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HYPOCOERCIVITY WITHOUT CONFINEMENT

EMERIC BOUIN, JEAN DOLBEAULT, STÉPHANE MISCHLER,
CLÉMENT MOUHOT AND CHRISTIAN SCHMEISER

Hypocoercivity methods are applied to linear kinetic equations with mass conservation and without
confinement in order to prove that the solutions have an algebraic decay rate in the long-time range,
which the same as the rate of the heat equation. Two alternative approaches are developed: an analysis
based on decoupled Fourier modes and a direct approach where, instead of the Poincaré inequality for the
Dirichlet form, Nash’s inequality is employed. The first approach is also used to provide a simple proof of
exponential decay to equilibrium on the flat torus. The results are obtained on a space with exponential
weights and then extended to larger function spaces by a factorization method. The optimality of the
rates is discussed. Algebraic rates of decay on the whole space are improved when the initial datum has
moment cancellations.

1. Introduction

We consider the Cauchy problem

@tf C v � rxf D Lf; f .0; x; v/D f0.x; v/ (1)

for a distribution function f .t; x; v/, with position variable x 2 Rd, velocity variable v 2 Rd, and with
time t � 0. Concerning the collision operator L, we shall consider two cases:

(a) Fokker–Planck collision operator:

Lf Drv � ŒM rv.M
�1f /�:

(b) Scattering collision operator:

Lf D

Z
Rd
�. � ; v0/.f .v0/M. � /�f . � /M.v0// dv0:

We shall make the following assumptions on the local equilibrium M.v/ and on the scattering rate
�.v; v0/:Z

Rd
M.v/ dv D 1; rv

p
M 2 L2.Rd /; M 2 C.Rd /;

M DM.jvj/; 0 <M.v/� c1e
�c2jvj for all v 2 Rd ; for some c1; c2 > 0: (H1)

MSC2010: primary 82C40; secondary 76P05, 35H10, 35K65, 35P15, 35Q84.
Keywords: hypocoercivity, linear kinetic equations, Fokker–Planck operator, scattering operator, transport operator, Fourier

mode decomposition, Nash’s inequality, factorization method, Green’s function, micro-/macrodecomposition, diffusion limit.
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1� �.v; v0/� N� for all v; v0 2 Rd ; for some N� � 1: (H2)Z
Rd
.�.v; v0/� �.v0; v//M.v0/ dv0 D 0 for all v 2 Rd : (H3)

Before stating our main results, let us list some preliminary observations.

(i) A typical example of a local equilibrium satisfying (H1) is the Gaussian

M.v/D
e�
jvj2

2

.2�/
d
2

: (2)

(ii) With � � 1, Case (b) includes the relaxation operator Lf DM�f �f , also known as the linear BGK
operator, with position density defined by

�f .t; x/ WD

Z
Rd
f .t; x; v/ dv:

(iii) Positivity and exponential decay of the local equilibrium are essential for our approach. The
assumption on the gradient and continuity are technical and only needed for some of our results. Rotational
symmetry is not important, but assumed for computational convenience. However the propertyZ

Rd
vM.v/ dv D 0;

i.e., zero flux in local equilibrium, is essential.

(iv) Since microreversibility (or detailed balance), i.e., symmetry of � , is not required, assumption (H3)
is needed for mass conservation, i.e., Z

Rd
Lf dv D 0;

in Case (b). The boundedness away from zero of � in (H2) guarantees coercivity of L relative to its null
space (such bound can always be written � � 1 by scaling).

Since etL propagates probability densities, i.e., conserves mass and nonnegativity, L dissipates convex
relative entropies, implying in particular Z

Rd
Lf

f

M
dv � 0:

This suggests to use the L2-space with the measure d
1 WD 
1 dv, where 
1.v/ D M.v/�1, as a
functional-analytic framework (the subscript1 will make sense later). We shall need the microscopic
coercivity property

�

Z
Rd
f Lf d
1 � �m

Z
Rd
.f �M�f /

2 d
1; (H4)

with some �m > 0. In Case (a) it is equivalent to the Poincaré inequality with weight M,Z
Rd
jrvhj

2M dv � �m

Z
Rd

�
h�

Z
Rd
hM dv

�2
M dv
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for all hD f=M 2 H1.M dv/. It holds as a consequence of the exponential decay assumption in (H1);
see, e.g., [Nash 1958; Bakry et al. 2008]. For the normalized Gaussian (2) the optimal constant is known
to be �m D 1; see for instance [Beckner 1989]. In Case (b), (H4) means

1

2

“
Rd�Rd

�.v; v0/M.v/M.v0/.u.v/�u.v0//2dv0 dv � �m

Z
Rd
.u� �uM /

2M dv

for all uD f=M 2 L2.M dv/, and it holds with �m D 1 as a consequence of the lower bound for � in
assumption (H2).

Although the transport operator does not contribute to entropy dissipation, its dispersion in the x-
direction in combination with the dissipative properties of the collision operator yields the desired
decay results. In order to perform a mode-by-mode hypocoercivity analysis, we introduce the Fourier
representation with respect to x,

f .t; x; v/D

Z
Rd

Of .t; �; v/eCix�� d�.�/;

where d�.�/D .2�/�d d� and d� is the Lebesgue measure on Rd. The normalization of d�.�/ is chosen
such that Plancherel’s formula reads

kf .t; � ; v/kL2.dx/ D k
Of .t; � ; v/kL2.d�.�//;

with a straightforward abuse of notation. The Cauchy problem (1) in Fourier variables is now decoupled
in the �-direction:

@t Of C i.v � �/ Of D L Of ; Of .0; �; v/D Of0.�; v/: (3)

Our main results are devoted to hypocoercivity without confinement: when the variable x is taken
in Rd, we assume that there is no potential preventing the runaway corresponding to jxj !C1. So far,
hypocoercivity results have been obtained either in the compact case corresponding to a bounded domain
in x, for instance Td, or in the whole Euclidean space with an external potential V such that the measure
e�V dx admits a Poincaré inequality. Usually other technical assumptions are required on V and there are
many variants (for instance one can assume a stronger logarithmic Sobolev inequality instead of a Poincaré
inequality), but the common property is that some growth condition on V is assumed and in particular the
measure e�V dx is bounded. Here we consider the case V � 0, which is obviously a different regime. By
replacing the Poincaré inequality by Nash’s inequality or using direct estimates in Fourier variables, we
adapt the L2 hypocoercivity methods and prove that an appropriate norm of the solution decays at a rate
which is the rate of the heat equation. This observation is compatible with diffusion limits, which have
been a source of inspiration for building Lyapunov functionals and establishing the L2 hypocoercivity
method of [Dolbeault et al. 2015]. Before stating any results, we need some notation to implement the
factorization method of [Gualdani et al. 2017] and obtain estimates in large functional spaces.

Let us consider the measures

d
k WD 
k.v/ dv; where 
k.v/D .1Cjvj
2/
k
2 and k > d; (4)
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such that 1=
k 2 L1.Rd /. The condition k 2 .d;1� then covers the case of weights with a growth of the
order of jvjk, when k is finite, and we denote by k D1 the case when the weight 
1 DM�1 grows at
least exponentially fast.

Theorem 1. Assume (H1)–(H4), x 2 Rd, and k 2 .d;1�. Then there exists a constant C > 0 such that
solutions f of (1) with initial datum f0 2 L2.dx d
k/\L2.d
kIL1.dx// satisfy, for all t � 0,

kf .t; � ; � /k2L2.dx d
k/
� C
kf0k

2
L2.dx d
k/

Ckf0k
2
L2.d
k IL1.dx//

.1C t /
d
2

:

For the heat equation improved decay rates can be shown by Fourier techniques, if the modes with
slowest decay are eliminated from the initial data. The following two results are in this spirit.

Theorem 2. Let the assumptions of Theorem 1 hold, and let“
Rd�Rd

f0 dx dv D 0:

Then there exists C > 0 such that solutions f of (1) with initial datum f0 satisfy, for all t � 0,

kf .t; � ; � /k2L2.dx d
k/
� C
kf0k

2
L2.d
kC2IL1.dx//

Ckf0k
2
L2.d
k IL1.jxjdx//

Ckf0k
2
L2.dx d
k/

.1C t /
d
2
C1

;

with k 2 .d;1/.

The case of Theorem 2, but with k D1, is covered in Theorem 3 under the stronger assumption
that M is a Gaussian. For the formulation of a result corresponding to the cancellation of higher-order
moments, we introduce the set R`ŒX; V � of polynomials of order at most ` in the variables X , V 2 Rd

(the sum of the degrees in X and in V is at most `). We also need that the kernel of the collision operator
is spanned by a Gaussian function in order to keep polynomial spaces invariant. This means that for any
P 2 R`ŒX; V �, one has .L�T/.PM/ 2 R`ŒX; V �M. Since the transport operator mixes both variables x
and v, one needs moments with respect to both x and v variables.

Theorem 3. In Case (a), let M be the normalized Gaussian (2). In Case (b), we assume that � � 1. Let
k 2 .d;1�, ` 2 N, and assume that the initial datum f0 2 L1.Rd �Rd / is such that“

Rd�Rd
f0.x; v/P.x; v/ dx dv D 0 (5)

for all P 2 R`ŒX; V �. Then there exists a constant ck > 0 such that any solution f of (1) with initial
datum f0 satisfies, for all t � 0,

kf .t; � ; � /k2L2.dx d
k/
� ck

kf0k
2
L2.d
kC2IL1.dx//

Ckf0k
2
L2.d
k IL1.jxjdx//

Ckf0k
2
L2.dx d
k/

.1C t /
d
2
C1C`

:

The outline of this paper goes as follows. In Section 2, we slightly strengthen the abstract hypocoercivity
result of [Dolbeault et al. 2015] by allowing complex Hilbert spaces and by providing explicit formulas
for the coefficients in the decay rate (Proposition 4). In Corollary 5, this result is applied for fixed � to
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the Fourier transformed problem (3), where integrals are computed with respect to the measure d
1
in the velocity variable v. Since the frequency � can be considered as a parameter, we shall speak of a
mode-by-mode hypocoercivity result. It provides exponential decay, however, with a rate deteriorating as
�! 0.

In Section 3, we state a special case (Proposition 6) of the factorization result of [Gualdani et al. 2017]
with explicit constants which corresponds to an enlargement of the space, and also a shrinking result
(Proposition 7) which will be useful in Section 6.2. By the enlargement result, the estimate corresponding
to the exponential weight 
1 is extended in Corollary 8 to larger spaces corresponding to the algebraic
weights 
k with k 2 .d;1/. As a straightforward consequence, in Section 4, we recover an exponential
convergence rate in the case of the flat torus Td (Corollary 9), and then give a first proof of the algebraic
decay rate of Theorem 1 in the whole space without confinement.

In Section 5, a hypocoercivity method, where the Poincaré inequality, or the so-called macroscopic
coercivity condition, is replaced by the Nash inequality, provides an alternative proof of Theorem 1. Such
a direct approach is also applicable to problems with nonconstant coefficients like scattering operators
with x-dependent scattering rates � , or Fokker–Planck operators with x-dependent diffusion constants
like rv � .D.x/Mrv.M �1f //.

The improved algebraic decay rates of Theorems 2 and 3 are obtained by direct Fourier estimates in
Section 6. As we shall see in Appendix A, the rates of Theorem 1 are optimal: the decay rate is the rate of
the heat equation on Rd. Our method is consistent with the diffusion limit and provides estimates which
are asymptotically uniform in this regime: see Appendix B. We also check that the results of Theorems 2
and 3 are uniform in the diffusive limit in Appendix B.

We conclude this introduction by a brief review of the literature: On the whole Euclidean space, we
refer to [Vázquez 2017] for recent lecture notes on available techniques for capturing the large-time
asymptotics of the heat equation. Some of our results make a clear link with the heat flow seen as the
diffusion limit of the kinetic equation. We also refer to [Iacobucci et al. 2019] for recent results on the
diffusion limit, or overdamped limit (see Appendix B).

The mode-by-mode analysis is an extension of the hypocoercivity theory of [Dolbeault et al. 2015],
which has been inspired by [Hérau 2006], but is also close to the Kawashima compensating function method
[1990]; see also [Glassey 1996, Chapter 3, Section 3.9]. We also refer to [Duan 2011] where the Kawashima
approach is applied to the Fokker–Planck operator (a) and to a particular case of the scattering model (b).

The word hypocoercivity was coined by T. Gallay and widely disseminated in the context of kinetic
theory by C. Villani. In [Mouhot and Neumann 2006; Villani 2006; 2009], the method deals with
large-time properties of the solutions by considering an H1-norm (in x and v variables) and taking
into account cross-terms. This is very well explained in [Villani 2006, Section 3], but was already
present in earlier works like [Hérau and Nier 2004]. Hypocoercivity theory is inspired by and related
to the earlier hypoellipticity theory. The latter has a long history in the context of the kinetic Fokker–
Planck equation. One can refer for instance to [Eckmann and Hairer 2003; Hérau and Nier 2004] and
much earlier to Hörmander’s theory [1967]. The seed for such an approach can even be traced back to
Kolmogorov’s computation [1934] of Green’s kernel for the kinetic Fokker–Planck equation, which has



208 E. BOUIN, J. DOLBEAULT, S. MISCHLER, C. MOUHOT AND C. SCHMEISER

been reconsidered in [Ilin and Hasminskii 1964] and successfully applied, for instance, to the study of
the Vlasov–Poisson–Fokker–Planck system in [Victory and O’Dwyer 1990; Bouchut 1993].

Linear Boltzmann equations and BGK (Bhatnagar–Gross–Krook, see [Bhatnagar et al. 1954]) models
also have a long history: we refer to [Degond et al. 2000; Cáceres et al. 2003] for key mathematical
properties, and to [Mouhot and Neumann 2006; Hérau 2006] for first hypocoercivity results. In this paper
we will mostly rely on [Dolbeault et al. 2009; 2015]. However, among more recent contributions, one has
to quote [Han-Kwan and Léautaud 2015; Achleitner et al. 2016; Bouin et al. 2017] and also an approach
based on the Fisher information which has recently been implemented in [Evans 2017; Monmarché 2017].

With the exponential weight 
1 D M �1, Corollary 9 can be obtained directly by the method of
[Dolbeault et al. 2015]. In this paper we also obtain a result for weights with polynomial growth in
the velocity variable based on [Gualdani et al. 2017]. For completeness, let us mention that recently
the exponential growth issue was overcome for the Fokker–Planck case in [Kavian and Mischler 2015;
Mischler and Mouhot 2016] by a different method. The improved decay rates established in Theorems 2
and 3 generalize to kinetic models similar results known for the heat equation; see for instance [Mischler
and Mouhot 2016, Remark 3.2(7)] or [Bartier et al. 2011].

2. Mode-by-mode hypocoercivity

Let us consider the evolution equation

dF

dt
CTF D LF; (6)

where T and L are respectively a general transport operator and a general linear collision operator. We
shall use the abstract approach of [Dolbeault et al. 2015]. Although the extension of the method to Hilbert
spaces over complex numbers is rather straightforward, we carry it out here for completeness. For details
on the Cauchy problem or, e.g., on the domains of the operators, we refer to [Dolbeault et al. 2015].
Notice that we do not ask that L is a Hermitian operator but simply assume that L�AD 0.

Proposition 4. Let L and T be closed unbounded linear operators on the complex Hilbert space
.H ; h � ; � i/ with dense domains D.L/ and D.T /. Assume that T is anti-Hermitian. Let … be the
orthogonal projection onto the null space of L and define

A WD .1C .T…/�T…/�1.T…/�;

where � denotes the adjoint with respect to h � ; � i. We assume that L�AD 0 and that there are positive
constants �m, �M , and CM such that, for any F 2H , the following properties hold:

� Microscopic coercivity:

�hLF;F i � �mk.1�…/F k
2 for all F 2 D.L/: (A1)

� Macroscopic coercivity:

kT…F k2 � �Mk…F k
2 for all F 2 D.T /: (A2)



HYPOCOERCIVITY WITHOUT CONFINEMENT 209

� Parabolic macroscopic dynamics:

…T…F D 0 for all F 2 D.T /: (A3)

� Bounded auxiliary operators:

kAT.1�…/F kCkALF k � CMk.1�…/F k for all F 2 D.L/\D.T /: (A4)

Then L�T generates a C0-semigroup and for any t � 0 we have

ke.L�T/tk2 � 3e��t ; where �D
�M

3.1C�M /
min

�
1; �m;

�m�M

.1C�M /C
2
M

�
: (7)

Proof. For some ı > 0 to be determined later, the Lyapunov functional

HŒF � WD 1
2
kF k2C ı RehAF;F i

is such that d
dt
HŒF �D�DŒF � if F solves (6), with

DŒF � WD �hLF;F iC ıhAT…F;F iC ı RehAT.1�…/F;F i � ı RehTAF;F i � ı RehALF;F i:

Note that we have used the fact that RehAF; LF i D 0 because of the assumption L�AD 0, and also that
hAT…F;F i is real because AT… is self-adjoint by construction. Since the Hermitian operator AT… can
be interpreted as the application of the map z 7! .1C z/�1z to .T…/�T… and as a consequence of the
spectral theorem [Reed and Simon 1980, Theorem VII.2, p. 225], the conditions (A1) and (A2) imply

�hLF;F iC ıhAT…F;F i � �mk.1�…/F k
2
C

ı�M

1C�M
k…F k2:

As in [Dolbeault et al. 2015, Lemma 1], if G D AF, i.e., GC .T…/�T…G D .T…/�F, one has

kAF k2CkTAF k2 D hG;GC .T…/�T…Gi D hG; .T…/�F i D hTAF; .1�…/F i;

where we have used AD…A and …T…D 0. Using jhTAF; .1�…/F ij � kTAF k2C 1
4
k.1�…/F k2,

one gets
kAF k2 � 1

4
k.1�…/F k2; (8)

which implies that jRehAF;F ij � kAF kkF k � 1
2
kF k2 and provides us with the norm equivalence of

HŒF � and kF k2,
1
2
.1� ı/kF k2 � HŒF �� 1

2
.1C ı/kF k2: (9)

With X WD k.1�…/F k and Y WD k…F k, it follows from (A4) that

DŒF �� .�m� ı/X
2
C

ı�M

1C�M
Y 2� ıCMXY:

The choice

ı D
1

2
min

�
1; �m;

�m�M

.1C�M /C
2
M

�
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implies

DŒF ��
�m

4
X2C

ı�M

2.1C�M /
Y 2 �

1

4
min

�
�m;

2ı�M

1C�M

�
kF k2 �

2ı�M

3.1C�M /
HŒF �:

With � defined in (7), using ı � 1
2

and .1C ı/=.1� ı/� 3, we get

kF.t/k2 �
2

1� ı
HŒF �.t/�

1C ı

1� ı
e��tkF.0/k2 � 3e��tkF.0/k2: �

For any fixed � 2 Rd, let us apply Proposition 4 to (3) with F D Of and

H D L2.d
1/; kF k2 D
Z

Rd
jF j2 d
1; …F DM

Z
Rd
F dv DM�F ; TF D i.v � �/F:

Here we are in a mode-by-mode framework in which the transport operator T is a simple multiplication
operator.

Corollary 5. Assume (H1)–(H4), and take � 2 Rd. If Of is a solution of (3) such that Of0.�; � / 2 L2.d
1/,
then for any t � 0 we have

k Of .t; �; � /k2L2.d
1/
� 3e��� tk Of0.�; � /k

2
L2.d
1/

;

where

�� WD
ƒj�j2

1Cj�j2
and ƒD

1

3
minf1;‚gmin

�
1;

�m‚
2

KC‚�2

�
; (10)

with

‚ WD

Z
Rd
.v � e/2M.v/ dv; K WD

Z
Rd
.v � e/4M.v/ dv; � WD

4

d

Z
Rd
jrv

p
M j2 dv (11)

for an arbitrary e 2 Sd�1, and with � D
p
� in Case (a) and � D 2 N�

p
‚ in Case (b).

Proof. We check that the assumptions of Proposition 4 are satisfied with F D Of . The property L�AD 0 is
a consequence of the mass conservation

R
Rd

Lf dvD 0 because …AD A. Assumption (H4) implies (A1).
Concerning the macroscopic coercivity (A2), since

T…F D i.v � �/�FM;

one has

kT…F k2 D j�F j
2

Z
Rd
jv � �j2M.v/ dv D‚j�j2j�F j

2
D‚j�j2k…F k2;

and thus (A2) holds with �M D‚j�j2. By assumption M.v/ depends only on jvj, so it is unbiased, i.e.,R
Rd
vM.v/ dv D 0, which means that (A3) holds.

Let us now prove (A4). Since .T…/�F D�…TF D�i
�
�
R

Rd
v0F.v0/ dv0

�
M, we obtain

.1C .T…/�T…/�M D

�
1C

Z
Rd
.� � v0/2M.v0/ dv0

�
�M D .1C‚j�j2/�M
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and the operator A, defined in Proposition 4, is given mode-by-mode by

AF D
�i�

R
Rd
v0F.v0/ dv0

1C‚j�j2
M:

As a consequence, A satisfies the estimate

kAF k D kA.1�…/F k �
1

1C‚j�j2

Z
Rd

j.1�…/F j
p
M

jv � �j
p
M dv

�
k.1�…/F k

1C‚j�j2

�Z
Rd
.v � �/2M dv

�1
2

D

p
‚j�j

1C‚j�j2
k.1�…/F k:

In Case (b) the collision operator L is obviously bounded,

kLF k � 2 N�k.1�…/F k

and, as a consequence,

kALF k �
2 N�
p
‚j�j

1C‚j�j2
k.1�…/F k:

We also notice that L�AD 0 according to (H3). For estimating AL in Case (a), we note thatZ
Rd
vLF dv D 2

Z
Rd
rv

p
M

F
p
M
dv

and obtain as above that

kALF k �
2

1C‚j�j2

Z
Rd

j.1�…/F j
p
M

j� � rv
p
M j dv �

p
� j�j

1C‚j�j2
k.1�…/F k:

For both cases we finally obtain

kALF k �
�j�j

1C‚j�j2
k.1�…/F k:

Similarly we can estimate

AT.1�…/F D

R
Rd
.v0 � �/2.1�…/F.v0/ dv0

1C‚j�j2
M

by

kAT.1�…/F k D

ˇ̌R
Rd
.v0 � �/2.1�…/F.v0/ dv0

ˇ̌
1C‚j�j2

�

�R
Rd
.v0 � �/4M.v0/ dv0

� 1
2

1C‚j�j2
k.1�…/F k D

p
Kj�j2

1C‚j�j2
k.1�…/F k;

meaning that we have proven (A4) with

CM D
�j�jC

p
Kj�j2

1C‚j�j2
:
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With the elementary estimates

‚j�j2

1C‚j�j2
�minf1;‚g

j�j2

1Cj�j2
and

�M

.1C�M /C
2
M

D
‚.1C‚j�j2/

.�C
p
Kj�j/2

�
‚2

KC‚�2
;

the proof is completed using (7). �

3. Enlarging and shrinking spaces by factorization

Square integrability against the inverse of the local equilibrium M is a rather restrictive assumption on
the initial datum. In this section it will be relaxed with the help of the abstract factorization method of
[Gualdani et al. 2017] in a simple case (factorization of order 1). Here we state the result and sketch a
proof in a special case, for the convenience of the reader. We shall then give a result based on similar
computations in the opposite direction: how to establish a rate in a stronger norm, which corresponds
to a shrinking of the functional space. We will conclude with an application to the problem studied in
Corollary 5. Let us start by enlarging the space.

Proposition 6. Let B1, B2 be Banach spaces and let B2 be continuously imbedded in B1, i.e., k � k1 �
c1k � k2. Let B and ACB be the generators of the strongly continuous semigroups eBt and e.ACB/t

on B1. Assume that there are positive constants c2, c3, c4, �1 and �2 such that, for all t � 0,

ke.ACB/tk2!2 � c2e
��2t ; keBtk1!1 � c3e

��1t ; kAk1!2 � c4;

where k � ki!j denotes the operator norm for linear mappings from Bi to Bj . Then there exists a positive
constant C D C.c1; c2; c3; c4/ such that, for all t � 0,

ke.ACB/tk1!1 �

�
C.1Cj�1��2j

�1/e�minf�1;�2gt for �1 ¤ �2;
C.1C t /e��1t for �1 D �2:

Proof. Integrating the identity d
ds
.e.ACB/seB.t�s//D e.ACB/sAeB.t�s/ with respect to s 2 Œ0; t � gives

e.ACB/t D eBt C

Z t

0

e.ACB/sAeB.t�s/ ds:

The proof is completed by the straightforward computation

ke.ACB/tk1!1 � c3e
��1t C c1

Z t

0

ke.ACB/sAeB.t�s/k1!2 ds

� c3e
��1t C c1c2c3c4e

��1t

Z t

0

e.�1��2/s ds: �

The second statement of this section is devoted to a result on the shrinking of the functional space. It
is based on a computation which is similar to the one of the proof of Proposition 6.

Proposition 7. Let B1, B2 be Banach spaces and let B2 be continuously imbedded in B1, i.e., k � k1 �
c1k � k2. Let B and ACB be the generators of the strongly continuous semigroups eBt and e.ACB/t
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on B1. Assume that there are positive constants c2, c3, c4, �1 and �2 such that, for all t � 0,

ke.ACB/tk1!1 � c2e
��1t ; keBtk2!2 � c3e

��2t ; kAk1!2 � c4;

where k � ki!j denotes the operator norm for linear mappings from Bi to Bj . Then there exists a positive
constant C D C.c1; c2; c3; c4/ such that, for all t � 0,

ke.ACB/tk2!2 �

�
C.1Cj�2��1j

�1/e�minf�2;�1gt for �2 ¤ �1;
C.1C t /e��1t for �1 D �2:

Proof. Integrating the identity d
ds
.eB.t�s/e.ACB/s/D eB.t�s/Ae.ACB/s with respect to s 2 Œ0; t � gives

e.ACB/t D eBt C

Z t

0

eB.t�s/Ae.ACB/s ds:

The proof is completed by the straightforward computation

ke.ACB/tk2!2 � c3e
��2t C

Z t

0

keB.t�s/Ae.ACB/sk2!2 ds

� c3e
��2t C c1

Z t

0

keB.t�s/Ae.ACB/sk1!2 ds

� c3e
��2t C c1

Z t

0

keB.t�s/k2!2kAk1!2ke
.ACB/s

k1!1 ds

� c3e
��2t C c1c2c3c4e

��2t

Z t

0

e.�2��1/s ds: �

We will use Proposition 7 in Section 6.2. Coming back to the problem studied in Corollary 5,
Proposition 6 applies to (3) with the spaces B1DL2.d
k/, k2 .d;1/, and B2DL2.d
1/ corresponding
to the weights defined by (4). The exponential growth of 
1 guarantees that B2 is continuously imbedded
in B1.

Corollary 8. Assume (H1)–(H4), k 2 .d;1�, and � 2 Rd. Then there exists a constant C > 0 such that
solutions Of of (3) with initial datum Of0.�; � / 2 L2.d
k/ satisfy, with �� given by (10),

k Of .t; �; � /k2L2.d
k/
� Ce��� tk Of0.�; � /k

2
L2.d
k/

for all t � 0:

Proof. In Case (a), let us define A and B by AF DN�RF and BF D�i.v ��/FCLF �AF, whereN and
R are two positive constants, � is a smooth function such that 1B1 � �� 1B2 , and �R WD �. � =R/. Here
Br is the centered ball of radius r . It has been established in [Mischler and Mouhot 2016, Lemma 3.8]
that if k > d , then the inequalityZ

Rd
.L�A/.F /F d
k � ��1

Z
Rd
F 2 d
k

holds for some �1 > 0. Moreover, �1 can be chosen arbitrarily large for R and N large enough. The
boundedness of A WB1!B2 follows from the compactness of the support of � and Proposition 6 applies
with �2 D 1

2
�� �

1
4

, where �� is given by (10).
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In Case (b), we consider A and B such that

AF.v/DM.v/

Z
Rd
�.v; v0/F.v0/ dv0;

BF.v/D�

�
i.v � �/C

Z
Rd
�.v; v0/M.v0/ dv0

�
F.v/:

The boundedness of A WB1!B2 follows from (H2) and

kAF kL2.d
1/ � N�kF kL1.dv/ � N�

�Z
Rd

�1k dv

�1
2

kF kL2.d
k/:

Proposition 6 applies with �2 D 1
2
�� �

1
4

and �1 D 1 because
R

Rd
�.v; v0/M.v0/ dv0 � 1. �

4. Asymptotic behavior based on mode-by-mode estimates

In this section we consider (1) and use the estimates of Corollary 5 with weight 
1D1=M and Corollary 8
for weights with O.jvjk/ growth to get decay rates with respect to t . We shall consider two cases for
the spatial variable x. In Section 4.1, we assume that x 2 Td, where Td is the flat d -dimensional torus
(represented by Œ0; 2�/d with periodic boundary conditions) and prove an exponential convergence rate.
In Section 4.2, we assume that x 2 Rd and establish algebraic decay rates.

4.1. Exponential convergence to equilibrium in Td . In the periodic case x 2 Td there is a unique
nonzero normalized equilibrium given by

f1.x; v/D �1M.v/ with �1 D
1

jTd j

“
Td�Rd

f0 dx dv:

Corollary 9. Assume (H1)–(H4) and k 2 .d;1�. Then there exists a constant C >0 such that the solution
f of (1) on Td �Rd with initial datum f0 2 L2.dx d
k/ satisfies, with ƒ given by (10),

kf .t; � ; � /�f1kL2.dx d
k/ � Ckf0�f1kL2.dx d
k/e
�ƒ t

4 for all t � 0:

Proof. We represent the flat torus Td by Œ0; 2�/d with periodic boundary conditions, and the Fourier
variable is denoted by � 2 Zd. For � D 0, the microscopic coercivity (see Section 2) implies

k Of .t; 0; � /� Of1.0; � /kL2.d
1/ � k
Of0.0; � /� Of1.0; � /kL2.d
1/e

�t :

For all other modes, Of1.�; � / D 0 for any � ¤ 0 (that is, for any � such that j�j � 1). We can use
Corollary 5 with �� � 1

2
ƒ, with the notation of (10). An application of Parseval’s identity then proves the

result for k D1 and C D
p
3. If k is finite, the result with the weight 
k follows from Corollary 8. �

Note that the latter result can also alternatively be proved by directly applying Proposition 4 to (1), as
in [Dolbeault et al. 2015].
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4.2. Algebraic decay rates in Rd . With the result of Corollaries 5 and 8 we obtain a first proof of
Theorem 1 as follows. Let C > 0 be a generic constant which is going to change from line to line.
Plancherel’s formula implies

kf .t; � ; � /k2L2.dx d
k/
� C

Z
Rd

�Z
Rd
e��� t j Of0j

2 d�

�
d
k :

We know that Z
j�j�1

e��� t d� �

Z
Rd
e�

ƒ
2
j�j2t d� D

�
2�

ƒt

�d
2

and thus, for all v 2 Rd,Z
j�j�1

e��� t j Of0j
2 d� � Ckf0. � ; v/k

2
L1.dx/

Z
Rd
e�

ƒ
2
j�j2t d� � Ckf0. � ; v/k

2
L1.dx/t

�d
2 :

Using the fact that �� � 1
2
ƒ when j�j � 1 and Plancherel’s formula, we know that, for all v 2 Rd,Z
j�j>1

e��� t j Of0j
2 d� � Ce�

ƒ
2
t
kf0. � ; v/k

2
L2.dx/;

which completes a first proof of Theorem 1.

5. Hypocoercivity and the Nash inequality

In view of the proof of Theorem 1 in Section 4.2 and of the rate, it is natural to wonder if the hypocoercivity
can be controlled by the use of Nash’s inequality. Here we temporarily abandon the Fourier variable �
and consider the direct variable x 2 Rd : throughout this section, the transport operator on the position
space is defined as

Tf D v � rxf:

We rely on the abstract setting of Section 2, applied to (1) with the scalar product h � ; � i on L2.dx d
1/
and the induced norm k � k. Notice that this norm includes the x variable, which was not the case in
the mode-by-mode analysis of Section 2. It is then easy to check that .T…/f DMT�f D v � rx�fM,
.T…/�f D�rx �

�R
Rd
vf dv

�
M, and .T…/�.T…/f D�‚�x�fM so that

g D Af D .1C .T…/�T…/�1.T…/�f ” g D uM;

where u�‚�uD�rx �
�R

Rd
vf dv

�
. Since M is unbiased, Af D A.1�…/f . For some ı > 0 to be

chosen later, we redefine the entropy by HŒf � WD 1
2
kf k2C ıhAf; f i.

Proof of Theorem 1. If f solves (1), the time derivative of HŒf .t; � ; � /� is given by

d

dt
HŒf �D�DŒf �; (12)

where, as in the proof of Proposition 4,

DŒf � WD �hLf; f iC ıhAT…f; f iC ı RehAT.1�…/f; f i � ı RehTAf; f i � ı RehALf; f i:
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Here we use the fact that hAf; Lf i D 0. The first term in DŒf � satisfies the microscopic coercivity
condition

�hLf; f i � �mk.1�…/f k
2:

The second term in (12) is computed as follows. Solving g D AT…f is equivalent to solving .1C
.T…/�T…/g D .T…/�T…f , i.e.,

vf �‚�xvf D�‚�x�f ; (13)

where g D vfM. Hence

hAT…f; f i D

Z
Rd
vf �f dx:

A direct application of the hypocoercivity approach of [Dolbeault et al. 2015] to the whole-space
problem fails by lack of a macroscopic coercivity condition. Although the second term in (12) is not
coercive, we observe that the last three terms in (12) can still be dominated by the first two for ı > 0,
small enough, as follows.

(1) As in [Dolbeault et al. 2015], we use the adjoint operators to compute

hAT.1�…/f; f i D �h.1�…/f;TA�f i:

We observe that

A�f D T….1C .T…/�T…/�1f D T.1C .T…/�T…/�1…f DMTuf D vM � rxuf ;

where uf is the solution in H1.dx/ of

uf �‚�xuf D �f : (14)

With K defined by (11), we obtain

kTA�f k2 �Kkr2xuf k
2
L2.dx/ DKk�xuf k

2
L2.dx/:

On the other hand, we observe that vf D�‚�uf solves (13). Hence by multiplying (14) by vf D�‚�uf
and integrating by parts, we know that

‚krxuf k
2
L2.dx/C‚

2
k�xuf k

2
L2.dx/ D

Z
Rd
vf �f dx D hAT…f; f i: (15)

Notice that a central feature of our method is the fact that quantities of interest involving the operator A
can be computed by solving an elliptic equation (for instance (13) in case of AT…f or (14) in case of
A�f ). Altogether we obtain

jhAT.1�…/f; f ij � k.1�…/f kkTA�f k �

p
K

‚
k.1�…/f khAT…f; f i

1
2 :

(2) By (8), we have

jhTAf; f j D jhTA.1�…/f; .1�…/f ij � k.1�…/f k2:
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(3) It remains to estimate the last term on the right-hand side of (12). Let us consider the solution uf
of (14). If we multiply (13) by uf and integrate, we observe that

‚krxuf k
2
L2.dx/ D

Z
Rd
uf vf dx �

Z
Rd
uf vf dxC

Z
Rd
jvf j

2 dx D

Z
Rd
vf �f dx

because vf D�‚�uf , so that

kA�f k2 D‚krxuf k
2
L2.dx/ � hAT…f; f i:

In Case (a), we compute

hALf; f i D hL.1�…/f;A�f i D

“
Rd�Rd

rxuf �
rvM

M
.1�…/f dx dv:

It follows from the Cauchy–Schwarz inequality thatZ
Rd
jrvM jj.1�…/f j d
1 � krvMkL2.d
1/k.1�…/f kL2.d
1/ D

p
d�k.1�…/f kL2.d
1/

and

jhALf; f ij � krxuf kL2.dx/

�Z
Rd

�
1

d

Z
Rd
jrvM jj.1�…/f j d


�2
dx

�1
2

:

Altogether, we obtain

jhALf; f ij �

r
�

‚
k.1�…/f khAT…f; f i

1
2 :

In Case (b), we use (H2) to get

jhALf; f ij � kLf kkA�f k � 2 N�k.1�…/f kkA�f k � 2 N�k.1�…/f khAT…f; f i
1
2 :

In both cases, (a) and (b), the estimate can be written as

jhALf; f ij � 2 N�k.1�…/f khAT…f; f i
1
2 ;

with the convention that N� D 1
2

p
�=‚ in Case (a).

Summarizing, we know that

�
d

dt
HŒf �� .�m� ı/X

2
C ıY 2C 2ıbXY;

with X WD k.1�…/f k, Y WD hAT…f; f i1=2, and b WDK=.2‚/C 2 N� . The largest a> 0 such that

.�m� ı/X
2
C ıY 2C 2ıbXY � a.X2C 2Y 2/

holds for any X , Y 2 R is given by the conditions

a< �m� ı; 2a< ı; ı2b2� .�m� ı� a/.ı� 2a/� 0 (16)
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and it is easy to check that there exists a positive solution if ı > 0 is small enough. To fulfill the additional
constraint ı < 1, we can for instance choose

ı D
4minf1; �mg
8b2C 5

and aD
ı

4
:

Altogether we obtain

�
d

dt
HŒf �� a.k.1�…/f k2C 2hAT…f; f i/:

Using (14) and (15), we control k…f k2 D k�f k2L2.dx/ by hAT…f; f i according to

k…f k2 D kuf k
2
L2.dx/C 2‚krxuf k

2
L2.dx/C‚

2
k�xuf k

2
L2.dx/ � kuf k

2
L2.dx/C 2hAT…f; f i:

We observe that, for any t � 0,

kuf .t; � /kL1.dx/ D k�f .t; � /kL1.dx/ D kf0kL1.dx dv/; krxuf k
2
L2.dx/ �

1

‚
hAT…f; f i:

We recall the Nash inequality [1958]

kuk2L2.dx/ � CNashkuk
4

dC2

L1.dx/kruk
2d
dC2

L2.dx/ (17)

for any function u 2 L1\H1.Rd /. We use (17) with uD uf to get

k…f k2 �ˆ�1.2hAT…f; f i/; with ˆ�1.y/ WD yC
�
y

c

� d
dC2

for all y � 0;

where
cD 2‚C

�1� 2
d

Nash kf0k
� 4
d

L1.dx dv/:

The function ˆ W Œ0;1/! Œ0;1/ satisfies ˆ.0/D 0 and 0 < ˆ0 < 1, so that

k.1�…/f k2C 2hAT…f; f i �ˆ.kf k2/�ˆ

�
2

1C ı
HŒf �

�
;

where the last inequality holds as a consequence of (9). From

z Dˆ�1.y/D yC

�
y

c

� d
dC2

� y
2

dC2

0 y
d
dC2 C

�
y

c

� d
dC2

D .y
2

dC2

0 C c�
d
dC2 /y

d
dC2 ;

as long as y � y0, for y0 to be chosen later, we have

y Dˆ.z/� .ˆ.z0/
2

dC2 C c�
d
dC2 /�

dC2
d z1C

2
d ;

as long as z � z0 WDˆ�1.y0/. Since d
dt
HŒf �� 0, we have

2

1C ı
HŒf ��

2

1C ı
HŒf0�:

We thus apply the previous inequalities with

z0 D
2

1C ı
HŒf0�
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together with the fact that

ˆ.z0/� z0 �
1� ı

1C ı
kf0k

2

and that c is proportional to kf0k
�4=d

L1.dx dv/, to get

ˆ

�
2

1C ı
HŒf �

�
& .kf0k

4
dC2

L2.dx d
1/
Ckf0k

4
dC2

L1.dx dv//
�
dC2
d HŒf �1C

2
d :

We deduce the entropy decay inequality

�
d

dt
HŒf �& .kf0k

4
dC2

L2.dx d
1/
Ckf0k

4
dC2

L1.dx dv//
�
dC2
d HŒf �1C

2
d : (18)

A simple integration from 0 to t shows that

HŒf �.
�
HŒf0�

� 2
d C .kf0k

4
dC2

L2.dx d
1/
Ckf0k

4
dC2

L1.dx dv//
�
dC2
d t

��d
2 :

The result of Theorem 1 then follows from elementary considerations. �

Using moments instead of the mass, it is possible to state an improved Nash inequality: there exists a
positive constant C? such that

kuk2L2.dx/ � C?kxuk
4

dC4

L1.dx/kruk
dC2
dC4

L2.dx/

for any u 2 H1.dx/ \ L1..1 C jxj/ dx/ such that
R

Rd
udx D 0. The proof follows from a minor

modification of the original proof (attributed by Nash himself to Stein) in [Nash 1958] and uses Fourier
variables. As a consequence, any solution of the heat equation with zero average decays in L2.dx/ like
O.t�1�d=2/ as t !C1. It is the topic of the following section to use Fourier variables in the spirit of
Nash’s proof to get improved rates of decay at the level of the kinetic equation.

6. Algebraic decay rates in Rd by Fourier estimates and improvements

We prove Theorem 2 in Section 6.1 and Theorem 3 in Section 6.2.

6.1. Improved decay rates. Let us prove Theorem 2 by Fourier methods inspired by the proof of Nash’s
inequality.

Step 1: decay of the average in space by a factorization argument. We define

f�.t; v/ WD

Z
Rd
f .t; x; v/ dx (19)

and observe that f� solves
@tf� D Lf�:

As a consequence, we have that 0D
R

Rd
f�.t; v/ dv. From the microscopic coercivity property (H4), we

deduce that

kf�.t; � /k
2
L2.d
1/

D

Z
Rd

ˇ̌̌̌
f�.t; v/

M

ˇ̌̌̌2
M dv � kf�.0; � /k

2
L2.d
1/

e��mt for all t � 0:
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With k 2 .d;1/, Proposition 6 applies like in the proof of Corollary 8 or in [Mischler and Mouhot 2016].
We observe that kf�.0; � /kL2.jvj2 d
k/ � kf0kL2.jvj2 d
k IL1.dx//. For some positive constants C and �,
we get

kf�.t; � /k
2
L2.jvj2 d
k/

� Ckf0k
2
L2.jvj2 d
k IL1.dx//

e��t for all t � 0: (20)

Step 2: improved decay of f . Let us define g.t; x; v/ WD f .t; x; v/� f�.t; v/'.x/, where ' is a given
positive function satisfyingZ

Rd
'.x/ dx D 1; e.g., '.x/ WD .2�/�

d
2 e�

jxj2

2 ; for all x 2 Rd :

Since @tf� D Lf�, the Fourier transform Og.t; �; v/ of g.t; x; v/ solves

@t OgCT Og D L Og�f�T O';

where T O' D i.v � �/ O'. Using Duhamel’s formula

Og D e.L�T/t Og0�

Z t

0

e.L�T/.t�s/f�.s; v/T O'.�/ ds;

Corollary 5, and Proposition 6, for some generic constant C > 0 which will change from line to line,
we get

k Og.t;�; �/kL2.d
k/�Ce
� 1
2
�� tk Og0.�; �/kL2.d
k/CC

Z t

0

e�
��
2
.t�s/
kf�.s; �/kL2.jvj2d
k/j�jj O'.�/jds: (21)

The key observation is Og0.0; v/D 0, so that

Og0.�; v/D

Z j�j
0

�

j�j
� r� Og0

�
�
�

j�j
; v

�
d�

yields

j Og0.�; v/j � j�jkr� Og0. � ; v/kL1.d�/ � j�jkg0. � ; v/kL1.jxjdx/ for all .�; v/ 2 Rd �Rd :

We know from (10) that �� Dƒj�j2=.1Cj�j2/. The first term of the right-hand side of (21) can therefore
be estimated for any t � 1 by�Z

j�j�1

Z
Rd
je.L�T/t Og0j

2 d
k d�

�1
2

�

�Z
Rd
j�j2e�

ƒ
2
j�j2t d�

�1
2

kg0kL2.d
k IL1.jxjdx//

�
C

.1C t /1C
d
2

kg0kL2.d
k IL1.jxjdx//;

which is the leading-order term as t !1, and we haveZ
j�j>1

e��� tk Og0.�; � /k
2
L2.d
k/

d� � Ce�
ƒ
2
t
kg0k

2
L2.dx d
k/

for any t � 0, using the fact that �� � 1
2
ƒ when j�j � 1 and Plancherel’s formula.
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Using (20), the second term of the right-hand side of (21) is estimated byZ
Rd

�Z t

0

e�
��
2
.t�s/
kf�.s; � /kL2.jvj2 d
k/j�jj O'.�/j ds

�2
d�

� Ckf0k
2
L2.jvj2 d
k IL1.dx//

Z
Rd
j�j2j O'.�/j2

�Z t

0

e�
��
2
.t�s/e�

�
2
s ds

�2
d�:

On the one hand, we use the Cauchy–Schwarz inequality to getZ
j�j�1

j�j2j O'.�/j2
�Z t

0

e�
��
2
.t�s/e�

�
2
s ds

�2
d�

� k'k2L1.dx/

Z
j�j�1

j�j2
�Z t

0

e���.t�s/e�
�
2
s ds

��Z t

0

e�
�
2
s ds

�
d�

�
2

�
k'k2L1.dx/

Z t

0

�Z
j�j�1

j�j2e�
ƒ
2
j�j2.t�s/ d�

�
e�

�
2
s ds � C1t

�d
2
�1
CC2e

��
4
t ;

where the last inequality is obtained by splitting the integral in s on
�
0; 1
2
t
�

and
�
1
2
t; t
�
. On the other

hand, using �� � 1
2
ƒ when j�j � 1, we obtainZ

j�j�1

j�j2 j O'.�/j2
�Z t

0

e�
��
2
.t�s/e�

�
2
s ds

�2
d� � t2e�min f 1

2
ƒ;�gt

kr'k2L2.dx/:

By collecting all terms, we deduce that kg.t; � ; � /k2L2.dx d
k/ is bounded by

C.kg0k
2
L2.d
k IL1.jxjdx//

Ckf0k
2
L2..jvj2 d
k IL1.dx//

/.1C t /�.1C
d
2
/

for some constant C > 0. Recalling that f D gCf�', the proof of Theorem 2 is completed using (20).

6.2. Improved decay rates with higher-order cancellations. We prove Theorem 3, which means that
from now on we assume in Case (a) that M is a normalized Gaussian (2), and in Case (b) that � � 1.
Moreover, the initial data satisfies (5); that is,“

Rd�Rd
f0P dx dv D 0 for all P 2 R`ŒX; V �:

For any P 2 R`ŒX�, let

P Œf �.t; v/ WD

Z
Rd
P.x/f .t; x; v/ dx;

so that
R

Rd
P Œf �.0; v/ dv D 0.

In this section we use the notation .k to express inequalities up to a constant which depends on k.

Step 1: conservation of zero moments. For a solution f of (1) we compute

d

dt

“
Rd�Rd

f .t; x; v/P.x; v/ dx dv D�

“
Rd�Rd

.v � rxf /P dx dvC

“
Rd�Rd

.Lf /P dx dv

D

“
Rd�Rd

.v � rxP /f dx dvC

“
Rd�Rd

.Lf /P dx dv:
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In Case (a) of a Fokker–Planck operator, we may write“
Rd�Rd

.Lf /P dx dv D

“
Rd�Rd

1

M
rv � .MrvP /f dx dv D

“
Rd�Rd

.�vP � v � rvP /f dx dv:

By the definition of R`ŒX; V �, it turns out that �vP � v � rvP 2 R`ŒX; V �. For the scattering operator of
Case (b), one has“

Rd�Rd
.Lf /P dx dv

D

“
Rd�Rd

�Z
Rd
.M.v/f .t; x; v0/�M.v0/f .t; x; v// dv0

�
P.x; v/ dx dv

D

•
Rd�Rd�Rd

.M.v/f .t; x; v0/�M.v0/f .t; x; v//P.x; v/ dx dv dv0

D

“
Rd�Rd

�Z
Rd
M.v/P.x; v/ dv

�
f .t; x; v0/ dx dv0�

“
Rd�Rd

f .x; v/P.x; v/ dx dv:

One can check that
R

Rd
M.v/P.x; v/ dv 2 R`ŒX�. Since also v � rxP 2 R`ŒX; V �, the evolution of

moments of order lower than or equal to ` is equivalent to a linear ODE of the form PY .t/DQY.t/, where
Q is a matrix resulting from the previous computations. Consequently, if Y.0/D 0 initially, it remains
null for all times.

Step 2: decay of polynomial averages in space. We claim that for any j � `, there exists � > 0 such that,
for any P 2 Rj ŒX� and q 2 N,

kP Œf �.t; � /kL2.d
kCq/ .j;q kf0kL2.d
kCqC2j IL1..1Cjxjj / dx//.1C t /
j e��t for all t � 0: (22)

Let us prove it by induction.

(1) The case j D 0. Notice that j D 0 means that P is a real number and P Œf �D f� as defined in (19),
up to a multiplication by a constant. Since

R
Rd
f�.t; v/ dv D 0 for any t � 0, one has @tf� D Lf�; thus

we deduce from the microscopic coercivity property as above that

kf�.t; � /kL2.d
1/ � kf�.0; � /kL2.d
1/e
��mt for all t � 0:

We also obtain

kf�.t; � /kL2.d
kCq/ .q kf0kL2.d
kCq IL1.dx//e
��t for all t � 0; (23)

but this requires some comments. The case k 2 .d;1/ is covered by Corollary 8.
The case k D1 in (23) is given by the following lemma.

Lemma 10. Under the assumptions of Theorem 3, one has

kf�.t; � /kL2..1Cjvjq/ d
1/ .q kf0kL2..1Cjvjq/ d
1IL1.dx//e
��t for all t � 0:

Proof. We rely on Proposition 7 with the Banach spaces B1 D L2.d
1/ and B2 D L2..1Cjvjq/ d
1/.
In Case (a), let us define A and B by AF DN�RF and BF D LF �AF. In Case (b), we consider A
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and B such that

AF.v/DM.v/

Z
Rd
F.v0/ dv0;

BF.v/D�

Z
Rd
M.v0/ dv0 F.v/:

The semigroup generated by ACB is exponentially decreasing in B1 by the microscopic coercivity
property, as above. The semigroup generated by B is exponentially decreasing in B2. In Case (b), it is
straightforward. In Case (a), F.t/D eBtF0 is such that

1

2

d

dt

Z
Rd
jF j2.1Cjvjq/d
1

D

Z
Rd
.BF /F.1Cjvjq/d
1

D

Z
Rd
rv

�
Mrv

�
F

M

��
F.1Cjvjq/d
1�

Z
Rd
N�R.v/jF j

2.1Cjvjq/d
1

D�

Z
Rd

ˇ̌̌̌
rv

�
F

M

�ˇ̌̌̌2
.1Cjvjq/M dv�

Z
Rd
qjvjq�2v�rv

�
F

M

�
F

M
M dv�

Z
Rd
N�R.v/jF j

2.1Cjvjq/
dv

M

�

Z
Rd

�
q

2

rv �.jvj
q�2vM/

.1Cjvjq/M
�N�R.v/

�
jF j2.1Cjvjq/

dv

M
��

�

2

Z
Rd
jF j2.1Cjvjq/d
1

for some � > 0, by choosing N and R large enough.
The operator A W B1 ! B2 is bounded. This is straightforward in Case (a) and follows from the

boundedness of
R

Rd
M.v/.1Cjvjq/ d
1 in Case (b). Proposition 7 applies, which concludes the proof. �

(2) Induction. Let us assume that (22) is true for some j � 0, consider P 2 RjC1ŒX�, and observe that
P Œf � solves

@tP Œf �D LP Œf ��

Z
Rd
.v � rxP /f dx:

Since rxP 2 Rj ŒX�, the induction hypothesis at step j (applied with q replaced by qC 2) gives



vZ
Rd
.rxP /Œf � dx






L2.d
kCq/

.




Z

Rd
.rxP /Œf � dx






L2. d
kCqC2/

.j;q kf0kL2.d
kCqC2.jC1/IL1..1Cjxjj / dx//.1C t /
j e��t :

By Duhamel’s formula, we have

P Œf �.t; v/D eLtP Œf �.0; v/�

Z t

0

eL.t�s/
�
v

Z
Rd
.rxP /Œfs� dx

�
ds:

Note that Z
Rd
v

Z
Rd
.rxP /Œf � dx dv D

“
Rd�Rd

.v � rxP /Œf � dx dv D 0
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for all t � 0 since v � rxP 2 R`ŒX; V �. As a consequence, the decay of the semigroup associated with L

can be estimated by



eL.t�s/�vZ
Rd
.rxP /Œfs� dx

�




L2.d
1/

�





vZ
Rd
.rxP /Œfs� dx






L2.d
1/

e��m.t�s/:

As in the case j D 0, we deduce from Corollary 8 that



eL.t�s/�vZ
Rd
.rxP /Œfs� dx

�




L2..1Cjvjq/ d
k/

�





vZ
Rd
.rxP /Œfs� dx






L2.d
kCq/

e��.t�s/

.q;k kf0kL2.d
kCqC2.jC1/IL1..1Cjxjj / dx//.1C s/
j e��t :

Moreover, since “
Rd�Rd

f0.x; v/P.x/ dx dv D 0;

for the same reasons we also have

keLtP Œf �.0; � /kL2.d
kCq/ � kP Œf0�kL2..1Cjvjq/ d
k/e
��t

for some � > 0. We deduce from Duhamel’s formula that

kP Œf �kL2.d
kCq/

. keLtP Œf �.0; � /kL2.d
kCq/C

Z t

0





e�L.t�s/�vZ
Rd
rxP Œfs� dx

�




L2.d
kCq/

ds

.k kf0kL2.d
kCq IL1..1CjxjjC1/ dx//e
��t
C

Z t

0

.1C s/j e��tkf0kL2.d
kCqC2.jC1/IL1..1Cjxjj / dx// ds

.k kf0kL2.d
kCqC2.jC1/IL1..1CjxjjC1/ dx//.1C t /
jC1e��t ;

which proves the induction.

Step 3: improved decay of f . Let us choose some t0 > 0. In order to estimate

kf .t; � ; � /k2L2.dx d
k/
D ke.L�T/tf0k

2
L2.dx d
k/

;

we compute its evolution on .0; 2t0/ and split the interval on .0; t0/ and .t0; 2t0/ using the semigroup
property

ke.L�T/.2t0/f0k
2
L2.dx d
k/

D ke.L�T/t0.e.L�T/t0f0/k
2
L2.dx d
k/

:

Up to the end of this section, TD v � rx denotes the transport operator in position and velocity variables.
We decompose ft0 D e

.L�T/t0f0 into

ft0 D

�X
j˛j�`

1

˛Š
X˛Œft0 �@

˛'

�
Cg0; with g0 WD ft0 �

X
j˛j�`

1

˛Š
X˛Œft0 �@

˛';

where ˛D .˛1; ˛2; : : : ; ˛i ; : : : ; ˛d / 2Nd is a multi-index such that j˛j D
Pd
iD1 ˛i � ` and ' is given by

'.x/ WD .2�/�
d
2 e�

jxj2

2 for all x 2 Rd :
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Here we use the notation @˛' D @˛1x1@
˛2
x2 � � � @

˛d
xd' and X˛ D

Qn
i X

˛i
i . According to (22), we know that

kX˛Œft0 �kL2.d
k/ .j kf0kL2.d
kC2j IL1..1Cjxjj / dx//.1C t0/
j e��t0 ;

so that, by considering the evolution of the first term on .t0; 2t0/, we obtain



e.L�T/t0�X
j˛j�`

1

˛Š
X˛Œft0 �@

˛'

�




L2.dx d
k/

.
X
j˛j�`

kX˛Œft0 �kL2.d
k/k@
˛'kL2.dx/ . e�

�
2
t0 : (24)

Next, let us consider the second term and define, on t C t0 2 .t0; 2t0/, the function

g WD ftCt0 �
X
j˛j�`

1

˛Š
X˛ŒftCt0 �@

˛':

With initial datum g0, it solves on .0; t0/ the equation

@tg D @tftCt0 �
X
j˛j�`

1

˛Š
@t .X

˛ŒftCt0 �/ @
˛'

D .L�T/.ftCt0/� L

�X
j˛j�`

1

˛Š
X˛ŒftCt0 � @

˛'

�
C

X
j˛j�`

1

˛Š

�Z
Rd
.v � rxx

˛/ftCt0 dx

�
@˛'

D .L�T/.g/�T

�X
j˛j�`

1

˛Š
X˛ŒftCt0 � @

˛'

�
C

X
j˛j�`

1

˛Š

�Z
Rd
.v � rxx

˛/ftCt0 dx

�
@˛'

D .L�T/.g/C v
X
j˛j�`

1

˛Š
.rxX

˛Œf � @˛' �X˛ŒftCt0 �rx.@
˛'//;

where ˛ŠD
Qd
iD1 ˛i Š is associated with the multi-index ˛ D .˛i /diD1 and

rxX
˛Œf �D .@xiX

˛Œf �/diD1 WD

�Z
Rd
@xix

˛f dx

�d
iD1

D

�Z
Rd
˛ix

˛^if dx

�d
iD1

:

Here the notation ˛^i denotes the multi-index .˛1; ˛2; : : : ; ˛i�1; ˛i�1; ˛iC1; : : : ; ˛d /with the convention
that X˛^i � 0 if ˛i D 0. We also define the opposite transformation

˛_i WD .˛1; ˛2; : : : ; ˛i�1; ˛i C 1; ˛iC1; : : : ; ˛d /

so that @xi .@
˛'/D @˛_i'. Let us consider the last term and start with the case d D 1. In that case,

v
X
j˛j�`

1

˛Š
.rxX

˛Œf � @˛' �X˛ŒftCt0 �rx.@
˛'//

D v1
X̀
˛1D0

1

˛1Š

��Z
R

.˛1x
˛1�1/ftCt0 dx

�
@x
˛1
1 ' �

�Z
R

x˛1ftCt0 dx

�
@x
˛1C1
1 '

�

D�
v1

`Š

�Z
R

x`ftCt0 dx

�
@x`C11 '
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because it is a telescoping sum. We adopt the convention that ˛ŠD 1 if ˛i � 0 for some i D 1; 2; : : : ; d .
The same property holds in higher dimensions:X
j˛j�`

1

˛Š
.@xiX

˛Œf �@˛' �X˛ŒftCt0 �@xi .@
˛'//

D

X
j˛j�`

�
1

˛^i Š
X˛^i Œf �@˛' �

1

˛Š
X˛ŒftCt0 �@

˛_i'

�
D�

X
j˛jD`

1

˛Š
X˛ŒftCt0 � @xi .@

˛'/:

We deduce that

@tg D .L�T/.g/� v
X
j˛jD`

1

˛Š
X˛ŒftCt0 �rx.@

˛'/:

Duhamel’s formula in Fourier variables gives

Og.t0; �; v/D e
.L�T/t0 Og0�

Z t0

0

e.L�T/.t0�s/
�
v
X
j˛jD`

1

˛Š
X˛ŒfsCt0 �

3rx.@˛'/
�
ds

up to a straightforward abuse of notation. Hence

k Og.t0; �; � /kL2.d
k/

. e�
1
2
�� t0k Og0.�; � /kL2.d
k/C

Z t0

0

e�
��
2
.t0�s/

X
j˛jD`

1

˛Š
kX˛ŒfsCt0 �kL2.jvj2 d
k/j

3rx.@˛'/j ds:

Recall that (22) gives

kX˛ŒfsCt0 �kL2.jvj2 d
k/ .` kf0kL2.d
kC2`C2IL1..1Cjxj`/ dx//e
��
2
s:

On the other hand we use j3rx.@˛'/j � j�j`C1j O'j and observe that

j Og0.�; v/j. j�j`C1kg0. � ; v/kL1.jxj` dx/ for all .�; v/ 2 Rd �Rd :

Collecting terms, we have

k Og.t0; �; �/kL2.d
k/. e
� 1
2
�� t0 j�j`C11j�j<1kg0. � ;v/kL2.d
k IL1.jxj`dx//Ce

� 1
2
�� t01j�j�1k Og0.�; �/kL2.d
k/

Cj�j`C1j O'.�/jkf0kL2.d
kC2`C2IL1..1Cjxj`/dx//

Z t0

0

e�
��
2
.t0�s/e�

�
2
s ds:

We know from (10) that �� Dƒj�j2=.1Cj�j2/ so that �� � 1
2
ƒj�j2 if j�j< 1 and �� � 1

2
ƒ if j�j � 1.

Hence, for any t0 � 1,

ke�
1
2
�� t0 j�j`C11j�j<1kL2.d�/ �

�Z
Rd
e�

ƒ
2
j�j2t0 j�j2.`C1/ d�

�1
2

. t�.1C`C
d
2
/

0 ;Z
j�j�1

e��� t0k Og0.�; � /k
2
L2.d
k/

d� . e�
ƒ
2
t0kg0k

2
L2.dx d
k/
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by Plancherel’s formula. We conclude by observing thatZ
j�j�1

j�j`C1j O'.�/j

Z t0

0

e�
��
2
.t0�s/e�

�
2
s ds d� �k'kL1.dx/

Z t0

0

�Z
j�j�1

j�j`C1e�
ƒ
2
j�j2.t0�s/d�

�
e�

�
2
s ds

. t�.1C`C
d
2
/

0 ;Z
j�j�1

j�j`C1j O'.�/j

Z t0

0

e�
��
2
.t0�s/e�

�
2
s ds d� . kj�j`C1 O'.�/kL1.d�/t0e

� 1
4

minfƒ;2�gt0 :

Altogether, we obtain

kg.t0; � ; � /k
2
L2.dx d
k/

D k Og.t0; � ; � /k
2
L2.d� d
k/

. t�.1C`C
d
2
/

0 :

The decay result of Theorem 3 is then obtained by writing

kf2t0k
2
L2.dx d
k/

. kg.t0; � ; � /k2L2.dx d
k/C




e.L�T/t0�X

j˛j�`

1

˛Š
X˛Œft0 � @

˛'

�




L2.dx d
k/

and using (24) for any t0 � 1, with t D 2t0. For t � 2, the estimate of Theorem 3 is straightforward by
Corollary 8, which concludes the proof.

Appendix A: An explicit computation of Green’s function for
the kinetic Fokker–Planck equation and consequences

In the whole-space case, when M is the normalized Gaussian function, let us consider the kinetic
Fokker–Planck equation of Case (a)

@tf C v � rxf Drv � .vf Crvf / (25)

on .0;1/�Rd �Rd 3 .t; x; v/. The characteristics associated with the equations

dx

dt
D v;

dv

dt
D�v

suggest to change variables and consider the distribution function g such that

f .t; x; v/D edtg.t; xC .1� et /v; etv/ for all .t; x; v/ 2 .0;1/�Rd �Rd :

The kinetic Fokker–Planck equation is changed into a heat equation in both variables x and v with
t dependent coefficients, which can be written as

@tg Dr � PD rg; (26)

where rg D .rvg;rxg/ and PD is the t -derivative of the block matrix

D D
1

2

�
a Id b Id
b Id c Id

�
;



228 E. BOUIN, J. DOLBEAULT, S. MISCHLER, C. MOUHOT AND C. SCHMEISER

with aD e2t � 1, bD 2et � 1� e2t , and cD e2t � 4et C 2t C 3. Here Id is the identity matrix on Rd.
We observe that PD is degenerate: it is nonnegative but its lowest eigenvalue is 0. However, the change of
variables allows the computation of a Green’s function.

Lemma 11. The Green’s function of (26) is given for any .t; x; v/ 2 .0;1/�Rd �Rd by

G.t; x; v/D
1

.2�.ac� b2//
d
2

exp
�
�
ajxj2� 2bx � vC cjvj2

2.ac� b2/

�
:

The method is standard and goes back to [Kolmogoroff 1934] (also see [Ilin and Hasminskii 1964;
Hörmander 1967; Victory and O’Dwyer 1990; Bouchut 1993]).

