + P[Ag, [4° AL]), - A3[0] = PA0]. 539

AA = Q(A,004) + AA].

We also use the same set of equations and the same decomposition for P A, and take the differences
SA™an 5§42 and §43. We are now ready to estimate the three contributions.

The contribution of SA™ ™. For this we use the estimates in Proposition 4.27, which yield

”Diff;Amam_pgmainB”(NmLzH—l/z[J])f M 2_GK||8A”S[11[J] ||B||S; J1 (5-36)
where
Sk =( > Ck/dkf)bk,
k'<k—«

which suffices. For later use, we also record the following consequence of Proposition 4.15, which
provides a bound for ||[[J§4Man | vAL2g1/2:

||5Al;ain||scld[J] < ||8A||Sd1[1](||A||SL![J] + ||1‘I||SC1[J])- (5-37)

The contribution of A3, This is more easily dealt with using instead Proposition 4.26. We start with
Ag — /Ig, which is estimated using the bounds (4-36) and (4-37) in Proposition 4.13 for the first term, and
(3-23) for the second, by

||A(3) _I‘I(3J||(L1LoonL2H3/2)cd[J] <M ||8A||5611[J](||A||S(1[J] + ||1‘I||SCI[J])- (5-38)
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Similarly, for Ai — fff’c we can apply the difference bound associated to (3-21) for R, and Strichartz
estimates for the remaining cubic term to obtain

||D(A3c - Afc)||(L1L2r‘1L2I-'I—‘/2)Cd[J] M ||5A||S(}[J](||A||SL! 7] + ||/I||Scl [J])- (5-39)
As a consequence this also gives
143 = A2llg1 1y Sa 1840 st All a0y + 1Al s20)- (5-40)

Using (5-38) and (5-40) in Proposition 4.26 yields the desired bound

||Diff<§{A3B||(N(']L2H—1/2)f[]] M0 ”(SA”S(;[J]”B”S}l[_]](”A”SC! 7] + ||fi||scl [J])’ (5-41)
with the same f; as in the previous case.

The contribution of A% Here we will use Proposition 4.28. For this we need to verify its hypotheses. We
begin with (4-101), for which we combine (5-37) and (5-40) to conclude that

”814)2{”5'611[]] Su 184151 1y- (5-42)
Next we consider (4-100). Using the second part of Proposition 5.4 we obtain

1841153157 + 1840, P6)lyy g7 Snr 184115117 (5-43)
with
er =di +cr(c-d) <.

The last two bounds allow us to use Proposition 4.28. This yields

”DifféCAZB”(NmLZH—l/Z)f[J]) M0 ”(SA”S;[J]”B”SCI [j](”A”SCI 7] + ||1‘I||SLI [J])» (5-44)
where
S = ( Y de+ ek’dk/)bk-
k’'<k—«
The proof of the lemma is now concluded. O
Proof of (9): This is a direct consequence of the bounds (4-39) and (3-23) for the quadratic part A% of Ay,
and its cubic and higher part AJ. O

5B. Caloric Yang—Mills waves with small energy dispersion on a short interval. Next, we consider the
effect of small inhomogeneous energy dispersion on a time interval with compatible scale.

Theorem 5.9. Let A be a caloric Yang—Mills wave on a time interval I with energy &, obeying (5-1),
(5-2), as well as the smallness relations

| Fllepson <& ]| <e. (5-45)

Let ¢ be a 85-frequency envelope for A in S[I]. Then for sufficiently small & > 0 depending on M and Q,
the following properties hold:



280 SUNG-JIN OH AND DANIEL TATARU

(1) (small energy dispersion below scale 1 for A)

| Al 1y Se.o 6™ (5-46)
(2) (elliptic component bounds)
l4olly 11y + 1P Allyi gy Sm.c 6. (5-47)
(3) (high modulation bounds)
10412 o172y S 6% (5-48)
(4) (paradifferential formulation)
104 + Diffh 4 All 2172y, 17 SM0 8742€%. (5-49)

(5) (approximate linear energy conservation) For any t1,t; € 1,
IVA@DIZ> — IV AG)I7 | S €™ (5-50)
(6) (approximate conservation of Q) For any t1,t; € 1,
|Q(A(1) ~ QA(R))] Se0 €™ (5-51)

Proof. Again, we omit the dependence of constants on Q. The property that will be used here repeatedly
is (4-21), which asserts that all nonsharp Strichartz norms are small. We recall it here for convenience:

sup || P Fllse Sp €% < e%2. (5-52)
k

Proof of (1): This is a consequence of the caloric bound (3-7) applied with dj = «.

Proof of (2): We repeat the arguments in the proof of Proposition 5.4(1). The bounds for the cubic and
higher terms in Theorem 3.5 use only the Strichartz Str! norms, so the contributions of AS in Ag, DA in
P14 and DA(?; in d¢ Ag are easily estimated. For the quadratic terms we replace (4-29) with (4-33) in the
case of Ag, and then (4-37) with (4-38) in the case of Pl Aandd; Ao; again the smallness comes from Strl.

Proof of (3): We consider the terms in the A, equation in Theorem 3.5. The cubic terms R, and
[Ag.[A%, A]] are estimated only in terms of | A]|g,1 - For the quadratic terms we use instead the bounds
(4-30), (4-36), (4-63) and (4-65); all smallness comes from Strl.

Proof of (4): We first establish the similar bound for [J4 A, which is given by (3-12). For the quadratic
terms we use (4-50) and (4-51). For the cubic term we use (3-21). Hence it remains to estimate the
difference

RS A = Difff,, ,A—Rem’y”> 4 —Rem’y’ A.

For the first term we use (4-83), where the ¢ smallness comes from the L1 L norm of P14 due to the
bounds (4-38) and (3-22) for the quadratic and cubic parts of AL respectively.
For the second term we use the bound (4-81). The second term on the right is small due to (5-47),
SO we obtain
R K,ZA . < 2—52K ZCK L A
IRemS2 Al g2 172, Sar (2702 +26%62)] Al 1.
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Now we observe that on the right we can replace « with any k¥’ > k without any change in the proof.
Then it suffices to optimize with respect to i’.
For the third term we use directly (4-74).

Proof of (5): This statement is a corollary of (5-49). For the proof, we introduce the linear energy
4
_1 2
B0 =3 [ Y ltudw)P

Given any interval I’ = (¢1, 1) C I, we consider
I:f xr{((O+ Diffp ,)A, 0, A) dt dx.
RxR4
Integrating by parts, we may rewrite
1 . 1 .
T = Eun(A)10) ~ Ein(A)(12) + 3 [ (DIt 14, 4) 120 dx — ] [ (Ditt 4 A)e0)

_ % /RXR4 XI/([at, lef;A]A,A> dt dx + % /I;XR“ XI/((leff’A _(leffl‘A)*)A,atA> dt dx.

By Proposition 4.30 and the straightforward bound

/(Difff’AAv A1) S2740(A, A Ol g1 IVAD 17 Sm 27,
we see that
|Z — (Eiin(A)(t1) — Enin(A)(12))] <pr 27K, (5-53)

On the other hand, by duality, we may put y;-(0 4 Diff} ()4 and x;:0; A in N and N*, respectively.
Then by Proposition 4.6, (5-2) and (5-49), we have

IT| <pr %42€%. (5-54)

Optimizing the choice of «, (5-50) follows.

Proof of (6): We will use the caloric flow in order to compare Q(A(#1)) and Q(A(,)). Denote by A(z, s)
the caloric flow of A. We will split the difference in three as

Q(A(t1)) — Q(A(12)) =Q(A(t1, 1)) — Q(A(t2, 1)) + Q(A(t1)) — Q(A(t1, 1)) — Q(A(12)) + Q(A(22, 1)).

For the first difference we estimate at parabolic time s = 1 as follows:
2] d 3
0. )= Qe I 5 [ [ L1FG0P dxas
t R4 t
5]
< f f |F(1,t,x)*|8,F(1,x,1)| dx dt
t JR4

%)
s[[ |F(s.1.x) 213, F dx di <e.0 |ty — t2]c3,
1 JR4
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where at the last step we have simply used the fixed-time L2 bounds given by Proposition 3.1(1) and
Bernstein’s inequality. Now we gain smallness from the time interval.

For the remaining two differences we only need fixed-time estimates, which for reference we state
in the following.

Lemma 5.10. Let a € C be a caloric connection with energy £ and Q(A) = Q, and A its caloric
Yang—Mills flow.

(a) Assume that a is energy-dispersed at high frequencies,

I f lEDss < e (5-55)
Then for its caloric Yang—Mills heat flow A(s) we have
Q(a) — QAQR7*™)) Se,0 ¢ (5-56)
(b) If a is fully energy-dispersed,
|/ 1lep <, (5-57)
then we have
Q(a) <e0 & (5-58)

Proof. (a) By scaling we can set m = 0. Denote by cj a frequency envelope for f in L2 and by dj
a frequency envelope for f in W~2:%, By the energy dispersion bound we have dj < ¢ for k > 0. By
Proposition 3.2 we have the L2 bound
| PiF L2 Seo ck(2%5)7,
and the L°° bound .
| P F Lo Seo 2%dy (2245) 7V,

We use these bounds to estimate the difference

1
Q(a) — Q(A(1)) = /O/W |F(s,t,x))> dx ds

1
Y // | Pi, F(s,t,X)|| Py F (5,1, %)| | Pxy F(s,,X)| dx ds
0 JR4

ki1<ks<k3

1 1
} : 2k 72
Sg,Q —2k32 1dlek2Ck3
1+2
ki1<ko><ks

1 1
< 202 <g3
~ de3ck3"’8 ’

1<ks3

where at the next to last step we have used both the low-frequency decay and the off-diagonal decay for
the summation in k1 and k5.

(b) This follows by letting m — —oo in part (a). The proof of the lemma is concluded. O
The proof of (5-51) is also concluded. O
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5C. The dynamic Yang-Mills heat flow of a caloric Yang—Mills wave. Here we investigate the structure
of the dynamic Yang—Mills heat flow of a caloric Yang—Mills wave A with finite S'-norm. As before,
we consider two cases: (1) when 4 only obeys a finite S!-norm bound; and (2) when A has small
inhomogeneous energy dispersion on a short time interval of compatible scale.

In the general case, we have the following structure theorem.

Theorem 5.11. Let A be a caloric Yang—Mills wave with energy £ on a time interval 1, obeying (5-1) and
(5-2). Let A x(s) be the dynamic Yang—Mills heat flow of A; x at heat-time s > 0 in the caloric gauge.

Then the following properties hold:
(1) (fixed-time bounds) For any t € I, let ¢(9(¢) be a 85-frequency envelope for VA(t) in L% Then
| PE(VAG) = Ve (1)l Seo (272577220 5) 71060 (02, (5-59)
| PeatAe(t. )2 Seo (225) 7100, (5-60)
PV Ao(t, )l 22k ) =10, (0) ()2, (5-61)
L £,Q k
| DA )] -1 Seno (2255) 700 (07, (5-62)

(2) (frequency envelope bounds) Let ¢ be a §s-frequency envelope for A in S'[I]. Then

1P (A(s) — 2 D)l g1y Sm,o (27271 704 (22k5) 71002 (5-63)
1Pk Ao ()l 117y Sar,o (22Ks) 71062, (5-64)
IPePEAG)ly1y Smo (2%5s) 7102, (5-65)

(3) (derived difference bounds) Let A be a caloric Yang—Mills wave on I obeying ||/I||S1 [ = M, and
let d be a 8s-frequency envelope for the difference A(s) — A in S'[I]. Then
| Pe(Ao(s) = Ao)lly 1 + | Pe(PHA(s) = P Ay 1y
Siit.o ok Fmin{l, (72| 1)% 272k 0 92k )710:2 (5,66
1PLD(A(s) = Dligx i + I PeO(A(s) = A) | g—1/2461.-51 11
Saiito ek +min{l, (572 1)y (272K 571 T 92k ) 71002 (5.67)
where ey = di + cy(c-d)<k.

Remark 5.12. Combining (5-63) with the obvious bound for ¢52 A, we get the simple bound
| PLAG) 51177 S (22) 7 0c. (5-68)

Next, we consider the effect of small inhomogeneous energy dispersion on a time interval of compatible
scale.

Theorem 5.13. Let A be a caloric Yang—Mills wave with energy € on a time interval I, obeying (5-1),
(5-2) and (5-45), and A; x(s) be the dynamic Yang—Mills heat flow of A x at heat-time s > O in the
caloric gauge. Let ¢ be a §s-frequency envelope for A in S'[I]. Then the following properties hold:
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(1) (fixed-time smallness bound)

IV Pe(A(s) = 2 (D)2 Se.o 274" P+t (272571781 22K5) 7100 ), (5-69)
| Ped® Ag(2.5) 12 Se,q 2540m R0+ 84 (22K 5) =100 ), (5-70)

(2) (small energy dispersion below scale 1 for A(s))

14 lgp=ipr Se.o ™. (5-71)
(3) (frequency envelope bounds)
1Pk (A(s) — "2 A)l| g1 Sp,o % (272K 571704 (22K 5)~10¢,, (5-72)
| P Ao () lly 117 Sa,o 4 (2% 5) ™ 0cy, (5-73)
1PL PEAG) Iy Smo 54(2%s) ™10y (5-74)

(4) (derived difference bounds) Let A be a caloric Yang—Mills wave on I with || A|| 1 ] = M, and let d
be a 8s-frequency envelope for the difference A(s) — A in SY[I]. Then

I Pe(Ao(s) = Ao) Iy 11y + | P(PHAGs) = P Ay
Sadt.o Ok + €4 (272K T I (22K ) 7100, (5-75)
1PxO(A(s) = Dllgx 1y + | PrOAG) = Al x-1/2401.-51 11
Spr .o ek T4 (22K T8 02K5) 7106, - (5-76)
where ey = di + ci(c - d) <.
We now turn to the proof of each theorem.

Proof of Theorem 5.11. In the proof, we omit the dependence of constants on M and Q. We introduce the
notation
A(r,5) = A(t, s) — "2 A(r).

Proof of (1): By (3-2) in Proposition 3.1 (note that d; A here corresponds to B in the proposition) we get
IV PeAG )2y 5 (277 701 2%K) 102, (5-77)
Now the second bound follows from (3-18) for DA and Proposition 4.13 for Q (4, A).
Proof of (2): We proceed in several substeps.
Step 2.1: Our first (and main) goal is to prove
| PeA(s) 1510y < (27271 7R (2%5) 710, (5-78)

We begin by invoking (3-4) with (o, p) = (%, 4) and (o1, p1) = (%, 2). Since S![I] C Str![I]

LAW /4411, we also obtain (after taking L2[/])

IV PeA@) L2 172y S (2757700 (27K5) 7102 (5-79)
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In view of the embedding Py L2H'/2[I] C Pka’l/z[I] C 27k S, [1], we have
IV PLA)lls, iy < 2725) 701 (27) 710, (5-80)
To complete the proof of (5-78), it only remains to establish (recall (4-2))
IOPLA®) 251727 S (27%Ks) 701 (22K) 7102 (5-81)

We argue differently depending on whether s22% > 1 or 522K « 1. In the former case, we consider ¢*2 A
and A(s) separately. In view of (5-7), note that

|0 Pee™ Al 2 12y S (225) 71067,

so it suffices to prove
||DPkA(S)”L2H—l/2[]] < (22k)_mc]%.

For this, we need to use the wave equation for A(s) (see Theorem 3.6):
OA(s) = (O —0ys)) A(s) + M2(A(s), A(s)) + R;(A(s)) + owc(A, A,5)+ Rj;5(A). (5-82)

As in the proof of Proposition 5.4, we note that 0 — () contains the terms Ag(s), 3t A(s) and 39 Ao (s)
that are in turn determined by A4, A(s) (see Theorem 3.6). By (5-80) and an obvious bound for es2 4,
we see that (2255)~10¢, is a frequency envelope for A(s) in Str'[I]. The desired estimate is proved by
applying the L2 L2-type estimates in Section 4 (observe that they only involve the Str!-norm of A!) and
Theorem 3.6.

In the case 522 < 1, we begin by writing A (s) = (A(s) — A) + (1 — e*2) A. For the second term,
again by (5-7), we have

IO P =) All 2 g 172y S (272571 0}
Thus, for s22% « 1, it suffices to establish
IO PL(AGs) = Dl 2 1oy S 2757175} (5-83)
Here, we use the equation [J(A(s) — A) obtained by taking the difference of the equations in Theorems 3.5
and 3.6:
O(A(s) — 4) = (O —Ogs) Als) — (O —0g) A+ M>(A(s), A(s)) — M*(4, A)
+ R;j(A(s)) — Rj(A) + Pjwi(A, A,5) + Rjs(A). (5-84)

We note that (O — Oy5)) A(s) — (O — O4) A contains the differences Ag(s) — Ao, 8§A(s) —9tA4, and

doAo(s) — dg Ao, for which similar difference equations may be derived from Theorems 3.5 and 3.6.
As before, ¢y, is a §s5-frequency envelope for 4 and A(s) in Str![/], whereas dj = (272ks=1)=¢3¢; is
a 83-frequency envelope for A(s) — A in Str![/] by (5-80) and an obvious bound for (1 —e*2)A. Hence

the difference envelope e; in Theorem 3.5 obeys the bound

ex =dk +cx(c-d)<x < (2_2ks_1)_083ck.
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The desired estimate (5-83) is proved by applying the L2 L2-type estimates in Section 4 (again, they only
involve the Str'-norms of VA, VA(s) and V(A(s) — A)) and Theorem 3.6.

Step 2.2: To complete the proof, it remains to show that (5-78) implies (5-63)—(5-65). This is proved in a
completely analogous way to Proposition 5.4(1), replacing Theorem 3.5 by Theorem 3.6 (where we use
Propositions 4.16 and 4.17 for wo and wy, respectively).

Proof of (3): This is analogous to the proof of Proposition 5.4(1). The only difference in the analysis
arises from the extra terms

(i) Pjw3(3;4,0,4,5) + Rj:s(A) in Oy5) A(s),
(ii) Ao;s = AT wg(A4, 4,5) + A5 (A) in Ao(s),
(iii) DAg.s(A) in 9; Ao (s).

For the first term in (5-75) we need to estimate

DI~ w5 (A, A, 9)ly + 1I1D1AG (Dl + [ DAos(A)]y.

The last two terms are estimated directly using (3-36) and (3-37) and Bernstein’s inequality. The first
term is estimated via (4-54).

For the extra gain when s1/2 > || we rebalance by using Holder in time ¢ and Bernstein in x. Because
of this, in that range it suffices to use L°°L? bounds instead of Y, and thus rely instead on (3-33) and
(3-34), and (4-52).

For the second term in (5-75) we follow the computation for d; P+ A(s) in the proof of Proposition 5.4.
The extra contributions there are

ATV (3 [Ag(5), Aoss] + [A5(s), dpAois] + (45 A, Aoss])).

For these it suffices to use (4-53) and (3-36) for long intervals /, and (4-52) and (4-52) and (3-33) for
short intervals.
Finally, for the two terms in (5-76) we need to bound

| P, w}C(B,A, 0: A, S)”DleX—l/z—i-b-H,—b] + ||Rj;s(A)”DX1nX—l/2+b+l,—b1 .
For this it suffices to use the bounds (4-58) and (3-35) in the range |/| > s1/2 and (4-56) and (3-32) in
the range || < s1/2. O
Proof of Theorem 5.13. As before, we omit the dependence of constants on M and Q.

Proof of (1) and (2): The three bounds follow directly from Proposition 3.2, precisely in order from the
estimates (3-8), (3-9) and (3-7).

Proof of (3): We repeat the arguments in the proof of Theorem 5.11(2). The bound (5-79) for Py A (s)
goes through the Str! norm, so by the same proof we also obtain for k > 0

IV PA) 2172y S (272571705 (22K5) 710652, (5-85)

On the other hand for k < 0 we can use (5-69) and Holder’s inequality in time to gain smallness.
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Similarly, the bound (5-81) also uses only Str! norms so it can be replaced by
IOPLA®) | 2172y S (272571700 (225) 710602 (5-86)

for k > 0. Again for k < 0 we can use a simpler L% H ~! bound and then Hélder’s inequality in time.
Together, the bounds (5-85) and (5-86) imply (5-72).

Finally, it remains to establish (5-73) and (5-74). Here the same considerations as in the proof of (5-47)
apply, but using Theorem 3.6 instead of Theorem 3.5, as well as Proposition 4.16.

Proof of (4): This repeats the proof of Theorem 5.11(3), but taking advantage of the Str! norm in
estimating AS; s and DA g;s and using (4-55) instead of (4-54). As before, the ¢ gain is due to energy
dispersion if £ > 0 and to the interval size otherwise. O

6. Energy-dispersed caloric Yang—-Mills waves

The goal of this section is to prove the following key theorem for energy-dispersed subthreshold caloric
Yang-Mills waves, which is essentially a restatement of Theorem 1.20 in terms of the linear energy:

Theorem 6.1. There exist nondecreasing positive functions M (E, Q) and nonincreasing positive functions
e(E, Q) and T(E, Q) so that the following holds. Let A be a regular caloric Yang—Mills wave on a time
interval I satisfying

<E, A(t)eCgforalltel. (6-1)

inf | VA®)||?
inf[VA@)IIL
If A moreover obeys the smallness bounds

I Fllgps,, 1] < 6(E,Q), I <27"T(E,Q), (6-2)
then we have
[Allsip) < M(E, Q). (6-3)

We next show that Theorem 1.16 immediately follows. Indeed, for caloric waves we have (see
Theorem 1.6)
IVAlz2 Zeo 1,
as well as
EZval, L

Thus the linear and nonlinear energy are interchangeable in the statement of the theorem. The (minor)
difference is that the nonlinear energy is exactly conserved, whereas the linear energy is only approximately
conserved for energy-dispersed Yang—Mills waves; see Theorem 5.9(5).

For the remainder of this section, we fix Q. We omit any dependence of constants on Q and write
e(E)y=¢(E,Q), T(E)=T(E,Q), M = M(E, Q) etc.

Theorem 6.1 is proved by an induction-on-energy argument of similar structure to [Sterbenz and Tataru
2010a; Oh and Tataru 2018]. For the initial step, we show that it holds for small E (Proposition 6.2). For
the induction step, we assume that the result holds for all solutions with inf; Ej;,(A4) < E, and we seek to
show that it holds up to inf; Ejn(A) < E + c(E) for some small ¢(E) > 0. Notably, in order to continue
the induction argument, we do not want ¢(E) to depend on F(E) or (E).
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6A. Induction on energy argument. As remarked earlier, the initial step of the proof of Theorem 6.1 is
essentially small-energy global regularity for the Yang—Mills equation in the caloric gauge, which is a
quick consequence of Theorem 5.1.

Proposition 6.2. There exists a small universal constant Ey > 0 (in particular, independent of 1) such
that if a classical caloric Yang—Mills connection satisfies

inf | VA®)|72 < Ex. (6-4)
tel

then we have

[Allsit < v Ex- (6-5)

Proof. We will follow a standard continuity argument, similar to the one used in the Coulomb gauge
in [Krieger and Tataru 2017]. Start from a near minimum f¢ for ||V A(?)|| 12. Denote by ¢ a frequency
envelope for A[tg] in H' x L2 For a short time, there exists a classical solution, which satisfies

[Alls1 < Ex-

We now consider the maximal interval I/ containing o and where the solution A exists as a classical
solution and satisfies

[Allsin < 1. (6-6)
This in particular implies
Q(4) < 1.
Hence by Theorem 5.1(2) it follows that
||A||scl[1] <1
and in particular
[Allsipr) < Ex- (6-7)

Assume now by contradiction that / has a finite end 7. The S (6-6) bound implies that A is uniformly
bounded near t = 7" and has a limit as a classical solution. Hence it can be extended further as a classical
solution (for a precise statement, see in particular Theorem 7.6). However, in view of (6-7), if Ey is
sufficiently small then by continuity we can find a larger interval I & J where (6-6) holds. This is a
contradiction. It follows that the solution A is global and satisfies (6-7). O

For the induction step, consider a regular caloric Yang—Mills wave A on [ such that
E<inf|VAWD72 < E+c(E), |Flepooay <6 HIST. (6-8)
Our goal is to establish a uniform bound
[Allsifp <=M (6-9)

for appropriately chosen c(E) > 0 (depending only on E), ¢, T and M (which may depend on E, (E),
T(E), M(E) and c(E)).

Once this goal is achieved, we may extend M(E), e(E) and T(E) to [0, E 4+ ¢(E)] so that
M(E+c(E))=M,e(E+c(E)) =¢eand T(E + c(E)) = T, while keeping validity of Theorem 6.1
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in this range of energy. Since c(FE) is a positive number depending only on E, this procedure can be
continued until Theorem 6.1 holds for all regular subthreshold caloric Yang—Mills waves.

We now turn to the proof of (6-9). By translating and reversing ¢, we may assume without any loss of
generality that / = [0, T+ ) for some T4+ > 0 and

E <||[VA(0)|7, < E +2¢(E).
Since A is regular, it can be easily seen that || A g19,7) is a continuous function of 7" satisfying

. 1
limsup||A|[sij0,r) S IVA@)llz2 < E2.
T—>0+

Therefore, on a subinterval J = [0, T') C I, we may make the bootstrap assumption
||A||Sl[J] <2M. (6-10)

In order to improve (6-10) to (6-9), we compare A with a caloric Yang—Mills wave A with S! [/]-norm
< M(E) (eventually), which we construct as follows.

To begin with, we view the space-time connection 4;  on I x R* as a caloric initial data and solve
the dynamic Yang—Mills heat flow in the local caloric gauge, i.e.,

s Ay (2, x,5) = DX Fy (2, x, ),

From the results in Section 3, we obtain a global-in-heat-time solution A; x (¢, x,s) on I x R*x[0, 00). Note
that d; A solves the linearized Yang—Mills heat flow in local caloric gauge, and we have (A4, d; A)(¢, s) €
TL%C for every (¢,s) € I x [0, 00).

By the caloric gauge condition, the linear energy

1A, 3 A) (. )11 = IVAE. 5172

eventually tends to zero as s — oo. Thus there exists a heat-time s}, > 0 such that
2
”(A’ atA)(O’ S)”I_'I]XLz =F

To eliminate ambiguity, we take s}, to be the minimum such heat-time. In order to choose the cut-off
heat-time s, we distinguish two scenarios:

(1) If s, > 1, then we define s, = 1.

(2) If s, < 1, then we define sx = 5.
With s, chosen as above, we define A to be the caloric Yang—Mills wave with initial data
(A,9; A)(0) = (A, 3; A)(0, 54).

In both scenarios, we aim to prove that A exists on J and is well-approximated by A(s«). Moreover,
by the induction hypothesis, A should obey a nice S'-norm bound.
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Proposition 6.3. Let A be defined as above. For sufficiently small ¢, T > 0 depending on M, M(E),
T(E), e(E) and c(E), the regular caloric Yang—Mills wave A exists on the interval J and obeys

1Alls117 < M(E) + CovVE, (6-11)

| AGs) = Allg1_ gy <ar 6% (6-12)

| 40(s+) = Aolly1, () Sm g%, (6-13)

| PEAGs) = PHAlly 1 1y <u €™, (6-14)

where Cy is a universal constant and ¢* is a frequency envelope defined as
c;ck = 9 Oxlk—k(s:)l (6-15)

On the other hand, viewing A4 as a “high frequency perturbation” of A, we show below that A stays
close to A in the space S.

Proposition 6.4. Let A be defined as above on the interval J. Provided that ¢ = ¢(E) > 0 is chosen small
enough compared to E (but independent of M(E), T(E) or e(E)) and T, & > 0 are also sufficiently small
depending on M, M(E), T(E), e(E) and c(E), we have

IA—Allsi Smce)e 1- (6-16)

Assuming the preceding two propositions, we may choose M sufficiently large compared to M(FE)
and E, then choose ¢ and T accordingly, so that the desired estimate (6-9) follows from (6-11) and (6-16).
It remains to prove Propositions 6.3 and 6.4, which are the subjects of Sections 6B and 6C, respectively.

6B. Control of A—A (s«): proof of Proposition 6.3. We introduce the notation
SAY = A — A(sy). (6-17)
We proceed differently depending on how s, was chosen.

Scenario 1: s« = 1(< s}). This scenario is simpler to handle, and we do not need to invoke the induction
hypothesis.

Step 1.1: S'-norm bound for A. We first prove the S!-norm bound (6-11). The idea is to exploit the
smoothing property of the Yang—Mills heat flow, which implies control of higher Sobolev norms of
(A,9,A)(0) = (A4,3,;A)(0, 1) in terms of ~/E, and use subcritical local regularity of Yang—Mills in the
caloric gauge, which works in a time interval of length Og(1).

Fix a large integer N (say N = 10). We claim that A exists on J and

”/I”SNﬂSl[J] < VE, (6-18)

provided that T is sufficiently small depending only on E (so that |J| <g 1).
By the smoothing property for the Yang—Mills heat flow and its linearization in the caloric gauge (see
Section 3), we have

1AL 8 DO gy egiv-nyaarixsy < VE.
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For T sufficiently small (depending only on E), the following local-in-time a priori estimates at
subcritical regularity hold:

supl(A. 3 DOl g v -yearieazy N4l e inrnzoyg) SVE-
te

SUP”(!‘IO» atl‘IO)(f)||(HNXHN—1)Q(H1><L2) <VE.

teJ

The proof is via Theorem 3.5 and, as usual, the Sobolev embedding into L°°; we omit the details.
As a consequence of the preceding a priori bounds, we obtain (6-18) as desired. Moreover, by
Theorem 3.5 and the fixed-time bounds in Section 4, we have

IOl oo gr—1pyy SE 1. (6-19)
Step 1.2: S'-norm bound for A(s+) — A. As a preparation for the proof of (6-12), we claim that

| AGs2) = Alls1, 17 Sn €€ (6-20)

In the present case, 26(*) = 1. For frequencies higher than 1, we simply use (6-18) with smoothing
estimates for A(s«) in S'. For frequencies lower than 1, we control [I(4 — A(sx)) in L*°H ™! and
integrate in time.

By Theorem 5.11, we have

1 PeACsa) |l 517 Sm2 2%+, (6-21)
IPeOA(, 5) || o1 Sm272%+. (6-22)

Let k¢ > k(s«) be a parameter to be fixed below. By (6-20) and (6-21), we have
I Pk8A ™ | s117 < I Pk All g1y + I PeAGsi) | g1y Sm 27X0ct for k > ko, (6-23)
where 0 < ¢ < 1 is a universal constant. Since
P(L®HYJ]) < [J[2XN N (T 1262 L2H 2,
for k < K it follows from (6-19) and (6-22) that

“PkD5A10W||(NnL2H—1/2)[J] = ||PkDI‘I||(NmL2H—1/2)[J] + ”PkDA(S*)”(NﬂLZH—l/Z)[J]
m (12012 4 (1712°0) + ey

Since §4'°%[0] = 0, we arrive at
||Pk5Al°W||Sl[J] NY 4 ((|J|2K°)% + (|J]20) + &%) for k < ko. (6-24)

Step 1.3: completion of proof. Finally, the bounds (6-12)—(6-14) follow from (6-20) and Theorem 5.11(3)
with dj = ¢/ provided that | /| < T is sufficiently small. Here, note that

ex =cp +ex(c-c® ek Sm i
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Scenario 2: s« = s}, > 1. In the second scenario, we analyze the equation satisfied by the difference
SAY = A(s,)— A to prove (6-12), then make use of the induction hypothesis to derive (6-11). By another
continuous induction in time, we may make the following extra bootstrap assumptions:

1Al 1177 < 2(M(E) + CovVE), (6-25)

as well as
||8Alow||scl* ] = g%, (6-26)

Here we use a smaller power of ¢, so this last bound will only serve to ensure some a priori smallness of
§A"Y in S ..
By Theorem 5.13, we have

1P ACse)ll g1y Sar ek (22554) 710, (6-27)
| 4G llepy 1y SE (6-28)
”DA(S*)”LZH—I/Z[_]] <M 884- (6—29)

Therefore, (A(sx), J) is (¢, My)-energy-dispersed for My <ps 1 and & < %4,

Step 2.1: bounds for §A!°Y. Here we establish (6-12). We write an equation for §4'°% of the form
O ;84 = F,  §A"V[0] = 0.
We claim that in each subinterval J; of J and for each x > 10 we have the bound

| Flwrz2 =12,y S8 Q<N Allgagg +29°CATOA™ 51, g+ (6-30)

where C (/I, J1) contains only divisible norms of A; see (5-21).
We first verify that the bound (6-30) implies (6-12). Using the well-posedness for the U ; equation,
given by Theorem 5.1, in the time interval J; = [t1, 2], we obtain the bound

||8A10W||S(}*[J1] < C(M)(

184 1)l + @7 Allgapgy +2°CCATOISA™ (51,7, + %)

For this to be useful we need to ensure that the coefficient of ||§AY || s1,[7,] On the right is small. To
achieve that we first choose « large enough, k > s 1, depending only on M , so that

C(M)2~ ) A|| 117 < 1.
Then we divide the interval J into subintervals J; so that
C(M)2°“C(A.Jj) < 1.
The number of such intervals depends only on M. On each subinterval J; = [t;_1, ;] we have the bound
184 g1+ 184 1] 1, = CONUSA™ 1]t + 7).