Proof. By a Fourier transformation in x and v, with associated variables � and �, we find that

logC�log yG.t; �; �/D .�; �/ �D.�; �/D 1
2
.aj�j2C2b� ��Ccj�j2/D 1

2
a
ˇ̌
�C b

a
�
ˇ̌2
C
1
2
Aj�j2; AD c� b2

a
;

for some constant C > 0 which is determined by the mass normalization condition

kG.t; � ; � /kL1.Rd�Rd / D 1:

Let us take the inverse Fourier transform with respect to �,

.2�/�d
Z

Rd
eiv�� yG.t;�;�/d�D

C

.2�a/
d
2

e
�
jvj2

2a �i
b
a
v��
e
�
1
2
Aj�j2
D

C

.2�a/d
e�
jvj2

2a e
�
1
2
Aj�Ci

b
aA
vj
2
�

b2

2a2A
jvj2
;

and then the inverse Fourier transform with respect to � , so that we obtain

G.t; x; v/D
C

.2�a/
d
2 .2�A/

d
2

e�.1C
b2

aA /
jvj2

2a e�
jxj2

2A e
b
aAx�v D

C

.4�2aA/
d
2

e
� 1
2A jx�

b
a
vj
2

e�
jvj2

2a :

It is easy to check that C D 1. �

Let us consider a solution g of (26) with initial datum g0 2 L1.Rd �Rd /. From the representation

g.t; � ; � /DG.t; � ; � /�x;v g0;

we obtain the estimate

kg.t; � ; � /kL1.Rd�Rd /�kG.t; � ; � /kL1.Rd�Rd /kg0kL1.Rd�Rd /D
kg0kL1.Rd�Rd /

.8�2/
d
2

t�
d
2 e�dt .1CO.t�1//

as t !1. As a consequence, we obtain that the solution of (25) with a nonnegative initial datum f0

satisfies

kf .t; � ; � /kL1.Rd�Rd / D
kf0kL1.Rd�Rd /

.8�2t /
d
2

.1C o.1// as t !1:

Using the simple Hölder interpolation inequality

kf kLp.Rd�Rd / � kf k
1
p

L1.Rd�Rd /
kf k

1� 1
p

L1.Rd�Rd /
;

we obtain the following decay result.
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Corollary 12. If f is a solution of (25) with a nonnegative initial datum f0 2 L1.Rd �Rd /, then for any
p 2 .1;1� we have the decay estimate

kf .t; � ; � /kLp.Rd�Rd / �
kf0kL1.Rd�Rd /

.8�2t /
d
2
.1� 1

p
/
.1C o.1// as t !1:

By taking f0.x; v/DG.1; x; v/, it is moreover straightforward to check that this estimate is optimal.
With p D 2, this also proves that the decay rate obtained in Theorem 1 for the Fokker–Planck operator,
i.e., Case (a), is the optimal one because, again with f0.x; v/DG.1; x; v/, we observe that

kf .t; � ; � /k2L2.dx d
k/
D edtkG.t; � ; � /k2L2.dx dv/ DO.t

�d
2 / as t !C1:

Appendix B: Consistency with the decay rates of the heat equation

In the whole-space case, the abstract approach of [Dolbeault et al. 2015] is inspired by the diffusion limit
of (1). We consider the scaled equation

"
dF

dt
CTF D

1

"
LF; (27)

which formally corresponds to a parabolic rescaling given by t 7! "2t and x 7! "x, and investigate the
limit as "! 0C. Let us check that the rates are asymptotically independent of " and consistent with those
of the heat equation.

B.1. Mode-by-mode hypocoercivity. It is straightforward to check that in the estimate (7) for �, the gap
constant �m has to be replaced by �m=", while, with the notation of Proposition 4, CM can be replaced
by CM=" for " < 1. In the asymptotic regime as "! 0C, we obtain

"
d

dt
HŒF �� �DŒF �� �

�M

3.1C�M /

�m�M "

.1C�M /C
2
M

DŒF �;

which proves that the estimate of Proposition 4 becomes

��
�m�

2
M

3.1C�M /2C
2
M

:

We observe that this rate is independent of ".

B.2. Decay rates based on Nash’s inequality in the whole-space case. In the proof of Theorem 1, N�
has to be replaced by N�=" and in the limit as "! 0C, we get that b� 4 N�=" and (16) is satisfied with

4aD ı �
�m

8 N�2
":

Hence (18) asymptotically becomes, as "! 0C,

�
d

dt
HŒf ��

�m

4 N�2
c

�
2

1C ı
HŒf �

�1C 2
d

;
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which again gives a rate of decay which is independent of ". The algebraic decay rate in Theorem 1 is the
one of the heat equation on Rd and it is independent of " in the limit as "! 0C.

B.3. Decay rates in the whole-space case for distribution functions with moment cancellations. The
improved rate of Theorem 2 is consistent with a parabolic rescaling: if f solves (1), then f ".t; x; v/D
"�df ."�2t; "�1x; v/ solves (27). With the notation of Section 6.1, let g" D f " � f "� '. � ="/, with
'" D "�d'. � ="/. The Fourier transform of g" solves

"2 @t Og
"
C "T Og" D L Og"� "f "� T O'

":

The decay rate � in (20) becomes �="2 and the decay rate of the semigroup generated by L� "T is, with
the notation of Corollary 5, �"� . Moreover, ƒ in (10) is given by ƒD 1

3
minf1;‚g for any " > 0, small

enough. Duhamel’s formula (21) has to be replaced by

k Og".t; �; � /kL2.d
k/�Ce
�
�"�

2"2
t
k Og"0.�; � /kL2.d
k/CC

Z t

0

e
�
�"�

2"2
.t�s/
kf "� .s; � /kL2.jvj2 d
k/j"�jj O'."�/j ds:

Using

lim
"!0C

�"�

"2
D lim
"!0C

ƒj�j2

1C "2j�j2
Dƒj�j2;

a computation similar to the one of Section 6.1 shows that the first term of the right-hand side is estimated
byZ

Rd
e
�
�"�

"2
t
k Og"0.�; �/k

2
L2.d
k/

d�D

Z
j�j� 1

"

e
�
�"�

"2
t
k Og"0.�; �/k

2
L2.d
k/

d�C

Z
j�j> 1

"

e
�
�"�

"2
t
k Og"0.�; �/k

2
L2.d
k/

d�

�kg"0k
2
L2.d
k IL1.jxjdx//

Z
Rd
j�j2e�

ƒ
2
j�j2t d�Ckg"0k

2
L2.dxd
k/

e
�ƒ
2
t

"2 ;

while the square of the second term is bounded by

kf "� .t D 0; � /k
2
L2.jvj2 d
k/

Z
Rd
j"�j2j O'."�/j2

�Z "�2t

0

e�
1
2
�"�."

�2t�s/e�
1
2
�s ds

�2
d�

� kf0k
2
L2.jvj2 d
k IL1.dx//

�
C1
"dC1

t
d
2
C1
C
C2

"3
e
�min fƒ

2
;�g t

"2

�
:

By collecting all terms and using Plancherel’s formula, we conclude that the rate of convergence of
Theorem 2 applied to the solution of (27) is independent of ". We also notice that the scaled spatial
density �f " D

R
Rd
f " dv satisfies

k�f ".t; � /k
2
L2.dx/ �

C0

.1C t /1C
d
2

for all t � 0

for some positive constant C0 which depends on f0 but is independent of ". This is the decay of the heat
equation with an initial datum of zero average.

Similar estimates can be obtained in the framework of Theorem 3.
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THE HYPERBOLIC YANG–MILLS EQUATION IN THE CALORIC GAUGE:
LOCAL WELL-POSEDNESS AND CONTROL

OF ENERGY-DISPERSED SOLUTIONS

SUNG-JIN OH AND DANIEL TATARU

This is the second part in a four-paper sequence, which establishes the threshold conjecture and the soliton
bubbling vs. scattering dichotomy for the hyperbolic Yang–Mills equation in the .4C1/-dimensional
space-time. This paper provides the key gauge-dependent analysis of the hyperbolic Yang–Mills equation.

We consider topologically trivial solutions in the caloric gauge, which was defined in the first paper
of the sequence using the Yang–Mills heat flow. In this gauge, we establish a strong form of local
well-posedness, where the time of existence is bounded from below by the energy concentration scale.
Moreover, we show that regularity and dispersive properties of the solution persist as long as energy
dispersion is small. We also observe that fixed-time regularity (but not dispersive) properties in the caloric
gauge may be transferred to the temporal gauge without any loss, proving as a consequence small-data
global well-posedness in the temporal gauge.

We use the results in this paper in subsequent papers to prove the sharp threshold theorem in caloric
gauge in the trivial topological class, and the dichotomy theorem in arbitrary topological classes.
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1. Introduction

In this paper, along with the companion papers [Oh and Tataru 2017a; 2017b; 2019a], we consider the
hyperbolic Yang–Mills equation in the .4C1/-dimensional Minkowski space with a compact semisimple
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In [Oh and Tataru 2017b], we defined the notion of caloric gauge with the help of the Yang–Mills heat
flow on R4, and showed that every subthreshold connection admits a caloric gauge representative (see
Section 1B below for a review). The first main result of the present paper (Theorem 1.13) is a strong form of
local well-posedness of the hyperbolic Yang–Mills equation in the manifold of caloric gauge connections,
where the time of existence is estimated from below by the scale of energy concentration. The second main
result (Theorem 1.16) asserts that regularity and dispersive behaviors persist as long as a certain quantity
called energy dispersion, which measures a certain type of nondispersive concentration, remains small.

While the caloric gauge reveals the fine cancellation structure of the Yang–Mills equation, and is thus
suitable for dispersive analysis at low regularity, it has the drawback that causality is lost. As a remedy,
we also show that regularity (but not dispersive) properties in the caloric gauge may be transferred to
the temporal gauge. As a corollary, we also obtain small-data global well-posedness of the hyperbolic
Yang–Mills equation in the temporal gauge (Theorem 1.18).

In the subsequent papers in the sequence [Oh and Tataru 2017a; 2019a], we use the results proved in
this paper to establish the threshold theorem (i.e., global well-posedness and scattering for subthreshold
data) in the caloric gauge, as well as the soliton bubbling vs. scattering dichotomy theorem for general
finite-energy solutions, formulated in a more gauge-covariant fashion. An overview of the entire series is
provided in [Oh and Tataru 2019b].

1A. Hyperbolic Yang–Mills equation on R1C4. Our set-up is as follows. Let G be a compact noncom-
mutative Lie group and g its associated Lie algebra. We denote by Ad.O/X DOXO�1 the adjoint (or
conjugation) action of G on g and by ad.X/Y D ŒX; Y � the Lie bracket on g. We use the notation hX; Y i
for a bi-invariant inner product on g,

hŒX; Y �; Zi D hX; ŒY;Z�i; X; Y;Z 2 g;

or equivalently
hX; Y i D hAd.O/X;Ad.O/Y i; X; Y 2 g; O 2G :

If G is semisimple then one can take hX; Y i D � tr.ad.X/ ad.Y //, i.e., the negative of the Killing form
on g, which is then positive definite, However, a bi-invariant inner product on g exists for any compact
Lie group G.

Let R1C4 be the .4C1/-dimensional Minkowski space equipped with the Minkowski metric, which
takes the form diag.�1;C1; : : : ;C1/ in the rectangular coordinates .x0; x1; : : : ; x4/. The coordinate x0

serves the role of time, and we will often write x0 D t . Throughout this paper, we will use the standard
convention for raising or lowering indices using the Minkowski metric, and summing up repeated upper
and lower indices.

Our objects of study are connection 1-forms A on R1C4 taking values in the Lie algebra g. They define
covariant differentiation operators D� DD

.A/
� D @�CA� (in coordinates) acting on sections of any

vector bundle with structure group G. The commutator D�D� �D�D� yields the curvature 2-form
F�� D F ŒA��� , which is given in terms of A� by the formula

F�� D @�A� � @�A�C ŒA�; A� �:
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Given a G -valued function O on R1C4, we introduce the notation

OI� D @�OO
�1:

The pointwise action of O on the vector bundle induces a gauge transformation for A and F, namely

A� 7!OA�O
�1
� @�OO

�1
D Ad.O/A��OI�; F�� 7!OF��O

�1
D Ad.O/F�� :

In view of this transformation property, F may be viewed as a 2-form taking values in the G -vector
bundle with fiber g, where G acts on g by the adjoint action (geometrically, the adjoint vector bundle).
Thus the covariant derivative D� acts on F by

D�F˛ˇ D .@�C ad.A�//F˛ˇ D @�F˛ˇ C ŒA�; F˛ˇ �:

The hyperbolic Yang–Mills equation on R1C4 is the Euler–Lagrange equation associated with the
formal Lagrangian action functional

L.A/D 1

2

Z
R1C4
hF˛ˇ ; F

˛ˇ
i dx dt;

which takes the form
D˛F˛ˇ D 0: (1-1)

Clearly, (1-1) is invariant under gauge transformations. This equation possesses a conserved energy,
given by

Eftg�R4.A/D

Z
ftg�R4

X
˛<ˇ

jF˛ˇ j
2 dx: (1-2)

Furthermore, both the equation (1-1) and the energy (1-2) are invariant under the scaling

A.t; x/ 7! �A.�t; �x/ .� > 0/:

Hence, the hyperbolic Yang–Mills equation is energy critical in dimension .4C 1/, which is the reason
why we focus on this dimension in the present series of papers.

We are interested in the initial value problem for (1-1). For this purpose, we first formulate a gauge-
covariant notion of an initial data set. We say that a pair .a; e/ of a connection 1-form a and a g-valued
1-form e on R4 is an initial data set for a solution A to (1-1) if

.Aj ; F0j /�ftD0gD .aj ; ej /:

Here and throughout this paper, roman letter indices stand for the spatial coordinates x1; : : : ; x4. Note
that (1-1) with ˇ D 0 imposes the condition that

Dj ej D @
j ej C Œa

j ; ej �D 0: (1-3)

This equation is the Gauss (or the constraint) equation for (1-1).
It turns out that (1-3) characterizes precisely those pairs .a; e/ which can arise as an initial data set.

Thus we make the following definition:
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Definition 1.1. (1) A regular initial data set for the hyperbolic Yang–Mills equation is a pair .a; e/ 2
HN

loc�H
N�1 .N � 2/ which has finite energy (i.e., F Œa� 2L2) and satisfies the constraint equation (1-3).

(2) A finite-energy initial data set is a pair .a; e/ 2 PH 1
loc �L

2 which has finite energy (i.e., F Œa� 2 L2)
and satisfies the constraint equation (1-3).

In this paper, we make an additional assumption that a decays suitably at infinity:

a 2 PH 1: (1-4)

This assumption turns out to be equivalent to the requirement that a is topologically trivial [Oh and Tataru
2019a]. As this property is conserved under any continuous evolution in time, this is the natural setting
for scattering and thus for the threshold conjecture for (1-1), which is one main subject of the final paper
[Oh and Tataru 2017a] of the series.

The hyperbolic Yang–Mills equation (1-1), when naively viewed as an evolution equation for A, fails
to be locally well-posed; to restore (at least formally) well-posedness, we need to fix the gauge invariance.

There are several classical interesting gauge choices which can be made here, for instance the Coulomb
gauge @jAj D 0, the temporal gauge A0 D 0 and the Lorenz gauge @˛A˛ D 0. For a more detailed
discussion and comparison of these gauges we refer the reader to our first article [Oh and Tataru 2017b].

However, the main gauge choice we use in this paper is the so-called caloric gauge, which was defined
in the first paper of the series [Oh and Tataru 2017b] with the help of a parabolic analogue of (1-1),
namely the Yang–Mills heat flow. This is the subject of our next discussion.

1B. Yang–Mills heat flow and the caloric gauge. Let a be a connection 1-form on R4 (in short, a spatial
connection). We say that a connection AD A.x; s/ on R4 �J (where J is a subinterval of Œ0;1/) is a
(covariant) Yang–Mills heat flow development of a if it solves

Fsj DD`F j̀ ; A.s D 0/D a: (1-5)

This equation is invariant under gauge transformations on R4�J. Under the local caloric gauge condition

As D 0; (1-6)

the forward-in-s initial value problem for (1-5) is locally well-posed [Oh and Tataru 2017b, Theorem 2.7]
in PH 1. We remark that the evolution (1-5) under the gauge (1-6) is precisely the gradient flow for the
(spatial) energy

Ee.a/D
1

2

Z
R4
hFjkŒa�; F

jkŒa�i dx D

Z
R4

X
j<k

jFjkŒa�j
2 dx:

The key controlling norm for the Yang–Mills heat flow in the local caloric gauge is kF kL3s .J IL3/,
which is both scale- and gauge-invariant.

Theorem 1.2 [Oh and Tataru 2017b]. Consider a Yang–Mills heat flow A 2 Cs.J I PH
1/ in the local

caloric gauge satisfying
kF kL3s .J IL3/ �Q<1: (1-7)
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When J D Œ0; s0/ for s0 <1, A can be extended past s0 as a (well-posed) Yang–Mills heat flow. When
J D Œ0;1/, the solution has the property that the limit

lim
s!1

A.s/D a1

exists in PH 1. The limiting connection is flat .F Œa1� D 0/ and the map a 7! a1 is locally Lipschitz
in PH 1, HN .N � 1/ and PH 1 \ PHN .N � 2/. Denoting by O.a/ a gauge transformation satisfying
O�1@jO D a1, the map a 7!O.a/ is continuous from PH 1 to PH 2 up to constant conjugations.

In the case when the Yang–Mills heat flow with initial data a admits a global solution with finite
L3 norm for the curvature as in (1-7), we define the caloric size Q.a/ of a as

Q.a/D kF k3
L3s .RCIL3/

: (1-8)

We note that this is a gauge-invariant quantity.

Remark 1.3. Here we need to clarify the topology on the (nonlinear) space of gauge transformations.
We will say that a sequence O.n/ converges to O if there exists a sequence zO.n/ of gauge transformations
so that zO.n/.O.n//�1 are constant and so that we have

� pointwise convergence,1

d. zO.n/; O/! 0 in L2loc;

� convergence of derivatives,
zO
.n/
Ix !OIx in PH 1:

A simple but important case in which (1-7) holds with J D Œ0;1/ is when the initial energy Ee.a/ is
sufficiently small. The same conclusion holds as long as Ee.a/ is below any nontrivial connection a 2 PH 1

satisfying the harmonic Yang–Mills equation

D`F j̀ D 0: (1-9)

The above assertion is closely related to the topological class of connections. Relaxing the requirement
a 2 PH 1 to a 2H 1

loc allows also topologically nontrivial initial data sets, in which case the ground state
energy

EGS D inffEe.a/ W a 2H 1
loc is nontrivial and solves (1-9)g (1-10)

is nonzero, and the minimum is attained for a special class of solutions called instantons. However, within
the trivial topological class we have

2EGS � inffEe.a/ W a 2 PH 1 is nontrivial and solves (1-9)g: (1-11)

We further remark that in order for a connection a to have Q.a/ finite, it must be topologically trivial.
Because of this, the present paper is limited to topologically trivial connections, which are simply defined

1The functions O.n/ are uniformly bounded in BMO so this property essentially provides the additional information that in
some sense the local averages converge as well.
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by the requirement that a 2 PH 1 in a suitable gauge. For an extended discussion and further references we
refer the reader to our next article in the series [Oh and Tataru 2019a].

In view of this discussion, the following result is natural:

Theorem 1.4 (threshold theorem for the Yang–Mills heat flow on R4 [Oh and Tataru 2017b]). Assume
that a is topologically trivial and that

Ee.a/ < 2EGS:

Then the solution to (1-5) exists globally on Œ0;1/. Moreover, there exists a nondecreasing function
Q. � / W Œ0; 2EGS/! Œ0;1/ such that

Q.a/�Q.Ee.a//:

We now return to the discussion of an arbitrary (not necessarily subthreshold) spatial connection a,
whose Yang–Mills heat flow development satisfies (1-7) with J D Œ0;1/. Since the limiting connection
a1 is flat, it must be gauge equivalent to the zero connection. This motivates the following definition of
the caloric gauge:

Definition 1.5 (caloric gauge). We say that a connection aj 2 PH 1 is caloric if J D Œ0;1/ and a1 in
Theorem 1.2 is equal to zero. We denote the set of all such connections by C. More quantitatively, we
denote by CQ the set of all caloric connections whose Yang–Mills heat flow development satisfies

Q.a/�Q: (1-12)

Given a connection a 2 PH 1 satisfying (1-7) with J D Œ0;1/, note that

Cal.a/j D Ad.O.a//aj �O.a/Ij

is its caloric representative, which is unique up to constant conjugations.
To solve the Yang–Mills equation in the caloric gauge, we need to view the family C of the caloric

gauge connections as an infinite-dimensional manifold. Here the PH 1 topology is no longer sufficient, so
we introduce the slightly stronger topology

H D fa 2 PH 1
W kakH <1g; where kakH WD kak PH1 C

X
j

kPj .@
`a`/kL2 :

Here, fPj g refer to the standard Littlewood–Paley projections to dyadic frequency annuli on R4. It turns
out that every caloric connection belongs to H, which reflects the fact, to be discussed in Section 3 in
greater detail, that caloric connections satisfy a nonlinear form of the Coulomb gauge condition. Moreover,
the following theorem holds.

Theorem 1.6. (1) For a connection a 2 C with energy E and caloric size Q we have

kakH .E;Q 1:

(2) Consider a connection a 2H (not necessarily caloric) satisfying (1-12). Then O.a/ in Theorem 1.2
may be uniquely fixed by imposing limjxj!1O.a/D I. Such a map a 7!O.a/ is locally C 1 from H to
PH 2\C 0, and also from HN to PH 2\ PHNC1 .N � 2/.



THE HYPERBOLIC YANG–MILLS EQUATION IN THE CALORIC GAUGE 239

Essentially as a corollary, we have:

Theorem 1.7. The set C is an infinite-dimensional C 1 submanifold of H.

The spatial components of finite-energy Yang–Mills waves will be continuous functions of time which
take values into C. They are however not C 1 in time; instead their time derivative will merely belong to L2.
Because of this, we need to take the closure of its tangent space T C (which a priori is a closed subspace
of H ) in L2. This is denoted by T L

2

a C. It is also convenient to have a direct way of characterizing this
space; that is naturally done via the linearization of (1-5):

Definition 1.8. For a caloric gauge connection a 2 C, we say that L2 3 b 2 T L
2

a C if and only if the
solution to the linearized local caloric gauge Yang–Mills heat flow equation

@sBk D ŒB
j ; Fkj �CDj .DkBj �DjBk/; Bk.s D 0/D bk; (1-13)

(where D DD.a/) satisfies

lim
s!1

B.s/D 0:

We say that .a; b/2T L
2CQ if a2 CQ and b 2T L

2

a C, and we say that .a; b/2T L
2C if a2 C and b 2T L

2

a C.

A key property of the tangent space T L
2

a C is the following nonlinear div-curl-type decomposition:

Theorem 1.9. Let a 2 CQ with energy E . Then for each e 2 L2 there exists a unique decomposition

e D b�D.a/a0; b 2 T L
2

a C; a0 2 PH 1; (1-14)

with the corresponding bound

kbkL2 Cka0k PH1 . E;Q kekL2 : (1-15)

A hyperbolic Yang–Mill connection consists not only of spatial components (the sole subject of
discussion so far), but also of a temporal component. As in the Coulomb gauge, we will consider the
spatial components of the connection as the dynamic variables, which satisfy a system of wave equations.
The temporal components, on the other hand, will be viewed as an auxiliary variable determined from the
spatial components. This point of view motivates the following definition.

Definition 1.10 (initial data in the caloric gauge). An initial data for the Yang–Mills equation in the
caloric gauge is a pair .a; b/ where .a; b/ 2 T L

2C.

The notion of covariant Yang–Mills initial data (Definition 1.1) is connected to the preceding definition
by the following result proved in [Oh and Tataru 2017b] (which motivates the notation in Theorem 1.9):

Theorem 1.11. (1) Given any Yang–Mills initial data pair .a; e/ 2 PH 1 �L2 such that the Yang–Mills
heat flow development of a satisfies (1-12), there exists a caloric gauge Yang–Mills data . Qa; b/ 2 T L

2C
and a0 2 PH 1, so that the initial data pair . Qa; Qe/ is gauge equivalent to .a; e/, where

Qek D bk �D
.Qa/

k
a0:
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In addition, . Qa; b/ and a0 are unique up to constant conjugations, and depend continuously on .a; e/
in the corresponding quotient topology. Further, the map .a; e/ 7! . Qa; b/ is locally C 1 in the stronger
topology2 H �L2!H �L2, as well as in more regular spaces HN �HN�1!HN �HN�1 .N � 2/.

(2) Given any caloric gauge data .a; b/2T L
2C, there exists a unique a0 2 PH 1, with Lipschitz dependence

on .a; b/ 2 PH 1 �L2, so that

ek D bk �D
.a/

k
a0

satisfies the constraint equation (1-3). Further, the map .a; b/! a0 is also Lipschitz from HN �HN�1

to HN for N � 3.

Remark 1.12. The caloric gauge just described is a global version of a local caloric gauge previously
introduced by Oh [2014; 2015], and is based on an idea by Tao [2004] in his study of the energy-critical
wave maps into the hyperbolic space [Tao 2008a; 2008b; 2008c; 2009a; 2009b].

1C. The main results. The first main result is a strong gauge-dependent local well-posedness theorem
for the Yang–Mills equation as an evolution in the manifold of caloric connections. To state this result,
we define the energy concentration scale rc of a Yang–Mills initial data set .a; e/ with threshold "� (or
the "�-energy concentration scale) to be

r"�c D r
"�
c Œa; e�D supfr W EBr .a; e/� "

2
�g:

Theorem 1.13 (local well-posedness in caloric gauge). There exists a nonincreasing function "�.E ;Q/>0
and a nondecreasing function M�.E ;Q/ > 0 such that the Yang–Mills equation in the caloric gauge is
locally well-posed on the time interval of length rc D r

"�
c .E ;Q/ for initial data .a; e/ with energy � E

and a 2 CQ. More precisely, the following statements hold:

(1) (regular data) Let .a; e/ be a smooth initial data set with energy � E , where a 2 CQ. Then there
exists a unique smooth solution At;x to the Yang–Mills equation in caloric gauge on I D Œ�rc ; rc�
such that .Aj ; F0j /�ftD0gD .aj ; ej /.

(2) (rough data) The data-to-solution map admits a continuous extension

C �L2 3 .a; e/ 7! .Ax; @tAx/ 2 C.I; T
L2C/

in the class of initial data with energy � E , a 2 CQ and energy concentration scale � rc .

(3) (a priori bound) The solution defined as above obeys the a priori bound

kAxkS1ŒI � �M�.E ;Q/:

(4) (weak Lipschitz dependence) Let .a0; e0/2C�L2 be another initial data set with energy concentration
scale � rc . For � < 1 close to 1, we have the global bound

kAx �A
0
xkS� ŒI � .M�.E;Q/;� k.a; e/� .a

0; e0/k PH�� PH��1 :

2Here we impose again the condition limjxj!1O.a/D I in order to fix the choice of O.a/.
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The a priori bound (3) is highly gauge-dependent and has strong consequences. The S1-norm, which
is essentially the same as in [Krieger et al. 2015] and is recalled in Section 4A below, serves the role
of a controlling (or scattering) norm for the Yang–Mills equation in the caloric gauge. As we will see
in Section 5, finiteness of the S1-norm implies fine properties of the solution itself, such as frequency
envelope control, persistence of regularity, continuation and scattering towards endpoints of I, and also
for those nearby, such as weak Lipschitz dependence and local-in-time continuous dependence.

Theorem 1.13 implies small energy global well-posedness in the caloric gauge, analogous to the similar
Coulomb gauge result in [Krieger and Tataru 2017]:

Corollary 1.14. If the energy of the initial data set is smaller than "2� WD minf1; "2�.1;Q.1//g, then the
corresponding solution At;x in the caloric gauge exists globally and obeys

kAxkS1Œ.�1;1/� �M�.E/:

Moreover, if the initial data set .a; e/ has subthreshold energy, then by Theorem 1.4 we have a 2 CQ
with Q�Q.E/. Therefore, we immediately obtain:

Corollary 1.15. For initial data with subthreshold energy, the conclusions of Theorem 1.13 hold with "�,
M� and rc depending only on the energy E .

The local well-posedness result (Theorem 1.13) provides a basic framework for considering dynamics
of the Yang–Mills equation in the manifold of caloric connections C. The second main result, which we
now state, is a continuation/scattering criterion for this equation in terms of smallness of a quantity called
energy dispersion (denoted by EDŒI � below).

Theorem 1.16 (regularity and scattering of energy-dispersed YM solutions). There exists a nonincreasing
function ".E ;Q/ > 0 and a nondecreasing function M.E ;Q/ such that if At;x is a solution (in the sense of
Theorem 1.13) to the Yang–Mills equation in caloric gauge on I with energy � E and with initial caloric
size Q that obeys

kF kEDŒI � D sup
k2Z

2�2kkPkF kL1.I�R4/ � ".E ;Q/;

then it satisfies the a priori bound
kAxkS1ŒI � �M.E ;Q/;

as well as
sup
t2I

Q.A.0//� 1:

By finiteness of the S1-norm, At;x may be continued as a solution to the Yang–Mills equation in the
caloric gauge past finite endpoints of I, and scatters in some sense towards the infinite endpoints; see
Remarks 5.2 and 5.3.

Remark 1.17. In contrast to Theorem 1.13, in Theorem 1.16 the dependence on Q is very mild. This
feature is due to the fact that small energy dispersion, combined with the energy bound, implies that Q
must be either very large or very small; see Lemma 5.10 below. In particular if E is subthreshold then the
dependence on Q above can be omitted altogether.
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While powerful conclusions about the solution (represented by the S1-norm bound) can be made in
the caloric gauge, it has the disadvantage that the causality (or the finite speed of propagation) property is
lost. To remedy this, we also establish small-data well-posedness result in the temporal gauge A0 D 0:

Theorem 1.18. If the energy of the initial data set is smaller than "2� (as in Corollary 1.14), then the
corresponding solution .At;x; @tAt;x/ in the temporal gauge A0 D 0 exists globally in Ct .RI PH 1 �L2/.
The solution is unique among the local-in-time limits of smooth solutions, and it depends continuously on
data .a; e/ 2 PH 1 �L2.

In fact, Theorem 1.18 is a consequence of Corollary 1.14, after the observation that the gauge transfor-
mation from the caloric gauge to the temporal gauge obeys optimal regularity bounds; see Theorem 5.1
(10) below. We note that the strong dispersive S1-norm bound for A is generally lost in the temporal
gauge, as some part of the solution is merely transported (instead of solving a wave equation).

Theorem 1.18 is used in the third paper [Oh and Tataru 2019a] of the sequence to establish the large-data
local theory for the .4C1/-dimensional Yang–Mills equation in arbitrary topological classes. Then in
the fourth paper [Oh and Tataru 2017a], this theory is put together with Theorems 1.13 and 1.16 to
establish global well-posedness and scattering in the caloric gauge for data with subthreshold energy
(often called the threshold theorem in the literature), as well as a bubbling vs. scattering dichotomy for
arbitrary finite-energy solutions, formulated in a gauge-covariant sense.

Remark 1.19. Within the setup of this paper, one could in effect easily relax the hypothesis of the above
theorem, and show that temporal gauge solutions exist for as long as caloric solutions exist. We do not
pursue this, as our primary interest in terms of the temporal gauge is to use it for solutions which are not
necessarily caloric. These matters are further discussed in our third and fourth papers [Oh and Tataru
2017a; 2019a].

The overall strategy for the proofs originated from the work of Sterbenz and the second author on
the energy-critical wave maps [Sterbenz and Tataru 2010a; 2010b] and was adapted to the case of the
energy-critical Maxwell–Klein–Gordon (MKG) equation, which is a simpler model for Yang–Mills, in our
previous works [Oh and Tataru 2016a; 2016b; 2018]. We also note an alternative independent approach
for the energy-critical wave maps [Krieger and Schlag 2012] and MKG [Krieger and Lührmann 2015]
based on the Kenig–Merle method [2008; 2006]. A more extensive historical perspective is provided in
the fourth paper [Oh and Tataru 2017a].

In [Oh and Tataru 2016b; 2018], the analogues of Theorems 1.13 and 1.16 (respectively) were proved
using distinct strategies. However, here we derive both main results (see Section 7 for details) from the
following single a priori estimate concerning regular solutions, whose proof is the central goal of this paper:

Theorem 1.20. There exist nonincreasing functions ".E ;Q/; T .E ;Q/ > 0 as well as a nondecreasing
function M.E ;Q/ such that if At;x is a regular solution to the Yang–Mills equation in caloric gauge on I
with energy � E such that Ax 2 CQ for all t 2 I, and moreover

sup
k�m

2�2kkPkF kL1.I�R4/ � ".E ;Q/ and jI j � 2�mT .E ;Q/
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for some m 2 Z, then it satisfies the a priori bound

kAxkS1ŒI � �M.E ;Q/:

In words, for a regular solution with small energy dispersion only at certain frequency 2m and above,
an a priori S1-norm bound holds on time intervals of the corresponding scale O.2�m/.

1D. Overview of the paper. Section 2: In this section, we collect some notation and conventions used
throughout this paper for the reader’s convenience. Some basic concepts, such as disposability, dyadic
function spaces, frequency envelopes, etc., are also described.

After Section 2, the paper is organized into two tiers. The first tier consists of Sections 3 to 7, and its
goal is to describe the large-scale proof of the main results, assuming the validity of certain linear and
multilinear estimates collected in Section 4.

Section 3: Here, we recall from [Oh and Tataru 2017b] further results concerning the Yang–Mills heat
flow and the caloric gauge. First, we state some quantitative bounds for the Yang–Mills heat flow and
its linearization in the caloric gauge, using the language of frequency envelopes (Section 3A). Next, we
derive the wave equation satisfied by Ax and Ax.s/ .s > 0/ in the caloric gauge (Section 3B). In this
process we use the dynamic Yang–Mills heat flow (3-5), which is the Yang–Mills heat flow augmented
with a heat evolution (in s) for the temporal component.

Section 4: We first describe the fine function space framework for analyzing the hyperbolic Yang–Mills
equation in the caloric gauge (Section 4A). The main function spaces are identical to those in [Krieger
et al. 2015; Oh and Tataru 2018; Krieger and Tataru 2017], which in turn have their roots in the works on
wave maps [Tataru 2001; Tao 2001]. We also explain the three main sources of smallness in our analysis:
divisibility, small energy dispersion and short time interval. Then we state the linear and multilinear
estimates needed for the proof of the main theorems (Sections 4B and 4C); it is the goal of the second
tier of the paper (described below) to prove them. The primary estimates here are the bilinear null form
estimates, which in the context of our function spaces have their origin in [Krieger et al. 2015; Oh and
Tataru 2018; Krieger and Tataru 2017]. The bilinear null structure of the Yang–Mills nonlinearities was
first described in [Klainerman and Machedon 1994]; a secondary trilinear null structure, which also plays
a role here, was discovered in [Machedon and Sterbenz 2004] in the (MKG) context.

Section 5: We prove a strong structure theorem for a solution to the hyperbolic Yang–Mills equation in
the caloric gauge with finite S1-norm (Section 5A). In particular, it reduces the tedious task of controlling
various parts of a solution At;x to proving a single S1-norm bound for the spatial components Ax . We also
consider the effect of small inhomogeneous energy dispersion on a correspondingly short time interval
(Section 5B). The analysis is repeated for the dynamic Yang–Mills heat flow of a solution (Section 5C).

Section 6: We prove the central result, Theorem 1.20, by an induction-on-energy argument. The argument
is similar to [Oh and Tataru 2018], which in turn was based on the work [Sterbenz and Tataru 2010a],
with modifications to handle the low frequencies with possibly large energy dispersion with the short
length of the time interval (see, in particular, scenario (1) in Section 6B).



244 SUNG-JIN OH AND DANIEL TATARU

Section 7: Here, we derive the main theorems stated in Section 1C from Theorem 1.20. The key point in
the derivation of Theorem 1.13 is the simple fact that energy dispersion is small for frequencies above
the inverse of the energy-concentration scale (Section 7B). Theorem 1.16 follows essentially by scaling
(Section 7C).

The second tier consists of Sections 8 to 11. Here, we provide proofs of the estimates stated in
Section 4.

Section 8: The goal of this section is to prove all multilinear estimates stated in Section 4. The proofs
proceed in two stages: In the first stage, we assume global-in-time dyadic (in spatial frequency) estimates
(Section 8B), and derive the interval-localized frequency envelope bounds stated in Section 4 (Section 8C).
A key technical issue in interval localization is to deal with modulation projections, which are nonlocal
in time. In the second stage, we establish the global-in-time dyadic estimates (Section 8D). Much is
borrowed from the previous works [Krieger et al. 2015; Oh and Tataru 2018; Krieger and Tataru 2017].

Section 9: We begin this section by reducing the proof of the key linear estimates in Section 4 to
construction of a parametrix for the paradifferential d’Alembertian �C 2

P
k ad.P<k��P˛A/@˛Pk

(Section 9A). As in [Krieger and Tataru 2017], the parametrix is constructed via conjugation of the free-
wave propagator by a pseudodifferential renormalization operator. We define and state the key properties
of the renormalization operator (Section 9C), and establish the desired estimates for the parametrix
assuming these properties (Section 9D).

Section 10: Here, we prove the mapping properties of the renormalization operator claimed in Section 9.
The key difference from [Krieger and Tataru 2017] lies in the source of smallness: whereas smallness
of the S1-norm of A was used in that paper, in this paper we rely instead on largeness of the frequency
gap � in the paradifferential d’Alembertian. The idea of exploiting a large frequency gap was used in
[Sterbenz and Tataru 2010a; Oh and Tataru 2018].

Section 11: Finally, we estimate the error for conjugation of the paradifferential d’Alembertian by the
renormalization operator claimed in Section 9, thereby completing our parametrix construction. One
aspect of our proof that differs from the previous works [Sterbenz and Tataru 2010a; Oh and Tataru 2018]
is that, in addition to the large frequency gap �, we need to use smallness of a divisible norm (weaker
than S1) of A, which requires a careful interval localization procedure (Sections 11C and 11D).

2. Notation, conventions and other preliminaries

2A. Notation and conventions. Here we collect some notation and conventions used in this paper.

� The symbols ., &, � and� are defined with their usual meanings, where the implicit constants in
these notations are allowed to vary from line to line.

� ByA.E B andA�E B , we mean thatA�CEB andA�cEB , respectively, whereCEDC0.1CE/C1

and cE DC�10 .1CE/�C1 for some constants C0; C1 > 0 that are again allowed to vary from line to line.

� For u 2 g and O 2 G, define ad.u/ D Œu; � � and Ad.O/ D O. � /O�1, both of which are in End.g/.
Recall the minus Killing form, which is invariant under Ad.O/ and ad.X/. On g, define j � jg on g by the
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minus Killing form. On End.g/, use the induced metric jajEnd.g/ D supjujg�1jaujg. By Ad-invariance,
jAd.O/ajEnd.g/ D jaAd.O�1/jEnd.g/ D jajEnd.g/.

� We use the notation Br.x/ for the ball of radius r centered at x. We write j†.�; �/j for the angular
distance j�=j�j � �=j�jj, and j†.C; C0/j for inf�2C; �2C0 j†.�; �/j.

� We use the notation r D @t;x , D� D i�1@�. Also, for D and A we often suppress the subscript x and
write D DDx and AD Ax .

� We say that a multilinear operator O.u1; : : : ; um/ is disposable if its kernel is translation-invariant and
has mass . 1. In particular, we have

kO.u1; : : : ; um/kY . ku1kX1 � � � kumkXm

for any translation-invariant spaces X1; : : : ; Xm; Y provided that a product estimate

ku1 � � �umkY . ku1kX1 � � � kumkXm

holds for any functions u1 2X1; : : : ; um 2Xm.

� We often use the “duality” pairing “
u0O.u1; : : : ; um/ dx dt

so as to have symmetry among u0 and the inputs. Indeed, we have“
u0O.u1; : : : ; um/ dx dt D

“
„0C„1C���C„mD0

O.„1; : : : ; „m/ Qu0.„0/ Qu1.„1/ � � � Qum.„m/ d„dt:

� We define O�i as“
u0O�i .u1; : : : ; ui ; : : : ; um/ dt dx D

“
uiO.u1; : : : ;

i -th entry‚…„ƒ
u0 ; : : : ; um/ dt dx:

� By a bilinear operator .of g-valued functions/ with symbol m.�; �/Dmab.�; �/ (which is a complex-
valued 4� 4-matrix), we mean an expression of the form

L.a; b/D

“
.mab.�; �/Œ Oaa.�/; Obb.�/�/e

i.�C�/�x d� d�

.2�/8
:

For a scalar-valued symbol m.�; �/, we implicitly associate the corresponding multiple of the identity
mab.�; �/Dm.�; �/ıab.

If L were symmetric, then the symbol m.�; �/ would be antisymmetric in �; �, in the sense that
mab.�; �/D�mba.�; �/; this is due to the antisymmetry of the Lie bracket.

2B. Basic multipliers and function spaces. Here we provide the definitions of basic multipliers and
function spaces. For the more elaborate frequency projections and function spaces for the hyperbolic
Yang–Mills equation, see Section 4A.
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� Given a function space X (on either Rd or R1Cd ), we define the space `pX by

kuk
p

`pX
D

X
k

kPkuk
p
X

(with the usual modification for pD1), where Pk .k 2 Z/ are the usual Littlewood–Paley projections to
dyadic frequency annuli.

� For a spatial 1-formA, we define PA to be its Leray projection, i.e., theL2-projection to divergence-free
vector fields:

PjAD Aj C .��/
�1@j @

`A`:

We write P?j AD Aj �PjA.

� For a space-time 1-form A˛, we introduce the notation P˛AD .PA/˛ by defining

P˛AD

�
PjAx; ˛ D j 2 f1; : : : ; 4g;

A0; ˛ D 0:

We also define P?˛ AD .P
?A/˛ D A˛ �P˛A.

� We denote by PW �;p the homogeneous Lp-Sobolev space with regularity � . In the case p D 2, we
simply write PH� D PW �;2.

� The mixed space-time norm L
q
t
PW
�;r
x of functions on R1Cd is often abbreviated as Lq PW �;r.

2C. Frequency envelopes. To provide more accurate versions of many of our estimates and results we
use the language of frequency envelopes.

Definition 2.1. Given a translation-invariant space of functionsX , we say that a sequence ck is a frequency
envelope for a function u 2X if

(i) the dyadic pieces of u satisfy
kPkukX � ck;

(ii) the sequence ck is slowly varying,

2�ı.j�k/ .
ck

cj
. 2ı.j�k/; j > k:

Here ı is a small positive universal constant. For some of the results we need to relax the slowly
varying property in a quantitative way. Fixing a universal small constant 0 < "� 1, we set:

Definition 2.2. Let �1; �2 > 0. A frequency envelope ck is called .��1; �2/-admissible if

2��1.1�"/.j�k/ .
ck

cj
. 2�2.1�"/.j�k/; j > k:

When �1 D �2, we simply say that ck is � -admissible.
Another situation that will occur frequently is that where we have a reference frequency envelope ck ,

and then a secondary envelope dk describing properties which apply on a background controlled by ck .
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In this context the envelope dk often cannot be chosen arbitrarily but instead must be in a constrained
range depending on ck . To address such matters we set:

Definition 2.3. We say that the envelope dk is � -compatible with ck if we have

ck
X
j<k

2�.1�"/.j�k/dj . dk :

We will often replace envelopes dk which do not satisfy the above compatibility condition by slightly
larger envelopes that do:

Lemma 2.4 [Oh and Tataru 2017b, Lemma 3.5]. Assume that ck and dk are .��1; S/ envelopes, and
also that ck is bounded. Then for Q� < �.1� "/ the envelope

ek D dkC ck
X
j<k

2Q�.j�k/dj

is � -compatible with ck . The implicit constant in Definition 2.3 is bounded above by 1CC�.1�"/�Q�kck`1 .

Finally we need the following additional frequency envelope notation:

.c � d/k D ckdk; a�k D
X
j�k

aj ; c
Œ��

k
D sup
j<k

2.1�"/�.j�k/cj .� > 0/:

2D. Global small constants. In this paper, we use a string of global small constants ı1; : : : ; ı6; ı7 with
the hierarchy

0 < ı� D ı7� ı6� ı5� ı4� ı3� ı2� ı1� ı0� 1: (2-1)

These are fixed from right to left, so that

ıiC1� ı100i :

The role of each constant is roughly as follows:

� ı0: for definition of functions spaces, such as Str1 and b0; b1; p0 in Section 4.

� ı1: for all bounds from other papers, such as [Oh and Tataru 2017b; 2018; Krieger and Tataru 2017];
also for all dyadic gains in explicit nonlinearities (Section 8) and for energy dispersion gains in the
Str1 norm (4-21).

� ı2: for energy dispersion, frequency gap and off-diagonal gains in Sections 4.

� ı3: for frequency envelope admissibility range in Sections 4.

� ı4: for energy dispersion and frequency gap gains in Sections 5.

� ı5: for frequency envelope admissibility range in Sections 5.

� ı6: for energy dispersion and frequency gap gains in Sections 6.

� ı�: for frequency envelope admissibility range in Sections 6.

We use an additional set of small constants in our parametrix construction (Sections 9–11), which are
fixed after ı1 but before ı2.
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3. Yang–Mills heat flow and the caloric gauge

In this section, which is a continuation of Section 1B, we recall the results from the first paper [Oh and
Tataru 2017b] that are needed in the present paper.

In Section 3A, we state quantitative bounds for the Yang–Mills heat flow (and its linearization) in
the caloric gauge, using the language of frequency envelopes. Section 3B is concerned with the task
of interpreting the hyperbolic Yang–Mills equation in the caloric gauge as a system of nonlinear wave
equations for Ax .

3A. Frequency envelope bounds in the caloric gauge. We begin with frequency envelope bounds for
the caloric gauge Yang–Mills heat flow and its linearization.

Proposition 3.1 [Oh and Tataru 2017b, Proposition 7.27]. Let .a; b/ 2 T L
2CQ with E D Ee.a/, and let

.A;B/ be the solution to (1-5) and (1-13) with .a; b/ as data. Let ck be a .�ı1; S/-frequency envelope in
PH 1�L2 for .a; b/, and let c�;p

k
be a .�ı1; S/-frequency envelope in PW �;p � PW ��1;p for .a; b/ which is

ı1-compatible with ck . Define

A.s/D A.s/� es�a; B.s/D B.s/� es�b: (3-1)

Then the following properties hold:

(1) We have
kPkA.s/k PH1 CkPkB.s/kL2 . E;Q;N h2

�2ks�1i�ı1h22ksi�N c2k : (3-2)

(2) For .�; p/ and .�1; p1/ satisfying

cı1 � � �
4

p
� cı1 ; 2C cı1 � p � c

�1
ı1
; 0� �1 � � � cı1 ;

4

p1
� �1 D 2

�
4

p
� �

�
; (3-3)

we have

kPkA.s/k PW �1C1;p1
CkPkB.s/k PW �1;p1

.E;Q;N h2
�2ks�1i�ı1h22ksi�N .c

�;p

k
/2: (3-4)

A central object of the remainder of this section is the dynamic Yang–Mills heat flow for space-time
connections, which is an augmentation of (1-5) with an equation for the temporal component. More
precisely, we say that a pair .A0; A/ of a g-valued function A0 and a connection A on R4 �J (where J
is a subinterval of Œ0;1/) is the dynamic Yang–Mills heat flow development of .a0; a/ if

Fs˛ DD`F`˛; .A0; A/.s D 0/D .a0; a/: (3-5)

This flow is well-defined as long as the spatial and s-components of A are well-defined as a solution to
(1-5). In particular, if a 2 C, then .A0; A/ exists on Œ0;1/, lims!1A0 D 0 in PH 1 and lims!1 F0j D 0
in L2. Moreover, the following proposition holds.

Proposition 3.2 [Oh and Tataru 2017b, Propositions 7.7 and 8.9]. Let a 2 CQ and e 2 L2 satisfy
k.f; e/k2

L2
� E . Consider also a0 2 PH 1 and b 2 T L

2

a C which obeys e D b�Da0 (see Theorem 1.9), and
let .A0; A/ be a caloric gauge solution to (3-5) with data .a0; a/. Then the following properties hold.
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(1) The spatial 1-form Bj .s/ D F0j .s/�DjA0.s/ obeys the linearized Yang–Mills heat flow in the
caloric gauge with Bj .0/D bj . Moreover,

kA.s/k PH1 CkB.s/kL2 .E;Q k.f; e/kL2 : (3-6)

(2) Let dk be a ı1-frequency envelope for .f; e/ in PW �2;1. Then

2�kkPkA.s/kL1 C 2
�2k
kPkB.s/kL1 .E;Q;N h2

2ksi�N .dk/
1
2 : (3-7)

(3) Let ck be a .�ı1; S/-frequency envelope for .a; b/ in PH 1 �L2. Then

kPkA.s/k PH1 CkPkB.s/kL2 .E;Q;N h2
�2ks�1i�ı1h22ksi�N .dk/

1
2 ck; (3-8)

kPk@
jAj .s/kL2 CkPk@

jBj .s/k PH�1 .E;Q;N h2
�2ks�1i�ı1h22ksi�N .dk/

1
2 ck; (3-9)

where A, B are as in (3-1).

3B. Wave equation for A in caloric gauge. Here, and in the rest of this paper, we shift the notation
and denote by At;x D At;x.t; x/, instead of .a0; a/, the space-time connection on I �R4 (viewed as
fs D 0g). For the spatial components, we omit the subscript x and write Ax.t; x/D A.t; x/. We write
At;x;s.s/D At;x;s.t; x; s/ for the dynamic Yang–Mills heat flow of At;x.t; x/.

In this subsection, we recall from [Oh and Tataru 2017b] the interpretation of the hyperbolic Yang–Mills
equations for a space-time connection At;x in the caloric gauge as a hyperbolic evolution for the spatial
components A augmented with nonlinear expressions of @`A`, A0 and @0A0 in terms of .A; @tA/; see
Theorem 3.5. An analogous hyperbolic equation holds for the dynamic Yang–Mills heat flow development
At;x.s/ of At;x in the caloric gauge, which may be thought of as a gauge-covariant regularization of A;
see Theorem 3.6.

We present explicit expressions for the quadratic nonlinearities, for which we need to reveal the null
structure in order to handle them, and state stronger bounds for the remaining higher order nonlinearities.
For economy of notation in the latter task, we introduce the following definition:

Definition 3.3. Let X; Y be dyadic norms.

� A map F WX ! Y is said to be envelope-preserving of order � n (n 2 N with n� 2) if the following
property holds: Let c be a .�ı1; S/-frequency envelope for a in X . Then

kF .a/kY
.cŒı1�/n�1c

.kakX 1:

� A map F W X ! Y is said to be Lipschitz envelope-preserving of order � n if, in addition to being
envelope-preserving of order � n, the following additional property holds: Let c be a common ı1-
frequency envelope for a1 and a2 in X , and let d be a ı1-frequency envelope for a1 � a2 in X that is
ı1-compatible with c. Then

kPk.F .a1/�F .a2//kYk .ka1kX ;ka2kX c
n�2
k ek;

where ek D dkC ck.c � d/�k .
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Remark 3.4. The modified envelope e appears since the maps F that arise below are defined on a
nonlinear manifold, namely, spatial connections a on a time interval I such that .a; @ta/.t/ 2 T L

2C for
each fixed time. We remark moreover that if the frequency envelopes c and d are `2-summable, which is
usually the case in practice, then F .a/ and F .a1/�F .a2/ belong to `1Y .

We also need to introduce the nonsharp Strichartz spaces Str and Str1, which scale like L1L2 and
L1 PH 1, respectively. We define

kukStr D sup
n
kuk

Lp PW �;q W
1

q
C
4

p
D 2; ı0 �

1

p
�
1

2
� ı0;

2

p
C
3

q
�
3

2
� ı0

o
; (3-10)

as well as

kukStr1 D krukStr: (3-11)

Conditions in (3-10) ensure that the .p; q; �/’s are Strichartz exponents, but away from the sharp endpoints.
These norms have two key properties:

� They are divisible in time, i.e., can be made small by subdividing the time interval.

� Saturating the associated Strichartz inequalities requires strong pointwise concentration (i.e., small
energy dispersion).

In [Oh and Tataru 2017b], we have shown that the spatial components of the Yang–Mills equation
D˛Fj˛ D 0 .j 2 f1; 2; 3; 4g/ may be interpreted as a system of wave equation for the spatial components
AD Ax , where the temporal component A0 is determined in terms of .A; @tA/, as follows:

Theorem 3.5 [Oh and Tataru 2017b, Theorem 9.1]. LetAt;xD.A0;A/2Ct .II PH 1�CQ/with .@tA0;@tA/2
Ct .I IL

2�T L
2

A.t/
CQ/ be a solution to (1-1) with energy E . Then its spatial components AD Ax satisfy an

equation of the form

�AAj DPj ŒA; @xA�C 2�
�1@jQ.@˛A; @˛A/CRj .A/; (3-12)

together with a compatibility condition

@`A` DDA.A/ WDQ.A;A/CDA3.A/: (3-13)

Moreover, the temporal component A0 and its time derivative @tA0 admit the expressions

A0 DA0.A/ WD�
�1ŒA; @tA�C 2�

�1Q.A; @tA/CA3
0.A/; (3-14)

@tA0 DDA0.A/ WD �2�
�1Q.@tA; @tA/CDA3

0.A/: (3-15)

Here P is the Leray projector, and Q is a symmetric3 bilinear form with symbol

Q.�; �/D
j�j2� j�j2

2.j�j2Cj�j2/
: (3-16)

3Observe here that the symbol of Q is odd, but this is combined with the antisymmetry of the Lie brackets appearing in the
bilinear form.
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Moreover, Rj .t/, DA3.t/, A3
0.t/ and DA3

0.t/ are uniquely determined by .A; @tA/.t/ 2 T L
2C, and are

Lipschitz envelope-preserving maps of order � 3 on the spaces

Rj .t/ W PH
1
! PH�1; (3-17)

DA3.t/ W PH 1
! L2; (3-18)

A3
0.t/ W

PH 1
! PH 1; (3-19)

DA3
0.t/ W

PH 1
! L2: (3-20)

Finally, on any interval I � R, Rj , DA3, A3
0 and DA3

0 are Lipschitz envelope-preserving maps of
order � 3 (with bounds independent of I ) on the spaces

Rj W Str1ŒI �! L1L2\L2 PH�
1
2 ŒI �; (3-21)

DA3
W Str1ŒI �! L1 PH 1

\L2 PH
1
2 ŒI �; (3-22)

A3
0 W Str1ŒI �! L1 PH 2

\L2 PH
3
2 ŒI �; (3-23)

DA3
0 W Str1ŒI �! L1 PH 1

\L2 PH
1
2 ŒI �: (3-24)

All implicit constants depend on Q and E .

Next, we consider the dynamic Yang–Mills heat flow At;x.s/ of At;x in the caloric gauge. For s >0, we
have DˇF˛ˇ .s/Dw˛ ¤ 0 in general. We expect the “heat-wave commutator” w˛ (called the Yang–Mills
tension field) to be concentrated primarily at frequency comparable to s�1=2. Indeed, the following
theorem holds.

Theorem 3.6 [Oh and Tataru 2017b, Theorem 9.3]. LetAt;xD.A0;A/2Ct .II PH 1�CQ/with .@tA0;@tA/2
Ct .I IL

2�T L
2

A.t/
CQ/ be a solution to (1-1) with energy E . Let At;x.s/DAt;x.t; x; s/ be the dynamic Yang–

Mills heat flow development of At;x in the caloric gauge. Then the spatial components A.s/D Ax.s/ of
At;x.s/ satisfy an equation of the form

�A.s/Aj .s/DPj ŒA.s/; @xA.s/�C 2�
�1@jQ.@˛A.s/; @˛A.s//CRj .A.s//

CPjw2x.@tA; @tA; s/CRj Is.A/; (3-25)

together with the compatibility condition

@`A`.s/DDA.A.s//: (3-26)

Moreover, the temporal component A0.s/ and its time derivative @tA0.s/ admit the expansions

A0.s/DA0.A.s//CA0Is.A/ WDA0.A.s//C�
�1w20.A;A; s/CA3

0Is.A/; (3-27)

@tA0.s/DDA0.A.s//CDA0Is.A/: (3-28)
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Here P , Q, Rj , DA, A0 and DA0 are as before, and the w2˛ are defined as

w20.A;B; s/D� 2W .@tA;�B; s/; (3-29)

w2j .A;B; s/D� 2W .@tA; @j @tB � 2@x@tBj ; s/; (3-30)

where W . � ; � ; s/ is a bilinear form with symbol

W .�; �; s/D�
1

2� � �
e�sj�C�j

2

.1� e2s.���//: (3-31)

Moreover, Rj Is.t/, A3
0Is.t/ and DA0Is.t/ are uniquely determined by .A; @tA/.t/ 2 T L

2C for each s > 0,
and satisfy the following properties:

� Rj Is.t/ W PH
1! PH�1 is a Lipschitz map with output concentrated at frequency s�1=2. More precisely,

.1� s�/NRj Is.t/ W PH
1
! 2�ı1k.s/ PH�1�ı1 : (3-32)

� A3
0Is.t/ W

PH 1! PH 1 is a Lipschitz map with output concentrated at frequency s�1=2; i.e.,

.1� s�/NA3
0Is.t/ W

PH 1
! 2�ı1k.s/ PH 1�ı1 : (3-33)

� DA0Is.t/ W PH
1! L2 is a Lipschitz map with output concentrated at frequency s�1=2; i.e.,

.1� s�/NDA0Is.t/ W PH
1
! 2�ı1k.s/ PH�ı1 : (3-34)

Finally, on any time interval I � R (with bounds independent of I ), Rj Is , A3
0Is and DA0Is satisfy the

following properties:

� Rj Is WStr1ŒI �!L1L2\L2 PH�1=2ŒI � is a Lipschitz map with output concentrated at frequency s�1=2; i.e.,

.1� s�/NRj Is W Str1ŒI �! 2�ı1k.s/.L1 PH�ı1 \L2 PH�
1
2
�ı1/ŒI �: (3-35)

� A3
0Is WStr1ŒI �!L1 PH 2\L2 PH 3=2ŒI � is a Lipschitz map with output concentrated at frequency s�1=2; i.e.,

.1� s�/NA3
0Is W Str1ŒI �! 2�ı1k.s/.L1 PH 2�ı1 \L2 PH

3
2
�ı1/ŒI �: (3-36)

� DA0Is W Str1ŒI �! L2 PH 1=2ŒI � is a Lipschitz map with output concentrated at frequency s�1=2; i.e.,

.1� s�/NDA0Is W Str1ŒI �! 2�ı1k.s/L2 PH
1
2
�ı1 ŒI �: (3-37)

All implicit constants depend on Q and E .

Remark 3.7. Some notable features of Theorem 3.6 are as follows:

� Compared with the prior result, here we have additional contributions RkIs , A0Is and DA0Is as well
as the w terms. These have the downside that they depend on A and @tA at s D 0 rather than A.s/ and
@tA.s/. The redeeming feature is that these terms will not only be small due to the energy dispersion, but
also, critically, concentrated at frequency s�1=2.

� The other change here is due to the inhomogeneous terms w2˛; these are matched in the Ak.s/ and the
A0.s/ equations, and will interact in the trilinear analysis (see Proposition 4.29 below).

� For the new error terms here we do not need to worry about difference bounds; see Section 6 below.
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4. Summary of function spaces and estimates

In this section, we summarize the properties of the function spaces and the estimates needed to analyze
the hyperbolic Yang–Mills equation in the caloric gauge, as given by Theorems 3.5 and 3.6.

4A. Function spaces. The aim of this subsection is to give precise definitions of the fine functions spaces
used to analyze caloric Yang–Mills waves.

4A1. Frequency projections. We start with a brief discussion of various frequency projections. Let
m0 W R! R be a smooth nonnegative even bump function supported on fx 2 R W jxj 2 .2�1; 22/g such
that fmk D m0. � =2k/gk2Z is a partition of unity on R. For k 2 Z, recall that Pk was defined as the
multiplier on R4 with symbol Pk.�/Dmk.j�j/. Given j 2 Z and a sign ˙, we introduce the modulation
projections Q˙j and Qj , which are multipliers on R1C4 with symbols

Q˙j .�; �/Dmj .� �j�j/; Qj .�; �/Dmj .j� j � j�j/:

We also defineQ˙<j , Q˙
�j , Q<j , Q�j etc. in the obvious manner. To connectQ˙j withQj , we introduce

the sharp time-frequency cutoffs Q˙, which are multipliers on R1C4 with symbols

Q˙.�; �/D �.0;1/.˙�/:

Note that PkQ˙Qj D PkQ˙j for j < k.
For ` 2 �N, consider a collection of directions ! 2 S3 � R4, which are maximally separated with

distance ' 2`. To each such an !, we associate a smooth cutoff function m!
`

supported on a cap of
radius ' 2` centered at !, with the property that

P
! m! D 1. Let P !

`
be the multiplier on R4 with

symbol

P !` .�/Dm
!
`

�
�

j�j

�
:

Given k0 2 Z and `0 2 �N, consider rectangular boxes Ck0.`0/ of dimensions 2k
0

� .2k
0C`0/3 (where

the 2k
0

-side lies along the radial direction), which cover R4 n fjxj . 2k0g and have finite overlap with
each other. Let mCk0 .`0/ b a partition of unity adapted to fCk0.`0/g, and we define the multiplier PCk0 .`0/
on R4 with symbol

PCk0 .`0/.�/DmCk0 .`0/.�/:

For convenience, when k0Dk, we choose the covering and the partition of unity so that PkP !` DPkPCk.`/.
We now discuss the boundedness properties of the frequency projections. For any k 2 Z, let Pk=<k

denote one of the dyadic frequency projections fPk; P<kg. Let Q�
j=<j

denote one of the modulation
projections Q˙j , Q˙<j , Qj or Q<j . Let ! be an angular sector of size' 2` .`2�N/, and C a rectangular
box of the form Ck0.`0/ .k0 2 Z; `0 2 �N/. Then the following statements hold:

� The multipliers Pk=<k , Pk=<kP !` and PC are disposable.

� The multiplier Pk=<kQ�j=<j is disposable if j � kCO.1/; see [Tao 2001, Lemma 3]. For general
j; k 2 Z, it is straightforward to check that Pk=<kQ�j=<j has a kernel with mass O.24.k�j /C/.
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� The multiplier Pk=<kQ�j=<j is bounded on LpL2 for any 1� p �1; see [Tao 2001, Lemma 4].

� The multiplier Pk=<kP !` Q
�

j=<j
is disposable if j � kC 2`CO.1/; see [Tao 2001, Lemma 6].

4A2. Function spaces on the whole space-time. Here, we define the global-in-time function spaces used
in this work. Unless otherwise stated, all spaces below are defined for functions on R1C4. We remark
that all of them are translation-invariant.

We first define the space X�;br , equipped with the norm

kuk2
X
�;b
r

D

X
k

22�k
�X
j

.2bj kPkQjukL2L2/
r

�2
r

when 1� r <1. As usual, we replace the `r -sum by the supremum in j when r D1. The spaces X�;b
˙;r

are defined similarly, with Qj replaced by Q˙j .
We are now ready to introduce the function spaces in earnest, which are all defined in terms of

(semi-)norms.

Core nonlinearity norm N. We define

N D L1L2CX
0;� 1

2

1 :

This norm scales like L1L2. We also define N˙DL1L2CX
0;�1=2
˙;1 . Note that N DNC\N�. Moreover,

we have the embeddings

X
0;� 1

2

1 �N �X
0;� 1

2
1 ; X

0;� 1
2

˙;1 �N �X
0;� 1

2

˙;1 :

The inclusions on the left are obvious, whereas the inclusions on the right follow from Bernstein in time.
We omit the proofs.

Core solution norm S . We define

kuk2S D
X
k

kuk2Sk ; Sk D S
str
k \X

0; 1
2

1 \S
ang
k
\S

sq

k
;

where Ssq
k

is related to square function bounds,

kukSsq
k
D 2�

3
10
k
kuk

L
10=3
x L2t

and S str
k

and S ang
k

are essentially as in [Krieger et al. 2015, equations (6)–(8)]:

kukS str
k
D sup
.p;q/W 1

p
C 3
2q
� 3
4

2�.2�
1
p
� 4
q
/k
kukLpLq ;

kuk2
S

ang
k

D sup
`<0

X
!

kP !` Q<kC2`uk
2
S!
k
.`/;

kuk2S!
k
.`/ D kuk

2
S str
k

C 2�2kkuk2NE C 2
�3k

X
˙

kQ˙uk2
PW

�
! .`/

C sup
k0�k; `0�0

kC2`�k0C`0�kC`

X
Ck0 .`0/

�
kPCk0 .`0/uk

2
S str
k

C 2�2kkPCk0 .`0/uk
2
NE

C 2�2k
0�k2�`

0

kPCk0 .`0/uk
2
L2L1

C 2�3.k
0C`0/

X
˙

kQ˙PCk0 .`0/uk
2

PW
�
! .`/

�
:
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Here, the NE and PW �! .`/ are the null frame spaces [Tataru 2001; Tao 2001], defined by

kuk
PW

�
! .`/
D inf
uD

R
u!
0

Z
j!�!0j�2`

ku!
0

kL2
˙!0

L1
.˙!0/?

d!0;

kukNE D sup
!
k6r!ukL1! L2

!?
;

where the Lq! norm is with respect to the variable t˙! D t ˙ ! � x, the Lr
!?

norm is defined on each
ft˙! D constg, and 6r! denotes the tangential derivatives to ft˙! D constg.

In the last two lines of the definition of S!
k
.`/, the restrictions k0 � k, `0 � 0 and k0C `0 � kC `

ensure that rectangular boxes of the form Ck0.`0/ fit in the frequency support of P !
`

. The restriction
kC 2`� k0C `0 is imposed by the main parametrix estimate (see Section 10H or [Krieger et al. 2015,
Section 11]), to ensure square-summability in Ck0.`0/.

The null frame spaces in S!
k
.`/ allow one to exploit transversality in frequency space, and play

an important role in the proof of the trilinear null form estimate; see [Krieger et al. 2015, equations
(136)–(138)] and Proposition 8.18 below. On the other hand, the L2L1-norm for PCk0 .`0/u allows us to
gain the dimensions of Ck0.`0/.