Reiterating this we obtain (6-12).
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If remains to prove the bound (6-30). We relabel J; by J for simplicity. As a preliminary step, we
observe that, by Theorem 5.13 and the bootstrap assumption (6-26), we have

8™ g1, 1)+ I8AE Iy, 1y + 1P 1 7 Saa 184 g1, - (631)

In particular, this proves the bounds (6-13) and (6-14) once (6-12) is known.
The expression for F' is obtained from Theorems 3.5 and 3.6,

F = D/ISAlow = D/I/I_ O ACsx) + (Ogcs,) — DJ)A(S*),
where we further expand the two terms as
044 = Oa(en) Alsx) = MP(A, A) = MP(A(s5), A(sx)) + R(A) = R(A(54))
+ ijzc(alAa alA7 S) + Rj;S(A)’

and
(Ousy) —O 1) A(sx) = —Diff pgs yiow A(55) = Diff p 1 5 410 A(55) — Rem’g;ﬁowz‘l(s*)

+ (Rem*(A(sx)) — Rem>(A)) A(sx) + Rem_(A)A(sx).
We successively estimate the terms above as in (6-30):

(a) For M2(A, A) — M2(A(sx). A(s+)) we use the estimate (4-50). We inherit the envelope cx from
8A™Y but we also gain an additional power of & from the energy dispersion of A(sx).

(b) For R(A) — R(A(sx)) we use the difference version of the bound (3-21), with a similar gain.

(c) For Pw2(d;A,d, A, s) we use (4-59), taking advantage of the energy dispersion for A.

(d) For R;;s(A) we use (3-35), gaining a power of ¢ from the Str! norm.

(e) For Diff ;‘, Lg Al(,wA(s*) we use (4-82) combined with (6-31) for the high modulations, and (4-83)
combined with (4-37) and (3-22) for low modulations.

(f) For RemgﬁowA(s*) we use (4-81).
(g) For (Rem?(A(s4)) — Rem3(A))A(s+) we use (4-74).
(h) For Remg’* (A)A(s«) we use (4-76).

This leaves us with the most difficult term Diff f, P AIOWA(S*), for which we claim that
IDift s gow A | 2 172y ) SM 2784 5117 (6-32)
For PSAY we consider the same type of decomposition as in the proof of Lemma 5.8,

PSA]OW — PSAlow,main + PSAlow,main,Z + PSAlow,rem,Z + PSAlow,rem,3
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where
SAS ™™ = ATH([A, 3, A] — [A(s%), 3 A(s4)]),
5Agw,main,z _ A_lwo(A, A,s),
SAGE = 2071 (QUAL 00 A) ~ Q(A(s2). 0, A(s)
BAG™ = AJ(A. 0, A) — AJ(A(s4). 9, A(s4)) + A5 (A. 0, A),
and

sAlow-main — O~ (P M2 (A, A) — PM?(A(sx), A(s4))).
gAlowmain2 — =l pyy (A4, A, s),
SAIEm2 = (7N P ([ Ay, 0% A] — [Aa(5:), 9% A(s0)]),
sAlovrem3 — 01 p(R(A) — R(A(sx)) — Rem?(A) A + Rem>(A(s4)) A(sx))
+ 071 P(R}.s(A) —Rem?>(4) A(s4)),

where (07! is the wave parametrix with zero Cauchy data at ¢ = 0.
As a preliminary observation we note that

||8A£?W’main”5({* +”8A1)?W’main’2”5:* +”8Al;)w,rem,2”SL1'* + ||8A£?W’rem’3llsj* SM ||8A10W”S:* +882. (6—33)

This is a consequence of (4-42) for the first term, (4-59) and (5-47) for the second, and (3-21), (3-35),
(4-74) and (4-76) for the last term. The bound for the third term follows indirectly since they all add up
to §A™V.

Now we consider the contributions of each of these terms to Diff f, P AlOWA(s*).

Alow,main
x

The contributions of & and SAg)W’mam. These are considered together, and estimated using

Proposition 4.27. This yields the frequency envelope

fk=( > e (2 s*>—N)ck<22k 56 ) VN84 151,y Saa 27 PFCEN8AN 51y
k' <k—«k '
as needed.

Alovemain2 g SAg)W’mam’z. These are also considered together, but now we want

The contributions of §
to use Proposition 4.29. As they involve no §A4'°V differences, we need to estimate these contributions
by gfe. Unfortunately Proposition 4.29 provides no source for an energy dispersion gain, so we use a

trick, decomposing
DAFE o min2 A (5) = DIFES o man2 A(5) + DIt L A5,

where k’ > K is a secondary parameter to be chosen shortly. For the first term we apply Proposition 4.29,
which yields

||Diff§1;10w,main,2A(s*) | (NNL2H=1/2) «[J] <M Z_CS*K/-
For the second term, on the other hand, we use instead the bounds (4-55) and (4-59), which capture both
the ¢* decay and the energy dispersion. The price to pay is that this way we only have access to the
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ST norm of §A41°%-main.2 o we are only allowed to use (4-77). This yields

e li’ 88~ C’
||D1ff§Alow:!main,2A(S*)||(N(]L2H*l/2)c* [_]] SM 8c ¢ g2 “ .

We now add the last two bounds and then optimize in «’ to obtain the desired estimate
. )
”lefécAlow,main,ZA(S*) || (NQLZH—I/Z)C* [J] sM € h .

The contribution of §A%-"*™2 The SAfw’rem’z part is estimated using Proposition 4.28, with (6-33)
serving to verify the hypothesis. For the output this yields the frequency envelope

Je= ( Z C}:/)ck(22k/s*)_N <M 2_68*’(6;:.
k'<k—k

A simpler analysis applies for the contribution of SAI(;)W’rem’z where we can use Proposition 4.13.

The contribution of §Alow.rem.3 Eor the contribution of 8A};)W’rem’3 we use (3-23) and (3-36), while for the
contribution of 8A1)?W’rem’3 we use (3-21), (3-35), (4-74) and (4-76), all combined with Proposition 4.26.

Step 2.2: S'-norm bound for A4 via induction hypothesis. Taking ¢ sufficiently small and using the
bootstrap assumption (6-26), we may ensure that

I F llep_or < £(E). (6-34)
By the induction hypothesis, we may thus assume that
|Alls1sy < M(E). (6-35)
6C. Control of A — A: proof of Proposition 6.4. Here, we seek to bound
§AMEN = 4 — 4.
We begin by observing that
”fI”ED;(')[J] + ||DA||L2H—1/2[J] <M 886-
Therefore, both (A, J) and (A4, J) are (¢, M )-dispersed, where ¢ <ps &,
Step 1: consequence of approximate linear energy conservation. We claim that
fggumhigh, 0,84 (0)]13,, ., » S ¢(E) + Care®. (6-36)

Note that
SAhigh — (1 _es*A)A + es*AA — A(S*) + A(S*) - A

We begin with the inequality

IVA@®)25 = V(1 —e*2)A@) 125 + 2 A@)]12 .
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which follows from Plancherel and nonnegativity of the symbol of (1 —e%*2)e**A, By Theorem 5.13(1)
and (6-12), we have

IVes*2A@)II7> = |VA@)I|7 > + Care, (6-37)
IV =2 AW)I7, = V(A - D@72 + Cre®. (6-38)
Hence, by Theorem 5.9(5), we have
IV(A= D072 < IVAOIZ 2 — VA7 > + Cre®
< VA7, - IVAO)||7 > + Care®
< c(E)+ Cpe%s.

Step 2: weak divisibility and reinitialization. By Theorem 5.1(7) there exists a partition J = Ule Ji
such that K <ps¢g) 1 and

IAllsips SE 1. (6-39)

so that the number of such intervals is also controlled K <ps(g) 1. Using the uniform control of the
energy of §AMeM in Step 1, it suffices to estimate §AM2" in S separately in each of these intervals.
We will make a bootstrap assumption

I8A™E | g1y <2 (6-40)
Then our goal is to improve (6-40) to
I8AME [ 5117 <1 (6-41)

bytakingc <g 1, e <py land T <L pp¢ 1.

In view of (6-39) and (6-40), in all the estimates below within a single interval Jg, all implicit constants
will depend on E rather than M (FE). To simplify the notation we drop the subscript and replace Jj by J
in what follows.

Step 3: frequency envelope bounds. Let c be a frequency envelope for A in S ![J]. Then by Proposition 3.1,
the initial data in Ji for A(s) has the frequency envelope 2= k=Kt ¢ . By Theorem 5.1, we have a
similar envelope in S,

I1PeAE) s S 27 e (6-42)

On the other hand, by the estimate (6-12) we have, under the assumption ¢ < g 1, the bound
| Pe(A = AGDlsip Sp 270 ey (6-43)
Hence for the high-frequency difference A” we have the bound
| PdAM g1y S 27 E D¢ (6-44)
Step 4: control of nonlinearity. By Theorem 5.9(4) applied separately to A and A we have

10+ Diffp ) SAME" + Dt} sy All y 2 g 1727 SE 2€%6%0e, (6-45)
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where the parameter x > 10 is arbitrary for now, to be chosen later. We claim that the second term can be
estimated separately as
. g —C8x
”leff)gAhlghA||NﬂL2H_|/2[J] SE 2 ¢ K. (6'46)

This is a consequence of Lemma 5.8. To see that we use the bounds (6-42) and (6-44) to compute the
frequency envelope f; in Lemma 5.8. We have

fk SE ( Z 2_68*(k/_k*)_Ck’ + 2_(k/_k*)+ck/(020*)<k/)2_(k_k*)+ck SE 2_CS*|k_k*|Ck,
k'<k—«
and thus (6-46) follows. Combining (6-45) with (6-46) yields

(O + Diffs )54 <p 2768k 4 9CK Bads (6-47)

||NmL2H—1/2[J]
Hence by Theorem 5.1(1) we conclude that
”8Ahigh||Sl[Jk] 5E c+ 2—05*16 + 2CK85486.

Hence by takingk >g 1, c Kg 1, e Kgyx 1 and T <K g ¢ 1, the desired conclusion (6-41) follows.

7. Proof of the main results
The purpose of this short section is to deduce Theorems 1.13, 1.20 and 1.18 from Theorem 6.1.

7TA. Higher-regularity local well-posedness. In this subsection, we sketch the proof of higher-regularity
local well-posedness of the hyperbolic Yang—Mills equation. We first use the temporal gauge, which
works for general connections, and then turn to the caloric gauge, which works for data satisfying (1-12).

7A1. Temporal gauge. Here we write the Yang—Mills equations in the temporal gauge,

Ao =0. (7-1)
They take the form
O4A; = D¥0; Ay, (7-2)
with the additional constraint equation
D’3pA; =0. (7-3)

This can be viewed as a semilinear system of wave equations for the curl of A, coupled with a second-order
transport equation for the divergence of A.
We consider the Cauchy problem with initial data

A[0] = (A4 (0). ;47 (0)).

The initial data is uniquely determined by the Yang—Mills initial data and the gauge condition (7-1).
The system (7-2) together with the constraint equation (7-3) is well-posed in regular Sobolev spaces.
Precisely, we have:

Theorem 7.1. The system (7-2) is locally well-posed in HN x HN =1 for N > 2, with Lipschitz dependence
on the initial data.
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We further remark that the temporal gauge fully describes all classical solutions to the Yang—Mills
system:

Theorem 7.2. Let A be a solution to the Yang—Mills system which has local-in-time regularity (A, 0; A) €
C(0,T); HN x HN=Y) for N > 3. Then A has a temporal gauge equivalent A with the same regularity
(A,9,A) e C([0,T); HN x HN 1),

To see this, it suffices to solve an equation for the gauge transformation O, namely
071900 =49, 0(0,x)=1,

which is an ODE on the Lie group G. If A € C(H") then this yields a unique solution O € C(H™).
This in turn yields a temporal gauge equivalent solution

(A4,9,A)ye C([0,T]; HN ' x HN7?).

This argument loses one derivative. However, the initial data is in H N HN=1 which by the well-
posedness result yields a C([0, T]; HY x H¥~1) solution. But by the HV~! x HN~2 well-posedness
the two must agree, so we obtain a unique representation in the temporal gauge with the same data and
without loss of derivatives.

Remark 7.3. Analogues of Theorems 7.1 and 7.2 hold for the space HY. x HN = instead of HN x HN 1,

loc loc
where HY

loc 18 equipped with the norm supepsll - | 7~ (B, (x))-

7A2. Caloric gauge. In view of Theorem 1.11 we can fully describe caloric Yang—Mills waves as
continuous functions

131 (Ax(t), doAx(t)) e T C.
For higher-regularity Yang—Mills waves we have the following:

Theorem 7.4. Let A be a solution to the Yang—Mills system which has local-in-time regularity (A, 0; A) €
C([0,T); HN x HN=1) for N > 2. Assume in addition that the bound (1-12) is uniformly satisfied by its
caloric extension, globally in parabolic time. Then A has a caloric gauge equivalent A with the same
regularity (A,3; A) € C([0, T]; HNY x HN-1),

This result is a direct consequence of Theorem 1.11, with one minor exception. Precisely, Theorem 1.11
does not directly yield the C tL)ZC regularity for dg Ag. For that we instead need to refer to the expression
(3-15) and the bounds (3-18) and (4-28) for the two terms in (3-15).

Remark 7.5. The same result will easily hold for (4,9, 4) € C([0, T]; H x L?). However, if we only
assume that (4,3, A4) € C([0, T]; H' x L?) then one would also need to resolve the remaining gauge
freedom. For that it suffices to observe that if two A’s have a small difference in L2, then the two O’s
can be chosen in tandem so that they agree at infinity.

In particular this says that a caloric gauge solution exists for as long as a regular solution exists and
the L3 bound in (1-12) remains finite. This will allow us to bootstrap the existence time for as long as we
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have good bounds in the caloric gauge. Precisely, for® N > 3 suppose that an H” solution exists in the
caloric gauge up to time 7. If this solution has uniform H " bounds up to time 7, then its temporal gauge
representation has uniform H” bounds up to time 7. Thus it can be extended further in the temporal
gauge, and hence also in the caloric gauge. This shows that a maximal caloric gauge solution must either
explode in H” at the (finite) end of its lifespan, or the L3 norm in (1-12) must explode. The latter cannot
happen for subthreshold solutions. Thus we have:

Theorem 7.6. The Yang—Mills system in the caloric gauge is locally well-posed in HN x HN 1 for
N > 2. Further, the solution extends for as long as the HN x HN ™! norm remains bounded and the
L3 norm in (1-12) remains bounded.

For regular data, this result reduces the problem of global well-posedness to that of obtaining uniform
bounds for caloric solutions.

7B. Local well-posedness in the caloric manifold C: proof of Theorem 1.13. For g, > 0, recall that the
energy concentration scale r¢* was defined as

1
ré*la, el =sup{r:&p,(a,e) < &2} = sup%r >0: sup 5 Z ||fa3||i2(3r(x)) <g2!,

4
xX€ER a<B

where fj is the curvature form corresponding to a;, fo; = — fjo =e; and foo = 0. Since the definition
only involves f,g, we will slightly abuse the notation and simply write re*[ f] for ré*[a, e).

Lemma 7.7. Let A be a regular caloric Yang—Mills wave on I = (=Ty, Ty). For any ¢ > 0, if e« is
sufficiently small compared to € and
To <ri*la,e],
then we have
IFlgpe,, ) <& with2™ =e(rf*[a,e])™".

Proof. By our notation, f,g = Fog(0). After rescaling, we may set ré* (F(0)) = 1. We begin with the
observation that

1P F(1)llLoe < 2°%-272F sup | F (1)l 128, (x))- (7-4)

x€R4

which follows from the properties of the convolution kernel of Pp; in particular, it is rapidly decaying
on the scale 27% and its L2-norm is bounded by 272X, Then, by the localized energy estimate for the
hyperbolic Yang—Mills equation, i.e.,

EtyrxBroy (F) = EoyxBr(F) (0 <[] <R), (7-5)
the lemma follows. O

Proof of Theorem 1.13. We prove the theorem in several steps:

8The requirement N > 3 is so that there is no loss of regularity in the transition to the temporal gauge. Precisely, we want to
ensure that Ag € C(H! N HN'H).
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Step 1: regular solutions. Let A be a regular caloric Yang—Mills wave with energy £ and initial caloric
size Q. For &, small enough, to be chosen later, let 7. := r5* be the corresponding energy concentration
scale for the initial data.

Our goal is to prove that if 4 is small enough, depending only on £ and Q, then the solution A persists
as a regular caloric solution up to time r.. Precisely, we will apply Theorem 6.1 to the solution A in order
to show that the solution A exists in [—r¢, r.] and satisfies the bound

Al st{=rp.r] < M(E,3Q). (7-6)

We use a continuity argument. Let 7y < r. be a maximal time with the property that the solution 4
given by Theorem 7.4 exists as a classical caloric solution in (—Tp, Tp), and further satisfies the bound

sup  Q(A(t)) <3Q. (7-7)
te[—To,Tol

For 0 < T < Tp we seek to apply Theorem 6.1 to A in I = [T, T]. To verify the hypothesis of
Theorem 6.1 we need to ensure that for a suitable choice of m we have

IFlleps,, <€(€,3Q). [ =27"T(£,39).
For this it suffices to apply Lemma 7.7 with
e =min{e(&,3Q),T(£,309)},

which yields the appropriate choice of &.
Now by Theorem 6.1 we obtain the uniform bound

[Allsi—r,71 < M(£,3Q), 0<T <Tp.

By the structure theorem, Theorem 5.1, it follows that higher-regularity bounds are also uniformly
propagated,
sup  |[(A4,0:A)@)|| g~ < 0.
t€(=To,To)

Thus by the local result for regular solutions in Theorem 7.6 we can continue the regular caloric Yang—Mills
connection A beyond the time interval [—Ty, Tp].

Finally, we consider the bounds for Q(A4). These we can propagate using Theorem 5.9, which implies
that

sup Q(A(r)) — Q So.e 654
te[—To,To]

Readjusting ¢ if needed, it follows that

sup  Q(A(r)) =20. (7-8)
te[—To,To]

This implies that the bound (7-7) also can be propagated beyond +7}. This contradicts the maximality of
To unless Ty = r.. Hence the classical caloric Yang-Mills wave exists in [—r., r.] and (7-6) holds.
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Step 2: rough solutions. Given any caloric initial data (a, b) with finite energy £ and caloric size Q, we
consider the corresponding regularized data (a(s), b(s)) obtained using the Yang—Mills heat flow. We
have the uniform bounds

E(a(s).b(s)) =&(a,b), Qla(s),b(s)) = Qa,b).

In particular, we have ( f(s), e(s)) — (f,e) in H! x L2 This implies that the energy concentration scales
for (a(s), e(s)) converge to those for (a, ¢). Thus, by the analysis in the smooth case above, for small
enough s the corresponding solutions A(s) exist as smooth caloric Yang—Mills waves in [ = [—r¢, 7]
and satisfy the uniform S! bound (7-6).

Now we use the structure theorem, Theorem 5.1, to consider the limit as s — 0. If ¢ is a frequency
envelope for (a, €), then by Proposition 3.1 it follows that:

(i) For (a(s),b(s)) we have the frequency envelope in H! x L2
ck(s) = cxe(2%s) 7%
(ii) For the difference (a, b) — (a(s), b(s)) we have the envelope in H' x L2
Scp(s) = e (272K g1y —eds,
(iii) For the difference (a(s), b(s)) — (a(2s), b(2s)) we have the envelope in H!'x L2
CE(s) = cpey2 RO,
By Theorem 5.1(2), it follows that cg (s) is a frequency envelope for A(s) in S;. Combining this with

Theorem 5.1(8), it follows that c;: (s) is a frequency envelope for A(s) — A(2s). Summing up such
differences, we obtain the general difference bound

[A(s1) — A(s2)lls1 Se,0 Clrsy) k(s2)]- (7-9)
This implies that the limit
A = lim A(s)
s—0

exists in 5. We define A4 to be the caloric Yang—Mills wave associated to the (a, b) data. We remark that
by (7-9) we have the difference bound

[A—=A(S) st Se.0 C2k(s)- (7-10)

Step 3: difference bound. The difference bound in part (4) of the theorem is a direct consequence of the
difference bound in Theorem 5.1(8).

Step 4: continuous dependence. We consider a convergent sequence of caloric initial data
@™, b™) - (a,b) in H' x L2 (7-11)

Let A™ (s) and A(s) be the corresponding solutions with regularized data.
Denote by ¢;! a corresponding sequence of frequency envelopes for the initial data (a ®) p™) in
H!'x L2 By Theorem 5.1(2), these are also frequency envelopes for the solutions A(”)(s).
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By Theorem 7.4 we know that for each s we have
A®(s) > A(s) inS!
and in effect in stronger topologies. Then we estimate

limsup | A® — Al g1 < lim Timsup | A" (s) = A($)[lg1 + €25y + Coks)
n—00 §=00 p—o0 = -

< lim limsupcly ).

§70 p—oo

But the last limit is zero in view of the convergence in (7-11). The continuous dependence follows. [

We end this subsection with a lemma that bounds the energy concentration scale from below by an
L?-frequency envelope for F, which proves Remark 5.2.

Lemma 7.8. Let ¢ be a frequency envelope for Fyg in L? forall a,B € {0,1,...,4}. Suppose that
llc ”52>m < Cley for some m € 7 and a sufficiently large universal constant C > 0. Then r&* (F) > 27

Proof. 1t suffices to establish the bound
IFllL2(B(x,2%) < C>k-

To see this we use Bernstein’s inequality to estimate

| Fll2se a5 S 1 Fakllze + D272 1 FjllLee S esi+ ) 227 es ~ o O

i<k i<k
7C. Regularity of energy-dispersed solutions: proof of Theorem 1.20. Consider a time ¢y where Q(A(t))
is nearly minimal. From Lemma 5.10 we have the estimate
Q(A(to)) Se &
If ¢ is small enough this allows us to conclude first that @ < 1, and then that
Q<E €.

Now a straightforward continuity argument shows that

Q(A(t)) <1, tel,
which again by Lemma 5.10 yields

QA1) <e e, tel

Then we can apply directly the result in Theorem 6.1 for any m € Z. This eliminates any restriction on
the size of the interval /.

7D. Gauge transformation into temporal gauge: proof of Theorem 1.18. To produce a temporal gauge
solution to (1-1) from the caloric gauge solution we use a gauge transformation O defined as the solution
to the ODE

0719,0=4¢, 0(0)=1. (7-12)

Here for Ay we have the regularity given by Theorem 5.1(9), namely

Aop € '|D|72L2L]. (7-13)
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We use this to compute the regularity of O:

303

Lemma 7.9. (a) Assume that Ag is as in (7-13). Then the solution O to the ODE has the following

properties:

(i) Ox € Ci(HY).

(i1) O is continuous in both x and t.
(b) Consider two solutions O and 0 arising from Ay and fIO. Then we have:

6) (H L bound)

|| 0_18x0 - 5_13x5||1;,1 < ||A0 - I‘IO||41|D|—2L}(L} .
(i1) (uniform bound)
1d(0, 0) Lo 5 1 Ao = Aollgr p-2r211 -
Proof. (a) We first consider the ODE
07 '9,0=F, 0(0) =1,

and observe that for smooth F' this is easily solvable.
Next we consider a smooth one-parameter family of solutions O(%). For this we compute

%(0—13,,0) — 0, F —[F,0719,0],
which immediately leads to

t
10718,0()] < / 195F (5)| ds.
0

(7-14)

Comparing two solutions O and 9] generated by F and F using the straight line between them, it follows

that ,
a©0.0) = [ 1)~ Fs)lds
0
This yields a Lipschitz property for the map
LI5F - 0¢eC,

which is thus by density extended to all F € L}.
Next we turn our attention to Ag, which by Bernstein’s inequality satisfies

Ag € CxL}.

This implies the desired continuity of O.
Finally we consider the evolution of O~ O,

%(o—laxm — 9. Ao —[4g, 0719, 01.
Since dxAg € LiL}, this immediately gives

o 'o,0elLic,ccL”.

(7-15)
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A second differentiation yields as well
3x(0719,0) e L2C, Cc CL>.

(b) The uniform bound for the difference follows directly from (7-15). For the difference of the derivatives
we compute

3,(0713;0—0719,0)+[49. 0713;0— 019,01 = 8; Ag — 3, Ag — [Ag — Ag. 09, O].
As above, we can estimate this first in L4 and then in H 1. O

To conclude the proof of Theorem 1.18 it remains to verify (i) that gauge transformations O having
the properties in the above lemma yield temporal connections Al e C(H"Y), and (ii) these connections
depend continuously on the initial data.

For the continuity in time we write

Al =04 -0"19,0)07.

The second term above is in C; H? due to the previous lemma. For the first term we differentiate, then
use again the lemma combined with the continuity of O and dominated convergence.

For the continuous dependence of the temporal solutions with caloric data the same argument as above
applies. However, we also need to consider general finite-energy initial data sets. Here the construction
of the temporal gauge solutions starting from a general initial data (a, e) goes as follows:

(1) Given the initial position a € H, we consider the gauge transformation O = O(a) which turns a
into (a, e), its caloric gauge counterpart.

(2) Given the caloric data (@, &) we have as above a unique temporal solution A.

(3) To return to the data (a,e) we apply to A the inverse gauge transformation O~! to obtain the

temporal solution A4.

The regularity of the gauge transformation O is 0719, 0 ¢ H!, which suffices in order for it to map
C(H") connections into C(H ') connections. It remains to prove the continuous dependence. Consider a
convergent sequence of data (a M) M) _ (a, e) in H' x L2 Without any restriction in generality we
can assume that (a, e) is caloric. Denote by O™ the corresponding gauge transformations, which, we
recall, are only unique up to constant gauge transformations. Then we need to show that for a well chosen
(sub-)sequence of representatives 0™ we have the following properties:

1) (0™)=19,0™ - 0in H.
(2) 0™ (x) > I ae.in x.
But this is a consequence of Theorem 1.2; see also Remark 1.3 (recall also that 0.y = Ad(0)(0~13,0)).

8. Multilinear estimates

The purpose of this section is to prove most of the results stated without proof in Section 4. The exceptions
are Theorem 4.24 and Proposition 4.25, which involve construction of a parametrix for O + Diff}p ,; their
proofs are given in the next section.
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8A. Disposable operators and null forms. In this subsection we collect preliminary materials that are
needed for analysis of the multilinear operators in the nonlinearity of the Yang—Mills equation in the
caloric gauge.

8A1. Disposable operators. Boundedness properties of the multilinear operators arising in caloric gauge
(see Section 3) can be conveniently phrased in terms of disposability (after multiplication with appropriate
weights) of these operators.

We begin by considering the multilinear operator Q with the symbol

EP = _ E+m-E—n
202+ 20EP+n>)

which arose in the wave equation for A, (most notably through the expression for at4 ¢) in the caloric

Q.=

gauge.
Lemma 8.1. Forany k, k1, ks € Z, the bilinear operator
25K P Q (Piey (+). Pry ()

is disposable.
Proof. To begin with, note the symbol bound

|§ +
(1P + In2)?
which implies that the symbol of 2Kkmx—k p, O(Pk,(+), Pr,(+)) is uniformly bounded. In the case
ko < ki —5 so that |knax — k| < 3, it can also be checked that

anikignaka |pgn) (P (€ + ) Q (&, 1) Pr, (€) Py (D) Smyms 1.

which proves the desired disposability property. By symmetry, the case k1 < k, — 5 follows as well. In
the case |k1 — k2| < 5 (so that |kmax — k1| < 10), making the change of variables (£,¢) = (§,€ + n), it
can be seen that

phr—kymkagnak 0502 (P (£) Q6. € — 6) Py (6) Piy (€ = )| Sy 1.

Q€. I <

which implies disposability of kemax—k PeO(Pe, (+). Py (+)). _
Next, we consider the multilinear operator W (s) with the symbol
W= e
261

which arose in the wave equation for the Yang—Mills heat flow development A (s) of a caloric Yang—Mills
wave.

Lemma 8.2. Forany k,ki,k, € Z and s > 0, the bilinear operator

(522K) 10 (5710 2km ) p2Kmax Py W (P (+), Prey (-, 5) (8-1)

is disposable.
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Proof. Without loss of generality, we may assume that s = 1 by scaling. We distinguish two scenarios:

Case 1: high-low or low-high, k = max{ky, k>} 4+ O(1). To prove disposability of (8-1), it suffices to
show that

(22kqu) 112n1k1 2n2k2

28
S—Pkl(s)sz(n)N <o |
n

for any n1,n, € N. Since the derivatives of Py (§ + n) Py, (§) P, (n) already obey desirable bounds, it

agm)a(nz) (Pk &+ n)e—|§+n|

only remains to prove

1 — e26m
(22ma) Hmiki gnaka | i) y(na) (e—'f+"'2—e )‘ Snimy 1 (8-2)

£-n

for &, n in the support of the symbol (8-1).
Since k = max{ky,k»} + O(1), we have 22kmx ~ [£]2 4 5|2 ~ |& + |2 On the one hand, it is
straightforward to verify

2n|k12n2k2|8§n1)agn2)e—|$+r]|2| Snins 2n1k12n2k2(1 + £+ 7,”2)”1;— 2e—|i-'+r]|2

n +n2 2
<ni.no 2(”1 +n2)kmax <22kmax) |§+77|

On the other hand, we also have

1 — 28
2k gnake ag’“)agnz)(—e )‘ S 2RI (g e 4 1) (14 2E)

£

kmax 2kmax rll+ 2
< ,n22(n1+n2) (2 )2

~ni

2‘5'17)_

The key point here is that when |£ - | < 1, the denominator & - 1 cancels with the first term in the Taylor
expansion of the numerator 1 — & - n; we omit the details. Combining (8-3) and (8-3), it follows that

1 — e26m
onikiynaka 32’11)35;12) (e—liEJrnl2 € )‘ <nim (22kmaxymitn2 p=lE+n () 4 o268y,

£
Since e~ lE+717 (1 4 ¢26M) = o =6+ 4 o =(EP+I?) < p=C712%m (g oy follows.

Case 2: high-high, k¥ < max{ky,k,} — C. As usual, we make the change of variables (&, ¢) = (£, + n).
It suffices to prove

(22k> 10 (22kmax>2n 1kioyn2k Snina 1

21— 28
o0 (e L= D g -0 <

Note that the derivatives of (22%)10 P, (¢ )e"{|2 Py, (§) P, (§ — ) already obey desirable bounds. Hence

we are only left to show
3(”1)3(”2)(Lm)' w1 (8-3)
£ §-(0=9) v

(22kmnx ) 2” 1k1 2n2k

for £, ¢ in the support of (8-1).
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Note that k1 = kmax + O(1). In the case 2Zkmax < 1 (8-3) follows from
90" (28 - G =) 1 =X E)) 5y 1
which follows by Taylor expansion at £ - ({ — &) = 0. In the case 22kmx > 1, we use
pmikignk gt gt (6. (¢ — )| 5 27,
2n1k12n2k|8én1)8§n2)(1 _ 20y <,
both of which follow from simple computation, whose details we omit. O

8A2. Null forms. We now discuss the null forms that arise in caloric gauge, which occur in conjunction
with various (disposable) translation-invariant operators. To treat these in a systematic fashion, it is useful
to define null forms in terms of an appropriate decomposition property of the symbol.