Remark 4.1. For the reader who is familiar with the function space framework in [Krieger et al. 2015],
we point out that our S!

k
.`/ is slightly stronger than that in [loc. cit.]. More precisely, instead of

2�k
0�.1=2/k2�.1=2/`

0

kPCk0 .`0/ukL2L1 as in our definition, it is 2�k
0�.1=2/kkPCk0 .`0/ukL2L1 in [loc. cit.].

However, we note that the extra factor 2�.1=2/`
0

is actually present in the main parametrix estimate in
[loc. cit., Subsection 11.3].

Remark 4.2. The square function norm S
sq

k
is new here in the structure of the S norm. It plays no

role in the study of the solutions for the hyperbolic Yang–Mills equation in the caloric gauge, i.e., in
Theorems 1.13 and 1.16. Instead, it is only needed in order to justify the transition to the temporal gauge
in Theorem 1.18.

This norm scales like L1L2. Moreover, it obeys the embeddings

PkX
0; 1
2

1 � Sk; Sk �X
0; 1
2

1 :

For k; k0 2 Z satisfying k0 � k and `0 < �5, we define

kuk2SkŒCk0 .`0/�
D 2�

5
3
k
kuk2

L2L6
C 2�2k

0�k2�`
0

kuk2
L2L1

C sup
j W jj�.k0C2`0/j�5

�
kQ<juk

2
L1L2

C 2�2kkQ<juk
2
NE

C 2�3.k
0C`0/

X
˙

kQ˙<juk
2

PW
�
! .

j�k
2
/

�
:

The virtue of this norm is that it is square-summable in boxes of the form Ck0.`0/:

Lemma 4.3. For any k; k0; `0 such that k0 � k and `0 � 0, we haveX
C2fCk0 .`0/g

kPCuk
2
SkŒCk0 .`0/�

. kuk2Sk : (4-1)
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Proof. The desired square-summability estimates for the L1L2, NE and PW �! components follow
immediately from the definition of S ang

k
� Sk . For the L2L6 and L2L1 components, we write

uDQ<k0C2`0uCQ�k0C2`0u:

For the former we use S ang
k

, and for the latter we simply note that, by Bernstein,

2�
5
6
k
kQ�k0C2`0PCk0 .`0/ukL2L6 C 2

�k0� 1
2
k2�

1
2
`0
kQ�k0C2`0PCk0 .`0/ukL2L1 . kPCk0 .`0/ukX0;1=21

;

which is clearly square-summable. �

Sharp solution norm S]. We define

kuk
S
]

k

D 2�k.krukL1L2 Ck�ukN /;

kuk
.S
]

˙
/k
D kukL1L2 Ck.Dt �jDj/ukN˙ ;

both of which scale like L1L2. These norms are used in the parametrix construction in Section 9.

Remark 4.4. Again for the reader familiar with [Krieger et al. 2015], we note that our definition of S]
k

differs from that in [loc. cit.] by a factor of 2k (in [loc. cit.], S]
k

scales like L1 PH 1).

Scattering .or controlling/ norm S1. Given any � 2 R, we define S� D `2S� , i.e.,

kuk2S� D
X
k

kPkuk
2
S�
k
; kukS�

k
D 2.��1/k.krukS Ck�ukL2 PH�1=2/: (4-2)

This norm scales like L1 PH� . The norm S1 will be the main scattering (or controlling) norm, in the sense
that finiteness of this norm for a caloric Yang–Mills wave would imply finer properties of the solution
itself and those nearby (see Theorem 5.1 below).

X
�;b;p
r -type norms. To close the estimates for caloric Yang–Mills waves, we need norms which give

additional control4 off the characteristic cone (i.e., “high” modulation regime). We use an LpLp
0

generalization of the usual L2L2-based X�;b-norm, defined as follows: for �; b 2 R, 1� p; r <1, let

kuk
.X
�;b;p
r /k

D 2�k
�X
j

�
2bj

�X
!

kPkQjP
!
j�k
2

uk2
LpLp

0

�1
2
�r �1

r

; (4-3)

where p0 D p
p�1

is the dual Lebesgue exponent of p. The cases p D 1 and r D 1 are defined in
the obvious manner. We also define the dyadic norm .X

�;b;p
˙;r /k by replacing Qj by Q˙j in the above

definition.
When p D 2, by orthogonality we have

kuk
.X
�;b;2
r /k

D 2�k
�X
j

.2bj kPkQjukL2L2/
r

�1
r

:

4In particular, with `1-summability in dyadic frequencies.
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Analogous identities hold for X�;b;2
˙;r . To be consistent with the usual notation, we will often omit the

exponents p and r when they are equal to 2, i.e., X�;br D X
�;b;2
r , X�;b D X�;b;22 , X�;b

˙;r D X
�;b;2
˙;r and

X
�;b
˙
DX

�;b;2
˙;2 .

Before we introduce the specific norms we use, for logical clarity, we first fix the parameters that will
be used. We introduce b0, b1 and p0, which are smaller than but close to 1

4
, 1
2

and1, respectively. More
precisely, we fix

b0 D
1

4
� ı0; b1 D

1

2
� 10ı0; 1�

1

p0
D 5ı0;

so that

0 <
1

4
� b0 <

1

48
; 2

�
1

4
� b0

�
< 1�

1

p0
<
1

24
; (4-4)

1

4
< b1 <

1

2
�

�
1�

1

p0

�
: (4-5)

We define
kf k
�Z1

k
D kQ<kCCf kX�5=4�b0;�3=4Cb0;11

;

kukZ1
k
D k�uk

�Z1
k
D kQ<kCCukX�1=4�b0;1=4Cb0;11

:

Note that the Z1
k

-norm scales like L1 PH 1. As in [Krieger et al. 2015; Krieger and Tataru 2017], this norm
is used as an auxiliary device to control the bulk of nonlinearities (i.e., the part where the secondary null
structure is not necessary) when reiterating the Yang–Mills equations; see the proofs of Propositions 4.23–
4.29 in Section 8.

Remark 4.5. The Z1-norm used in [Krieger et al. 2015] corresponds to the case b0 D 0. Therefore, our
Z1-norm is weaker than the Z1-norm in [loc. cit.]. This modification is made to handle the contribution
of ��1P ŒA˛; @˛A� in the reiteration procedure; see Proposition 4.22.

Next, we also define

kf k.�Z1p0 /k
D kQ<kCCf kX3=2�3=p0C.1=4�b0/�0;�1=2�.1=4�b0/�0;p01

;

where �0 D 2
�
1
p0
�
1
2

�
, as well as the intermediate norm

kf k
.� zZ1p0 /k

D kQ<kCCf kX5=4�3=p0C.1=4�b0/�0;�1=4�.1=4�b0/�0;p01

:

These norms scale like L1L2. Clearly, .�Z1p0/k � .� zZ
1
p0
/k . Given any caloric Yang–Mills wave A

with a finite S1-norm, we will put �PA in `1� zZ1p0 and �PA 2 `1�Z1p0 ; see Proposition 5.4.
Note that the following embeddings hold:

PkQjL
1L2 � 2

1
4
.j�k/�Z1k ; (4-6)

X
0;� 1

2
1 \�Z1k � .�Z

1
p0
/k � .� zZ1p0/k : (4-7)

Estimate (4-6) follows from Bernstein, whereas the first embedding in (4-7) follows by a simple interpo-
lation argument. We omit the straightforward proofs.
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Finally, as in [Krieger and Tataru 2017], we also need to use the function space

`1X�
1
2
Cb1;�b1 ;

which also scales like L1L2. Given any caloric Yang–Mills wave A with a finite S1-norm, we will be able
to place �PA in `1X�1=2Cb1;�b1. This bound, in turn, is used crucially in the parametrix construction.

High-modulation norms X1 and zX1 for 1-forms. In our analysis below, we need to use different high-
modulation norms for the Leray projection PA than for the general components of a caloric Yang–Mills
wave. Hence it is convenient to define norms for 1-forms with this distinction built in.

Let A and G be spatial 1-forms on R1C4. We define

kGk
�X1

k
D kGk

L2 PH�1=2
CkGk

L9=5 PH�4=9
CkPGk.�Z1p0 /k

:

For any � 2 R, we define

kGk�X�
k
D 2.��1/kkGk

�X1
k
; kAkX�

k
D k�Ak�X�

k
:

Similarly, we define

kGk
� zX1

k

D kGk
L2 PH�1=2

CkGk
L9=5 PH�4=9

CkPGk
.� zZ1p0 /k

;

as well as � zX�
k

and zX�
k

. Given any caloric Yang–Mills wave A with a finite S1-norm, we will place �A
successively in `1� zX1 and �A 2 `1�X1; see Proposition 5.4.

We have the embeddings

Pk.L
1L2\L2 PH�

1
2 /� .�X1/k � .� zX1/k :

Since L1L2 �N, it follows that

kGkN\�X1 . kGkL1L2\L2 PH�1=2 : (4-8)

Strengthened solution norm S1. Putting together S1 and X1, for a 1-form A on R1C4, we define

kAkS�
k
D kAkS�

k
Ck�Ak�X�

k
:

Core elliptic norm Y . We return to functions u on R1C4. We define

kukYk D kukL2 PH1=2 Ckuk
Lp0 PW

2�3=p0;p
0
0
;

where p0 was fixed in (4-4) above. This norm scales like L1L2.

Main elliptic norm Y 1. For � 2 R, we define

kuk2Y � D
X
k

kPkuk
2
Y �
k
; kukY �

k
D 2�k.kukYk C 2

�k
k@tukL2 PH1=2/:

This norm scales like L1 PH� . We will put the elliptic components A0 and P?A D ��1@x@
`A` of a

caloric Yang–Mills wave in Y 1.



THE HYPERBOLIC YANG–MILLS EQUATION IN THE CALORIC GAUGE 259

4A3. Interval localization and extension. So far, the function spaces have been defined over the whole
space-time R1C4. In our analysis, we also need to consider localization of these spaces on finite time
intervals. We use the same set-up as [Oh and Tataru 2018; Krieger and Tataru 2017].

For most of our function spaces (with the important exceptions of Z1p0, zZ
1
p0

, X1 and zX1; see below),
we take a simple route and define the interval-localized counterparts by restriction. In particular, given a
time interval I � R, we define

kukS� ŒI �D inf
Qu2S� WuDQu�I

k QukS� ; kukSŒI �D inf
Qu2S WuDQu�I

k QukS ; kf kNŒI�D inf
Qf 2N WfD Qf �I

k Qf kN : (4-9)

An important technical question then is that of finding a common extension procedure outside I which
preserves these norms. The following proposition provides an answer.

Proposition 4.6. Let I be a time interval.

(1) Let �I be the characteristic function of I. Then we have the bounds

k�IukS . kukS ; k�If kN . kf kN : (4-10)

For a fixed function f on R1C4, the norms k�If kN and kf kNŒI� are also continuous as a function
of the endpoints of I. We also have the linear estimates

krukSŒI � .kru.0/kL2 Ck�ukNŒI�; (4-11)

kukS1ŒI � .kru.0/kL2 Ck�ukN\L2 PH�1=2ŒI �: (4-12)

(2) Consider any partition I D
S
k Ik . Then the N and L2 PH�1=2 are interval square divisible, i.e.,X

k

kf k2NŒIk� . kf k
2
NŒI �;

X
k

kf k2
L2 PH�1=2ŒIk�

. kf k2
L2 PH�1=2ŒI �

; (4-13)

and the S and S1 are interval square summable, i.e.,

kuk2SŒI � .
X
k

kuk2SŒIk�; kuk
2
S1ŒI �

.
X
k

kuk2
S1ŒIk�

: (4-14)

For a proof, we refer to [Oh and Tataru 2018, Proposition 3.3].

Remark 4.7. As a consequence of part (1), up to equivalent norms, we can replace the arbitrary extension
in (4-9) by the zero extension in the case of S and N, and by the homogeneous waves with .�; @t�/ at
each endpoint as data outside I in the case of S1.

The elliptic norms Y and Y 1 only involve spatial multipliers and norms of the form LpLq , so their
interval-localization Y ŒI � and Y 1ŒI � are obviously defined (either by restriction, or using the LpLqŒI �-
norm; both are equivalent). In particular, in the case of Y , observe that

kukY ŒI � D k�IukY � kukY ;

so the zero extension can be used.
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On the other hand, given a function u on I, we directly define the kuk.Z1p0 /kŒI �
(resp. kuk

. zZp0 /
1
k
ŒI �

) to
be kuextk.Z1p0 /kŒI �

(resp. kuextk
. zZp0 /

1
k
ŒI �

), where uext is the extension of u outside I by homogeneous
waves. Equivalently, for .�Z1p0/k and .� zZ1p0/k , we define

kf k.�Z1p0 /kŒI �
D k�If k.�Z1p0 /k

; kf k
.� zZ1p0 /kŒI �

D k�If k.�Z1p0 /k
:

Accordingly, we define

kGk
�X1

k
ŒI � D kGkL2 PH�1=2ŒI �CkGkL9=5 PH�4=9ŒI �Ck�IPGk.�Z1p0 /k

; kAkX1
k
ŒI � D k�Ak�X1

k
ŒI �;

and similarly for � zX1ŒI � and zX1ŒI �.
The advantage of this definition is clear: We may thus use a common extension procedure (namely,

by homogeneous waves) for S1 and X1. The price we pay is that in estimating the �Z1p0- and the
� zZ1p0-norms, we need to carefully absorb the sharp time cutoff �I .

4A4. Sources of smallness: divisibility, energy dispersion and short time interval. In this work, we rely
on several sources of smallness for analysis of caloric Yang–Mills waves.

One important source of smallness is divisibility, which refers to the property of a norm on an
interval that it can be made arbitrarily small by splitting the interval into a controlled number of pieces.
Unfortunately, our main function space S1ŒI � is far from satisfying such a property (see, however,
Theorem 5.1(6) below), which causes considerable difficulty. Our workaround, as in [Oh and Tataru
2018], is to utilize a weaker yet divisible norm

kukDS1ŒI � D kjDj
� 5
6rukL2L6ŒI �CkrukStr0ŒI �Ck�ukL2 PH�1=2ŒI �: (4-15)

Another important source of smallness is energy dispersion:

Definition 4.8. Given anym2Z, we define the energy dispersion below scale 2�m (or above frequency 2m)
of u of orders 0 and 1 to be, respectively,

kukED�mŒI � WD sup
k2Z

2�ı2.m�k/C2�2kkPkukL1L1ŒI �; (4-16)

kukED1�mŒI �
WD sup

k2Z

2�ı2.m�k/C2�2kkrPkukL1L1ŒI �: (4-17)

The quantity k � kED�mŒI � (resp. k � kED1�mŒI �
) is used at the level of the curvature F (resp. the connec-

tion A). As we work mostly at the level of the connection, unless stated otherwise, by energy dispersion
we usually refer to the order-1 case.

Clearly, ED1�mŒI � fails to be useful at frequencies below O.2m/. In this regime, we exploit instead the
length jI j of the time interval as a source of smallness. Due to the scaling property of �, we must require
2mjI j to be sufficiently small. To conveniently pack together the previous two concepts, we introduce the
notion of an .";M/-energy-dispersed function on an interval.

Definition 4.9 (.";M/-energy-dispersed function on an interval). Let I be a time interval, and let
u 2 S1ŒI �. We will say that the pair .u; I / is .";M/-energy-dispersed if there exists some m 2 Z and
M > 0 such that the following properties hold:
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� (S1-norm bound)
kukS1ŒI � �M: (4-18)

� (small energy dispersion)
kukED1�mŒI �

� "M: (4-19)

� (high-modulation bound)
k�uk

L2 PH�1=2ŒI �
� "M: (4-20)

� (short time interval) jI j � "2�m.

Observe (by interpolation) that if .u; I / is .";M/-energy-dispersed, then

sup
k

kPkukStr1ŒI � � C"
ı1M: (4-21)

Finally, we state a proposition showing how the norms DS1ŒI � and ED1�mŒI � behave under the
extension procedure described above. Given an interval I, we denote by �kI a generalized cutoff function
adapted to the scale 2�k:

�kI .t/D .1C 2
k dist.t; I //�N; (4-22)

where N is a sufficiently large number. Let us recall [Oh and Tataru 2018, Proposition 3.4]:5

Proposition 4.10. Let k 2 Z, � � 0 and I be a time interval such that jI j � 2�k��. Consider a function
uI on I localized at frequency 2k, and denote by uext

I its extension outside I as homogeneous waves. Then
we have

2�kk�kIru
ext
I kLqLr .N 2

C�.kuIkLqLr ŒI �C 2
. 1
2
� 1
q
� 4
r
/
k�uIkL2L2ŒI �/; (4-23)

2�2kk�kIru
ext
I kL1L1 .N 2

�2k
kruIkL1L1ŒI �; (4-24)

where .q; r/ is any pair of admissible Strichartz exponents on R1C4.

Remark 4.11. Since 2�kŒ�kI ;r� D 2
�k.r�kI / is simply multiplication by another generalized cutoff

function adapted to the frequency scale 2k, the conclusions of Proposition 4.10 also hold with �kI 2
�kruext

I

replaced by 2�kr.�kIu
ext
I / on the left-hand sides.

4B. Estimates for quadratic nonlinearities. Here we state estimates for the quadratic nonlinearities in
Theorems 3.5 and 3.6. All estimates stated here are proved in Section 8C.

Throughout this and the next subsections, we will denote by A a g-valued spatial 1-form AD Aj dx
j

on I � R4 for some time interval I. To denote a g-valued space-time 1-form, we use the notation
At;x DA˛ dx

˛. We will use B (resp. Bt;x) to denote6 another g-valued spatial (resp. space-time) 1-form
on I �R4. Unless otherwise stated, all frequency envelopes will be assumed to be ı3-admissible.

5To be pedantic, [Oh and Tataru 2018, Proposition 3.4] only corresponds to the case �D 0. However, the required modification
of the proof is straightforward.

6Note that this convention is different from [Oh and Tataru 2017b] and Section 3, where B was reserved for caloric
gauge-linearized Yang–Mills heat flows.
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We begin with the quadratic nonlinearities in the equations for A0, @tA0 and @`A`. We introduce the
notation

M2
0.A;B/D ŒA`; @tB

`�; (4-25)

DM2
0.A;B/D�2Q.@tA; @tB/: (4-26)

These are the main quadratic nonlinearities in the �A0 and �@tA0 equations, respectively. The estimates
that we need for these nonlinearities are as follows.

Proposition 4.12. We have the fixed-time bounds

kjDj�1M2
0.A;B/.t/kL2

cd
. kA.t/k PH1

c
k@tB.t/kL2

d
; (4-27)

kjDj�2DM2
0.A;B/.t/kL2

cd
. k@tA.t/kL2ck@tB.t/kL2d ; (4-28)

and the space-time bounds

kjDj�1M2
0.A;B/kYcd ŒI � . kAkS1c ŒI �kBkS1d ŒI �; (4-29)

kjDj�1M2
0.A;B/kL2 PH1=2

cd
ŒI �
CkjDj�2DM2

0.A;B/kL2 PH1=2

cd
ŒI �
. kAkStr1cŒI �

kBkStr1
d
ŒI �: (4-30)

Moreover, for any � > 0, the nonlinearity M2
0.A;B/ admits the splitting

M2
0.A;B/DM�;2

0;small.A;B/CM�;2
0;large.A;B/;

where the small part obeys the improved bound

kjDj�1M�;2
0;small.A;B/kYcd ŒI � . 2

�ı2�kAkS1c ŒI �kBkS1d ŒI �
; (4-31)

and the large part is bounded by divisible norms of A and B:

kjDj�1M�;2
0;large.A;B/kYcd ŒI � . 2

C�
kAkDS1c ŒI �kBkDS1d ŒI �

: (4-32)

Finally, if either
kAkS1c ŒI � � 1 and .B; I / is .";M/-energy-dispersed, or

kBkS1c ŒI � � 1 and .A; I / is .";M/-energy-dispersed,

then we have

kjDj�1M2
0.A;B/kYcŒI � . "

ı2M; (4-33)

kjDj�2DM2
0.A;B/kL2 PH1=2

c ŒI �
. "ı2M: (4-34)

The remaining quadratic nonlinearities in the equations for A0 and @`A` involve Q, and they obey
simpler estimates.

Proposition 4.13. For � D 0 or 1, we have the fixed-time bound

kjDj��Q.A; @�t B/.t/kL2
cd
. kA.t/k PH1

c
k@�t B.t/k PH1��

d

(4-35)
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and the space-time bounds

kjDj��Q.A; @�t B/kL2 PH1=2

cd
ŒI �
. kAkStr1cŒI �

kBkStr1
d
ŒI �; (4-36)

kjDj��Q.A; @�t B/kYcd ŒI �CkjDj
���1Q.A; @�t B/kL1L1cd ŒI �

. kAkDS1c ŒI �kBkDS1d ŒI �: (4-37)

Finally, if either
kAkS1c ŒI � � 1 and .B; I / is .";M/-energy-dispersed, or

kBkS1c ŒI � � 1 and .A; I / is .";M/-energy-dispersed,

then

kjDj��Q.A; @�t B/kYcŒI � . "
ı2M: (4-38)

Also for the quadratic part A2
0 of A0, given by

A2
0.A;A/D�

�1.ŒA; @tA�/C 2Q.A; @tA/;

we have the following additional property, which will be used in the proof of Theorem 1.18:

Proposition 4.14. For the quadratic form A2
0 we have

kjDj2A2
0.A;B/k.L2xL1t /cd ŒI �

. krAkSsqc krBkSsqd : (4-39)

For the quadratic nonlinearity in the �AAj equation, we introduce the notation

PjM2.A;B/DPj ŒA`; @xB
`�;

P?j M2.A;B/D 2��1@jQ.@˛A; @˛A/;

so that (3-12) becomes

�AAj DPjM.A;A/CP?j M.A;A/CRj .A; @tA/:

Proposition 4.15. We have the fixed-time bounds

kPM2.A;B/.t/k PH�1
cd

. kA.t/k PH1
c
kB.t/k PH1

d

; (4-40)

kP?M2.A;B/.t/k PH�1
cd

. krA.t/kL2ckrB.t/kL2d ; (4-41)

and space-time bounds

kPM2.A;B/k.N\�X1/cd ŒI � . kAkS1c ŒI �kBkS1d ŒI �; (4-42)

kP?M2.A;B/k.N\�X1/cd ŒI � . kAkS1c ŒI �kBkS1d ŒI �: (4-43)

In particular, the L2 PH�1=2-norms are bounded by the Str1-norms of A and B:

kPM2.A;B/k
L2 PH

�1=2

cd
ŒI �
. kAkStr1cŒI �

kBkStr1
d
ŒI �; (4-44)

kP?M2.A;B/k
L2 PH

�1=2

cd
ŒI �
. kAkStr1cŒI �

kBkStr1
d
ŒI �: (4-45)
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Moreover, for any � > 0, the terms PjM2.A;B/ and P?j M2.A;B/ admit the splittings

PjM2.A;B/DPjM�;2
small.A;B/CPjM�;2

large.A;B/;

P?j M2.A;B/DP?j M�;2
small.A;B/CP?j M�;2

large.A;B/;

so that the N -norms of the small parts obey the improved bounds

kPM�;2
small.A;B/kNcd ŒI � . 2

�ı2�kAkS1c ŒI �kBkS1d ŒI �
; (4-46)

kP?M�;2
small.A;B/kNcd ŒI � . 2

�ı2�kAkS1c ŒI �kBkS1d ŒI �
; (4-47)

and those of the large parts are bounded by divisible norms of A and B:

kPM�;2
large.A;B/kNcd ŒI � . 2

C�
kAkDS1c ŒI �kBkDS1d ŒI �

; (4-48)

kP?M�;2
large.A;B/kNcd ŒI � . 2

C�
kAkDS1c ŒI �kBkDS1d ŒI �

: (4-49)

Finally, if either
kAkS1cŒI � � 1 and .B; I / is .";M/-energy-dispersed, or

kBkS1cŒI � � 1 and .A; I / is .";M/-energy-dispersed,

then

kPM2.A;B/k
.N\L2 PH�1=2/cŒI �

. "ı2M; (4-50)

kP?M2.A;B/k
.N\L2 PH�1=2/cŒI �

. "ı2M: (4-51)

We end this subsection with bilinear estimates for w20 and w2x , which arise in the equation for a dynamic
Yang–Mills heat flow of a caloric Yang–Mills wave.

Proposition 4.16. For any s > 0, we have the fixed-time bound

kjDj�1Pkw20.A;B; s/.t/kL2 . h2
2ksi�10h2�2ks�1i�ı2ckdkk@tA.t/kL2ckB.t/k PH1

d

(4-52)

and the space-time bounds

kjDj�1Pkw20.A;B; s/kL2 PH1=2ŒI �
. h22ksi�10h2�2ks�1i�ı2ckdkkAkStr1cŒI �

kBkStr1
d
ŒI �; (4-53)

kjDj�1Pkw20.A;B; s/kY ŒI � . h2
2ksi�10h2�2ks�1i�ı2ckdkkAkS1c ŒI �kBkS1d ŒI �

: (4-54)

Moreover, if .B; I / is .";M/-energy-dispersed, then

kjDj�1Pkw20.A;B; s/kY ŒI � . "
ı2h22ksi�10h2�2ks�1i�ı2ckkAkS1c ŒI �M: (4-55)

Proposition 4.17. For any s > 0, we have the fixed-time bound

kPkPw2x.A;B; s/.t/k PH�1 . h2
2ksi�10h2�2ks�1i�ı2ckdkkrA.t/kL2ckrB.t/kL2d

(4-56)
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and the space-time bounds

kPkPw2x.A;B; s/kL2 PH�1=2ŒI �

. h22ksi�10h2�2ks�1i�ı2ckdkk.rA;rP?A/k
.Str0�L2 PH1=2/cŒI �

kBkStr1
d
ŒI �; (4-57)

kPkPw2x.A;B; s/kN\�X1ŒI �

. h22ksi�10h2�2ks�1i�ı2ckdkk.A;P?A/k.S1�Y 1/cŒI �kBkS1d ŒI �: (4-58)

Moreover, if .B; I / is .";M/-energy-dispersed, then

kPkPw2x.A;B; s/kN\L2 PH�1=2ŒI �

. h22ksi�10h2�2ks�1i�ı2ck."ı2kAkS1cŒI �CkrP?Ak
L2 PH

1=2
c ŒI �

/M: (4-59)

4C. Estimates for the covariant wave operator. We now state estimates concerning the covariant wave
operator �A. All estimates stated here without proofs are proved in Section 8C, with the exceptions of
Theorem 4.24 and Proposition 4.25, which are proved in Section 9.

We begin by expanding �AB to

�AB D�BC 2ŒA˛; @˛B�C Œ@˛A˛; B�C ŒA˛; ŒA˛; B��:

We have the following simple fixed-time estimates for �A��.

Proposition 4.18. For any ˛; ˇ; 
 2 f0; 1; : : : ; 4g, we have the fixed-time bounds

kŒA˛; @
˛B�.t/k PH�1

cd

. k.A0; A/.t/k PH1
c
krB.t/kL2

d
; (4-60)

kŒ@˛A˛; B�.t/k PH�1
cd

. .kA.t/k PH1
c
Ck@tA0.t/kL2c /kB.t/k PH1

d

; (4-61)

kŒA.1/˛ ; ŒA.2/˛; B��.t/k PH�1
cde

. k.A.1/0 ; A.1//.t/k PH1
c
k.A

.2/
0 ; A.2//.t/k PH1

d

kB.t/k PH1
e

(4-62)

and the space-time bounds

kŒA`; @
`B�k

L2 PH
�1=2

cd
ŒI �
. kAkStr1cŒI �

kBkStr1
d
ŒI �; (4-63)

kŒA0; @0B�kL2 PH�1=2
cd

ŒI �
. krA0kL2 PH1=2

c ŒI �
kBkStr1

d
ŒI �; (4-64)

kŒ@˛A˛; B�kL2 PH�1=2
cd

ŒI �
. k.rA0;rP?A/k

L2 PH
1=2
c ŒI �

kBkStr1
d
ŒI �; (4-65)

kŒA.1/˛ ; ŒA.2/˛; B��.t/k
L2 PH

�1=2

cde
ŒI �
. k.rA.1/0 ;rA.1//.t/k

L2 PH1=2�Str0cŒI �

�k.rA
.2/
0 ;rA.2//.t/k

L2 PH1=2�Str0cŒI �
kBkStr1eŒI �

: (4-66)

In order to proceed, we recall the notation P˛AD .PA/˛ for a space-time 1-form At;x:

P˛AD

�
PjAx; ˛ D j 2 f1; : : : ; 4g;

A0; ˛ D 0:

We also write P?˛ AD .P
?A/˛ D A˛ �P˛A.
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Given a parameter � 2 N, we furthermore decompose 2ŒA˛; @˛B� so that

�AB D�BC 2ŒA˛; @˛B�CRem3AB

D�BCDiff �PABCDiff �
P?A

BCRem�;2A BCRem3AB;
(4-67)

where7

Diff �PA D
X
k

2ŒP<k��P˛A; @
˛PkB�; (4-68)

Diff �
P?A

D

X
k

2ŒP<k��P
?
˛ A; @

˛PkB�; (4-69)

Rem�;2A D
X
k

2ŒP�k��A˛; @
˛PkB�; (4-70)

Rem3AB D Œ@
˛A˛; B�C ŒA

˛; ŒA˛; B��: (4-71)

We now turn to the bounds for each part of the decomposition (4-67). For a fixed B 2 S1ŒI �, we
introduce the nonlinear maps

Rem3.A/B D�ŒDA0.A/; B�C ŒDA.A/; B�� ŒA0.A/; ŒA0.A/; B��C ŒA
`; ŒA`; B��; (4-72)

Rem3s .A/B D�ŒDA0Is.A/; B�� ŒA0Is.A/; ŒA0Is.A/; B��; (4-73)

defined for spatial connections A on I such that .A; @tA/.t/ 2 T L
2C for each fixed time t 2 I. In view

of Theorems 3.5 and 3.6, for a caloric Yang–Mills wave A we have

Rem3AB D Rem3.A/B;

Rem3A.s/B D Rem3.A.s//BCRem3s .A/B:

The nonlinear maps Rem3.A/B and Rem3s .A/B are well-behaved:

Proposition 4.19. Suppose thatA.t/2 CQ for every t 2 I. Then the following properties hold with bounds
depending on Q, but otherwise independent of I :

� Let c and d be .�ı2; S/-frequency envelopes for A and B in Str1ŒI �, respectively. Then

kPk.Rem3.A/B/k
L1L2\L2 PH�1=2ŒI �

.Q;kAkStr1ŒI�
.c
Œı2�

k
/2dkC ckc

Œı2�

k
d
Œı2�

k
: (4-74)

� For a fixed A2 Str1ŒI �, Rem3.A/B is linear in B . On the other hand, for a fixed B with kBkStr1ŒI �� 1,
Rem3. � /B W Str1ŒI �! L1L2\L2 PH�1=2ŒI � is Lipschitz envelope-preserving.

� For a fixed A 2 Str1ŒI �, Rem3s .A/B is linear in B . On the other hand, for a fixed B 2 S1ŒI � with
kBkStr1ŒI � � 1, Rem3s .A/B is a Lipschitz map

Rem3s .A/B W Str1ŒI �! L1L2\L2 PH�
1
2 ŒI � (4-75)

7Although the definition depends on the whole space-time connection At;x , we deviate from our convention and simply write
Diff �

PA
, Diff �

P?A
, Rem�;2

A
etc. to avoid cluttered notation.
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with output concentrated at frequency s�1=2,

.1� s�/NRem3s .A/B W Str1ŒI �! 2�ı2k.s/L1 PH�ı2 \L2 PH�
1
2
�ı2 ŒI �: (4-76)

Next, we consider the term

2ŒA˛; @
˛B�D Diff �PABCDiff�

P?A
BCRem�;2A B:

We begin with Rem�;2A B , which obeys analogous bounds as PM2.A;B/ and P?M2.A;B/ (see
Proposition 4.15).

Proposition 4.20. For any � > 0, the term Rem�;2A B obeys the bound

kRem�;2A Bk.N\�X1/cd ŒI � . 2
C�.kAkS1c ŒI �Ck.P

?A;A0/kY 1c ŒI �/kBkS1d ŒI �
: (4-77)

In particular, its L2 PH�1=2-norm is bounded by

kRem�;2A Bk
L2 PH

�1=2

cd
ŒI �
. .kAkStr1cŒI �

Ck.rP?A;rA0/k.L2 PH1=2/cŒI �
/kBkStr1

d
ŒI �: (4-78)

Furthermore, Rem�;2A B admits the splitting

Rem�;2A B D Rem�;2A;smallBCRem�;2A;largeB

so that the N -norm of the small part obeys the improved bound

kRem�;2A;smallBkNcd ŒI � . 2
�ı2�kAkS1c ŒI �kBkS1d ŒI �

; (4-79)

and that of the large part is bounded by a divisible norm of .A0; A/:

kRem�;2A;largeBkNcd ŒI � . 2
C�.kAkDS1c ŒI �Ck.rP?A;rA0/k.L2 PH1=2/cŒI �

/kBkS1
d
ŒI �: (4-80)

Finally, if .B; I / is .";M/-energy-dispersed, then

kRem�;2A Bk
.N\L2 PH�1=2/cŒI �

. .2�ı2� C 2C�"ı2/kAkS1cŒI �M C 2
C�
k.rP?A;rA0/k.L2 PH1=2/cŒI �

M: (4-81)

It remains to consider the paradifferential terms. The term Diff �
P?A

B can be handled using the
following estimate, in combination with (3-22) and Proposition 4.12:

Proposition 4.21. For any � > 0, we have

kDiff�
P?A

Bk.X�1=2Cb1;�b1\�X1/cd ŒI � . kP
?AkY 1c ŒI �kBkS1d ŒI �

: (4-82)

Moreover, we have
kDiff�

P?A
BkL1L2

f
ŒI � . kP

?AkL1L1a ŒI �kBkS1e ŒI �; (4-83)

where

fk D

� X
k0<k��

ak0

�
ek :
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The only remaining term is the paradifferential term Diff �PAB . We first state the high-modulation
bounds.

Proposition 4.22. For any � > 0, consider the splitting Diff �PA D Diff �A0 CDiff �PxA, where

Diff �A0B D�
X
k

2ŒP<k��A0; @tPkB�; Diff �PxAB D
X
k

2ŒP<k��P`A; @
`PkB�:

For DiffA0B , we have the bound

kDiff �A0Bk.X�1=2Cb1;�b1\�X1/cd ŒI � . kA0kY 1c ŒI �kBkS1d ŒI �: (4-84)

On the other hand, for DiffPxAB , we have the bounds

kDiff �PxABk.� zX1/cd ŒI � . kAxkS1c ŒI �kBkS1d ŒI �; (4-85)

kDiff �PxABk.�X1/cd ŒI � . kAxk.S1\ zX1/cŒI �kBkS1d ŒI �; (4-86)

kDiff �PxABk.X�1=2Cb1;�b1 /cd ŒI � . kAxk.S1\X1/cŒI �kBkS1d ŒI �: (4-87)

Next, we consider the N \L2 PH 1=2 norm of DiffPAB . The contribution of each Littlewood–Paley
projection Pk0PA is perturbative, as the following proposition states:

Proposition 4.23. Let At;x be a caloric Yang–Mills wave on an interval I obeying

kAkS1ŒI � �M: (4-88)

Then for any � > 0 and k0 2 Z, we have

kDiff�Pk0PABk.N\L2 PH�1=2/d ŒI �
.M kBkS1

d
ŒI �: (4-89)

However, we cannot sum up in k0. The proper way to handle Diff �PA is not to regard it as a perturbative
nonlinearity, but rather as a part of the underlying linear operator. Indeed, for the operator �CDiff �PA,
we have the following well-posedness result:

Theorem 4.24. Let At;x be a caloric Yang–Mills wave on an interval I obeying (4-88). Consider the
following initial value problem on I �R4:�

�BCDiff �PAB DG;
.B; @tB/.t0/D .B0; B1/;

(4-90)

for some g-valued spatial 1-form G 2N \L2 PH�1=2ŒI �, .B0; B1/ 2 PH 1 �L2 and t0 2 I.
Then for � � �1.M/, where �1.M/� 1 is some function independent of At;x , there exists a unique

solution B 2 S1ŒI � to (4-90). Moreover, for any admissible frequency envelope c, the solution obeys the
bound

kBkS1c ŒI � .M k.B0; B1/k. PH1�L2/c
CkGk

.N\L2 PH�1=2/cŒI �
: (4-91)

As a quick corollary of Propositions 4.19–4.20 and Theorem 4.24, we obtain well-posedness of the
initial value problem associated to �A; see Theorem 5.1(1) below.
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Theorem 4.24 is proved in Sections 9, 10 and 11. The main ingredient for the proof is construction of
a parametrix for �CDiff �PA by renormalization with a pseudodifferential gauge transformation; for a
more detailed discussion, see Section 9.

The paradifferential wave equation (4-90) leads to the following weak divisibility property of the S1

norm, which will later play an important role in the energy induction argument.

Proposition 4.25. Let At;x be a caloric Yang–Mills wave on an interval I which obeys (4-88) for some
M > 0. Let B 2 S1ŒI � be a solution to the paradifferential wave equation (4-90) with the source
G 2N \L2 PH�1=2ŒI �, which obeys the bound

sup
t2I

k.B; @tB/.t/kL2 �E (4-92)

for some E > 0. Then there exists a partition I D
S
i2I Ii such that

kBkS1ŒIi � .E 1 for i 2 I; (4-93)

where
#I .E;M;kBk

S1ŒI�
;kGk

N\L2 PH�1=2ŒI�
1:

The proof of this proposition also involves the parametrix construction (see Sections 9, 10 and 11), as
well as Proposition 4.23.

We now state additional estimates satisfied by Diff �PA, which are needed to analyze the difference
of two solutions (or even approximate solutions). For this purpose, it is necessary to exploit the so-
called secondary null structure of the Yang–Mills equation, which becomes available after reiterating the
equations for PA.

We begin with simple bilinear estimates, which allow us to peel off the nonessential parts (in particular,
the contribution of the cubic and higher-order nonlinearities) of A0 and PA.

Proposition 4.26. We have

kDiff �A0Bk.N\L2 PH�1=2/f ŒI � . kA0k.L1L1\L2 PH3=2/aŒI �
kBkS1e ŒI �; (4-94)

kDiff �PxABk.N\L2 PH�1=2/f ŒI � . .kPAŒt0�k. PH1�L2/a
Ck�PAkL1L2aŒI �/kBkS1e ŒI �; (4-95)

where

fk D

� X
k0<k��

ak0

�
ek :

The contribution of the quadratic nonlinearities M2
0 and M2 in the equations for A0 and Ax , respec-

tively, cannot be treated separately. This is precisely where we exploit the secondary null structure, which
only manifests itself after combining the contribution of these nonlinearities in Diff �PA.

Proposition 4.27. Let

�A0 D ŒB
.1/`; @tB

.2/

`
�; (4-96)

�PADP ŒB.1/`; @xB
.2/

`
�; PAŒt0�D 0; (4-97)
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where B.1/; B.2/ 2 S1ŒI �. Then we have

kDiff �PABk.N\L2 PH�1=2/f ŒI � . zM kB
.1/
kS1c ŒI �

kB.2/kS1
d
ŒI �kBkS1e ŒI �; (4-98)

where

fk D

� X
k0<k��

ck0dk0

�
ek :

Next, we turn to the contribution of terms of the form ŒA˛; @
˛A� in the equation for PxA. The frequency

envelope bound for this term is slightly involved, because it does not obey a good N -norm estimate.

Proposition 4.28. Let A0 D 0 and

�PAj D

NX
nD1

P ŒBn.1/˛ ; @˛B
n.2/
j �; PAŒt0�D 0; (4-99)

where

kBn.1/kS1
cn
ŒI �Ck.B

n.1/
0 ;P?Bn.1//kY 1

cn
ŒI � � 1; kB

n.2/
kS1
dn
ŒI � � 1: (4-100)

Assume furthermore that

kPAkS1a ŒI � � 1; kBkS1e ŒI � � 1: (4-101)

Then we have

kDiff �PxABk.N\L2 PH�1=2/f ŒI � . 1; (4-102)

where

fk D

� X
k0<k��

.ak0 C

NX
nD1

cnk0d
n
k0/

�
ek :

Next, we state a trilinear estimate for Diff �PA in the presence of w2�which is analogous to Proposition 4.27.
This is needed for analyzing the dynamic Yang–Mills heat flow of a caloric Yang–Mills wave.

Proposition 4.29. Let

�A0 Dw20.B
.1/; B.2/; s/; (4-103)

�PADPw2x.B
.1/; B.2/; s/; PAŒt0�D 0; (4-104)

where B.1/ 2 S1ŒI �, P?B.1/ 2 Y 1ŒI � and B.2/ 2 S1ŒI �. Then we have

kDiff �PABk.N\L2 PH�1=2/f ŒI � . zM .kB.1/kS1c ŒI �CkP
?B.1/kY 1c ŒI �/kB

.2/
kS1
d
ŒI �kBkS1e ŒI �; (4-105)

where

fk D

� X
k0<k��

hs22k
0

i
�10
hs�12�2k

0

i
�ı2ck0dk0

�
ek :

Finally, we end this subsection with auxiliary estimates for Diff �PA, which are needed to justify
approximate linear energy conservation for the paradifferential wave equation.
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Proposition 4.30. Let � � 10. We have

kjDj�1Œr;Diff �PA�BkNcd . 2
�ı2�.kPAxkS1c ŒI �CkDA0kL2 PH1=2

c ŒI �
/kBkS1

d
ŒI �: (4-106)

Moreover, consider the L2-adjoint of Diff �PA, which is given by

.Diff �PA/
�B D

X
k

Pk@
˛ŒP˛A<k�� ; B�:

Then we have

k.Diff �PA/
�B �Diff �PABkNcd ŒI � . 2

�ı2�.kPAxkS1c ŒI �CkDA0kL2 PH1=2
c ŒI �

/kBkS1
d
ŒI �: (4-107)

5. Structure of caloric Yang–Mills waves

In this section, we use the results stated in Section 4 to study properties of subthreshold caloric Yang–Mills
waves satisfying an a priori S1-norm bound on an interval.

5A. Structure of a caloric Yang–Mills wave with finite S 1-norm. The following theorem provides
detailed properties of a caloric Yang–Mills wave with finite S1-norm. It will be useful for the proof of
the key regularity result (Theorem 6.1), as well as the main results stated in Section 1C.

For a regular solution to the Yang–Mills equation in the caloric gauge, we have seen in Theorem 3.5 that
(3-12), (3-13), (3-14) and (3-15) are satisfied. More generally, we say that a one-parameter family A.t/
.t 2 I / of connections in C (which is quite rough in general) solves the Yang–Mills equation in the caloric
gauge, or in short that A is a caloric Yang–Mills wave if .A; @tA/ 2 L1.I IT L

2C/ and satisfies (3-12),
(3-13), (3-14) and (3-15).

Theorem 5.1. Let A be a caloric Yang–Mills wave on a time interval I with energy E obeying

A.t/ 2 CQ for all t 2 I; (5-1)

kAkS1ŒI � �M (5-2)

for some 0 < Q;M <1. Let c be a ı5-frequency envelope for the initial data .A; @tA/.t0/ .t0 2 I / in
PH 1 �L2. Then the following properties hold:

(1) (linear well-posedness for�A) The initial value problem for the linear equation

�AuD f (5-3)
is well-posed. Moreover,

kukS1
d
ŒI � .M;Q k.u; @tu/.t0/k. PH1�L2/d

Ckf k
.N\L2 PH�1=2/d ŒI �

(5-4)

for any ı5-frequency envelope d .

(2) (frequency envelope bound)

kAkS1c ŒI �Ck�AAk.N\L2 PH�1=2/c2 ŒI � .M;Q 1: (5-5)

(3) (elliptic component bounds)

kA0kY 1
c2
ŒI �CkP

?AkY 1
c2
ŒI � .M;Q 1: (5-6)
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(4) (high modulation bounds)

k�Ak
�X1

c2
ŒI �Ck�AkX�1=2Cb1;�b1

c2
ŒI �
.M;Q 1: (5-7)

(5) (paradifferential formulation) For any � � 10,

k�ACDiff �PAAk.N\L2 PH�1=2/
c2
ŒI �
.M;Q 2C� : (5-8)

(6) (weak divisibility) There exists a partition I D
S
i2I Ii so that #I .M;Q 1 and

kAkS1ŒIi � .E 1: (5-9)

(7) (persistence of regularity) If .A; @tA/.t0/ 2 PHN � PHN�1 .N � 1/, then A 2 SN \ S1ŒI � and
A0 2 Y

N \Y 1ŒI �. Moreover,

kAkSN\S1ŒI �CkA0kYN\Y 1ŒI � .M;Q;N k.A; @tA/.t0/k. PHN� PHN�1/\. PH1�L2/
: (5-10)

For the subsequent properties, let QA be another caloric Yang–Mills wave on I obeying the same conditions
(5-1) and (5-2).

(8) (weak Lipschitz dependence on data) For � < 1 sufficiently close to 1, we have

kA� QAkS� ŒI � .M;Q k.A� QA; @t .A� @t QA//.t0/k PH�� PH��1 : (5-11)

(9) (elliptic component bound for the transport equation)

kA0k.jDj�2L2xL1t /c2 ŒI �
.M;Q 1: (5-12)

Moreover, if dk is a ı5-frequency envelope for A� QA in S1ŒI �, then

kA0� QA0k.jDj�2L2xL1t /ceŒI �
.M;Q 1; (5-13)

where ek D ckC ck.c � d/�k .

Remark 5.2. The frequency envelope bound (5-5) implies a uniform-in-time positive lower bound on the
energy concentration scale rc ; see Lemma 7.8 below. As a consequence, once Theorem 1.13 is proved,
finiteness of the S1-norm would imply that solution can be continued past finite endpoints of I (we note,
however, that Theorem 5.1 will be used in the proof of Theorem 1.13).

Remark 5.3. The combination of (1), (2) and the divisibility of the norm N \ L2 PH�1=2ŒI � (see
Proposition 4.6) show that a finite S1-norm Yang–Mills wave on I exhibits some modified scattering
behavior, i.e., that each Aj tends to a homogeneous solution to the equation �AuD 0 towards infinite
endpoints of I.

We start by establishing some weaker derived bounds.

Proposition 5.4. Let A be a caloric Yang–Mills wave on a time interval I, which obeys A.t/ 2 CQ for all
t 2 I and kAkS1ŒI � �M. Let c be a Cı5-frequency envelope for A in S1ŒI �, i.e., kAkS1c ŒI � � 1.
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(1) The following derived bounds for At;x hold:

kA0kY 1
c2
ŒI �CkP

?AkY 1
c2
ŒI � .M;Q 1; (5-14)

k�Ak
�X1

c2
ŒI �Ck�AkX�1=2Cb1;�b1

c2
ŒI �
.M;Q 1: (5-15)

(2) Let QA be another caloric Yang–Mills wave on I that also obeys k QAkS1ŒI � � M. Let d be a ı5-
frequency envelope for the difference A� QA in S1ŒI �; i.e., kA� QAkS1

d
ŒI � � 1. Then we have

kA0� QA0kY 1e ŒI �CkP
?A�P? QAkY 1e ŒI � .M;Q 1; (5-16)

k�.A� QA/k
�X1eŒI �

Ck�.A� QA/k
X
�1=2Cb1;�b1
e ŒI �

.M;Q 1; (5-17)

where ek D dkC ck.c � d/�k .

As a quick consequence of Proposition 5.4, we see that any caloric Yang–Mills wave A with A.t/ 2 CQ
for all t 2 I and kAkS1ŒI � �M obeys

kAkS1ŒI � .M;Q 1:

Remark 5.5. The reason why we state these weaker bounds as a separate proposition is for logical
clarity. As will be evident, the proof of Proposition 5.4 depends only on Propositions 4.12–4.22. In
fact, after these propositions are established in Section 8, Proposition 5.4 will be used in the proofs of
Proposition 4.23, Theorem 4.24 and Proposition 4.25 in Sections 8 and 9.

Proof of Proposition 5.4. Since A is a caloric Yang–Mills wave, Theorem 3.5 determines A0, @0A0 and
P?j AD�

�1@j @
`A` in terms of A. To derive the equation for @tP?A, we first compute

@tP
?AD @t

@x@
`

�
A` D�

�1@x@
`.F0`C @`A0C ŒA`; A0�/

D��1@x.D
`F0`C�A0C @

`ŒA`; A0�� ŒA
`; F0`�/:

By the constraint equation, we have D`F0` D 0. Expanding F0` in terms of At;x , we arrive at

@tP
?
j AD @jA0C�

�1@j .@
`ŒA`; A0�� ŒA

`; @tA`�C ŒA
`; @`A0�� ŒA

`; ŒA0; A`��/: (5-18)

The rest of the proof consists of combining Theorem 3.5 with Propositions 4.12, 4.13 and 4.22 in the
right order. We first sketch the proof of the nondifference bounds (5-14)–(5-15). We begin by verifying that

kjDjA0kY
c2
ŒI �CkjDjP

?AkY
c2
ŒI � .M;Q 1:

Indeed, by the mapping properties in Theorem 3.5 and the embeddings

L1 PH 1
\L2 PH

1
2 � Y;

the contributions of A3
0 in A0 and DA3 in P?A are handled easily. For the quadratic nonlinearities, we

apply (4-29) for A0, (4-37) with � D 0 for P?A and � D 1 for A0.
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Next, we show that

k@tA0kL2 PH1=2

c2
ŒI �
Ck@tP

?Ak
L2 PH

1=2

c2
ŒI �
.M;Q 1:

For @tA0, we use Theorem 3.5 for DA3
0 and (4-30) for the quadratic nonlinearity. For @tP?A, we

estimate the right-hand side of (5-18), where we use the Y ŒI �-norm bound for A0 that was just established.
We now consider �A. We first prove the weaker bound

k�Ak
� zX1

c2
ŒI �
.M;Q 1: (5-19)

By the mapping properties in Theorem 3.5 and the embeddings

L1L2\L2 PH�
1
2 ��X1\X�

1
2
Cb1;�b1 �� zX1

the contribution of Rj is acceptable in both cases. For the quadratic nonlinearities PM2CP?M2, and
the contribution of �A��AA, we apply (4-42), (4-43), (4-74), (4-77), (4-84) and (4-85); note that we
need to use (5-14) in both (4-77) and (4-84).

We are ready to prove (5-17). The desired estimate for the �X1ŒI �-norm follows by repeating
the preceding argument with (4-85) replaced by (4-86), and using (5-19). On the other hand, for the
�X�1=2Cb1;�b1 ŒI �-norm, we replace (4-85) by (4-87) instead, and use the �X1ŒI �-norm bound that we
have just proved.

Finally, the proof of the difference bounds (5-16)–(5-17) proceeds similarly, taking the difference of
each of the equations (3-12)–(3-15). We leave the details to the reader. �

We now prove Theorem 5.1, using the estimates stated in Section 4.

Proof of Theorem 5.1. Throughout this proof, we omit the dependence of constants on Q.

Proof of (1): We begin with a �A decomposition which will be repeatedly used in the sequel. Given
� > 10, we write

�A D�CDiff �PA�R
�
A;

where, using the decomposition in (4-67), the remainder R�A is given by

R�A D Diff �
P?A

�Rem�;2A �Rem�;3A :

Lemma 5.6. Let J � I. Let d be a ı5-frequency envelope for u in S1ŒJ �. Then we have

kR�Auk.N\L2 PH�1=2/d ŒJ �
.M .2�ı2�kAkS1ŒJ �C 2

C�C.A; J //kukS1
d
ŒJ �; (5-20)

with

C.A; J /D kP?AkY 1ŒJ �CkP
?Ak`1L1L1ŒJ �CkAkStr1ŒJ �Ck.rP?A;rA0/kL2 PH1=2ŒJ �

: (5-21)

Proof. We successively bound the three terms in R�A as follows. For the first of them we have

kDiff �
P?A

uk
.N\L2 PH�1=2/d ŒJ �

.M .kP?AkY 1ŒJ �CkP
?Ak`1L1L1ŒJ �/kukS1

d
ŒJ �;
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using the bounds (4-82) and (4-83), and noting that the second norm of A is estimated using (4-37) for
the quadratic part and (3-22) by

kP?Ak`1L1L1ŒJ � .M 1:

For the second term in R�A in (5-22) we have

kRem�;2A uk
.N\L2 PH�1=2/d ŒJ �

.M .2�ı2�kAkS1ŒJ �C 2
C�C.A; J //kukS1

d
ŒJ �;

as a consequence of (4-78), (4-79) and (4-80).
Finally, for the third term in R�A we have

kRem�;3A uk
.N\L2 PH�1=2/d ŒJ �

.M kAkStr1ŒJ �kukS1
d
ŒJ �

due to (4-74). �

To prove (1) we rewrite (5-3) in the form

.�CDiff �PA/uD f �R
�
Au: (5-22)

The important fact is that all the A norms in C.A; J / except for S1 are divisible norms, and also
controlled by M. On the other hand the S1 norm of A has the redeeming 2�ı2� factor. To proceed we
choose � large enough,

��M;Q 1:

Then we can subdivide the interval I D
S
j2J Jk so that #J .M 1, and so that in each interval Jj we

have smallness,
kR�Auk.N\L2 PH�1=2/d ŒJj �

�M kukS1
d
ŒJj �

: (5-23)

A second consequence of our choice for � is that Theorem 4.24 applies. Then we can successively
apply Theorem 4.24 in each interval Jk , treating R�A perturbatively.

Proof of (2): The argument here is similar to the previous one. For any interval J � I and any .�ı5; N /-
frequency envelope d for A in S1ŒJ � we can use the bounds (4-44)–(4-49) and (3-21) to estimate

k�AAk.N\L2 PH�1=2/d ŒJ � .M .2�ı2�kAkS1ŒJ �C 2
C�
kAkDS1ŒJ �/kAkS1

d
ŒJ �: (5-24)

As before we use the divisibility of the DS1 norm to partition the interval I into finitely many sub-
intervals Jk , whose number depends only on M, and so that in each subinterval we have

2�ı2�kAkS1ŒJ �C 2
C�
kAkDS1ŒJ � � "�M;Q 1:

We now specialize the choice of d , choosing it to be a minimal ı5-frequency envelope for A in the
first interval J1. Applying the result in part (1) in J1 we conclude that

d .M;Q cC "d;

which by the smallness of " implies that d .M;Q c. Then we reiterate.

Proofs of (3) and (4): These follow from (5-5) and Proposition 5.4.
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Proof of (5): This is obtained by combining the bound (5-20) for J D I and uDA with the bound (5-24).

Proof of (6): In view of (5), this is a direct consequence of Proposition 4.25.

Proof of (7): We use frequency envelopes. It suffices to show that if ck is a .�ı5; S/-frequency envelope
for the initial data in the energy space then C.M/ck is a frequency envelope for A in S1 and A0 in Y 1.
We begin with a version of Lemma 5.6:

Lemma 5.7. Let J � I. Let d D d.J / be a .�ı5; S/-frequency envelope for A in S1ŒJ �. Then we have

kR�AAk.N\L2 PH�1=2/d ŒJ �
.M .2�ı2�kAkS1ŒJ �C 2

C�C.A; J //kAkS1
d
ŒJ �: (5-25)

Proof. The same argument as in the proof of (5-8) applies for the first term in R�A, as there the output
frequency and the u input frequency are the same. On the other hand for the two remaining terms, the
frequency envelope d is inherited from the highest frequency input; see Propositions 4.19, 4.20. �

Combining the bound in the lemma with (5-24) we obtain the estimate

k�ACDiff �PAAk.N\L2 PH�1=2/d ŒJ � .M .2�ı2�kAkS1ŒJ �C 2
C�C.A; J //kAkS1

d
ŒJ �: (5-26)

Now we can conclude as in the proof of (2). We first choose � large enough so that Theorem 4.24
applies, and also so that

2�ı2�kAkS1ŒI ��M 1:

Then we divide the interval I into finitely many subintervals (again, depending only on M and Q) so that
for each subinterval J we have

2C�kAkDS1ŒJ ��M 1:

Thus, for each subinterval J we have ensured that

k�ACDiff �PAAk.N\L2 PH�1=2/d ŒJ ��M kAkS1
d
ŒJ �:

Let ck be a .�ı5; S/-frequency envelope for the initial data in the energy space, Then applying
Theorem 4.24 in the first interval J1 we conclude that

kPkAkS1ŒJ1� .M;Q ckC "dk; "�M 1; (5-27)

for any .�ı5; S/-frequency envelope dk for A in S1ŒJ1�. In particular if dk is a minimal .�ı5; S/-
frequency envelope for A in S1ŒJ1� then we obtain

dk .M ckC "dk;

which leads to

dk .M;Q ck;

i.e., the desired bound in J1. We now reiterate this bound in successive intervals Jj . Finally, the Y bound
follows as in (3).
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Proof of (8): Assume 0 < 1� � � ı5. We write the equation for ıAD A� QA in the form

.�CDiff �
P QA
/ıAD F � ;

where

F � D Diff �
PA�P QA

AC .R�AA�R
�
QA
QA/C .�AA��A QA/: (5-28)

We claim that we can estimate the terms in F � as follows:

kDiff �
PA�P QA

Ak
N��1\L2 PH��1�1=2ŒJ �

.M 2�c��.kAkS1 Ck QAkS1/kıAkS� ŒJ �; (5-29)

kR�AA�R
�
QA
QAk
N��1\L2 PH��1�1=2ŒJ �

.M 2C�.C.A; J /CC. QA; J //kıAkS� ŒJ �; (5-30)

k�AA��A QAkN��1\L2 PH��1�1=2ŒJ �
.M .C.A; J /CC. QA; J //kıAkS� ŒJ �: (5-31)

We first show how to conclude the proof of (8) using (5-29), (5-30) and (5-31). As in the proofs of
(1), (2) and (7), we first choose � large enough, ��M 1. Then we use divisibility for the expressions
C.A; J / and C. QA; J / in order to divide the interval I into subintervals Jj so that on each subinterval F �

is perturbative, i.e.,

kF �k
N��1\L2 PH��1�1=2ŒJj �

�M;� kıAkS� ŒJj �:

Finally, we apply Theorem 4.24 successively on the intervals Jj ; then (8) follows.
It remains to prove the bounds (5-29), (5-30) and (5-31). The bounds (5-30) and (5-31) are the

difference counterparts of (5-25) and (5-24), respectively, and are proved in a very similar fashion. Details
are omitted. We only remark that the requirement � < 1 is not needed here, and that these bounds hold
for any ı5-admissible frequency envelope ck for ıA in S1.

We now turn our attention to the novel part of the argument, which is the bound for Diff �
PA�P QA

A. It
is here that the condition � < 1 pays a critical role. This is done in the next lemma. For later use we
state the result in a more general fashion. This will be needed again in the proof of Proposition 6.4. A
variation of the same argument will also be needed in Proposition 6.3.

Lemma 5.8. Let J � I. Let ck , dk , bk be frequency envelopes for A; QA, respectively ıA and B in S1ŒJ �.
Then the expression Diff �

PA�P QA
B can be estimated as

kDiff �
PA�P QA

Bk
.N\L2 PH�1=2/f ŒJ �

.M;Q 2�c��kıAkS�
d
ŒJ �kBkS1

b
ŒJ �; (5-32)

where fk is given by

fk D

� X
k0�k��

dk0 C ck0.c � d/�k0

�
bk : (5-33)

Before proving the lemma we show that it implies (5-29). To measure ıA in S� we can choose the
frequency envelope dk with the property that 2.��1/kdk is a .�ı; 1� � C ı/-admissible envelope with
ı < 1

2
.1� �/, ı� ı5, and so that

kıAk2S� ŒJ � �
X
k

.2.��1/kdk/
2:
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Then we have

fk .M dk��ck .M 2�
1
2
.1��/�dk;

and (5-29) follows. We return to the proof of the lemma:

Proof of Lemma 5.8. We first recall the equations for PAx and A0. Following Theorem 3.5, these have
the form

�PAx DP ŒA`; @xA`�� 2P ŒA`; @
`Ax�CP.R.A/C ŒA`; ŒA

`; Ax��/;

�A0 D ŒA
`; @xA`�CQ.A; @0A/C�A3

0 :
(5-34)

Based on these equations we consider the following decomposition of PAD .PAx; A0/:

PAD .Amain
x ; Amain

0 /C .A2x; 0/C .A
3
x; A

3
0/;

where the three components are determined by the following three sets of equations:

�Amain
x DP ŒA`; @xA`�; Amain

x Œ0�D 0;

�Amain
0 D ŒA`; @xA`�;

A20 D 0, and

�A2x D�2P ŒA`; @
`Ax�; A2xŒ0�D 0;

and finally
�A3x DP.R.A/CP ŒA`; ŒA

`; Ax��/; A3xŒ0�DPAŒ0�;

�A30 DQ.A; @0A/C�A3
0 :

(5-35)

We also use the same set of equations and the same decomposition for P QA, and take the differences
ıAmain, ıA2 and ıA3. We are now ready to estimate the three contributions.

The contribution of ıAmain. For this we use the estimates in Proposition 4.27, which yield

kDiff �
PAmain�P QAmainBk.N\L2 PH�1=2ŒJ �/f

.M 2���kıAkS1
d
ŒJ �kBkS1

b
ŒJ �; (5-36)

where

fk D

� X
k0�k��

ck0dk0

�
bk;

which suffices. For later use, we also record the following consequence of Proposition 4.15, which
provides a bound for k�ıAmain

x k
N\L2 PH1=2 :

kıAmain
x kS1

cd
ŒJ � . kıAkS1

d
ŒJ �.kAkS1c ŒJ �Ck

QAkS1c ŒJ �/: (5-37)

The contribution of ıA3. This is more easily dealt with using instead Proposition 4.26. We start with
A30�

QA30, which is estimated using the bounds (4-36) and (4-37) in Proposition 4.13 for the first term, and
(3-23) for the second, by

kA30�
QA30k.L1L1\L2 PH3=2/cd ŒJ �

.M kıAkS1
d
ŒJ �.kAkS1c ŒJ �Ck

QAkS1c ŒJ �/: (5-38)
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Similarly, for A3x � QA
3
x we can apply the difference bound associated to (3-21) for Rx and Strichartz

estimates for the remaining cubic term to obtain

k�.A3x � QA
3
x/k.L1L2\L2 PH�1=2/cd ŒJ �

.M kıAkS1
d
ŒJ �.kAkS1c ŒJ �Ck

QAkS1c ŒJ �/: (5-39)

As a consequence this also gives

kA3x �
QA3xkS1

cd
ŒJ � .M kıAkS�d ŒJ �.kAkS1c ŒJ �Ck

QAkS1c ŒJ �/: (5-40)

Using (5-38) and (5-40) in Proposition 4.26 yields the desired bound

kDiff �
ıA3
Bk

.N\L2 PH�1=2/f ŒJ �
.M;Q kıAkS1

d
ŒJ �kBkS1

b
ŒJ �.kAkS1c ŒJ �Ck

QAkS1c ŒJ �/; (5-41)

with the same fk as in the previous case.

The contribution of A2. Here we will use Proposition 4.28. For this we need to verify its hypotheses. We
begin with (4-101), for which we combine (5-37) and (5-40) to conclude that

kıA2xkS1
d
ŒJ � .M kıAkS1

d
ŒJ �: (5-42)

Next we consider (4-100). Using the second part of Proposition 5.4 we obtain

kıAkS1eŒJ �Ck.ıA0;P
?ıA/kY 1e ŒJ � .M kıAkS1d ŒJ �; (5-43)

with
ek D dkC ck.c � d/<k :

The last two bounds allow us to use Proposition 4.28. This yields

kDiff �
ıA2
Bk

.N\L2 PH�1=2/f ŒJ �/
.M;Q kıAkS1

d
ŒJ �kBkS1c ŒJ �.kAkS1c ŒJ �Ck

QAkS1c ŒJ �/; (5-44)

where

fk D

� X
k0�k��

dk0 C ek0dk0

�
bk :

The proof of the lemma is now concluded. �

Proof of (9): This is a direct consequence of the bounds (4-39) and (3-23) for the quadratic part A2
0 of A0,

and its cubic and higher part A3
0 . �

5B. Caloric Yang–Mills waves with small energy dispersion on a short interval. Next, we consider the
effect of small inhomogeneous energy dispersion on a time interval with compatible scale.

Theorem 5.9. Let A be a caloric Yang–Mills wave on a time interval I with energy E , obeying (5-1),
(5-2), as well as the smallness relations

kF kED�0ŒI � � "; jI j � ": (5-45)

Let c be a ı5-frequency envelope for A in S1ŒI �. Then for sufficiently small " > 0 depending on M and Q,
the following properties hold:



280 SUNG-JIN OH AND DANIEL TATARU

(1) (small energy dispersion below scale 1 for A)

kAkED1
�0ŒI �
.E;Q "

ı2 : (5-46)

(2) (elliptic component bounds)

kA0kY 1c ŒI �CkP
?AkY 1c ŒI � .M;Q "

ı2 : (5-47)

(3) (high modulation bounds)
k�Ak

L2 PH
�1=2
c ŒI �

.M;Q "ı2 : (5-48)

(4) (paradifferential formulation)

k�ACDiff �PAAk.N\L2 PH�1=2/cŒI � .M;Q "
ı42C� : (5-49)

(5) (approximate linear energy conservation) For any t1; t2 2 I,ˇ̌
krA.t1/k

2
L2
�krA.t2/k

2
L2

ˇ̌
.M;Q "ı4 : (5-50)

(6) (approximate conservation of Q) For any t1; t2 2 I,

jQ.A.t1/�Q.A.t2//j.E;Q "
ı4 : (5-51)

Proof. Again, we omit the dependence of constants on Q. The property that will be used here repeatedly
is (4-21), which asserts that all nonsharp Strichartz norms are small. We recall it here for convenience:

sup
k

kPkF kStr .M "ı1 . "ı2 : (5-52)

Proof of (1): This is a consequence of the caloric bound (3-7) applied with dk D ".

Proof of (2): We repeat the arguments in the proof of Proposition 5.4(1). The bounds for the cubic and
higher terms in Theorem 3.5 use only the Strichartz Str1 norms, so the contributions of A3

0 in A0, DA3 in
P?A and DA3

0 in @tA0 are easily estimated. For the quadratic terms we replace (4-29) with (4-33) in the
case ofA0, and then (4-37) with (4-38) in the case of P?A and @tA0; again the smallness comes from Str1.

Proof of (3): We consider the terms in the Ax equation in Theorem 3.5. The cubic terms Rx and
ŒA`; ŒA

`; A�� are estimated only in terms of kAkStr1 . For the quadratic terms we use instead the bounds
(4-30), (4-36), (4-63) and (4-65); all smallness comes from Str1.

Proof of (4): We first establish the similar bound for �AA, which is given by (3-12). For the quadratic
terms we use (4-50) and (4-51). For the cubic term we use (3-21). Hence it remains to estimate the
difference

R�AAD Diff �
P?A

A�Rem�;2A A�Rem�;3A A:

For the first term we use (4-83), where the " smallness comes from the L1L1 norm of P?A due to the
bounds (4-38) and (3-22) for the quadratic and cubic parts of A? respectively.

For the second term we use the bound (4-81). The second term on the right is small due to (5-47),
so we obtain

kRem�;2A Ak
.N\L2 PH�1=2/c

.M .2�ı2� C 2C�"ı2/kAkS1c :
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Now we observe that on the right we can replace � with any �0 > � without any change in the proof.
Then it suffices to optimize with respect to �0.

For the third term we use directly (4-74).

Proof of (5): This statement is a corollary of (5-49). For the proof, we introduce the linear energy

Elin.A/.t/D
1

2

Z
R4

4X
�D0

j@�A.t/j
2 dx:

Given any interval I 0 D .t1; t2/� I, we consider

I D
Z

R�R4
�I 0h.�CDiff �PA/A; @tAi dt dx:

Integrating by parts, we may rewrite

I DElin.A/.t1/�Elin.A/.t2/C
1

2

Z
hDiff �PAA;Ai.t2/ dx�

1

2

Z
hDiff �PAA;Ai.t1/ dx

�
1

2

Z
R�R4

�I 0hŒ@t ;Diff �PA�A;Ai dt dxC
1

2

Z
R�R4

�I 0h.Diff �PA� .Diff �PA/
�/A; @tAi dt dx:

By Proposition 4.30 and the straightforward boundZ
hDiff �PAA;Ai.t/. 2

��
k.A;A0/.t/k PH1krA.t/k

2
L2
.M 2�� ;

we see that
jI � .Elin.A/.t1/�Elin.A/.t2//j.M 2�c� : (5-53)

On the other hand, by duality, we may put �I 0.�CDiff �PA/A and �I 0@tA in N and N �, respectively.
Then by Proposition 4.6, (5-2) and (5-49), we have

jIj.M "ı42C� : (5-54)

Optimizing the choice of �, (5-50) follows.

Proof of (6): We will use the caloric flow in order to compare Q.A.t1// and Q.A.t2//. Denote by A.t; s/
the caloric flow of A. We will split the difference in three as

Q.A.t1//�Q.A.t2//DQ.A.t1; 1//�Q.A.t2; 1//CQ.A.t1//�Q.A.t1; 1//�Q.A.t2//CQ.A.t2; 1//:

For the first difference we estimate at parabolic time s D 1 as follows:

jQ.A.t1; 1//�Q.A.t2; 1//j.
Z t2

t1

Z
R4

d

dt
jF.s; t; x/j3 dx dt

.
Z t2

t1

Z
R4
jF.1; t; x/j2 j@tF.1; x; t/j dx dt

.
Z t2

t1

Z
R4
jF.s; t; x/j2 j@tF j dx dt .E;Q jt1� t2jc

3
1 ;
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where at the last step we have simply used the fixed-time L2 bounds given by Proposition 3.1(1) and
Bernstein’s inequality. Now we gain smallness from the time interval.

For the remaining two differences we only need fixed-time estimates, which for reference we state
in the following.

Lemma 5.10. Let a 2 C be a caloric connection with energy E and Q.A/ D Q, and A its caloric
Yang–Mills flow.

(a) Assume that a is energy-dispersed at high frequencies,

kf kED�m � ": (5-55)

Then for its caloric Yang–Mills heat flow A.s/ we have

Q.a/�Q.A.2�2m//.E;Q "
c : (5-56)

(b) If a is fully energy-dispersed,
kf kED � "; (5-57)

then we have
Q.a/.E;Q "

c : (5-58)

Proof. (a) By scaling we can set m D 0. Denote by ck a frequency envelope for f in L2, and by dk
a frequency envelope for f in PW �2;1. By the energy dispersion bound we have dk � " for k � 0. By
Proposition 3.2 we have the L2 bound

kPkF kL2 .E;Q ckh2
2ksi�N ;

and the L1 bound
kPkF kL1 .E;Q 2

2kd
1
2

k
h22ksi�N :

We use these bounds to estimate the difference

Q.a/�Q.A.1//D
Z 1

0

Z
R4
jF.s; t; x/j3 dx ds

.
X

k1�k2�k3

Z 1

0

Z
R4
jPk1F.s; t; x/jjPk2F.s; t; x/jjPk3F.s; t; x/j dx ds

.E;Q
X

k1�k2�k3

1

1C 22k3
22k1d

1
2

k1
ck2ck3

.
X
1�k3

d
1
2

k3
c2k3 . "

1
2 ;

where at the next to last step we have used both the low-frequency decay and the off-diagonal decay for
the summation in k1 and k2.

(b) This follows by letting m!�1 in part (a). The proof of the lemma is concluded. �

The proof of (5-51) is also concluded. �
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5C. The dynamic Yang–Mills heat flow of a caloric Yang–Mills wave. Here we investigate the structure
of the dynamic Yang–Mills heat flow of a caloric Yang–Mills wave A with finite S1-norm. As before,
we consider two cases: (1) when A only obeys a finite S1-norm bound; and (2) when A has small
inhomogeneous energy dispersion on a short time interval of compatible scale.

In the general case, we have the following structure theorem.

Theorem 5.11. Let A be a caloric Yang–Mills wave with energy E on a time interval I, obeying (5-1) and
(5-2). Let At;x.s/ be the dynamic Yang–Mills heat flow of At;x at heat-time s > 0 in the caloric gauge.
Then the following properties hold:

(1) ( fixed-time bounds) For any t 2 I, let c.0/.t/ be a ı5-frequency envelope for rA.t/ in L2. Then

kPk.rA.s/�re
s�A/.t/kL2 .E;Q h2

�2ks�1i�ı4h22ksi�10c
.0/

k
.t/2; (5-59)

kPk@
`A`.t; s/kL2 .E;Q h2

2ksi�10c
.0/

k
.t/2; (5-60)

kPkrA0.t; s/kL2 .E;Q h2
2ksi�10c

.0/

k
.t/2; (5-61)

kPk�A.t; s/k PH�1 .E;Q h2
2ksi�10c

.0/

k
.t/2: (5-62)

(2) ( frequency envelope bounds) Let c be a ı5-frequency envelope for A in S1ŒI �. Then

kPk.A.s/� e
s�A/kS1ŒI � .M;Q h2�2ks�1i�ı4h22ksi�10c2k; (5-63)

kPkA0.s/kY 1ŒI � .M;Q h22ksi�10c2k; (5-64)

kPkP?A.s/kY 1ŒI � .M;Q h22ksi�10c2k : (5-65)

(3) (derived difference bounds) Let QA be a caloric Yang–Mills wave on I obeying k QAkS1ŒI � � zM, and
let d be a ı5-frequency envelope for the difference A.s/� QA in S1ŒI �. Then

kPk.A0.s/� QA0/kY 1ŒI �CkPk.P
?A.s/�P? QA/kY 1

d
ŒI �

.
M; zM;Q ekCminf1; .s�

1
2 jI j/ı4gh2�2ks�1i�ı4h22ksi�10c2k; (5-66)

kPk�.A.s/� QA/k�X1ŒI �CkPk�.A.s/� QA/kX�1=2Cb1;�b1 ŒI �
.
M; zM;Q ekCminf1; .s�

1
2 jI j/ı4gh2�2ks�1i�ı4h22ksi�10c2k; (5-67)

where ek D dkC ck.c � d/�k .

Remark 5.12. Combining (5-63) with the obvious bound for es�A, we get the simple bound

kPkA.s/kS1ŒI � .M;Q h22ksi�10ck : (5-68)

Next, we consider the effect of small inhomogeneous energy dispersion on a time interval of compatible
scale.

Theorem 5.13. Let A be a caloric Yang–Mills wave with energy E on a time interval I, obeying (5-1),
(5-2) and (5-45), and At;x.s/ be the dynamic Yang–Mills heat flow of At;x at heat-time s > 0 in the
caloric gauge. Let c be a ı5-frequency envelope for A in S1ŒI �. Then the following properties hold:
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(1) ( fixed-time smallness bound)

krPk.A.s/� e
s�A/.t/kL2 .E;Q 2

ı4.m�k/C"ı4h2�2ks�1i�ı4h22ksi�10c
.0/

k
.t/; (5-69)

kPk@
`A`.t; s/kL2 .E;Q 2

ı4.m�k/C"ı4h22ksi�10c
.0/

k
.t/: (5-70)

(2) (small energy dispersion below scale 1 for A.s/)

kA.s/kED�1
�0ŒI �
.E;Q "

ı4 : (5-71)

(3) ( frequency envelope bounds)

kPk.A.s/� e
s�A/kS1ŒI � .M;Q "ı4h2�2ks�1i�ı4h22ksi�10ck; (5-72)

kPkA0.s/kY 1ŒI � .M;Q "ı4h22ksi�10ck; (5-73)

kPkP?A.s/kY 1ŒI � .M;Q "ı4h22ksi�10ck : (5-74)

(4) (derived difference bounds) Let QA be a caloric Yang–Mills wave on I with k QAkS1ŒI � � zM, and let d
be a ı5-frequency envelope for the difference A.s/� QA in S1ŒI �. Then

kPk.A0.s/� QA0/kY 1ŒI �CkPk.P
?A.s/�P? QA/kY 1

d
ŒI �

.
M; zM;Q ekC "

ı4h2�2ks�1i�ı4h22ksi�10ck; (5-75)

kPk�.A.s/� QA/k�X1ŒI �CkPk�.A.s/� QA/kX�1=2Cb1;�b1 ŒI �
.
M; zM;Q ekC "

ı4h2�2ks�1i�ı4h22ksi�10ck; (5-76)

where ek D dkC ck.c � d/�k .

We now turn to the proof of each theorem.

Proof of Theorem 5.11. In the proof, we omit the dependence of constants on M and Q. We introduce the
notation

A.t; s/D A.t; s/� es�A.t/:

Proof of (1): By (3-2) in Proposition 3.1 (note that @tA here corresponds to B in the proposition) we get

krPkA.t; s/kL2ŒI � . h2�2ks�1i�ı1h22ksi�10.c
.0/

k
/2: (5-77)

Now the second bound follows from (3-18) for DA3 and Proposition 4.13 for Q.A;A/.

Proof of (2): We proceed in several substeps.

Step 2.1: Our first (and main) goal is to prove

kPkA.s/kS1ŒI � . h2�2ks�1i�cı3h22ksi�10c2k : (5-78)

We begin by invoking (3-4) with .�; p/ D
�
1
4
; 4
�

and .�1; p1/ D
�
1
2
; 2
�
. Since S1ŒI � � Str1ŒI � �

L4 PW 1=4;4ŒI �, we also obtain (after taking L2t ŒI �)

krPkA.s/k
L2 PH1=2ŒI �

. h2�2ks�1i�ı1h22ksi�10c2k : (5-79)
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In view of the embedding PkL2 PH 1=2ŒI �� PkX
0;1=2
1 ŒI �� 2�kSkŒI �, we have

krPkA.s/kSkŒI � . h2
�2ksi�ı1h22ki�10c2k : (5-80)

To complete the proof of (5-78), it only remains to establish (recall (4-2))

k�PkA.s/k
L2 PH�1=2ŒI �

. h2�2ksi�ı1h22ki�10c2k : (5-81)

We argue differently depending on whether s22k & 1 or s22k� 1. In the former case, we consider es�A
and A.s/ separately. In view of (5-7), note that

k�Pkes�AkL2 PH�1=2ŒI � . h2
2k
i
�10c2k;

so it suffices to prove
k�PkA.s/kL2 PH�1=2ŒI � . h2

2k
i
�10c2k :

For this, we need to use the wave equation for A.s/ (see Theorem 3.6):

�A.s/D .���A.s//A.s/CM2.A.s/; A.s//CRj .A.s//CPw2x.A;A; s/CRj Is.A/: (5-82)

As in the proof of Proposition 5.4, we note that ���A.s/ contains the terms A0.s/, @`A.s/ and @0A0.s/
that are in turn determined by A;A.s/ (see Theorem 3.6). By (5-80) and an obvious bound for es�A,
we see that h22ksi�10ck is a frequency envelope for A.s/ in Str1ŒI �. The desired estimate is proved by
applying the L2L2-type estimates in Section 4 (observe that they only involve the Str1-norm of A!) and
Theorem 3.6.

In the case s22k � 1, we begin by writing A.s/ D .A.s/�A/C .1� es�/A. For the second term,
again by (5-7), we have

k�Pk.1� es�/AkL2 PH�1=2ŒI � . h2
�2ks�1i�ı1c2k :

Thus, for s22k� 1, it suffices to establish

k�Pk.A.s/�A/kL2 PH�1=2ŒI � . h2
�2ks�1i�cı3c2k : (5-83)

Here, we use the equation�.A.s/�A/ obtained by taking the difference of the equations in Theorems 3.5
and 3.6:

�.A.s/�A/D .���A.s//A.s/� .���A/ACM2.A.s/; A.s//�M2.A;A/

CRj .A.s//�Rj .A/CPjw2x.A;A; s/CRj Is.A/: (5-84)

We note that .���A.s//A.s/� .���A/A contains the differences A0.s/�A0, @`
`
A.s/� @`A` and

@0A0.s/� @0A0, for which similar difference equations may be derived from Theorems 3.5 and 3.6.
As before, ck is a ı5-frequency envelope for A and A.s/ in Str1ŒI �, whereas dk D h2�2ks�1i�cı3ck is

a ı3-frequency envelope for A.s/�A in Str1ŒI � by (5-80) and an obvious bound for .1� es�/A. Hence
the difference envelope ek in Theorem 3.5 obeys the bound

ek D dkC ck.c � d/�k . h2�2ks�1i�cı3ck :
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The desired estimate (5-83) is proved by applying the L2L2-type estimates in Section 4 (again, they only
involve the Str1-norms of rA, rA.s/ and r.A.s/�A/) and Theorem 3.6.

Step 2.2: To complete the proof, it remains to show that (5-78) implies (5-63)–(5-65). This is proved in a
completely analogous way to Proposition 5.4(1), replacing Theorem 3.5 by Theorem 3.6 (where we use
Propositions 4.16 and 4.17 for w0 and wx , respectively).

Proof of (3): This is analogous to the proof of Proposition 5.4(1). The only difference in the analysis
arises from the extra terms

(i) Pjw
2
x.@tA; @tA; s/CRj Is.A/ in �A.s/A.s/,

(ii) A0Is D�
�1w20.A;A; s/CA3

0Is.A/ in A0.s/,

(iii) DA0Is.A/ in @tA0.s/.

For the first term in (5-75) we need to estimate

kjDj�1w20.A;A; s/kY CkjDjA
3
0Is.A/kY CkDA0Is.A/kY :

The last two terms are estimated directly using (3-36) and (3-37) and Bernstein’s inequality. The first
term is estimated via (4-54).

For the extra gain when s1=2 > jI j we rebalance by using Hölder in time t and Bernstein in x. Because
of this, in that range it suffices to use L1L2 bounds instead of Y , and thus rely instead on (3-33) and
(3-34), and (4-52).

For the second term in (5-75) we follow the computation for @tP?A.s/ in the proof of Proposition 5.4.
The extra contributions there are

��1@j .@
`ŒA`.s/;A0Is�C ŒA

`.s/; @`A0Is�C ŒA
`; ŒA`;A0Is��/:

For these it suffices to use (4-53) and (3-36) for long intervals I, and (4-52) and (4-52) and (3-33) for
short intervals.

Finally, for the two terms in (5-76) we need to bound

kPjw
2
x.@tA; @tA; s/k�X1\X�1=2CbC1;�b1 CkRj Is.A/k�X1\X�1=2CbC1;�b1 :

For this it suffices to use the bounds (4-58) and (3-35) in the range jI j> s1=2, and (4-56) and (3-32) in
the range jI j � s1=2. �

Proof of Theorem 5.13. As before, we omit the dependence of constants on M and Q.

Proof of (1) and (2): The three bounds follow directly from Proposition 3.2, precisely in order from the
estimates (3-8), (3-9) and (3-7).

Proof of (3): We repeat the arguments in the proof of Theorem 5.11(2). The bound (5-79) for PkA.s/

goes through the Str1 norm, so by the same proof we also obtain for k � 0

krPkA.s/k
L2 PH1=2ŒI �

. h2�2ks�1i�cı3h22ksi�10"ı2ck : (5-85)

On the other hand for k � 0 we can use (5-69) and Hölder’s inequality in time to gain smallness.
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Similarly, the bound (5-81) also uses only Str1 norms so it can be replaced by

k�PkA.s/k
L2 PH�1=2ŒI �

. h2�2ks�1i�cı3h22ki�10"ı2ck (5-86)

for k � 0. Again for k � 0 we can use a simpler L1 PH�1 bound and then Hölder’s inequality in time.
Together, the bounds (5-85) and (5-86) imply (5-72).

Finally, it remains to establish (5-73) and (5-74). Here the same considerations as in the proof of (5-47)
apply, but using Theorem 3.6 instead of Theorem 3.5, as well as Proposition 4.16.

Proof of (4): This repeats the proof of Theorem 5.11(3), but taking advantage of the Str1 norm in
estimating A3

0Is and DA0Is and using (4-55) instead of (4-54). As before, the " gain is due to energy
dispersion if k � 0 and to the interval size otherwise. �

6. Energy-dispersed caloric Yang–Mills waves

The goal of this section is to prove the following key theorem for energy-dispersed subthreshold caloric
Yang–Mills waves, which is essentially a restatement of Theorem 1.20 in terms of the linear energy:

Theorem 6.1. There exist nondecreasing positive functionsM.E;Q/ and nonincreasing positive functions
".E;Q/ and T .E;Q/ so that the following holds. Let A be a regular caloric Yang–Mills wave on a time
interval I satisfying

inf
t2I
krA.t/k2

L2
�E; A.t/ 2 CQ for all t 2 I: (6-1)

If A moreover obeys the smallness bounds

kF kED�mŒI � � ".E;Q/; jI j � 2
�mT .E;Q/; (6-2)

then we have
kAkS1ŒI � �M.E;Q/: (6-3)

We next show that Theorem 1.16 immediately follows. Indeed, for caloric waves we have (see
Theorem 1.6)

krAkL2 .E;Q 1;

as well as
E .krAk

L2
1:

Thus the linear and nonlinear energy are interchangeable in the statement of the theorem. The (minor)
difference is that the nonlinear energy is exactly conserved, whereas the linear energy is only approximately
conserved for energy-dispersed Yang–Mills waves; see Theorem 5.9(5).

For the remainder of this section, we fix Q. We omit any dependence of constants on Q and write
".E/D ".E;Q/, T .E/D T .E;Q/, M DM.E;Q/ etc.

Theorem 6.1 is proved by an induction-on-energy argument of similar structure to [Sterbenz and Tataru
2010a; Oh and Tataru 2018]. For the initial step, we show that it holds for small E (Proposition 6.2). For
the induction step, we assume that the result holds for all solutions with infI Elin.A/�E, and we seek to
show that it holds up to infI Elin.A/�EC c.E/ for some small c.E/ > 0. Notably, in order to continue
the induction argument, we do not want c.E/ to depend on F.E/ or ".E/.
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6A. Induction on energy argument. As remarked earlier, the initial step of the proof of Theorem 6.1 is
essentially small-energy global regularity for the Yang–Mills equation in the caloric gauge, which is a
quick consequence of Theorem 5.1.

Proposition 6.2. There exists a small universal constant E� > 0 (in particular, independent of I ) such
that if a classical caloric Yang–Mills connection satisfies

inf
t2I
krA.t/k2

L2
�E�; (6-4)

then we have
kAkS1ŒI � .

p
E�: (6-5)

Proof. We will follow a standard continuity argument, similar to the one used in the Coulomb gauge
in [Krieger and Tataru 2017]. Start from a near minimum t0 for krA.t/k2

L2
. Denote by c a frequency

envelope for AŒt0� in PH 1 �L2. For a short time, there exists a classical solution, which satisfies

kAkS1ŒI � .E�:

We now consider the maximal interval I containing t0 and where the solution A exists as a classical
solution and satisfies

kAkS1ŒI � � 1: (6-6)

This in particular implies
Q.A/. 1:

Hence by Theorem 5.1(2) it follows that

kAkS1c ŒI � . 1;
and in particular

kAkS1ŒI � .E�: (6-7)

Assume now by contradiction that I has a finite end T . The S1 (6-6) bound implies that A is uniformly
bounded near t D T and has a limit as a classical solution. Hence it can be extended further as a classical
solution (for a precise statement, see in particular Theorem 7.6). However, in view of (6-7), if E� is
sufficiently small then by continuity we can find a larger interval I ¨ J where (6-6) holds. This is a
contradiction. It follows that the solution A is global and satisfies (6-7). �

For the induction step, consider a regular caloric Yang–Mills wave A on I such that

E < inf
t2I
krA.t/k2

L2
�EC c.E/; kF kED�0.I / � "; jI j � T: (6-8)

Our goal is to establish a uniform bound

kAkS1ŒI � �M (6-9)

for appropriately chosen c.E/ > 0 (depending only on E), ", T and M (which may depend on E, ".E/,
T .E/, M.E/ and c.E/).

Once this goal is achieved, we may extend M.E/, ".E/ and T .E/ to Œ0; E C c.E/� so that
M.E C c.E//DM, ".E C c.E//D " and T .E C c.E//D T, while keeping validity of Theorem 6.1
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in this range of energy. Since c.E/ is a positive number depending only on E, this procedure can be
continued until Theorem 6.1 holds for all regular subthreshold caloric Yang–Mills waves.

We now turn to the proof of (6-9). By translating and reversing t , we may assume without any loss of
generality that I D Œ0; TC/ for some TC > 0 and

E < krA.0/k2
L2
�EC 2c.E/:

Since A is regular, it can be easily seen that kAkS1Œ0;T / is a continuous function of T satisfying

lim sup
T!0C

kAkS1Œ0;T / . krA.t/kL2 .E
1
2 :

Therefore, on a subinterval J D Œ0; T /� I, we may make the bootstrap assumption

kAkS1ŒJ � � 2M: (6-10)

In order to improve (6-10) to (6-9), we compare A with a caloric Yang–Mills wave QA with S1ŒI �-norm
�M.E/ (eventually), which we construct as follows.

To begin with, we view the space-time connection At;x on I �R4 as a caloric initial data and solve
the dynamic Yang–Mills heat flow in the local caloric gauge, i.e.,

@sA�.t; x; s/DDkFk�.t; x; s/;

A�.t; x; 0/D A�.t; x/:

From the results in Section 3, we obtain a global-in-heat-time solutionAt;x.t; x; s/ on I�R4�Œ0;1/. Note
that @tA solves the linearized Yang–Mills heat flow in local caloric gauge, and we have .A; @tA/.t; s/ 2
T L

2C for every .t; s/ 2 I � Œ0;1/.
By the caloric gauge condition, the linear energy

k.A; @tA/.t; s/k
2
PH1�L2

D krA.t; s/k2
L2

eventually tends to zero as s!1. Thus there exists a heat-time s0� > 0 such that

k.A; @tA/.0; s/k
2
PH1�L2

DE:

To eliminate ambiguity, we take s0� to be the minimum such heat-time. In order to choose the cut-off
heat-time s�, we distinguish two scenarios:

(1) If s0� � 1, then we define s� D 1.

(2) If s0� < 1, then we define s� D s0�.

With s� chosen as above, we define QA to be the caloric Yang–Mills wave with initial data

. QA; @t QA/.0/D .A; @tA/.0; s�/:

In both scenarios, we aim to prove that QA exists on J and is well-approximated by A.s�/. Moreover,
by the induction hypothesis, QA should obey a nice S1-norm bound.
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Proposition 6.3. Let QA be defined as above. For sufficiently small "; T > 0 depending on M, M.E/,
T .E/, ".E/ and c.E/, the regular caloric Yang–Mills wave QA exists on the interval J and obeys

k QAkS1ŒJ � �M.E/CC0
p
E; (6-11)

kA.s�/� QAkS1
c�
ŒJ � .M "ı6 ; (6-12)

kA0.s�/� QA0kY 1
c�
ŒJ � .M "ı6 ; (6-13)

kP?A.s�/�P? QAkY 1
c�
ŒJ � .M "ı6 ; (6-14)

where C0 is a universal constant and c� is a frequency envelope defined as

c�k D 2
�ı�jk�k.s�/j: (6-15)

On the other hand, viewing A as a “high frequency perturbation” of QA, we show below that A stays
close to QA in the space S1.

Proposition 6.4. Let QA be defined as above on the interval J. Provided that cD c.E/ > 0 is chosen small
enough compared to E (but independent of M.E/, T .E/ or ".E/) and T; " > 0 are also sufficiently small
depending on M, M.E/, T .E/, ".E/ and c.E/, we have

kA� QAkS1ŒJ � .M.E/;E 1: (6-16)

Assuming the preceding two propositions, we may choose M sufficiently large compared to M.E/
and E, then choose " and T accordingly, so that the desired estimate (6-9) follows from (6-11) and (6-16).

It remains to prove Propositions 6.3 and 6.4, which are the subjects of Sections 6B and 6C, respectively.

6B. Control of QA�A.s�/: proof of Proposition 6.3. We introduce the notation

ıAlow
D QA�A.s�/: (6-17)

We proceed differently depending on how s� was chosen.

Scenario 1: s�D 1.� s0�/. This scenario is simpler to handle, and we do not need to invoke the induction
hypothesis.

Step 1.1: S1-norm bound for QA. We first prove the S1-norm bound (6-11). The idea is to exploit the
smoothing property of the Yang–Mills heat flow, which implies control of higher Sobolev norms of
. QA; @t QA/.0/D .A; @tA/.0; 1/ in terms of

p
E, and use subcritical local regularity of Yang–Mills in the

caloric gauge, which works in a time interval of length OE .1/.
Fix a large integer N (say N D 10). We claim that QA exists on J and

k QAkSN\S1ŒJ � .
p
E; (6-18)

provided that T is sufficiently small depending only on E (so that jJ j �E 1).
By the smoothing property for the Yang–Mills heat flow and its linearization in the caloric gauge (see

Section 3), we have
k. QA; @t QA/.0/k. PHN� PHN�1/\. PH1�L2/

.
p
E:
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For T sufficiently small (depending only on E), the following local-in-time a priori estimates at
subcritical regularity hold:

sup
t2J

k. QA; @t QA/.t/k. PHN� PHN�1/\. PH1�L2/
CjJ jk� QAk

L1. PHN�1\L2/ŒJ �
.
p
E;

sup
t2J

k. QA0; @t QA0/.t/k. PHN� PHN�1/\. PH1�L2/
.
p
E:

The proof is via Theorem 3.5 and, as usual, the Sobolev embedding into L1; we omit the details.
As a consequence of the preceding a priori bounds, we obtain (6-18) as desired. Moreover, by

Theorem 3.5 and the fixed-time bounds in Section 4, we have

k� QAk
L1 PH�1ŒJ �

.E 1: (6-19)

Step 1.2: S1-norm bound for A.s�/� QA. As a preparation for the proof of (6-12), we claim that

kA.s�/� QAkS1
c�
ŒJ � .M "c : (6-20)

In the present case, 2k.s�/ D 1. For frequencies higher than 1, we simply use (6-18) with smoothing
estimates for A.s�/ in S1. For frequencies lower than 1, we control �. QA � A.s�// in L1 PH�1 and
integrate in time.

By Theorem 5.11, we have

kPkA.s�/kS1ŒJ � .M2�20kC ; (6-21)

kPk�A.t; s/k PH�1 .M2
�20kC : (6-22)

Let �0 � k.s�/ be a parameter to be fixed below. By (6-20) and (6-21), we have

kPkıA
low
kS1ŒJ � � kPk QAkS1ŒJ �CkPkA.s�/kS1ŒJ � .M 2�c�0c�k for k � �0; (6-23)

where 0 < c� 1 is a universal constant. Since

Pk.L
1 PH�1ŒJ �/ ,! jJ j2kN \ .jJ j2k/

1
2L2 PH�

1
2 ;

for k � �0 it follows from (6-19) and (6-22) that

kPk�ıAlow
k
.N\L2 PH�1=2/ŒJ �

� kPk� QAk.N\L2 PH�1=2/ŒJ �CkPk�A.s�/k.N\L2 PH�1=2/ŒJ �
.M ..jJ j2�0/1=2C .jJ j2�0/C "c/c�k :

Since ıAlowŒ0�D 0, we arrive at

kPkıA
low
kS1ŒJ � .M ..jJ j2�0/

1
2 C .jJ j2�0/C "c/c�k for k � �0: (6-24)

Step 1.3: completion of proof. Finally, the bounds (6-12)–(6-14) follow from (6-20) and Theorem 5.11(3)
with dk D c�k provided that jJ j � T is sufficiently small. Here, note that

ek D c
�
k C ck.c � c

�/�k .M c�k :
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Scenario 2: s� D s0� > 1. In the second scenario, we analyze the equation satisfied by the difference
ıAlowDA.s�/� QA to prove (6-12), then make use of the induction hypothesis to derive (6-11). By another
continuous induction in time, we may make the following extra bootstrap assumptions:

k QAkS1ŒJ � � 2.M.E/CC0
p
E/; (6-25)

as well as

kıAlow
kS1
c�
ŒJ � � "

cı6 : (6-26)

Here we use a smaller power of ", so this last bound will only serve to ensure some a priori smallness of
ıAlow in S1c� .

By Theorem 5.13, we have

kPkA.s�/kS1ŒJ � .M ckh2
2ks�i

�10; (6-27)

kA.s�/kED1
�0ŒJ �

.E "ı4 ; (6-28)

k�A.s�/kL2 PH�1=2ŒJ � .M "ı4 : (6-29)

Therefore, .A.s�/; J / is .";M�/-energy-dispersed for M� .M 1 and "� "ı4 .

Step 2.1: bounds for ıAlow. Here we establish (6-12). We write an equation for ıAlow of the form

� QAıA
low
D F; ıAlowŒ0�D 0:

We claim that in each subinterval J1 of J and for each � > 10 we have the bound

kF k
.N\L2 PH�1=2/c� ŒJ1�

.M .2�cı��k QAkS1ŒJ1�C 2
C�C. QA; J1//kıA

low
kS1
c�
ŒJ1�
C "ı6 ; (6-30)

where C. QA; J1/ contains only divisible norms of QA; see (5-21).
We first verify that the bound (6-30) implies (6-12). Using the well-posedness for the � QA equation,

given by Theorem 5.1, in the time interval J1 D Œt1; t2�, we obtain the bound

kıAlow
kS1
c�
ŒJ1�
� C.M/

�
kıAlowŒt1�kHc� C .2

�cı��k QAkS1ŒJ1�C 2
C�C. QA; J1//kıA

low
kS1
c�
ŒJ1�
C "ı6

�
:

For this to be useful we need to ensure that the coefficient of kıAlowkS1
c�
ŒJ1�

on the right is small. To
achieve that we first choose � large enough, k�M 1, depending only on M, so that

C.M/2�cı��k QAkS1ŒJ �� 1:

Then we divide the interval J into subintervals Jj so that

C.M/2C�C. QA; Jj /� 1:

The number of such intervals depends only on M. On each subinterval Jj D Œtj�1; tj � we have the bound

kıAlow
kS1
c�
ŒJ1�
CkıAlowŒtj �kHc� � C.M/.kıAlowŒtj�1�kHc� C "

ı6/:

Reiterating this we obtain (6-12).
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If remains to prove the bound (6-30). We relabel J1 by J for simplicity. As a preliminary step, we
observe that, by Theorem 5.13 and the bootstrap assumption (6-26), we have

kıAlow
kS1

c�
ŒJ �CkıA

low
0 kY 1

c�
ŒJ �CkP

?ıAlow
kY 1
c�
ŒJ � .M kıA

low
kS1
c�
ŒJ �: (6-31)

In particular, this proves the bounds (6-13) and (6-14) once (6-12) is known.
The expression for F is obtained from Theorems 3.5 and 3.6,

F WD� QAıA
low
D� QA QA��A.s�/A.s�/C .�A.s�/�� QA/A.s�/;

where we further expand the two terms as

� QA QA��A.s�/A.s�/DM2. QA; QA/�M2.A.s�/; A.s�//CR. QA/�R.A.s�//

CPw2x.@tA; @tA; s/CRj Is.A/;

and

.�A.s�/�� QA/A.s�/D�Diff �
PıAlowA.s�/�Diff �

P?ıAlowA.s�/�Rem�;2
ıAlowA.s�/

C .Rem3.A.s�//�Rem3. QA//A.s�/CRem3s�.A/A.s�/:

We successively estimate the terms above as in (6-30):

(a) For M2. QA; QA/�M2.A.s�/; A.s�// we use the estimate (4-50). We inherit the envelope c� from
ıAlow but we also gain an additional power of " from the energy dispersion of A.s�/.

(b) For R. QA/�R.A.s�// we use the difference version of the bound (3-21), with a similar gain.

(c) For Pw2x.@tA; @tA; s/ we use (4-59), taking advantage of the energy dispersion for A.

(d) For Rj Is.A/ we use (3-35), gaining a power of " from the Str1 norm.

(e) For Diff �
P?ıAlowA.s�/ we use (4-82) combined with (6-31) for the high modulations, and (4-83)

combined with (4-37) and (3-22) for low modulations.

(f) For Rem�;2
ıAlowA.s�/ we use (4-81).

(g) For .Rem3.A.s�//�Rem3. QA//A.s�/ we use (4-74).

(h) For Rem3s�.A/A.s�/ we use (4-76).

This leaves us with the most difficult term Diff �
PıAlowA.s�/, for which we claim that

kDiff �
PıAlowA.s�/k.N\L2 PH�1=2/c� ŒJ �

.M 2�cı��kıAlow
kS1ŒJ �: (6-32)

For PıAlow we consider the same type of decomposition as in the proof of Lemma 5.8,

PıAlow
DPıAlow;main

CPıAlow;main;2
CPıAlow;rem;2

CPıAlow;rem;3;
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where
ıA

low;main
0 D��1.Œ QA; @t QA�� ŒA.s�/; @tA.s�/�/;

ıA
low;main;2
0 D��1w0.A;A; s/;

ıA
low;rem;2
0 D 2��1.Q. QA; @t QA/�Q.A.s�/; @tA.s�///;

ıA
low;rem;3
0 D A30.

QA; @t QA/�A
3
0.A.s�/; @tA.s�//CA

3
0Is.A; @tA/;

and

ıAlow;main
x D��1.PM2. QA; QA/�PM2.A.s�/; A.s�///;

ıAlow;main;2
x D��1Pwx.A;A; s/;

ıAlow;rem;2
x D��1P.Œ QA˛; @˛ QA�� ŒA˛.s�/; @˛A.s�/�/;

ıAlow;rem;3
x D��1P.R. QA/�R.A.s�//�Rem3. QA/ QACRem3.A.s�//A.s�//

C��1P.Rj Is.A/�Rem3s .A/A.s�//;

where ��1 is the wave parametrix with zero Cauchy data at t D 0.
As a preliminary observation we note that

kıAlow;main
x kS1

c�
CkıAlow;main;2

x kS1
c�
CkıAlow;rem;2

x kS1
c�
CkıAlow;rem;3

x kS1
c�
.M kıAlow

kS1
c�
C"ı2 : (6-33)

This is a consequence of (4-42) for the first term, (4-59) and (5-47) for the second, and (3-21), (3-35),
(4-74) and (4-76) for the last term. The bound for the third term follows indirectly since they all add up
to ıAlow.

Now we consider the contributions of each of these terms to Diff �
PıAlowA.s�/.

The contributions of ıAlow;main
x and ıAlow;main

0 . These are considered together, and estimated using
Proposition 4.27. This yields the frequency envelope

fk D

� X
k0<k��

c�k0ck0h2
2k0s�i

�N

�
ckh2

2k0s�i
�N
kıAlow

kS1
c�
ŒJ � .M 2�cı��c�kkıA

low
kS1
c�
ŒJ �;

as needed.

The contributions of ıAlow;main;2
x and ıAlow;main;2

0 . These are also considered together, but now we want
to use Proposition 4.29. As they involve no ıAlow differences, we need to estimate these contributions
by "ı6. Unfortunately Proposition 4.29 provides no source for an energy dispersion gain, so we use a
trick, decomposing

Diff �
ıAlow;main;2A.s�/D Diff �

0

ıAlow;main;2A.s�/CDiff Œ�
0;��

ıAlow;main;2A.s�/;

where �0 > � is a secondary parameter to be chosen shortly. For the first term we apply Proposition 4.29,
which yields

kDiff �
0

ıAlow;main;2A.s�/k.N\L2 PH�1=2/c� ŒJ �
.M 2�cı��

0

:

For the second term, on the other hand, we use instead the bounds (4-55) and (4-59), which capture both
the c� decay and the energy dispersion. The price to pay is that this way we only have access to the
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S1 norm of ıAlow;main;2, so we are only allowed to use (4-77). This yields

kDiff Œ�
0;��

ıAlow;main;2A.s�/k.N\L2 PH�1=2/c� ŒJ �
.M "cıcıg2C�

0

:

We now add the last two bounds and then optimize in �0 to obtain the desired estimate

kDiff �
ıAlow;main;2A.s�/k.N\L2 PH�1=2/c� ŒJ �

.M "ıh :

The contribution of ıAlow;rem;2. The ıAlow;rem;2
x part is estimated using Proposition 4.28, with (6-33)

serving to verify the hypothesis. For the output this yields the frequency envelope

fk D

� X
k0<k��

c�k0

�
ckh2

2k0s�i
�N .M 2�cı��c�k :

A simpler analysis applies for the contribution of ıAlow;rem;2
0 where we can use Proposition 4.13.

The contribution of ıAlow;rem;3. For the contribution of ıAlow;rem;3
0 we use (3-23) and (3-36), while for the

contribution of ıAlow;rem;3
x we use (3-21), (3-35), (4-74) and (4-76), all combined with Proposition 4.26.

Step 2.2: S1-norm bound for QA via induction hypothesis. Taking " sufficiently small and using the
bootstrap assumption (6-26), we may ensure that

k zF kED�0ŒJ � � ".E/: (6-34)

By the induction hypothesis, we may thus assume that

k QAkS1ŒJ � �M.E/: (6-35)

6C. Control of A� QAW proof of Proposition 6.4. Here, we seek to bound

ıAhigh
D A� QA:

We begin by observing that

k QAkED�1
�0ŒJ �

Ck� QAk
L2 PH�1=2ŒJ �

.M "ı6 :

Therefore, both .A; J / and . QA; J / are .";M/-dispersed, where ".M "ı6.

Step 1: consequence of approximate linear energy conservation. We claim that

sup
t2J

k.ıAhigh; @tıA
high/.t/k2

PH1�L2
. c.E/CCM "ı6 : (6-36)

Note that

ıAhigh
D .1� es��/AC es��A�A.s�/CA.s�/� QA:

We begin with the inequality

krA.t/k2
L2
� kr.1� es��/A.t/k2

L2
Ckes��A.t/k2

L2
;
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which follows from Plancherel and nonnegativity of the symbol of .1� es��/es��. By Theorem 5.13(1)
and (6-12), we have

kres��A.t/k2
L2
D kr QA.t/k2

L2
CCM "

ı6 ; (6-37)

kr.1� es��/A.t/k2
L2
D kr.A� QA/.t/k2

L2
CCM "

ı6 : (6-38)

Hence, by Theorem 5.9(5), we have

kr.A� QA/.t/k2
L2
� krA.t/k2

L2
�kr QA.t/k2

L2
CCM "

ı6

� krA.0/k2
L2
�kr QA.0/k2

L2
CCM "

ı6

� c.E/CCM "
ı6 :

Step 2: weak divisibility and reinitialization. By Theorem 5.1(7) there exists a partition J D
SK
kD1 Jk

such that K .M.E/ 1 and
k QAkS1ŒJk� .E 1; (6-39)

so that the number of such intervals is also controlled K .M.E/ 1. Using the uniform control of the
energy of ıAhigh in Step 1, it suffices to estimate ıAhigh in S1 separately in each of these intervals.

We will make a bootstrap assumption

kıAhigh
kS1ŒJk�

� 2: (6-40)

Then our goal is to improve (6-40) to

kıAhigh
kS1ŒJk�

� 1 (6-41)

by taking c�E 1, "�M 1 and T �M;" 1.
In view of (6-39) and (6-40), in all the estimates below within a single interval Jk , all implicit constants

will depend on E rather than M.E/. To simplify the notation we drop the subscript and replace Jk by J
in what follows.

Step 3: frequency envelope bounds. Let ck be a frequency envelope forA in S1ŒJ �. Then by Proposition 3.1,
the initial data in Jk for A.s/ has the frequency envelope 2�.k�k

�/Cck . By Theorem 5.1, we have a
similar envelope in S1,

kPk QA.s/kS1ŒJ Œ .E 2�.k�k
�/Cck : (6-42)

On the other hand, by the estimate (6-12) we have, under the assumption "�E 1, the bound

kPk. QA�A.s//kS1ŒJ � .E 2�ı�jk�k
�jck : (6-43)

Hence for the high-frequency difference Ah we have the bound

kPkıA
high
kS1ŒJ � .E 2�ı�.k�k

�/�ck : (6-44)

Step 4: control of nonlinearity. By Theorem 5.9(4) applied separately to A and QA we have

k.�CDiff �PA/ıA
high
CDiff �

PıAhigh
QAk
N\L2 PH�1=2ŒJ �

.E 2C�"ı4ı6 ; (6-45)
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where the parameter � � 10 is arbitrary for now, to be chosen later. We claim that the second term can be
estimated separately as

kDiff �
PıAhigh

QAk
N\L2 PH�1=2ŒJ �

.E 2�cı�� : (6-46)

This is a consequence of Lemma 5.8. To see that we use the bounds (6-42) and (6-44) to compute the
frequency envelope fk in Lemma 5.8. We have

fk .E
� X
k0<k��

2�cı�.k
0�k�/�ck0 C 2

�.k0�k�/Cck0.c
2c�/<k0

�
2�.k�k

�/Cck .E 2�cı�jk�k
�jck;

and thus (6-46) follows. Combining (6-45) with (6-46) yields

k.�CDiff �PA/ıA
high
k
N\L2 PH�1=2ŒJ �

.E 2�cı�� C 2C�"ı4ı6 : (6-47)

Hence by Theorem 5.1(1) we conclude that

kıAhigh
kS1ŒJk�

.E cC 2�cı�� C 2C�"ı4ı6 :

Hence by taking ��E 1, c�E 1, "�E;� 1 and T �E;";� 1, the desired conclusion (6-41) follows.

7. Proof of the main results

The purpose of this short section is to deduce Theorems 1.13, 1.20 and 1.18 from Theorem 6.1.

7A. Higher-regularity local well-posedness. In this subsection, we sketch the proof of higher-regularity
local well-posedness of the hyperbolic Yang–Mills equation. We first use the temporal gauge, which
works for general connections, and then turn to the caloric gauge, which works for data satisfying (1-12).

7A1. Temporal gauge. Here we write the Yang–Mills equations in the temporal gauge,

A0 D 0: (7-1)
They take the form

�AAj DDk@jAk; (7-2)

with the additional constraint equation
Dj @0Aj D 0: (7-3)

This can be viewed as a semilinear system of wave equations for the curl of A, coupled with a second-order
transport equation for the divergence of A.

We consider the Cauchy problem with initial data

AŒ0�D .Aj .0/; @tAj .0//:

The initial data is uniquely determined by the Yang–Mills initial data and the gauge condition (7-1).
The system (7-2) together with the constraint equation (7-3) is well-posed in regular Sobolev spaces.

Precisely, we have:

Theorem 7.1. The system (7-2) is locally well-posed inHN�HN�1 forN �2, with Lipschitz dependence
on the initial data.
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We further remark that the temporal gauge fully describes all classical solutions to the Yang–Mills
system:

Theorem 7.2. Let A be a solution to the Yang–Mills system which has local-in-time regularity .A; @tA/ 2
C.Œ0; T �IHN �HN�1/ for N � 3. Then A has a temporal gauge equivalent QA with the same regularity
. QA; @t QA/ 2 C.Œ0; T �IH

N �HN�1/.

To see this, it suffices to solve an equation for the gauge transformation O, namely

O�1@0O D A0; O.0; x/D I;

which is an ODE on the Lie group G. If A 2 C.HN / then this yields a unique solution O 2 C.HN /.
This in turn yields a temporal gauge equivalent solution

. QA; @t QA/ 2 C.Œ0; T �IH
N�1
�HN�2/:

This argument loses one derivative. However, the initial data is in HN �HN�1, which by the well-
posedness result yields a C.Œ0; T �IHN �HN�1/ solution. But by the HN�1 �HN�2 well-posedness
the two must agree, so we obtain a unique representation in the temporal gauge with the same data and
without loss of derivatives.

Remark 7.3. Analogues of Theorems 7.1 and 7.2 hold for the spaceHN
loc�H

N�1
loc instead ofHN�HN�1,

where HN
loc is equipped with the norm supx2R4k � kHN .B1.x//

.

7A2. Caloric gauge. In view of Theorem 1.11 we can fully describe caloric Yang–Mills waves as
continuous functions

I 3 t ! .Ax.t/; @0Ax.t// 2 T
L2C:

For higher-regularity Yang–Mills waves we have the following:

Theorem 7.4. Let A be a solution to the Yang–Mills system which has local-in-time regularity .A; @tA/ 2
C.Œ0; T �IHN �HN�1/ for N � 2. Assume in addition that the bound (1-12) is uniformly satisfied by its
caloric extension, globally in parabolic time. Then A has a caloric gauge equivalent QA with the same
regularity . QA; @t QA/ 2 C.Œ0; T �IHN �HN�1/.

This result is a direct consequence of Theorem 1.11, with one minor exception. Precisely, Theorem 1.11
does not directly yield the CtL2x regularity for @0A0. For that we instead need to refer to the expression
(3-15) and the bounds (3-18) and (4-28) for the two terms in (3-15).

Remark 7.5. The same result will easily hold for .A; @tA/ 2 C.Œ0; T �IH �L2/. However, if we only
assume that .A; @tA/ 2 C.Œ0; T �I PH 1 �L2/ then one would also need to resolve the remaining gauge
freedom. For that it suffices to observe that if two A’s have a small difference in L2, then the two O’s
can be chosen in tandem so that they agree at infinity.

In particular this says that a caloric gauge solution exists for as long as a regular solution exists and
the L3 bound in (1-12) remains finite. This will allow us to bootstrap the existence time for as long as we
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have good bounds in the caloric gauge. Precisely, for8 N � 3 suppose that an HN solution exists in the
caloric gauge up to time T . If this solution has uniform HN bounds up to time T , then its temporal gauge
representation has uniform HN bounds up to time T. Thus it can be extended further in the temporal
gauge, and hence also in the caloric gauge. This shows that a maximal caloric gauge solution must either
explode in HN at the (finite) end of its lifespan, or the L3 norm in (1-12) must explode. The latter cannot
happen for subthreshold solutions. Thus we have:

Theorem 7.6. The Yang–Mills system in the caloric gauge is locally well-posed in HN �HN�1 for
N � 2. Further, the solution extends for as long as the HN �HN�1 norm remains bounded and the
L3 norm in (1-12) remains bounded.

For regular data, this result reduces the problem of global well-posedness to that of obtaining uniform
bounds for caloric solutions.

7B. Local well-posedness in the caloric manifold CW proof of Theorem 1.13. For "� > 0, recall that the
energy concentration scale r"�c was defined as

r"�c Œa; e�D supfr W EBr .a; e/� "
2
�g D sup

�
r > 0 W sup

x2R4

1

2

X
˛<ˇ

kf˛ˇk
2
L2.Br .x//

� "2�

�
;

where fjk is the curvature form corresponding to aj , f0j D�fj0D ej and f00D 0. Since the definition
only involves f˛ˇ , we will slightly abuse the notation and simply write r"�c Œf � for r"�c Œa; e�.

Lemma 7.7. Let A be a regular caloric Yang–Mills wave on I D .�T0; T0/. For any " > 0, if "� is
sufficiently small compared to " and

T0 � r
"�
c Œa; e�;

then we have
kF kED�mŒI � � "; with 2m D ".r"�c Œa; e�/

�1:

Proof. By our notation, f˛ˇ D F˛ˇ .0/. After rescaling, we may set r"�c .F.0//D 1. We begin with the
observation that

kPkF.t/kL1 . 2ck�2�2k sup
x2R4
kF.t/kL2.B1.x//; (7-4)

which follows from the properties of the convolution kernel of Pk; in particular, it is rapidly decaying
on the scale 2�k and its L2-norm is bounded by 2�2k. Then, by the localized energy estimate for the
hyperbolic Yang–Mills equation, i.e.,

Eftg�BR�jtj.F /� Ef0g�BR.F / .0 < jt j<R/; (7-5)

the lemma follows. �

Proof of Theorem 1.13. We prove the theorem in several steps:

8The requirement N � 3 is so that there is no loss of regularity in the transition to the temporal gauge. Precisely, we want to
ensure that A0 2 C. PH1 \ PHNC1/.
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Step 1: regular solutions. Let A be a regular caloric Yang–Mills wave with energy E and initial caloric
size Q. For "� small enough, to be chosen later, let rc WD r

"�
c be the corresponding energy concentration

scale for the initial data.
Our goal is to prove that if "� is small enough, depending only on E and Q, then the solution A persists

as a regular caloric solution up to time rc . Precisely, we will apply Theorem 6.1 to the solution A in order
to show that the solution A exists in Œ�rc ; rc� and satisfies the bound

kAkS1Œ�rc ;rc� �M.E ; 3Q/: (7-6)

We use a continuity argument. Let T0 � rc be a maximal time with the property that the solution A
given by Theorem 7.4 exists as a classical caloric solution in .�T0; T0/, and further satisfies the bound

sup
t2Œ�T0;T0�

Q.A.t//� 3Q: (7-7)

For 0 < T < T0 we seek to apply Theorem 6.1 to A in I D Œ�T; T �. To verify the hypothesis of
Theorem 6.1 we need to ensure that for a suitable choice of m we have

kF kED�m � ".E ; 3Q/; jI j � 2
�mT .E ; 3Q/:

For this it suffices to apply Lemma 7.7 with

"Dminf".E ; 3Q/; T .E ; 3Q/g;

which yields the appropriate choice of "�.
Now by Theorem 6.1 we obtain the uniform bound

kAkS1Œ�T;T � �M.E ; 3Q/; 0 < T < T0:

By the structure theorem, Theorem 5.1, it follows that higher-regularity bounds are also uniformly
propagated,

sup
t2.�T0;T0/

k.A; @tA/.t/kHN <1:

Thus by the local result for regular solutions in Theorem 7.6 we can continue the regular caloric Yang–Mills
connection A beyond the time interval Œ�T0; T0�.

Finally, we consider the bounds for Q.A/. These we can propagate using Theorem 5.9, which implies
that

sup
t2Œ�T0;T0�

Q.A.t//�Q.Q;E "
ı4 :

Readjusting " if needed, it follows that

sup
t2Œ�T0;T0�

Q.A.t//� 2Q: (7-8)

This implies that the bound (7-7) also can be propagated beyond ˙T0. This contradicts the maximality of
T0 unless T0 D rc . Hence the classical caloric Yang–Mills wave exists in Œ�rc ; rc� and (7-6) holds.
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Step 2: rough solutions. Given any caloric initial data .a; b/ with finite energy E and caloric size Q, we
consider the corresponding regularized data .a.s/; b.s// obtained using the Yang–Mills heat flow. We
have the uniform bounds

E.a.s/; b.s//� E.a; b/; Q.a.s/; b.s//�Q.a; b/:

In particular, we have .f .s/; e.s//! .f; e/ in PH 1�L2. This implies that the energy concentration scales
for .a.s/; e.s// converge to those for .a; e/. Thus, by the analysis in the smooth case above, for small
enough s the corresponding solutions A.s/ exist as smooth caloric Yang–Mills waves in I D Œ�rc ; rc�
and satisfy the uniform S1 bound (7-6).

Now we use the structure theorem, Theorem 5.1, to consider the limit as s! 0. If ck is a frequency
envelope for .a; e/, then by Proposition 3.1 it follows that:

(i) For .a.s/; b.s// we have the frequency envelope in PH 1 �L2

ck.s/D ckh2
2ksi�cı5 :

(ii) For the difference .a; b/� .a.s/; b.s// we have the envelope in PH 1 �L2

ıck.s/D ckh2
�2ks�1i�cı5 :

(iii) For the difference .a.s/; b.s//� .a.2s/; b.2s// we have the envelope in PH 1 �L2

c�k .s/D ck.s/2
�cı5jk�k.s/j:

By Theorem 5.1(2), it follows that ck.s/ is a frequency envelope for A.s/ in S1. Combining this with
Theorem 5.1(8), it follows that c�

k
.s/ is a frequency envelope for A.s/ � A.2s/. Summing up such

differences, we obtain the general difference bound

kA.s1/�A.s2/kS1 .E;Q cŒk.s1/;k.s2/�: (7-9)

This implies that the limit
AD lim

s!0
A.s/

exists in s. We define A to be the caloric Yang–Mills wave associated to the .a; b/ data. We remark that
by (7-9) we have the difference bound

kA�A.s/kS1 .E;Q c�k.s/: (7-10)

Step 3: difference bound. The difference bound in part (4) of the theorem is a direct consequence of the
difference bound in Theorem 5.1(8).

Step 4: continuous dependence. We consider a convergent sequence of caloric initial data

.a.n/; b.n//! .a; b/ in PH 1
�L2: (7-11)

Let A.n/.s/ and A.s/ be the corresponding solutions with regularized data.
Denote by cn

k
a corresponding sequence of frequency envelopes for the initial data .a.n/; b.n// in

PH 1 �L2. By Theorem 5.1(2), these are also frequency envelopes for the solutions A.n/.s/.
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By Theorem 7.4 we know that for each s we have

A.n/.s/! A.s/ in S1

and in effect in stronger topologies. Then we estimate

lim sup
n!1

kA.n/�AkS1 . lim
s!1

lim sup
n!1

kA.n/.s/�A.s/kS1 C c
n
�k.s/C c�k.s/

. lim
s!1

lim sup
n!1

cn
�k.s/:

But the last limit is zero in view of the convergence in (7-11). The continuous dependence follows. �

We end this subsection with a lemma that bounds the energy concentration scale from below by an
L2-frequency envelope for F, which proves Remark 5.2.

Lemma 7.8. Let c be a frequency envelope for F˛ˇ in L2 for all ˛; ˇ 2 f0; 1; : : : ; 4g. Suppose that
kck`2�m

<C�1"� for some m 2 Z and a sufficiently large universal constant C > 0. Then r"�c .F /� 2�m.

Proof. It suffices to establish the bound
kF kL2.B.x;2�k/ . c�k :

To see this we use Bernstein’s inequality to estimate

kF kL2.B.x;2�k/ . kF�kkL2 C
X
j<k

2�2kkFj kL1 . c�kC
X
j<k

22j�2kcj � c�k : �

7C. Regularity of energy-dispersed solutionsW proof of Theorem 1.20. Consider a time t0 where Q.A.t//
is nearly minimal. From Lemma 5.10 we have the estimate

Q.A.t0//.E "
c :

If " is small enough this allows us to conclude first that Q� 1, and then that

Q.E "c :

Now a straightforward continuity argument shows that

Q.A.t//� 1; t 2 I;

which again by Lemma 5.10 yields

Q.A.t//.E "
c ; t 2 I:

Then we can apply directly the result in Theorem 6.1 for any m 2 Z. This eliminates any restriction on
the size of the interval I.

7D. Gauge transformation into temporal gaugeW proof of Theorem 1.18. To produce a temporal gauge
solution to (1-1) from the caloric gauge solution we use a gauge transformation O defined as the solution
to the ODE

O�1@tO D A0; O.0/D I: (7-12)

Here for A0 we have the regularity given by Theorem 5.1(9), namely

A0 2 `
1
jDj�2L2xL

1
t : (7-13)
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We use this to compute the regularity of O:

Lemma 7.9. (a) Assume that A0 is as in (7-13). Then the solution O to the ODE has the following
properties:

(i) OIx 2 Ct . PH 1/.

(ii) O is continuous in both x and t .

(b) Consider two solutions O and zO arising from A0 and QA0. Then we have:

(i) ( PH 1 bound)
kO�1@xO � zO

�1@x zOk PH1 . kA0� QA0k`1jDj�2L2xL1t :

(ii) (uniform bound)
kd.O; zO/kL1 . kA0� QA0k`1jDj�2L2xL1t :

Proof. (a) We first consider the ODE

O�1@tO D F; O.0/D I; (7-14)

and observe that for smooth F this is easily solvable.
Next we consider a smooth one-parameter family of solutions O.h/. For this we compute

d

dt
.O�1@hO/D @hF � ŒF;O

�1@hO�;

which immediately leads to

jO�1@hO.t/j �

Z t

0

j@hF.s/j ds:

Comparing two solutions O and zO generated by F and zF using the straight line between them, it follows
that

d.O.t/; zO.t//�

Z t

0

jF.s/� zF .s/j ds: (7-15)

This yields a Lipschitz property for the map

L1t 3 F !O 2 Ct ;

which is thus by density extended to all F 2 L1t .
Next we turn our attention to A0, which by Bernstein’s inequality satisfies

A0 2 CxL
1
t :

This implies the desired continuity of O.
Finally we consider the evolution of O�1@xO,

d

dt
.O�1@xO/D @xA0� ŒA0; O

�1@xO�:

Since @xA0 2 L4xL
1
t , this immediately gives

O�1@xO 2 L
4
xCt � CL

4:
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A second differentiation yields as well

@x.O
�1@xO/ 2 L

2
xCt � CL

2:

(b) The uniform bound for the difference follows directly from (7-15). For the difference of the derivatives
we compute

@t .O
�1@jO � zO

�1@j zO/C ŒA0; O
�1@jO � zO

�1@j zO�D @jA0� @j QA0� ŒA0� QA0; zO@j zO�:

As above, we can estimate this first in L4 and then in PH 1. �

To conclude the proof of Theorem 1.18 it remains to verify (i) that gauge transformations O having
the properties in the above lemma yield temporal connections AŒt� 2 C. PH 1/, and (ii) these connections
depend continuously on the initial data.

For the continuity in time we write

AŒt� DO.A�O�1@xO/O
�1:

The second term above is in Ct PH 1 due to the previous lemma. For the first term we differentiate, then
use again the lemma combined with the continuity of O and dominated convergence.

For the continuous dependence of the temporal solutions with caloric data the same argument as above
applies. However, we also need to consider general finite-energy initial data sets. Here the construction
of the temporal gauge solutions starting from a general initial data .a; e/ goes as follows:

(1) Given the initial position a 2 PH 1, we consider the gauge transformation O DO.a/ which turns a
into . Qa; Qe/, its caloric gauge counterpart.

(2) Given the caloric data . Qa; Qe/ we have as above a unique temporal solution QA.

(3) To return to the data .a; e/ we apply to A the inverse gauge transformation O�1 to obtain the
temporal solution A.

The regularity of the gauge transformation O is O�1@xO 2 PH 1, which suffices in order for it to map
C. PH 1/ connections into C. PH 1/ connections. It remains to prove the continuous dependence. Consider a
convergent sequence of data .a.n/; e.n//! .a; e/ in PH 1 �L2. Without any restriction in generality we
can assume that .a; e/ is caloric. Denote by O.n/ the corresponding gauge transformations, which, we
recall, are only unique up to constant gauge transformations. Then we need to show that for a well chosen
(sub-)sequence of representatives O.n/ we have the following properties:

(1) .O.n//�1@xO.n/! 0 in PH 1.

(2) O.n/.x/! I a.e. in x.

But this is a consequence of Theorem 1.2; see also Remark 1.3 (recall also that OIx DAd.O/.O�1@xO/).

8. Multilinear estimates

The purpose of this section is to prove most of the results stated without proof in Section 4. The exceptions
are Theorem 4.24 and Proposition 4.25, which involve construction of a parametrix for �CDiff �PA; their
proofs are given in the next section.
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8A. Disposable operators and null forms. In this subsection we collect preliminary materials that are
needed for analysis of the multilinear operators in the nonlinearity of the Yang–Mills equation in the
caloric gauge.

8A1. Disposable operators. Boundedness properties of the multilinear operators arising in caloric gauge
(see Section 3) can be conveniently phrased in terms of disposability (after multiplication with appropriate
weights) of these operators.

We begin by considering the multilinear operator Q with the symbol

Q.�; �/D
j�j2� j�j2

2.j�j2Cj�j2/
D
.�C �/ � .� � �/

2.j�j2Cj�j2/
;

which arose in the wave equation for Ax (most notably through the expression for @`A`) in the caloric
gauge.

Lemma 8.1. For any k; k1; k2 2 Z, the bilinear operator

2kmax�kPkQ.Pk1. � /; Pk2. � //

is disposable.

Proof. To begin with, note the symbol bound

jQ.�; �/j.
j�C �j

.j�j2Cj�j2/
1
2

;

which implies that the symbol of 2kmax�kPkQ.Pk1. � /; Pk2. � // is uniformly bounded. In the case
k2 < k1� 5 so that jkmax� kj � 3, it can also be checked that

2n1k12n2k2 j@
.n1/

�
@.n2/� .Pk.�C �/Q.�; �/Pk1.�/Pk2.�//j.n1;n2 1;

which proves the desired disposability property. By symmetry, the case k1 < k2� 5 follows as well. In
the case jk1 � k2j < 5 (so that jkmax � k1j < 10), making the change of variables .�; �/D .�; �C �/, it
can be seen that

2k1�k2n1k12n2kj@
.n1/

�
@
.n2/

�
.Pk.�/Q.�; � � �/Pk1.�/Pk2.� � �//j.n1;n2 1;

which implies disposability of 2kmax�kPkQ.Pk1. � /; Pk2. � //. �

Next, we consider the multilinear operator W .s/ with the symbol

W .�; �; s/D�
1

2� � �
e�sj�C�j

2

.1� e2s���/;

which arose in the wave equation for the Yang–Mills heat flow development Ax.s/ of a caloric Yang–Mills
wave.