Definition 8.3 (null forms). Let 7 be a translation-invariant bilinear operator on R!*# and let 4 € {+, —}
be a sign. Given k1,kp € Z, £,0' € =N, w, o’ € S3, define

64 = max{|Z(», £o')|,2¢,2Y}.
(1) We say that 7 is a null form of type N+, and write
TG ) =Ne(-,0),
if for every k1,ky € Z, £,{' € —N and w, 0’ € S3, T admits a decomposition of the form

T((x.£). (0. ) (P, PO E) (P, PY () = 022702 0((.6). (0m) Y ai, (§)bi, ().
i1,ineN
where the Fourier multipliers

([0 a1+ 1i2)) i, (8-4)
are disposable, and the translation-invariant bilinear operator with symbol

O((z.£). (0. 1)

is disposable as well.
(2) We say that 7 is a null form of type N if T(-,-) =N4(-,-)and T(-,-) =N_(-,-).
(3) We say that 7 is a null form of type Ny, +, and write
TG )=Nox(-.),
if for every k1, ko € Z, £,£' € =N and o, ' € S3, T admits a decomposition of the form

T(E M (Pr, POYE)(Pr, PG ) () = 02281 7R20((x.6). (n.0)) Y @iy (E)bi ().
i1,i2€eN

where the Fourier multipliers

(1+i1) "%, (1+i2)'%%;, (8-5)
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are disposable, and also the translation-invariant bilinear operator which has symbol O((z, ), (o, 1)) is
disposable as well.

In particular, O, a;, and b;, may depend on k1,k2,£,¢, w, ', but the disposability bounds stated
above do not.

Remark 8.4 (null form gain). To exploit the null form, it is convenient to make the following observation:
as an immediate consequence of the definition, we may write

Ni(Py, PPu, Py PY v) = CL28 2B (P, PPu, Pry P v)
for a universal constant C > 0 and some disposable 0. Analogous statements hold for A/ and Ny +.

Remark 8.5 (behavior under symbol multiplication). The properties of 7 in Definition 8.3 seem compli-
cated at first, but its usefulness comes from the fact that it is well-behaved under symbol-multiplication
with a disposable multilinear operator. More precisely, if O(-,-) is a disposable translation-invariant
bilinear operator and 7 (-, -) is a null form in the sense of Definition 8.3, then the translation-invariant
bilinear operator with symbol O(&, n)7T (€, n) is clearly also a null form of the same type.

We now verify that the standard null forms are indeed null forms according to Definition 8.3. We have
the following separation-of-variables result for the symbols of the standard null forms.

Lemma 8.6 (standard null forms). Consider the symbols

Nij(&,n)=&nj—&ni, No+(&n)==x|Eln|—&-n.

These symbols admit the decompositions

€171 1017 Ny (6. ) (Pay POYE) (P, PEY () = min{y, 63 > ai (©)biy (). (8-6)

i1,ineN
€171 ™" No,= (5. m) (P, PE)(E) (P, PEY(p) = 62 Z aj (£)b, (n), (8-7)
i1,i2€N
where
U410 Pa;,. U+ D10 (41D %, (1+ i)', (8-8)

are disposable.

As a corollary, it follows that N;; is a null form of type N, whereas Ny + are null forms of type N.

As before, a;,, al’.l, bi, and blfz depend on k1, k,, €, ¢, w,w’, but the disposability bounds stated in
(8-8) do not.

This lemma can be proved by performing separation of variables using Fourier series on an appro-
priate rectangular box containing the support of Py, P/ (§) Py, P£/ (&7). For the details in the case of
1E171 0|~ 1V (€, 1), we refer to [Gavrus and Oh 2016, Proof of Proposition 7.8]. For Ny 1, observe that

[\70,:&(57 n) := |&]7n| "1 No,+ (€, n) obeys
INo+(E.m| S 6%, |3:No (& S27F65, |3,No+(E, )] <2720,
00002 N +(6.m)] S 27"F12772K2 (g 410 > 2)



THE HYPERBOLIC YANG-MILLS EQUATION IN THE CALORIC GAUGE 309

for &, 1 in the support of P, P/ (§) P, Pf(n). Using these symbol bounds, the case of Ny + can be
handled by essentially the same proof as in [Gavrus and Oh 2016, Proof of Proposition 7.8]. See also
[Gavrus 2019, Section 8].

We now present algebraic lemmas, which are used to identify null forms in the Yang—Mills equation in
the caloric gauge. The following lemma identifies all bilinear null forms.

Lemma 8.7. Let O be a disposable bilinear operator on R'T4. Let A be a spatial 1-form and let u, v be
functions in the Schwartz class on RYT4. Then we have

O(P* A, du) =Y N(D|" 4;.u), (8-9)
J

PO(u,d,v) = |D|"*N(u,v). (8-10)
Moreover, we also have
O(0%u, 3qv) = No,+ (01 u, 0 )+ Mo +(Q7u, Q7 v)
+No,~(QFu. 07v) + No—(Q7u, 0Fv) +Ro(u.v), (8-11)
where
Ro(u',v") = O((D: = D)0 ' + (D; + D) Q™ u, D)
+0(ID|(QTu' = Q07u). (D = |DNQ TV + (D¢ +|DNO V). (8-12)
Remark 8.8. As is evident from the proof below, Lemma 8.7 readily generalizes to a disposable multilinear
operator O that has one of the above structures with respect to two inputs. We omit the precise statement,

as the notation gets unnecessarily involved. However, we point out that this is all we need in order to
handle the trilinear secondary null structure.

Remark 8.9. An alternative way to make use of the null form O(d%u, dqv) is to rely on the simple
algebraic identity

20(0%u, dgv) = OO(u, v) — O(du, v) — O(u, Ov). (8-11Y
We have elected to use the decomposition (8-11) to unify the treatment of null forms.

Proof. We begin with (8-9) and (8-10). By Remark 8.5, it suffices to consider the case when O(u, v) is
the product uv. Then it is a well-known fact (going back to [Klainerman and Machedon 1994; 1995])
that P£Ad,u and P;(udxv) are standard null forms, i.e.,

PAdu = Ny ()18 47 u), (8-13)
P;(udxv) = (—A) 1O NG (u, v). (8-14)

We omit the simple symbol computation. Hence (8-9) and (8-10) follow.
Next, we prove (8-11), which is essentially the well-known fact that 0%udyv = —D%uDyv is a null
form. To verify (8-11), we first decompose u = Q u 4+ Q" u and v = Qv + O, then we substitute

D;0*u=+|D|0*u+ (D, F|D|)0Fu, D;0¥v=='|DI0F v+ (D, F |D)OFv.
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When O(u, v) = uv, the contribution of the first terms gives

> & ='|D[Q*u|D|Q* v~ D Q*uDQF v) = ) | Noss(Q*u. 0% v).

+,4’ +,4’
By Remark 8.5, the same contribution constitutes the first four terms in (8-11) in general. Note moreover
that the remainder makes up Ro(u, v), which proves (8-11). O

Next, we present an algebraic computation, which will be used to reveal the trilinear secondary null
form of the caloric Yang—Mills wave equation.

Lemma 8.10. Ler O, O’ be disposable bilinear operators on R'T4. Then we have
o' (Ao D, 9ou@), 3%y + o' @ PO D, 8,u?®), 8 u®)
=0'@a'ou®, 9,u?), 9%u®) - 0@ 'A719,0,0uP, 3%u?®), 9,u®)
— 0@ AT9,0,0uV, 3 u @), 3%u®),
provided that A~'0, 0710 and O~ A=1O are well-defined in the sense that their kernels have finite
masses.

Of course, the requirement that the kernels of A~1©, 07O and O~' A~ O have finite masses is
excessively strong for the validity of the lemma, but it will be verified in the applications below.

Proof. The proof of this lemma is the same as in [Krieger et al. 2015, Appendix]. Using the identities
ATl O =07'ATY(—-8%), P;B=B;—AT'9;0°B,. 3% =—dp =0,
and adding and subtracting O'(O0"*A719,3¢ 0™, 3,u@®), 3,u®), we may write
O'(ATTow®, 9gu®), 3% ) + o' @ P, oD, 8,u®), 3'u®)
=0/ @ tow®,du®), %) + o' @ ow®, 9;u®), su®)
—0/(@'A719,0°0u®, 90u @), ,u®) —o0'@ ' AT19; 00w, 9,u®), 31 u®)
—o0/@'A19,0t0u®, 9,u®), 3,u®)— 0@ AT 90 0D, 3,u?), 3%u)
=0 @ 'o®, d,u®),3*u®) -0’ @'AT19,0,0wD, 3*u®), 9,u®)
—0'(@O AT 9,0,0D, 3 u®@), §2u ).

In the last equality, we paired the first and the second, the third and the fifth, and the fourth and the sixth
terms, respectively, from the preceding lines. O

8B. Summary of global-in-time dyadic estimates. In what follows, we denote by O a disposable translation-
invariant bilinear operator on R! ™4, and by A a bilinear null form as in Definition 8.3(2). Let u and v
be test functions on R!™#. For convenience, we also introduce test functions u’ and v/, which stand for
inputs of the form Vu and Vv, respectively, in the applications.

Given k, k1, k, € Z, we define ky.x = max{k, ky, ko } and kyy, = min{k, k1, k»}. We use the shorthand
U, = Py u, Vg, = Pr,v and vp = Py, v"
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8B1. Bilinear estimates for elliptic components. We start with simple bilinear bounds which do not
involve any null forms.

Proposition 8.11. We have

_8 kmax_kmin
PO, vp ) 2 r—1/2 S 2701 | Dug, gy 10, lsyo- (8-15)
_8 kmax_kmin
1 PO, vf )| poss grare S 2701 | Dug, llgyo 10, llsyo- (8-16)
I POk, Vi) 12,00 S 275 FIR20 ) Dugg 15107 s (8-17)

Furthermore, we have the following simpler variants of (8-15), (8-16) and (8-17):

_8 kmax_kmin

||Pk0(uk1 ) vl/cz)”LZH—lﬂ <2 1 )||uk1 ||ng3/2||U;¢2 s, (8-18)
-6 kmax_kmin

| PkO(”kl ) U;CZ)||L9/5['1—4/9 <2 1( )||”k1 ||L2H3/2 ||v,’€2 s, (8-19)

27 . 4 _1 5 1 _5
|1 POk, Vi) 12,00 S 235m0273K276K126K2 2651 gy [11216) (27 8%2 0] llp2p6).  (8-20)

8B2. Bilinear estimates concerning the N -norm. Next, we state the N -norm estimates which will be
used for the bilinear expressions arising from P M, P+ M and Rem*:2.

Proposition 8.12. We have

| PN (e, s o) |y < 2751 Cmac=knin) 2K | Dy 15[ Do, |5 (8-21)

| P O(0%ug, , 0aVi,) N < 2781 Gemax—Kmin) 2 Kman | Dug, |Isl|Dvi, s, (8-22)
_ _ . 1

1PLOGy vyl 2 < 270 Emakmind Jygr | 0 (2652 g, N 2 6). (8-23)

Furthermore, for any k € N, we have the low-modulation gain

| Pr Q <k, —ke N (Q <k —cUky » O <beyin—kc Vi) | N S p~dikgk | Dug, |Isl|Dvg, s, (8-24)
1Pt O <t 0% O <t ity 00 O <t Vi) IV S 27812k | Duy |5 || Dy s (8-25)

For the term Diff , B, we need to distinguish the case when the low-frequency input 4 has a dominant
modulation. For this purpose, we borrow the bilinear operator 7—[; (and its “dual” Hj) from [Krieger et al.
2015].

Given a bilinear translation-invariant operator O, we introduce the expression Hy O (resp. ’HZ ), which
essentially separates out the case when the modulation of the output (resp. the first input) is dominant.
More precisely, we define

HOw.v) = > 0;0(Q<j—cu,Q<j—cv),
jij<k+C

HiO®u,v) = Z O0<j—cO(Qju,Q0<j—_cv)

Jjij<k+C
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for some universal constant C such that C < Cy, where Cj is the constant in Lemma 8.21. We also define

HO@w,v)= > PeHRO(Pryu, Pryv),
k,k],k22k<k2—c
H*O(u,v) = > Hje, PrO(Pru. Pryv).

k,k1,k>:k1<ko—C

We are now ready to state our estimates for the N -norm of the term Diffp4 B.

Proposition 8.13. For k1 < k — 10, we have

| Pe(1=HE DN (D gy vl < [ Dy s || Do, s (8-26)
1
1P (1= H YOukey s vi )N < Nty 2 gase [0, s (8-27)
1 2 2
1PeHE N (DI gy o) v S M, [z | Dogy s (8-28)
1
| PrHy, Ougy s i )IN < ke, [ a-12m1221 [0, Il s - (8-29)

Furthermore, for k1 <k — 10 and any k € N, we have
1 PeHg N (DO <y ety Vi) IV S 27 g, | 21 | Do, | . (8-30)
| PEH], O(Q <kt V)l S 275 g, a2zl s (8-3D)

8B3. Bilinear estimates concerning X, b.p -type norms. We now state the Z!-, Z 11,0— and Z ;0—norm
bounds. We begin with the ones for the bilinear expressions arising from P M?, Rernl'fl’2 and M%.

Proposition 8.14. We have
| PN (g v gz, < 270 o)oK | D |5 D 5. (8-32)
| PrN (g, s vi) oz S 2781K=R2l0K ) Doy [ 51| Dy, s (8-33)
Furthermore, for k <k — C, we have
1 Prc(1 = H )N (g, vi) Iz S 2750 €028 Dy s Dy, s (8-34)
1Pe(1 = H) OCur, v ) arzoirzz1 S 27 * 0 Dug s [lvy, s (8-35)

The following bounds are for the null form arising from Diff }‘,x 4B we remark that this is the only
place where we need to use the intermediate V4 ;O -norm.

Proposition 8.15. We have

| PN (D™ ke, i) gz, S 270 Con o e 51| D, s (8-36)

| AN (D] ke, vk g, <2701 C o g g z3 1Dk 5. (8-37)

| PN (DI ey vie) iz <270 Em™ ) g 51,71 [ Dy s (8-38)

| PN (DI iy vy -172400 - S 270 o) g g1 70 ([ Dy s (8-39)

Finally, the following bounds are used to handle Diff f’fOB and Diff,, ,B.
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Proposition 8.16. We have

| POy v mzy, <2701 Em )| Dug 1y v, s (8-40)
1POui, v )llmz1 S 278 Eme o) Dage 1y og, s (8-41)
1 PeOui, Vi)l —1/2401.-5y < 2701 Eme=Knid | Doy 1y vy |1 (8-42)

8B4. Trilinear null form estimate. Let u(l), u(z), u® be test function on R4, Given ki € Z, we
introduce the shorthand u(’) k,»u(i) i=12,3).

Proposition 8.17. Let O and O be disposable bilinear operators on R'T4. Let j <k —C and k <
min{kg, k1,...,k3} — C. Consider the expression

cublc(u’(cl)’ul(cz)’uk))_Q<] cO' (A~ PkQ,(’)(Q<j_Cul(€11),80Q<j_cu(2)) 0 Cuk))
+0<j-cO@ PO PO(Q<jcuy). 00 <jcul). 0* O <jcup).

Then we have

NGy w2 )l o £ 271 O EED DD s | D s 1 Dul s (843)

In fact, for later use (in Section 11), it is convenient to also state a more atomic form of (8-43). Given

k; € Z and a rectangular box C®), we use the shorthand u' y = P, Pc<i>u(i ) (i =1,2).

k C(l
Proposition 8.18. Suppose O and O’ are translation-invariant bilinear operators on R'** such that
owpp -, PZ“,’/ -) and O'(PJ -, Pe(‘,’/ -) are disposable for every £, £’ € —N and w,w’ € S>. Let j <k —C,
k <min{kg, k1,...,k3}—C and ¢ c®@ ¢ {Cr (D)}, where £ = % We have

— 1 3
| Pey Q< j-cO' (O PLQ;0(Q<j—ctty) ity 00 Q< jmctiy) 1), 9% Q< jmctuf ) 1 L2

—81 (k1 —k) n—81 (k— )
< 2701k =ai ’)llDuklCm||skl[ck(e)]llDukzC(z)||S,(2[ck(e)]||Duk3 Is. (8-44)

||PkOQ<j_CO/(D_lA_1Pij3 d O(Q<j—Cu( )C(l)’aaQ<j—Cu C(z)) 8tQ<j—Cuk )||L1L2

s b1k =k)p=d1 (k= j)”D“kl o ”Skl [Ck(ﬁ)]”Duk2 e ”Skz[ck(e)] ”Duk ) s, (8-45)

1 ,— 2
| Py Q< jc O/ (O AT P Q0100 O(0 <j—ctty 1y, 9 0 < - cu; ) 0, 00 <j—cu)pi 2
S 27T EED DU sy el DU o s feenl D) s - (8-46)

8C. Proof of the interval-localized estimates. In this subsection, we prove all estimates claimed in
Section 4 except Theorem 4.24 and Proposition 4.25, which are proved in the next section.

The key technical issue we address here is passage to interval-localized frequency envelope bounds (as
stated in Section 4) from the global-in-time dyadic estimates stated in Section 8B.

In what follows, we denote by © and O disposable multilinear operators on R! T4 and R%, respectively,
which may vary from line to line. Similarly, )(II‘ indicates a generalized time cutoff adapted to the scale 27k,
which may vary from line to line.
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8C1. Estimates that do not involve any null forms. Here we establish Propositions 4.12, 4.13, 4.14 and
4.18, whose proofs do not involve any null forms.

Proofs of Propositions 4.12 and 4.13. We introduce the shorthand A’ = 9, A and B’ = 9; B. Using (4-25)
and Lemma 8.1 we write

|D|7 Py ME(Py, A, Py, B) = 27X PLO(Py, A, Py, B)), (8-47)
PLQ(Py, 4, Pr, B) = 25275 P O(Py, A, Py, B), (8-48)

D' P Q(Py, A, Py, 9 B) = 27Fm P O(Py, A, Py, B, (8-49)
|D|"2PyDM3(Py, A, Py, B) =2 K27 up O (P, A, P, B'). (8-50)

Step 1: fixed-time estimates. Applying Holder and Bernstein (to one of the inputs or the output, whichever
has the lowest frequency), we obtain

1Pk O (Pru’, Preyv) 2 S 225 | |0 2. (8-51)
Recalling (8-47)—(8-50), the fixed-time estimates (4-27), (4-28) and (4-35) follow.

Step 2: space-time estimates. Here, we prove the remaining estimates in Propositions 4.12 and 4.13. In
this step, we simply extend A4, B, A’, B’ by zero outside I. Furthermore, we define

MO small(A’B) = Z PkM%(P/ﬂA’szB)v (8-52)
|kmax_kmin|ZK
Olarge(A B) - Z PkM(z)(PklA’ szB), (8-53)

|kmax_kmin|<K
so that ME’Z(A,B) = (4, B) + My’ 12arge(A B).

Step 2.1: L2 H/2-norm estimates. We first verify (4-29)—(4-34), (4-36) and (4-38) with the L2 H */2-norm
(instead of the Y -norm) on the left-hand side. All of these estimates follow from (8-15) and (8-47)—(8-50).
The small factor in (4-31) arises from the exponential gain in (8-15) and the frequency gap « in (8-52),
whereas the factor €2 M in (4-33), (4-34) and (4-38) arises from (4-21).

sma]l

Step 2.2: L' L®-norm estimates. By Holder’s inequality, we have

1-6
||Pku||Lp0W2—3/170-I)(/) S ”Pku”L2[;l/2”Pku”LlW 1,00° (8_54)
where 09 = 2(— — —) € (0, 1). Therefore, (4-29), (4-31) and (4-33) follow by combining (8-17) with the

L2 H'2_norm estimates from Step 2.1. On the other hand, for (4-32) we use (8-20) instead of (8-17),

which allows us to use the DS !-norm on the right-hand side at the expense of losing the exponential

off-diagonal gain. Finally, for (4-37) and (4-38), observe that by (8-20), (8-48) and (8-49) we have
IIDI7771 Q(Pr, A, Py Bl L1 oo <2701 Ena™ i) Py A i [[|D17° Py B[ ps

for o = 0, 1. Therefore, the L! L*-norm bound in (4-37) follows directly, whereas the Y -norm bounds
in (4-37) and (4-38) follow after interpolating with the L2 H'2_norm estimates from Step 2.1. O
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Proofs of Proposition 4.14. For this proof we use the square function L ,160/ 3L% component of the S norm,
for which we have
3
_ ~—i5k
||”||s;§q =2710%||lu ”L)'CO”L%'

We recall that the symbol of AAg is

&7
€17+ In>

Then we use Bernstein at the lowest frequency to estimate

AAZ(E.n) =

” PkAA(Z)(Akl , atAkz) ||L2Ll s 2_2(k2_k1)+2_1l0k1 2%k22%kminckl ckz 5 2_T3()(kmax_kmin)ck1 Ckz‘
Now the bound (4-39) immediately follows due to the off-diagonal decay. O

Proof of Proposition 4.18. The bounds in this proposition are trivial consequences of Proposition 8.11,
along with the observation that |[[D[u|| g0 < [[Vull;2g1/2. We omit the details. O

8C2. Estimates for PM? PLM? and Rem?*. We now present the proofs of Propositions 4.15 and
4.20, which require the bilinear null form estimates in Proposition 8.12, as well as the X b.p -type norm
estimates in Propositions 8.14, 8.15 and 8.16.

Proof of Proposition 4.15. Unless otherwise stated, we extend the inputs A, B by homogeneous waves
outside /. For k, k1, ks € Z, by Lemma 8.1, note that

Py PM?(Py, A, Py, B) = P PO(Py, A, 0x Py, B), (8-55)

Py P M2(Py, A, P, B) = 275 POy Py, A, 8% Py, B) (8-56)

for some disposable operator O on R*. Note also that, by Lemma 8.7, the right-hand sides are null forms.

Step 0: proofs of (4-40), (4-41). In view of (8-55) and (8-56), both follow easily using the standard
Littlewood—Paley trichotomy and (8-51).

Step 1: proofs of (4-42), (4-43), (4-44) and (4-45). The N -norm bounds in (4-42) and (4-43) follow from
the null form estimates (8-21)—(8-22). On the other hand, the (X !-norm bounds in (4-42) and (4-43)
follow from (8-15), (8-16) and (8-32); we remark that the DZ})O -norm bound for P+ M is unnecessary,
since PP+ M = 0. Estimates (4-44) and (4-45) immediately follow from (8-15), where we may simply
extend A, d;A, B, ;B by zero outside / as in the proofs of Propositions 4.12 and 4.13 above.
Step 2: proofs of (4-46), (4-47), (4-48) and (4-49). Since the case of P M? (i.e., estimates (4-46) and
(4-48)) can be read off from [Oh and Tataru 2018, Proof of Proposition 4.1], we will only provide a
detailed proof in the case of P M2 (ie., estimates (4-47), (4-49)).
Step 2.1: off-diagonal dyadic frequencies. If max{|k — k1|, |k —k2|} > k, then by (8-22) we have

| Pe PEAMP(Py, A, Py B) |y < 2701 Cnhod | Py A 1| Py, B 0

1 1 )
27202 | Py A1 | Pry Bl 51

K,2

Hence the contribution in the case max{|k — k1|, |k —k»|} > k can always be put in P M snall”
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Step 2.2: balanced dyadic frequencies, short time interval. Next, we consider the case when |k — k| < k,
|k —ko| <« and |I| <27%+C% Then by Holder and (8-56), we simply estimate

1
| Pe PEMP(Pyy A, Pry B) 1 p2iny S 12| Pe PEMP (Pry A, Py B 221210
1
< 112275 || O(3% Py, A, 8 Pry B) |l 212
< CK’ -3 -3
S2%IDITV Ak, a1 D173V Biy 4 pan.-

Therefore, when |I| < 27%+C¥ the contribution in the case max{|k — k1|, |k —k,|} < k can be put in
PJ_MK,Z

large*

Step 2.3: balanced dyadic frequencies, long time interval. Finally, we consider the case when |k —k1| <,
lk —ka| <k and |I| > 27%*TCK We define P M*2 by the relation

large
> Py P M (Py, A, Py, B)
max{|k—k1|,|k—k2|}<k
=Y POt PEMA(P Oty A Py Qi B) + PEMEZ (AL B).

max{lk—k1|,|k—k2[}<k

By (8-25), the first term on the right-hand side gains a factor of 27¢81€ and therefore can be put in
PLEME2 Now it only remains to establish (4-49) for PLMX2 defined as above.

small* large

By definition, P2 (A, B) is the sum over {(k, k1, k2) : max{|k — k1|, |k —k2|} <«} of

large
Py PEMP(Pyy A, Pry B) = PiQ <k PTMP (Piy Q <tiy—icAs Py @ <k B)-

Since we are allowed to lose an exponential factor in « in (4-49), it suffices to freeze k, k1, k» and estimate
the preceding expression. At this point, we divide into three subcases:
Step 2.3a: output has high modulation. When the output has modulation > 2kmin=K we use the X ? =172,

component of the N-norm. Since the kernel of Py Qg decays rapidly in  on the scale ~ 27k2C¥

min—K ’

we have
1
| P Qs kiyrc PEMP(Pry A, Py BY o172y < 227 2K f PEME(Pry A, Pry A) |22
for some generalized cutoff function )(’I‘ adapted to the scale 2% Then, by Proposition 4.10,

_1 _3 _3
2C€ 272K | Yk PL AR (P, A, Py A) |22 S 2% XK I D73V Py, Al pagall )X |1 D73V Py B paga
_3 _3
S2CK(|IDI73V Py, Allpap a1 DI™3V Py Bl oo
which is acceptable.

Step 2.3b: A has high modulation. Next, we consider the case when the output has modulation < 2kmin—k
yet A has modulation > 2kmin=k  The kernel of Py O - . —, again decays rapidly in ¢ on the scale

min
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~ 2 k7Ck PRor any 2 < ¢ < oo, we have

| Pre @ <ty P M*(Q sk Piey A Picy B L1 2217
< 2%} PEMP Qi Piy A, Py Bl 12
Ck -1 k 2—1
S270IDI e 0Py Allpa p2llxy 1D17 9V Pry BllLa oo
_1 1
291D e 0Pk, All o Lopg 11 P> 77V Pry B Laroopa.
where we used Proposition 4.10 on the last line. Taking ¢ = 2, we see that the last line is bounded by
<20¢ 0Py, A||L2H—1/2[I] | Pr, Bl ps1yr]> which is acceptable.

Step 2.3c: B has high modulation. Finally, the only remaining case is when the output and 4 have
modulation < 2¥mn—¥ but B has modulation > 2Kmin—¥_ Proceeding as in Step 2.3b, and using the fact

that the kernel of Py, Q < decays rapidly in ¢ on the scale ~ 27¥2C¥ we have

min—K

1Pk @ <k PEMP(Q <inmic Piey A Qi Pis B L1 L2117
S 2% 1% PEMP(Q chey— Piy Ay Qstey—ic P B) 11 12
<294 ) IDIT3VQ g Pry All 210 I D20 Py, Bll 212
S 29401 D 2V Py All 2 ooy | O Py Bl 2 r-1/2471-

which is acceptable.

Step 3: proofs of (4-50) and (4-51). Since the L2 H ~/2-norm bounds follow from (4-21), (4-44) and
(4-45), it remains to only consider the N -norm. The case of P M? can be read off from [Oh and Tataru
2018, Proof of Proposition 4.1]. Finally, for P M?2, we split into the small and large parts as in Step 2.
For the small part, we already have

| PEMEZ (AL B)Inan S 270 All i g M.

smal
For the large part, we proceed as in Step 2, except we choose g = % in Step 2.3b. Then by (4-20), (4-21)
and the embedding
swl[1] € LALA TN LA L),
it follows that
| PHMize (A By < 255 6™ | Al gy M.

large

Therefore, choosing 27% = &€ with ¢ > 0 sufficiently small, (4-51) follows. O

Remark 8.19. As a corollary of the preceding proof in the case of P M?2 we obtain the following
statement: let O be a disposable operator on R%, and let A, B be g-valued functions (or 1-forms) on /.
Then we have

||Pk(0(alPk1A7 a]szB) - 0(8]Pk1A9 alszB))”N[I]
< 26 Ena=knin) 2K || P All psipryll P, Bllpsipry- (8-57)
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Moreover, if (B, I) is (&, M )-energy-dispersed, then

| Pic(O (i Piey A. 9 Prcy B) = O (3 Piey A. 9i Py B)) | wiyy S 26 Emn= w2k et Py Al 511y M. (8-58)
Proof of Proposition 4.20. We decompose Remﬁ’zB into

RemA ’p = RernP AB—i—Rem B+RemA B

P i A
where

Rem'” B =Y 2P [PyPy A 9" Py, B), (8-59)

k.ki.k2
k1 >k2—K

Rem';} B= Y  2P([Py, PlA.0"Py,Bl. (8-60)

k.,k1,k>
k1>ko—«

Rem{>B =— > 2Pc[Py, Ao. Pi,0:B]. (8-61)
k.ki,k>
ki1>kr—«
By Littlewood—Paley trichotomy, note that the summands on the right-hand sides of (8-59)—(8-61) vanish
unless kK — k1 <k +C.

Unless otherwise stated, we extend B by homogeneous waves outside /. For (8-59), we extend A by
homogeneous waves outside / and for (8-60)—(8-61), we extend P;A and Ag by zero outside 1. (Of
course P of the extended A does not coincide with such an extension of P14 outside 7, but this will
not be an issue.)

Step 1: proofs of (4-77) and (4- 78) The N -norm bound in (4-77) follows from Lemma 8.7 and (8-21) for
Rem'lﬁ,2 4B, and (8-23) for Rem’; pL AB Rem{'f1 2 B. On the other hand, for the JX '-norm bound in (4- 77)
we apply (8-15), (8-16), (8-32) to RemP AB and (8-18), (8-19) and (8-40) to RemPLAB RemA ’B.
Finally, (4-78) follows from (8-15) and (8-18).

Step 2: proofs of (4-79), (4-80) and (4-81). The term Remfl’ozB can be put in Remﬁ’i o . B, since for each
triple (k, k1, ko) within the range k; > ks — k., by (8-23) we have

| Prc[Pr; Aos Pry e Blll 1 L21r) = 1 PeO(x1 Pry Aos x1 Pry0: B) L1 2
< 2ka—k I PO(x1|D| Pr, Ao, x1|D| ™ Pryd: B) |12
5 2K2—81(kmax_kmin)||Pk1 AO”L2H3/2[1]||Pk2B||DSl[I].