Lemma 8.2. For any k; k1; k2 2 Z and s > 0, the bilinear operator

hs22ki10hs�12�2kmaxi22kmaxPkW .Pk1. � /; Pk2. � /; s/ (8-1)
is disposable.
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Proof. Without loss of generality, we may assume that s D 1 by scaling. We distinguish two scenarios:

Case 1: high-low or low-high, k Dmaxfk1; k2gCO.1/. To prove disposability of (8-1), it suffices to
show that

h22kmaxi
112n1k12n2k2

ˇ̌̌̌
@
.n1/

�
@.n2/�

�
Pk.�C �/e

�j�C�j2 1� e
2���

� � �
Pk1.�/Pk2.�/

�ˇ̌̌̌
.n1;n2 1

for any n1; n2 2 N. Since the derivatives of Pk.�C �/Pk1.�/Pk2.�/ already obey desirable bounds, it
only remains to prove

h22kmaxi
112n1k12n2k2

ˇ̌̌̌
@
.n1/

�
@.n2/�

�
e�j�C�j

2 1� e2���

� � �

�ˇ̌̌̌
.n1;n2 1 (8-2)

for �; � in the support of the symbol (8-1).
Since k D maxfk1; k2g CO.1/, we have 22kmax ' j�j2 C j�j2 ' j� C �j2. On the one hand, it is

straightforward to verify

2n1k12n2k2 j@
.n1/

�
@.n2/� e�j�C�j

2

j.n1;n2 2
n1k12n2k2.1Cj�C �j2/

n1Cn2
2 e�j�C�j

2

.n1;n2 2
.n1Cn2/kmaxh22kmaxi

n1Cn2
2 e�j�C�j

2

:

On the other hand, we also have

2n1k12n2k2
ˇ̌̌̌
@
.n1/

�
@.n2/�

�
1� e2���

� � �

�ˇ̌̌̌
.n1;n2 2

n1k12n2k2.1Cj�j2Cj�j2/
n1Cn2
2 .1C e2���/

.n1;n2 2
.n1Cn2/kmaxh22kmaxi

n1Cn2
2 .1C e2���/:

The key point here is that when j� � �j � 1, the denominator � � � cancels with the first term in the Taylor
expansion of the numerator 1� � � �; we omit the details. Combining (8-3) and (8-3), it follows that

2n1k12n2k2
ˇ̌̌̌
@
.n1/

�
@.n2/�

�
e�j�C�j

2 1� e2���

� � �

�ˇ̌̌̌
.n1;n2 h2

2kmaxi
n1Cn2e�j�C�j

2

.1C e2���/:

Since e�j�C�j
2

.1C e2���/D e�j�C�j
2

C e�.j�j
2Cj�j2/ . e�C�122kmax, (8-2) follows.

Case 2: high-high, k <maxfk1; k2g�C . As usual, we make the change of variables .�; �/D .�; �C �/.
It suffices to prove

h22ki10h22kmaxi2n1k12n2k
ˇ̌̌̌
@
.n1/

�
@
.n2/

�

�
Pk.�/e

�j� j2 1� e
2��.���/

� � .� � �/
Pk1.�/Pk2.� � �/

�ˇ̌̌̌
.n1;n2 1:

Note that the derivatives of h22ki10Pk.�/e�j� j
2

Pk1.�/Pk2.� � �/ already obey desirable bounds. Hence
we are only left to show

h22kmaxi2n1k12n2k
ˇ̌̌̌
@
.n1/

�
@
.n2/

�

�
1� e2��.���/

� � .� � �/

�ˇ̌̌̌
.n1;n2 1 (8-3)

for �; � in the support of (8-1).
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Note that k1 D kmaxCO.1/. In the case 22kmax . 1, (8-3) follows from

j@
.n1/

�
@
.n2/

�
..2� � .� � �//�1.1� e2��.���///j.n1;n2 1;

which follows by Taylor expansion at � � .� � �/D 0. In the case 22kmax & 1, we use

2n1k12n2kj@
.n1/

�
@
.n2/

�
.� � .� � �//�1j. 2�2kmax ;

2n1k12n2kj@
.n1/

�
@
.n2/

�
.1� e2��.���//j. 1;

both of which follow from simple computation, whose details we omit. �

8A2. Null forms. We now discuss the null forms that arise in caloric gauge, which occur in conjunction
with various (disposable) translation-invariant operators. To treat these in a systematic fashion, it is useful
to define null forms in terms of an appropriate decomposition property of the symbol.

Definition 8.3 (null forms). Let T be a translation-invariant bilinear operator on R1C4 and let˙2fC;�g
be a sign. Given k1; k2 2 Z, `; `0 2 �N, !;!0 2 S3, define

�˙ Dmaxfj†.!;˙!0/j; 2`; 2`
0

g:

(1) We say that T is a null form of type N˙, and write

T . � ; � /DN˙. � ; � /;

if for every k1; k2 2 Z, `; `0 2 �N and !;!0 2 S3, T admits a decomposition of the form

T ..�; �/; .�; �//.Pk1P
!
` /.�/.Pk2P

!0

`0 /.�/D �˙2
k1Ck2O..�; �/; .�; �//

X
i1;i22N

ai1.�/bi2.�/;

where the Fourier multipliers

.1Cji1j/
100ai1 ; .1Cji2j/

100bi2 (8-4)

are disposable, and the translation-invariant bilinear operator with symbol

O..�; �/; .�; �//
is disposable as well.

(2) We say that T is a null form of type N if T . � ; � /DNC. � ; � / and T . � ; � /DN�. � ; � /.

(3) We say that T is a null form of type N0;˙, and write

T . � ; � /DN0;˙. � ; � /;

if for every k1; k2 2 Z, `; `0 2 �N and !;!0 2 S3, T admits a decomposition of the form

T .�; �/.Pk1P
!
` /.�/.Pk2P

!0

`0 /.�/D �
2
˙2

k1Ck2O..�; �/; .�; �//
X
i1;i22N

ai1.�/bi2.�/;

where the Fourier multipliers

.1Cji1j/
100ai1 ; .1Cji2j/

100bi2 (8-5)
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are disposable, and also the translation-invariant bilinear operator which has symbol O..�; �/; .�; �// is
disposable as well.

In particular, O, ai1 and bi2 may depend on k1; k2; `; `0; !; !0, but the disposability bounds stated
above do not.

Remark 8.4 (null form gain). To exploit the null form, it is convenient to make the following observation:
as an immediate consequence of the definition, we may write

N˙.Pk1P
!
` u; Pk2P

!0

`0 v/D C�˙2
k1Ck2 zO.Pk1P

!
` u; Pk2P

!0

`0 v/

for a universal constant C > 0 and some disposable zO. Analogous statements hold for N and N0;˙.

Remark 8.5 (behavior under symbol multiplication). The properties of T in Definition 8.3 seem compli-
cated at first, but its usefulness comes from the fact that it is well-behaved under symbol-multiplication
with a disposable multilinear operator. More precisely, if O. � ; � / is a disposable translation-invariant
bilinear operator and T . � ; � / is a null form in the sense of Definition 8.3, then the translation-invariant
bilinear operator with symbol O.�; �/T .�; �/ is clearly also a null form of the same type.

We now verify that the standard null forms are indeed null forms according to Definition 8.3. We have
the following separation-of-variables result for the symbols of the standard null forms.

Lemma 8.6 (standard null forms). Consider the symbols

Nij .�; �/D �i�j � �j�i ; N0;˙.�; �/D˙j�jj�j � � � �:

These symbols admit the decompositions

j�j�1j�j�1Nij .�; �/.Pk1P
!
` /.�/.Pk2P

!0

`0 /.�/Dminf�C; ��g
X
i1;i22N

ai1.�/bi2.�/; (8-6)

j�j�1j�j�1N0;˙.�; �/.Pk1P
!
` /.�/.Pk2P

!0

`0 /.�/D �
2
˙

X
i1;i22N

a0i1.�/b
0
i2
.�/; (8-7)

where
.1Cji1j/

100ai1 ; .1Cji1j/
100a0i1 ; .1Cji2j/

100bi2 ; .1Cji2j/
100b0i2 (8-8)

are disposable.

As a corollary, it follows that Nij is a null form of type N, whereas N0;˙ are null forms of type N˙.
As before, ai1 , a0i1 , bi2 and b0i2 depend on k1; k2; `; `0; !; !0, but the disposability bounds stated in

(8-8) do not.
This lemma can be proved by performing separation of variables using Fourier series on an appro-

priate rectangular box containing the support of Pk1P
!
`
.�/Pk2P

`0

! .�
0/. For the details in the case of

j�j�1j�j�1Nij .�; �/, we refer to [Gavrus and Oh 2016, Proof of Proposition 7.8]. For N0;˙, observe that
zN0;˙.�; �/ WD j�j

�1j�j�1N0;˙.�; �/ obeys

j zN0;˙.�; �/j. �2˙; j@� zN0;˙.�; �/j. 2�k1�˙; j@� zN0;˙.�; �/j. 2�k2�˙;

j@
.n1/

�
@.n2/�

zN0;˙.�; �/j. 2�n1k12�n2k2 .n1Cn2 � 2/
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for �; � in the support of Pk1P
!
`
.�/Pk2P

`0

! .�/. Using these symbol bounds, the case of N0;˙ can be
handled by essentially the same proof as in [Gavrus and Oh 2016, Proof of Proposition 7.8]. See also
[Gavrus 2019, Section 8].

We now present algebraic lemmas, which are used to identify null forms in the Yang–Mills equation in
the caloric gauge. The following lemma identifies all bilinear null forms.

Lemma 8.7. Let O be a disposable bilinear operator on R1C4. Let A be a spatial 1-form and let u; v be
functions in the Schwartz class on R1C4. Then we have

O.P`A; @`u/D
X
j

N .jDj�1Aj ; u/; (8-9)

PxO.u; @xv/D jDj�1N .u; v/: (8-10)

Moreover, we also have

O.@˛u; @˛v/DN0;C.QCu;QCv/CN0;C.Q�u;Q�v/

CN0;�.QCu;Q�v/CN0;�.Q�u;QCv/CR0.u; v/; (8-11)

where

R0.u0; v0/DO..Dt � jDj/QCu0C .Dt CjDj/Q�u;Dtv0/

CO.jDj.QCu0�Q�u0/; .Dt � jDj/QCv0C .Dt CjDj/Q�v0/: (8-12)

Remark 8.8. As is evident from the proof below, Lemma 8.7 readily generalizes to a disposable multilinear
operator O that has one of the above structures with respect to two inputs. We omit the precise statement,
as the notation gets unnecessarily involved. However, we point out that this is all we need in order to
handle the trilinear secondary null structure.

Remark 8.9. An alternative way to make use of the null form O.@˛u; @˛v/ is to rely on the simple
algebraic identity

2O.@˛u; @˛v/D�O.u; v/�O.�u; v/�O.u;�v/: (8-11)0

We have elected to use the decomposition (8-11) to unify the treatment of null forms.

Proof. We begin with (8-9) and (8-10). By Remark 8.5, it suffices to consider the case when O.u; v/ is
the product uv. Then it is a well-known fact (going back to [Klainerman and Machedon 1994; 1995])
that P`A@`u and Pj .u@xv/ are standard null forms, i.e.,

P`A@`uDN j̀ ..��/
�1@`Aj ; u/; (8-13)

Pj .u@xv/D .��/
�1@`N j̀ .u; v/: (8-14)

We omit the simple symbol computation. Hence (8-9) and (8-10) follow.
Next, we prove (8-11), which is essentially the well-known fact that @˛u@˛v D�D˛uD˛v is a null

form. To verify (8-11), we first decompose uDQCuCQ�u and v DQCvCQ�, then we substitute

DtQ
˙uD˙jDjQ˙uC .Dt �jDj/Q

˙u; DtQ
˙0v D˙0jDjQ˙

0

vC .Dt �
0
jDj/Q˙

0

v:
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When O.u; v/D uv, the contribution of the first terms givesX
˙;˙0

.˙˙0 jDjQ˙ujDjQ˙
0

v�D`Q˙uD`Q
˙0v/D

X
˙;˙0

N0;˙˙0.Q
˙u;Q˙

0

v/:

By Remark 8.5, the same contribution constitutes the first four terms in (8-11) in general. Note moreover
that the remainder makes up R0.u; v/, which proves (8-11). �

Next, we present an algebraic computation, which will be used to reveal the trilinear secondary null
form of the caloric Yang–Mills wave equation.

Lemma 8.10. Let O;O0 be disposable bilinear operators on R1C4. Then we have

O0.��1O.u.1/; @0u.2//; @0u.3//CO0.��1PiO.u.1/; @xu.2//; @iu.3//

DO0.��1O.u.1/; @˛u.2//; @˛u.3//�O0.��1��1@t@˛O.u.1/; @˛u.2//; @tu.3//

�O0.��1��1@`@˛O.u.1/; @`u.2//; @˛u.3//;

provided that ��1O, ��1O and ��1��1O are well-defined in the sense that their kernels have finite
masses.

Of course, the requirement that the kernels of ��1O, ��1O and ��1��1O have finite masses is
excessively strong for the validity of the lemma, but it will be verified in the applications below.

Proof. The proof of this lemma is the same as in [Krieger et al. 2015, Appendix]. Using the identities

��1���1 D��1��1.�@2t /; PiB D Bi ��
�1@i@

`B`; @0 D�@0 D�@t

and adding and subtracting O0.��1��1@t@`O.u.1/; @`u.2//; @tu.3//, we may write

O0.��1O.u.1/; @0u.2//; @0u.3//CO0.��1PiO.u.1/; @xu.2//; @iu.3//

DO0.��1O.u.1/; @0u.2//; @0u.3//CO0.��1O.u.1/; @iu.2//; @iu.3//

�O0.��1��1@t@0O.u.1/; @0u.2//; @tu.3//�O0.��1��1@i@`O.u.1/; @`u.2//; @iu.3//

�O0.��1��1@t@`O.u.1/; @`u.2//; @tu.3//�O0.��1��1@0@`O.u.1/; @`u.2//; @0u.3//

DO0.��1O.u.1/; @˛u.2//; @˛u.3//�O0.��1��1@t@˛O.u.1/; @˛u.2//; @tu.3//

�O0.��1��1@`@˛O.u.1/; @`u.2//; @˛u.3//:

In the last equality, we paired the first and the second, the third and the fifth, and the fourth and the sixth
terms, respectively, from the preceding lines. �

8B. Summary of global-in-time dyadic estimates. In what follows,we denote byO a disposable translation-
invariant bilinear operator on R1C4, and by N a bilinear null form as in Definition 8.3(2). Let u and v
be test functions on R1C4. For convenience, we also introduce test functions u0 and v0, which stand for
inputs of the form ru and rv, respectively, in the applications.

Given k; k1; k2 2Z, we define kmaxDmaxfk; k1; k2g and kminDminfk; k1; k2g. We use the shorthand
uk1 D Pk1u, vk2 D Pk2v and v0

k2
D Pk2v

0.
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8B1. Bilinear estimates for elliptic components. We start with simple bilinear bounds which do not
involve any null forms.

Proposition 8.11. We have

kPkO.uk1 ; v
0
k2
/k
L2 PH�1=2

. 2�ı1.kmax�kmin/kDuk1kStr0kv
0
k2
kStr0 ; (8-15)

kPkO.uk1 ; v
0
k2
/k
L9=5 PH�4=9

. 2�ı1.kmax�kmin/kDuk1kStr0kv
0
k2
kStr0 ; (8-16)

kPkO.uk1 ; v
0
k2
/k
L1 PW �2;1

. 2�ı1jk1�k2jkDuk1kSkv
0
k2
kS : (8-17)

Furthermore, we have the following simpler variants of (8-15), (8-16) and (8-17):

kPkO.uk1 ; v
0
k2
/k
L2 PH�1=2

. 2�ı1.kmax�kmin/kuk1kL2 PH3=2kv
0
k2
kS ; (8-18)

kPkO.uk1 ; v
0
k2
/k
L9=5 PH�4=9

. 2�ı1.kmax�kmin/kuk1kL2 PH3=2kv
0
k2
kS ; (8-19)

kPkO.uk1 ; v
0
k2
/k
L1 PW �2;1

. 2
2
3
kmin2�

4
3
k2�

1
6
k12

5
6
k2.2

1
6
k1kuk1kL2L6/.2

� 5
6
k2kv0k2kL2L6/: (8-20)

8B2. Bilinear estimates concerning the N -norm. Next, we state the N -norm estimates which will be
used for the bilinear expressions arising from PM, P?M and Rem�;2.

Proposition 8.12. We have

kPkN .uk1 ; vk2/kN . 2
�ı1.kmax�kmin/2kkDuk1kSkDvk2kS ; (8-21)

kPkO.@˛uk1 ; @˛vk2/kN . 2
�ı1.kmax�kmin/2kmaxkDuk1kSkDvk2kS ; (8-22)

kPkO.u0k1 ; vk2/kL1L2 . 2
�ı1.kmax�kmin/ku0k1kL2 PH1=2.2

1
6
k2kvk2kL2L6/: (8-23)

Furthermore, for any � 2 N, we have the low-modulation gain

kPkQ<kmin��N .Q<kmin��uk1 ;Q<kmin��vk2/kN . 2
�ı1�2kkDuk1kSkDvk2kS ; (8-24)

kPkQ<kmin��O.@
˛Q<kmin��uk1 ; @˛Q<kmin��vk2/kN . 2

�ı1�2kmaxkDuk1kSkDvk2kS : (8-25)

For the term Diff �PAB , we need to distinguish the case when the low-frequency input A has a dominant
modulation. For this purpose, we borrow the bilinear operator H�

k
(and its “dual” Hk) from [Krieger et al.

2015].
Given a bilinear translation-invariant operator O, we introduce the expression HkO (resp. H�

k
O), which

essentially separates out the case when the modulation of the output (resp. the first input) is dominant.
More precisely, we define

HkO.u; v/D
X

j Wj<kCC

QjO.Q<j�Cu;Q<j�Cv/;

H�kO.u; v/D
X

j Wj<kCC

Q<j�CO.Qju;Q<j�Cv/
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for some universal constant C such that C <C0, where C0 is the constant in Lemma 8.21. We also define

HO.u; v/D
X

k;k1;k2Wk<k2�C

PkHkO.Pk1u; Pk2v/;

H�O.u; v/D
X

k;k1;k2Wk1<k2�C

H�k1PkO.Pk1u; Pk2v/:

We are now ready to state our estimates for the N -norm of the term DiffPAB .

Proposition 8.13. For k1 < k� 10, we have

kPk.1�H�k1/N .jDj
�1uk1 ; vk2/kN . kDuk1kSkDvk2kS ; (8-26)

kPk.1�H�k1/O.uk1 ; v
0
k2
/kN . kuk1kL2 PH3=2kv

0
k2
kS ; (8-27)

kPkH�k1N .jDj
�1uk1 ; vk2/kN . kuk1kZ1kDvk2kS ; (8-28)

kPkH�k1O.uk1 ; v
0
k2
/kN . kuk1k��1=2�1=2Z1kv

0
k2
kS : (8-29)

Furthermore, for k1 < k� 10 and any � 2 N, we have

kPkH�k1N .jDj
�1Q<k1��uk1 ; vk2/kN . 2

�ı1�kuk1kZ1kDvk2kS ; (8-30)

kPkH�k1O.Q<k1��uk1 ; v
0
k2
/kN . 2�ı1�kuk1k��1=2�1=2Z1kv

0
k2
kS : (8-31)

8B3. Bilinear estimates concerning Xs;b;pr -type norms. We now state the Z1-, Z1p0- and zZ1p0-norm
bounds. We begin with the ones for the bilinear expressions arising from PM2, Rem�;2A and M2

0.

Proposition 8.14. We have

kPkN .uk1 ; vk2/k�Z1p0 . 2
�ı1.kmax�kmin/2kkDuk1kSkDvk2kS ; (8-32)

kPkN .uk1 ; vk2/k�Z1 . 2
�ı1jk1�k2j2kkDuk1kSkDvk2kS : (8-33)

Furthermore, for k � k1�C , we have

kPk.1�Hk/N .uk1 ; vk2/k�Z1 . 2
�ı1.k1�k/2kkDuk1kSkDvk2kS ; (8-34)

kPk.1�Hk/O.uk1 ; v
0
k2
/k�1=2�1=2Z1 . 2�ı1.k1�k/kDuk1kSkv

0
k2
kS : (8-35)

The following bounds are for the null form arising from Diff �PxAB; we remark that this is the only
place where we need to use the intermediate zZ1p0-norm.

Proposition 8.15. We have

kPkN .jDj�1uk1 ; vk2/k� zZ1p0
. 2�ı1.kmax�kmin/kuk1kS1kDvk2kS ; (8-36)

kPkN .jDj�1uk1 ; vk2/k�Z1p0 . 2
�ı1.kmax�kmin/kuk1kS1\ zZ1p0

kDvk2kS ; (8-37)

kPkN .jDj�1uk1 ; vk2/k�Z1 . 2
�ı1.kmax�kmin/kuk1kS1\Z1p0

kDvk2kS ; (8-38)

kPkN .jDj�1uk1 ; vk2/kX�1=2Cb1;�b1 . 2
�ı1.kmax�kmin/kuk1kS1\Z1p0

kDvk2kS : (8-39)

Finally, the following bounds are used to handle Diff �A0B and Diff �
P?A

B .
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Proposition 8.16. We have

kPkO.uk1 ; v
0
k2
/k
�Z1p0

. 2�ı1.kmax�kmin/kDuk1kY kv
0
k2
kS ; (8-40)

kPkO.uk1 ; v
0
k2
/k�Z1 . 2�ı1.kmax�kmin/kDuk1kY kv

0
k2
kS ; (8-41)

kPkO.uk1 ; v
0
k2
/kX�1=2Cb1;�b1 . 2

�ı1.kmax�kmin/kDuk1kY kv
0
k2
kS : (8-42)

8B4. Trilinear null form estimate. Let u.1/, u.2/, u.3/ be test function on R1C4. Given ki 2 Z, we
introduce the shorthand u.i/

ki
D Pkiu

.i/ .i D 1; 2; 3/.

Proposition 8.17. Let O and O0 be disposable bilinear operators on R1C4. Let j < k � C and k <
minfk0; k1; : : : ; k3g�C . Consider the expression

N cubic
k;j .u

.1/

k1
; u
.2/

k2
; u
.3/

k3
/DQ<j�CO0.��1PkQjO.Q<j�Cu

.1/

k1
; @0Q<j�Cu

.2/

k2
/; @0Q<j�Cu

.3/

k3
/

CQ<j�CO0.��1PkQjP`O.Q<j�Cu
.1/

k1
; @xQ<j�Cu

.2/

k2
/; @`Q<j�Cu

.3/

k3
/:

Then we have

kN cubic
k;j .u

.1/

k1
; u
.2/

k2
; u
.3/

k3
/kL1L2 . 2�ı1.k1�k/2�ı1.k�j /kDu

.1/

k1
kSkDu

.2/

k2
kSkDu

.3/

k3
kS : (8-43)

In fact, for later use (in Section 11), it is convenient to also state a more atomic form of (8-43). Given
ki 2 Z and a rectangular box C.i/, we use the shorthand u.i/

ki ;C.i/
D PkiPC.i/u

.i/ .i D 1; 2/.

Proposition 8.18. Suppose O and O0 are translation-invariant bilinear operators on R1C4 such that
O.P !

`
� ; P !

0

`0
� / and O0.P !

`
� ; P !

0

`0
� / are disposable for every `; `0 2 �N and !;!0 2 S3. Let j < k�C ,

k <minfk0; k1; : : : ; k3g�C and C.1/; C.2/ 2 fCk.`/g, where `D j�k
2

. We have

kPk0Q<j�CO
0.��1PkQjO.Q<j�Cu

.1/

k1;C.1/
; @˛Q<j�Cu

.2/

k2;C.2/
/; @˛Q<j�Cu

.3/

k3
/kL1L2

. 2�ı1.k1�k/2�ı1.k�j /kDu.1/
k1;C.1/

kSk1 ŒCk.`/�
kDu

.2/

k2;C.2/
kSk2 ŒCk.`/�

kDu
.3/

k3
kS ; (8-44)

kPk0Q<j�CO
0.��1��1PkQj @t@˛O.Q<j�Cu

.1/

k1;C.1/
; @˛Q<j�Cu

.2/

k2;C.2/
/; @tQ<j�Cu

.3/

k3
/kL1L2

. 2�ı1.k1�k/2�ı1.k�j /kDu.1/
k1;C.1/

kSk1 ŒCk.`/�
kDu

.2/

k2;C.2/
kSk2 ŒCk.`/�

kDu
.3/

k3
kS ; (8-45)

kPk0Q<j�CO
0.��1��1PkQj @`@˛O.Q<j�Cu

.1/

k1;C.1/
; @`Q<j�Cu

.2/

k2;C.2/
/; @˛Q<j�Cu

.3/

k3
/kL1L2

. 2�ı1.k1�k/2�ı1.k�j /kDu.1/
k1;C.1/

kSk1 ŒCk.`/�
kDu

.2/

k2;C.2/
kSk2 ŒCk.`/�

kDu
.3/

k3
kS : (8-46)

8C. Proof of the interval-localized estimates. In this subsection, we prove all estimates claimed in
Section 4 except Theorem 4.24 and Proposition 4.25, which are proved in the next section.

The key technical issue we address here is passage to interval-localized frequency envelope bounds (as
stated in Section 4) from the global-in-time dyadic estimates stated in Section 8B.

In what follows, we denote by O and O disposable multilinear operators on R1C4 and R4, respectively,
which may vary from line to line. Similarly, �kI indicates a generalized time cutoff adapted to the scale 2�k,
which may vary from line to line.
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8C1. Estimates that do not involve any null forms. Here we establish Propositions 4.12, 4.13, 4.14 and
4.18, whose proofs do not involve any null forms.

Proofs of Propositions 4.12 and 4.13. We introduce the shorthand A0 D @tA and B 0 D @tB . Using (4-25)
and Lemma 8.1 we write

jDj�1PkM2
0.Pk1A;Pk2B/D 2

�kPkO.Pk1A;Pk2B
0/; (8-47)

PkQ.Pk1A;Pk2B/D 2
k2�kmaxPkO.Pk1A;Pk2B/; (8-48)

jDj�1PkQ.Pk1A;Pk2@tB/D 2
�kmaxPkO.Pk1A;Pk2B

0/; (8-49)

jDj�2PkDM2
0.Pk1A;Pk2B/D 2

�k2�kmaxPkO.Pk1A
0; Pk2B

0/: (8-50)

Step 1: fixed-time estimates. Applying Hölder and Bernstein (to one of the inputs or the output, whichever
has the lowest frequency), we obtain

kPkO.Pk1u
0; Pk2v

0/kL2 . 22kminku0kL2kv
0
kL2 : (8-51)

Recalling (8-47)–(8-50), the fixed-time estimates (4-27), (4-28) and (4-35) follow.

Step 2: space-time estimates. Here, we prove the remaining estimates in Propositions 4.12 and 4.13. In
this step, we simply extend A;B;A0; B 0 by zero outside I. Furthermore, we define

M�;2
0;small.A;B/D

X
jkmax�kminj��

PkM2
0.Pk1A;Pk2B/; (8-52)

M�;2
0;large.A;B/D

X
jkmax�kminj<�

PkM2
0.Pk1A;Pk2B/; (8-53)

so that M�;2
0 .A;B/DM�;2

0;small.A;B/CM�;2
0;large.A;B/.

Step 2.1: L2 PH 1=2-norm estimates. We first verify (4-29)–(4-34), (4-36) and (4-38) with theL2 PH 1=2-norm
(instead of the Y -norm) on the left-hand side. All of these estimates follow from (8-15) and (8-47)–(8-50).
The small factor in (4-31) arises from the exponential gain in (8-15) and the frequency gap � in (8-52),
whereas the factor "ı2M in (4-33), (4-34) and (4-38) arises from (4-21).

Step 2.2: L1L1-norm estimates. By Hölder’s inequality, we have

kPkukLp0 PW 2�3=p0;p
0
0
. kPkuk1��0

L2 PH1=2
kPkuk

�0

L1 PW �1;1
; (8-54)

where �0 D 2
�
1
p0
�
1
2

�
2 .0; 1/. Therefore, (4-29), (4-31) and (4-33) follow by combining (8-17) with the

L2 PH 1=2-norm estimates from Step 2.1. On the other hand, for (4-32) we use (8-20) instead of (8-17),
which allows us to use the DS1-norm on the right-hand side at the expense of losing the exponential
off-diagonal gain. Finally, for (4-37) and (4-38), observe that by (8-20), (8-48) and (8-49) we have

kjDj���1Q.Pk1A;Pk2B
0/kL1L1 . 2�ı1.kmax�kmin/kPk1AkDS1kjDj

��Pk2B
0
kDS1

for � D 0; 1. Therefore, the L1L1-norm bound in (4-37) follows directly, whereas the Y -norm bounds
in (4-37) and (4-38) follow after interpolating with the L2 PH 1=2-norm estimates from Step 2.1. �
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Proofs of Proposition 4.14. For this proof we use the square function L10=3x L2t component of the Sk norm,
for which we have

kukSsq
k
D 2�

3
10
k
kuk

L
10=3
x L2t

:

We recall that the symbol of �A2
0 is

�A2
0.�; �/D

j�j2

j�j2Cj�j2
:

Then we use Bernstein at the lowest frequency to estimate

kPk�A2
0.Ak1 ; @tAk2/kL2L1 . 2

�2.k2�k1/C2�
7
10
k12

3
10
k22

4
10
kminck1ck2 . 2

� 3
10
.kmax�kmin/ck1ck2 :

Now the bound (4-39) immediately follows due to the off-diagonal decay. �

Proof of Proposition 4.18. The bounds in this proposition are trivial consequences of Proposition 8.11,
along with the observation that kjDjukStr0 . krukL2 PH1=2 . We omit the details. �

8C2. Estimates for PM2, P?M2 and Rem2;�. We now present the proofs of Propositions 4.15 and
4.20, which require the bilinear null form estimates in Proposition 8.12, as well as the Xs;b;pr -type norm
estimates in Propositions 8.14, 8.15 and 8.16.

Proof of Proposition 4.15. Unless otherwise stated, we extend the inputs A;B by homogeneous waves
outside I. For k; k1; k2 2 Z, by Lemma 8.1, note that

PkPM2.Pk1A;Pk2B/D PkPO.Pk1A; @xPk2B/; (8-55)

PkP?M2.Pk1A;Pk2B/D 2
�kmaxPkO.@˛Pk1A; @

˛Pk2B/ (8-56)

for some disposable operator O on R4. Note also that, by Lemma 8.7, the right-hand sides are null forms.

Step 0: proofs of (4-40), (4-41). In view of (8-55) and (8-56), both follow easily using the standard
Littlewood–Paley trichotomy and (8-51).

Step 1: proofs of (4-42), (4-43), (4-44) and (4-45). The N -norm bounds in (4-42) and (4-43) follow from
the null form estimates (8-21)–(8-22). On the other hand, the �X1-norm bounds in (4-42) and (4-43)
follow from (8-15), (8-16) and (8-32); we remark that the �Z1p0-norm bound for P?M is unnecessary,
since PP?MD 0. Estimates (4-44) and (4-45) immediately follow from (8-15), where we may simply
extend A, @tA, B , @tB by zero outside I as in the proofs of Propositions 4.12 and 4.13 above.

Step 2: proofs of (4-46), (4-47), (4-48) and (4-49). Since the case of PM2 (i.e., estimates (4-46) and
(4-48)) can be read off from [Oh and Tataru 2018, Proof of Proposition 4.1], we will only provide a
detailed proof in the case of P?M2 (i.e., estimates (4-47), (4-49)).

Step 2.1: off-diagonal dyadic frequencies. If maxfjk� k1j; jk� k2jg � �, then by (8-22) we have

kPkP?M2.Pk1A;Pk2B/kN . 2
�ı1.kmax�kmin/kPk1AkS1kPk2BkS1

. 2�
1
2
ı1�2�

1
2
ı1.kmax�kmin/kPk1AkS1kPk2BkS1 :

Hence the contribution in the case maxfjk� k1j; jk� k2jg � � can always be put in P?M�;2
small.
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Step 2.2: balanced dyadic frequencies, short time interval. Next, we consider the case when jk�k1j< �,
jk� k2j< � and jI j � 2�kCC�. Then by Hölder and (8-56), we simply estimate

kPkP?M2.Pk1A;Pk2B/kL1L2ŒI � . jI j
1
2 kPkP?M2.Pk1A;Pk2B/kL2L2ŒI �

. jI j
1
2 2�kmaxkO.@˛Pk1A; @˛Pk2B/kL2L2

. 2C�kjDj�
3
4rAk1kL4L4ŒI �kjDj

� 3
4rBk2kL4L4ŒI �:

Therefore, when jI j � 2�kCC�, the contribution in the case maxfjk � k1j; jk � k2jg < � can be put in
P?M�;2

large.

Step 2.3: balanced dyadic frequencies, long time interval. Finally, we consider the case when jk�k1j<�,
jk� k2j< � and jI j � 2�kCC�. We define P?M�;2

large by the relationX
maxfjk�k1j;jk�k2jg<�

PkP?M2.Pk1A;Pk2B/

D

X
maxfjk�k1j;jk�k2jg<�

PkQ<kmin��P
?M2.Pk1Q<kmin��A;Pk2Q<kmin��B/CP?M�;2

large.A;B/:

By (8-25), the first term on the right-hand side gains a factor of 2�cı1�, and therefore can be put in
P?M�;2

small. Now it only remains to establish (4-49) for P?M�;2
large defined as above.

By definition, P?M�;2
large.A;B/ is the sum over f.k; k1; k2/ Wmaxfjk� k1j; jk� k2jg< �g of

PkP?M2.Pk1A;Pk2B/�PkQ<kmin��P
?M2.Pk1Q<kmin��A;Pk2Q<kmin��B/:

Since we are allowed to lose an exponential factor in � in (4-49), it suffices to freeze k; k1; k2 and estimate
the preceding expression. At this point, we divide into three subcases:

Step 2.3a: output has high modulation. When the output has modulation � 2kmin��, we use the X0;�1=21 -
component of the N -norm. Since the kernel of PkQ�kmin�� decays rapidly in t on the scale ' 2�k2C�,
we have

kPkQ�kmin��P
?M2.Pk1A;Pk2B/kX0;�1=21 ŒI �

. 2C�2�
1
2
k
k�kI P?M2.Pk1A;Pk2A/kL2L2

for some generalized cutoff function �kI adapted to the scale 2�k. Then, by Proposition 4.10,

2C�2�
1
2
k
k�kI P?M2.Pk1A;Pk2A/kL2L2 . 2

C�
k�kI jDj

� 3
4rPk1AkL4L4k�

k
I jDj

� 3
4rPk2BkL4L4

. 2C�kjDj�
3
4rPk1AkL4L4ŒI �kjDj

� 3
4rPk2BkL4L4ŒI �;

which is acceptable.

Step 2.3b: A has high modulation. Next, we consider the case when the output has modulation < 2kmin��,
yet A has modulation � 2kmin��. The kernel of PkQ<kmin�� again decays rapidly in t on the scale
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' 2�k2C�. For any 2� q �1, we have

kPkQ<kmin��P
?M2.Q�kmin��Pk1A;Pk2B/kL1L2ŒI �

. 2C�k�kI P?M2.Q�k1��Pk1A;Pk2B/kL1L2

. 2C�kjDj�
1
q�Pk1AkLq0L2k�

k
I jDj

2� 1
qrPk2BkLqL1

. 2C�kjDj�
1
q�Pk1AkLq0L2ŒI �kjDj

2� 1
qrPk2BkLqL1ŒI �;

where we used Proposition 4.10 on the last line. Taking q D 2, we see that the last line is bounded by
. 2C�k�Pk1AkL2 PH�1=2ŒI �kPk2BkDS1ŒI �, which is acceptable.

Step 2.3c: B has high modulation. Finally, the only remaining case is when the output and A have
modulation < 2kmin��, but B has modulation � 2kmin��. Proceeding as in Step 2.3b, and using the fact
that the kernel of Pk1Q<kmin�� decays rapidly in t on the scale ' 2�k2C�, we have

kPkQ<kmin��P
?M2.Q<kmin��Pk1A;Q�kmin��Pk2B/kL1L2ŒI �

. 2C�k�kI P?M2.Q<k1��Pk1A;Q�k2��Pk2B/kL1L2

. 2C�k�kI jDj
� 3
2rQ<kmin��Pk1AkL2L1kjDj

� 1
2�Pk2BkL2L2

. 2C�kjDj�
3
2rPk1AkL2L1ŒI �k�Pk2BkL2 PH�1=2ŒI �;

which is acceptable.

Step 3: proofs of (4-50) and (4-51). Since the L2 PH�1=2-norm bounds follow from (4-21), (4-44) and
(4-45), it remains to only consider the N -norm. The case of PM2 can be read off from [Oh and Tataru
2018, Proof of Proposition 4.1]. Finally, for P?M2, we split into the small and large parts as in Step 2.
For the small part, we already have

kP?M�;2
small.A;B/kNcŒI � . 2

�cı1�kAkS1c ŒI �M:

For the large part, we proceed as in Step 2, except we choose q D 9
4

in Step 2.3b. Then by (4-20), (4-21)
and the embedding

Str1ŒI �� L4L4ŒI �\L9=4L1ŒI �;

it follows that

kP?M�;2
large.A;B/kNcŒI � . 2

C�"ı1kAkS1cŒI �M:

Therefore, choosing 2�� D "c with c > 0 sufficiently small, (4-51) follows. �

Remark 8.19. As a corollary of the preceding proof in the case of PM2, we obtain the following
statement: let O be a disposable operator on R4, and let A;B be g-valued functions (or 1-forms) on I.
Then we have

kPk.O.@iPk1A; @jPk2B/�O.@jPk1A; @iPk2B//kNŒI�

. 2C.kmax�kmin/2kkPk1AkDS1ŒI �kPk2BkDS1ŒI �: (8-57)
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Moreover, if .B; I / is .";M/-energy-dispersed, then

kPk.O.@iPk1A; @jPk2B/�O.@jPk1A; @iPk2B//kNŒI�. 2
C.kmax�kmin/2k"cı1kPk1AkS1ŒI �M: (8-58)

Proof of Proposition 4.20. We decompose Rem�;2A B into

Rem�;2A B D Rem�;2
PxA

BCRem�;2
P?A

BCRem�;2A0 B;

where

Rem�;2
PxA

B D
X

k;k1;k2
k1�k2��

2PkŒP`Pk1A; @
`Pk2B�; (8-59)

Rem�;2
P?A

B D
X

k;k1;k2
k1�k2��

2PkŒPk1P
?
` A; @

`Pk2B�; (8-60)

Rem�;2A0 B D�
X

k;k1;k2
k1�k2��

2PkŒPk1A0; Pk2@tB�: (8-61)

By Littlewood–Paley trichotomy, note that the summands on the right-hand sides of (8-59)–(8-61) vanish
unless k� k1 � �CC .

Unless otherwise stated, we extend B by homogeneous waves outside I. For (8-59), we extend A by
homogeneous waves outside I and for (8-60)–(8-61), we extend P?

`
A and A0 by zero outside I. (Of

course P? of the extended A does not coincide with such an extension of P?A outside I, but this will
not be an issue.)

Step 1: proofs of (4-77) and (4-78). The N -norm bound in (4-77) follows from Lemma 8.7 and (8-21) for
Rem�;2

PxA
B , and (8-23) for Rem�;2

P?A
B , Rem�;2A0 B . On the other hand, for the�X1-norm bound in (4-77),

we apply (8-15), (8-16), (8-32) to Rem�;2
PxA

B , and (8-18), (8-19) and (8-40) to Rem�;2
P?A

B , Rem�;2A0 B .
Finally, (4-78) follows from (8-15) and (8-18).

Step 2: proofs of (4-79), (4-80) and (4-81). The term Rem�;2A0 B can be put in Rem�;2A;largeB , since for each
triple .k; k1; k2/ within the range k1 � k2� �, by (8-23) we have

kPkŒPk1A0; Pk2@tB�kL1L2ŒI � D kPkO.�IPk1A0; �IPk2@tB/kL1L2

. 2k2�k1kPkO.�I jDjPk1A0; �I jDj
�1Pk2@tB/kL1L2

. 2�2�ı1.kmax�kmin/kPk1A0kL2 PH3=2ŒI �
kPk2BkDS1ŒI �:

Similarly, the term Rem�;2
P?A

B can be put in Rem�;2A;largeB . Moreover, the contributions of these two terms
to (4-81) are clearly acceptable, since they need not gain any small factor.

It remains to handle the term Rem�;2
PxA

B . We proceed differently according to the length of I. If
jI j � 2�kCC�, we define

Rem�;2A;smallB D
X

k;k1;k2Wk1�k2��
maxfjk1�k2j;jk1�kjg�C0�

2PkŒP`Pk1A; @
`Pk2B�;
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and if jI j � 2�kCC� , we define

Rem�;2A;smallB D
X

k;k1;k2Wk1�k2��;
maxfjk1�k2j;jk1�kjg�C0�

2PkŒP`Pk1A; @
`Pk2B�

C

X
k;k1;k2

maxfjk1�k2j;jk1�kjg<C0�

2PkQ<kmin�C0� ŒP`Pk1Q<kmin�C0�A; @
`Pk2Q<kmin�C0�B�:

In both cases, we put the remainder Rem�;2
PxA

B �Rem�;2A;smallB in Rem�;2A;largeB .
Choosing C0 > 0 large enough (depending on ı1), it follows from Lemma 8.7, (8-21) and (8-24) that

Rem�;2A;smallB obeys the desired bound (4-79); this bound is also acceptable for (4-81). On the other hand,

the contribution of Rem�;2
PxA

B �Rem�;2A;smallB in (4-80) and (4-81) can be handled by proceeding as in
Steps 2.2–2.3 and 3 in proof of Proposition 4.15; for the details, we refer to [Oh and Tataru 2018, Proof
of Proposition 4.6]. �

8C3. Estimates for Diff �
P?A

B and high-modulation estimates for Diff �PAB . Next, we prove Proposi-
tions 4.21 and 4.22, which mainly concern the X�1=2Cb1;�b1 \�X1-norms of Diff �

P?A
B and Diff �PAB .

Proof of Proposition 4.21. We extend B by homogeneous waves outside I, and P?A by zero outside I.
Note that

kDP?AkY . kP?AkY 1ŒI �; kBkS1 . kBkS1ŒI �: (8-62)

To prove (4-82), we need to estimate the X�1=2Cb1;�b1 \�X1-norm of �IDiff �
P?A

B . We may write

�IDiff �
P?A

B D
X
k

2ŒP<k��P
?
` A; �I@

`PkA�D
X
k

2kO.P<k��P?A; �IPkA/:

Then by (8-18), (8-19), (8-40) and (8-42), as well as (8-62), we obtain (4-82). On the other hand, (4-83)
simply follows from Hölder’s inequality L1L1 �L1L2! L1L2. �

Proof of Proposition 4.22. We extend A;B by homogeneous waves outside I, and A0 by zero outside I.
In addition to kAkS1 . kAkS1ŒI �, observe that we have

kDA0kY . kA0kY 1ŒI �; kPAkZ1p0 . kPAkZ1p0 ŒI �; kPAk zZ1p0 . kPAk zZ1p0 ŒI �: (8-63)

Moreover, by (4-10), we have

k�IrAkS . krAkS . kAkS1ŒI �; k�IrBkS . krBkS . kBkS1ŒI �: (8-64)

We first prove (4-84), for which we need to estimate the X�1=2Cb1;�b1 \�X1-norm of �IDiff �A0B .
We may write

�IDiff �A0B D�
X
k

2ŒP<k��A0; �I@tPkB�D
X
k

O.P<k��A0; �IPk@tB/:

Then by (8-18), (8-19), (8-40) and (8-42), as well as (8-63)–(8-64), we obtain (4-84).
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For (4-85), (4-86) and (4-87), by Lemma 8.7, we may write

�IDiff �PxAB D�
X
k

2ŒP<k��P`A; �I@
`PkB�D

X
k

N .jDj�1P<k��PA; �IPkB/:

By (8-36), (8-37) and (8-39), combined with (8-15), (8-16) and the extension relations (8-63)–(8-64), we
obtain the desired estimates. �

8C4. Estimates for Diff �PAB . Here we prove Propositions 4.23, 4.26, 4.27, 4.28 and 4.30. Note that, by
the estimates proved so far in this subsection, we may now use Proposition 5.4 (see also Remark 5.5).

Before we embark on the proofs, we first establish some bilinear Z1-norm bounds that will be used
multiple times below.

Lemma 8.20. We have

kPkPM2.�IPk1A;Pk2B/k�Z1 . 2
�ı1jk1�k2jkPk1AkS1ŒI �kPk2BkS1ŒI �; (8-65)

kPkM2
0.�IPk1A;Pk2B/kL1L1 . 2

�ı1jk1�k2jkPk1AkS1ŒI �kPk2BkS1ŒI �; (8-66)

kPkŒPk1P`A; �I@
`Pk2B�k�Z1 . 2

�ı1.kmax�kmin/kPk1AkS1ŒI �kPk2BkS1ŒI �; (8-67)

kPkŒPk1G;�IrPk2B�k�Z1 . 2
�ı1.kmax�kmin/kPk1GkY 1ŒI �kPk2BkS1ŒI �: (8-68)

Moreover, for k < k1� 10, we have

k.1�Hk/PkPM2.�IPk1A;Pk2B/k�Z1 . 2
�ı1.kmax�kmin/kPk1AkS1ŒI �kPk2BkS1ŒI �; (8-69)

k.1�Hk/PkM2
0.�IPk1A;Pk2B/k�1=2�1=2Z1 . 2

�ı1.kmax�kmin/kPk1AkS1ŒI �kPk2BkS1ŒI �: (8-70)

These bounds follow from Lemma 8.7, (8-17), (8-34), (8-35), (8-38) and (8-41), where we use (8-63)
and (8-64) to absorb �I and return to interval-localized norms. We omit the straightforward details.

Proof of Proposition 4.23. As in the proof of Proposition 4.22, we extend A;B by homogeneous waves
outside I, and A0 by zero outside I. Furthermore, we extend P?A by zero outside I, and denote the
extension by G (we emphasize that, in general, G does not coincide with P?A outside I ). In addition to
(8-63) and (8-64), by Proposition 5.4 (see also Remark 5.5) we have

kAkS1 .M 1; kDA0k`1Y .M 1; kDGk`1Y .M 1: (8-71)

In the case of the L2 PH�1=2-norm on the left-hand side, (4-89) now follows easily from (8-15) and (8-18).
It remains to estimate the N -norm of Diff �Pk0PAB .

By our extension procedure, note that Pk0A0 and Pk0PxA obey the equations

�Pk0A0 D Pk0
�
Œ�IA

`; @tA`�C 2Q.A; �I@tA/C�I�A3
0.A/

�
;

�Pk0PxAD Pk0P
�
PM2.�IA;A/C 2ŒA0; �I@tA�� 2ŒG`; �I@

`A�� 2ŒP`A; �I@
`A�

�
CPk0P.�IR.A/��IRem3.A/A/:
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For the cubic and higher-order nonlinearities, by Theorem 3.5 and Proposition 4.19, we have

k�IPk0�A3
0.A/kL1L2 .M 1; (8-72)

k�IPk0R.A/kL1L2 .M 1; (8-73)

k�IPk0Rem3.A/AkL1L2 .M 1: (8-74)

For the quadratic nonlinearities, we use (8-17) for Œ�IA`; @tA`� and Q.A; �I@tA/, Lemma 8.7 and
(8-33) for PM2Œ�IA;A/, Lemma 8.7 and (8-38) for �ŒP`A; �I@`A�, and (8-41) for ŒA0; �I@tA� and
ŒG`; �I@

`A�. Combining these with the cubic and higher-order estimates and the embedding L1L2 �
�Z1\��1=2�1=2Z1, we arrive at

kPk0A0kL1L1CL2 PH3=2\��1=2�1=2Z1
.M 1; (8-75)

kPk0PxAkZ1 .M 1: (8-76)

By Lemma 8.7, (8-26), (8-27), (8-28), (8-29) and Hölder’s inequality L1L1�L1L2!L1L2, it follows
that

kPkDiff �Pk0A0Pk2BkN . kPk0A0kL1L1CL2 PH3=2\��1=2�1=2Z1
kDBkS ;

kPkDiff �Pk0PxA
Pk2BkN . kPk0PxAkS1\Z1kDBkS :

Thanks to the frequency gap � � 5, note furthermore that the left-hand sides vanish unless kD k2CO.1/.
This completes the proof of Proposition 4.23. �

Proof of Proposition 4.26. Estimate (4-94) follows easily using Hölder and Bernstein. To prove (4-95),
we extend PA;B by homogeneous waves outside I, so that kPk1�PAkL1L2 � kPk1�PAkL1L2ŒI � and
kPk2BkS1 . kPk2BkS1ŒI �. Moreover, by the embedding L1L2 �N \�Z1, we have

kPk1PAkS1\Z1 . kPk1rPA.t0/kL2 CkPk1�PAkL1L2ŒI �:

Then (4-95) follows by Lemma 8.7, (8-26) and (8-28). �

Proof of Proposition 4.27. Here, in addition to the bilinear null forms (Lemma 8.7), we need to use the
secondary null structure (Lemma 8.10).

Without loss of generality, we set t0 D 0. We extend B , B.1/ and B.2/ by homogeneous waves
outside I, and then define A0 and PA by solving (4-96) and (4-97), respectively.9 In A0 and PA, we
separate out the (high� high! low) interaction terms by defining

Ahh0 D
X

k;k1;k2
k<k1�10

��1PkŒPk1B
.1/`; Pk2@tB

.2/

`
�;

PAhh D
X

k;k1;k2
k<k1�10

��1PkP ŒPk1B
.1/`; @xPk2B

.2/

`
�;

9We may put in �I on the right-hand sides of (4-96) and (4-97), but it is not necessary.
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where ��1f refers to the solution to the inhomogeneous wave equation �uD f with .u; @tu/.0/D 0.
We also introduce

HAhh0 D
X

k;k1;k2
k<k1�10

��1HkPkŒPk1B
.1/`; Pk2@tB

.2/

`
�;

HPAhh D
X

k;k1;k2
k<k1�10

��1HkPkP ŒPk1B
.1/`; @xPk2B

.2/

`
�:

Accordingly, we split

Diff �PAB D
X
k

�
2ŒP<k��.A0�HAhh0 /; @

0PkB�C 2ŒP<k��.P`A�HP`A
hh/; @`PkB�

�
(8-77)

C

X
k

�
2ŒP<k��HAhh0 ; @

0PkB�C 2ŒP<k��HP`A
hh; @`PkB�

�
: (8-78)

By Propositions 4.12, 4.15 and Lemma 8.20, we have

kA0kY 1
cd
CkA0�A

hh
0 kL1L1cd

CkAhh0 kY 1
cd
CkAhh0 �HAhh0 k��1=2�1=2Z1

cd
. kB.1/kS1c kB

.2/
kS1
d
;

kPAkS1
cd
CkPAhh�HPAhhkZ1

cd
. kB.1/kS1c kB

.2/
kS1
d
:

Combining these bounds with Lemma 8.7, (8-26), (8-27), (8-28), (8-29) and Hölder’s inequality L1L1�
L1L2! L1L2, it follows that



X

k

ŒP<k��.A0�HAhh0 /; @
0PkB�






Nf

. kB.1/kS1c kB
.2/
kS1
d
kBkS1e ;



X

k

ŒP<k��.P`A�HP`A
hh/; @`PkB�






Nf

. kB.1/kS1c kB
.2/
kS1
d
kBkS1e ;

which handles the contribution of (8-77). On the other hand, unraveling the definitions, we may rewrite
(8-78) as

(8-78)D
X�

Q<j�CO0.��1PkQjO.Pk1Q<j�CB
.1/; @0Pk2Q<j�CB

.2//; @0Q<j�CPk3B/

CQ<j�CO0.��1PkQjP`O.Pk1Q<j�CB
.1/; @xPk2Q<j�CB

.2//; @`Q<j�CPk3B/
�

for some disposable operators O and O0, where the summation is taken over the range f.k; k1; k2; k3/ W
k < k1� 10; k < k3� �C 5g. By (8-43), it follows that

k(8-78)kL1L2
f
. kB.1/kS1c kB

.2/
kS1
d
kBkS1e ;

which is acceptable. Finally, for the L2 PH�1=2-norm of Diff �PAB , note that (8-15) and the preceding
bounds imply

kPk.Diff �PAB/kL2 PH�1=2 . ck��dk��ek;

which is better than what we need. �
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Proof of Proposition 4.28. As in the preceding proof, we extend B , B.1/ and B.2/ by homogeneous
waves outside I. This time, however, we also extend PA by homogeneous waves outside I. We moreover
extend B0 and P?B.1/ by zero outside I, where the latter is denoted by G.1/. Note that PA solves the
equation

�PADP
�
ŒP`B

.1/; �I@
`B.2/�C ŒB

.1/
0 ; �I@

0B.2/�C ŒG
.1/

`
; �I@

˛B.2/�
�
:

By Lemma 8.20 and the frequency envelope bounds (4-100)–(4-101), it follows that

kPAkZ1
cd
. .kB.1/kS1cŒI �Ck.B

.1/
0 ; G.1//kY 1c ŒI �/kB

.2/
kS1
d
ŒI � � 1: (8-79)

On the other hand, recall that kPAkS1a � 1 by (4-101). Therefore, by Lemma 8.7, (8-26) and (8-28), we
have

kDiff �PxABkNf . 1:

On the other hand, by (8-15), we also have

kPk.Diff �PxAB/kL2 PH�1=2 . ak��ek;

which is better than what we need. The desired estimate (4-102) follows. �

Proof of Proposition 4.30. We move the problem to the entire real line using the free-wave extension for
PAx and B , and the zero extension for A0.

The expression jDj�1Œr;Diff �PA�B is a translation-invariant bilinear expression in PA and B , whose
Littlewood–Paley pieces can be expressed in the form

jDj�1Œr;Diff �Pk0PA�PkB D 2
k0�kO.Pk0PA˛; @˛PkB/; k0 < k� �; (8-80)

with O disposable. By (8-9) the spatial part is a null form, so we can rewrite the above expression as

2�kN .Pk0PAx; PkB/C 2k
0�kO.Pk0A0; Pk@tB/:

We consider separately the spatial part and the temporal part. For the spatial part we use the bound (8-21)
to estimate

k2�kN .Pk0PAx; PkB/kN . 2�ı1jk�k
0j
kP 0kPAkS1kBkS1 ;

which suffices after summation in k0 < k� �.
For the temporal part we use instead the bound (8-23), which yields

k2k
0

O.Pk0A0; PkB/kL1L2 . 2�ı1jk�k
0j
kP 0kDA0kL2 PH1=2kBkS1 ;

which again suffices.
The expression Diff �Pk0PAB � .Diff �Pk0PA/

�B is easily seen to have the same form as in (8-80), so the
same estimate follows. �
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8C5. Estimates involving W . Here we prove Propositions 4.16, 4.17 and 4.29, which involve w20 and w2x .

Proof of Proposition 4.16. By definition (3-29), we have

Pkw20.Pk1A;Pk2B; s/D�2PkW .Pk1@tA;Pk2�B; s/:

Applying Lemma 8.2 to the expression on the right-hand side, we have

PkW .Pk1@tA;Pk2�B; s/D�hs2
2k
i
�10
hs�12�2kmaxi

�12�2kmax22k2PkO.Pk1@tA;Pk2B/ (8-81)

for some disposable operator O on R4. The rest of the proof follows that of Proposition 4.12. First, by
(8-51), it follows that

kjDj�1Pkw20.Pk1A;Pk2B; s/kL2

. hs22ki�10hs�12�2kmaxi
�122.kmin�kmax/2k2�kkPk1@tAkL2kPk2Bk PH1 :

From this dyadic bound, the frequency envelope bound (4-52) follows. Indeed, for any 0 < ı0 < 4ı and
any ı0-admissible frequency envelopes c; d , we compute

hs22ki�10hs�12�2kmaxi
�12�ı.kmax�kmin/ck1dk2 . hs2

2k
i
�10
hs�12�2kmaxi

�12�
1
2
ı.kmax�kmin/ckdk

. hs22ki�10hs�12�2ki�
1
4
ıckdk; (8-82)

which proves (4-52). The estimate (4-53) follows in a similar manner from (8-51).
Next, extending @tA and B by zero outside I, then applying (8-15) and (8-17), it follows that

kjDj�1Pkw20.Pk1A;Pk2B; s/kL2 PH�1=2ŒI �

. hs22ki�10hs�12�2kmaxi
�12�ı1.kmax�kmin/22.k1�kmax/kPk1AkStr1ŒI �kPk2BkStr1ŒI �;

kjDj�2Pkw20.Pk1A;Pk2B; s/kL1L1ŒI �

. hs22ki�10hs�12�2kmaxi
�122.k1�kmax/kPk1AkS1ŒI �kPk2BkS1ŒI �:

Using (4-21) and (8-54), these two bounds imply (4-54) and (4-55), as in the proof of Proposition 4.12,
Step 2. �

Proof of Proposition 4.17. We begin with algebraic observations. By (3-30), we have

PkPjw2.Pk1A;Pk2B; s/D� 2PkPjW .Pk1@tA
`; @xPk2@tB`; s/

C 4PkPjW .Pk1P@tA
`; @`Pk2@tB; s/

C 4PkPjW .Pk1P
?@tA

`; @`Pk2@tB; s/; (8-83)

where, by Lemma 8.2, we may write

PkPjW .Pk1@tA
`; @xPk2@tB`; s/

D hs22ki�10hs�12�2kmaxi
�12�2kmaxPkPjO.Pk1@tA

`; @xPk2@tB`/; (8-84)
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PkPjW .Pk1@tPA
`; @`Pk2@tB; s/

D�2hs22ki�10hs�12�2kmaxi
�12�2kmaxPkO.P`Pk1@tA; @

`Pk2@tB/; (8-85)

PkPjW .Pk1@tP
?A`; @`Pk2@tB; s/

D�2hs22ki�10hs�12�2kmaxi
�12�2kmaxPkO.Pk1@tP

?
` A; @

`Pk2@tB/ (8-86)

for some disposable operator O on R4. Note that (8-84) and (8-85) are null forms according to Lemma 8.7,
and (8-86) is favorable since @tP?A is controlled in the L2 PH 1=2-norm.

Given the above formulas for wx , the proof of the estimates (4-56) and (4-57) is almost identical to
the proof of (4-52) and (4-53), using the dyadic bounds (8-51), (8-51) and (8-82).

We now prove (4-58). We extendA;B by homogeneous waves outside I. By (8-15), (8-16), Lemma 8.7,
(8-21) and (8-32), it follows that

kPkPjW .Pk1@tA; @xPk2@tB; s/kN\�X1

. hs22ki�10hs�12�2kmaxi
�12�ı1.kmax�kmin/2k1Ck2�2kmaxkPk1AkS1kPk2BkS1 ;

kPkPjW .Pk1@tPA; @xPk2@tB; s/kN\�X1

. hs22ki�10hs�12�2kmaxi
�12�ı1.kmax�kmin/2kCk2�2kmaxkPk1AkS1kPk2BkS1 ;

kPkPjW .Pk1@tP
?A; @xPk2@tB; s/kN\�X1

. hs22ki�10hs�12�2kmaxi
�12�ı1.kmax�kmin/22k2�2kmaxkPk1@tP

?Ak
L2 PH1=2kPk2BkS1 :

Clearly, 2k1Ck2�2kmax , 2kCk2�2kmax and 22k2�2kmax are bounded, so they may be safely discarded. By the
same frequency envelope computation (8-82) as before, we obtain (4-58).

In the energy-dispersed case (4-59), we proceed as in the proofs of Propositions 4.15 and 4.20. The
contribution of (8-86) is already acceptable, since we need not gain any smallness factor. Moreover, for
the contribution of (8-84) and (8-85), the case of L2 PH�1=2 on the left-hand side can be easily handled
using (8-15) and (4-21); we omit the details.

It remains to consider only the N -norm of (8-84) and (8-85). For a parameter � > 0 to be chosen
below, the preceding proof of (4-58) implies that in the case kmax� kmin � �, we have

k(8-84)kN Ck(8-85)kN . hs22ki�10hs�12�2kmaxi
�12�

1
2
ı1�2�

1
2
ı1.kmax�kmin/kPk1AkS1kPk2BkS1 :

On the other hand, when kmax � kmin � �, we may apply Lemma 8.7 (in particular, (8-13) and (8-14))
and Remark 8.19, which implies

k(8-84)kN Ck(8-85)kN . hs22ki�10hs�12�2kmaxi
�12C�"cı1kPk1AkS1M:

Choosing 2� D "c for a sufficiently small c > 0, and performing a similar frequency envelope computation
as in (8-82), we arrive at (4-59). �

Proof of Proposition 4.29. We first note that both w0 and wx depend on @tB1, for which we control
k@tB1kSc and kP?@tB1kYc . We may assume that

k@tB
.1/
kScŒI �; kP

?@tB
.1/
kYcŒI �; kB

.2/
kS1
d
ŒI �; kBkS1e ŒI � � 1:
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We can now extend @tB1 by zero outside I, and B.2/ and B by free waves. Then the problem is reduced
to the similar problem on the real line. We begin with the simpler L2 PH�1=2 bound. For that we use
(4-53) and (4-58) to obtain

kPkw0kL2 PH�1=2 CkPkwxkN\�X1 . hs22k
0

i
�10
hs�12�2kmaxi

�ı2ckdk (8-87)

and then conclude with (8-15) and (8-18).
It remains to prove the N bound. We define

I.k0; k1; k2; k; s/

D
�
�Œ��1Pk0w

2
0.Pk1B

.1/; Pk2B
.2/; s/; @tPkB�C Œ��1Pk0P`w2x.Pk1B

.1/; Pk2B
.2/; s/; @`PkB�

�
;

so that

Diff �PAB D
X

k0;k1;k2;kWk0<k��

I.k0; k1; k2; k/

on I. Introducing the shorthand

kmax Dmaxfk0; k1; k2g; kmin Dminfk0; k1; k2g

and

˛.k0; k1; k2; s/D hs2
2k0
i
�10
hs�12�2kmaxi

�12�cı1.kmax�kmin/;

we claim that

kI.k0; k1; k2; k; s/kN . ˛.k0; k1; k2; s/ck1dk2ek : (8-88)

This would conclude the proof of the proposition after summation with respect to k1 and k2.
We start with a simple observation, namely that we can easily dispense with the high modulations of

@tB1 and B2 using Lemma 8.2, combined with Hölder and Bernstein inequalities and also (8-26) and
(8-30). Thus from here on we assume that

Pk1@tB
.1/
D Pk1Q<k1@tB

.1/; Pk2@tB
.2/
D Pk2Q<k2@tB

.2/:

In view of (8-83) and the identity

w20.A;B; s/D�2W .@tA; @
2
tB; s/� 2W .@tA;�B; s/;

we may expand

I.k0; k1; k2; k; s/D 2ŒPk0��1W .Pk1@tB
.1/;�Pk2B

.2/; s/; @tPkB�

C 4Œ��1Pk0P`W .Pk1P@tB
.1/;m; @mPk2@tB

.2/; s/; @`PkB�

C 4Œ��1Pk0P`W .Pk1P
?@tB

.1/;m; @mPk2@tB
.2/; s/; @`PkB�

C 2Œ��1Pk0W .Pk1@tB
.1/; @tPk2@tB

.2/; s/; @tPkB�

� 2Œ��1Pk0P`W .Pk1@tB
.1/;m; @xPk2@tB

.2/
m ; s/; @`PkB�

D I.1/C I.2/C I.3/C I.4/C I.5/: (8-89)
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The first term is easily estimated in L1L2 using Lemma 8.2 and Hölder and Bernstein inequalities by

kI.1/kL1L2 . kPk0��1W .Pk1@tB
.1/;�Pk2B

.2/; s/kL1L1k@tPkB�kL1L2

. hs22k
0

i
�10
hs�12�2kmaxi

�12
1
2
.kmin�kmax/k@tPk1B

.1/
k
L2 PW 1;8k�Pk2B

.2/
k
L2 PH�1=2

ek;

which suffices.
To continue, we use (8-23), (8-33) and the embedding L1L2 ��Z1, and we have

kPk0P`W .Pk1P@tB
.1/; @xPk2@tB

.2/; s/kN\�Z1 . ˛.k0; k1; k2; s/ck1dk2 ;

kPk0P`W .Pk1P
?@tB

.1/; @xPk2@tB
.2/; s/kN\�Z1 . ˛.k0; k1; k2; s/ck1dk2 :

This yields

k��1Pk0P`W .Pk1P@tB
.1/; @xPk2@tB

.2/; s/kS\Z1 . ˛.k0; k1; k2; s/ck1dk2 ;

k��1Pk0P`W .Pk1P
?@tB

.1/; @xPk2@tB
.2/; s/kS\Z1 . ˛.k0; k1; k2; s/ck1dk2 :

We use this directly for the next two terms I.2/ and I.3/, arguing in a bilinear fashion. The desired N
bound for both is obtained using both (8-26) and (8-30) with � D 0.

The final two terms are combined together in a trilinear null form,

I.4/C I.5/ D Diff �
P QA
B;

where
QA0 D�

�1Pk0W .Pk1@tB
.1/; @tPk2@tB

.2/; s/;

Ax D��1Pk0P`W .Pk1@tB
.1/;m; @xPk2@tB

.2/
m ; s/:

At this point we have placed ourselves in the same setting as in the proof of Proposition 4.27. Then the
same argument applies, with the only difference that, due to Lemma 8.2, we obtain an additional factor of

hs22k
0

i
�10
hs�12�2kmaxi

�12�2kmax2k1Ck2

as needed. Here the factors 2k1 and 2k2 come from one time derivative on B.1/ and B.2/, respectively, at
low modulation. Thus the N bound for I.4/C I.5/ follows. �

8C6. Estimates for Rem3.A/B and Rem3s .A/B . Finally, we sketch the proof of Proposition 4.19.

Proof of Proposition 4.19. By Hölder and Bernstein inequalities, it suffices to show that the following
nonlinear maps are Lipschitz and envelope-preserving:

Str1 3 A! .DA0;DA/ 2 L2� PH
1
2
C
\L2C PH

1
2
�;

Str1 3 A!A0 2 L
2 PH

3
2 :

The same applies for the maps

Str1 3 A!DA0;s 2 L
2� PH

1
2
C
\L2C PH

1
2
�;

Str1 3 A!A0Is 2 L
2 PH

3
2 ;

with the addition that now the output has to be also concentrated at frequency k.s/.
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The A0 property is a consequence of (4-30) for the quadratic term, and (3-23) for the cubic part A3
0 .

Similarly, the A0Is property is a consequence of (4-53) for the quadratic term, and (3-36) for the cubic
part A3

0Is .
The DA property follows from (a minor variation of) (4-36) for the quadratic part, and (3-18) for the

cubic part DA3.
Finally, the DA0 property is a consequence of (a small variation of) (4-30) for the quadratic part and

of (3-24) for the cubic part. Similarly, for DAs
0 we need (a small variation of) (4-53) and of (3-37). �

8D. Proof of the global-in-time dyadic estimates. In this subsection, we prove the global-in-time dyadic
estimates stated in Section 8B.

8D1. Preliminaries on orthogonality. Let O be a translation-invariant bilinear operator on R1C4. Consider
the expression “

u.0/O.u.1/; u.2// dt dx: (8-90)

Our general strategy for proving the dyadic estimates stated in Section 8B will be as follows: decompose
u.i/ by frequency projection into various sets, estimate each such piece, and exploit vanishing (or
orthogonality) properties of (8-90), which depend on the relative configuration of the frequency supports
of u.i/’s, to sum up. Some simple examples of orthogonality properties of (8-90) that we will use are as
follows:

Littlewood–Paley trichotomy: If u.i/ D Pk1u
.i/, then (8-90) vanishes unless the largest two numbers of

k0; k1; k2 are part by at most (say) 5. This property has already been used freely.

Cube decomposition: If u.i/DPkiPCiu
.i/ with CiDCkmin.0/ (i.e., is a cube of dimension 2kmin�� � ��2kmin)

situated in fj�j ' 2ki g, then (8-90) vanishes unless C0C C1C C2 3 0.
To obtain more useful statements, let Cmax, Cmed and Cmin denote the reindexing of the cubes C0, C1

and C2, which are situated at the annuli fj�j ' 2kmaxg, fj�j ' 2kmedg and fj�j ' 2kming, respectively. Then
for every fixed Cmin and Cmax (resp. Cmed), there are only O.1/-many cubes Cmed (resp. Cmax) satisfying
CminC CmedC Cmax 3 0. Moreover, we have

j†.Cmax;�Cmed/j. 2kmax�kmin :

Geometrically, such cubes Cmax and Cmed are “nearly antipodal”.

We will also exploit the relationship between modulation localization and angular restriction for (8-90).
In the proofs below, we will only need the following simple statement. For a more complete discussion,
see, e.g., [Tao 2001].

Lemma 8.21 (geometry of the cone). Consider integers k0;k1;k2;j0;j1;j22Z such that jkmed�kmaxj�5.
For i D 0; 1; 2, let !i �S3 be an angular cap of radius ri < 2�5, ˙i 2 fC;�g, and u.i/ 2 S.R1C4/ have
frequency support in the region fj�j ' 2ki ; �=j�j 2 !i ; j� �˙i j�jj ' 2ji g. Suppose that jmax � kmin, and
define `D 1

2
minfjmax� kmin; 0g.
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Then the expression (8-90) vanishes unless

j†.˙i!i ;˙i 0!i 0/j. 2kmin�minfki ;ki0g2`Cmaxfri ; ri 0g

for every pair i; i 0 2 f0; 1; 2g .i ¤ i 0/.

Finally, we collect some often-used estimates. For k0 � k and `0 < �5, note that

2�
5
6
k
kPCk0 .`0/ukkL2L6 C 2

�k0� 1
2
k2�

1
2
`0
kPCk0 .`0/ukkL2L1 . kPCk0 .`0/ukkSkŒCk0 .`0/�;

where, by (4-1), we have X
C2fCk0 .`0/g

kPCukk
2
SkŒC� . kukk

2
Sk
' kukk

2
S :

Also note that, for any j � kC 2`, we haveX
!

kP !` Q<jukk
2
L1L2

. kukk2Sk ' kukk
2
S ;

by disposing of Q<j (using boundedness on L1L2) and using S ang
k
� Sk .

8D2. Bilinear estimates that do not involve any null forms. We first prove Proposition 8.11, which does
not involve any null forms.

Proof of Proposition 8.11. In this proof, we adopt the convention of writing LpLqC for LpL Qq with
Qq�1 D q�1 � ı0. In particular, if .p; q/ is a sharp Strichartz exponent with ı0 � p�1 � 1

2
� ı0, then

2.1=pC4=q�2�4ı0/kStr0k � L
pLqC.

To prove (8-15), we apply Hölder and Bernstein (on the lowest-frequency factor), where we put
uk1 in L9=4L.54=11/C and vk2 in L18L.27=13/C. The proof of (8-16) is similar, except we put vk2 in
L9L.54=23/C. The proofs of (8-18) and (8-19) are similar; for (8-18), we apply Hölder and Bernstein
with uk1 in L2L1 and vk2 in L1L2, and for (8-19) we put vk2 in L18L27=13 instead.

It only remains to establish (8-17) and (8-20). First, (8-20) follows simply by applying Hölder and
Bernstein (on the lowest-frequency factor), where we put uk1 , vk2 in L2L6. To prove (8-17), we divide
into two cases. When k � k1� 10, the desired bound follows by Hölder, where we put both uk1 and vk2
in L2L1. On the other hand, when k < k1� 10, we have k D kmin and k1 D k2CO.1/ by Littlewood–
Paley trichotomy. We decompose the inputs and the output by frequency projections to cubes of the form
Ck.0/, i.e.,

PkO.uk1 ; v
0
k2
/D

X
C; C1;C2

PkPCO.PC1uk1 ; PC2v
0
k2
/;

where C; C1; C2 2 fCk.0/g. The summand on the right-hand side vanishes except when �CC C1C C2 3 0.
For a pair C and C1 (resp. C2), there are only O.1/-many C2 (resp. C1) such that the preceding condition
holds. Moreover, there are only O.1/-many C in the annulus fj�j ' 2kg. Therefore, by Hölder and
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Cauchy–Schwarz (in C1 and C2), we have

2�2kkPkO.uk1 ; v
0
k2
/kL1L1 . 2�2k

�X
C1
kPC1uk1k

2
L2L1

�1
2
�X

C2
kPC2v

0
k2
k
2
L2L1

�1
2

. kDuk1kSkv
0
k2
kS ;

which completes the proof. �

8D3. Bilinear null form estimates for the N -norm. We now prove Proposition 8.12. We start with
a lemma quantifying the gain from the null form O.@˛. � /; @˛. � //, which is a quick consequence of
Lemmas 8.7 and 8.21.

Lemma 8.22. Let k; k1; k2; j; j1; j2 satisfy kmax�kmed � 5, j; j1; j2 � kminCC0, j1 D j CO.1/ and
j2 D j CO.1/. Define ` D minf.j � kmin/=2; 0g, and let C; C1; C2 be rectangular boxes of the form
Ckmin.`/. Then we have

PkQ<jPCO.@˛Q<j1PC1uk1 ; @˛Q<j2PC2vk2/D C2
2`PC zO.rPC1uk1 ;rPC2vk2/ (8-91)

for some universal constant C and a disposable operator zO.

Proof. By disposability of PkQ<jPC , Pk1Q<j1PC1 and Pk2Q<j2PC2 , we may harmlessly assume that
(say) j; j1; j2 < kmin� 5. Then we can take the decomposition

PkQ<jPCO.@˛Q<j1PC1uk1 ;@˛Q<j2PC2vk2/D
X

˙;˙1;˙2

PkQ
�
<jPCO.@˛Q˙1<j1PC1uk1 ;@˛Q

˙2
<j2
PC2vk2/:

By Lemma 8.21, the summand on the right-hand side vanishes (and thus (8-91) holds trivially) unless
j†.˙1C1;˙2C2/j. 2`. In such a case, (8-91) follows from the decompositions (8-11) in Lemma 8.7 and
the schematic identities

N0;˙1˙2.Q
˙1
<j1

PC1uk1 ;Q
˙2
<j2

PC2vk2/D C2
k1Ck222` zO.PC1uk1 ; PC2vk2/;

R0.Q˙1<j1PC1uk1 ;Q
˙2
<j2

PC2vk2/D C2
j 2�minfk1;k2g zO.rPC1uk1 ;rPC2vk2/;

which in turn follow from Definition 8.3 (see also Remark 8.4) and (8-12), respectively. �

Proof of Proposition 8.12. Estimates (8-21) and (8-24) were proved in [Oh and Tataru 2018, Proposi-
tion 7.1]. Estimate (8-23) is a simple consequence of Hölder and Bernstein for u0

k1
, vk2 or the output,

depending on which has the lowest frequency. In the remainder of the proof, we prove (8-22) and (8-25)
simultaneously.

Step 1: high-modulation inputs/output. The goal of this step is to prove

kPkO.@˛uk1 ; @˛vk2/�PkQ<kminO.@
˛Q<kminuk1 ; @˛Q<kminvk2/kN

. 2
kminCkmax

2 kruk1kSkrvk2kS : (8-92)

Note that this step is vacuous for (8-25). Here we do not need the null form, and simply view
O.@˛uk1 ; @

˛vk2/ as zO.ruk1 ;rvk2/ for some disposable zO.
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We begin by reducing (8-92) into an atomic form. For j; j1; j2 � kmin, we claim thatˇ̌̌̌Z
Qjwk zO.Q<j1u

0
k1
;Q<j2v

0
k2
/ dt dx

ˇ̌̌̌
. 2�

1
2
j 2kmin2

1
2
k1kwkkX0;1=21

ku0k1kSkv
0
k2
kL1L2 : (8-93)

Once we prove (8-93), by duality (recall that N � D L1L2\X0;1=21 ) we would haveX
j�kmin

kPkQjO.@˛uk1 ; @˛vk2/kN . 2
1
2
kmin2

1
2
k1kruk1kSkrvk2kL1L2 ;X

j�kmin

kPkQ<kminO.@
˛Qjuk1 ; @˛vk2/kN . 2

1
2
kmin2

1
2
k2kruk1kX0;1=21

krvk2kS ;X
j�kmin

kPkQ<kminO.@
˛Q<kminuk1 ; @˛Qj vk2/kN . 2

1
2
kmin2

1
2
k1kruk1kSkrvk2kX0;1=21

;

from which (8-92) would follow.
To prove (8-93), we decompose u0; v0; w by frequency projection to cubes of the form Ckmin.0/, i.e.,Z
Qjwk zO.Q<j1u

0
k1
;Q<j2v

0
k2
/ dt dx D

X
C0; C1; C2

Z
QjPC0wk zO.Q<j1PC1u

0
k1
;Q<j2PC1v

0
k2
/ dt dx;

where C; C1; C2 2 fCkmin.0/g.
Let Cmax, Cmed and Cmin denote the reindexing of the boxes C0, C1, C2, which are situated at the frequency

annuli fj�j ' 2kmaxg, fj�j ' 2kmedg and fj�j ' 2kming, respectively. The summand on the right-hand side
vanishes unless CmaxC CmedC Cmin 3 0. For a fixed pair Cmin and Cmax (resp. Cmed), this happens only
for O.1/-many Cmed (resp. Cmax). Moreover, note that each Ci lies within an angular sector of size
O.2kmin�ki /; hence, Q<jiPCi is disposable .i D 1; 2/. Thus, by Hölder, Cauchy–Schwarz (in Cmax

and Cmed) and the fact that there are only O.1/-many cubes Cmin situated in fj�j ' 2kming (so any `r -sums
over Cmin are equivalent), we haveˇ̌̌̌ X
C0; C1; C2

Z
QjPC0wk zO.Q<j1PC1u

0
k1
;Q<j2PC2v

0
k2
/ dt dx

ˇ̌̌̌

.




�X

C0
kQjPC0wk.t; � /k

2
L2

�1
2





L2t





�X
C1
kPC1u

0
k1
.t; � /k2L1

�1
2





L2t





�X
C2
kPC2v

0
k2
.t; � /k2

L2

�1
2





L1t

.




Qjwk





L2L2

�X
C1
kPC1u

0
k1
k
2
L2L1

�1
2

kv0k2kL1L2

. 2�
1
2
j 2kmin2

1
2
k1kwkkX0;1=21

ku0k1kSkv
0
k2
kL1L2 ;

as desired.

Step 2: proofs of (8-22) and (8-25). For j < kmin and `D .j � kmin/=2, we claim that

kPkQjO.@˛Q<juk1 ; @˛Q<j vk2/kN . 2
� 1
2
.j�kmin/2

5
2
`2

1
2
kmin2

1
2
k1kruk1kSkrvk2kS ; (8-94)
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kPkQ�jO.@˛Qjuk1 ; @˛Q<j vk2/kN . 2
� 1
2
.j�kmin/2

5
2
`2

1
2
kmin2

1
2
k2kruk1kSkrvk2kS ; (8-95)

kPkQ�jO.@˛Q�juk1 ; @˛Qj vk2/kN . 2
� 1
2
.j�kmin/2

5
2
`2

1
2
kmin2

1
2
k1kruk1kSkrvk2kS : (8-96)

Assuming that these estimates hold, we first conclude the proofs of (8-22) and (8-25). We start with
(8-22). By Step 1, it suffices to estimate PkQ<kminO.@

˛Q<kminuk1 ;Q<kminvk2/. Decomposing the
inputs and the output using Q<kmin D

P
j<kmin

Qj , and dividing cases according to which has dominant
modulation (corresponding to j in the above estimates), (8-22) follows by summing (8-94)–(8-96) over j.
To prove (8-25), observe simply that the modulation restrictions of the inputs and the output restricts the
j -summation to j < kmin� � in the preceding argument.

It remains to establish (8-94)–(8-96).

Step 2.1: proof of (8-94). Here we provide a detailed proof of (8-94); similar arguments involving
orthogonality and the null form gain will be used repeatedly in the remainder of this subsection.

We expand

PkQjO.@˛Q<juk1 ; @˛Q<j vk2/D
X

˙0;˙1;˙2

X
C0; C1; C2

PkQ
�0
j P�C0O.@

˛Q
˙1
<jPC1uk1 ; @˛Q

˙2
<jPC2vk2/;

where C0; C1; C2 2 fCkmin.`/g. By duality, in order to estimate the summand on the right-hand side, it
suffices to bound Z

PkQ
˙0
j PC0wO.@˛Q˙1<jPC1uk1 ; @˛Q

˙2
<jPC2vk2/ dt dx: (8-97)

Let Cmax, Cmed and Cmin denote the reindexing of the boxes �C, C1, C2, which are situated at the frequency
annuli fj�j ' 2kmaxg, fj�j ' 2kmedg and fj�j ' 2kming, respectively.

Note that (8-97) vanishes unless C0 C C1 C C2 3 0. Combined with the geometry of the cone
(Lemma 8.21) we see that for a fixed Cmax (resp. Cmed), (8-97) vanishes except for O.1/-many Cmin and
Cmed (resp. Cmax). By Hölder, Cauchy–Schwarz (in Cmax and Cmed) and Lemma 8.22, we obtainˇ̌̌̌ X
˙0;˙1;˙2

X
C0; C1; C2

(8-97)
ˇ̌̌̌
.
X
˙0

22`




�X

C0
kPkQ

˙0
j PC0w.t; � /k

2
L2

�1
2





L2t

�





�X
C1
krPC1uk1.t; � /k

2
L1

�1
2





L2t





�X
C2
krPC2vk2.t; � /k

2
L2

� 1
2





L1t

.
X
˙0

22`kPkQ
˙0
j wkL2L2

�X
C1
krPC1uk1k

2
L2L1

�1
2

krvk2kL1L2

. 2�
1
2
j 2

5
2
`2kmin2

1
2
k1kwk

X
0;1=2
1
kruk1kSkrvk2kL1L2 :

By duality, (8-94) follows.

Steps 1.2–1.3: proofs of (8-95)–(8-96). We now sketch the proofs of (8-95) and (8-96), which are very
similar to Step 2.1. As before, we expand each modulation projection to the ˙-parts, and decompose the
output, u, v by frequency projection to �C0; C1; C2 2 fCkmin.`/g, respectively.
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We proceed as in Step 1.1 but put the test function w in L1L2 and the input with the dominant
modulation in L2L2. Then we obtainˇ̌̌̌ X
˙0;˙1;˙2

X
C0; C1; C2

“
PkQ

˙0
�jPC0O.@

˛Q
˙1
j PC1uk1 ; @˛Q

˙2
<jPC2vk2/

ˇ̌̌̌
.2�

1
2
j 2

5
2
`2kmin2

1
2
k2kwkL1L2kruk1kX0;1=21

krvk2kS ;ˇ̌̌̌ X
˙0;˙1;˙2

X
C0; C1; C2

“
PkQ

˙0
�jPC0O.@

˛Q
˙1
�jPC1uk1 ; @˛Q

˙2
j PC2vk2/

ˇ̌̌̌
.2�

1
2
j 2

5
2
`2kmin2

1
2
k1kwkL1L2kruk1kSkrvk2kX0;1=21

:

By duality, (8-95) and (8-96) follow. �

8D4. Bilinear estimates for theXs;b;pr -type norms. Next, we prove Propositions 8.13, 8.14, 8.15 and 8.16.

Proof of Proposition 8.13. Estimates (8-26) and (8-27) were proved in [Krieger et al. 2015, equations (132)
and (133)]; note that the slightly stronger S1-norm is used on the right-hand side in [Krieger et al. 2015,
equations (132) and (133)], but the proofs in fact lead to (8-26) and (8-27). Estimates (8-28) and (8-29)
follow from slight modifications of the proofs of [Krieger et al. 2015, equations (134) and (140)] (the
Z-norm in that paper is stronger than ours), as we outline below.

For (8-28), we first recall the definition of H�. For each j < k1�C , we introduce `D 1
2
.j � k1/ and

take the decomposition

PkQ<j�CN .jDj�1Qjuk1 ;Q<j�Cvk2/D
X
!;!0

PkQ<j�CN .jDj�1P !` Qjuk1 ; P
`
!0Q<j�Cvk2/:

By the geometry of the cone (Lemma 8.21), the summand vanishes unless j†.!;˙!0/j. 2` for some
sign ˙. In this case, the null form N gains 2k1Ck22` (see Definition 8.3), and hence we have

kPkQ<j�CN .jDj�1Qjuk1 ;Q<j�Cvk2/kL1L2

.
X

!;!0Wmin˙j†.!;˙!0/j.2`

2k22`kP !` Qjuk1kL1L1kP
!0

` Q<j�Cvk2kL1L2

. 2k22.
1
2
�2b0/`

�X
!

.2.
1
2
C2b0/`kP !` QkC2`uk1kL1L1/

2

�1
2
�X
!0

kP !
0

` Q<j�Cvk2k
2
L1L2

�1
2

. 2.
1
2
�2b0/`

�X
!

.2.
1
2
C2b0/`kP !` QkC2`uk1kL1L1/

2

�1
2

kDvk2kS :

In the second inequality, we used Cauchy–Schwarz (or Schur’s test) with the fact that the !;!0 is
essentially diagonal (i.e., for a fixed !, there are only O.1/ many !0’s such that the sum is nonvanishing,
and vice versa). Summing up in j < k1�C , then using the definition of the Z1-norm, (8-28) follows.

Next, (8-29) is proved by essentially the same argument (with the same numerology) as above. Here
we do not gain 2` from the null form N, but rather from the extra factor ��1=2�1=2 in the norm
��1=2�1=2Z1. Finally, (8-30) and (8-31) follow from the preceding proofs, once we observe that the



334 SUNG-JIN OH AND DANIEL TATARU

modulation localization of uk1 restricts the j -summation to j < k1� �, which then leads to the small
factor 2�.1=2�2b0/�. �

Proof of Proposition 8.14. In view of the embedding N \�Z1 ��Z1p0, (8-32) would follow once (8-33)
is proved. Estimates (8-34) and (8-35) follow from (134) and (141) in [Krieger et al. 2015], respectively.
Moreover, when k� k1�C , (8-33) follows from (134) and (135) in [loc. cit.]. In using the estimates from
[loc. cit.], we remind the reader that theZ-norm in [loc. cit.] (which is equal to

P
kkPkQ<kukX�1=4;1=4;11

)
is stronger the Z-norm in this work. Moreover, although (134), (135) and (141) in [loc. cit.] are stated
with the S1-norm on the right-hand side, an inspection of the proof reveals that only the S -norm is used.

It remains to establish (8-33) in the case k < k1�C . By Littlewood–Paley trichotomy, note that the
left-hand side vanishes unless k D kmin and k1 D k2CO.1/. By (8-34), we are only left to show that the
�Z1-norm of

PkHkN .uk1 ; vk2/D
X

j<kCC

PkQjN .Q<j�Cuk1 ;Q<j�Cvk2/ (8-98)

is bounded by . 2kkDuk1kSkDvk2kS .
Consider the summand of (8-98). We decompose the inputs and the output by frequency projections

to rectangular boxes of the form Ck.`/, where ` D minf.j � k/=2; 0g. Then we need to consider the
expression

PkQjPC N .Q<j�CPC1uk1 ;Q<j�CPC2vk2/;

where C; C1; C2 2 fCk.`/g. This expression is nonvanishing only when �C C C1 C C2 3 0. In fact,
combined with the geometry of the cone (Lemma 8.21), we see that for each fixed C1 (resp. C2), it is
nonvanishing only for O.1/-many C and C2 (resp. C1). The null form gains the factor 2k1Ck22`. By
Hölder and Cauchy–Schwarz (in C1 and C2), we have

kPkQjN .Q<j�Cuk1 ;Q<j�Cvk2/k�Z1

D 2�
3
2
k2�

1
2
j





 X
C; C1; C2

PkQjPCN .Q<j�CPC1uk1 ;Q<j�CPC2vk2/






L1L1

. 2�
3
2
k2�

1
2
j 2k1Ck22`

�X
C1
kQ<j�CPC1uk1k

2
L2L1

�1
2
�X

C2
kQ<j�CPC2vk2k

2
L2L1

�1
2

. 2�
1
2
.k�j /2kkDuk1kSkDvk2kS :

Summing up in j < kCC , the desired estimate follows. �

Proof of Proposition 8.15. For all the estimates, the most difficult case is when k1 < k � 10 (low-high
interaction) and when uk1 has the dominant modulation, i.e., the expression PkH�k1N .jDj

�1uk1 ; vk2/.

Step 1: proof of (8-36), (8-37) and (8-38). We divide into three cases: (1) k1 � k� 10, (2) k1 < k� 10
but either the output or vk2 has the dominant modulation, or (3) k1 < k� 10 and uk1 has the dominant
modulation.
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Step 1.1: k1 � k � 10. In this case, all three bounds can be proved simultaneously. The idea is to
apply Propositions 8.12 and 8.14. Indeed, by (8-33) and the fact that the left-hand side vanishes unless
k1 D kmaxCO.1/ (Littlewood–Paley trichotomy), we see that

kPkN .jDj�1uk1 ; vk2/k�Z1 . 2
k�k1kPkjDj

�1N .uk1 ; vk2/k�Z1

. 2�Cı1.kmax�kmin/kDuk1kSkDvk2kS :

Combined with (8-21), it follows that

kPkN .jDj�1uk1 ; vk2/kN\�Z1 . 2
�Cı1.kmax�kmin/kDuk1kSkDvk2kS :

By the chain of embeddings N \�Z1 ��Z1p0 �� zZ
1
p0

, the desired bounds follow.

Step 1.2: k1 < k� 10, contribution of 1�H�
k1

. By Littlewood–Paley trichotomy, PkN .jDj�1uk1 ; vk2/
vanishes unless k1D kmin and kD kmaxCO.1/. In Steps 1.2a–1.2c below, we estimate the�Z1-norm of
Pk.1�H�

k1
/N .jDj�1uk1 ; vk2/. Then in Step 1.2d, we conclude the proof by interpolating with (8-26).

Step 1.2a: High modulation inputs/output. The goal of this step is to prove

kPkN .jDj�1uk1 ; vk2/�PkQ<k1N .jDj
�1Q<k1CCuk1 ;Q<k1vk2/k�Z1

. 2�
1
4
.k�k1/kDuk1kSkDvk2kS : (8-99)

Here there is no need for null structure, so we simply write N .jDj�1uk1 ; vk2/ D O.uk1 ;Dvk2/. We
begin by proving

kPkQ�k1O.uk1 ;Dvk2/k�Z1 . 2
�b0.k�k1/kjDj�

1
2uk1kL2L1kDvk2kS : (8-100)

For j � k1, we take the decomposition

PkQjP
!
j�k
2

O.uk1 ;Dvk2/D
X
!0

PkQjP
!
j�k
2

O.uk1 ;DP
!0
j�k
2

vk2/:

Since .j � k/=2 � k1 � k, for each fixed ! there are only O.1/-many !0 such that the summand on
the right-hand side is (possibly) nonvanishing, and vice versa. Therefore, by Hölder, Bernstein and
Cauchy–Schwarz, we have

2.�
3
4
Cb0/.j�k/2�2k

�X
!

kPkQjP
!
j�k
2

O.uk1 ;DP
!0
j�k
2

vk2/k
2
L1L1

�

. 2.�
1
2
Cb0/.j�k/2�

1
2
.k�k1/.2�

1
2
k1kuk1kL2L1/

�X
!0

.2
1
6
k2kP !

0

j�k
2

vk2kL2L6/
2

�1
2

. 2.�
1
2
Cb0/.j�k1/2�b0.k�k1/kjDj�

1
2uk1kL2L1kDvk2kS :

Summing up in j � k1, we obtain (8-100).
Next, we prove

kPkQ<k1O.uk1 ;DQ�k1vk2/k�Z1 . 2
�b0.k�k1/kjDj�

1
2uk1kL2L1kDvk2kS : (8-101)



336 SUNG-JIN OH AND DANIEL TATARU

By (4-6) and (uniform-in-j ) boundedness of Qj on L1L2, we have

kPkQ<k1f k�Z1 . 2
�b0.k�k1/kf kL1L2 : (8-102)

Therefore,

kPkQ<k1O.uk1 ;DQj vk2/k�Z1 . 2
�b0.k�k1/kPkQ<k1O.uk1 ;DQj vk2/kL1L2

. 2�
1
2
.j�k1/2�b0.k�k1/.2�

1
2
k1kuk1kL2L1/kDQj vk2kX0;1=21

. 2�
1
2
.j�k1/2�b0.k�k1/kjDj�

1
2uk1kL2L1kDvk2kS :

Then summing up in j � k1, (8-101) follows.
To conclude the proof of (8-99), note that kjDj�1=2uk1kL2L1 . kDuk1kS . Moreover, observe that

PkQ<k1O.Qjuk1 ;DQ<k1vk2/

vanishes unless j < k1C 10.

Step 1.2b: output has dominant modulation. Here we proveX
j<k1

kPkQjN .jDj�1Q<j1uk1 ;Q<j2vk2/k�Z1 . 2
�b0.k�k1/kDuk1kSkDvk2kS ; (8-103)

where j1; j2 D j CO.1/.
Let `D 1

2
.j �k1/. After taking the decompositions uk1 D

P
!0 P

!0

`
uk1 and vk2 D

P
!00 P

!00

.j�k/=2
vk2 ,

consider the expression

PkQjP
!
j�k
2

N .jDj�1Q<j1P
!0

` uk1 ;Q<j2P
!00
j�k
2

vk2/:

Using the geometry of the cone (Lemma 8.21), observe that for every fixed ! (resp. !00), the preceding
expression vanishes except for O.1/-many !0 and !00 (resp. !). Moreover, for such a triple !;!0; !00,
the null form N gains a factor of 2`. By Hölder, Bernstein (for P !

.j�k/=2
vk2) and Cauchy–Schwarz (in

!;!00), we have

kPkQjN .jDj�1Q<j1uk1 ;Q<j2vk2/k�Z1

. 2.�
3
4
Cb0/.j�k/2�2k

�X
!

kPkQjP
!
j�k
2

N .jDj�1Q<j1uk1 ;Q<j2vk2/k
2
L1L1

�1
2

. 2.�
1
2
Cb0/.j�k/2`2�

1
2
.k�k1/

�
sup
!0
2�

1
2
k1kQ<j1P

!0

` uk1kL2L1
��X

!

.2
1
6
k2kQ<j2P

!
j�k
2

vk2kL2L6/
2

�1
2

. 2�b0.k1�j /2�b0.k�k1/kDuk1kSkDvk2kS :

Summing up in j < k1, (8-103) follows.

Step 1.2c: v has dominant modulation. Next, we proveX
j<k1

kPkQ<j0N .jDj
�1Q<j1uk1 ;Qj vk2/k�Z1 . 2

�b0.k�k1/kDuk1kSkDvk2kS ; (8-104)
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where j0; j1D j CO.1/. As before, let `D .j �k1/=2. By (4-6) and (uniform-in-j ) boundedness of Qj
on L1L2, we have

kPkQ<jf k�Z1 . 2�b0.k�j /kf kL1L2 :

Hence it suffices to estimate the L1L2 norm of the output. This time, we take the decompositions
uk1 D

P
! P

!
`
uk1 and vk2 D

P
!0 P

!0

`
vk2 . By the geometry of the cone, for a fixed !, the expression

PkQ<j0N .jDj
�1Q<j1P

!
` uk1 ;QjP

!0

` vk1/

vanishes except for O.1/-many !0 and vice versa. Moreover, the null form N gains a factor of 2`. By
Hölder and Cauchy–Schwarz (in !;!0), we have

2�b0.k�j /kPkQ<j0N .jDj
�1Q<j1P

!
` uk1 ;QjP

!0

` vk2/kL1L2

. 2�b0.k�j /2
3
2
`2

1
2
k12�

1
2
j

�X
!

.2�
1
2
k12�

1
2
`
kQ<j1P

!
` uk1kL2L1/

2

�1
2
�X
!0

.2k2kQjP
!0

` vk2kX0;1=21
/2
�1
2

. 2.�
1
4
�b0/.k1�j /2�b0.k�k1/kDuk1kSkDvk2kS :

Summing up in j < k1, (8-104) is proved.

Step 1.2d: interpolation with (8-26). Combining (8-99), (8-103) and (8-104), we obtain

kPk.1�H�k1/N .jDj
�1uk1 ; vk2/k�Z1 . 2

�b0.k�k1/kDuk1kSkDvk2kS :

On the other hand, (8-26) and the embeddingN �X0;�1=21 yields a similar bound for theX0;�1=21 -norm
without the exponential gain. Nevertheless, since we have

kf k
�Z1p0

. kf k�0
�Z1
kf k

1��0

X
0;�1=2
1

;

where �0 D 2
�
1
p0
�
1
2

�
> 0,

kPk.1�H�k1/N .jDj
�1uk1 ; vk2/k�Z1p0

. 2��0b0.k�k1/kDuk1kSkDvk2kS :

Then the desired estimate for � zZ1p0 follows as well, thanks to the embedding �Z1p0 �� zZ
1
p0

.

Step 1.3: k1 < k� 10, contribution of H�
k1

. This is the most difficult case. We consider

PkH�k1N .jDj
�1uk1 ; vk2/D

X
j<k1CC

PkQ<j�CN .jDj�1Qjuk1 ;Q<j�Cvk2/:

As before, by Littlewood–Paley trichotomy, this expression vanishes unless k1Dkmin and kDkmaxCO.1/.
Recall that all three norms� zZ1p0,�Z

1
p0

and�Z1 are of the typeXs;b;p1 . To ensure the `2-summability
in ! in the definition (4-3), we go through the LpL2 norm. More precisely, by Bernstein and L2-
orthogonality of P !

.j�k/=2
, note that

kPkQjf kXs;b;p1

. 2sk2
5
2
. 1
p
� 1
2
/k2bj 2

3
2
. 1
p
� 1
2
/j
kf kLpL2 :

Since bC 3
2

�
1
p
�
1
2

�
> 0 in all of these cases by (4-4), we have

kPkQ<jf kXs;b;p1

. 2sk2
5
2
. 1
p
� 1
2
/k2bj 2

3
2
. 1
p
� 1
2
/j
kf kLpL2 : (8-105)
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Hereafter, the proofs of the three bounds differ.

Step 1.3a: proof of (8-36). We decompose the inputs and the output by frequency projections to rectangular
boxes of the form Ck1.`/. Then we need to consider the expression

PkQ<j�CPCN .jDj�1QjPC1uk1 ;Q<j�CPC2vk2/;

where C; C1; C2 2 fCk1.`/g. Note that the above expression is nonvanishing only when �CC C1C C2 3 0.
Moreover, by the geometry of the cone (Lemma 8.21), for each fixed C (resp. C2), this expression is
nonvanishing only for O.1/-many C1 and C2 (resp. C), and the null form gains the factor 2k1Ck22`.

For exponents p1; p2; q1; q2 � 2 such that p�11 C p
�1
2 D p

�1 and q�11 C q
�1
2 D 2

�1, proceeding
carefully to exploit spatial orthogonality in L2, we have

kPkQ<j�CN .jDj�1Qjuk1 ;Q<j�Cvk2/kLpL2

D





 X
C; C1; C2

PkQ<j�CPCN .jDj�1QjPC1uk1 ;Q<j�CPC2vk2/






LpL2

.




�X

C





X
C1;C2

PkQ<j�CPCN .jDj�1QjPC1uk1 ;Q<j�CPC2vk2/.t; � /





2
L2

�1
2





L
p
t

. 2`2k2


sup

C1
kQjPC1uk1.t; � /kLq1




L
p1
t





�X
C2
kQ<j�CPC2vk2.t; � /k

2
Lq2

�1
2





L
p2
t

. 2`2k2kQjuk1kLp1Lq1
�X

C2
kQ<j�CPC2vk2k

2
Lp2Lq2

�1
2

: (8-106)

We now apply (8-105) and (8-106) with

.s; b; p; p1; q1; p2; q2/D

�
5

4
�
3

p0
C

�
1

4
� b0

�
�0;�

1

4
�

�
1

4
� b0

�
�0; p0; 2; 2;

2p0

2�p0
;1

�
;

where �0 D 2
�
1
p0
�
1
2

�
. We then obtain

kPkQ<j�CN .jDj�1Qjuk1 ;Q<j�Cvk2/k� zZ1p0

. 2�.1�
1
p0
/k
2k2.�

1
4
�. 1

4
�b0/�0/.j�k/2

� 3
2
.1� 1

p0
/.j�k/

2
3
4
.j�k/2`

�kQjuk1kL2L2

�X
C2
kPC2Q<j�Cvk2k

2
Lp2L1

�1
2

. 2.�
3
4
C 1
2
.1� 1

p0
/C. 1

4
�b0/�0/.k1�j /2

.� 1
2
.1� 1

p0
/C. 1

4
�b0/�0/.k�k1/

�kQjuk1kX1;1=21

�X
C2
kDPC2vk2k

2
Sk2 ŒCk1 .`/�

�1
2

:

On the last line, we used

kQ<j�CPC2vk2kLp2L1 . 2
. 3
2
��0/`2.2��0/.k1�k2/2.2�

1
2
�0/k2kPC2vk2kSk2 ŒCk1.`/�

;

which follows from interpolation. By (4-4), the factors in front of .k1�j / and .k�k1/ are both negative.
Summing up in j < k1CC , we obtain (8-36).
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Step 1.3b: proof of (8-37). As in the proof of (8-104) (Step 1.2c), we take the decompositions uk1 DP
! P

!
`
uk1 and vk2 D

P
!0 P

!0

`
vk2 , where `D .j �k1/=2. By the geometry of the cone (Lemma 8.21),

the null form gain, Hölder, Cauchy–Schwarz (in !;!0) and Bernstein (for uk1), we have

kPkQ<jN .jDj�1QjP !` uk1 ;Q<j�CP
!0

` vk2/kLpL2

. 2.1C3.1�
1
p
//`24.1�

1
p
/k12k2

�X
!

kP !` Qjuk1k
2
LpLp

0

�1
2
�X
!0

kP !
0

` Q<j�Cvk2k
2
L1L2

�1
2

: (8-107)

Applying (8-105) and (8-107) with .s; b; p/D
�
3
2
�

3
p0
C
�
1
4
� b0

�
�0;�

1
2
�
�
1
4
� b0

�
�0; p0

�
, where �0D

2
�
1
p0
�
1
2

�
, we obtain

kPkQ<jN .jDj�1QjP !` uk1 ;Q<jP
!0

` vk2/k�Z1p0

. 2�.1�
1
p0
/k
2.
1
4
�. 1

4
�b0/�0/.j�k/2

� 3
2
.1� 1

p0
/.j�k/

kPkQ<jN .jDj�1QjP !` uk1 ;Q<jP
!0

` vk2/kLp0L2

. 2.�
1
4
C. 1

4
�b0/�0C 12.1�

1
p0
//.k�k1/

kQjuk1kX9=4�3=p0C.1=4�b0/�0;3=4�.1=4�b0/�0;p01

kDvk2kS :

By our choices of b0 and p0, the overall factor in front of .k�k1/ is negative. Summing up in j <k1CC ,
we obtain the desired conclusion.

Step 1.3c: proof of (8-38). We again take the decompositions uk1 D
P
! P

!
`
uk1 and vk2 D

P
!0 P

!0

`
vk2 ,

where `D .j � k1/=2. We use (8-105) with .s; b; p/D
�
�
5
4
� b0;�

3
4
C b0; 1

�
. By the geometry of the

cone (Lemma 8.21), the null form gain, Hölder and Cauchy–Schwarz (in !;!0), we have

2b0.j�k/kPkQ<jN .jDj�1QjP !` uk1 ;Q<j�CP
!0

` vk2/kL1L2

. 2b0.j�k/2`2k2
�X
!

kQjP
!
` uk1k

2

Lp0L
p0
0

�1
2
�X
!0

kQ<j�CP
!0

` vk2k
2

L
p0
0Lq0

�1
2

. 2.b0C.
1
4
�b0/�0/.k1�j /2�b0.k�k1/2

3.1� 1
p0
/.k�k1/

�kuk1kX3.1�1=p0/�1=2C.1=4�b0/�0;1=2�.1=4�b0/�0;p01

kDvk2kS ;

where q�10 D 2
�1� .p00/

�1 and �0D 2
�
1
p0
�
1
2

�
. By our choices of p0 and b0, the overall factors in front

of .k1� j / and .k� k1/ are both negative. Summing up in j < k1, the proof is complete.

Step 2: proof of (8-39). As in Step 1, we divide into three cases.

Step 2.1: k1 � k � 10. In view of the embedding N \L2 PH�1=2 � X�1=2Cb1;�b1 for any 0 < b1 < 1
2

,
the desired bound follows from (8-15) and (8-21).

Step 2.2: k1 < k� 10, contribution of 1�H�
k1

. Consider the expression

Pk.1�H�k1/N .jDj
�1uk1 ; vk2/:

Interpolating the N -norm bound (8-26) (recall that N �X0;�1=21 ) with an L2 PH�1=2-norm bound (which
is a minor modification of (8-15)), the desired estimate for this expression follows for 0 < b1 < 1

2
.
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Step 2.3: k1 < k� 10, contribution of H�
k1

. Finally, we estimate

PkH�k1N .jDj
�1uk1 ; vk2/D

X
j<k1CC

PkQ<j�CN .jDj�1Qjuk1 ;Q<j�Cvk2/:

By (8-107), we have

2
. 1
p0
�1/k
kPkQ<j�CN .jDj�1Qjuk1 ;Q<j�Cvk2/kLp0L2

. 2.
1
2
C 3
2
.1� 1

p0
//.j�k1/2

. 1
p0
�1/k

2
4.1� 1

p0
/k12

�3.1� 1
p0
/k12.�

1
2
C. 1

4
�b0/�0/.j�k1/kuk1kZ1p0

kDvk2kL1L2

. 2.�
3
2
.1� 1

p0
/�. 1

4
�b0/�0/.k1�j /2

�.1� 1
p0
/.k�k1/

kuk1kZ1p0
kDvk2kS :

Summing up in j < k1CC and using the embedding 2.1�1=p0/kPkQ<kLp0L2 �X�1=2Cb1;�b1, which
holds by Bernstein since b1 < 1

p0
�
1
2

, the proof of (8-39) is complete. �

Proof of Proposition 8.16. As in Proposition 8.15, we divide the proof into two cases: k1 � k� 10 and
k1 < k� 10.

Step 1: k1 � k � 10. In this case, by (8-18), (8-23) and the embeddings L1L2 � �Z1p0 \�Z
1 and

L1L2\L2 PH�1=2 �X�1=2Cb1;�b1, the three bounds follow simultaneously.

Step 2: k1 < k� 10. We begin with (8-40) and (8-42). By Hölder and Bernstein, we have

2
. 1
p0
�1/k
kPkO.uk1 ; v

0
k2
/kLp0L2 . 2

�.1� 1
p0
/.k�k1/

kuk1k
Lp0 PW

2� 3
p0
;p0
0
kv0k2kL1L2

By (8-105) with .s; b; p/D
�
3
2
�

3
p0
;�1

2
; p0

�
, (8-40) follows. Moreover, by the L2 PH�1=2-norm estimate

(8-15) and the embedding PkQ<kLp0L2 �X�1=2Cb1;�b1, (8-42) follows as well.
It remains to prove (8-41). Applying (8-100) (from Step 1.2a of the proof of Proposition 8.15) with

Dvk2 D v
0
k2

and the embedding 2�3k1=2Pk1Y � L
2L1, we have

kPkQ�k1O.uk1 ; v
0
k2
/k�Z1 . 2�b0.k�k1/kDuk1kY kv

0
k2
kS :

On the other hand, by (8-102) and Hölder, we have

kPkQ<k1O.uk1 ; v
0
k2
/k�Z1 . 2�b0.k�k1/kPkO.uk1 ; v

0
k2
/kL1L2

. 2�b0.k�k1/23.1�
1
p0
/.k�k1/

kDuk1kY .2
. 3
p0
�3/k2

kv0k2kLp
0
0Lq0

/

. 2�b0.k�k1/23.1�
1
p0
/.k�k1/

kDuk1kY kv
0
k2
kS ;

where q�10 D 2
�1� .p00/

�1. By our choice of p0, the overall factor in front of .k�k1/ is negative; hence,
(8-41) follows. �

8D5. Trilinear null form estimates.

Proofs of Propositions 8.17 and 8.18. Estimate (8-43) would follow from Lemma 8.10 and the core
estimates (8-44), (8-45) and (8-46), combined with Lemma 8.21 and (4-1).
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Estimates (8-44), (8-45) and (8-46) can be established by repeating the proofs of (136), (137) and
(138) in [Krieger et al. 2015] with the following modifications:

� Thanks to the frequency localization of the inputs and the output to rectangular boxes of the type Ck.`/,
the bilinear operators O and O0 can be safely disposed of.

� Moreover, for any disposable multilinear operator M and rectangular boxes C; C0 of the type Ck.`/
situated in the annuli fj�j ' 2k1g and fj�j ' 2k2g, respectively, note that (by Lemma 8.7)

M.@˛Q˙<j�CPCuk1 ; @˛Q
˙0

<j�CPC0vk2 ; : : : /

D C2k1Ck2 maxfj†.˙C;˙0C0/j2; 2j�minfk1;k2gg zM.PCuk1 ; PC0vk2 ; : : : /

for some disposable zM, which suffices for the proofs in [Krieger et al. 2015].

We also note that although (136)–(138) in [Krieger et al. 2015] are stated with the factor 2ı.k�minfki g/

on the right-hand side, an inspection of the proofs reveals that the actual gain is 2ı.k�k1/, as claimed in
(8-44)–(8-46). We omit the straightforward details. �

9. The paradifferential wave equation

Sections 9, 10 and 11 are devoted to the proofs of Theorem 4.24 and Proposition 4.25. In this section, we
first reduce the task of proving these results to that of constructing an appropriate parametrix (Section 9A).
Parametrix construction, in turn, is reduced to constructing a renormalization operator that roughly
conjugates �CDiff �PA to �. Sections 10 and 11 are devoted proofs of the desired properties of the
renormalization operator.

9A. Reduction to parametrix construction. We start with a quick reduction of the problem (4-90). After
peeling off perturbative terms using commutator estimates (which will be sketched in more detail below),
we are led to consideration of the frequency-localized problem�

�ukC 2ŒP<k��P˛A; @˛uk�D fk;
.uk; @tuk/.0/D .u0;k; u1;k/;

(9-1)

for each k 2 Z. By scaling, we may normalize k D 0.
Our goal is to construct a parametrix to (9-1). We summarize the main properties of the parametrix in

this case, as well as the precise hypotheses on A˛ that we need, in the following theorem.

Theorem 9.1 (parametrix construction). Let A˛ be a g-valued 1-form on I �R4 such that

kAkS1ŒI �Ck�Ak`1X�1=2Cb1;�b1 ŒI � �M (9-2)

for some M > 0 and b1 > 1
4

. Let " > 0. Assume that � > �1.";M/ and

kAkDS1ŒI �Ck�Ak`1L2 PH�1=2 < ıp.";M; �1/ (9-3)
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for some functions �1.";M/� 1, 0 < ıp.";M; �1/� 1 independent of A˛ . Moreover, assume that there
exists QA˛ such that

k QAkS1ŒI �Ck.D QA0;DP? QA/kY ŒI � �M; (9-4)

k QAkDS1ŒI �Ck. QA0;P
? QA/k

L2 PH3=2ŒI �
< ıp.";M; �1/; (9-5)

and

k�A0�O. QA`; @0 QA`/k`1.�L1L1\L2 PH�1=2/ŒI � < ı
2
p.";M; �1/; (9-6)

k�PA�PO. QA`; @x QA`//�PO 0. QA˛; @˛ QA/k`1.L1L2\L2 PH�1=2/ŒI � < ı
2
p.";M; �1/; (9-7)

where O. � ; � / and O 0. � ; � / are disposable bilinear operators on R4. Then the following statements hold:

(1) Given any .u0; u1/2 PH 1�L2 and f 2N \L2 PH�1=2 such that u0; u1; f are all frequency-localized
in fC�1 � j�j � C g, there exists a g-valued function u.t/ on I which obeys

kukS1ŒI � .M k.u0; u1/k PH1�L2
Ckf k

N\L2 PH�1=2ŒI �
; (9-8)

k�uC 2ŒP<��P˛A; @˛u��f kN\L2 PH�1=2ŒI � � ".k.u0; u1/k PH1�L2
Ckf k

N\L2 PH�1=2ŒI �
/; (9-9)

kuŒ0�� .u0; u1/k PH1�L2
� ".k.u0; u1/k PH1�L2

Ckf k
N\L2 PH�1=2ŒI �

/: (9-10)

Moreover, u is frequency-localized in f.2C /�1 � j�j � 2C g.

(2) Assume furthermore that

kAxk`1S1ŒI �CkA0k`1L2 PH3=2ŒI �
< ıo.M/ (9-11)

for some ıo.M/� 1 independent of A˛ . Then the approximate solution u constructed above obeys (9-8)
with a universal constant, i.e.,

kukS1ŒI � . k.u0; u1/k PH1�L2
Ckf k

N\L2 PH�1=2ŒI �
: (9-12)

In the remainder of this subsection, we sketch the proofs of Theorem 4.24 and Proposition 4.25
assuming Theorem 9.1. Then in the rest of this section, as well as in Sections 10 and 11, our goal will be
to establish Theorem 9.1.

Lemma 9.2. (a) Let At;x and QAt;x be g-valued 1-forms on I �R4, which satisfy (9-2), (9-3), (9-4), (9-5),
(9-6) and (9-7). Then for " > 0 sufficiently small (depending on M ) and � sufficiently large (depending on
", M ), given any .u0; u1/ 2 PH 1�L2 and f 2N \L2 PH�1=2ŒI �, there exists a unique solution u 2 S1ŒI �
to the IVP �

.�CDiff �PA/uD f;
uŒ0�D .u0; u1/;

(9-13)

which obeys
kukS1ŒI � .M k.u0; u1/k PH1�L2

Ckf k
N\L2 PH�1=2ŒI �

: (9-14)

(b) If , in addition, kAk`1S1ŒI � obeys (9-11), then the solution u constructed above obeys (9-14) with a
universal constant, i.e.,

kukS1ŒI � . k.u0; u1/k PH1�L2
Ckf k

N\L2 PH�1=2ŒI �
: (9-15)
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Proof. Let uk be the function given by (the rescaled) Theorem 9.1 which is determined by the initial data
.Pku0; Pku1; Pkf /. We set

uapp D
X
k0

uk0 :

We claim u is a good approximate solution to (9-13) in the sense that in any subinterval J � I we have
kuappkS1ŒJ � .M k.u0; u1/k PH1�L2

Ckf k
N\L2 PH�1=2ŒJ �

; (9-16)

kuappŒ0�� .u0; u1/k PH1�L2
. ".k.u0; u1/k PH1�L2

Ckf k
N\L2 PH�1=2ŒJ �

/; (9-17)

and
k.�CDiff�PA/uapp�f kN\L2 PH�1=2ŒJ �

.M ."C2�ı2�C2C�.kPAk`1DS1ŒI �CkA0k`1L2 PH3=2ŒJ �
//

�.k.u0;u1/k PH1�L2
Ckf k

N\L2 PH�1=2ŒJ �
/: (9-18)

Assume that we have these bounds. Then the solution u to (9-13) is obtained as follows:

(i) We choose � large enough so that 2�ı2 �M 1.

(ii) We divide the interval I into subintervals Jj so that

2C�kPAkDS1ŒI �CkA0kL2 PH3=2ŒIj �
�M 1:

(iii) Within the interval J1 we now have small errors for the approximate solution uapp; hence we can
obtain an exact solution by reiterating.

(iv) We successively repeat the previous step on each of the subintervals Ij .

It remains to prove the bounds (9-16), (9-17) and (9-18). The first two follow directly from (9-8) and
(9-9) for uk after summation in k. We now consider (9-18), where we write

.�CDiff �PA/u�f D
X
k

.�ukC 2ŒP<k��PA˛; @˛uk��Pkf /C
X
k

gk;

where
gk D 2ŒP<k��PA˛; @

˛uk��
X
k0

ŒP�k0��PA˛; @
˛Pk0uk�

The first sum is estimated directly via (9-9), so it remains to estimate gk . We write

gk D g
1
kCg

2
k;

where
g1k D

X
k0DkCO.1/

Pk0 ŒP�k0��PA˛; @
˛Pk0uk�� ŒP�k0��PA˛; @

˛Pk0uk�;

g2k D
X

k0DkCO.1/

ŒPŒ�k0��;k��/PA˛; @
˛Pk0uk�:

Here g1
k

has a commutator structure, so we can estimate it as in Proposition 4.30, yielding a 2�ı2� factor.
For the expression g2

k
, on the other hand, we can apply Proposition 4.20 to split it into a small part and a

large part which uses only divisible norms. Thus (9-18) follows, and the proof of the lemma is concluded.
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(b) The same iterative construction applies, but no we no longer need to subdivide the interval as (9-11)
ensure that the divisible norms in (9-18) are actually small. �

Proof of Theorem 4.24 assuming Theorem 9.1. We prove the theorem by repeatedly applying the preceding
lemma in successive intervals. To achieve this, we begin by choosing " and � depending only on M so
that Lemma 9.2 holds. It remains to ensure that we can divide the interval I into subintervals Jj where
the conditions (9-2), (9-3), (9-4), (9-5), (9-6) and (9-7) hold.

We choose QAD A. We carefully observe that we cannot use Theorem 5.1 here, as Theorem 4.24 is
used in the proof of Theorem 5.1. However, we can use the weaker result in Proposition 5.4, which
immediately gives (9-2) and (9-4) from Theorem 5.1.

The remaining bounds are for divisible norms, so it suffices to establish them with a large constant
depending on M ; then we gain smallness by subdividing. Indeed, for (9-3) and (9-5) this still follows
from Proposition 5.4.

For (9-6) we choose O.A; @0A/D ŒA; @0A�. Then we can use (3-23) and (4-37). Finally for (9-7) we
choose in addition O.A˛; @

˛A/D�2ŒA˛; @
˛A�. Then by Theorem 9.1 we have

�A�O.A; @xA/�O.A˛; @
˛A/DR.A/CRem3.A/A

and it suffices to use (3-21) and (4-74). �

Proof of Proposition 4.25 assuming Theorem 9.1. We write

At;x D A
pert
t;x CA

nonpert
t;x ;

where
A

pert
t;x D

X
k2K

PkAt;x;

with jKj DOıo.M/�1M .1/ and
kAnonpert

k`1S1ŒI � < ıo.M/:

By Proposition 4.23, it follows that the contribution of any finite number of dyadic pieces of At;x in
Diff �PA is perturbative. More precisely, for Apert, we have

kDiff �PApertBkN\L2 PH�1=2ŒI � .jKj;M kBkS1ŒI �: (9-19)
Thus B solves also

.�CDiff �PAnonpert/B D zG;

where
k zGk

N\L2 PH�1=2ŒI �
.M kGkN\L2 PH�1=2ŒI �CkBkS1ŒI �:

We now claim that Theorem 9.1 and thus Lemma 9.2 apply for Anonpert. If that were true, then the
conclusion of the proposition is achieved by subdividing the interval I into finitely many subintervals Jj ,
depending only on M, so that

(i) Lemma 9.2 applies in Jj ,

(ii) the size of the inhomogeneous term k zGk
N\L2 PH�1=2ŒI �

is small in Jj .
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Indeed, to verify the hypothesis of Theorem 9.1 with A replaced by Anonpert it suffices to leave QAD A,
unchanged, but instead replace the operators O and O 0 by

�
1�

P
k2K Pk

�
O and

�
1�

P
k2K Pk

�
O 0,

respectively, which are still disposable. �

9B. Extension and space-time Fourier projections. As in [Krieger and Tataru 2017], our parametrix
will be constructed by conjugating the usual Fourier representation formula for the˙-half-wave equations
by a renormalization operator Op.Ad.O˙/<0/; see (9-50). The renormalization operator is designed so
that it cancels the most dangerous part of the paradifferential term 2ŒPA˛;<�� ; @

˛P0u� (Theorem 9.9),
and furthermore enjoys nice mapping properties in functions spaces we use (Theorem 9.6).

9B1. Extension to a global-in-time wave. As in [Krieger and Tataru 2017], our parametrix construction
for (9-1) involves fine space-time Fourier localization of PA, which necessitates extension of PA outside I.
Here we specify the extension procedure, and collect some of its properties that will be used later.

We extend PA by homogeneous waves outside I. By (9-2), this extension (still denoted by PA) obeys
the global-in-time bound

kPAkS1 Ck�PAk`1X�1=2Cb1;�b1 .M: (9-20)

By Proposition 4.10, for any p � 2 note that

k�kIPkPAkLpL1 . kPkPAkLpL1ŒI �: (9-21)

Moreover, by (9-3), we haveX
k

kPk�PAk
L2 PH�1=2

D k�PAk
`1L2 PH�1=2ŒI �

< ıp: (9-22)

Next, we specify the extension of A0, and also of the relations (9-6) and (9-7) outside I. We first
extend QA by homogeneous wave outside I and QA0 by zero outside I. These extensions (still denoted by
QA and QA0, respectively) satisfy the global-in-time bound

k QAkS1 CkD QA0kY .M: (9-23)

In addition, we introduce the extension zG of P? QA by zero outside I. It obeys

kD zGkY .M: (9-24)

We emphasize that, in general, P? QA does not coincide with zG outside I.
Define zR0 and P zR as

zR0.t/D�A0.t/�O. QA`.t/; @t QA`.t// for t 2 I;

P zR.t/D�PA.t/�PO. QA`.t/; @x QA`.t//CPO 0. QA˛; @
˛ QA/ for t 2 I;

and 0 for t 62 I. By the hypotheses (9-6) and (9-7), we have

k zR0k`1.�L1L1\L2 PH�1=2/ < ı
2
p; (9-25)

kP zRk
`1.L1L2\L2 PH�1=2/

< ı2p: (9-26)
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We extend A0 outside I by solving the equation

�A0 DO.�I QA
`; @t QA`/C�I zR0: (9-27)

By (8-15), (8-17), (9-5), (9-23) and (9-25), it follows that

kDA0k`1Y .M 2; (9-28)

k�A0k`1L2 PH�1=2 . ı
2
p: (9-29)

Moreover, observe that the extension PA obeys the equation

�PADPO.�I QA
`; @x QA`/CPO 0.P` QA; �I@

` QA/

�PO 0. QA0; �I@t QA/CPO 0. zG`; �I@
` QA/C�IP zR: (9-30)

9B2. Space-time Fourier projections. Here we introduce the space-time Fourier projections needed for
definition of the renormalization operator. We denote by .�; �/2R�R4 the Fourier variables for the input,
and by .�; �/ 2 R�R4 the Fourier variables for the symbol, which will be constructed from PA. We
remind the reader that our sign convention is such that the characteristic cone for a˙-wave is f�˙j�jD 0g.

Consider the following (overlapping) decomposition of R1C4, which is symmetric and homogeneous
with respect to the origin:

D!;˙cone D
˚
sgn.�/.� ˙ � �!/ > 1

16
j�j�1.j�?j

2
Cj� ˙ � �!j2/

	
\
˚
sgn.�/.� ˙ � �!/ < 4

5
j� j�1.j�?j

2
Cj� ˙ � �!j2/

	
;

D
!;˙
null D

˚
j� ˙ � �!j< 1

8
j�j�1.j�?j

2
Cj� ˙ � �!j2/

	
;

D
!;˙
out D

˚
sgn.�/.� ˙ � �!/ < � 1

16
j�j�1.j�?j

2
Cj� ˙ � �!j2/

	
[
˚
sgn.�/.� ˙ � �!/ > 2

3
j� j�1.j�?j

2
Cj� ˙ � �!j2/

	
;

where �? D �� .� �!/!. See Figure 1 for a plot of these domains.
We construct a smooth partition of unity adapted to the decomposition D!;˙cone [D

!;˙
null [D

!;˙
out DR1C4

as follows. We begin with the preliminary definitions

z…
!;˙
in .�; �/Dm>1

�
4

5

�.� ˙ � �!/

.j�j2� .� �!/2/Cj� ˙ � �!j2

�
;

z…
!;˙
med .�; �/Dm>1

�
8

sgn.�/j�j.� ˙ � �!/
.j�j2� .� �!/2/Cj� ˙ � �!j2

�
;

z…
!;˙
out .�; �/Dm>1

�
�8

sgn.�/j�j.� ˙ � �!/
.j�j2� .� �!/2/Cj� ˙ � �!j2

�
;

where m>1.z/ W R! Œ0; 1� is a smooth cutoff to the region fz > 1g (i.e., equals 1 there), which vanishes
outside

˚
z > 5

6

	
. Then we define the symbols

…!;˙cone .�; �/D
z…
!;˙
med .�; �/�

z…
!;˙
in .�; �/; (9-31)

…
!;˙
null .�; �/D 1�

z…
!;˙
med .�; �/�

z…
!;˙
out .�; �/; (9-32)

…
!;˙
out .�; �/D z…

!;˙
out .�; �/C z…

!;˙
in .�; �/: (9-33)
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� �!

D
!;˙
out D

!;˙
null

� ˙ � �! D 01

D
!;˙
out D!;˙

cone

�?

j�j2 D �2

Figure 1. Sketch of D!;˙cone , D!;˙med and D!;˙out in the hyperplane f� D 1g with ˙ D �.
Note that the actual domains are defined to be slightly overlapping.

Observe that 1D…!;˙cone C…
!;˙
null C…

!;˙
out , and supp …!;˙� �D

!;˙
� for � 2 fcone; null; outg. Moreover,

by symmetry, …!;˙� preserves the real-valued property.
We also make use of a dyadic angular decomposition with respect to !. Given � > 0, we define the

symbol

…
!;˙
>�

.�; �/Dm>1

�
j†.!;� sgn.�/j�/

�

�
:

Furthermore, we define
…
!;˙
��

.�; �/D 1�…
!;˙
>�

.�; �/;

…
!;˙
�

.�; �/D .…
!;˙
>�
�…

!;˙
>�=2

/.�; �/:

Since these symbols are real-valued and odd, the corresponding multipliers (which we simply denote by
…
!;˙
>�

, …!;˙
��

and …!;˙
�

, respectively) preserve the real-valued property.
The regularity of the symbols …!;˙cone , …!;˙null and …!;˙out degenerates as j�?j ! 0; however, they

are well-behaved when composed with …!;˙
�

Ph. The following lemma will play a basic role for our
construction.

Lemma 9.3. For any fixed ˙, ! 2 S3, n 2 N, h 2 2R and � 2 fcone; null; outg, the multiplier10

�n@
.n/

�
.…

!;˙
� …

!;˙
�

Ph/ is disposable.

Proof. In this proof, we take hD 0 by scaling, and fix ˙DC. Let � 2 fcone; nullg.
We begin with some elementary reductions. First, since 1D…!;˙coneC…

!;˙
null C…

!;˙
out , and �n@.n/

�
…
!;˙
�

P0

is disposable, it suffices to prove the lemma for just …!;˙cone and …!;˙null . In this case, note that the symbol
…
!;˙
� …

!;˙
�

mh.�/ (where mh is the symbol of Ph) is compactly supported. Furthermore, the lemma is
obvious if � & 1, since then the symbol is smooth in �; �; � on the unit scale. Therefore, we may assume
that � � 1.

10We quantize .�; �/ 7! .Dt ;Dx/.
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We now consider the case n D 0, when there is no �-differentiation. We fix ! 2 S3. To ease our
computation, we introduce the null coordinate system .�; �; Q�?/, where

� D � � � �!; � D � C � �!;

and Q�? 2 R3 are the coordinates for the constant �; �-spaces. Observe that

� C � �!

j�?j2Cj� C � �!j2
D

�

j Q�?j2C �2
' 1; j�?j D j Q�?j ' �; j�j ' �

2; j�j ' 1 (9-34)

on the support of …!;˙� …
!;˙
�

m0. Moreover, � D �.�; �; Q�?/ and j�j D j�j.�; �; Q�?/ are comparable
to 1, and are also smooth on the unit scale on the support of …!;˙� …

!;˙
�

m0. Recalling the definition
of …!;˙� , it can be computed from (9-34) that

j@˛�@
ˇ
�@



Q�?
…!;˙� j. ��2jˇ j�j
 j on supp…!;˙� …

!;˙
�

m0:

On the other hand,

j@˛�@
ˇ
�@



Q�?
.…

!;˙
�

m0/j. ��j
 j on supp…!;˙� …
!;˙
�

m0;

so it follows that

j@˛�@
ˇ
�@



Q�?
.…!;˙� …

!;˙
�

/j. ��2jˇ j�j
 j: (9-35)

Furthermore, from (9-34) we have

jsupp …!;˙� …
!;˙
�

m0j. �5: (9-36)

From these bounds, we see that the multiplier …!;˙� …
!;˙
�

P0 has a kernel with a universal bound on the
mass, and thus is disposable.

Finally, we sketch the proof in the case n� 1. We first claim that

j@
.n/

�
.…!;˙� …

!;˙
�

m0/j. ��n: (9-37)

Clearly j@.n/
�
…
!;˙
�
j.n��n, so it suffices to verify that j@.n/

�
…
!;˙
� j.n��n on the support of…!;˙� …

!;˙
�

m0.
Note that

j@˛� .� �!/j.j˛j
�
�; j˛j D 1;

1; j˛j � 2
on supp…!;˙� …

!;˙
�

m0: (9-38)

Then recalling the definition of …!;˙� and using the chain rule, the claim (9-37) follows. We remark that
a differentiation in � C � �! loses ��2, but we gain back a factor of � through the chain rule and (9-38).

Next, we fix ! 2 S3 and start differentiating in .�; �; Q�?/. Using the chain rule, (9-38) and (9-34), it
can be proved that

j@˛�@
ˇ
�@



Q�?
@
.n/

�
.…!;˙� …

!;˙
�

/j. ��2jˇ j�j
 j��n: (9-39)

We omit the details. Combined with (9-36), we see that �n@.n/
�
…
!;˙
� …

!;˙
�

P0 is disposable. �
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As a corollary of the proof of Lemma 9.3, we obtain the following disposability statement.

Corollary 9.4. For any fixed ˙, ! 2 S3, h; k 2 2R and � 2 fcone; null; outg, the translation-invariant
bilinear operator on R1C4 with symbol

…
j�j�1�;˙
� …

j�j�1�;˙

2`
Ph.�; �/PkP

!
` .�/

is disposable.

Clearly, the same corollary holds with any of the continuous Littlewood–Paley projections Ph; Pk
replaced by the discrete analogue.

We also record a lemma which describes how the operator � acts in the presence of …!;˙cone…
!;˙
�

Ph.

Lemma 9.5. For any fixed˙, ! 2 S3, n 2 N and h 2 2R, the multiplier

.2�2h��2�/�n@.n/
�
.…!;˙cone…

!;˙
�

Ph/ (9-40)

is disposable.