Similarly, the term Rem;7 , B can be put in Rem’y’ " 1 are . B. Moreover, the contributions of these two terms

PLA
to (4-81) are clearly acceptable, since they need not gain any small factor.
It remains to handle the term Rem’s P. AB We proceed differently according to the length of /. If

|I| <27%+C¥ we define

Rem{? B = > 2P [P¢ Py, A, 8" Py, B],

k.ki,kr:k1>kr—k
max{|k1—kz|,lk1—k|}=Cok
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and if |I| > 27k+C¥ we define

2
Remfl,smallB = Z 2Pk[PZPk1AaaeszB]
k.k1,k>:k1>kr—xk,

max{|k1—k2|,|k1—k|}>Cok

+ > 2P O <kpin—Corc [Pt Piey @ <kpin—Corc A+ 0 Piey O < —Corc B
kykl ak2

max{|k1—kz|,lk1—k[}<Cox
In both cases, we put the remainder Rem';,’f 4B — Remﬁ’i B 10 Remﬁ’i} o B
Choosing Cy > 0 large enough (depending on §7), it follows from Lemma 8.7, (8-21) and (8-24) that
Rem®? B obeys the desired bound (4-79); this bound is also acceptable for (4-81). On the other hand,

'A,small
the contribution of Rem';,’f 4B - Remfl’imauB in (4-80) and (4-81) can be handled by proceeding as in
Steps 2.2-2.3 and 3 in proof of Proposition 4.15; for the details, we refer to [Oh and Tataru 2018, Proof
of Proposition 4.6]. |

8C3. Estimates for Diff f, 1 4B and high-modulation estimates for Diff p4B. Next, we prove Proposi-
tions 4.21 and 4.22, which mainly concern the X~12+br=br n O x 1 norms of Diff;‘,LAB and Diffp , B.
Proof of Proposition 4.21. We extend B by homogeneous waves outside /, and P+ A by zero outside /.
Note that

IDPLAlly S IP*Alyisy,  IBlst SIBlsiy- (8-62)
To prove (4-82), we need to estimate the X —1/2+b1,=b1 00X !-norm of yDiff f, 1 4B. We may write

XDy (B = 2[Poj_ P;-A. x10"PrA] =Y 2K O(Pog_ PH A, 1 P A).

k k
Then by (8-18), (8-19), (8-40) and (8-42), as well as (8-62), we obtain (4-82). On the other hand, (4-83)
simply follows from Holder’s inequality L1 L>®° x L®L? — L1L2, |

Proof of Proposition 4.22. We extend A, B by homogeneous waves outside I, and Ag by zero outside /.
In addition to [|A| g1 < [|A| s1777, observe that we have

IDAolly <l dollyriry.  I1PAllzy <WIPAlizy (ry- I1PAllzy < UIPAlZy 1- (8-63)
Moreover, by (4-10), we have
IxrVAlls S IVAls < | Allsiry. IxrVBls SIVBls S 1Bllsir- (8-64)

We first prove (4-84), for which we need to estimate the X ~1/2Tb1:=b1 n O X L-norm of y;Diff 4B
We may write

X[Diff;foB =—- 22[P<k—KAO’ x10: Py B] = ZO(P<k—/cAO, X1 Pro:B).
k k

Then by (8-18), (8-19), (8-40) and (8-42), as well as (8-63)—(8-64), we obtain (4-84).
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For (4-85), (4-86) and (4-87), by Lemma 8.7, we may write
XIDiftp 4B == 2[Pt_PeA x13" PB] =Y N(D|7'Pox_PA, y1 Py B).
k k
By (8-36), (8-37) and (8-39), combined with (8-15), (8-16) and the extension relations (8-63)—(8-64), we

obtain the desired estimates. O

8C4. Estimates for Diff f, 4 B. Here we prove Propositions 4.23, 4.26, 4.27, 4.28 and 4.30. Note that, by
the estimates proved so far in this subsection, we may now use Proposition 5.4 (see also Remark 5.5).

Before we embark on the proofs, we first establish some bilinear Z!-norm bounds that will be used
multiple times below.

Lemma 8.20. We have

1P PAM? (31 Py A, Py B)lozn < 275 MRl P Al gl Py Blisip.s (8-65)
| P MG (X1 Pry A. Pry B) |1 oo S 27022l P Al 1| Pry Blls - (8-66)
| Pi[Pr, PeA, x10° Py, Bllligzr < 2751 ko) P Al g11191l P, Bll sty (8-67)
| P[P, G x1V Piey Bz < 2781 m=kuin) | P G|y 119l Pry Bl 51 117- (8-68)

Moreover, for k < ki — 10, we have

(1 = H) Pe PAMP (11 Pay A, Proy Bz < 2701 o) || Py Al g1 (]| Py Bll sy, (8-69)
(1 =H2) PeMG (1 iy A, Py B) | aragrrazn 5270 Em™knid | B Al g1y Py Bllsiry. (8-70)

These bounds follow from Lemma 8.7, (8-17), (8-34), (8-35), (8-38) and (8-41), where we use (8-63)
and (8-64) to absorb y; and return to interval-localized norms. We omit the straightforward details.

Proof of Proposition 4.23. As in the proof of Proposition 4.22, we extend A, B by homogeneous waves
outside /, and Ag by zero outside /. Furthermore, we extend P4 by zero outside /, and denote the
extension by G (we emphasize that, in general, G does not coincide with P-4 outside 7). In addition to
(8-63) and (8-64), by Proposition 5.4 (see also Remark 5.5) we have

[Allst Sm 1, [[DAollpy Sm 1, [IDGllpy Sm 1. (8-71)

In the case of the L2 H ~1/2-norm on the left-hand side, (4-89) now follows easily from (8-15) and (8-18).
It remains to estimate the N -norm of Diff 1’§k paB.
0
By our extension procedure, note that Py A and Py, Px A obey the equations

APy Ao = Pry([x1 4% 8:40) + 20 (A, x19: A) + x1AA3(4)),
OPy, PxA = Pry P(PM>(x1 A, A) +2[Ao, x18; A1 —2[Gy, x18“A] —2[P, A, x13°A))
+ P, P(x1 R(A) — yrRem?(A)A).
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For the cubic and higher-order nonlinearities, by Theorem 3.5 and Proposition 4.19, we have

21 Py AAZ(A)lz1z2 Sm L, (8-72)
X1 Peo R(A)|Ip112 Sm 1, (8-73)
I x1 PegRem® (A)All 172 Sar 1. (8-74)

For the quadratic nonlinearities, we use (8-17) for [y7 A%, 3;A;] and Q(A, y79;A), Lemma 8.7 and
(8-33) for PM?[y; A, A), Lemma 8.7 and (8-38) for —[PyA, y73*A], and (8-41) for [Ag, x79; A] and
[Gy., x13¢A]. Combining these with the cubic and higher-order estimates and the embedding L'L2 C
0zin A_1/2D1/2Z1, we arrive at

||Pk()AO||L1LOO+L2H3/20A*1/2D]/ZZI <m 1, (8-75)
I Pro PxAllz1 S 1. (8-76)

By Lemma 8.7, (8-26), (8-27), (8-28), (8-29) and Holder’s inequality L! L% x L>®°L? — L' L2, it follows
that
||PkDiff1’§k0A0szB||N < ||PkoAO||L1Loo+L21-'13/2mA—1/2|:|1/2Zl [DBlls,

1 PiDiffp, p 4P BIN <1 Pro PxAllsinz [ DBlls-

Thanks to the frequency gap x > 5, note furthermore that the left-hand sides vanish unless k£ = k, + O(1).
This completes the proof of Proposition 4.23. O

Proof of Proposition 4.26. Estimate (4-94) follows easily using Holder and Bernstein. To prove (4-95),
we extend PA, B by homogeneous waves outside /, so that || P, OPA| 172 < || P, OPA| 12 and
| Pry Blls1 < || Py Bl s1yr]- Moreover, by the embedding L'L? Cc NNOZ!, we have

| Pr, PAlsinzt < || Pk, VPA(t0)llp2 + || P, OPAllp1 27y
Then (4-95) follows by Lemma 8.7, (8-26) and (8-28). O

Proof of Proposition 4.27. Here, in addition to the bilinear null forms (Lemma 8.7), we need to use the
secondary null structure (Lemma 8.10).

Without loss of generality, we set 79 = 0. We extend B, BW and B® by homogeneous waves
outside 7, and then define Ao and PA by solving (4-96) and (4-97), respectively.® In Ao and PA, we
separate out the (high x high — low) interaction terms by defining

At =3 ATUPP BV Py, B,

k.ky,k>
k<k1—10

A" = N O P[P, BV 0, P, BY),

k.k1,k>
k<k1—10

9We may put in y; on the right-hand sides of (4-96) and (4-97), but it is not necessary.
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where (07! f refers to the solution to the inhomogeneous wave equation Cu = f with (u, d,u)(0) = 0.

We also introduce
HARE = 3" AT P[P BV, P, B,

k.ky,k>
k<k1—10

HPAM = 3" O ' P P[P, BV 8, P, B,

k ’kl ak2
k<ki—10
Accordingly, we split

Difff, B = (2[P<j—c(Ao—HAG"). 00 Py Bl + 2[Pg—(PLA—HP AM) 3° P BY)  (8-77)
k
+ ) (AP HAR" 3° Py B + 2[ P HP A 3° Py BY). (8-78)
k

By Propositions 4.12, 4.15 and Lemma 8.20, we have
| 4olly1 + 1140 = AG" L1 2oe + 146" ly1 + 146" —HAG [ a-1/201/221 S IBD 51 1BP 1.

|PAllg1 + [ PAM —HPAM| 51 < IBD511BP ).

Combining these bounds with Lemma 8.7, (8-26), (8-27), (8-28), (8-29) and Holder’s inequality L11%° %
L>®L?% - 112 it follows that

<IBW s 1B sy 11Bl g3
Ny

Z[P<k—/<(AO _HAgh), aOPkB]‘
k

<IBW s 1B sy l1Bl g3

> [P (PeA—HP A 0" PkB]‘
k Ny

which handles the contribution of (8-77). On the other hand, unraveling the definitions, we may rewrite

(8-78) as

B-78) =Y (Q<jmcO'(AT P Q;O(P, Q<jc BW 00 P, 0<j—c B®).0°Qj—c P, B)
+0<j—cO@ " PLQ; PeO(Pr, Q< j—c BW,0x Pr,0<j—c B®),0° Q< Pry B))

for some disposable operators O and ', where the summation is taken over the range {(k,k1,k2,k3) :
k <ky—10, k < ks —« + 5}. By (8-43), it follows that

18-78)l11 22 < 1BV 51 1B 153115,

which is acceptable. Finally, for the L2H~Y2_porm of Diff ' 4B, note that (8-15) and the preceding
bounds imply

”Pk(Diff;AB)”LzH—l/z < Ck—icdik—Ck»

which is better than what we need. O
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Proof of Proposition 4.28. As in the preceding proof, we extend B, B and B® by homogeneous
waves outside /. This time, however, we also extend PA by homogeneous waves outside /. We moreover
extend By and P+ BM by zero outside I, where the latter is denoted by G, Note that PA solves the
equation

OPA=P([PBY, 30 B@]+[Bg", 0B+ (G, 119 B?)).
By Lemma 8.20 and the frequency envelope bounds (4-100)—(4-101), it follows that
1
1PAlZ1 < UBDllgary + 0BG GOyl B gy < 1. (8-79)

On the other hand, recall that || PA|| 1 = 1 by (4-101). Therefore, by Lemma 8.7, (8-26) and (8-28), we
have

||Diff}‘,XAB||Nf <1
On the other hand, by (8-15), we also have
| Pr (Diff}ngB) ||ng—1/2 < Ak—kCk,
which is better than what we need. The desired estimate (4-102) follows. O

Proof of Proposition 4.30. We move the problem to the entire real line using the free-wave extension for
PA, and B, and the zero extension for Ag.

The expression |D|~1[V, Diff p 4B is a translation-invariant bilinear expression in PA and B, whose
Littlewood—Paley pieces can be expressed in the form

DIV, Diff§ , p 4] Pe B =28 "%O(Pir PAG, 0" P B), k' <k—x, (8-80)
with O disposable. By (8-9) the spatial part is a null form, so we can rewrite the above expression as
27K\ (Py PAx, Py B) + 2K K O(Py Ay, Pr0; B).

We consider separately the spatial part and the temporal part. For the spatial part we use the bound (8-21)
to estimate

127* N (P PAx. PiB) |y < 275 K1) PLPA|| g1 || B 1.

which suffices after summation in k' < k —«.
For the temporal part we use instead the bound (8-23), which yields

125 O(Prr Ao, PB) L1 2 < 275K PUD Aol 2 31,2 | Bl st

which again suffices.
The expression Diff f,k/ paB — (Diff l’f,k, p4)* B is easily seen to have the same form as in (8-80), so the
same estimate follows. U
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8CS. Estimates involving W. Here we prove Propositions 4.16, 4.17 and 4.29, which involve w% and w)zc.
Proof of Proposition 4.16. By definition (3-29), we have
Pkw%(Pk1 A, P, B,s)=—=2P W (P, 0;A, Pr,AB,s).
Applying Lemma 8.2 to the expression on the right-hand side, we have
PeW (Pr 3. A, Pr,AB,s) = —(s22K) 71057107 2kmay =12k 2k2 p O (P 0, A, Pr, B)  (8-81)

for some disposable operator O on R* The rest of the proof follows that of Proposition 4.12. First, by
(8-51), it follows that

I1DI™" Pew(Py, A. Picy B.5) |2
< (52%0) 105717y 1 2 Enin ) 927K Py 9, Al 2 || Py B g

From this dyadic bound, the frequency envelope bound (4-52) follows. Indeed, for any 0 < §’ < 48 and
any &’-admissible frequency envelopes ¢, d, we compute

<S22k>_10(S_l2_2kmax)_12_8(kmax_kmin)ckl dk2 S (Szzk)_lo<S_12_2kmax>_12_%8(kmax_kmin)ckdk
< (522071057127 K) e g, (8-82)

which proves (4-52). The estimate (4-53) follows in a similar manner from (8-51).
Next, extending d; A and B by zero outside /, then applying (8-15) and (8-17), it follows that

DI Prwd(Pr, A, Pry B, $) Il 2 17213

5 (Szzk)—lo(S—12—2kmax)_12—81 (kmax_kmin)22(k1_kmax)||Pkl A”Strl ] ||Pk2B||Str1 [y
I1D]7% Pxwg(Pi, A, P, B.5)l| 1 poor1]

< (s226) 105 o) 1 2E ) Py A 111 Pay Blls -

Using (4-21) and (8-54), these two bounds imply (4-54) and (4-55), as in the proof of Proposition 4.12,
Step 2. O

Proof of Proposition 4.17. We begin with algebraic observations. By (3-30), we have
Py P;w?(Py A, PyyB,s) = —2P P;W (Py,8,A%, 85 P, 0, By, s)
+ 4P P;W (P, P, A, 8y Py, 0, B.s)
+ 4P P;W (P, P8, A% 3, P, 0, B, ), (8-83)
where, by Lemma 8.2, we may write

Py P;W (P, 9; A%, 0y Pr, 9, By, 5)
= (522k)710(g 7127 2kmacy =19 2kwas py P O (Py, 3¢ AY, 35 Py, ¢ By), (8-84)
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Py P;W (P, 3, PA*, 3, Py,3,B,5)

= —2(s22k) 710 (s 1o~ 2knay =1 )= 2knax pp O (P Py, 0, A, 3° P, 0, B), (8-85)
Py P;W (P, 3, PLAY 8, P, 0,B,s)

= —2(s22k) 710 (1o~ 2kney =12k py O (P, 3, P} A, 3 Py, 0, B) (8-86)

for some disposable operator O on R*. Note that (8-84) and (8-85) are null forms according to Lemma 8.7,
and (8-86) is favorable since 0d; P-L A is controlled in the L2 H/2-norm.

Given the above formulas for wy, the proof of the estimates (4-56) and (4-57) is almost identical to
the proof of (4-52) and (4-53), using the dyadic bounds (8-51), (8-51) and (8-82).

We now prove (4-58). We extend A, B by homogeneous waves outside /. By (8-15), (8-16), Lemma 8.7,
(8-21) and (8-32), it follows that

”PkPjW(PklatA’ akazatB’S)HNﬁDXl

5 (S22k>_10(S_12_2kmax>_l2_51(kmax_kmin)zkl+k2_2kmax||PklA”Sl ||Pk2B||Sl’
| P P;W (P, 0¢ PA, 0x P,0¢ B, s) | nnox:

5 <S22k>—10<S_12_2kmax>_12_81(kmax_kmin)2k+k2_2kmax||PklA“Sl ||Pk2B||S1 ,
||PkPjW(Pk1 81PJ_A, akazatB,S)”NﬂDL(l

5 (s22k>_10(S_12_2kmax)_12_81(kmax_kmin)22k2_2kmax ||Pk1 atPJ_A”LZHl/Z”szB”SI .

Clearly, 2K1 +hk2=2kmax pk+k2=2kmax gpnd 22k2=2kma are bounded, so they may be safely discarded. By the
same frequency envelope computation (8-82) as before, we obtain (4-58).

In the energy-dispersed case (4-59), we proceed as in the proofs of Propositions 4.15 and 4.20. The
contribution of (8-86) is already acceptable, since we need not gain any smallness factor. Moreover, for
the contribution of (8-84) and (8-85), the case of L2 H~Y/2 on the left-hand side can be easily handled
using (8-15) and (4-21); we omit the details.

It remains to consider only the N-norm of (8-84) and (8-85). For a parameter ¥ > 0 to be chosen
below, the preceding proof of (4-58) implies that in the case kmax — kmin > &, we have

_ A . _1 A
1(8-84) | + [|(8-85) |3 < (s22F) 10 (s 27 2hmaxy =1p=3 81k p =281 kna—Kuin) | Py A|| 61 || Py, B[ g1

On the other hand, when kyax — kmin < &, we may apply Lemma 8.7 (in particular, (8-13) and (8-14))
and Remark 8.19, which implies

18-84) [ + [|(8-85) | < (s22K) 710 (57127 2kme) ~1pCheCO1| o Al g1 M.

Choosing 2 = &€ for a sufficiently small ¢ > 0, and performing a similar frequency envelope computation
as in (8-82), we arrive at (4-59). O

Proof of Proposition 4.29. We first note that both wy and w, depend on d; B;, for which we control
|0;B1||s. and | PL3; By |ly,. We may assume that

18:BD 5.1, 1PH0:BD v, 1BP g1y 1Bl < 1-
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We can now extend d; By by zero outside 7, and B® and B by free waves. Then the problem is reduced

—-1/2

to the similar problem on the real line. We begin with the simpler L?H bound. For that we use

(4-53) and (4-58) to obtain
1 Pewoll 2 g—1/o + | Prwx || yaoxt < (522K 710 (s 127 2kmay =02y gy (8-87)

and then conclude with (8-15) and (8-18).
It remains to prove the N bound. We define
Z(k' k1, k2. k, )
= (—-[A7! Ppw3(Py, BV, Pr,BP . 5), 8, P, B] + [0 P Pow?(Py, BV, P, B@ 5),8° P, B)),
so that

Diff% B = Yo Ik ki ka k)
k’.k1,ko> . k:k'<k—k

on /. Introducing the shorthand

kmax = max{k’, k1,kz}, kmin = min{k’, k1, k}
and
a(k’ k1 ka, ) = (s22Ky =10 (g1 0= 2Kmaxy =15 =81 Gemox—Kinin).
we claim that
IZ(k' kv, ko k,s) | v Salk' ki, ko, s)ck, di,ek. (8-88)

This would conclude the proof of the proposition after summation with respect to k1 and k5.

We start with a simple observation, namely that we can easily dispense with the high modulations of
d; B1 and B using Lemma 8.2, combined with H6lder and Bernstein inequalities and also (8-26) and
(8-30). Thus from here on we assume that

P, 0 BW = P, 0 4,0:BD, Pr,d, B = Pt 01,0, B®.
In view of (8-83) and the identity

w3(A, B,s) = —2W (0;A4,0?B,s) —2W (3;A,0B,s),
we may expand
I(k' k1. ko k,s) =2[ Py AT W (P, 8, BV 0P, B . 5). 9, Py B)

+4[07 P PyW (P, P8, BY"™ 8, Pr, 3, BP, 5), 8° P B]
+ 407 P PyW (P, P8, BV 9, P, 0,BP5), 9 Py B]
+2[AT P W (P, 3. BW 3, P, 8, B®,5), 8, Py B]
2[00 P PW (Py, 8, BD™ 9, P, 3, B, 5), 0" P B]

=Ty t+Z) + L) + L4 + Les). (8-89)
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The first term is easily estimated in L1 L? using Lemma 8.2 and Holder and Bernstein inequalities by
1Zay 2 < 1P AW (P9 BD 0Pk, B® 9) 1 oo 101 P B oo 12
< (s22K) 10 2 P g G 3, Py BO| 2y 5|0 Py B2 12

which suffices.
To continue, we use (8-23), (8-33) and the embedding L'1.?2 cOZ!, and we have

| P PeW (P, P3; BV, 8, Pr,d: BP5) | yaozt S alk’ ki, ka, s)ck, di,,
| P PeW (P, P9, BW 0, P, 8, B®,5) | yaozt Sk ki, ka, s)c, di,-
This yields
|07 Py PeW (P, P8 BN, 35 Pr,d: B@ . 5)|snz1 S (k' k1, k2, 8)ck, dr,,
IO~ P PeW (P, P13, BD 8, P, BP, 5)|lgnzt S ok’ k1, ka, s)cy, dy,.

We use this directly for the next two terms Z,) and Z3), arguing in a bilinear fashion. The desired N
bound for both is obtained using both (8-26) and (8-30) with k = 0.
The final two terms are combined together in a trilinear null form,

2(4) + I(5) = Diff;/IB,
where ~
Ao =A"1PW (P, 3, BM, 3, P8, B@,s),

Ay =07 P PoW (P, 3, BD™ 9, P, 3, B2, 5).

At this point we have placed ourselves in the same setting as in the proof of Proposition 4.27. Then the
same argument applies, with the only difference that, due to Lemma 8.2, we obtain an additional factor of

<S22k/)—10 (S—12—2kmax>—l2—2kmax2k1 +ko
as needed. Here the factors 2K1 and 22 come from one time derivative on B(!) and B®, respectively, at
low modulation. Thus the N bound for Z(4) + Z5) follows. O
8C6. Estimates for Rem>(A)B and Remg’ (A)B. Finally, we sketch the proof of Proposition 4.19.

Proof of Proposition 4.19. By Holder and Bernstein inequalities, it suffices to show that the following
nonlinear maps are Lipschitz and envelope-preserving:

Strl 54— (DAg, DA) e L2 Hzt N2 2™,
Str! 54— Ag e L2H>.
The same applies for the maps
St'sA— DAg,e L Hat N L2 H,
Str! 3 4 — Aoy cL2H>3,

with the addition that now the output has to be also concentrated at frequency k(s).
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The Ao property is a consequence of (4-30) for the quadratic term, and (3-23) for the cubic part A (3).
Similarly, the Ag.s property is a consequence of (4-53) for the quadratic term, and (3-36) for the cubic
part Ag; 5

The DA property follows from (a minor variation of) (4-36) for the quadratic part, and (3-18) for the
cubic part DA,

Finally, the DA ( property is a consequence of (a small variation of) (4-30) for the quadratic part and
of (3-24) for the cubic part. Similarly, for DAg we need (a small variation of) (4-53) and of (3-37). O

8D. Proof of the global-in-time dyadic estimates. In this subsection, we prove the global-in-time dyadic
estimates stated in Section 8B.

8D1. Preliminaries on orthogonality. Let O be a translation-invariant bilinear operator on R! 4. Consider
the expression

/[ u@ow® u?®)drdx. (8-90)

Our general strategy for proving the dyadic estimates stated in Section 8B will be as follows: decompose
u® by frequency projection into various sets, estimate each such piece, and exploit vanishing (or
orthogonality) properties of (8-90), which depend on the relative configuration of the frequency supports
of u)’s, to sum up. Some simple examples of orthogonality properties of (8-90) that we will use are as
follows:

Littlewood—Paley trichotomy: If @) = Py, u¥, then (8-90) vanishes unless the largest two numbers of

ko, k1, ko are part by at most (say) 5. This property has already been used freely.

Cube decomposition: If ) = Py; Pei u® with ¢! = Ck,,;, (0) (i.e., is a cube of dimension 2kmin . . . ¢ 2Kmin)
situated in {|&| =~ 2%i}, then (8-90) vanishes unless C° 4+ C! 4+ C2 5 0.

To obtain more useful statements, let ™2, ¢™ed and C™M" denote the reindexing of the cubes co ¢l
and C2, which are situated at the annuli {|§| ~ 2Kma}, {|&| ~ 2kmea} and {|&| ~ 2kmin}, respectively. Then
for every fixed C™™ and C™** (resp. C™°Y), there are only O(1)-many cubes C™¢ (resp. C™) satisfying
¢min 4 cmed 4 emax 5 () Moreover, we have

|A(Cmax’ _Cmed)l < 2kmax_kmin.

Geometrically, such cubes C™* and C™¢ are “nearly antipodal”.

We will also exploit the relationship between modulation localization and angular restriction for (8-90).
In the proofs below, we will only need the following simple statement. For a more complete discussion,
see, e.g., [Tao 2001].

Lemma 8.21 (geometry of the cone). Consider integers ko,k1,k2, jo, j1, j2 €Z such that |kmed—Kmax| <5.
Fori =0,1,2, let w; € S? be an angular cap of radius r; <275, +; € {+,—}, and u® € S(R'+*) have
frequency support in the region {|€| ~2Ki | &/|€| € w;, |t — £ |E|| = 27i ). Suppose that jmax < kmin, and
define { = % min{ jmax — Kmin, 0}
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Then the expression (8-90) vanishes unless
|A(:|:,~a),~, :I:i/a)l'/)| S kai"_min{ki ’ki’}ZZ + max{ri, }"i/}

for every pairi,i’ €{0,1,2} (i #1’).

Finally, we collect some often-used estimates. For k" < k and £’ < —5, note that

—3k k=L A—Lyp
276 Pe,,onyurllpzpe +277 7252727 || Pe, (onyuk L2 nee < 1 Pe ekl sele, s

where, by (4-1), we have

2 2 2
o Peurld o S lully, = luel3-
Cce{Crr ()}

Also note that, for any j < k + 2£, we have

2 2 2
NP O<juill cop < lurlF, = luel
w

by disposing of Q <; (using boundedness on L*®L?) and using Szng o Sk.

8D2. Bilinear estimates that do not involve any null forms. We first prove Proposition 8.11, which does
not involve any null forms.

Proof of Proposition 8.11. In this proof, we adopt the convention of writing L? L9+ for L? L9 with
~—1 1

G~ ! =g~ ! —68y. In particular, if (p,q) is a sharp Strichartz exponent with §o < p~! < % — 8o, then
2(1/P+4/‘1_2_480)k8tr2 C LPLIT,

To prove (8-15), we apply Holder and Bernstein (on the lowest-frequency factor), where we put
ug, in LY4LG4MD+ and vy, in L8 L@7/1)+ The proof of (8-16) is similar, except we put vy, in
L91(54/23)+ The proofs of (8-18) and (8-19) are similar; for (8-18), we apply Holder and Bernstein
with uy, in L?L> and Vg, In L>® L2, and for (8-19) we put Vk, In L8 1.27/13 jpstead.

It only remains to establish (8-17) and (8-20). First, (8-20) follows simply by applying Holder and
Bernstein (on the lowest-frequency factor), where we put u,, vk, in L2 LS. To prove (8-17), we divide
into two cases. When k >k — 10, the desired bound follows by Holder, where we put both u k, and vg,
in L2L*. On the other hand, when k < ki — 10, we have k = ki, and k; = ko + O(1) by Littlewood—
Paley trichotomy. We decompose the inputs and the output by frequency projections to cubes of the form
Cr(0), i.e.,

PkO(ukl s vl,cz) = Z PkPCO(Pkal , Pczv,/Q),
c,clc?

where C,C!,C? € {C;(0)}. The summand on the right-hand side vanishes except when —C +C' 4-C2 3 0.
For a pair C and C! (resp. C?), there are only O(1)-many C? (resp. C!) such that the preceding condition
holds. Moreover, there are only O(1)-many C in the annulus {|&| ~ 2X}. Therefore, by Holder and
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Cauchy—Schwarz (in ¢! and C?), we have

2 2
2 P OGugy v 1 e S 272 (ZnPclukl ||,%2Loo) (ZnPczv;Q ||,’{2Loo)

cl c2
< | Dug, s, lls,

—_
—_

which completes the proof. O

8D3. Bilinear null form estimates for the N -norm. We now prove Proposition 8.12. We start with
a lemma quantifying the gain from the null form O(0%(-), d4(-)), which is a quick consequence of
Lemmas 8.7 and 8.21.

Lemma 8°22' LEtkv klv k27 j’ j17 ,]2 satisfy kmax _kmed E 59 jv jly ]2 E kml[‘l + CO? .]1 = .] + 0(1) and
jao = j 4+ O(1). Define £ = min{(j — kmin)/2,0}, and let C,C',C? be rectangular boxes of the form
Ck,,.. (£). Then we have

PO« PcO@* Q< Porutg,, 04 Q< jo Peavi,) = C224 PeO(V Poruy,, V P2 vg,) (8-91)
for some universal constant C and a disposable operator 0.

Proof. By disposability of Py Q<; Pc, Px, Q<j, Per and Py, O <, Pe2, we may harmlessly assume that
(say) J, j1, j2 < kmin — 5. Then we can take the decomposition
+ +
Py Q<,~PCO(8°‘ Q<j1 Poi Ukys Jo Q<j2P62vk2)= Z Py QiszcO(aa Q<]1-1 P Uy, 0o Q<]2'2Pc2vk2)-
:l:::tl 7:t2
By Lemma 8.21, the summand on the right-hand side vanishes (and thus (8-91) holds trivially) unless

PAESTARER B 2% In such a case, (8-91) follows from the decompositions (8-11) in Lemma 8.7 and
the schematic identities

Not1£2(QE! Porge,. Q22 Peavy,) = C291 7222 B (P, Peavyy).
Ro(QZ} Perug,. Q22 Pravy,) = €2/ 27 ™Mbtk G(V Py V Peyy).
which in turn follow from Definition 8.3 (see also Remark 8.4) and (8-12), respectively. O
Proof of Proposition 8.12. Estimates (8-21) and (8-24) were proved in [Oh and Tataru 2018, Proposi-
tion 7.1]. Estimate (8-23) is a simple consequence of Holder and Bernstein for u;ﬂ , Uk, or the output,

depending on which has the lowest frequency. In the remainder of the proof, we prove (8-22) and (8-25)
simultaneously.

Step 1: high-modulation inputs/output. The goal of this step is to prove

| PO(0%ug, . 0aVi,) = P Q <k O(0% O <oy » O O <kin Vi) I N

Kmin+Kmax

S2 7 | Vug sV, lis. (8-92)

Note that this step is vacuous for (8-25). Here we do not need the null form, and simply view
O(0%ug,, 0%vg,) as (5(Vuk1 , Vuy,) for some disposable 0.
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We begin by reducing (8-92) into an atomic form. For j, ji, jo > kmpin, We claim that

‘/ ijké(Q<j1 M;ﬂ, Q<j2U]/62) dt dx

Once we prove (8-93), by duality (recall that N* = L>®L? N X, 351/ 2) we would have

lkmin lk
> P Q0% ug, . davi,) v < 2252250 |V (|51 Vg, | oo 2.

/ kain

lkmin lk
Y 1PeQ <k, 0% Qjug,, davry) v S 225002252 | Vg, 0.1/ | Vg, 5

j kain

lkmin lk
Y 1PeO <k, OB% Q< iy 0 Q) viy) v S 225002281Vt 15[ Vg, llyo.1/2,

j kain

from which (8-92) would follow.

331

_1 A1
<272/ kamszl wg ”ch’)l/z ||M;cl IIs ||v;€2 ||Lc>oL2. (8-93)

To prove (8-93), we decompose u’, v’, w by frequency projection to cubes of the form Cg_. (0), i.e.,

/ijké(Q<jlu}q,Q<j2v;€2)dtdx= Z /QjPCou)k(’hj(quPClu;ﬂ,Q<j2PC1v;62)dtdx,

co,cl,c?

where C,CY,C? € {Ck_. (0)}.

Let ¢Max ¢med gpd ¢™Min denote the reindexing of the boxes C 0 1, ¢2 which are situated at the frequency
annuli {|§| ~ 2Kkmax}, {|&| ~ 2kmea} and {|&| ~ 2kmin}, respectively. The summand on the right-hand side
vanishes unless C™* + ¢med 4 ¢min 5 0. For a fixed pair C™" and C™* (resp. ™), this happens only
for O(1)-many C™ (resp. C™). Moreover, note that each C’ lies within an angular sector of size
O(kai"_kf); hence, Q<j; Pei is disposable (i = 1,2). Thus, by Holder, Cauchy—Schwarz (in C™#*
and C™4) and the fact that there are only O(1)-many cubes C™" situated in {|€| ~ 2kmin} (so any £"-sums

over C™" are equivalent), we have

Z / 0Q; Pcowk(5(Q<j1 PCIM;ﬂ, Q<jzpczv]/€2) dtdx

co,cl,c?
3 3 3
< (Z”QJ Poowg (1, ')”22) ( | Py, (¢, -)||ioo) (ZHPczv;cz(t, ~)||iz)
0 L7 I\ G L7\ L
1
>
<[ 0w (ZnPclu;ﬂ ||izm) o, o2
212\ 3
Ll 1
< 272/ pkning 3kt ||wk||Xg<31/2”u;<1 s ||v]/cz lLoor2s
as desired.
Step 2: proofs of (8-22) and (8-25). For j < kin and £ = (j — kmin)/2, we claim that
ik VS padE 1
1P QO Q< jutg, . 00 Q< jvi,) | v < 272U R 2302Kmn 22K |0y |5 [ Vg, s, (8-94)



332 SUNG-JIN OH AND DANIEL TATARU

L1 . 5 17 1

1P Q<;O0%Qjug,, 3 Q<jvp,) |y <2720 ki) 33803 kmin3k2 | 7y || 5|V, s, (8-95)
_1l¢i 1 . 5 1z 1

1P Q<;O@%Q<jtt,, 30 Qi) |y S 2720 ki) 23803 kmin a2k |7y |||V, 5. (8-96)

Assuming that these estimates hold, we first conclude the proofs of (8-22) and (8-25). We start with
(8-22). By Step 1, it suffices to estimate P Q. O(0%Q0 <k, Uk, Q <k, Vk,)- Decomposing the
inputs and the output using Q < . = > <k Q- and dividing cases according to which has dominant
modulation (corresponding to j in the above estimates), (8-22) follows by summing (8-94)—(8-96) over j.
To prove (8-25), observe simply that the modulation restrictions of the inputs and the output restricts the
j-summation to j < kpyin — k in the preceding argument.

It remains to establish (8-94)—(8-96).

Step 2.1: proof of (8-94). Here we provide a detailed proof of (8-94); similar arguments involving
orthogonality and the null form gain will be used repeatedly in the remainder of this subsection.
We expand

+ +
PQ;00%Q<juk,. 0a0<jvi,) = Y. Y PrOOP_co0(3* Q! Perug,, 96 023 Peavg,),
+o,%1,+2 ¢O,cl,c?
where C%,C1,C? € {C
suffices to bound

(£)}. By duality, in order to estimate the summand on the right-hand side, it

min

/ P Q7 Poow O3 QL Peruy, . 00 Q22 Peavy,) dt dx. (8-97)

Let ¢max cmed gnd ¢™in denote the reindexing of the boxes —C, C 1 ¢2 which are situated at the frequency
annuli {|&] o 2kmex} {|€] ~ 2Kkmea} and {|g| ~ 2kmin}, respectively.

Note that (8-97) vanishes unless C° + C! 4+ €% 5 0. Combined with the geometry of the cone
(Lemma 8.21) we see that for a fixed C™* (resp. C™9), (8-97) vanishes except for O(1)-many C™" and
cmed (resp. C™*). By Holder, Cauchy—Schwarz (in C™* and ¢™ed) and Lemma 8.22, we obtain

1
Yoo > B[y 2% (Z”PijiOPCOw(ta')”iz) ‘Lz
+o co

+o,%1,£2 0,1, c? ‘
1
2
2
(§ :||VPcluk1(z,-)||Loo)
Cl

1
2
(Z||VPczvk2<z,~>||iz)
CZ
1

20 + > ¥
< 277 P O 0w||L2L2 ||VPC1uk1 ||L2Lo<> vakz”LooL2
J
+o c!

X

L? L

<27272360km 23K w0 a | Vg, s | Vo, ll oo 2
By duality, (8-94) follows.

Steps 1.2—1.3: proofs of (8-95)—(8-96). We now sketch the proofs of (8-95) and (8-96), which are very
similar to Step 2.1. As before, we expand each modulation projection to the +-parts, and decompose the

output, 1, v by frequency projection to —C°,C!, C? € {Cx_. ()}, respectively.

min
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We proceed as in Step 1.1 but put the test function w in L% L? and the input with the dominant
modulation in L2 L2 Then we obtain

+ + +
Z Z // PkQS;?PCoO(B“ Qj "Porug,, 0q Q<§Pc2vk2)
+o0,%1,%2 ¢9,¢l,c? s .
2742300k 26 ] o [ Vi, 72 Vi .

>y // PrOZ9 P00 Q= Portuy, . 0 Q7> Peavr,)

+o0,%£1,%2 ¢9,¢l,c2

_1:.5 AL
<2 2J22€2kmmzzk1||w||LooL2||Vukl ||S||Vvk2||X2<.)1/z.

By duality, (8-95) and (8-96) follow. O
8D4. Bilinear estimates for the X} :b.p -type norms. Next, we prove Propositions 8.13, 8.14, 8.15 and 8.16.

Proof of Proposition 8.13. Estimates (8-26) and (8-27) were proved in [Krieger et al. 2015, equations (132)
and (133)]; note that the slightly stronger S!-norm is used on the right-hand side in [Krieger et al. 2015,
equations (132) and (133)], but the proofs in fact lead to (8-26) and (8-27). Estimates (8-28) and (8-29)
follow from slight modifications of the proofs of [Krieger et al. 2015, equations (134) and (140)] (the
Z-norm in that paper is stronger than ours), as we outline below.

For (8-28), we first recall the definition of H*. For each j < k; — C, we introduce £ = %( j —kp) and
take the decomposition

PrO<j—cN(IDI7' Qjur,, Q<j—cviy) = ) PuQ<j—cN(DI™' PP Qjup,, Py Q< j—Ck,)-
w,w’
By the geometry of the cone (Lemma 8.21), the summand vanishes unless |Z(w, o’)| < 2¢ for some
sign +. In this case, the null form A" gains 2ki1+k22t (see Definition 8.3), and hence we have

|PxQ<j—cN(ID|7 Qjuk, . O<j—cor,)lp1 2

kant ’
5 Z 2129 ||P€ijukl ”LlLoo”Pew £2<j—Cvkz||L°°L2
w0 :ming | Z(w,tw’)|$2¢
1

1
1_ 1 2 / 2
< 202 ”W(Z(2<2+2b°>f||P;’Qk+2eukl ||L1Loo)2) (ZMP;’ Q<,-_cvk2||iooL2)
w w’

1

1_ 1 2
< 2(z72b)t (Z(zbmoﬂnm‘" Qr+20tk, ||L1Loo)2) 1D, Ils-
w

In the second inequality, we used Cauchy—Schwarz (or Schur’s test) with the fact that the w,w’ is
essentially diagonal (i.e., for a fixed w, there are only O(1) many @"’s such that the sum is nonvanishing,
and vice versa). Summing up in j < k; — C, then using the definition of the Z!-norm, (8-28) follows.
Next, (8-29) is proved by essentially the same argument (with the same numerology) as above. Here
we do not gain 2¢ from the null form A, but rather from the extra factor A~'/2[0'/2 in the norm
A~1/201/2 71 Finally, (8-30) and (8-31) follow from the preceding proofs, once we observe that the
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modulation localization of uy, restricts the j-summation to j < k1 —«, which then leads to the small
factor 2~ (1/2—2bo)k, O

Proof of Proposition 8.14. In view of the embedding N N[ Z lcoz },O, (8-32) would follow once (8-33)
is proved. Estimates (8-34) and (8-35) follow from (134) and (141) in [Krieger et al. 2015], respectively.
Moreover, when k > k1 — C, (8-33) follows from (134) and (135) in [loc. cit.]. In using the estimates from
[loc. cit.], we remind the reader that the Z-norm in [loc. cit.] (whichis equal to ) ; || Px O <xu|| xgl/a/an )
is stronger the Z-norm in this work. Moreover, although (134), (135) and (141) in [loc. cit.] are stated
with the S!-norm on the right-hand side, an inspection of the proof reveals that only the S-norm is used.

It remains to establish (8-33) in the case k < k1 — C. By Littlewood—Paley trichotomy, note that the
left-hand side vanishes unless k = ki, and k1 = ko + O(1). By (8-34), we are only left to show that the
0OZ!-norm of

PeHRN iy i) = Y PrQiN(Q<j—ciiey Q<j—C V) (8-98)
j<k+C

is bounded by < 2k||Du/cl sl Dvg,lls-

Consider the summand of (8-98). We decompose the inputs and the output by frequency projections
to rectangular boxes of the form Ci (¢), where £ = min{(j —k)/2,0}. Then we need to consider the
expression

PrQiPc N(Q<j—cPerug,, Q<j—c Pe2vg,),
where C,C!,C? € {Ci(£)}. This expression is nonvanishing only when —C + C! + C? 5 0. In fact,
combined with the geometry of the cone (Lemma 8.21), we see that for each fixed C! (resp. C?), it is

nonvanishing only for O(1)-many C and C2 (resp. C!). The null form gains the factor 2K1t%22¢ By
Holder and Cauchy—Schwarz (in C! and C2), we have

| Pk Q;N(Q<j—cuk,, O<j—cVi,) oz

31
=2 2k2 27/ Z PijPCN(Q<j—CPcluk1,Q<j—CPc2vk2)
e,cl,c? LiLee
3 3
Bl
< 2-3kg-dighiHeayt (ZIIQ</—C Peruk, ||22Loo) (Z||Q<,-_c Pczvkzuizm)
c! c2
S e
<27 2% D2 Du |5 | Dy, 5.
Summing up in j < k + C, the desired estimate follows. O

Proof of Proposition 8.15. For all the estimates, the most difficult case is when k1 < k — 10 (low-high
interaction) and when uy, has the dominant modulation, i.e., the expression PkHZlN (D 'u k1> Vks)-
Step 1: proof of (8-36), (8-37) and (8-38). We divide into three cases: (1) k1 >k —10, (2) k; <k —10
but either the output or vy, has the dominant modulation, or (3) k1 < k — 10 and uy, has the dominant
modulation.
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Step 1.1: k1 = k —10. In this case, all three bounds can be proved simultaneously. The idea is to
apply Propositions 8.12 and 8.14. Indeed, by (8-33) and the fact that the left-hand side vanishes unless
k1 = kmax + O(1) (Littlewood—Paley trichotomy), we see that
| PN (DI gy v lmzn £ 257 PEI DTN gy vz
< 27 COrlenaom) | Duy |5 || D, -

Combined with (8-21), it follows that
1PN (D g, vio)llvaozt < 27 €81 Gma=kuind | Doy s || Dy, Il s

By the chain of embeddings N " OZ lcnoz 11,0 - DZ},O, the desired bounds follow.

Step 1.2: k1 < k — 10, contribution of 1 — 7-{,,’:1. By Littlewood-Paley trichotomy, Px N (|D|™Yug,, vk,)
vanishes unless k1 = kmin and k = kpax + O(1). In Steps 1.2a—1.2¢ below, we estimate the [(1Z !-norm of
Pr(1- H,’:I)N (D" u ky» Vk,)- Then in Step 1.2d, we conclude the proof by interpolating with (8-26).

Step 1.2a: High modulation inputs/output. The goal of this step is to prove
IPeN (DI g, vie,) — Pic @<ty N(ID IO <y ety - @<y Vi) Iz
_lg—
<273 0 Dug |15 [ Dvgy |15 (8-99)

Here there is no need for null structure, so we simply write A/ (|D|_1uk1 ,Vky) = O(ug,, Dvg,). We
begin by proving

_ _ _1
| Pt Ok, Our, . Dvr,y)llozt < 2700C %D D172y || 2 00| Dug, |- (8-100)

For j > k1, we take the decomposition
PrQ; Pj"%kO(ukl ,Duy,) = Z PO ij’%kO(ukl , Dij’%k Vi)
w/
Since (j —k)/2 > k1 — k, for each fixed w there are only O(1)-many o’ such that the summand on

the right-hand side is (possibly) nonvanishing, and vice versa. Therefore, by Holder, Bernstein and
Cauchy—Schwarz, we have

2 _%+b0)(j—k)2—2k (Z“Pk Qj Pj»u_k O(ukl s DP?)Lk vk2)”i1L°°)
® 2 2

1

. , 2
< 23400 U =R =3 k) (=3 gy ||L2Loo>(2<2ék2 I P2 vk, ||L2L6>2)
2
a)/
<205 +b0) Gk 9=b0®k =KD || D=3 121 00| D, |5

Summing up in j > kj, we obtain (8-100).
Next, we prove

_ _ _1
1P Q <k, Oty DOsiy i) oz < 2720 R0 D 72wy 1200 | Dog, |1 s- (8-101)
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By (4-6) and (uniform-in-; ) boundedness of Q; on LYL2 we have

1PeQ i, fllozr S 2700% 5D £l o, (8-102)

Therefore,

| P Q <k Ok, . DO i) Iz <270 V| PO e OCugey . DOjviy) 1 12
< 2—%(j—k1)2—bo(k—k1)(2_%]‘1 ||uk1 lL2) DO Uk, ||X261/2
S 272Uk bk D 7wy, 2 oo | Dug,y .
Then summing up in j > kq, (8-101) follows.
To conclude the proof of (8-99), note that ||| D |_1/2uk1 22100 < [[Dug, |ls. Moreover, observe that

Pk Q<klo(quk15 DQ<k1vk2)
vanishes unless j < kj + 10.
Step 1.2b: output has dominant modulation. Here we prove
DN PeQIN(DIT Q< Q<pvi)lmzr S 270 V| Du s I Dvis s, (8-103)
J<ki

where ji, jo = j + O(1).
Let{ = %(j —k1). After taking the decompositions ug, =",/ PE‘",uk1 and vk, =, P(“]’.Zk)/zvkz,
consider the expression

PkQ]P;I)%kN(|D|_1Q<]1PKw uk]? Q<j2P?)%kvk2)'

Using the geometry of the cone (Lemma 8.21), observe that for every fixed w (resp. w”), the preceding
expression vanishes except for O(1)-many ' and w” (resp. ). Moreover, for such a triple w, o', ",

the null form N gains a factor of 2t By Holder, Bernstein (for P(‘j'—k) /2vk2) and Cauchy—Schwarz (in
w,w"), we have

I P QN (DI Q< jytig,. O<jpvi,) gz

_3 A _ 2
52( 3+b0)(j—k) o 2k(Z||kaij"2kN(|D| 1Q<jluk1’Q<szkz)||ilLoo)
w

1

_1 i _lk— _1 / 1 2

< 2( 2+b0)(] k)2€2 5k k‘)(sup2 sk1 ||Q<j1 Pgw Uk, ||L2L°°)(Z(26k2”Q<j2P5‘ozkUk2||L2L6)2)
o’ )

< 27PN =bo® =KD | Dy 5| D, s -
Summing up in j < k1, (8-103) follows.

Step 1.2c: v has dominant modulation. Next, we prove

D PO joN(DI T Q<jittiy. Qjvi) ozt S 2720* FD | Duy |5 Dy, |1 (8-104)
J<ki



THE HYPERBOLIC YANG-MILLS EQUATION IN THE CALORIC GAUGE 337

where jo, j1 = j + O(1). As before, let £ = (j —k1)/2. By (4-6) and (uniform-in- j ) boundedness of Q;
on L'L2 we have

1PcQ<; fllozt S 272® D) fllpi o

Hence it suffices to estimate the L!L? norm of the output. This time, we take the decompositions
Uk, =D o PPug, and vg, = Yoo Pe‘”/vkz. By the geometry of the cone, for a fixed w, the expression

PkQ<j0N(|D|_1Q<j1 Pgwukl, QjPewlvkl)

vanishes except for O(1)-many o’ and vice versa. Moreover, the null form N gains a factor of 2t By
Holder and Cauchy—Schwarz (in w, @), we have

2~bolk=7) || Pr Q<j0-/\/(|D|_1 Q< Pew“kw Q) Pﬁw Vi)l 22

1

1
(e VA3 I~ AL _lp 1 2 / 2
<2 botk=i)p3ty3kiy 21(2(2 skin 2£||Q<j1 PPuy, ||L2Loo)2) (ZkaHQ/Pzw Uk2||Xg61/2)2)
w w’

<2(4=b0)K1=Dp=bolk=kD || Dy |15 Dug, 5.

Summing up in j < k1, (8-104) is proved.

Step 1.2d: interpolation with (8-26). Combining (8-99), (8-103) and (8-104), we obtain
1Pe (1= N (D ugy viy)lmzn S 270 0 Dug, [l [ D, 5

On the other hand, (8-26) and the embedding N € X%~ '/? yields a similar bound for the X%~ /?-norm
without the exponential gain. Nevertheless, since we have

0 1-6,
1 lazy, S 1A IgZi L 0212
oo

where 6p = 2( l) >0,

1 _

po 2
| Pt =HE DN (D gy v gz, 2700 D |15 [ Dy |-

Then the desired estimate for (17 11,0 follows as well, thanks to the embedding DZ},O - DZ})O.

Step 1.3: k1 < k — 10, contribution of 7—[;1 . This is the most difficult case. We consider

PeHEN(D T ug vi) = D PrQ<je N(IDI 7' Qjug, . Q<j—cvky).
j<ki+C

As before, by Littlewood—Paley trichotomy, this expression vanishes unless k1 = kyin and k = kpax + O(1).

Recall that all three norms [1Z 117 o HZ 11, , and1Z 1 are of the type X f’b’p . To ensure the £?-summability

in w in the definition (4-3), we go through the L?L? norm. More precisely, by Bernstein and L2-
w

orthogonality of P( ' _k)/2> DOte that

S(L_1 i~a3(L_1);
1PE0; fllyrns 5 2%23 G D223 GoD £y, o

~

Since b + %(% — %) > 0 in all of these cases by (4-4), we have

|PeQ<; fllyrnp $2%23 G223 G2y o, (8-105)
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Hereafter, the proofs of the three bounds differ.

Step 1.3a: proof of (8-36). We decompose the inputs and the output by frequency projections to rectangular
boxes of the form Cy, (£). Then we need to consider the expression

PrQ<j—c PeN(ID|7' Q) Porug,, Q<j—c Peavg,),

where C,C!,C? € {Ck, (£)}. Note that the above expression is nonvanishing only when —C +C! +¢2 5 0.
Moreover, by the geometry of the cone (Lemma 8.21), for each fixed C (resp. C?), this expression is
nonvanishing only for O(1)-many C! and C2 (resp. C), and the null form gains the factor 2K1+422¢,

For exponents p1, p2,q1,¢92 > 2 such that pl_1 + pz_l = p~! and ql_l + qz_l = 271, proceeding
carefully to exploit spatial orthogonality in L2, we have

| P Q<j—cN(ID| Qjug,. O<jmcvr)llprr2

Z Py Q<j_CpCN(|D|_1 Qj Pc1uk1 s Q<j—C Pczvkz)
¢,cl,c?

(=

C

LPL2
1

2 N\3
)
%
(Z10<-c Paviatt. 1)
c2

$2°2%2)|Qjug, Lr1 Lo (Zu Q<j-c Pczvkzn,%pm) : (8-106)
C2

We now apply (8-105) and (8-106) with

<

~

Y PrO<j—cPeN(ID7' Q) Peruy,, O<j—c Peavi,)(t,-)
cl,cz?

Ly

< 2tk Hs('}lpHQj Perttge, (6, Lo |
1

P2
Ll

D=

(5 3 1 1 /1 2po
(S,b,p,p1,qlspz,6I2)—(4 p0+(4 50)90, 1 (4 50)90,p0,2,2,2_p0,00),

where 6 = 2( 7). We then obtain

1

pPo
-1

1Pk Q<j—c N(DI™" Qjuky. O<j-cVix)lnz),

< 2_(1_%0)162/‘2(_%_ %_bo)eo)(f—k)z_%(1_1%0)(1'_1‘)2%(1—7()25 1

2
10k, 212 Z||PczQ<,-_cvk2||ip2Loo)
02
< (R (hBo)0) -1, (=31 )+ (o)) k) ,
X110, 1 (ZIIDPcz v Bt (m) .
c2
On the last line, we used

3_ _ _ _1
||Q<j—C Pc2vk2||L1’2L°° < 2(2 00)52(2 o) (k1 kz)2(2 200)k2||PCZUk2||Sk2[Ck1(e)]v

which follows from interpolation. By (4-4), the factors in front of (k1 — j) and (k — k1) are both negative.
Summing up in j < kj 4+ C, we obtain (8-36).
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Step 1.3b: proof of (8-37). As in the proof of (8-104) (Step 1.2¢), we take the decompositions uy, =
Y0 PPug, and v, =3 Pe‘"/vkz, where £ = (j —k1)/2. By the geometry of the cone (Lemma 8.21),
the null form gain, Holder, Cauchy—Schwarz (in w, »’) and Bernstein (for u k,)» We have

IPQ<;N(ID|7'Qj PP ug,. O<j—c PE vi,)llprr>
1 1

_1 _1 2 , 2
S 200D (TP 0y 1) (ENPE Qcsmcvialimps) - (3107
) '

Applying (8-105) and (8-107) with (s, b, p) = (% —

2(% — %), we obtain

| PeQ<;N(DI™ Q) Pui,. Q<j P viy) oz,

ot (50}t = (3 =)Mo ). where 6y =

L_

—(1—L . 3 (1= (i— ’
52 (1 po)kz(%— by bO)QO)(J—k)Z 2(1 po)(J k)||PkQ<]N(|D|_1 QjPew”kp Q<jP[w vkz)”LPOLZ

—++(L-b0)0o+1(1—L))(k—k
52( i+ (3=0)80+3( 1’0))( 1)||quk1 ||X9/4—3/p0+(1/4—b0)90,3/4—(1/4—b0)90,pO||ka2||S.
1

By our choices of by and py, the overall factor in front of (k —k1) is negative. Summing up in j <k +C,
we obtain the desired conclusion.

Step 1.3c: proof of (8-38). We again take the decompositions ug, = >, Puy, and vg, =) Pf/vkz,
where £ = (j —k1)/2. We use (8-105) with (s, b, p) = (=2 — bo, —3 + bo. 1). By the geometry of the
cone (Lemma 8.21), the null form gain, Holder and Cauchy—Schwarz (in w, ®’), we have

260U=R PO N (DO PPk, O<jmc P vi)Ii 12

1 1
2 2
< rbo(j—k)rLrk> pw 2 ) o’ 2
<2 222 Y10 PPun 12, ZI|Q</—CP4 N
w w

< 2(bo+(§=b0)60) (k1 =) p=bolk—k1)3(1=55) (k1)

X ||uk1 ||X;()1—1/po)—1/2+<1/4—b0)00,1/2—(1/4—bo)90-ﬁo ||ka2 s,

where g L=p=1_¢ ])6)_1 and 6y = 2(% — %) By our choices of pg and by, the overall factors in front

of (k1 — j) and (k — k1) are both negative. Summing up in j < ky, the proof is complete.
Step 2: proof of (8-39). As in Step 1, we divide into three cases.

Step 2.1: k1 > k —10. In view of the embedding N N L2H~Y/2 € X~1/2+b1:=b1 for any 0 < by < 1,
the desired bound follows from (8-15) and (8-21).

Step 2.2: k1 < k — 10, contribution of 1 — Hzl . Consider the expression
Pr(1=H IN(ID| g, viy).-

Interpolating the N -norm bound (8-26) (recall that N C X, 85‘1/ 2) with an L2 H~Y/2-norm bound (which
is a minor modification of (8-15)), the desired estimate for this expression follows for 0 < b; < %
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Step 2.3: k1 < k — 10, contribution of ’Hzl . Finally, we estimate

PeHE N(D| gy i) = Y PeO<jcN (D' Qjuk,. O<j—cvk,).
j<ki1+C

By (8-107), we have

1k _
2™ V%) PN (DI Qju, . O j—cviy) lr0 12

<2043k (=g d 1551 =355kt ) (3 +Gob0)00) kD g 4y [ Dy o2
Po

_3(1-L1L)—(1- —iYa—(1—L ) (k—
52030750~ Grbo)@) =Dy =56k 0 | Do 5.
0

Summing up in j < k1 4 C and using the embedding 2001/P0k pp. 0 _, L.Po[2 C x~1/2+b1,=b1 wyhich
holds by Bernstein since b; < % — % the proof of (8-39) is complete. O
Proof of Proposition 8.16. As in Proposition 8.15, we divide the proof into two cases: k1 > k — 10 and
kl <k —10.

Step 1: k1 > k — 10. In this case, by (8-18), (8-23) and the embeddings L'L? C DZ})O NOZ! and
LYL2NL2HY? cX —1/2+4b1,-b 1, the three bounds follow simultaneously.

Step 2: k1 < k —10. We begin with (8-40) and (8-42). By Holder and Bernstein, we have
L_1)k —(1—L) -k
206 ) PeOGur, v o2 £ 27RO g e
By (8-105) with (s, b, p) = (% -3 —%, po), (8-40) follows. Moreover, by the L2 H ~1/2-norm estimate

po’
(8-15) and the embedding Py Q < LP0L? C X ~1/2+b1.=b1 (8.42) follows as well.

It remains to prove (8-41). Applying (8-100) (from Step 1.2a of the proof of Proposition 8.15) with
Duy, = v}, and the embedding 273172 Y C L2, we have
| P Qi Otk v )llmzr < 274V [ Dug ly 1oy, Is.

On the other hand, by (8-102) and Hélder, we have

1Pk Q <k, OCu, . v ) Izt S 27 0% * 0 P OGug, v )l 12

—bo(k—k1)~3(1— ) (k—k 2> -3)k
5270k k02026 1y @GR g )

—bo(e— 3(1—-L ) (k—k
52 bO(k k1)2( 7’0)( l)”DMkl ”Y“v;(Z”Sa

where g, T=2"1T_¢ pf))_l. By our choice of pg, the overall factor in front of (k — k1) is negative; hence,
(8-41) follows. O

8DS. Trilinear null form estimates.

Proofs of Propositions 8.17 and 8.18. Estimate (8-43) would follow from Lemma 8.10 and the core
estimates (8-44), (8-45) and (8-46), combined with Lemma 8.21 and (4-1).
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Estimates (8-44), (8-45) and (8-46) can be established by repeating the proofs of (136), (137) and
(138) in [Krieger et al. 2015] with the following modifications:

e Thanks to the frequency localization of the inputs and the output to rectangular boxes of the type Cy (£),
the bilinear operators O and O’ can be safely disposed of.

e Moreover, for any disposable multilinear operator M and rectangular boxes C,C’ of the type Ci (£)
situated in the annuli {|&| ~ 251} and {|€| ~ 2*2}, respectively, note that (by Lemma 8.7)

M@@QE; ¢ Peuy,.040%, _¢ Povg,....)
= C2k1+k2 maX{|Z(:|:C, izc/)lz’ 2j—min{k1,k2}}/\7l(Pcuk1, Pc/vkz, . )

for some disposable M, which suffices for the proofs in [Krieger et al. 2015].

We also note that although (136)—(138) in [Krieger et al. 2015] are stated with the factor 28 (k—mintk;})
on the right-hand side, an inspection of the proofs reveals that the actual gain is 28(k=k1) a5 claimed in
(8-44)—(8-46). We omit the straightforward details. O

9. The paradifferential wave equation

Sections 9, 10 and 11 are devoted to the proofs of Theorem 4.24 and Proposition 4.25. In this section, we
first reduce the task of proving these results to that of constructing an appropriate parametrix (Section 9A).
Parametrix construction, in turn, is reduced to constructing a renormalization operator that roughly
conjugates (1 + Diffp , to 0. Sections 10 and 11 are devoted proofs of the desired properties of the
renormalization operator.

9A. Reduction to parametrix construction. We start with a quick reduction of the problem (4-90). After
peeling off perturbative terms using commutator estimates (which will be sketched in more detail below),
we are led to consideration of the frequency-localized problem

Oug + 2[P<g—x P A, 0%ug] = fk.

9-1
(. 9110 (0) = (o 11 ). G-1)

for each k € Z. By scaling, we may normalize k = 0.
Our goal is to construct a parametrix to (9-1). We summarize the main properties of the parametrix in
this case, as well as the precise hypotheses on A, that we need, in the following theorem.

Theorem 9.1 (parametrix construction). Let Ag be a g-valued 1-form on I x R* such that
Al + 10Al g1 x—172401. 61y = M (9-2)
for some M > 0 and by > %. Let ¢ > 0. Assume that k > k1(e, M') and

IAllpsiiry + 10Al 1 2512 <8p(e, M, k1) (9-3)
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for some functions k1(e, M) > 1, 0 <8,(e, M, k1) < 1 independent of Ay. Moreover, assume that there
exists ffa such that

1Allgipr) + (D Ag. DPLA) |y < M. (9-4)
14l psiir + Il(Ao. PLI‘I)||L21'13/2[1] <8p(e, M, k1), (9-5)
and
1A 40— O A% 90401 (L1 Loonr2m-1/2)) < Sp(E M), (9-6)
|OPA— PO(AY, 05 Ay)) — PO’ (A%, aafi)||ZI(L1L20L2H,1/2)[,] <82(e. M. ky), (9-7)

where O(-,-) and O'(-,-) are disposable bilinear operators on R* Then the following statements hold:
(1) Given any (ug,u1) € H'x L% and f € NN L2H Y2 gych that ug, uy, f are all frequency-localized
in {C~1 < |£| < C}, there exists a g-valued function u(t) on I which obeys
lullsipry Sm o ud)ll gisepe + 1l ynr2 -2y, 9-8)
0u 4 2[P<— Py A, 0%u] — f||NﬂL2H—1/2[I] <e(l(uo,u)ll giyz2+ ||f||NnL2H—1/2[1])’ 9-9)
[|u[0] —(“07“1)”}]1)@2 = 8(||(“0,”1)||H1><Lz + ||f||NﬂL2H—1/2[I])‘ (9-10)
Moreover, u is frequency-localized in {(2C)~! < || <2C}.

(2) Assume furthermore that
[ Axllecos1pry + 1 Aollgoo 12 fras2py < 80(M) (9-11)

for some §,(M) < 1 independent of Ay. Then the approximate solution u constructed above obeys (9-8)
with a universal constant, i.e.,

lellsiiy S 1o )l grsczs + 1 Iz 1200 (9-12)

In the remainder of this subsection, we sketch the proofs of Theorem 4.24 and Proposition 4.25
assuming Theorem 9.1. Then in the rest of this section, as well as in Sections 10 and 11, our goal will be
to establish Theorem 9.1.

Lemma 9.2. (a) Let A; x and /It,x be g-valued 1-forms on I x R* which satisfy (9-2), (9-3), (9-4), (9-5),
(9-6) and (9-7). Then for ¢ > 0 sufficiently small (depending on M) and k sufficiently large (depending on
&, M), given any (ug,u1) € H' x L% and f € N N L2H ~Y/2[[], there exists a unique solution u € S'[I]

to the IVP
@O+ Difff,A)u = f,

9-13
u[0] = (o, 11), &1

which obeys
||u||S1[I] <M ||(UO»M1)||H1><L2 + ”f”NanH—l/z[[]- (9-14)

(b) If, in addition, || A|| g s117] Obeys (9-11), then the solution u constructed above obeys (9-14) with a
universal constant, i.e.,

||u||S1[I] < ||(UO,U1)||H1><L2 + ”f”NﬂL2H—1/2[I]' (9-15)
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Proof. Let uy be the function given by (the rescaled) Theorem 9.1 which is determined by the initial data
(Pruo, Pruy, P f). We set
Uapp = Z Ufr.
k/

We claim u is a good approximate solution to (9-13) in the sense that in any subinterval J C I we have
ltappllsipry Sar 1o u) gy + 1 I yar2zm-12p07 (9-16)
[2app[0] = (o u )l g1y 2 < e(lo u) giyr2 + 1 f I var2zm—12009): 9-17)
and
[ (O+Diffp ) rtapp—f I N2 E-1200]
Su (e+272 4294 (| PA| oo psi 17+ | Aollgoo 12 r37217))
X(No-u)l gisr2 1 I var2zm-12pp)-  (9-18)
Assume that we have these bounds. Then the solution u to (9-13) is obtained as follows:
(i) We choose « large enough so that 278 <« 1.
(i1) We divide the interval / into subintervals J; so that
264 PAl psipy + 1ol 2 gr3/2p7,7 <a 1.
(iii) Within the interval J; we now have small errors for the approximate solution u,p,; hence we can
obtain an exact solution by reiterating.
(iv) We successively repeat the previous step on each of the subintervals /;.