Proof. We set hD 0 by scaling. The symbol of � is ��2C j�j2. For a fixed !, we introduce the null
coordinate system .�; �; �?/ as before. Then observe that

j@˛�@
ˇ
�@



Q�?
.��2Cj�j2/j D j@˛�@

ˇ
�@



Q�?
.���CjQ�?j

2/j. �2��2jˇ j�j
 j

on the support of …!;˙cone…
!;˙
�

P0. The lemma follows by combining this bound with the proof of
Lemma 9.3. �

9C. Pseudodifferential renormalization operator. In this subsection we define the pseudodifferential
renormalization operator, and describe its main properties.

9C1. Definition of the pseudodifferential renormalization operator. As mentioned before, the aim for
our renormalization operator is not to remove all of PA, but only the most harmful (nonperturbative) part
of it. This part is defined as

A
main;˙
j;<h

D…
!;˙

�j�jı
…!;˙coneP<h.PA/j : (9-41)

Precisely, given a direction !, it selects the region which is both near the cone in a parabolic fashion near
the direction !, but also away from !, on an angular scale that is slowly decreasing as the frequency �
of A approaches 0. We emphasize that this decomposition depends on !, which is what will make our
renormalization operator a pseudodifferential operator.

To account for the fact that our gauge group is noncommutative, and also to better take advantage of
previous work in this area, we divide the construction of the renormalization operator in two steps. The
first step is microlocal but linear, and mirrors the renormalization construction in the (MKG) case; see
[Krieger et al. 2015; Oh and Tataru 2018]. Precisely, we define the intermediate symbol

‰˙;<h D�L
!
��
�1
!?
A

main;˙
j;<h

!j : (9-42)

Here the operator L!
�
��1
!?

is chosen as a good approximate inverse for L!
˙

, within the frequency-
localization region for Amain;˙

j;<h
. In effect this frequency-localization region is chosen exactly so that this
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property holds within. This is based on the decomposition

�L!˙L
!
�C�!? D�;

which gives
L!˙L

!
��
�1
!?
D 1����1

!?
:

Given Amain;˙
j;<h

and ‰˙;<h as above, we define their Littlewood–Paley pieces as

A
main;˙
j;h

D
d

dh
A

main;˙
j;<h

; ‰˙;h D
d

dh
‰˙;<h:

Now we come to the second step in the construction of the renormalization operator. This step is
nonlinear but local, and is based on the construction of the renormalization operator in [Sterbenz and
Tataru 2010a] for the corresponding wave map problem. Precisely, we solve the ODE

d

dh
O<h;˙O

�1
<h;˙ D‰˙;h;

lim
h!�1

k@xO<h;˙.t; x; �/kL1 D 0:

(9-43)

Thus our renormalization is achieved via the paradifferential operator

Ad.O˙/<0;

where the localization to small frequencies is so that this operator preserves the unit dyadic frequency shell.
The parameter ı > 0 is a universal constant, which is chosen below so that the parametrix construction

go through. In particular, we take 0 < ı < 1
100

. Logically, it is fixed at the end of Section 10.

9C2. Properties of the pseudodifferential renormalization operator. Now we state the key properties
satisfied by the renormalization operator Ad.O˙/<0 that we just defined; see Theorems 9.6 and 9.9.
Proofs of these results are the subjects of Sections 10 and 11, respectively.

Theorem 9.6 (mapping properties of the pseudodifferential renormalization operator). Let A be a Lie-
algebra-valued spatial 1-form on I �R4 such that AD P<��A and

kPAkS1ŒI � �M0

for some �;M0 > 0. Let ‰˙;<h, ‰˙;h and O<h;˙ be defined on R1C4 as above from the homogeneous-
wave extension of PA. Let Z be any of the spaces L2x , N or N �.

(1) For � > 20, the following bounds hold:

� (boundedness)
kOp.Ad.O˙/<0/.t; x;D/P0kZ!Z .M0 1: (9-44)

� (dispersive estimates)
kOp.Ad.O˙/<0/.t; x;D/P0kS]0!S0

.M0 1: (9-45)

(2) For any " > 0, there exist �0.";M0/� 1 (independent of Ax) such that if � > �0.";M0/, then

� (derivative bounds)
kŒ@t ;Op.Ad.O˙/<0/.t; x;D/�P0kZ!Z . ": (9-46)
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� (approximate unitarity)

k.Op.Ad.O˙/<0/.t; x;D/Op.Ad.O�1˙ /<0/.D; s; y/� I /P0kZ!Z . "; (9-47)

where the implicit constants are universal.

(3) There exists 0 < ıo.M0/� 1 (independent of Ax) such that if , in addition to the above hypothesis,

kPAxk`1S1ŒI � < ıo.M0/; (9-48)

then (9-44) and (9-45) hold with universal constants. That is, for � > 20 we have:

� (boundedness with a universal constant)

kOp.Ad.O˙/<0/.t; x;D/P0kZ!Z . 1: (9-44)0

� (dispersive estimates with a universal constant)

kOp.Ad.O˙/<0/.t; x;D/P0kS]0!S0
. 1: (9-45)0

Here the frequency-localization operator P0 can easily be replaced by a more general localization to
fj�j ' 1g.

Remark 9.7. As we will see in the proof below, �0.";M0/'" logM0 and ıo.M0/�M0 1.

Remark 9.8. Note that the symbol of each of the above PDOs is independent of � D �0, and thus it
defines a PDO on R4 for each fixed t . By the mapping property Z!Z with Z D L2x , we mean that the
PDO maps L2x! L2x for each fixed t , with a constant uniform in t .

Theorem 9.9 (renormalization error). Let A˛ be a g-valued 1-form on I �R4 such that A˛ D P<��A˛
and kPAxkS1ŒI � �M for some �;M > 0. Let " > 0. Assume that � > �1.";M/ and (9-3)–(9-7) hold for
some functions �1.";M/� 1 and 0 < ıp.";M; �1/� 1 independent of A˛ (to be specified below). Let
‰˙;<h, ‰˙;h and O<h;˙ be defined as above from the homogeneous-wave extension of PAx . Then we
have

k.�p
PA

Op.Ad.O˙/<0/�Op.Ad.O˙/<0/�/P0kS]
0;˙

ŒI �!N0;˙ŒI �
< ": (9-49)

Remark 9.10. As we will see later, �1.";M/'" logM and ıp.";M; �1/�M;�1 ".

9D. Definition of the parametrix and proof of Theorem 9.1. Our parametrix is given by

u.t/D
X
˙

�
1

2
Op.Ad.O˙/<0/.t; x;D/e˙it jDjOp.Ad.O1˙/<0/.D; 0; y/.u0˙ i jDj

�1u1/

COp.Ad.O˙/<0/.t; x;D/
1

jDj
K˙Op.Ad.O�1˙ /<0/.D; s; y/f

�
; (9-50)

where

K˙g.t/D

Z t

0

e˙i.t�s/jDjg.s/ ds:

With this definition, the proof of Theorem 9.1 starting from Theorems 9.6 and 9.9 is essentially identical
to the corresponding proof in [Oh and Tataru 2018] and is omitted.
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10. Mapping properties of the renormalization operator

10A. Fixed-time pointwise bounds for the symbols ‰ and O. Here we state fixed-time pointwise bounds
for‰ andO. We borrow these estimates from [Krieger and Tataru 2017], while carefully noting dependence
of constants on the frequency envelope of AD Ax in S1. The bounds below are stated using continuous
Littlewood–Paley projections Ph, but we note that the same bounds hold for discrete Littlewood–Paley
projections as well.

We begin with pointwise bounds for the g-valued symbol ‰h;˙.t; x; �/.

Lemma 10.1. The following bounds hold:

(1) For m� 0 and 0� n < ı�1, we have

j@
.n/

�
@.m�1/x r‰

.�/

˙;h
.t; x; �/j. 2mh�

1
2
�n
kAhkS1 : (10-1)

When mD 0, we interpret the expression on the left-hand side as @n
�
‰
.�/

˙;h
.

(2) Let ht � s; x�yi2 D 1Cjt � sj2Cjx�yj2. We have

j‰˙;h.t; x; �/�‰˙;h.s; y; �/j.minf2hht � s; x�yi; 1gkAhkS1 : (10-2)

(3) Finally, for 1� n < ı�1 we have

j@
.n/

�
.‰˙;h.t; x; �/�‰˙;h.s; y; �//j.minf2hht � s; x�yi; 1g2�.n�

1
2
/ıh
kAhkS1 : (10-3)

For a proof, we refer to [Krieger and Tataru 2017, Section 7.3]. As a corollary of (10-1) we have

jr‰˙;hj. 2hkAhkS1 : (10-4)

Next, we consider the G -valued symbol O<h;˙.

Lemma 10.2. Let ch be an admissible frequency envelope for A in S1. Then the following bounds hold:

(1) For 0� n < ı�1, we have

j@
.n/

�
.O<h;˙/It;x.t; x; �/j.kAk

S1
2.1�nı/hch: (10-5)

(2) We have

d.O<h;˙.t; x; �/O
�1
<h;˙.s; y; �/; Id/.kAkS1 log.1C 2hht � s; x�yi/ch: (10-6)

(3) Finally, for 1� n < ı�1, we have

j@
.n�1/

�
.O<h;˙.t; x; �/O

�1
<h;˙.s; y; �//I� j

.kAk
S1

minf2hht � s; x�yi; 1g1�.n�
1
2
/ı.1Cht � s; x�yi/.n�

1
2
/ıch: (10-7)

For a proof, we refer to [Krieger and Tataru 2017, Section 7.7].
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10B. Decomposability calculus. To handle symbol multiplications, we use the decomposability calculus
introduced in [Rodnianski and Tao 2004; Krieger and Sterbenz 2013], which allows us to roughly regard
these operations as multiplication by a function inLpLq. In the present work, we need an interval-localized
version in order to exploit small divisible norms.

Given � 2 2�N, consider a covering of the unit sphere S3 D f! 2 R4 W j�j D 1g by solid angular caps
of the form f! 2 S3 W j� �!j< �g with uniformly finite overlaps. We index these caps by their centers
� 2 S3, and denote by f.m�

�
/2.!/g the associated nonnegative smooth partition of unity on S3.

Let I be an interval. Consider a End.g/-valued symbol c.t; x; �/ on It � R4x � R4
�
, which is zero

homogeneous in �, i.e., depends only on the angular variable ! D �=j�j. We say that c.t; x; �/ is
decomposable in LqLr ŒI � if c D

P
� c

.�/, � 2 2�N andX
�

kc.�/kD�LqLr ŒI � <1; (10-8)

where

kc.�/kD�LqLr ŒI � D





� 40X
nD0

X
�

sup
!
.m

�

�
.!/k�n@

.n/

�
c.�/kLrx /

2

�1
2





L
q
t ŒI �

: (10-9)

We define kckDLqLr ŒI � to be the infimum of (10-8) over all possible decompositions c D
P
� c

.�/. In
what follows, we will use the convention of omitting ŒI � when I D R.

In the following lemma, we collect some basic properties of the symbol class DLqLr ŒI �.

Lemma 10.3. (1) For any two intervals such that I � I 0, we have

kckDLqLr ŒI � � kckDLqLr ŒI 0�:

(2) For any symbols c 2DLq1Lr1 ŒI � and d 2DLq2Lr2 ŒI �, its product obeys the Hölder-type bound

kcdkDLqt L
r
xŒI �
. kckDLq1Lr1 ŒI �kdkDLq2Lr2 ŒI �;

where 1� q1; q2; q; r1; r2; r �1, 1
q1
C

1
q2
D

1
q

and 1
r1
C

1
r2
D

1
r

.

(3) Let a.t; x; �/ be an End.g/-valued smooth symbol on I �R4x �R4
�

whose left quantization Op.a/
satisfies the fixed-time bound

sup
t2I

kOp.a/.t; x;D/kL2!L2 � Ca:

Then for any symbol c 2DLqLr, we have the space-time bound

kOp.ac/.t; x;D/kLq1L2ŒI �!Lq2Lr2 ŒI � . CakckDLqLr ŒI �;

where 1� q1; q2; q; r2; r �1, 1
q1
C
1
q
D

1
q2

and 1
2
C
1
r
D

1
r2

. An analogous statement holds in the
case of right quantization.

The proof is essentially the same as the global-in-time versions in [Krieger and Sterbenz 2013,
Chapter 10] and [Krieger et al. 2015, Lemma 7.1]; we omit the details.
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10C. Decomposability bounds for A, ‰ and O. Here we collect some decomposability bounds for A,
‰ and O that we will use in our proof of Theorems 9.6 and 9.9. As before, we state the bounds using
continuous Littlewood–Paley projections Ph, but note that the same bounds hold for discrete Littlewood–
Paley projections as well. For simplicity of notation, we will usually write kGkDLqLr D kad.G/kDLqLr
for a g-valued symbol G and kOkDLqLr D kAd.O/kDLqLr for a G -valued symbol O.

For any � > 0, h 2 R and � 2 fcone; null; outg, recall the definition

A
.�/

˛;h;�;˙
D Ph…

!;˙
� …

!;˙
�

.PA/˛:

As before, we will often omit the subscript x for simplicity, and write A.�/
h;�;˙

D A
.�/

x;h;�;˙
etc.

These symbols obey the following global-in-time decomposability bounds:

Lemma 10.4. For q � 2 and � 2 fcone; null; outg, we have

kA
.�/

h;�;˙
�!kDLqL1 . 2.1�

1
q
/h�

5
2
� 2
q kAhkS1 ; (10-10)

kA
.�/

0;h;�;˙
kDLqL1 . 2.1�

1
q
/h�

5
2
� 2
q kA0;hkY 1 : (10-11)

Furthermore, for � D cone we have

k�A.�/
h;cone;˙ �!kDLqL1 . 2

.3� 1
p
/h�

9
2
� 2
q kAhkS1 ; (10-12)

k��1
!?
�A.�/

h;cone;˙ �!kDLqL1 . 2
.1� 1

p
/h�

5
2
� 2
q kAhkS1 : (10-13)

Proof. The symbols .�@!/n.…
!;˙
� …

!;˙
�

/ are smooth, homogeneous and uniformly bounded, and the
corresponding multipliers are disposable for fixed �. Then the bounds (10-10) and (10-11) follow by
Bernstein’s inequality using the Strichartz component of the S1 norm, and, respectively, the L2 PH 1=2

component of the rY 1 norm.
For the bounds (10-12) and (10-13) we need in addition to consider the size of the symbol of �, and,

respectively, ��1
!?

, within the support of Ph…
!;˙
cone…

!;˙
�

. This is �222h, respectively ��22�2h. Precisely,
we have the representations

�Ph…!;˙cone…
!;˙
�
D �222hO…!;˙cone…

!;˙
�

; ��1
!?
Ph…

!;˙
� …

!;˙
�
D ��22�2hO…!;˙cone…

!;˙
�

;

with O disposable; see, e.g., Lemma 9.5. Then (10-12) and (10-13) immediately follow from (10-10). �

Next, we consider the phase ‰˙, which was defined in (9-42). Given � > 0 and h 2 R, let

‰
.�/

h;˙
D Ph…

!;˙
�

‰˙:

We have the following global-in-time decomposability bounds.

Lemma 10.5. For q; r � 2 and 2
q
C
3
r
�
3
2

, we have

k.‰
.�/

h;˙
; 2�hr‰

.�/

h;˙
/kDLqLr . 2�.

1
q
C 4
r
/h�

1
2
� 2
q
� 3
r kAhkS1 : (10-14)

In addition, suppose that � . 2a for some a 2 �N. Then for q; r � 2, we also have

kQhC2a.‰
.�/

h;˙
; 2�hr‰

.�/

h;˙
/kDLqLr . 2�.

1
q
C 4
r
/h2�

2
q
a�

1
2
� 3
r kAhkS1 : (10-15)
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Furthermore,
k�‰.�/

h;˙
kDL2L1 . �

3
2 2

3
2
h
kAhkS1 : (10-16)

Proof. Observing that within the support of Ph…
!;˙
cone…

!;˙
�

the symbol L���1
!?

has the form 2�h��2O

with O disposable and depending smoothly on ! on the � scale, the first bound (10-14) is again a direct
consequence of the Strichartz bounds in the S1 norm for A.

For (10-15) it suffices to prove the case pD q D 2 and then use Bernstein’s inequality. But in this case
it suffices to use the X1;1=21 component of the S1 norm at fixed modulation.

For the last bound (10-16) it suffices to combine the L2L1 case of (10-14) with Lemma 9.5. �

We now consider the G -valued symbol O<h;˙, which was defined in (9-43). It obeys the following
global-in-time decomposability bounds.

Lemma 10.6. Let ch be an admissible frequency envelope for A in S1. Then for any q > 4, we have

k.O<h;˙Ix; O<h;˙It /kDLqL1 .kAk
S1
2.1�

1
q
/hch: (10-17)

When q D 2, an analogous bound with a slight loss holds:

k.O<h;˙Ix; O<h;˙It /kDL2L1 .kAkS1 2
1
2
.1�ı/hch: (10-18)

Proof. These bounds are a consequence of the ‰.�/
h;˙

bounds in the previous lemma. The proof is similar
to the proof of the similar result in [Krieger and Tataru 2017, Lemma 7.9] and is omitted. We note that
the constraint q > 4 in the first bound is to prevent losses in the � summation in (10-14). �

Finally, we consider interval-localized decomposability bounds, which will be needed to exploit
divisibility (i.e., the hypothesis (9-3)) to gain smallness.

Lemma 10.7. Let jI j � 2�h��, where h 2 R and � � 0. For q � 2, we have

k‰
.�/

h
kDLqL1ŒI � . 2C���C 2�hkAhkLqL1ŒI �; (10-19)

k��1
!?
�.! �A.�/

h;cone;˙/kDLqL1ŒI � . 2
C���C kAhkLqL1ŒI �; (10-20)

k! �A
.�/

h
kDLqL1ŒI � . 2C���C kAhkLqL1ŒI �; (10-21)

k! �A
.�/

0;h
kDLqL1ŒI � . 2C���C kA0;hkLqL1ŒI �: (10-22)

Proof. We will prove (10-19), and leave the similar cases of (10-20), (10-21), (10-22) to the reader.
By scaling, we set hD 0. By the definition of the class DLqL1ŒI �, we have

k‰
.�/
0 kDLqL1ŒI � . �

�2

� 40X
nD0

X
�

sup
!
km

�

�
.!/�n@

.n/

�
…!�…

!
coneP0.! �PA/k

2
LqL1ŒI �

�1
2

. ��C
40X
nD0

k�n@
.n/

�
…!�…

!
coneP0.! �PA/kLqL1ŒI �:

Fix n 2 Œ1; 40� and ! 2S3. From the proof of Lemma 9.3, we see that the projection �n
0

@
.n0/

�
…!
�
…!coneP0,

when viewed as a Fourier multiplier in .�; �/, has a symbol which is supported in a space-time cube of
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radius . 1, and its derivatives (up to 40, say) are bounded by ��C for some large universal constant C .
Moreover, we have j�n

00

@
.n00/

�
!j.n00 1. Denoting by �0I a generalized cutoff adapted at the unit scale as

in (4-22), we have

k�n@
.n/

�
…!�…

!
coneP0.! �PA/kLqL1ŒI � . �

�C
k�0IP0AkLqL1 :

Recall that A is extended outside I by homogeneous waves. By Proposition 4.10, the last expression is
bounded by

. 2C���C kP0AkLqL1ŒI �;

which proves (10-19). �

10D. Collection of symbol bounds. Before we continue, we introduce the quantity M� , which collects
various symbol bounds that we have so far.

We fix large enough N and a small universal constant ı� > 0. Then we let M� > 0 be the minimal
constant such that:

� The following pointwise bounds hold for all 0� n� ı�1 and 0�m�N :

j@
.n/

�
@.m�1/x r‰

.�/

˙;h
j � 2mh�

1
2
�nM� ;

j‰˙;h.t;x;�/�‰˙;h.s;y;�/j �minf2hht�s;x�yi;1gM� ;

j@
.n/

�
.‰˙;h.t;x;�/�‰˙;h.s;y;�//j �minf2hht�s;x�yi;1g2�.n�

1
2
/ıhM� ;

j@
.n/

�
.O<h;˙/It;x.t;x;�/j � 2

.1�nı/hM� ;

d.O<h;˙.t;x;�/O
�1
<h;˙.s;y;�/; Id/� log.1C2hht�s;x�yi/M� ;

j@
.n�1/

�
.O<h;˙.t;x;�/O

�1
<h;˙.s;y;�//I� j �minf2hht�s;x�yi;1g1�.n�

1
2
/ı.1Cht�s;x�yi/.n�

1
2
/ıM� :

� The following decomposability bounds hold for all � 2 fcone; null; outg, q; r � 2 and 2
q
C
3
r
�
3
2

:

kA
.�/

h;�;˙
�!kDLqL1 �2

.1� 1
q
/h�

5
2
� 2
qM� ;

kA
.�/

0;h;�;˙
kDLqL1 �2

.1� 1
q
/h�

5
2
� 2
qM� ;

k�A.�/
h;cone;˙ �!kDLqL1 �2

.3� 1
p
/h�

9
2
� 2
qM� ;

k��1
!?
�A.�/

h;cone;˙ �!kDLqL1 �2
.1� 1

p
/h�

5
2
� 2
qM� ;

k.‰
.�/

h;˙
; 2�hr‰

.�/

h;˙
/kDLqLr �2

�. 1
q
C 4
r
/h�

1
2
� 2
q
� 3
rM� ;

kQhC2a.‰
.�/

h;˙
; 2�hr‰

.�/

h;˙
/kDLqLr �2

�. 1
q
C 4
r
/h2�

2
q
a�

1
2
� 3
rM� .� . 2a . 1/;

k�‰.�/
h;˙
kDL2L1 ��

3
2 2

3
2
hM� ;

k.O<h;˙Ix; O<h;˙It /kDLqL1 �2
.1� 1

q
/hM� .q � 4C ı� /;

k.O<h;˙Ix; O<h;˙It /kDL2L1 �2
1
2
.1�ı/hM� :
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By the preceding results, there exists an M� such that

M� .M kAk`1S1 CkA0k`1Y 1 : (10-23)

In particular, note that all of the above symbol bounds are small if kAk`1S1 and kA0k`1Y 1 are.

10E. Oscillatory integral bounds. Given a smooth function a, let

Ka<0.t; xI s; y/D

Z
Ad.O<h;˙/<0.t; x; �/a.�/e

˙i.t�s/j�jei��.x�y/ Ad.O�1<h;˙/<0.�; y; s/
d�

.2�/4
:

Lemma 10.8. For a sufficiently small universal constant ı > 0, the following bounds hold for the kernel
Ka<0.t; xI s; y/:

(1) Assume that a is a smooth bump function on the unit scale. Then

jKa<0.t; xI s; y/j.M� ht � si
� 3
2 hjt � sj � jx�yji�100: (10-24)

(2) Let aD aC be a smooth bump function on a radially oriented rectangular box C of size 2k � .2kC`/3,
where k; `� 0. Then

jKa<0.t; xI s; y/j.M� 2
4kC3`

h22.kC`/.t � s/i�
3
2 h2k.jt � sj � jx�yj/i�100: (10-25)

(3) Let a D aC be a smooth bump function on a radially oriented rectangular box C of size 1� .2`/3,
where `� 0. Let ! 2 S3 be at angle' 2` from C. Then, for t � s D .x�y/ �!CO.1/,

jKa<0.t; xI s; y/j.M� 2
3`
h22`.t � s/i�100h2`.x0�y0/i�100; (10-26)

where x0 D x� .x �!/! and y0 D y � .y �!/!.

This lemma is proved as in [Krieger and Tataru 2017, Section 8.1] by stationary phase, using the
symbol bounds in Lemmas 10.1 and 10.2.

10F. Fixed-time L2 bounds. The goal of this subsection is to prove (9-44), (9-46), (9-47) and (9-44)0

for Z D L2. The common key ingredient is the following fixed-time L2 estimate:

Proposition 10.9. For ı > 0 sufficiently small, there exists ı.0/ > 0 such that the following statement
holds. Let hC 10� k � 0. Then for every fixed t , we have

�Op.Ad.O<h;˙/<k/.x;D/Op.Ad.O�1<h;˙/<k/.D;y/�1

�
P0



L2!L2

.M� 2
ı.0/hC2�10.k�h/: (10-27)

Lemma 10.10. There exists ı.0/ > 0 such that the following statement holds. Let h � 0 and a.�/ be a
smooth bump function adapted to fj�j. 1g. Then for every fixed t , we have

kOp.Ad.O<h;˙//.x;D/a.D/Op.Ad.O�1<h;˙//.D; y/� a.D/kL2!L2 .M� 2
ı.0/h: (10-28)

Proof. For simplicity of notation, we omit ˙ in O<h;˙, O�1
<h;˙

and ‰˙;h. Following the hypothesis, we
fix t 2 R.
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The idea is to derive a kernel estimate as in Lemma 10.8, but taking into account the frequency gap.
The kernel of the End.g/-valued operator in (10-28) is given by

K<h.x; y/D

Z
.Ad.O<h.x; �/O

�1
<h.y; �//� 1/a.�/e

i.x�y/�� d�

.2�/4
: (10-29)

We obtain two different estimates depending on whether jx�yj. 2�ı.0/h or jx�yj& 2�ı.0/h.

Case 1: jx�yj. 2�ı.0/h. In this case, we use the fundamental theorem of calculus and simply bound

jK<h.x; y/j.
“ h

�1

ˇ̌̌̌
d

d`
.Ad.O<`.x; �/O

�1
<` .y; �///

ˇ̌̌̌
ja.�/j d` d�

. sup
j�j.1

Z h

�1

ˇ̌̌̌
d

d`
.Ad.O<`.x; �/O

�1
<` .y; �///

ˇ̌̌̌
d`:

By the algebraic property

OŒu; v�O�1 D ŒOuO�1; OvO�1�; O 2G ; u; v 2 g;

we have

ad.u/Ad.O/D Ad.O/ ad.Ad.O�1/u/; Ad.O�1/ ad.u/D ad.Ad.O�1/u/Ad.O�1/:

Therefore,

d

d`
.Ad.O<`.x; �/O

�1
<` .y; �///

D ad.‰`/Ad.O<`/.x; �/Ad.O�1<` /.y; �/�Ad.O<`/.x; �/Ad.O�1<` / ad.‰`/.y; �/

D Ad.O<`/.x; �/ ad.Ad.O�1<` /‰`.x; �/�Ad.O�1<` /‰`.y; �//Ad.O�1<` /.y; �/:

Then using the fact that the norm on End.g/ is invariant under Ad.O/ for any O 2G, we haveˇ̌̌̌
d

d`
.Ad.O<`.x; �/O

�1
<` .y; �///

ˇ̌̌̌
D jAd.O�1<` /‰`.x; �/�Ad.O�1<` /‰`.y; �/j:

By the symbol bounds (10-5) and (10-4), we have j@x.Ad.O�1
<`
/‰`/j.M� 2`. Thus, by the mean value

theorem, ˇ̌̌̌
d

d`
.Ad.O<`.x; �/O

�1
<` .y; �///

ˇ̌̌̌
.M� 2

`2�ı.0/h:

Integrating in `, we arrive at
jK<h.x; y/j.M� 2

.1�ı.0//h: (10-30)

Case 2: jx�yj& 2�ı.0/h. Here, the idea is to repeatedly integrate by parts in �. Since

@� Ad.O<h.x; �/O
�1
<h.y; �//D ad..O<h.x; �/O

�1
<h.y; �//I�/Ad.O<h.x; �/O

�1
<h.y; �//;

the symbol bound (10-5) implies

j@
.n/

�
Ad.O<h.x; �/O

�1
<h.y; �//j.n;M� 2

ıjn� 1
2
jh:
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Therefore, integrating by parts in � for N times in (10-29), we obtain

jK<h.x; y/j.ı;N;M�
1

jx�yj.1�ı/NC
1
2
ı

for jx�yj& 2�ı.0/h; 0�N < ı�1:

Finally, combining Cases 1 and 2, we obtain

sup
x

Z
jK<h.x; y/j dyC sup

y

Z
jK<h.x; y/j dx .M� 2

.1�5ı.0//h . 2ı.0/h

provided that ı.0/ is small enough. Bound (10-28) now follows. �

Corollary 10.11. For any k 2 R we have

kOp.Ad.O<h;˙//.x;D/P0kL2!L2 .M� 1; (10-31)

kOp.Ad.O<h;˙/<k/.x;D/P0kL2!L2 .M� 1: (10-32)

Proof. The first bound follows by a T T �-argument from Lemma 10.10. Next, note that Ad.O<h;˙/<k.x;�/
is simply a smooth average of translates of Ad.O<h;˙/.x; �/ in x. Therefore, the second bound follows
from the first by translation invariance of L2. �

Next, we borrow a lemma from [Krieger and Tataru 2017], which handles Ad.O<h;˙/k when k is
large compared to h.

Lemma 10.12. Let t 2 R, h� 0 and k � hC 10. Then we have

kOp.Ad.O<h;˙/k/.t; x;D/P0kL2!L2 .M� 2
�10.k�h/: (10-33)

Furthermore, for 1� q � p �1, h� 0 and k � hC 10, we have

kOp.Ad.O<h;˙/k/.t; x;D/P0kLpL2!LqL2 .M� 2
. 1
p
� 1
q
/h2�10.k�h/: (10-34)

Same estimates hold for the right quantization Op.Ad.O<h;˙/k.D; s; y/.

Remark 10.13. The specific factor 10 in the gain 2�10.k�h/ is not of any significance, but it is important
to note that this number is much bigger than 1; see the proof of Proposition 10.14 below.

For the proof, we refer to [Krieger and Tataru 2017, Proof of Lemma 8.4] or [Oh and Tataru 2018,
Proof of Lemma 9.11].

Proof of Proposition 10.9. Due to the frequency localization of the symbols in (10-27), we can harmlessly
insert a multiplier a.D/ whose symbol is a smooth bump function a.�/ adapted to fj�j. 1g, and then
discard P0 to replace (10-27) by

kOp.Ad.O<h;˙/<k/.x;D/a.D/Op.Ad.O�1<h;˙/<k/.D; y/� a.D/kL2!L2 .M� 2
ı.0/hC 2�10.k�h/:

Now it suffices to combine the last two lemmas. �

Proof of (9-44), (9-46), (9-47) and (9-44)0 in the case Z D L2. By a T T � argument, the bounds (9-44)
and (9-44)0 are immediate consequences of (10-27). Also from (10-27) we obtain the estimate (9-47)
with a constant 2�ı.0/�, which is less than " if � is chosen large enough depending only on M0.
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Finally, for (9-46) we compute

@t .Ad.O//<0 D .ad.OIt /Ad.O//<0I

therefore it suffices to combine the decomposability bound (10-17) for OIt with q D1 with (10-31).
The former bound yields a 2�� factor which again yields " smallness if � is large enough. �

10G. Space-time L2L2 bounds. Next, we establish (9-44), (9-46), (9-47) and (9-44)0 when Z D N
or N �. As we will see below, (9-44), (9-46) and (9-44)0 follow from the arguments in [Krieger and Tataru
2017]. In the bulk of this subsection, we focus on the task of establishing (9-47).

To state the key estimates, it is convenient to set up some notation. We introduce the compound
G -valued symbol

O<h;˙.t; x; s; y; �/DO<h;˙.t; x; �/O
�1
<h;˙.s; y; �/:

The quantization of Ad.O<h;˙/, which is an End.g/-valued compound symbol, takes the form

Op.Ad.O<h;˙//.t; x;D; y; s/D Op.Ad.O<h;˙//.t; x;D/Op.Ad.O�1<h;˙//.D; y; s/:

Given a compound End.g/-valued symbol a.t; x; s; y; �/, we define the double space-time frequency
projection

.a/�k.t; x; s; y; �/D S
t;x
<k
S
s;y

<k
a.t; x; s; y; �/:

Therefore, according to our conventions,

Ad.O<h;˙/�k.t; x; s; y; �/D Ad.O<h;˙/<k.t; x; �/Ad.O�1<h;˙/<k.s; y; �/:

Proposition 10.14. For ı > 0 sufficiently small, there exists ı.1/ such that the following bound holds for
any h < �20: 

�Op.Ad.O<h;˙/�0/.t; x;D; t; y/� 1

�
P0



N�!X

0;1=2
1
.M� 2

ı.1/h: (10-35)

Before we begin the proof, we state a lemma for passing to a double space-time frequency localization
of Ad.O<h;˙/, which is used several times in our argument below.

Lemma 10.15. For 2� q �1 and hC 10� k � 0, we have

�Op.Ad.O<h;˙/�0/�Op.Ad.O<h;˙/�k/
�
P0



LpL2!LqL2

.M� 2
. 1
p
� 1
q
/h210.h�k/: (10-36)

This lemma is a straightforward consequence of Lemma 10.12; we omit the proof.

Proof of (10-35). We follow [Oh and Tataru 2018, Proof of Proposition 9.13]. For simplicity, we omit ˙
in O<h;˙, O<h;˙ etc.

Step 1: high-modulation input. For any j 2 Z and j 0 � j � 5, we claim that

kQj .Op.Ad.O<h/�0/� 1/P0Qj 0kN�!X0;1=21
.M� 2

ı.0/h2
1
2
.j�j 0/: (10-37)
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Step 2: low modulation input, 1
2
h� j. Here, we take care of the easy case 1

2
h� j. Under this assumption,

we claim that

kQj .Op.Ad.O<h/�0/� 1/P0Q<j�5kN�!X0;1=21
.M� 2

4h: (10-38)

Note that

Qj .Op.Ad.O<h/�j�5/� 1/P0Q<j�5 D 0:

Thus, using the L1L2 portion of N �, it suffices to prove

kQj .Op.Ad.O<h/�0�Ad.O<h/�j�5/P0Q<j�5kN�!X0;1=21
.M� 2

4h:

Since Qj and Q<j�5 are disposable in L2L2 and L1L2, respectively, this estimate follows from
Lemma 10.15.

Step 3: low modulation input, j < 1
2
h, main decomposition. The goal of Steps 3–6 is to establish

kQj .Op.Ad.O<h/�0/�Ad.O
<jCQıh

/�0/P0Q<j�5kN�!X0;1=21
.M� 2

ı.0/h; (10-39)

provided that j C Qıh� h.
At the level of End.g/-valued compound symbols, we expand

Ad.O<h/�Ad.O
<jCQıh

/D LCQC C;

where

LD
Z
jCQıh�`�h

L
`;<jCQıh

d`;

QD
Z
jCQıh�`0�`�h

Q
`;`0;<jCQıh

d`0 d`;

C D
Z
jCQıh�`00�`0�`�h

C`;`0;`00;<`00 d`00 d`0 d`;

and the integrands L`;<k , Q`;`0;<k and C`;`0;`00;<k are defined recursively as

L`;<k.t;x;s;y;�/D ad.‰`/.t;x;�/Ad.O<k/.t;x;s;y;�/�Ad.O<k/.t;x;s;y;�/ad.‰`/.s;y;�/;

Q`;`0;<k.t;x;s;y;�/D ad.‰`/.t;x;�/L`0;<k.t;x;s;y;�/�L`0;<k.t;x;s;y;�/ad.‰`/.s;y;�/;

C`;`0;`00;<k.t;x;s;y;�/D ad.‰`/.t;x;�/Q`0;`00;<k.t;x;s;y;�/�Q`0;`00;<k.t;x;s;y;�/ad.‰`/.s;y;�/:

The three terms L`;<k , Q`;`0;<k and C`;`0;`00;<k are successively considered in the next three steps.

Step 4: low modulation input, j < 1
2
h, contribution of L. Our goal here is to prove

kQjL�0P0Q<j�5kN�!X0;1=21
.M� 2

ı.0/h: (10-40)

We introduce

L`;<k;�k0 D ad.‰`/.t; x; �/Ad.O<k/�k0.t; x; s; y; �/;�Ad.O<k/�k0.t; x; s; y; �/ ad.‰`/.s; y; �/

L`;<�1 D ad.‰`/.t; x; �/� ad.‰`/.s; y; �/



362 SUNG-JIN OH AND DANIEL TATARU

and take the decomposition

LD
Z
jCQıh�`�h

.L
`;<jCQıh

�L
`;<jCQıh;�j�5

/ d`C

Z
j�10Qıh�`�h

L
`;<jCQıh;�j�5

d`

C

Z
jCQıh�`�j�10Qıh

.L
`;<jCQıh;�j�5

�L`;<�1/ d`C
Z
jCQıh�`�j�10Qıh

L`;<�1 d`

DW L.1/CL.2/CL.3/CL.4/:

Step 4.1: low modulation input, j < 1
2
h, contribution of L.1/. For this term we can add a double frequency

localization� C on L
`;<jCQıh

and then harmlessly discard the double� 0 localization in (10-40). Then
it suffices to prove that for ` > j C ım we have

kQj Op.L
`;<jCQıh;�C

�L
`;<jCQıh;�j�5

/P0Q<j�5kL1L2!L2 .M� 2
� 1
6
Œ`�.jCQıh/�2.10C

1
2
/Qıh;

and then integrate with respect to `. But this is a consequence of the decomposability bound (10-14) with
q D 6 and r D1, together with the bound (10-34) with p D 6 and q D 2.

Step 4.2: low modulation input, j < 1
2
h, contribution of L.2/. Here as well as in the next two cases the

� 0 localization in ` has no effect and is discarded. The two terms in L
`;<jCQıh;�j�5

are similar; we
restrict our attention to the first one. Consider now the operator

Qj Op.ad.‰`/Ad.O
<jCQıh

/�j�5/Q<j�5 D
X
�

Qj Op.ad.‰.�/
`
/Ad.O

<jCQıh
/�j�5/Q<j�5:

The important observation here is that, because of the geometry of the cone, the frequency localizations
for both Ad.O<jCtdh/�j�5/ and ‰.�/

`
force a large angle � > 2.j�`/=2, or else the above operator

vanishes.
Given this bound for � , we can now use the decomposability bound (10-14) with q D 2 and r D1

combined with (10-34) with p D1 and q D1 to obtain

kOp.ad.‰.�/
`
/Ad.O

<jCQıh
/�j�5/P0kL1L2!L2 .M� 2

� 1
2
j 2

1
2
.j�`/��

1
2 ;

which after � summation in the range � > 2
1
2
.j�`/ yields

kQj Op.L.2//P0Q<j�5kL1L2!L2 .M� 2
� 1
2
j 2

5
2
Qıh;

which suffices.

Step 4.3: low modulation input, j < 1
2
h, contribution of L.3/. Here we have the same angle constraint as

above but this levels off for ` < j, namely � > 2�.`�j /C=2. However, we can now replace (10-32) with
(10-27) to obtain

kOp.ad.‰.�/
`
/.Ad.O

<jCQıh
/�j�5� I //P0kL1L2!L2 .M� 2

� 1
2
j 2�

1
2
.`�j /��

1
2 .2ı.0/.jC

Qıh/
C 210

Qıh/;

which after � and ` summation yields

kQj Op.L.3//P0Q<j�5kL1L2!L2 .M� 2
� 1
2
j .2.ı.0/�

1
4
Qı/h
C 29

Qıh/:

This suffices provided that Qı is small enough Qı < ı.0/.
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Step 4.4: low modulation input, j < 1
2
h, contribution of L.4/. Here we have the same range j � Qıh <

` < j C 10 Qıh for `. We also have the same constraint on the angle � > 2�.`�j /C=2 but this is no longer
relevant in this case, as we will gain in frequency, and this can override any angular losses.

This time we are able to take advantage of the difference structure for ‰. Precisely, it suffices to show
that for a, a localized at frequency 1, we have

kOp.ad.‰.�/
`
//.t; x;D/a.D/�a.D/Op.ad.‰.�/

`
//.t; x;D/kL1L2!LqL2 .M� 2

� 1
q
`2`��C : (10-41)

But this was already proved in [Oh and Tataru 2018, (9.40)].

Step 5: low modulation input, j < 1
2
h, contribution of Q. We proceed in the same manner as in the case

of L. Defining the symbols

Q`;`0;<k;�k0 D ad.‰`/.t; x; �/L`0;<k;�k0.t; x; s; y; �/�L`0;<k;�k0.t; x; s; y; �/ ad.‰`/.s; y; �/;

Q`;`0;<�1 D ad.‰`/.t; x; �/L`0;<�1.t; x; s; y; �/�L`0;<�1.t; x; s; y; �/ ad.‰`/.s; y; �/;

we decompose Q as

QD
Z
jCQıh�`0�`�h

.Q
`;`0;<jCQıh

�Q
`;`0;<jCQıh;�j�10

/ d`0 d`

C

Z
jCQıh�`0�`�h

j�10Qıh�`

Q
`;`0;<jCQıh;�j�10

d`0 d`

C

Z
jCQıh�`0�`�j�10Qıh

.Q
`;`0;<jCQıh;�j�10

�Q`;`0;<�1/ d`0 d`

C

Z
jCQıh�`0�`�j�10Qıh

Q`;`0;<�1 d`0 d`

DWQ.1/CQ.2/CQ.3/CQ.4/

Then we consider each term separately.

Step 5.1: low modulation input, j < 1
2
h, contribution of Q.1/. Proceeding as in Step 4.1, we have

Q�1 D
Z
jCQıh�`0�`�h

.Q
`;`0;<jCQıh;�C

�Q
`;`0;<jCQıh;�j�5

/�0 d`
0 d`

and we can again harmlessly discard the outer� 0. Applying the decomposability bound (10-14) with
q D 6 for ‰` and with q D1 for ‰`0 and r D1, together with the bound (10-34) with p D1 and
q D 3, we obtain

kQ
`;`0;<jCQıh;�C

�Q
`;`0;<jCQıh;�j�5

kL1L2!L2 .M� 2
� 1
6
Œ`�.jCQıh/�2.10C

1
2
/Qıh:

Summing up with respect to ` and `0 we obtain

kOp.Q.1//P0kL1L2!L2 .M� 2
10Qıh;

which suffices.
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Step 5.2: low modulation input, j < 1
2
h, contribution of Q.2/. Here and also for Q.3/ and Q.4/ we can

remove the outer frequency localization� 0, which does nothing. The expression Q.2/ contains four
terms depending on whether ‰` and ‰`0 act on the left or on the right. We consider one of them, for
which we need to bound the operator

Qj Op.ad.‰`/Ad.O
<jCQıh

/�j�5 ad.‰`0//Q<j�5P0:

We decompose with respect to angles intoX
�;� 0

Qj Op.ad.‰.�/
`
/Ad.O

<jCQıh
/�j�5 ad.‰.�

0/

`0
//Q<j�5P0

and consider the nontrivial scenarios. This is as in Step 5.2 but now we have two angles, which must
satisfy nonexclusively

either � > 2
1
2
.j�`/; or � 0 > 2

1
2
.j�`0/:

We can now use the decomposability bound (10-14) with q D 3 and r D1 for the large11 angle and
q D 6 and r D1 for the other angle combined with (10-34) with p D1 and q D1 to obtain either

kOp.ad.‰.�/
`
/Ad.O

<jCQıh
/�j�5 ad.‰.�

0/

`0
//P0kL1L2!L2 .M� 2

� 1
2
j 2

1
3
.j�`/��

1
6 2

1
6
.j�`0/� 0

1
6

or the same bound with the pairs .l; �/ and .l 0; � 0/ reversed. Summing with respect to `, `0, and also with
respect to � , � 0 subject to the constraints above, we obtain

kQj Op.Q.2//P0Q<j�5kL1L2!L2 .M� 2
� 1
2
j 2

5
3
Qıh;

which suffices.

Step 5.3: low modulation input, j < 1
2
h, contribution of Q.3/. We repeat the angle localization analysis

in the previous step, but as in Step 4.3, we again replace (10-32) with (10-27). The outcome is similar to
the one in Step 4.3; details are omitted.

Step 5.4: low modulation input, j < 1
2
h, contribution of Q.4/. Again we apply the same angle localization

analysis as in the previous two steps. However, as in Step 4.4, we also need to exploit the difference
between one of the two ‰’s and its adjoint. Consider one such term, e.g.,

ad.‰.�/
`
/.t; x; �/Œad.‰.�

0/

`0
/.t; x; �/� ad.‰.�

0/

`0
/.�; y; s/�:

For this it suffices to apply the disposability bound (10-14) for ‰.�/
`

combined with (10-41). The choice
of the exponents is no longer important. We obtain

kOp.Q.4//P0kL1L2!L2 .M� 2
� 1
2
j 2.1�C

Qı/j :

Step 6: low modulation input, j < 1
2
h, contribution of C. This repeats the analysis for L and Q, but we

no longer need to keep track of angular separation. Setting

C`;`0;`00;<k;�k0 D ad.‰`/.t; x; �/Q`0;`00;<k;�k0.t; x; s; y; �/�Q`0;`00;<k;�k0.t; x; s; y; �/ ad.‰`/.s; y; �/;

C`;`0;`00;<�1 D ad.‰`/.t; x; �/Q`0;`00;<�1.t; x; s; y; �/�Q`0;`00;<�1.t; x; s; y; �/ ad.‰`/.s; y; �/;

11That is, which satisfies the bound on the previous line.
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we decompose C as

C D
Z
jCQıh�`00�`0�`�h

.C`;`0;`00;<`00 � C`;`0;`00;<`00;��5/ d`00 d`0 d`

C

Z
jCQıh�`00�`0�`�h

j�10Qıh�`

C`;`0;`00;<`00;��5 d`00 d`0 d`

C

Z
jCQıh�`00�`0�`�j�10Qıh

.C`;`0;`00;<`00;�j�5� C`;`0;`00;<�1/ d`00 d`0 d`

C

Z
jCQıh�`00�`0�`�j�10Qıh

C`;`0;`00;<�1 d`00 d`0 d`

DW C.1/C C.2/C C.3/C C.4/

and consider each of the terms separately.

Step 6.1: low modulation input, j < 1
2
h, contribution of C.1/. The same argument as in Steps 4.1 and 5.1

yields the bound

kOp.ad.‰`/ ad.‰`0/ ad.‰`00/.Ad..O<`00/�Ad..O<`00/��5//�0kL1L2!L2

.M� 2
� 1
2
j 2

1
6
.jCQıh�`/2

1
6
.jCQıh�`0/2

1
6
.jCQıh�`0/210`

00

2
1
2
Qıh;

as well as for any of the other choices of left/right quantizations for the ‰’s. Integration over j C Qıh <
`00 < `0 < ` < m

2
is now harmless.

Step 6.2: low modulation input, j < 1
2
h, contribution of C.2/. Applying the decomposability bound (10-14)

with qD 6 for each of the three ‰’s in the C2 integrand, as well as the L2 bound for Op.Ad..O<`00/��5/

yields the bound

kOp.ad.‰`/ ad.‰`0/ ad.‰`00/Ad..O
<jCQıh

//��5kL1L2!L2 .M� 2
� 1
2
j 2

1
6
.j�`/2

1
6
.j�`0/2

1
6
.j�`0/;

which suffices after integration in ` > j � 10 Qıh and `0; `00 > j C Qıh.

Step 6.3: low modulation input, j < 1
2
h, contribution of C.3/. This is the same argument as in the previous

step, but using (10-27) instead of (10-32).

Step 6.4: low modulation input, j < 1
2
h, contribution of C.4/. Here we are concerned with symbols of

the form
ad.‰`/.t; x; �/ ad.‰`0/.t; x; �/Œad.‰`00.t; x; �/� ad.‰`00.�; y; s/�;

where one or both of ad.‰`/ and ad.‰`0/ may be switched to the right and in the right quantization. Here
we use again the decomposability bound (10-14) with q D 6 for ‰` and ad.‰`0/, and (10-41) for the ‰`00
difference.

Step 7: low modulation input, j < 1
2
h, low frequency O. To complete the proof of the estimate (10-35)

it remains to show that

kQj Op.Ad.O
<jCQıh

/�0.t; x;D; y; s/� 1/P0Q<j�5kN�!X0;1=21
.M� 2

ı.1/h: (10-42)
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If j C Qıh� h, this is combined with the bound (10-39), which is the main outcome of Steps 3–6. Else,
this is used by itself, simply observing that we can harmlessly replace j C Qıh by h.

The above bound is identical to

kQj Op.Ad.O
<jCQıh

/�0�Ad.O
<jCQıh

/�j�5/.t; x;D; y; s/P0Q<j�5kN�!X0;1=21
.M� 2

ı.1/h;

which in turn would follow from

kOp.Ad.O
<jCQıh

/�0�Ad.O
<jCQıh

/�j�5/.t; x;D; y; s//P0kL1L2!L2 .M� 2
� 1
2
j 2ı.1/h:

But this is a direct consequence of the bound (10-34). �
Proof of (9-47) in the case Z DN or N �. For the estimate (9-47) with Z DN � we combine the L1L2

bound given by (10-27) with (10-35). If on the other hand Z D N, then the same bound follows by
duality. �

It remains to prove (9-44), (9-46) and (9-44)0 when Z D N or N �. For this purpose, we recall the
following result from [Krieger and Tataru 2017]:

Lemma 10.16. For `� k0˙O.1/, we have

kQ` Op.Ad.O<h;˙/k0/.t; x;D/Q<0P0kN�!X0;1=21
.M� 2

ı1.`�k
0/; (10-43)

kQ` Op.Ad.O�1<h;˙/k0/.D; y; s/Q<0P0kN�!X0;1=21
.M� 2

ı1.`�k
0/: (10-44)

In particular, summing over all .`; k0/ with `� k and k � k0CO.1/, we have

kQ<k.Op.Ad.O<h;˙/<0/�Op.Ad.O<h;˙/<k�C //.t; x;D/Q<0P0kN�!X0;1=21
.M� 1; (10-45)

kQ<k.Op.Ad.O�1<h;˙/<0/�Op.Ad.O�1<h;˙/<k�C //.D; y; s/Q<0P0kN�!X0;1=21
.M� 1: (10-46)

Proof. The proof of this lemma is similar to that of Proposition 10.14, but simpler in the sense the
frequency gap need not be exploited. It can be proved with exactly the same arguments as in [Krieger
and Tataru 2017, Proof of Proposition 8.5] (there, M� . "). Because of this, we will merely indicate here
how to modify the preceding proof of (10-35) to obtain (10-43). We leave the details, as well as the entire
case of (10-44), to the reader.

As before, we omit˙ in the symbols. We replace Ad.O<h/�k.t; x; s; y; �/�1 by Ad.O<h/<k.t; x; �/
throughout the proof of (10-35). The main decomposition (Step 4) now takes the form

Ad.O<h/.t; x; �/�Ad.O
<jCQıh

/D L0CQ0C C0

D

Z
jCQıh�`�h

L0
`;<jCQıh

d`C

Z
jCQıh�`0�`�h

Q0
`;`0;<jCQıh

d`0 d`

C

Z
jCQıh�`00�`0�`�h

C0
`;`0;`00;<jCQıh

d`00 d`0 d`;

where

L0`;<k.t; x; �/D ad.‰`/Ad.O<k/.t; x; �/;

Q0`;<k.t; x; �/D ad.‰`/L0`0;<k.t; x; �/D ad.‰`/ ad.‰`0/Ad.O<k/.t; x; �/;

C0`;<k.t; x; �/D ad.‰`/Q0`0;`00;<k.t; x; �/D ad.‰`/ ad.‰`0/ ad.‰`00/Ad.O<k/.t; x; �/:
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For the expansion of L, Q and C in Steps 5, 6 and 7, we replace L`;<k;�k0 , L`;<�1, Q`;`0;<k;�k0 ,
Q`;`0;<�1, C`;`0;`00;<k;�k0 and C`;`0;`00;<�1 by, respectively,

L0`;<k;<k0 D ad.‰`/Ad.O<k/<k0.t; x; �/;

L0`;<�1 D ad.‰`/.t; x; �/;

Q0`;`0;<k;<k0 D ad.‰`/L0`0;<k;<k0.t; x; �/D ad.‰`/ ad.‰`0/Ad.O<k/<k0.t; x; �/;

Q0`;`0;<�1 D ad.‰`/L0`0;<�1.t; x; �/D ad.‰`/ ad.‰`0/.t; x; �/;

C0`;`0;`00<k;<k0 D ad.‰`/Q0`0;`00;<k;<k0.t; x; �/D ad.‰`/ ad.‰`0/ ad.‰`00/Ad.O<k/<k0.t; x; �/;

C0`;`0;`00;<�1 D ad.‰`/Q0`0;`00;<�1.t; x; �/D ad.‰`/ ad.‰`0/ ad.‰`00/.t; x; �/:

Accordingly, we replace the use of (10-27) and (10-36) by (10-32) and (10-34), respectively, which results
in loss of the smallness factor 2ı.1/h in (10-43) compared to (10-35). �

Proof of (9-44), (9-46) and (9-44)0 in the case Z DN or N �. It suffices to consider the Z DN �; then
the case Z DN follows by duality. The L1L2 bound follows from the Z D L2 case, so for (9-44) and
(9-44)0 it remains to establish that

kQj Op.Ad.O<h;˙/<0/P0kN�!L2 .M� 2
� 1
2
j :

By Lemma 10.16 this reduces to

kQj Op.Ad.O<h;˙/<j�5/P0kN�!L2 .M� 2
� 1
2
j :

Now due to the frequency localization for Op.Ad.O<h;˙/<j�5 we can insert a (slight enlargement of)
Qj on the right, in which case we can simply use again the Z D L2 case.

Similarly, in the case of (9-44)0 it suffices to show that

kQj Œ@t ;Op.Ad.O<h;˙/<0/�Q<jP0kN�!L2 .M� 2
� 1
2
j 2h:

We split into two cases. If j � 3
4
h then we write

@t Ad.O<h;˙/D ad.O<h;˙It /Ad.O<h;˙/<0/;

and then we can easily combine the decomposability bound (10-18) with the L2 boundedness of
Op.Ad.O<h;˙/<0/. Else we have

Qj Œ@t ;Op.Ad.O<h;˙/<0/�Q<jP0 DQj Œ@t ;Op.Ad.O<h;˙/Œj�5;0�/�Q<jP0:

Now we discard Qj , Q<j�5 and @t and use directly (10-34) with p D1 and q D 2. �

10H. Dispersive estimates. Finally, we sketch the proofs of (9-45) and (9-45)0. As in [Krieger and Tataru
2017], we exactly follow the argument in [Krieger et al. 2015, Section 11]. In the case of (9-45), we
replace the use of the oscillatory integral estimates (108), (110) and (111) in [loc. cit.] by (10-24), (10-25)
and (10-26), and the fixed-time L2 bound (114) in [loc. cit.] by (10-32), (118) in [loc. cit.] by (10-45)
etc. In case of (9-45)0, observe that all the constants in these bounds are universal under the smallness
assumption (9-48) for a suitable choice of ıo.M/, as we may take M� . 1.
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There is one exception to the above strategy, namely the square function bound

kOp.Ad.O˙/<0.t; x;D/kS]0!L
10=3
x L2t

.M� 1: (10-47)

This is due to the fact that the square function norm was not part of the S0 norm in [Krieger et al. 2015;
Krieger and Tataru 2017], and was added only here. The same approach as in [Krieger and Tataru 2017]
allows us, via a T T �-type argument, to reduce the problem to an estimate of the form



Z ��l.t � s/S .t; s/B.s/ ds






L
10=3
x L2t

.M� kBkL10=7x L2t
;

where
S .t; s/D Op.Ad.O˙/<0.t; x;D/e˙i.t�s/jDjOp.Ad.O˙/<0.D; s; y/

and the bump function ��l corresponds to the modulation scale 2l in S]0. It is easily seen that the bump
function is disposable and can be harmlessly discarded. Hence in order to prove (10-47) it remains to
show that 



Z S .t; s/B.s/ ds






L
10=3
x L2t

.M� kBkL10=7x L2t
: (10-48)

To prove this we use Stein’s analytic interpolation theorem. We consider the analytic family of operators

TzB.t/D e
z2
Z
.t � s/zS .t; s/B.s/ ds

for z in the strip
�1� Imz � 3

2
:

Then it suffices to establish the uniform bounds

kTzkL2!L2 .M� 1; Rez D�1; (10-49)

kTzkL1xL2t!L
1
x L

2
t
.M� 1; Rez D 3

2
: (10-50)

For (10-49) we can use the bound (10-31) to discard the L2 bounded operators

Op.Ad.O˙/<0.t; x;D/e˙it jDj; e�isjDjOp.Ad.O˙/<0.D; s; y/:

Then we are left with the time convolutions with the kernels ez
2

tz. But these are easily seen to be
multipliers with uniformly bounded symbols.

For (10-50), on the other hand, we consider the kernel Kz.t; x; s; y/ of Tz . This is given by

Kz.t; x; s; y/D e
z2.t � s/zKa<0.t; x; s; y/

with a a smooth bump function on the unit scale. Hence by (10-24) we have the kernel bound

jKz.t; x; s; y/j.M� hjt � sj � jx�yji
�100; Rez D 3

2
:

Fixing x and y we have the obvious bound

kKz. � ; x; � ; y/kL2!L2 .M� 1:
Then (10-50) easily follows.
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11. Renormalization error bounds

Without loss of generality, we fix the sign ˙DC. In this section, unless we specify otherwise, Op. � /
denotes the left quantization. For the sake of simplicity, we also adopt the convention of simply writing
Ax for PxA.

11A. Preliminaries. We collect here some technical tools for proving the renormalization error bound.
We begin with a tool that allows us to split Op.ab/ into Op.a/Op.b/. The idea of the proof is based

on the heuristic identity Op.ab/�Op.a/Op.b/� Op.�i@�a � @xb/ for left-quantized pseudodifferential
operators; see [Krieger et al. 2015, Lemma 7.2] and [Krieger and Tataru 2017, Lemma 7.2].

Lemma 11.1 (composition via pseudodifferential calculus). Let a.t; x; �/ and b.t; x; �/ be End.g/-valued
symbols on It �R4x �R4

�
with bounded derivatives, such that a.t; x; �/ is homogeneous of degree 0 in �

and b.t; x; �/D P x
<h��10

b.t; x; �/ for some 0 < � < 1 and 2h� D � . Then we have

k.Op.a/Op.b/�Op.ab//P0kLqL2ŒI �!LrL2ŒI �

. k�@�akD�Lp2L1ŒI �kOp.��1@xb/P0kLqL2ŒI �!Lp1L2ŒI �; (11-1)

where r�1 D p�11 Cp
�1
2 :

Proof. For simplicity, in this proof we only present formal computation, which can be justified using the
qualitative assumptions on a and b.

Let us fix t 2I. Thanks to the frequency-localization condition b.x; �/DP x
<h��10

b.x; �/, we may write

.Op.a/Op.b/�Op.ab//P0 D
X
�

Op.a�
�
/Op.b�

�
/�Op.a�

�
b
�

�
/;

where

a
�

�
.x; �/D a.x; �/.m

�

�
/2.�/ Qm20.�/; b

�

�
.x; �/D b.x; �/ Qm

�

�
.�/m0.�/:

Here � runs over caps of radius ' � on S3 with uniformly finite overlaps, .m�
�
/2.�/ D .m

�

�
/2.�=j�j/

are the associated smooth partition of unity on S3 and m0.�/ is the symbol for P0. The functions
Qm
�

�
.�/D Qm

�

�
.�=j�j/ and Qm20.�/ are smooth cutoffs to the supports of m�

�
and m0, respectively, which can

be inserted thanks to the frequency-localization condition b.x; �/D P x
<h��10

b.x; �/.
For each �, we claim that

kOp.a�
�
/Op.b�

�
/�Op.a�

�
b
�

�
/kL2!L2

.
� 20X
nD1

sup
!
m
�

�
.!/k�n@

.n/

�
a. � ; !/kL1

�
kOp.��1@xb

�

�
/kL2!L2 : (11-2)

Assuming the claim, the proof can be completed as follows. Let us restore the dependence of the symbols
on t . By the definition of D�LqLr , we have



�X

�

� 20X
nD1

sup
!
m
�

�
.!/k�n@

.n/

�
a.t; �; !/kL1

�2 �1
2





L
p2
t ŒI �

. k�@�akD�Lp2L1ŒI �:
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On the other hand, by L2-almost orthogonality of Qm�
�
.�/ and Hölder in t , we have



�X

�

kOp.��1@xb
�

�
/k2
L2!L2

�1
2





L
p0
t ŒI �

. kOp.��1@xb/P0kLqL2!Lp1L2ŒI �;

where r�1Cp�10 D p
�1
1 . Therefore, by Cauchy–Schwarz in � and Hölder in t , (11-1) follows.

We now turn to the proof of (11-2). For simplicity of notation, we use the shorthand a D a�
�

and
b D b

�

�
for now. Then the kernel of Op.a/Op.b/�Op.ab/ can be computed as follows:

K.x; y/D

Z
ei.x�z/��ei.z�y/��.a.x; �/� a.x; �//b.z; �/ dz

d�

.2�/4
d�

.2�/4

D

Z 1

0

Z
ei.x�z/��ei.z�y/��.� � �/ � .@�a/.x; s�C .1� s/�/b.z; �/ dz

d�

.2�/4
d�

.2�/4
ds

D�i

Z 1

0

Z
ei.x�z/��ei.z�y/��.@�a/.x; s�C .1� s/�/.@xb/.z; �/ dz

d�

.2�/4
d�

.2�/4
ds:

Expanding

@�a.x; � /D

Z
e�i. � /�„.@�a/

_.x;„/ d„

and making the change of variables Qz D z� .1� s/„, we further compute

K.x; y/D�i

Z 1

0

Z
ei.x�s„�z/��ei.z�.1�s/„�y/��.@�a/

_.x;„/.@xb/.z; �/ d„dz
d�

.2�/4
d�

.2�/4
ds

D�i

Z 1

0

Z
ei.x�„�Qz/��ei.Qz�y/��.@�a/

_.x;„/.@xb/. QzC .1� s/„; �/ d„d Qz
d�

.2�/4
d�

.2�/4
ds

D�i

Z 1

0

Z
.@�a/

_.x;„/

�Z
ei.x�s„�y/��.@xb/.x� s„; �/

d�

.2�/4

�
d„ds:

On the last line, note that the �-integral inside the parentheses is precisely the kernel of Op.@xb/.x�s„;D/.
By translation invariance, we have

��1k.@xb/.x� s„;D/kL2!L2 D k.�
�1@xb/.x;D/P0kL2!L2 :

On the other hand, returning to the full notation a�
�
D a and rotating the axes so that � D .1; 0; 0; 0/, note

that a�
�
.x; � / is supported on a rectangle of dimension ' 1� � � � � � , and smooth on the corresponding

scale. Integrating by parts in � to obtain rapid decay in „ (of the form h„1i�N h�„0i�N, where
„0 D .„2; „3; „4/), we may estimate

�

Z
k.@�a

�

�
/_. � ; „/kL1 d„�

Z 



Z ei„���@�a. � ; �/.m
�

�
/2.�/ Qm20.�/

d�

.2�/4






L1

d„

. ��3
20X
nD1

Z
k�n@

.n/

�
a. � ; �/kL1m

�

�
.�/ Qm0.�/ d�:
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Passing to the polar coordinates � D �! (where �D j�j), integrating out � and using Hölder in ! (which
cancels the factor ��3), we arrive at

�

Z
k.@�a

�

�
/_. � ; „/kL1 d„.

20X
nD1

sup
!
m
�

�
.!/k�n@

.n/

�
a. � ; !/kL1 ;

which proves (11-2). �

Remark 11.2. As is evident from the proof, we in fact have the simpler bound

k.Op.a/Op.b/�Op.ab//P0kLqL2ŒI �!LrL2ŒI �
. kakD�Lp2L1ŒI �kOp.��1@xb/P0kLqL2ŒI �!Lp1L2ŒI �: (11-1)0

In other words, control of the D�Lp2L1-norm already encodes the fact that a is smooth in � on the
scale � .

In practice, Lemma 11.1 can be only be applied when we know that the symbol on the right (b in
Lemma 11.1) is smooth in x on the scale ��1. Fortunately, when b D Ad.O/, the remainder can be
controlled using decomposability bounds for ‰. We therefore have the following useful composition
lemma.