It remains to prove the bounds (9-16), (9-17) and (9-18). The first two follow directly from (9-8) and
(9-9) for uy, after summation in k. We now consider (9-18), where we write

(O +Diffp )u— f = (Oug +2[P—y PAg. 0%ug) — Pr f) + > gk
k k

where
8k =2[P—c PAq. %] = Y [P_tr—c PAg. 0 Poug]
k/
The first sum is estimated directly via (9-9), so it remains to estimate gj. We write

gk = & + gk
where
gi= Y. Pu[P_jr_PAq. 0% Pour] — [P_jr—c PAq. 0% Prruug].
k'=k+0(1)
g]% = Z [P[—k’—/c,k—lc) PAa, % Pk/uk].
k'=k+0(1)

Here g]i has a commutator structure, so we can estimate it as in Proposition 4.30, yielding a 27%2¢ factor.
For the expression gi, on the other hand, we can apply Proposition 4.20 to split it into a small part and a
large part which uses only divisible norms. Thus (9-18) follows, and the proof of the lemma is concluded.
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(b) The same iterative construction applies, but no we no longer need to subdivide the interval as (9-11)
ensure that the divisible norms in (9-18) are actually small. O

Proof of Theorem 4.24 assuming Theorem 9.1. We prove the theorem by repeatedly applying the preceding
lemma in successive intervals. To achieve this, we begin by choosing ¢ and « depending only on M so
that Lemma 9.2 holds. It remains to ensure that we can divide the interval / into subintervals J; where
the conditions (9-2), (9-3), (9-4), (9-5), (9-6) and (9-7) hold.

We choose A = A. We carefully observe that we cannot use Theorem 5.1 here, as Theorem 4.24 is
used in the proof of Theorem 5.1. However, we can use the weaker result in Proposition 5.4, which
immediately gives (9-2) and (9-4) from Theorem 5.1.

The remaining bounds are for divisible norms, so it suffices to establish them with a large constant
depending on M ; then we gain smallness by subdividing. Indeed, for (9-3) and (9-5) this still follows
from Proposition 5.4.

For (9-6) we choose O(A, dgA) = [A, d9A]. Then we can use (3-23) and (4-37). Finally for (9-7) we
choose in addition O (A, 0% A) = —2[Ay, 3% A]. Then by Theorem 9.1 we have

OA—O0(A, 3, A) — O(Ag, 3% A) = R(A) + Rem3(4) 4
and it suffices to use (3-21) and (4-74). O

Proof of Proposition 4.25 assuming Theorem 9.1. We write

__ qpert nonpert
Al,x - At,x + At,x ’

where

AP =) PrAs,
keK
with |K| = Os, ar)-1p(1) and
[ AP | oo 1777 < S0(M).

By Proposition 4.23, it follows that the contribution of any finite number of dyadic pieces of A; x in
Diff}p 4 is perturbative. More precisely, for AP, we have

IDiffp gpen Bll a2 fr—1/2077 Sk 1M 1 Bllsipn- (9-19)
Thus B solves also
(O + Diff’s guomer) B = G,
where
||G||NﬂL2H—1/2[1] M ||G||NﬂL2H—1/2[I] + “B”Sl[l]-

We now claim that Theorem 9.1 and thus Lemma 9.2 apply for A""P°™ If that were true, then the
conclusion of the proposition is achieved by subdividing the interval / into finitely many subintervals J;,
depending only on M, so that

(1) Lemma 9.2 applies in J;,

(ii) the size of the inhomogeneous term ||G || NALZH-1/2(1] is small in J;.
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Indeed, to verify the hypothesis of Theorem 9.1 with A replaced by A" it suffices to leave A = A,
unchanged, but instead replace the operators O and O’ by (1 —Y g Pr)O and (1 =Y g Pr) O,
respectively, which are still disposable. O

9B. Extension and space-time Fourier projections. As in [Krieger and Tataru 2017], our parametrix
will be constructed by conjugating the usual Fourier representation formula for the £-half-wave equations
by a renormalization operator Op(Ad(O+)<o); see (9-50). The renormalization operator is designed so
that it cancels the most dangerous part of the paradifferential term 2[PAqy, <—i, 0% Pou] (Theorem 9.9),
and furthermore enjoys nice mapping properties in functions spaces we use (Theorem 9.6).

9B1. Extension to a global-in-time wave. As in [Krieger and Tataru 2017], our parametrix construction
for (9-1) involves fine space-time Fourier localization of P A, which necessitates extension of PA outside 1.
Here we specify the extension procedure, and collect some of its properties that will be used later.

We extend PA by homogeneous waves outside /. By (9-2), this extension (still denoted by PA) obeys
the global-in-time bound

|PA|lg1 + |OPAlj1 x—1/245,.-5; S M. (9-20)
By Proposition 4.10, for any p > 2 note that

x5 PePA|lLrLoo S || P PAl Lo Lo (9-21)
Moreover, by (9-3), we have

D NPkOPA| 212 = IOPAl g1 12 g -1/207 < 8p- (9-22)
k
Next, we specify the extension of Ao, and also of the relations (9-6) and (9-7) outside /. We first
extend A by homogeneous wave outside I and Ao by zero outside I. These extensions (still denoted by
A and Ay, respectively) satisfy the global-in-time bound

1Alls1 + 11D Aolly < M. (9-23)
In addition, we introduce the extension G of P+ A4 by zero outside /. It obeys
IDGly < M. (9-24)

We emphasize that, in general, P A does not coincide with G outside /.
Define iéo and PR as

Ro(t) = AAo(t) — O(A4 (1), 0, A, (1)) fort €1,
PR(r) = OPA(t) — PO(A (1), 0 Ay(1)) + PO'(Aq, 0% A) fortel,
and O for ¢ € I. By the hypotheses (9-6) and (9-7), we have
||E0||61(AL1L000L2H—1/2) <85, (9-25)

”P§||£1(L1L2HL2H*1/2) <8§- (9-26)
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We extend Ag outside / by solving the equation

Adg= O(y1 A%, 8: A;) + x1 Ro. (9-27)

By (8-15), (8-17), (9-5), (9-23) and (9-25), it follows that
IDAollgry S M?, (9-28)
1A Aol g1 p25-1/2 S 85 (9-29)

Moreover, observe that the extension PA obeys the equation

OPA = PO(x; A%, 3, Ag) + PO’ (PyA, y13%A)
—PO'(Ay. x10:A) + PO'(Gy. y19° A) + 1 PR, (9-30)

9B2. Space-time Fourier projections. Here we introduce the space-time Fourier projections needed for
definition of the renormalization operator. We denote by (, £) € Rx R* the Fourier variables for the input,
and by (o, 7) € R x R* the Fourier variables for the symbol, which will be constructed from PA. We
remind the reader that our sign convention is such that the characteristic cone for a +-wave is {t +|&| = 0}.

Consider the following (overlapping) decomposition of R!*4, which is symmetric and homogeneous
with respect to the origin:

D&:E = {sgn(0) (0 £n-0) > Ll (InL? +lo £1-0?)
N {sgn(@)(0 £n-) < o[ (n > + o £ n-0P)},

’:t -
D ={lotn-o| <™ (nL? +lo£n-0P),

,E -
Doy = {sgn(0)(0 £ n-0) < =150 (1nL1> + |0 £ - 0]?)}
U {sgn(0)(0 £n-0) > 3lo|~ (nel? +lo £1-0*)},

where 1] = n— (n-w)w. See Figure 1 for a plot of these domains.
0, _ pl+d

We construct a smooth partition of unity adapted to the decomposition Dé‘())}fg U Dfl‘fl’lfb U Dt

as follows. We begin with the preliminary definitions

ﬁ.‘”’i(o 0 = may 4 o(c+tn-w)
e 5(n2=m-w)?) +loxn-0?)

sgn(o)|nl(c £1-w) )
(In?=(-w)?) +lo£n-0 )

sgn(o)|nl(c £1-w) )
(In?=(-w)?) +lo£n-0 )’
where m~1(z) : R — [0, 1] is a smooth cutoff to the region {z > 1} (i.e., equals 1 there), which vanishes
outside {z > 2}. Then we define the symbols

ﬁﬁj (o,n) =msq (8

ﬁg)lfti (0,1m) =m>1 (—8

~w,+ ~w,t
2E (0, n) = 025 (0,n) — T2 % (0, 1), (9-31)
, £ Sw,+ =w,+
Mo (o) = 1=T1025 (0. ) — How (0. 7). (9-32)
,+ S w,t Sw,t
Mo (0,m) = gy (o, n) + T~ (0. ). (9-33)



THE HYPERBOLIC YANG-MILLS EQUATION IN THE CALORIC GAUGE 347

n-w

Figure 1. Sketch of Dé‘f,’nf, D®¥ and D in the hyperplane {0 = 1} with £ = —.

med out

Note that the actual domains are defined to be slightly overlapping.

Observe that 1 = Hgﬁ,’nf + Hfuﬁ: + Hﬁ;’ti, and supp Hff’i - D,,ﬂ"’dE for * € {cone, null, out}. Moreover,
by symmetry, Hff’i preserves the real-valued property.
We also make use of a dyadic angular decomposition with respect to w. Given 6 > 0, we define the

symbol

R e (e

0
Furthermore, we define
255 (0.n) = 1 -T2 (0. ).
My (0,n) = (M25° — 257 ) (0, 1),
Since these symbols are real-valued and odd, the corresponding multipliers (which we simply denote by
n:E n2:F and Hg”i, respectively) preserve the real-valued property.

>0 >0 1

The regularity of the symbols Hé%’nf, Hﬁ)u’lf and T15;" degenerates as || — 0; however, they
are well-behaved when composed with Hg”iPh. The following lemma will play a basic role for our

construction.

Lemma 9.3. For any fixed +, w € S3, n € N, h € 2® and * € {cone, null, out}, the multiplier'®
0”82”)(1'1;"’*1'1‘9"’*Ph) is disposable.

Proof. In this proof, we take # = 0 by scaling, and fix £ = +. Let % € {cone, null}.

We begin with some elementary reductions. First, since 1 = neE+ Hnwdlf + Hf)"L{ti, and 9" ag”‘) Hg)’i Py
is disposable, it suffices to prove the lemma for just Hg&f and Hfu’ﬁt. In this case, note that the symbol
Hf’ing”im »(n) (where my, is the symbol of Pj) is compactly supported. Furthermore, the lemma is
obvious if 8 = 1, since then the symbol is smooth in £, &,  on the unit scale. Therefore, we may assume

that 6 < 1.

10We quantize (o, ) — (D¢, Dx).
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We now consider the case n = 0, when there is no £-differentiation. We fix w € S3. To ease our
computation, we introduce the null coordinate system (v, v, 77 ), where

v=0—nw, V=0-+n-w,

and 7, € R3 are the coordinates for the constant v, v-spaces. Observe that

o+n-ow . v
P +lo+n-o> [ +v

s>1 nul =il >0, |v|~6% |ul~1 (9-34)

on the support of Hi”ing”imo. Moreover, ¢ = o (v, v,7]1) andi|n| :i|r;|(1_), v, 71 ) are comparable
to 1, and are also smooth on the unit scale on the support of IT1%" H(é” my. Recalling the definition
of Hi”i, it can be computed from (9-34) that

020897 TI2%| 56721 on supp 19+ 112 *mq.

On the other hand,

Iaiaﬁagl(ﬂ‘g”imoﬂ <07 on supp I&EMYFmy,
so it follows that
029807 (moEmy )| < o2, 9-35)

vrUTnL

Furthermore, from (9-34) we have
|supp T E 114 my| < 6°. (9-36)

From these bounds, we see that the multiplier Hff’i Hg)’i Py has a kernel with a universal bound on the
mass, and thus is disposable.
Finally, we sketch the proof in the case n > 1. We first claim that

|08 (M2~ 115*mo)| < 67" (9-37)

Clearly |8§n) Hg”i | <, 07", so it suffices to verify that |8§") M%%| <, 67" on the support of 1%~ H(é)’imo.
Note that

0, |al=1,
0% (- )| S 10 1

+
L olez2 supp 12115 my. (9-38)

Then recalling the definition of Hi”i and using the chain rule, the claim (9-37) follows. We remark that
a differentiation in o + 1 - w loses 62, but we gain back a factor of 6 through the chain rule and (9-38).

Next, we fix w € S and start differentiating in (v, v, 771 ). Using the chain rule, (9-38) and (9-34), it
can be proved that

10298 97 ag”)(nf;’ing”in < g 2BI=lvig—n, (9-39)

vTvTny

We omit the details. Combined with (9-36), we see that enag’)n‘:’ing”ipo is disposable. O
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As a corollary of the proof of Lemma 9.3, we obtain the following disposability statement.

Corollary 9.4. For any fixed +, w € S, h,k € 2% and * € {cone, null, out}, the translation-invariant

bilinear operator on R'™* with symbol

—lg 4 —lg 4+
e e 0l S o P PP (6)

is disposable.

Clearly, the same corollary holds with any of the continuous Littlewood—Paley projections Py, Py,
replaced by the discrete analogue.
We also record a lemma which describes how the operator [ acts in the presence of Hgﬂ;nf Hg)’i Py.

Lemma 9.5. For any fixed +, v € S3,n € N and h € 2%, the multiplier

(@7 2m)0m ol (MeE Ty Py) (9-40)

cone

is disposable.

Proof. We set h = 0 by scaling. The symbol of [ is —o2 + ||%. For a fixed w, we introduce the null
coordinate system (v, v, 1 ) as before. Then observe that
1050507 (=0 + )| = 1050507 (—vv + i) 5 62672171

on the support of Hf;%}lfl'lg”iPo. The lemma follows by combining this bound with the proof of
Lemma 9.3. U

9C. Pseudodifferential renormalization operator. In this subsection we define the pseudodifferential
renormalization operator, and describe its main properties.

9C1. Definition of the pseudodifferential renormalization operator. As mentioned before, the aim for
our renormalization operator is not to remove all of PA, but only the most harmful (nonperturbative) part
of it. This part is defined as

AminE _ e-E nqotp , (pa)y;. (9-41)

j,<h Z|77|8 cone

Precisely, given a direction w, it selects the region which is both near the cone in a parabolic fashion near
the direction w, but also away from w, on an angular scale that is slowly decreasing as the frequency 7
of A approaches 0. We emphasize that this decomposition depends on w, which is what will make our
renormalization operator a pseudodifferential operator.

To account for the fact that our gauge group is noncommutative, and also to better take advantage of
previous work in this area, we divide the construction of the renormalization operator in two steps. The
first step is microlocal but linear, and mirrors the renormalization construction in the (MKG) case; see
[Krieger et al. 2015; Oh and Tataru 2018]. Precisely, we define the intermediate symbol

Ve = —LRATL AT -4
Here the operator L A;i 3:5 chosen as a good approximate inverse for L%, within the frequency-
main,

localization region for AJ’ <h

. In effect this frequency-localization region is chosen exactly so that this
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property holds within. This is based on the decomposition
—La:‘éLc:"); + A, =0,
which gives
LOLE2AY =1-0A%.

Given A;nf;li and W _j as above, we define their Littlewood-Paley pieces as

main, & __ d main, =+ _ d
Aj,h - dhAJ’<h ) \'I'Izl:,h - %qji,<h'

Now we come to the second step in the construction of the renormalization operator. This step is
nonlinear but local, and is based on the construction of the renormalization operator in [Sterbenz and
Tataru 2010a] for the corresponding wave map problem. Precisely, we solve the ODE

d _
75 O<h.x 0<}11,:i: =V, (9-43)

lim [|0xO<p,4(7,x,8)|Loe = 0.
h—>—o00

Thus our renormalization is achieved via the paradifferential operator
Ad(O+)<o.

where the localization to small frequencies is so that this operator preserves the unit dyadic frequency shell.

The parameter § > 0 is a universal constant, which is chosen below so that the parametrix construction

go through. In particular, we take 0 < § < ﬁ. Logically, it is fixed at the end of Section 10.

9C2. Properties of the pseudodifferential renormalization operator. Now we state the key properties
satisfied by the renormalization operator Ad(O+ )< that we just defined; see Theorems 9.6 and 9.9.
Proofs of these results are the subjects of Sections 10 and 11, respectively.

Theorem 9.6 (mapping properties of the pseudodifferential renormalization operator). Let A be a Lie-
algebra-valued spatial 1-form on I x R* such that A = P<_, A and

| PAllsi11r) < Mo
for some k, Mg > 0. Let Wy p, Wy j, and Oy, + be defined on R*4 as above from the homogeneous-
wave extension of PA. Let Z be any of the spaces L)ZC, N or N*.
(1) For k > 20, the following bounds hold:
e (boundedness)

[0p(Ad(O+)<0)(r.x, D) Pollz—z Sm, 1. (9-44)
e (dispersive estimates)

1I0P(Ad(Ox)<0)(t. x. D) Pollgs_, 5, Smo 1. (9-45)
(2) Forany ¢ > 0, there exist ko(g, My) > 1 (independent of Ax) such that if k > ko (e, My), then

¢ (derivative bounds)

[0z, Op(Ad(O4+)<0)(t, x, D) Pollz—2z < e (9-46)



THE HYPERBOLIC YANG-MILLS EQUATION IN THE CALORIC GAUGE 351

e (approximate unitarity)
1(Op(Ad(O+)<0)(t, x, D) Op(Ad(OL ) <0)(D, 5, y) =) Pollz—z S &, (9-47)
where the implicit constants are universal.

(3) There exists 0 < 6,(My) <K 1 (independent of Ay ) such that if , in addition to the above hypothesis,
1P Axllgoo 51117 < 80(Mo), (9-48)
then (9-44) and (9-45) hold with universal constants. That is, for k > 20 we have:
e (boundedness with a universal constant)
IOp(Ad(O+)<0)(t,x, D) Pollz—>z < 1. (9-44)
e (dispersive estimates with a universal constant)
1IOp(Ad(Ox)<0)(t. x. D) Pollgz_, 5, 1. (9-45)'
Here the frequency-localization operator Py can easily be replaced by a more general localization to
{151 =~ 15
Remark 9.7. As we will see in the proof below, ko (e, M) ~¢ log My and 6,(Mo) <m, 1.
Remark 9.8. Note that the symbol of each of the above PDOs is independent of t = £y, and thus it

defines a PDO on R* for each fixed ¢. By the mapping property Z — Z with Z = L%, we mean that the
PDO maps L2 — L2 for each fixed ¢, with a constant uniform in .

Theorem 9.9 (renormalization error). Let Ay be a g-valued 1-form on I x R* such that Ay = P<_ Aq
and |PAx||sii;) < M for some k, M > 0. Let & > 0. Assume that k > k1(g, M) and (9-3)—~(9-7) hold for
some functions k1(s, M) > 1 and 0 < §,(e, M, k1) < 1 independent of Ay (to be specified below). Let
Wy <p, Vi p and Oy 4 be defined as above from the homogeneous-wave extension of PAy. Then we
have

p
(0.4 OP(AA(0) <0) = Op(AA(0£) <0)D Pollgs (11, L1y < & (9-49)
Remark 9.10. As we will see later, k1(e, M) ~¢ log M and §,(e, M, k1) Kp, €.

9D. Definition of the parametrix and proof of Theorem 9.1. Our parametrix is given by

u(®) = Y (5 OP(Ad(01)<0) ¢, x, D)e* 1P Op(Ad(OL) <o)(D, 0, y) (g [ D|Hu)
: +OP(AA(0) <) (1. x. D) 5 K+ Op(AA(051) <0)(D.5.3)f ). (9-50)
where

t .
Kig(t)=/ ei’(t_s)u)lg(s) ds.
0

With this definition, the proof of Theorem 9.1 starting from Theorems 9.6 and 9.9 is essentially identical
to the corresponding proof in [Oh and Tataru 2018] and is omitted.
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10. Mapping properties of the renormalization operator

10A. Fixed-time pointwise bounds for the symbols W and O. Here we state fixed-time pointwise bounds
for W and O. We borrow these estimates from [Krieger and Tataru 2017], while carefully noting dependence
of constants on the frequency envelope of A = A, in S!. The bounds below are stated using continuous
Littlewood—Paley projections Pj, but we note that the same bounds hold for discrete Littlewood—Paley
projections as well.

We begin with pointwise bounds for the g-valued symbol ¥y, 4 (¢, x, §).

Lemma 10.1. The following bounds hold:
(1) Form>0and 0 <n <871, we have
1000V, (1.x,6)| <2037 A5 (10-1)

When m = 0, we interpret the expression on the left-hand side as 82’ \Iff)h

(2) Let {t —s,x —y)2 =1+t —s|> + |x — y|% We have
(W (1. 8) = W (s, p. 6)] S min{2" (1 — 5. x — y), 1} An| 51 (10-2)
(3) Finally, for1 <n < 571 we have
0 (W (2,6, 8) = Wi (s, 3. §)] S minf2h (¢ — 5, x — ), 2= a0 (10-3)
For a proof, we refer to [Krieger and Tataru 2017, Section 7.3]. As a corollary of (10-1) we have
VW | < 2" Aplls0- (10-4)
Next, we consider the G-valued symbol O, +.
Lemma 10.2. Let ¢, be an admissible frequency envelope for A in S'. Then the following bounds hold:

(1) For0 <n <871, we have

100 (Ocp )t (0. %.6)] Sy apg, 207y, (10-5)
(2) We have
d(Ocp (1. x,8)02) (5. y.6).1d) Syay, log(1+2" (1 —s.x = y))cp. (10-6)

(3) Finally, for 1 <n <871, we have

135" (0w 1 x.E) O] 4 (5. 7. )]
Syt minf2" (=5, x =), PO A4 (=50 =y e, 10-7)

For a proof, we refer to [Krieger and Tataru 2017, Section 7.7].
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10B. Decomposability calculus. To handle symbol multiplications, we use the decomposability calculus
introduced in [Rodnianski and Tao 2004; Krieger and Sterbenz 2013], which allows us to roughly regard
these operations as multiplication by a function in L# L4, In the present work, we need an interval-localized
version in order to exploit small divisible norms.

Given 6 € 27N, consider a covering of the unit sphere S® = {w € R* : |€| = 1} by solid angular caps
of the form {w € S3 : |¢ — w| < 6} with uniformly finite overlaps. We index these caps by their centers
¢ € S3, and denote by {(m‘g)z(a))} the associated nonnegative smooth partition of unity on S3.

Let I be an interval. Consider a End(g)-valued symbol c¢(z, x, £) on [; X [RR; X [R{g, which is zero
homogeneous in &, i.e., depends only on the angular variable w = £/|£|. We say that c(¢, x, §) is
decomposable in LYLT[I]if c =) 4 ¢®, 9 e27Nand

Y 1ePlpyrarri < oo, (10-8)
6
where
40 3
||c(9) ”DquL’[I] — ‘ (Z Z Sup(mfg(w)nenagl)c(@) ”L;()Z) (10-9)
=0 & w L1

We define ||c||prarr[r] to be the infimum of (10-8) over all possible decompositions ¢ = ) 4 @ In
what follows, we will use the convention of omitting [/] when I = R.
In the following lemma, we collect some basic properties of the symbol class DL L"[I].

Lemma 10.3. (1) For any two intervals such that I C I’, we have

lellprerrin < lcllprarrir-

(2) For any symbols ¢ € DL L™ [I] and d € DL92 L"2[I], its product obeys the Holder-type bound

ledlipreprin S llellpLaLrnldlipLeLrin.

1 1 1 1 1
< < =1 —
where 1 <¢1,492,9,7r1,72,1 < 00, TR qand T

1
-
(3) Let a(t, x,£) be an End(g)-valued smooth symbol on I x R* x [Rg whose left quantization Op(a)
satisfies the fixed-time bound
SuII)”Op(a)(tv X, D) ||L2—>L2 = Ca‘
te

Then for any symbol ¢ € DLYL", we have the space-time bound

10p(ac)(t, x, D)l par L2192 7211 < CallellpLarrin,

where 1 <q1,92,9,7r2,1 < 00, qi] + % = qlz and % + % = % An analogous statement holds in the

case of right quantization.

The proof is essentially the same as the global-in-time versions in [Krieger and Sterbenz 2013,
Chapter 10] and [Krieger et al. 2015, Lemma 7.1]; we omit the details.
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10C. Decomposability bounds for A, ¥ and O. Here we collect some decomposability bounds for 4,
W and O that we will use in our proof of Theorems 9.6 and 9.9. As before, we state the bounds using
continuous Littlewood—Paley projections Py, but note that the same bounds hold for discrete Littlewood-
Paley projections as well. For simplicity of notation, we will usually write |G| prerr = ||ad(G)||prarr
for a g-valued symbol G and ||O|prerr = |Ad(O)||prarr for a G-valued symbol O.

For any 6 > 0, h € R and * € {cone, null, out}, recall the definition

0 ,E
AQ) | =PI F (PA),.
As before, we will often omit the subscript x for simplicity, and write Azoi L= A;egl 4 €t
These symbols obey the following global-in-time decomposability bounds:
Lemma 10.4. For g > 2 and * € {cone, null, out}, we have
9 1y .52
14L) | -olpraze <2073 73 | 4451, (10-10)
0 )y a5_2
148) s lprozs <2070M937 T Ag 4lly 1. (10-11)
Furthermore, for x = cone we have
9 _1)p 0.2
1049 - olpraze 520796377 | 44151, (10-12)
_ 9 _ 1) ,5-2
1850049, -olprere $2079403 3 44150 (10-13)

Proof. The symbols (00d,)" (n‘:’ing”i) are smooth, homogeneous and uniformly bounded, and the
corresponding multipliers are disposable for fixed €2. Then the bounds (10-10) and (10-11) follow by
Bernstein’s inequality using the Strichartz component of the S norm, and, respectively, the L2 H 1/2
component of the VY ! norm.

For the bounds (10-12) and (10-13) we need in addition to consider the size of the symbol of [, and,
respectively, A;L within the support of Pj, Hé”o}lfl'[g)’i. This is 6222, respectively §—2272h, Precisely,
we have the representations

OpNSEing* =222 ongEng =, Al pneEng* =622 onging ",
with O disposable; see, e.g., Lemma 9.5. Then (10-12) and (10-13) immediately follow from (10-10). O
Next, we consider the phase W, which was defined in (9-42). Given 8 > 0 and / € R, let
v = Py Wy
We have the following global-in-time decomposability bounds.
Lemma 10.5. For q,r > 2 and % + % < 3, we have

1_2

(L4 1_2_3
lw?, 27V prarr <27 @G0 4y 51 (10-14)

In addition, suppose that 0 < 2% for some a € —N. Then for q,r > 2, we also have

[2] _ [2] (14 _2 1_3
10ht2a(¥ D, 2790 ) prarr <27 @+ h270903 2 4y 51 (10-15)
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Furthermore,
6
10, Iprore < 03230 45151 (10-16)

Proof. Observing that within the support of Py I1%;E H(g’i the symbol L¥ A~} has the form 27hg—20
with O disposable and depending smoothly on w on the 6 scale, the first bound (10-14) is again a direct
consequence of the Strichartz bounds in the S! norm for A.

For (10-15) it suffices to prove the case p = g = 2 and then use Bernstein’s inequality. But in this case
it suffices to use the X ;51/ 2 component of the S! norm at fixed modulation.

For the last bound (10-16) it suffices to combine the L2L> case of (10-14) with Lemma 9.5. O

We now consider the G -valued symbol Oy, +, which was defined in (9-43). It obeys the following
global-in-time decomposability bounds.

Lemma 10.6. Let cj, be an admissible frequency envelope for A in S. Then for any q > 4, we have

1
1(O<p, 5% O<hgs)IDLaLo S)a g, 2(1=)he, (10-17)
When g = 2, an analogous bound with a slight loss holds:
(O<h x> O<p,+; t)”DL2L°° SlAllgr 22Dk, (10-18)

Proof. These bounds are a consequence of the \Il bounds in the previous lemma. The proof is similar
to the proof of the similar result in [Krieger and Tataru 2017, Lemma 7.9] and is omitted. We note that
the constraint ¢ > 4 in the first bound is to prevent losses in the & summation in (10-14). |

Finally, we consider interval-localized decomposability bounds, which will be needed to exploit
divisibility (i.e., the hypothesis (9-3)) to gain smallness.

Lemma 10.7. Let |I| > 2"k \where h € R and k > 0. For q > 2, we have

6 —C ome
19, I prareerny S 2°°07C 27| ApllLapoorny. (10-19)
— 6
1AL 0 A Olprareern S2°°07C [ ApllLareers. (10-20)
loo- A\ prazeerr) 2407 | ApllLaLoopry. (10-21)
|- AN IpLoLoerr S 2°07C | Ao nllLeLoers. (10-22)

Proof. We will prove (10-19), and leave the similar cases of (10-20), (10-21), (10-22) to the reader.
By scaling, we set &7 = 0. By the definition of the class DL9L°°[I], we have

9 _ 2
1957 | pragoopsy < 6 2(2 D supl|mf (@)6" 9V TG TIE . Po(e- PA>||LW[,])
n=0 ¢

<6°¢ Z||9"a(”’n“’né‘gnePo<w - PA)|Laroops)-

Fix n € [1,40] and @ € S3. From the proof of Lemma 9.3, we see that the projection 6" 8(" )H"’H“’ Po,

cone
when viewed as a Fourier multiplier in (o, 17), has a symbol which is supported in a space -time cube of
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radius < 1, and its derivatives (up to 40, say) are bounded by 6~C for some large universal constant C.
Moreover, we have |9"U3(" w| <u~ 1. Denoting by x9 7 a generalized cutoff adapted at the unit scale as
in (4-22), we have

”9’18;’”)1_[5) conePO(a) PA)”LqLOO[I] 0~ C”XIPOA”LqLoo

Recall that A4 is extended outside / by homogeneous waves. By Proposition 4.10, the last expression is
bounded by

<29%07C|| PoA| La oo
which proves (10-19). O
10D. Collection of symbol bounds. Before we continue, we introduce the quantity M, which collects
various symbol bounds that we have so far.

We fix large enough N and a small universal constant §5 > 0. Then we let M; > 0 be the minimal
constant such that:

e The following pointwise bounds hold for all 0 <n < S land0<m < N:
9009V e, | <2mhgz M,
(W (1%, 8) =Wt (5, y.6)] <min{2" (=5, x—y), 1} Mo,
108" (Wt (1, %, 6) =Wt (s, 3, )] < min{2" (15, x—y), 127 (=2 g,
107 (0 )st,x (1, x,6)] < 207D,
d(Op+(1.x.6)02) 4 (5..6).1d) <log(14+2" (t—s.x—y)) M,
0D (Ot (1.3 E)OZh 1 (5.7, 8))igl <minf2{t—s,x—y), 11 =02 (1 fp s x—y ) =D

e The following decomposability bounds hold for all * € {cone, null, out}, ¢,r > 2 and 2 a1 % %

||A§10>)k 4 0llpLaree <2(=2)hg3-0

148) . s lpraze <20 06377 i,
0 )9 2
”DA/(’L zone,:l: 'a)”DL”LOO 52(3 p)h92 a Mg,
_1y, 5.2
”A;iDA;lG():one +° a)”DLqLOO 52(1 l’)he 2 a M,

”Oygi’z_thxm)”DLﬂLr52_($+%m95_3_7ﬁﬂn

1Qt2a(¥, 2790, ) prarr <2~ (GO G9g3 7 M, (6 <2% < 1),
109, Ipr2ree <6222 M,

1(O<p,+:x. O<p,+:t)IDLO Lo <20=9)hpy, (g=>4+65),

1=
”(0<h,ﬂ:;x’ 0<h,:|:;t)||DL2Loo 522(1 8)hMo-
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By the preceding results, there exists an My such that
My <m [|Allgeest + 1 Aollgooyt- (10-23)
In particular, note that all of the above symbol bounds are small if || A|jcog1 and || Ag||geoy1 are.

10E. Oscillatory integral bounds. Given a smooth function a, let

d§

K(t.x:5.y) = / Ad(O<p ) <o(t. x. £)a()e™ I ElIEC=D Ad(OZ) 1) <o(E. y.9) prt

Lemma 10.8. For a sufficiently small universal constant § > 0, the following bounds hold for the kernel
K2,(t, x5, ):
(1) Assume that a is a smooth bump function on the unit scale. Then
_3 _
Kot x5, )] Sm, (1 —9)72 (e —s] = |x — y|) 1% (10-24)
(2) Let a = ac be a smooth bump function on a radially oriented rectangular box C of size 2k % (2k +€)3,
where k, £ < 0. Then
Kot x55,9)| Sp, 2532040 @ — )73 2% (Jr — 5] | — ) 7. (10-25)

(3) Let a = ac be a smooth bump function on a radially oriented rectangular box C of size 1 x (2£)3,
where £ < 0. Let w € S3 be at angle ~ 2¢ from C. Then, fort —s = (x — y) - + O(1),

K20, x3 5, 9)] Sm, 2262740 —9) 7100 = )10, (10-26)
where x' = x —(x-w)wand y' =y — (y - 0)w.

This lemma is proved as in [Krieger and Tataru 2017, Section 8.1] by stationary phase, using the
symbol bounds in Lemmas 10.1 and 10.2.

10F. Fixed-time L2 bounds. The goal of this subsection is to prove (9-44), (9-46), (9-47) and (9-44)
for Z = L% The common key ingredient is the following fixed-time L2 estimate:

Proposition 10.9. For § > 0 sufficiently small, there exists 8y > 0 such that the following statement
holds. Let h + 10 < k < 0. Then for every fixed t, we have

| (OP(Ad(O<p, ) <i) (x. D) Op(AA(OZ; 1) <i)(D. y)—1) Pol 12, 2 Sm, 2°@" 427 10K =M (10-27)

Lemma 10.10. There exists 8y > 0 such that the following statement holds. Let h <0 and a(§) be a
smooth bump function adapted to {|&| < 1}. Then for every fixed t, we have

IOp(Ad(O<p,+))(x, D)a(D) Op(Ad(OZ; ))(D.y) —a(D)l| 212 Sm, 270" (10-28)

Proof. For simplicity of notation, we omit & in Oy, 4, 0:]1 4 and Wy 5. Following the hypothesis, we
fixtr e R.
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The idea is to derive a kernel estimate as in Lemma 10.8, but taking into account the frequency gap.
The kernel of the End(g)-valued operator in (10-28) is given by

. d
Kop(x,y) = [ (Ad(O<p(x,§)OZp(y. £)) — Da(E)e' =% % (10-29)

Sk Swoh.

We obtain two different estimates depending on whether |x — y| < 27 or|x —y| =2~

Case I: |x—y| < 278@" 1n this case, we use the fundamental theorem of calculus and simply bound

h
Kol 5 [[ 1440902 0.60)
h
< sup
|$SI/—00

Ou,v]0~' =[0u0~!,0v071], 0€G,u,vey,

la(§)|dtdg

%(Ad(Od(X’ )0 (. E)))' dl.

By the algebraic property

we have
ad(u) Ad(0) = Ad(0) ad(Ad(0O™ YY), Ad(0O~Y)ad(u) = ad(Ad(O~Vu) Ad(0™Y).

Therefore,

4 (Ad(0<(x. )0 (7, )
= ad(W) Ad(O<)(x,§) Ad(0Z})(y, §) — Ad(O<¢)(x,§) Ad(0Z) ad(¥() (v, )
= Ad(0<¢)(x, §) ad(Ad(OZ))We(x, §) — Ad(0Z)) We(y, ) Ad(0Z)) (7, §).
Then using the fact that the norm on End(g) is invariant under Ad(O) for any O € G, we have

‘%(Ad(od(x, §)0ZL (6. £)| = [Ad(OZ])Wy(x, §) — Ad(OZ)We(r. 6)].

By the symbol bounds (10-5) and (10-4), we have |0 (Ad(O:Zl)\IJg)| <M, 2%, Thus, by the mean value
theorem,

‘%(Ad(od(% £)0Z} (9, 6))| Sm, 22750,

Integrating in £, we arrive at
|K<n(x, y)| S, 20700, (10-30)

Case2: |x—y| 2 273" Here, the idea is to repeatedly integrate by parts in £. Since

g Ad(O<p(x,£) O} (1. §)) = ad((O<p(x. §) 025 (1. £)):e) Ad(O<p(x.£) O} (1, £)),

the symbol bound (10-5) implies

— _1
108” Ad(O<i (x, §) 024 (3, €D Sp,ma, 25720,



THE HYPERBOLIC YANG-MILLS EQUATION IN THE CALORIC GAUGE 359

Therefore, integrating by parts in £ for N times in (10-29), we obtain

1

for [x —y| 2 27%0" o< N <§7L.
|x_y|(l—8)N+%5 ~ -

|K<n(x, )| Ss.n.M,
Finally, combining Cases 1 and 2, we obtain
sup [[1K<u (x| dy =+ sup [ 1K <yx. )] di S, 20750000 5 200k
x y

provided that gy is small enough. Bound (10-28) now follows. O
Corollary 10.11. For any k € R we have

[Op(Ad(O<p,+))(x, D) Poll12512 SM, 1, (10-31)

[0p(Ad(O<p,x)<k)(x, D) Poll 212 Sm, 1. (10-32)

Proof. The first bound follows by a 7' T *-argument from Lemma 10.10. Next, note that Ad(Oj, 1) <k (x, §)
is simply a smooth average of translates of Ad(O.j_4)(x, §) in x. Therefore, the second bound follows
from the first by translation invariance of L2 O

Next, we borrow a lemma from [Krieger and Tataru 2017], which handles Ad(O«j, 4 )r when k is
large compared to h.

Lemma 10.12. Lett € R, h <0and k > h + 10. Then we have
|0p(Ad(O<p £)i) (¢, x, D) Poll 252 Sy, 2710ETM. (10-33)
Furthermore, for1 <gq < p <00, h <0and k > h + 10, we have
|0P(AA(Op )t %, D Poll o2 oz Su, 2070271060, (10-34)
Same estimates hold for the right quantization Op(Ad(O<p 1)k (D, s, y).

Remark 10.13. The specific factor 10 in the gain 2~ 10(k=h) ig not of any significance, but it is important
to note that this number is much bigger than 1; see the proof of Proposition 10.14 below.

For the proof, we refer to [Krieger and Tataru 2017, Proof of Lemma 8.4] or [Oh and Tataru 2018,
Proof of Lemma 9.11].

Proof of Proposition 10.9. Due to the frequency localization of the symbols in (10-27), we can harmlessly
insert a multiplier @ (D) whose symbol is a smooth bump function a () adapted to {|€| < 1}, and then
discard Py to replace (10-27) by

I0p(Ad(O<p,1)<k) (x. D)a(D) Op(Ad(OZ} 1) <k)(D.y) —a(D)ll 22 Sy, 250% 4271060,
Now it suffices to combine the last two lemmas. O

Proof of (9-44), (9-46), (9-47) and (9-44)' in the case Z = L2 By a T T* argument, the bounds (9-44)
and (9-44)" are immediate consequences of (10-27). Also from (10-27) we obtain the estimate (9-47)
with a constant 27%©¥ which is less than ¢ if « is chosen large enough depending only on M.
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Finally, for (9-46) we compute
9:(Ad(0))<o = (ad(0;r) Ad(0)) <o:

therefore it suffices to combine the decomposability bound (10-17) for O,; with ¢ = oo with (10-31).
The former bound yields a 27% factor which again yields & smallness if « is large enough. O

10G. Space-time L?>L? bounds. Next, we establish (9-44), (9-46), (9-47) and (9-44) when Z = N
or N*. As we will see below, (9-44), (9-46) and (9-44)" follow from the arguments in [Krieger and Tataru
2017]. In the bulk of this subsection, we focus on the task of establishing (9-47).

To state the key estimates, it is convenient to set up some notation. We introduce the compound
G -valued symbol

0<h,:|:(t’xvs’ J’»E) = O<h,:|:([7x’E)OZ%J:(S’))’S)'

The quantization of Ad(O ., 4 ), which is an End(g)-valued compound symbol, takes the form

Op(Ad(0<h,:|:))(t? x, D, Vs S) = Op(Ad(0<h,ﬂ:))([v X, D) Op(Ad(OZILj:))(D? Y, S).

Given a compound End(g)-valued symbol a(z, x, s, y, £), we define the double space-time frequency
projection

(a)<<k(t,x,s, )’»5) = S:ZSi’]':a([,X,S, y?é)

Therefore, according to our conventions,

Ad(O<p 1)k (1. x5, 3. €) = Ad(O<p 4) <k (1. X, §) Ad(OZ} L)<k (s5.7.£).

Proposition 10.14. For § > 0 sufficiently small, there exists §(1y such that the following bound holds for
any h < =20:

| (OP(A(O<p, +)<0) (1. %, D1, y) = 1) Po| g, yo.172 Sna, 20", (10-35)

Before we begin the proof, we state a lemma for passing to a double space-time frequency localization
of Ad(Op_ ), which is used several times in our argument below.

Lemma 10.15. For2 <qg <oocand h+ 10 <k <0, we have

1_1 _
| (OP(A(O 1) <0) — OP(AA(O < +) i) Po | o2y pag 2 Saa, 20782100 (10.36)

This lemma is a straightforward consequence of Lemma 10.12; we omit the proof.

Proof of (10-35). We follow [Oh and Tataru 2018, Proof of Proposition 9.13]. For simplicity, we omit +
in Ocp 4, O<p + etc.

Step 1: high-modulation input. For any j € Z and j’ > j — 5, we claim that

Lo i
19, (Op(Ad(O<n)<0) =D PoQjrll y«_, x0.1/2 SM, 280h2(=i", (10-37)
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Step 2: low modulation input, %h < j. Here, we take care of the easy case %h < j. Under this assumption,
we claim that

19, (Op(Ad(O<p)<0) = DPoQ <5l yu_, y0.1/2 S, 24k, (10-38)
Note that
0, (Op(Ad(O<p)«j—5)—1)PoQ<j—5=0.

Thus, using the L>°L? portion of N*, it suffices to prove
19, (Op(Ad(O <) <0 —Ad(O <)< j-5) PoQ <=5l s, x0.1/2 SM, 4h

Since Q; and Q<5 are disposable in L?L? and L*° L2, respectively, this estimate follows from
Lemma 10.15.

Step 3: low modulation input, j < %h, main decomposition. The goal of Steps 3—6 is to establish
10, (OP(Ad(O <) «0) —=Ad(O_; , 5,)<0) PoQ< sl ys_, yo1/2 Sma, 2°©", (10-39)

provided that j + §h < h.
At the level of End(g)-valued compound symbols, we expand

Ad(O.p) —Ad(0<j+gh) =L+ 9+C,
where

£=/ L, ..z dl,
j+(§h§€§h L, <j+8h

QZ/ Q .
J+8h<t/<t<h el <j+sh

C@,E’,(”,<€” dﬁ” dﬁl d@,

de' de,

c- [
JH6h<tl"<l/'<l<h
and the integrands Ly <k, Qg ¢/, <k and Cy g ¢ < are defined recursively as
Lo<k(t,x,5,y.§) =ad(We)(1,x,§) Ad(O<)(1,x.5,.6)—Ad(O<) (1, x,5,y.§)ad(W() (s, y.§),
Quur,<k(t,x,8,y,§) =ad(W)(t,x,8) Loy <k (t,x,5, 9. 6) =Ly <k (1, x,5,y,8) ad(Wy)(s. y.§),
Co e <k(t.x,5,.§) =ad(Wy)(t.x,6)Qp ¢, <k (t,x,5,9,6)=Qu o7, <k (t.x,5,.§) ad(Vy) (s, y.§).
The three terms Ly <k, Q¢ ¢, <k and Cy ¢ ¢ <k are successively considered in the next three steps.

Step 4: low modulation input, j < %h, contribution of £. Our goal here is to prove
”Qj£<<0P0Q<j_5||N*—>X8<51/2 <M, PIOLS (10-40)

We introduce

Lo, <k« = ad(We) (7, x,8) Ad(O <) <k (1, X, 8, ¥, §), = Ad(O<i) i (1, X, 5, ¥, §) ad (W) (5, ¥, §)
Lg,<—00 = ad(We) (7, x,§) —ad(We) (s, v, §)
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and take the decomposition

£=/~ L, .. :7z—-L, . 3 ._)d@—}—/ ~ L, . % . dt
i Eh<t<h L,<j+68h L,<j+86h, < j—5 i —108h<t<h ,<j+6h,Kj—5

of (L painagos— Lo de+ [ Lot
i +8h<t<j—105n O/ HORKj=5 i +8h<t<j—108h

=: L)+ L)+ La)+ La).

Step 4.1: low modulation input, j < %h, contribution of £(;). For this term we can add a double frequency
localization < C on L t<j+8h and then harmlessly discard the double < 0 localization in (10-40). Then
it suffices to prove that for £ > j + §m we have

— L= +8m)]~ (104 1)5hR
197 OD(Ly _ ;5 «c —Loejrinacjos) PoQ<jmsloorors Sy, 287U+ (10+3)5h,

and then integrate with respect to £. But this is a consequence of the decomposability bound (10-14) with
g = 6 and r = 00, together with the bound (10-34) with p = 6 and g = 2.

Step 4.2: low modulation input, j < %h, contribution of L. Here as well as in the next two cases the

<« 0 localization in £ has no effect and is discarded. The two terms in £ are similar; we

(,<j+8h,<j—5
restrict our attention to the first one. Consider now the operator

Q; Op(ad(¥() Ad(O_, 5,)«j—5)Q<j—s = »_ Q; Op(ad(¥{) Ad(O_, 5,)«j~5) Q< js.
0
The important observation here is that, because of the geometry of the cone, the frequency localizations
for both Ad(O<tsqn)«j—5) and \lfég) force a large angle 6 > 2U=0/2_ or else the above operator
vanishes.
Given this bound for 8, we can now use the decomposability bound (10-14) with ¢ =2 and r = oo
combined with (10-34) with p = oo and ¢ = oo to obtain

Ll lcippa_1
I Op(ad(qjée))Ad(0<j+§h)<<j—5)P0||L°°L2—>L2 <m, 272722079972,
which after # summation in the range 6 > 2%(1' -0 yields

_ 1. 5¢
10 Op(L2) PoQ<j—5llpeor212 Sn, 272723%%,

which suffices.

Step 4.3: low modulation input, j < %h, contribution of £(3). Here we have the same angle constraint as
above but this levels off for £ < j, namely 8 > 2~(¢—/ )+/2_ However, we can now replace (10-32) with
(10-27) to obtain

Ll lep_ iy, 1 i3 §
| Op(ad(WPYAA(O_, ,5,)jm5 — D) Pollpoorzo 2 Sy, 273 273E D3 (2P0 +3) 4 51080
which after 6 and £ summation yields
10 OP(L3) PoQ<jsllpeor2 2 Sm, 2727 (2L TaDN 1229y,

This suffices provided that § is small enough § < 8(0)-
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Step 4.4: low modulation input, j < %h, contribution of L(4). Here we have the same range j — §h <
L<j+ 1084 for £. We also have the same constraint on the angle 6 > 2~ ¢=/)+/2 byt this is no longer
relevant in this case, as we will gain in frequency, and this can override any angular losses.

This time we are able to take advantage of the difference structure for W. Precisely, it suffices to show
that for a, a localized at frequency 1, we have

0 0 -1 -
| Op(ad(¥™)) (1. x. D)a(D) —a(D) Op(ad(¥y))(t. x. D)oo 12 s Lar2 Su, 277°207C. (10-41)
But this was already proved in [Oh and Tataru 2018, (9.40)].
Step 5: low modulation input, j < %h, contribution of Q. We proceed in the same manner as in the case
of L. Defining the symbols

QZ,E’,<k,<<k’ = ad(‘IIZ)(t’ X, g)£(’,<k,<<k’(t’ X,5,), g) - LZ’,<k,<<k’(tv X,8,), %—) ad(‘lje)(s’ Y, E)?
QO <—00 = ad(Wp) (2, X, §) Lo <00 (t, X, 5, ¥, 8) — Ly <00, X, 5, ¥, §) ad(Wy) (s, ¥, §),

we decompose Q as

_ o - !
Q_/j+gh<£,<£<h(ge,£’,<j+8h Qtz,13/,<j+5h,<<j—1o)d(Z dt

+ dt de

j+8h<t'<t<h Qe,e’,<j+£§h,<<j—10
j—108h<t

+f ) (D in im0~ Qe <—co) AU dL
i+ 8h<t'<t<j—108h L ,<j+8h,<j—10

+[ B B Qg’y‘_oodﬁ/dﬁ
JjHSh<t/<l<j—105h

= Q) + Q) + L3 + Luw
Then we consider each term separately.

Step 5.1: low modulation input, j < %h, contribution of Q(1). Proceeding as in Step 4.1, we have

_ - _ - /
Qw1 = /j+8h<e/<e<h(QZ,E’,<j+8h,<<C Qbr,<j+ih<j-s)<odt dt

and we can again harmlessly discard the outer < 0. Applying the decomposability bound (10-14) with
q = 6 for Wy and with ¢ = oo for Wy, and r = oo, together with the bound (10-34) with p = oo and
q = 3, we obtain

1 i s 1)s
y _ N — L= +8m)]5(10+1)5h
19 <jsin«c — Qv <jrin<jsllLorz—>r2 Smz 27° 22T

Summing up with respect to £ and £’ we obtain
10p(Q1)) Pollpocr212 M, 2103k
which suffices.
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Step 5.2: low modulation input, j < %h, contribution of Q(,). Here and also for Q(3) and Q4) we can
remove the outer frequency localization < 0, which does nothing. The expression Q) contains four
terms depending on whether W, and Wy, act on the left or on the right. We consider one of them, for
which we need to bound the operator

Q; Op(ad(W) Ad(O_; , 5,)«j—5ad(Wp)) Q< j—s Po.
We decompose with respect to angles into
0 0’
Y 0, Opad(¥(”) Ad(O_, , 5,)«j—5 ad(¥ ) Q< s Po
0,6’
and consider the nontrivial scenarios. This is as in Step 5.2 but now we have two angles, which must

satisfy nonexclusively
either § > 2200 or g/ > 23G=0),

We can now use the decomposability bound (10-14) with ¢ = 3 and r = oo for the large!! angle and
q = 6 and r = oo for the other angle combined with (10-34) with p = oo and g = oo to obtain either
0 0’ L Leiipy =L Leigny 1L
| Op(ad(¥(”) Ad(O_, , 5) < j—5 ad(¥() ) Pollpsor 22 Sm, 2727230700 0250 ~0g's

or the same bound with the pairs (I, ) and (I’, 6’) reversed. Summing with respect to £, £/, and also with
respect to 6, 6" subject to the constraints above, we obtain

_1: 5%
10 Op(Q2) PoQ<j—sllpoor2 12 Sm, 272723%",
which suffices.

Step 5.3: low modulation input, j < %h, contribution of Q(3). We repeat the angle localization analysis
in the previous step, but as in Step 4.3, we again replace (10-32) with (10-27). The outcome is similar to
the one in Step 4.3; details are omitted.

Step 5.4: low modulation input, j < %h, contribution of Q(4). Again we apply the same angle localization
analysis as in the previous two steps. However, as in Step 4.4, we also need to exploit the difference
between one of the two W’s and its adjoint. Consider one such term, e.g.,

0 0’ 0’
ad(U) (1, x, ©)fad(W( ) (1, x, ) —ad (W[ )€, . 9)]
For this it suffices to apply the disposability bound (10-14) for \DEQ) combined with (10-41). The choice
of the exponents is no longer important. We obtain

i 1—C8 i
||OP(Q(4))P0||LooL2_)L2 SM(T 2 2412(1 Cﬁ),/.

Step 6: low modulation input, j < %h, contribution of C. This repeats the analysis for £ and Q, but we
no longer need to keep track of angular separation. Setting

Co o 07, <k, ks = ad(Wp) (2, x,8) Qur o7 <k, k(1. X, 8, Y, 8)— Q4 < <k (L, X, 5, y,§) ad(Wy) (s, ¥, §),
Cotr 4, <—oc0 = ad(We)(#, x,8)Qpr 17 <00 (t,X,8,9,6)—=Qu o <« o0o(t, x,5,y,8) ad(Wy)(s, y, ),

I That is, which satisfies the bound on the previous line.
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we decompose C as

C=/ 3 Cop 07, <t —Cop 7, <1, «—5)d " dt' dil
JHSh<t/<l/'<f<h

1 /
* /f+§h<e’/<e’<e<h Cop <t «—s5dl”dt dl

j—108h<t

+ / ) Cowrtretrjs—Coppr<oo) A" dU dL
JHoh<t/<l/<l<j—108h

+/ .  Cr<—o dt”"de de
JHOh<l'<l/<l<j—106h
=:Ca) +Cp) +Ci3) +Cu
and consider each of the terms separately.
Step 6.1: low modulation input, j < %h, contribution of C(y). The same argument as in Steps 4.1 and 5.1
yields the bound

| Op(ad(W¢) ad(Wy) ad(Wpr) (Ad((O<gr) — Ad((O<gr) «—5)) <ol Lo 2512
<M, =379 (i+8h—0n kG +8h—) 5 E(j +5h—€’)2106”2%§h’

as well as for any of the other choices of left/right quantizations for the W’s. Integration over j + §h <

"<t <t < 7 is now harmless.

Step 6.2: low modulation input, j < %h, contribution of C(2). Applying the decomposability bound (10-14)
with ¢ = 6 for each of the three W’s in the C, integrand, as well as the L2 bound for Op(Ad((O ) «—5)
yields the bound

| Op(ad(Wy) ad(We) ad(Wer) Ad((O_ 5, s llpoor2nr2 Saa, 273728070280 -26G-0),

which suffices after integration in £ > j — 108k and €', £" > j + §h.

Step 6.3: low modulation input, j < %h, contribution of C(3). This is the same argument as in the previous
step, but using (10-27) instead of (10-32).

Step 6.4: low modulation input, j < %h, contribution of C(4). Here we are concerned with symbols of
the form

ad(We)(t, x, §) ad(We) (7, x, §)[ad(Wer (¢, x, §) —ad(Wyr (€, y, 9],

where one or both of ad(\W,) and ad(W¥;,) may be switched to the right and in the right quantization. Here
we use again the decomposability bound (10-14) with ¢ = 6 for W, and ad(¥y), and (10-41) for the Wy~
difference.

Step 7: low modulation input, j < %h, low frequency O. To complete the proof of the estimate (10-35)
it remains to show that

1Q; Op(Ad(O_;  5,)<o(t, x, D, y,5) = 1) PoQ< 5|l jys , x0.1/2 SM, 25wk, (10-42)
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Ifj+ Sh < h, this is combined with the bound (10-39), which is the main outcome of Steps 3-6. Else,
this is used by itself, simply observing that we can harmlessly replace j + 64 by A.
The above bound is identical to

10 OP(AA(O_ , 5,) <0 — Ad(O__ 5,)j~5)(t, %, D, 3, 8)PoQ< =5 yu_, y0.172 Sha, 2,

which in turn would follow from

_1;
IOp(Ad(O_; , 51)«0—Ad(O_; , 5,)«j~5)(t. X, D. y.5)) Poll poc 2 12 M, 2 2728wk,
But this is a direct consequence of the bound (10-34). O

Proof of (9-47) in the case Z = N or N*. For the estimate (9-47) with Z = N* we combine the L>°L?
bound given by (10-27) with (10-35). If on the other hand Z = N, then the same bound follows by
duality. O

It remains to prove (9-44), (9-46) and (9-44)" when Z = N or N*. For this purpose, we recall the
following result from [Krieger and Tataru 2017]:

Lemma 10.16. For { <k’ £+ O(1), we have
1Q¢ Op(Ad(O<, +)i) (¢, x, D) Q<0 Poll yu_, yo.1/2 Spa, 271 HY, (10-43)
| Q¢ OP(AA(OZ;, )k )(D. ¥.5)Q<0Poll o, yo172 Saa, 271 7H). (10-44)
In particular, summing over all (£, k") with £ <k and k <k’ + O(1), we have
1 Q< (OP(AA(O<p +) <0) —~ OP(AA(Ocp £) <) (t. x. DY Q<0 Pol o, you1/2 Saa, 1. (10-45)
10 <k (OP(Ad(OZ;, 1) <0) —OP(A(0Z;, 1) <k—c))(D. ¥, 5) Q<0 Poll e yo.12 Sha, 1. (10-46)

Proof. The proof of this lemma is similar to that of Proposition 10.14, but simpler in the sense the
frequency gap need not be exploited. It can be proved with exactly the same arguments as in [Krieger
and Tataru 2017, Proof of Proposition 8.5] (there, M, < ¢). Because of this, we will merely indicate here
how to modify the preceding proof of (10-35) to obtain (10-43). We leave the details, as well as the entire
case of (10-44), to the reader.

As before, we omit % in the symbols. We replace Ad(Op) «k (t, x,5,y,E)—1by Ad(O<p) <k (£, x, §)

throughout the proof of (10-35). The main decomposition (Step 4) now takes the form
Ad(O<p)(1,x,8) =Ad(O_; 1 5,) = L'+ Q'+’

= c ~d€+/ Q' . dtde
/j+ghsfsh L,<j+bh j+gh5£’5€§h Ll ,<j+6h
’ " ogpr
<. de"dt dl
+ /j+§hge"5£’5egh CZ,Z/,Z”,<j+8h ’

where
Ly (1. x.6) =ad(¥y) Ad(O) (1. x. £),

Qp <k (t. x.8) =ad(W) Ly 4 (t.x.8) = ad(Wy) ad(Pp) Ad(O<f) (2. x. §),
Cp < (t.x.8) = ad(¥g) Qp pr 4 (t.x.§) = ad(¥y) ad(Vg) ad(Wpr) Ad(O<k)(t. x. §).
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For the expansion of £, Q and C in Steps 5, 6 and 7, we replace Ly <k «k’> Lt <—co> Qb7 <k, <k’
Qe,z/’<_oo, Cé,e/,é”,<k,<<k’ and Ce}e/’g//’<_oo by, respectively,

Ly <k = ad(W) Ad(O<p) <p/ (2, X, §),
LY oo = ad(¥p)(1.x,§).
Qv <ke<tr = 3(W) LY g o (t,x, ) = ad(¥y) ad(Py) Ad(O<f) < (1, X, £),
Q0o =AW LY __ (8, X, ) = ad(Wy) ad(Wp) (¢, x, §),
Cor ar<ke<kr =AY Qg g (8, X, £) = ad(Wy) ad (W) ad(Wer) Ad(O<f) < (2, X, §),
Cpr . <—oo = 8d(W0) Qp g1 oot x,£) = ad(Wy) ad(Wyr) ad(Wer) (1, x, ).

Accordingly, we replace the use of (10-27) and (10-36) by (10-32) and (10-34), respectively, which results
in loss of the smallness factor 280" in (10-43) compared to (10-35). O

Proof of (9-44), (9-46) and (9-44) in the case Z = N or N*. It suffices to consider the Z = N*; then
the case Z = N follows by duality. The L°°L? bound follows from the Z = L? case, so for (9-44) and
(9-44)' it remains to establish that
_1;
10 Op(Ad(O<p,+)<0) Polly+—12 Sm, 2727,

By Lemma 10.16 this reduces to

_ 1
[Q; Op(Ad(O<p +)<j—5)Polln+—r2 Sm, 27 27.

Now due to the frequency localization for Op(Ad(O.j +)<;—5 we can insert a (slight enlargement of)
Q; on the right, in which case we can simply use again the Z = L? case.
Similarly, in the case of (9-44)’ it suffices to show that

10,[0:. Op(Ad(O < £)<0)] Q< Pollyroszz Sm, 272720

We split into two cases. If j < %h then we write

0¢ Ad(0<h,:|:) = ad(0<h,:l:;)f) Ad(0<h,:|:)<0)v

and then we can easily combine the decomposability bound (10-18) with the L? boundedness of
Op(Ad(O<p,+)<0)- Else we have

Q;[9:, Op(Ad(O<p,+)<0)]1Q <) Po = Q;[0:. Op(Ad(O<p,+) 15,011 Q< Po-
Now we discard Q;, QO <;—s and d; and use directly (10-34) with p = oo and ¢ = 2. |

10H. Dispersive estimates. Finally, we sketch the proofs of (9-45) and (9-45)'. As in [Krieger and Tataru
2017], we exactly follow the argument in [Krieger et al. 2015, Section 11]. In the case of (9-45), we
replace the use of the oscillatory integral estimates (108), (110) and (111) in [loc. cit.] by (10-24), (10-25)
and (10-26), and the fixed-time L2 bound (114) in [loc. cit.] by (10-32), (118) in [loc. cit.] by (10-45)
etc. In case of (9-45)’, observe that all the constants in these bounds are universal under the smallness
assumption (9-48) for a suitable choice of §,(M), as we may take My < 1.
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There is one exception to the above strategy, namely the square function bound
| Op(Ad(O+)<o(t, x, D)||S§_>L;0/3L% <M, 1. (10-47)

This is due to the fact that the square function norm was not part of the Sy norm in [Krieger et al. 2015;
Krieger and Tataru 2017], and was added only here. The same approach as in [Krieger and Tataru 2017]
allows us, via a T T *-type argument, to reduce the problem to an estimate of the form

H/ x—1(t—5)S(,s)B(s)ds

< B s
10/3 %NMU || ”1)160/71%
where

S(t,5) = Op(Ad(O+) <o(t, x, D)eE Pl Op(Ad(04) <0(D, s, y)

and the bump function y_; corresponds to the modulation scale 2l in Sg. It is easily seen that the bump
function is disposable and can be harmlessly discarded. Hence in order to prove (10-47) it remains to
show that

H/ S(t,s)B(s)ds

< -
Lors 2 Mo 1Bl 107,2- (10-48)
X t

To prove this we use Stein’s analytic interpolation theorem. We consider the analytic family of operators

T,B(t) = ¢* /(z —5)?S(t,5)B(s) ds
for z in the strip

-1 <Imz < %
Then it suffices to establish the uniform bounds
T2\ 212 Sm, 1, Rez=-1, (10-49)
3
”TZ”L}CL%—>L§°L% <M, 1, Rez=3. (10-50)
For (10-49) we can use the bound (10-31) to discard the L? bounded operators
Op(Ad(O+)<o(t, x, D)e Pl ¢FsIPIOp(Ad(O4) <o(D, s, y).

Then we are left with the time convolutions with the kernels ¢?”¢%. But these are easily seen to be
multipliers with uniformly bounded symbols.
For (10-50), on the other hand, we consider the kernel K (, x, s, y) of T,. This is given by
Kz (1,5, 9) = ¢ (1 =) K% (t, x5, 7)
with @ a smooth bump function on the unit scale. Hence by (10-24) we have the kernel bound
y—100 3

K= (t.x.5.9)] S, (1t —s] =[x =y, Rez=3.

Fixing x and y we have the obvious bound

IKz(-ox,- )L2— 12 <M, 1
Then (10-50) easily follows.
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11. Renormalization error bounds

Without loss of generality, we fix the sign & = +. In this section, unless we specify otherwise, Op(-)
denotes the left quantization. For the sake of simplicity, we also adopt the convention of simply writing
Ay for P, A.

11A. Preliminaries. We collect here some technical tools for proving the renormalization error bound.

We begin with a tool that allows us to split Op(ab) into Op(a) Op(b). The idea of the proof is based
on the heuristic identity Op(ab) — Op(a) Op(b) ~ Op(—idga - dxb) for left-quantized pseudodifferential
operators; see [Krieger et al. 2015, Lemma 7.2] and [Krieger and Tataru 2017, Lemma 7.2].

Lemma 11.1 (composition via pseudodifferential calculus). Let a(t, x, &) and b(t, x, §) be End(g)-valued
symbols on I; X [Ri X Rg with bounded derivatives, such that a(t, x, §) is homogeneous of degree 0 in &
and b(t,x,§) = PZ, _  b(t. x,) for some 0 <6 <1 and 2h6 = 9. Then we have

[(Op(a) Op(b)—Op(ad)) Pollrar2[11—L7 L2[1]
S 100gallp,Lr2 Lot OP(0 ™ 9xb) PollLa 21> e 2y (11-1)
where r~! = p71 + psL.

Proof. For simplicity, in this proof we only present formal computation, which can be justified using the

qualitative assumptions on a and b.

X
<hg—10

(Op(a) Op(b) — Op(ab)) Po = Y  Op(af)) Op(b3) — Op(afby).
¢

Let us fix ¢ € 1. Thanks to the frequency-localization condition b(x, §) = P b(x, &), we may write

where

ad(x,£) = a(x, )X EMLE),  bY(x, &) = b(x, )G (E)mo(£).

Here ¢ runs over caps of radius ~~ 6 on S with uniformly finite overlaps, (mf;)Z(g) = (m£)2($/|§|)
are the associated smooth partition of unity on S and mg(£) is the symbol for Py. The functions
nﬁ‘g(é )= ﬁiz(é /1&1) and mg (&) are smooth cutoffs to the supports of m‘g and my, respectively, which can
be inserted thanks to the frequency-localization condition b(x, §) = P2 hg—lOb(x’ £).

For each ¢, we claim that

10p(ad) Op(b) —Op(ad b2, 12

20
< (Z sup m (@)[10"0{"a(- . w)nLoo) 0P 0xbP) L2z (11-2)
n=1 @

Assuming the claim, the proof can be completed as follows. Let us restore the dependence of the symbols
on t. By the definition of DgL?L", we have

20 2 %
(Z(Zswm@iersac i) V| | <160alo,imimin
¢ ‘n=1 ¢ L;2U]
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On the other hand, by LZ-almost orthogonality of nﬁ?(é) and Holder in ¢, we have

1
2
H (Z||0p(9—1axbz;’)||izﬂz)
¢

. S N0p(0~19xb) Pollpar2—rr 2117
L;7[I]

where r =1 + Do e P1_1 Therefore, by Cauchy—Schwarz in ¢ and Holder in ¢, (11-1) follows.
We now turn to the proof of (11-2). For simplicity of notation, we use the shorthand a = a‘g and

b= b¢ for now. Then the kernel of Op(a) Op(d) — Op(ab) can be computed as follows:

dé¢ dn

K(r.y) = [ 08,0 —ae b di g

! i(x—2)¢& i(z—y): ds dﬂ
:/0 /e ( )se ( y)"(é—ﬂ)-(aga)(x,sg + (1 _S)Tl)b(Z, n) dZWW
de  dy

1
_ i(x—2)£ i (z—)- _ -
=i [ [P x4 (1= 0xb) 1) d2 G )

Expanding
dea(x,-) = / e OB (Qea)V (x, E)dE
and making the change of variables Z = z — (1 — s) E, we further compute
d¢ dn
@)t emt @

d§¢ dn
(2m)* 2m)*

K(x,y) = —z// HmsB-2) 8 i G290 (9eq)Y (x, B) (9xb) (2. ) d E dz ———

= /0 /ei(x_E_Z)'gei(E_y)"’(85a)v(x, E)0xb)E+(1—5)E,n)dEdZ

1
_ Vv 2 i(x—sE—y)n g5 = ds.
l/()/(aga) (x, )([ (0xD)(x —sE,1n) n )4)61 ds

On the last line, note that the n-integral inside the parentheses is precisely the kernel of Op(d.b)(x—s &, D).
By translation invariance, we have

67 (@xb)(x =58, D)2 2 = (67 9xb)(x, D) Poll 2o 2.

On the other hand, returning to the full notation ag = a and rotating the axes so that ¢ = (1,0, 0, 0), note

that a, (x -) is supported on a rectangle of dimension >~ 1 x 6 x 6 x 6, and smooth on the correspondmg

scale. Integrating by parts in £ to obtain rapid decay in E (of the form (E!)™N(9E’)~N, where

=/ r-127-13
O o= (a7,

E4)), we may estimate

d§

_dE
Qm)* L

0 / 1(3ead)V (-, E)llz= dE < / H / e ZE0dea (-, E) P (E)ME(E) ——

e [16780a ollmmb Erio(e) de.
n=1
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Passing to the polar coordinates £ = Aw (where A = |£|), integrating out A and using Holder in @ (which
cancels the factor 673), we arrive at
20

0 [10a)Y (. )l dZ < Y- supmb (@670 a(- )1
n=1
which proves (11-2). O
Remark 11.2. As is evident from the proof, we in fact have the simpler bound
1(Op(a) Op(b) — Op(ab)) PollLar2[11—Lr L2[1]
< lalpyrr2LeonlOp(O ' 9xb) Pollpar2iry>rer L2 (11-1)

In other words, control of the Dg P2 [.°°-norm already encodes the fact that a is smooth in £ on the
scale 6.

In practice, Lemma 11.1 can be only be applied when we know that the symbol on the right (b in
Lemma 11.1) is smooth in x on the scale 6~1. Fortunately, when b = Ad(0Q), the remainder can be
controlled using decomposability bounds for W. We therefore have the following useful composition
lemma.

Lemma 11.3 (composition lemma). Let G = G(t, x, £) be a smooth g-valued symbol on I x R* x R*,
which is homogeneous of degree 0 in & and admits a decomposition of the form G = _gcp—n GD, where

1G @ p,r2peopr) < 0%B
for some B > 0 and o > % + 8. Then for every £ <0 we have
|Op(ad(G) Ad(O~¢)) Po — Op(ad(G)) Op(Ad(O<¢)) Polln+[11—>n[1] SM B. (11-3)

Proof. Let us assume that £ > hg — 20, as the alternative case is easier.
We decompose the expression on the left-hand side of (11-3) into 3" pcp—n D@, where

D® = 0p(ad(G?) Ad(0()) Po — Op(ad(G)) Op(Ad(O()) Po.
In order to reduce to the case when Lemma 11.1 is applicable, we introduce hy = log, 6 and further
decompose D® as

V4 V4
D® = / Op(ad(G®) ad (W) Ad(Op,)) Po dh— / Op(ad(G®)) Op(ad(¥y,) Ad(Op)) Po dh
hg—20 hg—20

+0p(ad(G ) Ad(O<jy—20) 5 1y—10) Po—Op(ad(G ) Op(Ad(O <p, —20)y—10) Po
+0p(ad(G?) Ad(0<jy—20) <hy—10) Po—Op(ad(G ) Op(Ad(O <p, —20) <hy—10) Po.
We claim that
1D oo L2115 L1 217 < 692 B. (11-4)

Assuming (11-4), the proof can be completed by simply summing up in 6 € 2~N, which is possible since
1
o> 5 + 4.
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For the first term in the above splitting of D(®), we have

{
fh  10p(@d(G®) ad) AA(O4)) Pollw 2112211y d
~

L

sM];l 20||G('9)||D9L2Loo[]]||\Ifh||DL2LOO[I]dh
o—
L

ST el S
hg—20

The second term can be handled similarly. For the third term, we use the D L2 L bound for G and
apply Lemma 10.12 to Ad(O<p,—20)>h,—10), Which leads to the acceptable bounds

10p(ad(G®) Ad(O <y —20)5hy—10) PollLoo 1211511 12117 <M 0% B,
10p(ad(G®)) Op(Ad(O<py—20)5hy—10) Poll oo 2(r— 11 L211) Sm 0% B.

Finally, for the last term we use Lemma 11.1 (in fact, (11-1)'). O

11B. Decomposition of the error. Let

E = 05" Op(Ad(0) <o) — Op(Ad(0)<)0.
We may take the decomposition
E = El +”'+E6a

where

Ey =2i Op((ad(®w - Ax,<— + Ao,<—c + LE V) Ad(0))<0)|Dx]|,

Ez = 2i Op((ad(@ - Oyx + O — LLW) Ad(0)) <o) | Dx|.

E3 =2 0p(ad(Aa, <) (ad(0*%) Ad(0)) <o) + Op((ad(Os) ad(0**) Ad(0))<o).

E4 = Op((ad(3* 0:) Ad(0)) <0).

Es = —2i Op(ad(4o,<—«) Ad(0)<0)(D1 + [Dx|) —2i Op((ad(O<—;r) Ad(O0))<0) (D¢ + | D)),

Ee = —2i Op([S=0,8d( - Ax,<— + Ao,<—)] Ad(0))| Ds].

In the remainder of this section, we estimate each error term in order.
11C. Estimate for E1. Here, our goal is to prove

IEvPoll gy iy = & (11-5)

with « large enough and §, sufficiently small.

11C1. Preliminary reduction. For this term, we may simply work with / = R by extending the input by
homogeneous waves outside /. The desired smallness comes from x and bounds for A, and AAg on 1,
which controls the size of the symbol of E; through our extension of A, as in Section 9B.
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We first dispose of the symbol regularization (- )<g by translation invariance, and also throw away
| Dx| using Py. Using (9-42) and the identity

-1
L‘_"FLEA"OL =—-A_0+1,
(11-5) reduces to showing

Le,

H / - Op(ad(Gy,) Ad(0)) Po dh
—0o0 Sg—>N

where
F] _ 8
1 =0 A= ASI + 85 004G + A,
Note that each angular component G® =" G, obe
h 0 h ys
2] 1p 3
16" Ipr2ree 52203 (| Axallst + 1 Ao llyr)-

Therefore, by Lemma 11.3, we have

H/_ (Op(ad(G) Ad(0)) — Op(ad(G})) Op(Ad(0))) Po dh H <m 273K,
—00 N*—>N

which is acceptable. By Lemma 10.12 applied to Op(Ad(O)>0), we also have

H /_ " 0p(ad(Gy)) Op(Ad(0)0) Py dh‘

—K
1
<m / 22" 0p(Ad(0)50) Poll o2 1212 dh
N*—>N —00
1
<p 272
Thus it suffices to show that

H/_K Op(ad(Gy)) Op(Ad(O) <o) Po dh KL e&.

So—>N

By (9-45), we have Op(Ad(O)<g) Po : Sg — So. Thus, in order to prove (11-5), we are left to establish

Le, (11-6)

H/_K Op(ad(Gy,))Po dh
—00 So—N

where we abuse the notation a bit and denote by Py a frequency projection to a slightly enlarged region
of the form {|&| >~ 1}.

At this point it is convenient to observe that the contribution of ﬁo to Ag in (9-27) is easy to estimate
in L' L and can be harmlessly discarded. Thus from here on we assume that

Ry =0. (11-7)
In order to proceed, we write

Gh = Gh,cone + Gh,null + Gh,outv
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where s s
Ghoone = @ ALy e + AL 0@ A0 + Ao pcone
Ghutt = @ - Ax pnatt + Ao,k nuls
Gh,out =w:- Ax,h,out + AO,h,out-

11C2. Estimate for Gp, cone. We claim that

—K
/ Op(ad(Gp,cone)) Po dh' <L e (11-8)
—00 N*—>N
Let G}(fc)one = I'IZ;’jEGh’COHe and consider the expression Op(ad(G}(fzone))Po. By the Fourier support

property of G,(ZOC)Onc (more precisely, the mismatch between its modulation < 2#62 and the angle ), it is

impossible that both the input and the output have modulation < 2#62. Using the L2L2 norm for the
input or the output (whichever that has modulation = 2102, we may estimate

”Op(Gh,cone)PO ||N*—>N

—Lha—1 0
<Y 27207 G llprape
0<1

L§% _lp. 1 _1lp. 1
S22 Axpllst + Y 27707210 chyrton, 0+cOAx 22 + Y 272702 || A Ay,
f<1 <1

212

We now treat each term separately.

Case 1: contribution of small angle interaction. The term 2©/2)% | 4 x,hlls1 is acceptable since it is
integrable in —oo < h < —«, and we gain a small factor 2~©/2) a5 a result.

Case 2: contribution of [1A,. For the second term, we split the -summation into 6 < 27 and 6 > 27X,
In the former case, note that
2b
[ Q<h+210g2 g+cUAx ||L2L2 <07 ”DAx,h ||X*1/2+h1=*h1 .
Since by > %, we may estimate
2-3hg=3 04 <2~ (2bi=3)k gy
10 <h+210g, 0+ T Ax 1212 < 18 Ax nllx—1/2451 .01 -
f<2—«K

The last line is acceptable, since it is integrable in —oo < h < —k, and it is small thanks to 2~ (2b=1/2)¢
In the case 6 > 27, we estimate

_lpa_1 1
> 270730 chgatog, 040 D Axllr2re S 27N 0Ax il 2 r—1/2-
0>2—K
After integration in /, this is acceptable thanks to (9-22).
Case 3: contribution of Ag. In this case, we simply sum up in 8 < 1 and observe that
iyl

Y 27207 | A Ao pllr2re S 1A Aol 2g-1/2

6<1
After integration in /, this term is then acceptable by (9-29).
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11C3. Estimate for Gp, . We claim that

—K
H/ Op(ad(Gp,our)) Po dh L e. (11-9)
- N*—>N
As in the case of Gy, Cone, the idea is again to make use of the mismatch between modulation of Gy, ¢
and the angle 6. Let G = Hw j:Gh out» and consider the expressmn Op(ad(Gw) ) Po. By definition,

G}(leo)th has modulation > 2h02 Thus, we take the decomposulon G;(l out =) 4 a9 Qht2a }(l ;n By the

Fourier support property of the symbol Q42,4 G,(l oyt (more precisely, the mismatch between the angle ¢
and the modulation 27129)_ it is impossible that both the input and the output have modulation < 2h+2a
Using the L2 L? norm for the input or the output, we have

10p(@d(Gpp ou)) Pollv+—sn
_1 0
sy Y 220 9)040,G80) prage

a fH<min{C24,1}

<S0Y @EtR202203 10, oA lpare + 27202022003 4g 4 1212)
a fH<min{C24,1}

S _ _1 3 —ag~—L
<Y 34273273 Qp 0 OAx sl 2r2 + 2247279272 | A A 4 212).

a

We split the a-summation into a < —k and a > —«. In the former case, the sum is bounded by
—(2p, =1 1
27O O A o172 + 272 Ao nl 212

which is integrable in & and small thanks to 2~ (221=1/2)¢; therefore it is acceptable. When a > —«, the
sum is bounded by

1
22°10Ax nll 2172 + 1A Ao nll 12 172
After integrating in £, this term is therefore acceptable by (9-22) and (9-29).

11C4. Estimate for G, . We claim that

<e. (11-10)

—K
H / Op(ad(Gp ) Po d
- S0—>N

)
Let G,

output have modulatlon >2"

= Hw jEGh nat- Note that G(G) , has modulation =~ 2192 Hence if either the input or the

C2hg2 the same argument as in the case of Gy, ¢one applies. Writing 6 = 2t

it remains to prove

—K
26) 2¢
> / O <htat-c Op(ad(@- AL, 1+ AG, ) PoQ<niae—c dh e (-1
{e—N So—N
(4
Our next simplification is to observe that we can harmlessly replace the symbols Aiz,h),n ; and Agzh)null

with the functions Qp42¢Ax p and Qp 124 Ay p. This is because the difference of the two is localized still
at modulation 2#+2¢ but also at distance 2#72¢ from the null plane {o + w - n = 0}. This would force
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C2h+2€

either the input or the output modulation in (11-11) to be > 2~ , and again the same argument as

in the case of G, ¢one applies. Thus with j = h + 2¢ we have reduced the problem to estimating

—K
Zf O<j—cad(Q;Aq )% PoQ<j—c dh < e, (11-12)
j<h? T So—>N
—K
> [ 0jcad@ A Do+ D PO dh| e (LY
j<h'T® So—>N

The second bound is straightforward since (Do + | Dx|) Po Q<o : So — L% and Ag € L2H?3/2.

Thus it remains to consider (11-12). From here on, we assume that A is determined by the expressions
(9-27) and (9-30) in terms of A. By (11-7) we have already set Ro =0. Itis equally easy to see that we
can set R, = 0. Indeed, by (4-6) and (8-30) we have

10<j—c ad@ ' PR PoQ<j—cllsomn <25V P07 PRyl 21 S 250 PRyl L1 120

where R = yj P R. Now the summability in j < & and the smallness is assured due to (9-26).
Once we have dispensed with the error terms, we are left with A, , given by

Ao = AT10(y1 A% 3, 4yp), (11-14)
A=0"PO(x1 A" 0xAg) + O'(PiA, x10°A) — O' (Ao, x19: A) + O'(Gy. x10° A)).  (11-15)
We consider the contributions of each of these terms in (11-12).

Step 1: the contribution of Ag = A~10 (x7 A%, 8; Ay) and A, = O~ PO (1 AL, 35 Ay). This is the main
component, which we have to treat in a trilinear fashion. In particular we have to ensure that we gain
smallness. For this we use a trilinear Littlewood—Paley decomposition to set

A= ) Alkkika)= ) HAkkiko)+ ) (1=H)AK k1. k2),
k,k],k2 k,klakZ
where _ .
HA(k, k1, k2) := H Py PA(Py, x1 A%, Pryd: Ay),

(1 —=H)A(k, k1, k) := (1 —H) P PA(Py, x1 A, P, Ay).

For the terms in the first sum we use the trilinear estimate (8-43), which gives
| Q<j—c ad(Q;HAa(k.k1.k2))0* PoQ<j—c llggr 11 12 S 270 Wl g2 U0 i A g1 || P, Al 1.

For the Ay terms in the second sum we first use (8-21) and (8-33), (8-34) to obtain

I(1=H) Ax (k. k. ko) | 71 < 2701 o™il | Py A g1 | Py, A 1

and then use (8-30) to conclude that
| Q<j—c ad(Q;(1=H) Ag(k. k1.k2))3" Po Q< j—c || s>y S2~ 01 Vomin Kl 201 U=B0) Py A 1] Py, Al 1.
Similarly, for the A¢ terms in the second sum we use (8-35) and then (8-31) to obtain

10<j—c ad(Q; (1=H) Ao (k, k1, k2))3° PoQ<j—c || 5o 5 <2~ 31 Wmin=Huaxl 261G =K pr A 61| P, Al 51
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Adding the last three bounds, we obtain
10 <j—c ad(Q; Ak, k1,k2))0% PoQ < j—c || 59 < 2701 kmax=hminl 251G =RV | py A\ 61 || Pr, A 1.

This gives both summability in k, k1, k2 and smallness provided we exclude the range of indices j, kq, ks €
[k —«’, k + '] with &’ > 1.

On the other hand, in the range excluded above, the operator Py Q; is disposable, while both [J and A
are elliptic, i.e., of size 22k Then we can estimate

10 Ak, k1, k2)llp1 oo <2 | Piy Al pst | Peo All pst:

therefore we gain smallness from the divisible norm; see (9-5).

Step 2: the contribution of A, = 07! PO’(P, A, XI 3¢ A). This is a milder contribution, which we can
deal with in a bilinear fashion. Taking again the decomposition

Ax g Z A(k,kl,kz),
k.,k1,k>
we use (8-38) to obtain

1Ax (k. k1, ko)l 21 < 27 Km—Kmink ) o A 1 || P, Al 1.
Then by (8-30) it follows that
10<j—cad(Q;HAx(k.k1,k2))0* PoQ<j—cllsy—>L11L2
< 27 ol gh U0 Py A1 Py, Al (11-16)

Again this is suitable outside the range j, k1, ks € [k — k', k + k'] with ¥’ >> 1, whereas in this range we
can use divisible norms as in the previous step.

Step 3: the contribution of PO'(Ag, x19: A) + PO’ (G, y19¢A). These two terms are similar, as we
have the same bounds available for ffo and 61. We will discuss /fo. Setting

Ay =07 'PO(Ag, y19:4), Ap=0,
we decompose A as before,

Ay = Ax(k, ki ka).
We can estimate the terms in the sum using (8-41) to get
| Ax (k. Ky ko) || g1 < 270t tkm—Rninlj Py gy || P, Al 1.
Then (11-16) follows again from (8-30), and we conclude as in Step 2.

11D. Estimate for E,. Our next goal is to estimate the error term E5, which arises from the multilinear
error between O, and dy W. For this purpose, we rely crucially on interval localization of decomposable
norms (Lemma 10.7).
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11D1. Expansion of O.q. We will prove that

| E2 Polln+[11—np1] < € (11-17)

provided that « is large enough, and §, is sufficiently small.
As usual, we may dispose of the symbol regularization ( - )<¢ by translation invariance. Also disposing
of | Dy | using Py, it suffices to prove

|Op(ad(w - (Osx — 3x W) + (0 — 3, %)) Ad(0)) Po HN*[”%NU] Le. (11-18)
Recall that 0, O<p.q = Vo + [Yh, O<piql. Therefore,
dp(ad(O<pye) Ad(O<p)) = ad(daWp) Ad(O<p) + ad(Vy,) Ad(O<pie) Ad(O<p).

Repeatedly applying the fundamental theorem of calculus and this equation, we obtain the expansion

ad(0.¢) Ad(0)
—K
:/ ad(d,¥p,,) Ad(O<p,) dhy (11-19)
—00
—K h]
+ f / ad(Wy,,) ad(dg Wp,) Ad(O<p,) dhy dhy (11-20)
—00 J—00

—K h1 h5
+/ / / ad(Wy,) ad(Wp,) ---ad(0a Why) Ad(O<py) dhe --- dha dhy. (11-21)
—0oQ —0oQ —OoQ
On the other hand,
dp(ad(0a V<p) Ad(O<p)) = ad(daWp) Ad(O<p) + ad(9e Y<p) ad(W) Ad(O<p),

so we have

ad(0e ¥) Ad(0) = /_K ad(deWp,) Ad(Op,) dhy (11-22)

—00
-k phy

+[ [ ad(0,Wy,) ad(V,, ) Ad(O,) dhy dhy. (11-23)
—o0 J—o0

Observe that (11-19) and (11-22) coincide. Thus, we only need to consider the contribution of (11-20)-
(11-21) and (11-23) in (11-18).

11D2. Estimate for quadratic expressions. We begin with the contribution of the quadratic terms in W,
namely (11-20) and (11-23), which are most delicate. We claim that

<e, (11-24)

—K h1
H | [ vt ad Ly W4,) Ad(0=y,)) Po vz i <
o oo N*I1>NIT]

<e, (11-25)

—K h1
H / / Op(ad(L2 Wy,) ad(Wy,) Ad(O<p,)) Po dha dhy <
—00 J—o00 N*[I]—N[I]
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provided that 1 is large enough and &, is sufficiently small. In what follows, we will focus on establishing
(11-24), as the proof for the other claim is analogous.
By (9-42) and the identity L‘j; L? Aclu L= —A;ilj + 1, (11-24) would follow once we establish

—K h] .
/ / Op(ad(Wp, ) ad(w - A3S") Ad(O<p,)) Po dha dhy <e, (11-26)
—00 J—00 N*[I]->NII]
—K h] .
”/ / Op(ad(\Ilhl) ad(A;i O(w - A};‘;‘“)) Ad(0<h2))P0 dhy dhy Le. (11-27)
—00 J—00 N*[I]=NI[I]
I main,(6) ,__ ) -1 main, (6)
n Lemmas 10.4 and 10.7, note that w - 4, (Fw-Ay ) and AwLD(a) A, ) obey the

same bounds. Therefore, (11-26) and (11-27) are proved in exactly the same way. In what follows, we
only consider (11-26).
Our first task is to remove Ad(O.p,). For 0 € 27N define
0 in,(<0 <0 in, (0
GO = ad(@)”) ad(w - A7) + ad(U{=7) ad(w - A7),

2
so that

G :=ad(Wy,)ad(w- AF*™) = Y GO,
fe2—N

Note that

16 @ Iprapee Sar 22M122027M063,

by Lemma 10.4 and Lemma 10.5. Applying Lemma 11.3, then integrating —oo < hy < h; < —«k, it
follows that

1
< )72k

~ ’

—K h]
W /(%mmmwuw—%mmmmmw%mawwm
oo Joo N*[I1->N[I]

which is acceptable. On the other hand, using the DL?L* bound for G and Lemma 10.12, we have

e h
H[_ /_ Op(ad(G)) Op(Ad(O},)=0) Po dhz dhy

N*[I1—-N[I]
M o L ha—hy)
<M / / 2371232 | Op(Ad(Opy)20) Poll Lo 12111 121217 dh2 dhy
—00 J =00

<m 277K

so we may replace Op(Ad(O«p,)) by Op(Ad(O<p,))<o. Finally, by (9-44) we have
Op(Ad(0<h2)<0)P0 . N*[I] —> N*[I],

so we are left to prove

<e. (11-28)

0 h )
H/ / Op(ad(W¥p,) ad(w - AZ‘;”“)) dhy dhy
—o00 J—00 N*[I1—N[I]
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In order to place ourselves in a context where we can apply Lemma 10.7, we begin by dispensing with
the case of short intervals
|I| < 2—h2—CK.

For very short intervals | /]| < 2771=C¥ we have the bound

<m 2|1,

0 hy .
H/ / Op(ad(¥,) ad(w - A;lnzam)) dhy dhy
—00 J—00 L>®L25[1]12

which is a consequence of fixed-time decomposability bounds, namely (10-10) with ¢ = oo and (10-14)
with ¢ = oo and r = oo, combined with Holder’s inequality in time. This suffices for the integration with
respect to i1 and /5 in this range.

For merely short intervals 2771 7C¥ < || <27727C¥ we are allowed to use space-time decomposabilty
bounds but only for Wy, . In this case we apply (10-10) with ¢ = oo and (10-14) with ¢ = 6 and r = oo,
combined with Holder’s inequality in time, to obtain

1 5
<y 27sM2k2 g5,

0 h )
H/ / Op(ad(Wp, ) ad(w - AZ];““)) dhy dhy
—00 J—00 LX[2s11]2

This again suffices for the integration with respect to 4 and /5 in this range.

For large intervals, on the other hand, we will use Lemma 10.7. We begin by decomposing ¥, =
>, \I/}(lell) and A7 =" AZ;'H’(OZ). First, we consider the case 2162 > 272€2#202 For fixed h1, ha
and 6,, we use interval localized decomposability calculus to estimate

m in, (0
3 10p(ad(¥; ) ad(w - A3 ™) | oo 217111 22017

0 22—162(1/2)(}!2*/11 )92

0 in,(62)
< 3 195 p 2 poopplloo - AR p 2 poory
9, >2—x2(1/2ha—h1) g,

<22y 4y 51 2731265 oo AT .
Summing up in f> < 272¢, we see that

0
3 3 |0p(ad(W ") ad(w - A7“™ ) Ad(O <) IED N oo 1211121 2211}
0, <2— 2« 01 22—K2(1/2)(h2—h 1 )92
< 27230270 4y 61| Ay, D51

which is acceptable. On the other hand, in the large angle case 6, > 272¢, we use Lemma 10.7 to bound
275126, - A7) oy £ 2 Ay s i)

When 27162 < 272€2%202 e extend the input to R x R* by zero outside / and use modulation
localization. Here we do not apply Lemma 10.7, but rather gain smallness from —«. In this case, observe
that it is impossible for the input, the output and \IJ}(EHII) to all have modulation < 22 922 =: jp. Therefore,

we split into three cases:
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Case 1: high-modulation input. We estimate

0
> X I0pad)adw- A )0 el g
62 9y <2—K/22(1/Dhy—h1)g,
h 1 61) ,(62)
<2 > Hr gt o oo AT O
6> 91<2—K/22(1/2)(h2—h|)92
Lha-h) gt g2
=5 > 280200568 4, 4 151l A s s

02 6, <2—K/22(1/Dha—h1)g,
1 1
2o 23" A s A, ls
which is acceptable.

Case 2: high-modulation output. When the output has modulation > 2/27C then we have exactly the
same bound for L*®L? — )(0_1/2’1 (we use boundedness of Q< j,_c on L>®L?).

Case 3: high modulation for Wy, . By boundedness of Q<;, ¢ on L>®L? and L'L? it suffices to have
the estimate

3 3 I0p(ad(Q j,—c W5 ") ad(@ - Ay ™)) || o2y 112

0> 9, <2—K/22(1/Dha—h1)g,

(%
SZ Z 10>, C\I’hl ||DL2L<>O||a) Amam( 2)||DL2L<>0
0> 9, <2—K/22(1/2(ha—h1)g,
11
52 Z 912922||Ax,h1||sl||Ax,h2||51

0> 0 <2—K/22(1/2)(h2—h1)02

<2722 s A s
Here, we have use (10-15) for ;o . Q; \IJ(Q').

11D3. Estimate for higher-order expressions. The contribution of the cubic, quartic and quintic terms in
W in the expansion of O.q are treated in a similar manner as in the quadratic case; therefore, we omit the
proof. The only remaining case is the contribution of (11-21). For this term, we claim that

<e&

—k ph hs
H / / / Op(ad(Wy,) - ad(W,) ad(O—pyie)) Ad(Op)) dhs - dhz dy
—ood —co —00 N*[I]->N[I]

for k1 large enough and §, in (9-3) adequately small.

As in the case of the quadratic part, we start with very short intervals and move up the line. If
VARS 27M=Cx then we only apply fixed-time decomposability estimates, namely (10-14) with g = oo
and r = oo and (10-17) also with g = oo, together with Holder in time, to obtain

|Op(ad(Wp,) -+~ ad(Wps) ad(O<pgia) Ad(O<ig)) | poo g2y p1z2 Sh 211,

which suffices for the % integration.
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If 2771 =Cx < |J| < 27h2=CK then we switch to (10-14) with ¢ = 6 and r = oo for W}, , to obtain

—1 5
Hop(ad(\ljhl) e ad(lphs) ad(0<h(,;a) Ad(0<h6)) HLooL2_>L1L2 SM 2 6h12h6|l | 6,

which again suffices for the / integration.

Repeating this procedure for increasingly large / we eventually arrive at the last case |/ | > 2~he=Ck,

There by Lemma 10.3 and boundedness of Ad(O-j,) on L?, we have

Hop(ad(q‘hl) T ad(\ljhs) ad(0<h6;a) Ad(0<h2)) HLOOLZ[I]—>L1L2[I]

S W lprereorry 1Whsllpre ool O<ngsal DL6 Loo[r]-

Using Lemma 10.5 for \1;}(19) with 8 < 27 and Lemma 10.7 for the rest, we have

_1 _
1@l proreery < 276" QN A nllsipy + C2“N Ax nllpsi)-

This bound provides us with the desired smallness. By the previous estimate and (10-17), the A-integrals
converge as well, which proves our claim.

11E. Estimates for E3, ..., Eg. We finally handle the error terms E3, ..., Eg, for which we gain
smallness from the frequency gap «.

11E1. The estimate for E3. It suffices to show that
_1
IE3Pollpoor2—pir2 Sm 27 2%,

But this is a consequence of the L? boundedness for Op(Ad(Q)), combined with the L? L decompos-
ability estimates for Ay and O,y in Lemmas 10.4 and 10.6.

11E2. The estimate for E4. We expand with respect to /4,
—K
ad(0%*0.,4) Ad(0) = / 0%(ad(O<p:q) ad(Vy)) Ad(O~p) ad(OWy) Ad(O<p) dh.
—o0
For the first term we simply use two L2L% decomposability estimates as in the case of E3. For the
second term, in view of the bound (10-16), we can apply Lemma 11.3 to discard the Ad(Oj) factor.
Then it suffices to show that

<M 2k,

“/_K Op(ad(COIWy,)) Po dh
—00 So—N

After expanding Wy, in 6, we note that, due to the frequency localization of lIl}(le), either the input or the
output has modulation = 2792 We assume the former, as the other case is similar. Then we only need to
prove the bound

3
<m 622",

—K
“ / Op(ad(CW\?)) Py dh
—00 L2—>L1L2

which is an immediate consequence of the decomposability bound (10-16) for D\Ili(lg).
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11E3. The estimate for E5. It suffices to show that
_1
1E3Pollgs_,p1p2 Sm 2 2",

Since (D; + |Dx|) Po : Sg — L2, this follows from the L? boundedness for Op(Ad(0)), combined with
the L2 L decomposability estimates for A, in Lemma 10.4.

11E4. The estimate for Eg. In view of the L?L > decomposability estimates for A, in Lemmas 10.4
and 11.3, we can discard the Ad(O) factor. In addition, as in Proposition 4.30, we can express the
commutator [Sg, Ay] in the form

[So. Al f =2"O(Ap, f).

Then we have reduced our problem to proving

|

But then these follow, with the 2~%1% gain, from (8-21) and (8-23), thanks to the extra derivative (i.e., the
2h factor).

Le,

—K
/ 2" Op(ad(w - VA, 1)) Po dh
S()—)N

—00

Le.

—K
/ 2" Op(ad(Ag 1)) Po dh
S0—>N

—o0
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