Lemma 11.3 (composition lemma). Let G D G.t; x; �/ be a smooth g-valued symbol on I �R4 �R4,
which is homogeneous of degree 0 in � and admits a decomposition of the form G D

P
�22�N G.�/, where

kG.�/kD�L2L1ŒI � � �
˛B

for some B > 0 and ˛ > 1
2
C ı. Then for every `� 0 we have

kOp.ad.G/Ad.O<`//P0�Op.ad.G//Op.Ad.O<`//P0kN�ŒI �!NŒI� .M B: (11-3)

Proof. Let us assume that ` > h� � 20, as the alternative case is easier.
We decompose the expression on the left-hand side of (11-3) into

P
�22�N D.�/, where

D.�/ D Op.ad.G.�//Ad.O<`//P0�Op.ad.G.�///Op.Ad.O<`//P0:

In order to reduce to the case when Lemma 11.1 is applicable, we introduce h� D log2 � and further
decompose D.�/ as

D.�/D

Z `

h��20

Op.ad.G.�//ad.‰h/Ad.O<h//P0dh�
Z `

h��20

Op.ad.G.�///Op.ad.‰h/Ad.O<h//P0dh

COp.ad.G.�//Ad.O<h��20/�h��10/P0�Op.ad.G.�///Op.Ad.O<h��20/h��10/P0

COp.ad.G.�//Ad.O<h��20/<h��10/P0�Op.ad.G.�///Op.Ad.O<h��20/<h��10/P0:

We claim that
kD.�/kL1L2ŒI �!L1L2ŒI � . �˛�

1
2B: (11-4)

Assuming (11-4), the proof can be completed by simply summing up in � 2 2�N, which is possible since
˛ > 1

2
C ı.
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For the first term in the above splitting of D.�/, we haveZ `

h��20

kOp.ad.G.�// ad.‰h/Ad.O<h//P0kL1L2ŒI �!L1L2ŒI � dh

.M
Z `

h��20

kG.�/kD�L2L1ŒI �k‰hkDL2L1ŒI � dh

.M
Z `

h��20

�˛2.�
1
2
�ı/hB .M �˛�

1
2
�ıB:

The second term can be handled similarly. For the third term, we use the DL2L1 bound for G.�/ and
apply Lemma 10.12 to Ad.O<h��20/�h��10/, which leads to the acceptable bounds

kOp.ad.G.�//Ad.O<h��20/�h��10/P0kL1L2ŒI �!L1L2ŒI � .M �˛B;

kOp.ad.G.�///Op.Ad.O<h��20/�h��10/P0kL1L2ŒI �!L1L2ŒI � .M �˛B:

Finally, for the last term we use Lemma 11.1 (in fact, (11-1)0). �

11B. Decomposition of the error. Let

E D�p;�A Op.Ad.O/<0/�Op.Ad.O/<0/�:
We may take the decomposition

E DE1C � � �CE6;

where

E1 D 2i Op
�
.ad.! �Ax;<�� CA0;<�� CL!C‰/Ad.O//<0

�
jDxj;

E2 D 2i Op
�
.ad.! �OIxCOIt �L!C‰/Ad.O//<0

�
jDxj;

E3 D 2Op
�
ad.A˛;<��/.ad.O I˛/Ad.O//<0

�
COp

�
.ad.OI˛/ ad.O I˛/Ad.O//<0

�
;

E4 D Op..ad.@˛OI˛/Ad.O//<0/;

E5 D�2i Op.ad.A0;<��/Ad.O/<0/.Dt CjDxj/� 2i Op..ad.O<��It /Ad.O//<0/.Dt CjDxj/;

E6 D�2i Op
�
ŒS<0; ad.! �Ax;<�� CA0;<��/�Ad.O/

�
jDxj:

In the remainder of this section, we estimate each error term in order.

11C. Estimate for E1. Here, our goal is to prove

kE1P0kS]0 ŒI �!NŒI�
� "; (11-5)

with �1 large enough and ıp sufficiently small.

11C1. Preliminary reduction. For this term, we may simply work with I D R by extending the input by
homogeneous waves outside I. The desired smallness comes from � and bounds for �Ax and �A0 on I,
which controls the size of the symbol of E1 through our extension of A˛ as in Section 9B.
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We first dispose of the symbol regularization . � /<0 by translation invariance, and also throw away
jDxj using P0. Using (9-42) and the identity

L!CL
!
��

1

!?
D���1

!?
�C 1;

(11-5) reduces to showing 



Z ��
�1

Op.ad.Gh/Ad.O//P0 dh





S
]
0!N

� ";

where

Gh D ! �Ax;h�! �A
.�j�jı/

x;h;coneC�
�1
!?
�.! �A.�j�j

ı/

x;h;cone/CA0;h:

Note that each angular component G.�/
h
D…

!;C
�

Gh obeys

kG
.�/

h
kDL2L1 . 2

1
2
h�

3
2 .kAx;hkS1 CkA0;hkY 1/:

Therefore, by Lemma 11.3, we have



Z ��
�1

�
Op.ad.Gh/Ad.O//�Op.ad.Gh//Op.Ad.O//

�
P0 dh






N�!N

.M 2�
1
2
� ;

which is acceptable. By Lemma 10.12 applied to Op.Ad.O/�0/, we also have



Z ��
�1

Op.ad.Gh//Op.Ad.O/�0/P0 dh





N�!N

.M
Z ��
�1

2
1
2
h
kOp.Ad.O/�0/P0kL1L2!L2L2 dh

.M 2�
1
2
� :

Thus it suffices to show that



Z ��
�1

Op.ad.Gh//Op.Ad.O/<0/P0 dh





S
]
0!N

� ":

By (9-45), we have Op.Ad.O/<0/P0 W S
]
0! S0. Thus, in order to prove (11-5), we are left to establish



Z ��

�1

Op.ad.Gh//P0 dh





S0!N

� "; (11-6)

where we abuse the notation a bit and denote by P0 a frequency projection to a slightly enlarged region
of the form fj�j ' 1g.

At this point it is convenient to observe that the contribution of zR0 to A0 in (9-27) is easy to estimate
in L1L1 and can be harmlessly discarded. Thus from here on we assume that

zR0 D 0: (11-7)

In order to proceed, we write

Gh DGh;coneCGh;nullCGh;out;
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where
Gh;cone D ! �A

.<j�jı/

x;h;coneC�
�1
!?
�.! �A.�j�j

ı/

x;h;cone/CA0;h;cone;

Gh;null D ! �Ax;h;nullCA0;h;null;

Gh;out D ! �Ax;h;outCA0;h;out:

11C2. Estimate for Gh;cone. We claim that



Z ��
�1

Op.ad.Gh;cone//P0 dh






N�!N

� ": (11-8)

Let G.�/
h;cone D…

!;˙
�

Gh;cone and consider the expression Op.ad.G.�/
h;cone//P0. By the Fourier support

property of G.�/
h;cone (more precisely, the mismatch between its modulation . 2h�2 and the angle � ), it is

impossible that both the input and the output have modulation� 2h�2. Using the L2L2 norm for the
input or the output (whichever that has modulation & 2h�2), we may estimate

kOp.Gh;cone/P0kN�!N

.
X
�<1

2�
1
2
h��1kG

.�/

h;conekDL2L1

. 2
ı
2
h
kAx;hkS1 C

X
�<1

2�
1
2
h��

1
2 kQ<hC2 log2 �CC�AxkL2L2 C

X
�<1

2�
1
2
h�

1
2 k�A0;hkL2L2 :

We now treat each term separately.

Case 1: contribution of small angle interaction. The term 2.ı=2/hkAx;hkS1 is acceptable since it is
integrable in �1< h < ��, and we gain a small factor 2�.ı=2/� as a result.

Case 2: contribution of �Ax . For the second term, we split the � -summation into � < 2�� and � � 2��.
In the former case, note that

kQ<hC2 log2 �CC�AxkL2L2 . �
2b1k�Ax;hkX�1=2Cb1;�b1 :

Since b1 > 1
4

, we may estimateX
�<2��

2�
1
2
h��

1
2 kQ<hC2 log2 �CC�AxkL2L2 . 2

�.2b1� 12/�k�Ax;hkX�1=2Cb1;�b1 :

The last line is acceptable, since it is integrable in �1< h < ��, and it is small thanks to 2�.2b�1=2/�.
In the case � � 2��, we estimateX

��2��

2�
1
2
h��

1
2 kQ<hC2 log2 �CC�AxkL2L2 . 2

1
2
�
k�Ax;hkL2 PH�1=2 :

After integration in h, this is acceptable thanks to (9-22).

Case 3: contribution of A0. In this case, we simply sum up in � < 1 and observe thatX
�<1

2�
1
2
h�

1
2 k�A0;hkL2L2 . k�A0;hkL2 PH�1=2 :

After integration in h, this term is then acceptable by (9-29).
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11C3. Estimate for Gh;out. We claim that



Z ��
�1

Op.ad.Gh;out//P0 dh






N�!N

� ": (11-9)

As in the case of Gh;cone, the idea is again to make use of the mismatch between modulation of Gh;out

and the angle � . Let G.�/
h;out D…

!;˙
�

Gh;out, and consider the expression Op.ad.G.�/
h;out//P0. By definition,

G
.�/

h;out has modulation & 2h�2. Thus, we take the decomposition G.�/
h;outD

P
aW2a&� QhC2aG

.�/

h;out. By the
Fourier support property of the symbol QhC2aG

.�/

h;out (more precisely, the mismatch between the angle �
and the modulation 2hC2a), it is impossible that both the input and the output have modulation� 2hC2a.
Using the L2L2 norm for the input or the output, we have

kOp.ad.Gh;out//P0kN�!N

.
X
a

X
�<minfC2a;1g

2�
1
2
.hC2a/

kQhC2aG
.�/

h;outkDL2L1

.
X
a

X
�<minfC2a;1g

.2�
1
2
.hC2a/22h�

5
2 kQhC2aAx;hkL2L2 C 2

� 1
2
.hC2a/22h�

3
2 kA0;hkL2L2/

.
X
a

.2
5
2
a�2�3a2�

1
2
h
kQhC2a�Ax;hkL2L2 C 2

3
2
a�2�a2�

1
2
h
k�A0;hkL2L2/:

We split the a-summation into a < �� and a > ��. In the former case, the sum is bounded by

2�.2b1�
1
2
/�
k�Ax;hkXb1�1=2;�b1 C 2

� 1
2
�
k�A0;hkL2 PH�1=2 ;

which is integrable in h and small thanks to 2�.2b1�1=2/� ; therefore it is acceptable. When a > ��, the
sum is bounded by

2
1
2
�
k�Ax;hkL2 PH1=2 Ck�A0;hkL2 PH�1=2 :

After integrating in h, this term is therefore acceptable by (9-22) and (9-29).

11C4. Estimate for Gh;null. We claim that



Z ��
�1

Op.ad.Gh;null//P0 dh






S0!N

� ": (11-10)

Let G.�/
h;null D…

!;˙
�

Gh;null. Note that G.�/
h;null has modulation ' 2h�2. Hence if either the input or the

output have modulation � 2�C 2h�2, the same argument as in the case of Gh;cone applies. Writing � D 2`,
it remains to prove



 X

`2�N

Z ��
�1

Q<hC2`�C Op.ad.! �A.2
`/

x;h;nullCA
.2`/

0;h;null//P0Q<hC2`�C dh






S0!N

� ": (11-11)

Our next simplification is to observe that we can harmlessly replace the symbols A.2
`/

x;h;null and A.2
`/

0;h;null
with the functions QhC2`Ax;h and QhC2`Ax;h. This is because the difference of the two is localized still
at modulation 2hC2`, but also at distance 2hC2` from the null plane f� C! � �D 0g. This would force
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either the input or the output modulation in (11-11) to be � 2�C 2hC2`, and again the same argument as
in the case of Gh;cone applies. Thus with j D hC 2` we have reduced the problem to estimating



X

j<h

Z ��
�1

Q<j�C ad.QjA˛;h/@
˛P0Q<j�C dh






S0!N

� "; (11-12)





X
j<h

Z ��
�1

Q<j�C ad.QjA0;h/.D0CjDxj/P0Q<j�C dh





S0!N

� ": (11-13)

The second bound is straightforward since .D0CjDxj/P0Q<0 W S0! L2 and A0 2 L2 PH 3=2.
Thus it remains to consider (11-12). From here on, we assume that A is determined by the expressions

(9-27) and (9-30) in terms of QA. By (11-7) we have already set zR0 D 0. It is equally easy to see that we
can set zRx D 0. Indeed, by (4-6) and (8-30) we have

kQ<j�C ad.��1PhR`/@`P0Q<j�C kS0!N . 2
ı1.j�h/k��1PhR`kZ1 . 2ı1.j�h/kPhR`kL1L2 ;

where RD �IP zR. Now the summability in j < h and the smallness is assured due to (9-26).
Once we have dispensed with the error terms, we are left with At;x given by

A0 D�
�1O.�I QA

`; @t QA`/; (11-14)

AD��1P.O.�I QA`; @x QA`/CO 0.P` QA; �I@
` QA/�O 0. QA0; �I@t QA/CO 0. zG`; �I@

` QA//: (11-15)

We consider the contributions of each of these terms in (11-12).

Step 1: the contribution of A0D��1O.�I QA`; @t QA`/ and Ax D��1PO.�I QA
`; @x QA`/. This is the main

component, which we have to treat in a trilinear fashion. In particular we have to ensure that we gain
smallness. For this we use a trilinear Littlewood–Paley decomposition to set

AD
X

k;k1;k2

A.k; k1; k2/D
X

k;k1;k2

HA.k; k1; k2/C
X

.1�H�/A.k; k1; k2/;

where
HA.k; k1; k2/ WDHPkPA.Pk1�I

QA`; Pk2@t
QA`/;

.1�H/A.k; k1; k2/ WD .1�H/PkPA.Pk1�I
QA`; Pk2@t

QA`/:

For the terms in the first sum we use the trilinear estimate (8-43), which gives

kQ<j�C ad.QjHA˛.k; k1; k2//@˛P0Q<j�C kS0!L1L2.2
�ı1jkmax�kminj2ı1.j�k/kPk1

QAkS1kPk2
QAkS1 :

For the Ax terms in the second sum we first use (8-21) and (8-33), (8-34) to obtain

k.1�H/Ax.k; k1; k2/kZ1 . 2�ı1jkmax�kminjkPk1
QAkS1kPk2

QAkS1

and then use (8-30) to conclude that

kQ<j�C ad.Qj .1�H/A`.k; k1; k2//@`P0Q<j�C kS0!N.2
�ı1jkmin�kmaxj2ı1.j�k/kPk1

QAkS1kPk2
QAkS1 :

Similarly, for the A0 terms in the second sum we use (8-35) and then (8-31) to obtain

kQ<j�C ad.Qj .1�H/A0.k; k1; k2//@0P0Q<j�C kS0!N.2
�ı1jkmin�kmaxj2ı1.j�k/kPk1

QAkS1kPk2
QAkS1:
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Adding the last three bounds, we obtain

kQ<j�C ad.QjA˛.k; k1; k2//@˛P0Q<j�C kS0!N . 2
�ı1jkmax�kminj2ı1.j�k/kPk1

QAkS1kPk2
QAkS1 :

This gives both summability in k; k1; k2 and smallness provided we exclude the range of indices j; k1; k22
Œk� �0; kC �0� with �0� 1.

On the other hand, in the range excluded above, the operator PkQj is disposable, while both � and �
are elliptic, i.e., of size 22k. Then we can estimate

kQjA.k; k1; k2/kL1L1 . 2C�
0

kPk1
QAkDS1kPk2

QAkDS1 I

therefore we gain smallness from the divisible norm; see (9-5).

Step 2: the contribution of Ax D��1PO 0.P` QA; �I@
` QA/. This is a milder contribution, which we can

deal with in a bilinear fashion. Taking again the decomposition

Ax D
X

k;k1;k2

A.k; k1; k2/;

we use (8-38) to obtain

kAx.k; k1; k2/kZ1 . 2�ı1jkmax�kminjkPk1
QAkS1kPk1

QAkS1 :

Then by (8-30) it follows that

kQ<j�C ad.QjHAx.k; k1; k2//@˛P0Q<j�C kS0!L1L2

. 2�ı1jkmax�kminj2ı1.j�k/kPk1
QAkS1kPk1

QAkS1 : (11-16)

Again this is suitable outside the range j; k1; k2 2 Œk� �0; kC �0� with �0� 1, whereas in this range we
can use divisible norms as in the previous step.

Step 3: the contribution of PO 0. QA0; �I@t QA/CPO 0. zG`; �I@
` QA/. These two terms are similar, as we

have the same bounds available for QA0 and zGl . We will discuss QA0. Setting

Ax D��1PO 0. QA0; �I@t QA/; A0 D 0;

we decompose A as before,

Ax D
X

Ax.k; k1; k2/:

We can estimate the terms in the sum using (8-41) to get

kAx.k; k1; k2/kZ1 . 2�ı1jkmax�kminjkPk1
QA0kY 1kPk1

QAkS1 :

Then (11-16) follows again from (8-30), and we conclude as in Step 2.

11D. Estimate for E2. Our next goal is to estimate the error term E2, which arises from the multilinear
error between OI˛ and @˛‰. For this purpose, we rely crucially on interval localization of decomposable
norms (Lemma 10.7).
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11D1. Expansion of OI˛. We will prove that

kE2P0kN�ŒI �!NŒI� � " (11-17)

provided that �1 is large enough, and ıp is sufficiently small.
As usual, we may dispose of the symbol regularization . � /<0 by translation invariance. Also disposing

of jDxj using P0, it suffices to prove

Op
�
ad.! � .OIx � @x‰/C .OIt � @t‰//Ad.O/

�
P0



N�ŒI �!NŒI�

� ": (11-18)

Recall that @hO<hI˛ D‰h;˛C Œ‰h; O<hI˛�. Therefore,

@h.ad.O<hI˛/Ad.O<h//D ad.@˛‰h/Ad.O<h/C ad.‰h/Ad.O<hI˛/Ad.O<h/:

Repeatedly applying the fundamental theorem of calculus and this equation, we obtain the expansion

ad.OI˛/Ad.O/

D

Z ��
�1

ad.@˛‰h1/Ad.O<h1/ dh1 (11-19)

C

Z ��
�1

Z h1

�1

ad.‰h1/ ad.@˛‰h2/Ad.O<h2/ dh2 dh1 (11-20)

C � � �

C

Z ��
�1

Z h1

�1

� � �

Z h5

�1

ad.‰h1/ ad.‰h2/ � � � ad.@˛‰h6/Ad.O<h6/ dh6 � � � dh2 dh1: (11-21)

On the other hand,

@h.ad.@˛‰<h/Ad.O<h//D ad.@˛‰h/Ad.O<h/C ad.@˛‰<h/ ad.‰h/Ad.O<h/;

so we have

ad.@˛‰/Ad.O/D
Z ��
�1

ad.@˛‰h1/Ad.O<h1/ dh1 (11-22)

C

Z ��
�1

Z h1

�1

ad.@˛‰h2/ ad.‰h1/Ad.O<h1/ dh2 dh1: (11-23)

Observe that (11-19) and (11-22) coincide. Thus, we only need to consider the contribution of (11-20)–
(11-21) and (11-23) in (11-18).

11D2. Estimate for quadratic expressions. We begin with the contribution of the quadratic terms in ‰,
namely (11-20) and (11-23), which are most delicate. We claim that



Z ��

�1

Z h1

�1

Op.ad.‰h1/ ad.L!C‰h2/Ad.O<h2//P0 dh2 dh1






N�ŒI �!NŒI�

� "; (11-24)



Z ��
�1

Z h1

�1

Op.ad.L!C‰h2/ ad.‰h1/Ad.O<h1//P0 dh2 dh1






N�ŒI �!NŒI�

� "; (11-25)
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provided that �1 is large enough and ıp is sufficiently small. In what follows, we will focus on establishing
(11-24), as the proof for the other claim is analogous.

By (9-42) and the identity L!
C
L!��

1

!?
D���1

!?
�C 1, (11-24) would follow once we establish



Z ��

�1

Z h1

�1

Op
�
ad.‰h1/ ad.! �Amain

h2
/Ad.O<h2/

�
P0 dh2 dh1






N�ŒI �!NŒI�

�"; (11-26)



Z ��
�1

Z h1

�1

Op
�
ad.‰h1/ ad.��1

!?
�.! �Amain

h2
//Ad.O<h2/

�
P0 dh2 dh1






N�ŒI �!NŒI�

�": (11-27)

In Lemmas 10.4 and 10.7, note that ! �Amain;.�/
h

.D ! �A
.�/

x;h;cone;C/ and ��1
!?
�.! �Amain;.�/

h
/ obey the

same bounds. Therefore, (11-26) and (11-27) are proved in exactly the same way. In what follows, we
only consider (11-26).

Our first task is to remove Ad.O<h2/. For � 2 2�N, define

G.�/ D ad.‰.�/
h1
/ ad.! �Amain;.<�/

h2
/C ad.‰.��/

h1
/ ad.! �Amain;.�/

h2
/:

so that

G WD ad.‰h1/ ad.! �Amain
h2

/D
X
�22�N

G.�/:

Note that

kG.�/kDL2L1 .M 2
1
2
h12

1
2
.h2�h1/�

3
2 ;

by Lemma 10.4 and Lemma 10.5. Applying Lemma 11.3, then integrating �1 < h2 < h1 < ��, it
follows that



Z ��

�1

Z h1

�1

�
Op.ad.G/Ad.O<h2//�Op.ad.G//Op.Ad.O<h2//

�
P0 dh2 dh1






N�ŒI �!NŒI�

. 2�
1
2
� ;

which is acceptable. On the other hand, using the DL2L1 bound for G and Lemma 10.12, we have



Z ��
�1

Z h1

�1

Op.ad.G//Op.Ad.O<h2/�0/P0 dh2 dh1






N�ŒI �!NŒI�

.M
Z ��
�1

Z h1

�1

2
1
2
h12

1
2
.h2�h1/kOp.Ad.O<h2/�0/P0kL1L2ŒI �!L2L2ŒI � dh2 dh1

.M 2�
1
2
� ;

so we may replace Op.Ad.O<h2// by Op.Ad.O<h2//<0. Finally, by (9-44) we have

Op.Ad.O<h2/<0/P0 WN
�ŒI �!N �ŒI �;

so we are left to prove



Z 0

�1

Z h1

�1

Op.ad.‰h1/ ad.! �Amain
h2

// dh2 dh1






N�ŒI �!NŒI�

� ": (11-28)
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In order to place ourselves in a context where we can apply Lemma 10.7, we begin by dispensing with
the case of short intervals

jI j � 2�h2�C� :

For very short intervals jI j � 2�h1�C� we have the bound



Z 0

�1

Z h1

�1

Op.ad.‰h1/ ad.! �Amain
h2

// dh2 dh1






L1L2!L1L2

.M 2h2 jI j;

which is a consequence of fixed-time decomposability bounds, namely (10-10) with q D1 and (10-14)
with q D1 and r D1, combined with Hölder’s inequality in time. This suffices for the integration with
respect to h1 and h2 in this range.

For merely short intervals 2�h1�C� � jI j � 2�h2�C� we are allowed to use space-time decomposabilty
bounds but only for ‰h1 . In this case we apply (10-10) with q D1 and (10-14) with q D 6 and r D1,
combined with Hölder’s inequality in time, to obtain



Z 0

�1

Z h1

�1

Op.ad.‰h1/ ad.! �Amain
h2

// dh2 dh1






L1L2!L1L2

.M 2�
1
6
h12h2 jI j

5
6 :

This again suffices for the integration with respect to h1 and h2 in this range.
For large intervals, on the other hand, we will use Lemma 10.7. We begin by decomposing ‰h1 DP
�1
‰
.�1/

h1
and Amain

h2
D
P
�2
A

main;.�2/
h2

. First, we consider the case 2h1�21 � 2
�2�2h2�22. For fixed h1, h2

and �2, we use interval localized decomposability calculus to estimateX
�1�2��2

.1=2/.h2�h1/�2

kOp.ad.‰.�1/
h1

/ ad.! �Amain;.�2/
h2

//kL1L2ŒI �!L1L2ŒI �

.
X

�1�2��2
.1=2/.h2�h1/�2

k‰
.�1/

h1
kDL2L1ŒI �k! �A

main;.�2/
h2

kDL2L1ŒI �

. 2�2
1
4
.h2�h1/�2kAh1kS1.2

� 1
2
h2�
� 3
2

2 k! �A
main;.�2/
h2

kDL2L1ŒI �/:

Summing up in �2 < 2�2� , we see thatX
�2<2�2�

X
�1�2��2

.1=2/.h2�h1/�2

kOp.ad.‰.�1/
h1

/ ad.! �Amain;.�2/
h2

/Ad.O<h2/j�j/kL1L2ŒI �!L1L2ŒI �

. 2��2
1
4
.h2�h1/kAh1kS1kAh2kS1 ;

which is acceptable. On the other hand, in the large angle case �2 � 2�2�, we use Lemma 10.7 to bound

2�
1
2
h2�
� 3
2

2 k! �A
main;.�2/
h2

kDL2L1ŒI � . 2C�kAh2kDS1ŒI �:

When 2h1�21 < 2�2�2h2�22, we extend the input to R � R4 by zero outside I and use modulation
localization. Here we do not apply Lemma 10.7, but rather gain smallness from ��. In this case, observe
that it is impossible for the input, the output and ‰.�1/

h1
to all have modulation� 2h2�22 DW j2. Therefore,

we split into three cases:
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Case 1: high-modulation input. We estimateX
�2

X
�1<2��=22

.1=2/.h2�h1/�2

kOp.ad.‰.�1/
h1

/ ad.! �Amain;.�2/
h2

//Q�j2�C kX1=2;10 !L1L2

.
X
�2

X
�1<2��=22

.1=2/.h2�h1/�2

2�
1
2
h2��12 k‰

.�1/

h1
kDL6L1k! �A

main;.�2/
h2

kDL3L1

.
X
�2

X
�1<2��=22

.1=2/.h2�h1/�2

2
1
6
.h2�h1/�

1
6

1 �
5
6

2 kAx;h1kS1kAx;h2kS1

. 2�
1
6
�2

1
4
.h2�h1/kAx;h1kS1kAx;h2kS1 ;

which is acceptable.

Case 2: high-modulation output. When the output has modulation � 2j2�C, then we have exactly the
same bound for L1L2!X

�1=2;1
0 (we use boundedness of Q<j2�C on L1L2).

Case 3: high modulation for ‰h1 . By boundedness of Q<j2�C on L1L2 and L1L2, it suffices to have
the estimateX
�2

X
�1<2��=22

.1=2/.h2�h1/�2

kOp.ad.Q�j2�C‰
.�1/

h1
/ ad.! �Amain;.�2/

h2
//kL1L2!L1L2

.
X
�2

X
�1<2��=22

.1=2/.h2�h1/�2

kQ�j2�C‰
.�1/

h1
kDL2L1k! �A

main;.�2/
h2

kDL2L1

.
X
�2

X
�1<2��=22

.1=2/.h2�h1/�2

�
1
2

1 �
1
2

2 kAx;h1kS1kAx;h2kS1

. 2�
1
2
�2

1
4
.h2�h1/kAx;h1kS1kAx;h2kS1 :

Here, we have use (10-15) for
P
j�j2�C

Qj‰
.�1/

h1
.

11D3. Estimate for higher-order expressions. The contribution of the cubic, quartic and quintic terms in
‰ in the expansion of OI˛ are treated in a similar manner as in the quadratic case; therefore, we omit the
proof. The only remaining case is the contribution of (11-21). For this term, we claim that



Z ��

�1

Z h1

�1

� � �

Z h5

�1

Op.ad.‰h1/ � � � ad.‰h5/ ad.O<h6I˛/Ad.O<h6// dh6 � � � dh2 dh1






N�ŒI �!NŒI�

� "

for �1 large enough and ıp in (9-3) adequately small.
As in the case of the quadratic part, we start with very short intervals and move up the line. If

jI j< 2�h1�C� then we only apply fixed-time decomposability estimates, namely (10-14) with q D1
and r D1 and (10-17) also with q D1, together with Hölder in time, to obtain

Op

�
ad.‰h1/ � � � ad.‰h5/ ad.O<h6I˛/Ad.O<h6/

�


L1L2!L1L2

.M 2h6 jI j;

which suffices for the h integration.
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If 2�h1�C� � jI j< 2�h2�C� then we switch to (10-14) with q D 6 and r D1 for ‰h1 , to obtain

Op
�
ad.‰h1/ � � � ad.‰h5/ ad.O<h6I˛/Ad.O<h6/

�


L1L2!L1L2

.M 2�
1
6
h12h6 jI j

5
6 ;

which again suffices for the h integration.
Repeating this procedure for increasingly large I we eventually arrive at the last case jI j> 2�h6�C�.

There by Lemma 10.3 and boundedness of Ad.O<h6/ on L2, we have

Op
�
ad.‰h1/ � � � ad.‰h5/ ad.O<h6I˛/Ad.O<h2/

�


L1L2ŒI �!L1L2ŒI �

. k‰h1kDL6L1ŒI � � � � k‰h5kDL6L1ŒI �kO<h6I˛kDL6L1ŒI �:

Using Lemma 10.5 for ‰.�/
h

with � < 2�� and Lemma 10.7 for the rest, we have

k‰hkDL6L1ŒI � � 2
� 1
6
h.2��kAx;hkS1ŒI �CC2

C�
kAx;hkDS1ŒI �/:

This bound provides us with the desired smallness. By the previous estimate and (10-17), the h-integrals
converge as well, which proves our claim.

11E. Estimates for E3, . . . , E6. We finally handle the error terms E3, . . . , E6, for which we gain
smallness from the frequency gap �.

11E1. The estimate for E3. It suffices to show that

kE3P0kL1L2!L1L2 .M 2�
1
2
� :

But this is a consequence of the L2 boundedness for Op.Ad.O//, combined with the L2L1 decompos-
ability estimates for A˛ and OI˛ in Lemmas 10.4 and 10.6.

11E2. The estimate for E4. We expand with respect to h,

ad.@˛OI˛/Ad.O/D
Z ��
�1

@˛.ad.O<hI˛/ ad.‰h//Ad.O<h/ ad.�‰h/Ad.O<h/ dh:

For the first term we simply use two L2L1 decomposability estimates as in the case of E3. For the
second term, in view of the bound (10-16), we can apply Lemma 11.3 to discard the Ad.O<h/ factor.
Then it suffices to show that 



Z ��

�1

Op.ad.�‰h//P0 dh





S0!N

.M 2h:

After expanding ‰h in � , we note that, due to the frequency localization of ‰.�/
h

, either the input or the
output has modulation & 2h�2. We assume the former, as the other case is similar. Then we only need to
prove the bound 



Z ��

�1

Op.ad.�‰.�/
h
//P0 dh






L2!L1L2

.M �2
3
2
h;

which is an immediate consequence of the decomposability bound (10-16) for �‰.�/
h

.
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11E3. The estimate for E5. It suffices to show that

kE3P0kS]0!L1L2
.M 2�

1
2
� :

Since .Dt CjDxj/P0 W S
]
0! L2, this follows from the L2 boundedness for Op.Ad.O//, combined with

the L2L1 decomposability estimates for A˛ in Lemma 10.4.

11E4. The estimate for E6. In view of the L2L1 decomposability estimates for A˛ in Lemmas 10.4
and 11.3, we can discard the Ad.O/ factor. In addition, as in Proposition 4.30, we can express the
commutator ŒS0; Ah� in the form

ŒS0; Ah�f D 2
hO.Ah; f /:

Then we have reduced our problem to proving



Z ��
�1

2h Op.ad.! � rAx;h//P0 dh





S0!N

� ";



Z ��
�1

2h Op.ad.A0;h//P0 dh





S0!N

� ":

But then these follow, with the 2�ı1� gain, from (8-21) and (8-23), thanks to the extra derivative (i.e., the
2h factor).
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SCATTERING RESONANCES ON TRUNCATED CONES

DEAN BASKIN AND MENGXUAN YANG

We consider the problem of finding the resonances of the Laplacian on truncated Riemannian cones. In a
similar fashion to Cheeger and Taylor, we construct the resolvent and scattering matrix for the Laplacian
on cones and truncated cones. Following Stefanov, we show that the resonances on the truncated cone are
distributed asymptotically as Arn

+ o(rn), where A is an explicit coefficient. We also conclude that the
Laplacian on a nontruncated cone has no resonances.

1. Introduction

In this note, we consider the resonances on truncated Riemannian cones and establish a Weyl-type formula
for their distribution. To fix notation, we let (Y, h) be a compact (n−1)-dimensional Riemannian manifold
(with or without boundary) and let C(Y ) denote the cone over Y. In other words, C(Y ) is diffeomorphic
to the product (0,∞)r ×Y and is equipped with the incomplete Riemannian metric g = dr2

+ r2h. We
refer the reader to the foundational works [Cheeger and Taylor 1982a; 1982b] for more details on the
geometric set-up. We also introduce the truncated Riemannian cone Ca(Y ) formed by introducing a
boundary at r = a; i.e., Ca(Y ) is diffeomorphic to [a,∞)r × Y and equipped with the same metric.

The (negative-definite) Laplacian on C(Y ) (or Ca(Y ) with a choice of boundary conditions) has the
form

∂2
r +

n− 1
r

∂r +
1
r21h,

where 1h denotes the Laplacian of (Y, h). Its resolvent R(λ) is given by

R(λ)= (1+ λ2)−1.

We consider the cutoff resolvent χR(λ)χ , where χ is a (fixed) smooth compactly supported function on
C(Y ) (or Ca(Y )). One consequence of the resolvent formula of Theorem 2.1 is that the cutoff resolvent
extends meromorphically to the logarithmic cover of C \ {0}.

More precisely, we identify elements λ of the logarithmic cover of C \ {0} by a magnitude |λ| and a
phase arg λ ∈R. We identify the “physical half-plane” as those λ with arg λ ∈ (0, π). These λ correspond
to the resolvent set C \ [0,∞) via the map λ 7→ |λ|2e2i arg λ. The cutoff resolvent then extends to be
meromorphic as a function of λ on this logarithmic cover.

MSC2010: 33C10, 35L05, 58J50.
Keywords: resonances, cones.
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The poles of the cutoff resolvent consist of possibly finitely many L2-eigenvalues lying in the upper
half-plane (which do not appear with Dirichlet boundary conditions) and poles lying on other sheets of
the cover. The latter poles are called the resonances of 1.

The main theorem of this paper counts the most physically relevant resonances for the truncated cone. In
particular, we count those resonances λ nearest to the physical half-plane, i.e., those with arg λ ∈

(
−
π
2 , 0

)
and arg λ ∈

(
π, 3π

2

)
. The resonances on other “sheets” of the cover remain more mysterious and are

related to the zeros of Hankel functions near the real axis. We consider the resonance counting function
on these sheets, defined by

N (r)= #{λ : λ is a resonance and |λ| ≤ r}.

The following theorem provides an asymptotic formula for N (r).

Theorem 1.1. Suppose either that the set of periodic geodesics of (Y, h) has Liouville measure zero or
that Y = Sn−1 equipped with a constant rescaling of the standard metric. Consider the truncated cone
C1(Y ) equipped with the Dirichlet Laplacian and let N (r) denote its resonance counting function on the
neighboring sheets as above. We then have, as r→∞,

N (r)= An Vol(Y, h)rn
+ o(rn),

where An is an explicit constant (defined below in (7)) and Vol(Y, h) denotes the volume of the Riemannian
manifold (Y, h).

The constant An Vol(Y, h) in Theorem 1.1 is the same constant as computed in [Stefanov 2006] for
the resonance counting function on the domain exterior to a ball in Rn. When Y = Sn−1 is equipped
with its standard metric, the truncated cone C1(Y ) can be thought of as the exterior of the unit ball in
Euclidean space. Theorem 1.1 recovers Stefanov’s result. (When Y = Sn−1, n odd, is equipped with
its standard metric, the cutoff resolvent in fact continues to the complex plane; this can be seen in the
resolvent formulae below.)

We also state the following theorem, which is known to the community but does not seem to be in the
literature.

Theorem 1.2. If (Y, h) is a compact Riemannian manifold (with or without boundary) then the cone
C(Y ) has no resonances.

In fact, Theorem 2.1 below shows that λ is a resonance of the truncated cone C1(Y ) if and only if λ/a
is a resonance of the truncated cone Ca(Y ). Sending a to 0 then pushes all resonances out to infinity and
provides evidence for Theorem 1.2.

The proof of Theorem 1.1 has two main steps. We first separate variables and obtain an explicit
resolvent formula in Theorem 2.1 to characterize the resonances as zeros of a Hankel function. In
Section 3 we consider the asymptotic distribution of the zeros of each Hankel function appearing in the
resolvent formula. The hypothesis on the link (Y, h) is used to control the error terms when synthesizing
the result. Theorem 1.2 is an immediate corollary of the resolvent formula in Theorem 2.1.
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The proof of Theorem 1.1 follows an argument of [Stefanov 2006] very closely. Stefanov established a
Weyl-type law for the distribution of resonances for the exterior of a ball in odd-dimensional Euclidean
space. The main contribution of this paper is the observation that, after some natural modifications, the
core of Stefanov’s argument applies to the setting of cones. Borthwick [2010; 2012] and Borthwick and
Philipp [2014] showed that a similar approach works in the asymptotically hyperbolic setting.

We further remark that we have specialized to the Dirichlet Laplacian in Theorem 1.1 only for simplicity.
For Neumann or Robin boundary conditions, the resolvent formula of Theorem 2.1 has an analogous
expression. The resonance counting problem then involves counting zeros of H (2)′

ν +CνH (2)
ν , which can

be handled with similar arguments.

2. Resolvent construction

In this section we write down an explicit formula (via separation of variables) for the resolvent and
then show that the cut-off resolvent has a meromorphic continuation to the logarithmic cover 3 of the
complex plane. The construction is essentially contained in the [Cheeger and Taylor 1982a; 1982b], but
the resolvent is not explicitly written there.

Suppose φj form an orthonormal family of eigenfunctions for −1h with corresponding eigenvalues µ2
j .

We decompose L2(C(Y )) into a direct sum in terms of the eigenspaces of −1h , i.e.,

L2(Ca(Y );C)=
∞⊕
j=0

L2((a,∞); E j ), f (r, y)=
∞∑
j=0

f j (r)φj (y),

where the first space is defined with respect to the volume form induced by the metric and the latter spaces
can be identified (via the identification f (r)φj (y) 7→ f (r)) with the space L2((a,∞);C) equipped with
the volume form rn−1 dr .

For arg λ∈ (0, π), the resolvent R(λ) splits as a direct sum of operators Rj (λ) acting on L2((a,∞), E j ),
with measure rn−1 dr .

R(λ)
( ∞∑

j=1

f j (r)φj (y)
)
=

∞⊕
j=1

(Rj (λ) f j )φj (y).

In this section, we prove the following explicit formula for the j-th piece of the resolvent. For the
cone C(Y ) (i.e., for a = 0), we use the Friedrichs extension of the Laplacian to guarantee self-adjointness
(though in high enough dimension the Laplacian is essentially self-adjoint):

Theorem 2.1. The piece of the resolvent corresponding to the j-th eigenvalue has the following explicit
expression on the truncated cone Ca(Y ) or the cone C(Y ) (a = 0):

(Rj (λ) f )(r)=
∫
∞

a
Ka, j (r, r̃) f (r̃)r̃n−1 dr̃ ,

where Ka, j (r, r̃) is given by

Ka, j (r, r̃)=
π

2i
(r̃r)−(n−2)/2

{
H (1)
νj (λr̃)Jνj (λr)− (Jνj (λa)/H (1)

νj (λa))H (1)
νj (λr̃)H (1)

νj (λr), r < r̃ ,
Jνj (λr̃)H (1)

νj (λr)− (Jνj (λa)/H (1)
νj (λa))H (1)

νj (λr̃)H (1)
νj (λr), r > r̃ .



388 DEAN BASKIN AND MENGXUAN YANG

Here Jν are the standard Bessel functions of the first kind and H (1)
ν are the Hankel functions of the first

kind. The second term in both expressions should be interpreted as 0 when a = 0.

Proof. After separating variables, we may assume that f = f j (r)φj (y). We construct the resolvent for
=λ > 0 and then meromorphically continue the expression.

Writing u = u j (r)φj (y), the equation (1+λ2)u = f induces the following differential equation for u j :

∂2
r u j +

n− 1
r

∂r u j −
µ2

j

r2 u j + λ
2u j = f j . (1)

We solve this equation by showing it is equivalent to a Bessel equation.
Changing variables to ρ = λr and writing ũ(ρ)= u(ρ/λ) yields

∂2
ρ ũ+

n− 1
ρ

∂ρ ũ+
(

1−
µ2

j

ρ2

)
ũ =

1
λ2 f̃ (ρ).

Writing v = ρ(n−2)/2ũ, we obtain a Bessel equation for v:

v′′+
1
ρ
v′+

(
1−

ν2
j

ρ2

)
v = g(ρ), (2)

where

ν2
j = µ

2
j + ((n− 2)/2)2 and g(ρ)=

ρ(n−2)/2

λ2 f̃ (ρ).

We now proceed by the standard ODE technique of variation of parameters. One basis for the space of
solutions of the homogeneous version of this Bessel equation is {Jνj (ρ), H (1)

νj (ρ)}, where Jν is the Bessel
function of the first kind and H (1)

ν is the Hankel function of the first kind. We thus may use the following
basis for the space of solutions of the homogeneous equation:

w1(r)= r−(n−2)/2 Jνj (λr), w2(r)= r−(n−2)/2 H (1)
νj
(λr). (3)

For =λ > 0, Rj (λ) f j must lie in L2((a,∞), rn−1 dr). If f j is compactly supported, this means that
u j = Rj (λ) f j must be a multiple of r−(n−2)/2 H (1)

νj (λr) near infinity. When a > 0, u j must satisfy the
boundary condition at r = a. When a = 0, the choice of the Friedrichs extension requires that both u j

and u′j lie in the weighted L2 space near 0 and so u j must be a multiple of r−(n−2)/2 Jνj (λr) near r = 0 as
any nonzero multiple of w2 will not have this property.

We may thus write

u j (r)=
(∫

∞

r

w2(r̃) f j (r̃)
W (w1, w2)(r̃)

dr̃
)
w1(r)+

(
C +

∫ r

a

w1(r̃) f j (r̃)
W (w1, w2)(r̃)

dr̃
)
w2(r),

where C is a yet-to-be-determined constant, the functions w1 and w2 are as in (3), and W (w1, w2) is
their Wronskian. The Wronskian W can be easily computed in terms of the Wronskian of the Bessel and
Hankel functions and is

W (w1, w2)(r)= r−(n−1) 2i
π
.
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We now turn our attention to the boundary condition. For a = 0, the requirement that the solution and
its derivative live in L2 forces C = 0, yielding the result. For a 6= 0, we require that u j (a)= 0; i.e.,(

π

2i

∫
∞

a
H (1)
νj
(λr̃)r̃n/2 f (r̃) dr̃

)
a−(n−2)/2 Jνj (λa)+Ca−(n−2)/2 H (1)

νj
(λa)= 0,

and so we must have

C =−
π

2i
Jνj (λa)

H (1)
νj (λa)

∫
∞

a
H (1)
νj
(λr̃)r̃n/2 f (x) dx,

finishing the proof. �

We now claim that χR(λ)χ has a meromorphic continuation:

Lemma 2.2. Given a fixed χ ∈ C∞c (R+× Y ), χR(λ)χ meromorphically continues from

{λ ∈ C : =λ > 0}

to the logarithmic cover 3 of the complex plane.

Proof. We first prove the statement for the full cone; the statement for the truncated cone will follow by
an appeal to the analytic Fredholm theorem.

Fix χ ∈C∞c ((0,∞)) and regard χ(r) as a compactly supported smooth function on C(Y ). We let R(λ)
denote the resolvent on the nontruncated cone (i.e., a = 0) and K (λ; r, y, r̃ , ỹ) denote its integral kernel.
In order to show that χR(λ)χ meromorphically continues, it suffices to show that for any f, g ∈ L2(C(Y )),
the function

λ 7→ 〈χR(λ)χ f, g〉

meromorphically continues to 3.
Fix two such functions f, g∈ L2(C(Y )) and let f j (r) and gj (r) denote their coefficients in the expansion

in terms of eigenfunctions of 1h , i.e.,

f (r, y)=
∞∑
j=0

f j (r)φj (y).

We observe that because f and g are square-integrable, the sum and the integral commute; i.e.,

‖ f ‖2L2(C(Y )) =

∫
∞

0

∞∑
j=0

| f j (r)|2rn−1 dr =
∞∑
j=0

∫
∞

0
| f j (r)|2rn−1 dr.

From Theorem 2.1, we may write

〈χR(λ)χ f,g〉=
∞∑
j=0

(∫
∞

0

∫ r

0
(r̃r)−(n−2)/2χ(r)χ(r̃) f j (r̃)gj (r)Jνj (λr̃)H (1)

νj
(λr)r̃n−1rn−1 dr̃ dr

+

∫
∞

0

∫
∞

r
(r̃r)−(n−2)/2χ(r)χ(r̃) f j (r̃)gj (r)Jνj (λr)H (1)

νj
(λr̃)r̃n−1rn−1 dr̃ dr

)
, (4)
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where Jν and H (1)
ν are as above. Because each term in (4) meromorphically continues to the Riemann

surface 3, it suffices to show that the partial sums of the series converge locally (in λ) uniformly (in j).
By the asymptotic expansions of Bessel functions for large order, we know [DLMF 2018, 10.19] that,

locally in λ ∈3, and for r ∈ suppχ ,

Jν(λr)=
1
√

2πν

(
eλr
2ν

)ν
+ o

(
1
√
ν

(
eλr
2ν

)ν )
,

H (1)
ν (λr)=

1
i

√
2
πν

(
eλr
2ν

)−ν
+ o

(
1
√
ν

(
eλr
2ν

)−ν )
,

as ν→∞ through the positive reals. In particular, for j large enough, each term in (4) can be bounded by

C
∫
∞

0

∫ r

0

1
πνj

χ(r)χ(r̃) f j (r̃)gj (r)
[(

r̃
r

)νj

(1+ o(1))
]
(r̃r)n/2 dr̃ dr

+C
∫
∞

0

∫
∞

r

1
πνj

χ(r)χ(r̃) f j (r̃)gj (r)
[(

r
r̃

)νj

(1+ o(1))
]
(r̃r)n/2 dr̃ dr.

Observe that in the first integral, r̃/r is bounded by 1, while r/r̃ is bounded by 1 in the second.
Because χ is compactly supported, we may therefore bound each term (for j large enough) by

Cχ
νj
‖ f j‖L2‖gj‖L2 .

This sequence is absolutely summable, so the partial sums of the series in (4) converge locally uniformly.
This establishes that the cut-off resolvent on the full cone (a = 0) meromorphically extends to the
logarithmic cover 3 of the complex plane.

We now proceed to the case of the truncated cone (a > 0). We proceed by an appeal to the analytic
Fredholm theorem.

Fix χ0, χ∞ ∈ C∞((a,∞)) so that χ0(r) is supported near r = a, χ∞(r) is identically zero near r = a,
and χ0+ χ∞ = 1. We let R∞(λ) denote the resolvent on the nontruncated cone and R0(λ) denote the
resolvent on a compact manifold with boundary into which the support of χ0 embeds isometrically. We
define the parametrix

Q(λ)= χ̃0 R0(λ)χ0+ χ̃∞R∞(λ)χ∞,

where χ̃ have similar support properties and are identically 1 on the support of their counterparts. Applying
1+λ2 yields a remainder of the form I +

∑
[1, χ̃i ]Ri (λ)χi . Both terms are compact and the operator is

invertible for large =λ by Neumann series, so applying Ra(λ) to both sides and inverting the remainder
shows that it has a meromorphic continuation. �

3. Proof of Theorem 1.1

By the formula for the resolvent in Theorem 2.1, the resonances of Ra(λ) correspond to those λ for which
H (1)
νj (λa)= 0 for some j . For simplicity we will discuss only the case a = 1 as the other cases can be
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found by rescaling. As mentioned in the introduction, we consider only those resonances nearest to the
upper half-plane, i.e., those with

−
π
2 < arg λ < 0 or π < arg λ < 3π

2 . (5)

Because νj is real, we may relate the zeros of H (1)
νj (λ) in the region given by (5) to zeros of H (2)

νj (λ) in
the quadrant 0< arg λ < π

2 via analytic continuation formulae. Indeed, it is well known [DLMF 2018,
10.11.5, 10.11.9] that

H (1)
ν (zeπ )=−e−νπ ı H (2)

ν (z),

H (1)
ν (z̄)= H (2)

ν (z).
(6)

The first of these equations identifies zeros of H (1)
ν in π < arg λ< 3π

2 to zeros of H (2)
ν in the first quadrant;

the second equation does the same for zeros of H (1)
ν with −π2 < arg λ < 0. In particular, each zero of

H (2)
ν with 0≤ arg λ≤ π

2 corresponds to exactly two resonances.
For large enough ν, the zeros of the Hankel function H (2)

ν in the first quadrant lie near the boundary
of (a scaling of) an “eye-like” domain K ⊂ C. The domain K is symmetric about the real axis and is
bounded by the following curve and its conjugate:

z =±(t coth t − t2)1/2+ i(t2
− t tanh t)1/2, 0≤ t ≤ t0,

where t0 is the positive root of t = coth t . We refer to the piece of the boundary of K lying in the upper
half-plane by ∂K+.

The constant An above is given by

An =
2(n− 1)Vol(Bn−1)

n(2π)n

∫
∂K+

|1− z2
|
1/2

|z|n+1 d|z|, (7)

where Bn−1 is the (n−1)-dimensional unit ball. Observe that, up to a factor of the volume of the unit
sphere (which is replaced by the volume of Y in the theorem statement), the constant An is the same
constant computed in [Stefanov 2006].

We use below two different parametrizations of the piece of ∂K+ lying the in the quadrant 0≤ arg z≤ π
2 .

The first parametrization is by the argument of z, i.e., by the map[
0, π2

]
→ ∂K+, θ = arg z 7→ z = z(θ).

For the second parametrization, we introduce the function ρ, defined by

ρ(z)= 2
3ζ

3/2
= log

1+
√

1− z2

z
−

√
1− z2, |arg z|< π, (8)

where (following [Stefanov 2006, Section 4; Olver 1974, Chapter 10]) the branches of the functions above
are chosen so that ζ is real when z is. Another characterization is that the principal branches are chosen
when 0< z < 1 and continuity is demanded elsewhere.
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The boundary ∂K is the vanishing set of <ρ. This yields a parametrization of the part of ∂K+ lying in
0≤ arg z ≤ π

2 : [
0, π2

]
→ ∂K+, t 7→ ρ−1(−i t)= z.

The transition between the two parametrizations is given by

dt
dθ
=

dt
dz

dz
dθ
= (iρ ′(z))(i z)=

√
1− z2.

The function ζ defined in (8) is the solution of the ODE(
dζ
dz

)2

=
1− z2

ζ z2

that is infinitely differentiable on the positive real axis (including at z = 1). As is implicit in (8), it can be
analytically continued to the complex plane with a branch cut along the negative real axis.

Because the resonances correspond to zeros of H (2)
νj , we must also consider the asymptotic distribution

of the νj . In what follows, we consider only the case when the periodic geodesics of (Y, h) have measure
zero.1 The eigenvalues µ2

j of 1h obey Weyl’s law:

Nh(µ)= #{µj : µj ≤ µ with multiplicity}

=
Vol Bn−1

(2π)n−1 Vol(Y, h)µn−1
+ R(µ).

Here Vol(Bn−1) denotes the volume of the unit ball in Rn−1 and Vol(Y, h) is the volume of Y equipped
with the metric h. In general, R(µ)= O(µn−2), but if we now impose the dynamical hypothesis (that
the set of periodic geodesics of (Y, h) has Liouville measure zero), then a theorem of [Duistermaat and
Guillemin 1975] (in the boundaryless case) and [Ivrii 1980; 1982] (in the boundary case) shows that

R(λ)= o(µn−2).

The nonperiodicity assumption then allows us to count eigenvalues on intervals of length 1:

Nh(µ,µ+ 1)= #{µj : µ≤ µj ≤ µ+ 1 with multiplicity}

= (n− 1)
Vol(Bn−1)

(2π)n−1 Vol(Y, h)µn−2
+ o(µn−2).

As ν2
j = µ

2
j + (n− 2)2/4, the same counting formula holds for νj ; i.e.,

Nν(ρ, ρ+ 1)= #{νj : ρ ≤ νj ≤ ρ+ 1 with multiplicity}

= (n− 1)
Vol(Bn−1)

(2π)n−1 Vol(Y, h)ρn−2
+ o(ρn−2). (9)

We now turn our attention to the zeros of the Hankel function H (2)
ν (z) with arg z ∈

[
0, π2

]
. An argument

from [Watson 1944, pages 511–513] is easily adapted to give a precise count of the number of zeros of

1When (Y, h) is a sphere, the analysis is simplified slightly. In that case, one replaces the use of the Weyl formula with
explicit formulae for the eigenvalues µ2

j and their multiplicities.
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H (2)
ν in this sector. Indeed, that argument shows that the number of zeros is given by the closest integer

to 1
2ν−

1
4 (when ν− 1

2 is an integer, there is a zero on the imaginary axis and so rounds up).
As ν→∞ through positive real values, we have an asymptotic expansion [DLMF 2018, 10.20.6]

relating the Hankel function to the Airy function

H (2)
ν (νz)∼ 2eiπ/3

(
4ζ

1− z2

)1/4(Ai(e−2π i/3ν2/3ζ )

ν1/3

∞∑
k=0

Ak(ζ )

ν2k +
Ai′(e−2π i/3ν2/3ζ )

ν5/3

∞∑
k=0

Bk(ζ )

ν2k

)
. (10)

Here Ak and Bk are real and infinitely differentiable for ζ ∈R. This expansion is uniform in |arg z| ≤π−δ
for fixed δ > 0. In particular, for large enough ν, the zeros of the Hankel function are well-approximated
by zeros of the Airy function and we may identify each zero hν,k of the Hankel function H (2)

ν with a zero
of the Airy function Ai(−z).

Let ak denote the k-th zero of the Airy function Ai(−z); all ak are positive and

ak =
[ 3

2

(
kπ − π

4

)]2/3
+ O(k−4/3).

We now define λν,k and λ̃ν,k via the Airy zeros and their leading approximations:

λν,k = νζ
−1(ν−2/3e−iπ/3ak)= νρ

−1(
−i 2

3a3/2
k ν−1),

λ̃ν,k = νρ
−1(
−i
(
k− 1

4

)
πν−1),

where k = 1, . . . ,
⌊ 1

2ν+
1
4

⌋
. By the Hankel expansion (10), |hν,k−λν,k | ≤C/ν for large enough ν, while

|hν,k − λ̃ν,k | ≤ C/ν for large enough ν and k. As we have identified
⌊ 1

2ν+
1
4

⌋
approximate zeros, we can

conclude that these account for all hν,k .
We now divide our attention into those zeros with small argument and those with large argument. We

introduce the auxiliary counting function

N (r, θ1, θ2)= #{σ : σ is a resonance with |σ | ≤ r, arg σ ∈ [θ1, θ2]}.

We first address those with small argument. Fix ε > 0 and consider those zeros with |z| < r and
arg z ∈ [0, ε]. We need count those λν,k with arg λν,k ∈ [0, ε] and |λν,k | ≤ r . As |λν,k | is comparable to ν,
we can over-count these zeros by counting all λν,k with argument in [0, ε] and ν ≤ Cr .

Because |ρ| ≤Cε3/2 for those λν,k with arg λν,k ∈ [0, ε], we must only count those ak with ak ≤Cν2/3ε.
The leading order asymptotic [DLMF 2018, 9.9.6] for the zeros of the Airy function shows that this
number is O(νε3/2).

We now count those resonances with argument in [0, ε]. Putting together the asymptotic for νj in (9)
with the previous two paragraphs, we have (with m(νj ) denoting the multiplicity of νj )

N (r, 0, ε)=
∞∑
j=1

m(νj )#{hνj ,k : |hνj ,k | ≤ r, arg hνj ,k ∈ [0, ε]}

≤

Cr∑
j=1

m(νj )Cνjε
3/2
≤ Cε3/2

Cr∑
ρ=0

∑
νj∈[ρ,ρ+1]

m(νj )ρ ≤ Cε3/2rn. (11)
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We now consider those resonances with argument in
[
ε, π2

]
. For large enough ν, the approximations

λ̃ν,k are valid for these resonances. We count those approximate resonances with νj ∈ [ρ, ρ + 1) and
arg λν,k ∈ [θ, θ +1θ ]. We start by introducing, for fixed ν, the number 1kν of λ̃ν,k with argument lying
in [θ, θ +1θ ]. Observe that the definition of λ̃ν,k relates 1kν with 1t by

1kν =
ν

π
1t + O(1),

where 1t denotes the change in t corresponding to 1θ in the parametrizations above. Note that 1t is
independent of the choice of ν. We can then write

#{λ̃ν,k : νj ∈ [ρ, ρ+ 1), arg λ̃ν,k ∈ [θ, θ +1θ ]} =
∑

ρ≤νj≤ρ+1

m(νj )1kν =
∑

ρ≤νj<ρ+1

m(νj )

(
νj

π
1t + O(1)

)
.

By the definition of the approximate zeros λ̃ν,k , we can estimate their size |λ̃ν,k | in terms of |z(θ)|,
provided that arg λ̃ν,k ∈ [θ, θ +1θ ], yielding

|λ̃ν,k | = ν(|z(θ)| + O(1θ)).

In particular, if νj |z(θ)| ≥ r but |λν,k | ≤ r , then

νj ∈

[
r
|z(θ)|

(1− c1θ),
r
|z(θ)|

]
.

We may thus rewrite our counting function as

#{λ̃ν,k : |λ̃ν,k | ≤ r, arg λ̃ν,k ∈ [θ, θ +1θ ]} =
∑
|λ̃ν,k |≤r

arg λ̃ν,k∈[θ,θ+1θ ]

m(νj )

=

∑
νj |z(θ)|≤r

arg λ̃j,k∈[θ,θ+1θ ]

m(νj )+
∑

νj∈[(r/|z(θ)|)(1−c1θ),r/|z(θ)|]
arg λ̃ν,k∈[θ,θ+1θ ]

m(νj ).

By our improved Weyl’s law (9), the second term is O(rn−2).
We now focus our attention on the first term (here b · c denotes the “floor” function):∑

νj |z(θ)|≤r
arg λ̃j,k∈[θ,θ+1θ ]

m(νj )=

br/|z|−1c∑
ρ=0

∑
νj∈[ρ,ρ+1)

∑
arg λ̃ν,k∈[θ,θ+1θ ]

m(νj )+
∑

νj∈[br/zc,r/z]

∑
arg λ̃ν,k∈[θ,θ+1θ ]

m(νj )

=

br/|z|−1c∑
ρ=0

∑
νj∈[ρ,ρ+1)

m(νj )1kν +
∑

νj∈[br/zc,r/z]

∑
arg λ̃ν,k∈[θ,θ+1θ ]

m(νj ).

Again by Weyl’s law, we observe that the second term is O(rn−2). By relating 1t and 1kν we can rewrite
the first term:

br/|z|−1c∑
ρ=0

∑
νj∈[ρ,ρ+1)

m(νj )1kν =
br/|z|−1c∑
ρ=0

∑
νj∈[ρ,ρ+1)

m(νj )
νj

π
1t +

∑
νj≤br/|z|c

m(νj )O(1).

By Weyl’s law (9), the second term is O(rn−1), so we again consider the first term.
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As 1t is independent of νj , we may use Weyl’s law as well on the first term:

br/|z|−1c∑
ρ=0

∑
νj∈[ρ,ρ+1)

m(νj )
νj

π
1t =

br/|z|−1c∑
ρ=0

[
n− 1

2n−1πn Vol(Bn−1)Vol(Y, h)ρn−11t + O(ρn−2)+ o(ρn−1)1t
]

=
2(n− 1)
(2π)n

Vol(Bn−1)Vol(Y, h)1t
br/|z|−1c∑
ρ=0

ρn−1
+ O(rn−1)+ o(rn)1t

=
2(n− 1)
(2π)nn

Vol(Bn−1)Vol(Y, h)
1
n

(
r
|z(θ)|

)n

1t + O(rn−1)+ o(rn)1t.

We finally introduce a Riemann sum in t to understand this main term:

#
{
λ̃ν,k : |λ̃ν,k | ≤ r, arg λ̃ν,k ∈

[
ε, π2

]}
=

∫ π/2

t−1(ε)

(
2(n− 1)Vol(Bn−1)

(2π)nn
Vol(Y, h)

)
rn

|z(θ)|n
dt + O(rn−1)+ o(rn)

=
(n− 1)Vol(Bn−1)

(2π)nn
Vol(Y, h)rn

∫
∂K+

1
|z(θ)|n

dt + O(εrn)+ o(rn)

=

(
(n− 1)Vol(Bn−1)

(2π)nn
Vol(Y, h)

∫
∂K+

|1− z2
|
1/2

|z|n+1 d|z|
)

rn
+ O(εrn)+ o(rn)

= An Vol(Y, h)rn
+ O(εrn)+ o(rn). (12)

Here the prefactor of 2 disappeared because the first integral parametrizes only half of ∂K+. It reappears
in the statement of Theorem 1.1 because each zero there corresponds to two resonances (one on each
sheet). We further observe that the constant An Vol(Y, h) agrees with the leading term found in the
Euclidean case found in [Stefanov 2006].

Sending ε to 0 establishes the theorem for the approximate zeros λν,k . Because each λν,k is in a C/ν
neighborhood of a zero hν,k , this finishes the proof of the theorem.
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THE KÄHLER GEOMETRY OF CERTAIN OPTIMAL TRANSPORT PROBLEMS

GABRIEL KHAN AND JUN ZHANG

Let X and Y be domains of Rn equipped with probability measures µ and ν, respectively. We consider the
problem of optimal transport from µ to ν with respect to a cost function c : X × Y → R. To ensure that
the solution to this problem is smooth, it is necessary to make several assumptions about the structure of
the domains and the cost function. In particular, Ma, Trudinger, and Wang established regularity estimates
when the domains are strongly relatively c-convex with respect to each other and the cost function has
nonnegative MTW tensor. For cost functions of the form c(x, y)=9(x − y) for some convex function
9 :M→ R, we find an associated Kähler manifold on TM whose orthogonal antibisectional curvature
is proportional to the MTW tensor. We also show that relative c-convexity geometrically corresponds to
geodesic convexity with respect to a dual affine connection on M. Taken together, these results provide a
geometric framework for optimal transport which is complementary to the pseudo-Riemannian theory of
Kim and McCann (J. Eur. Math. Soc. 12:4 (2010), 1009–1040).

We provide several applications of this work. In particular, we find a complete Kähler surface with
nonnegative orthogonal antibisectional curvature that is not a Hermitian symmetric space or biholo-
morphic to C2. We also address a question in mathematical finance raised by Pal and Wong (2018,
arXiv:1807.05649) on the regularity of pseudoarbitrages, or investment strategies which outperform the
market.

1. Introduction

Optimal transport is a classic field of mathematics combining ideas from geometry, probability, and
analysis. The problem was first formalized by Gaspard Monge [1781]. In his work, he considered a
worker who is tasked with moving a large pile of sand into a prescribed configuration and wants to
minimize the total effort required to complete the job. Trying to determine the optimal way of transporting
the sand leads into deep and subtle mathematical phenomena and is a thriving field of research to this day.
Furthermore, optimal transport has many practical applications. Monge’s work was originally inspired by
a problem in engineering, but these same ideas can be applied to logistics, economics, computer imaging
processing, and many other fields [Peyré and Cuturi 2019].

The modern framework for optimal transport, due to Kantorovich [1958], considers arbitrary couplings
between two probability measures. In this formulation, we consider X and Y as Borel subsets of two
metric spaces equipped with probability measures µ and ν, respectively. Intuitively, dµ is the shape of
the original sand pile and dν is the target configuration. To transport the sand from µ to ν, we consider a
coupling of µ and ν, which is a nonnegative measure on X ×Y whose marginal distributions are µ and ν,

MSC2010: primary 49Q20, 53C55; secondary 46N10, 46N30.
Keywords: optimal transportation, Kähler metrics, regularity of optimal maps, complex geometry, MTW condition, curvature,

Monge–Kantorovich, tube domains, tangent bundle.
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respectively. To measure the efficiency of a plan for transport µ to ν, we consider a lower-semicontinuous
cost function c : X×Y →R. The solution to the Kantorovich optimal transport problem is the coupling γ
which achieves the smallest total cost

min
γ∈0(µ,ν)

∫
X×Y

c(x, y) dγ (x, y).

Here 0(µ, ν) is the set of all couplings of µ and ν. In this case, a minimizing measure γ is referred to as
the optimal coupling. An optimal coupling exists for very general measures and cost functions, so the
Kantorovich approach is a flexible and powerful framework to study optimal transport.

In Monge’s work, it is assumed that the mass at a given point will not be subdivided and sent to
multiple locations. This is known as deterministic optimal transport, which seeks to find a measurable
map T : X → Y so that the optimal coupling is entirely contained within the graph of T. When this
occurs, the map T is known as the optimal map. A priori, there is no guarantee that optimal transport is
deterministic, so a Monge solution may not exist for a given optimal transport problem. We will discuss
certain sufficient conditions for the optimal transport to be deterministic in Section 2.

For deterministic optimal transport, it is natural to ask whether the optimal map is continuous or even
smooth. This is known as the regularity problem for optimal transport. Historically, most of the work on
this problem was done in Euclidean space for the cost c(x, y)= ‖x − y‖2, better known as the quadratic
cost.

For more general cost functions (such as quadratic costs on Riemannian manifolds), the groundbreaking
work was done by Ma, Trudinger and Wang [Ma et al. 2005], who proved that the transport map is smooth
under the assumptions that

(1) a certain nonlinear fourth-order quantity, known as the MTW tensor (denoted by S), is nonnegative,
and that

(2) the sets X and Y are relatively c-convex with respect to each other.1

These results were refined by Loeper [2009], who showed that the nonnegativity of S is necessary to
establish continuity for the optimal transport between smooth measures. Furthermore, he gave some
insight into the geometric significance of the MTW tensor. Later work of Kim and McCann [2010]
furthered this understanding by presenting a pseudo-Riemannian framework for optimal transport in
which the MTW tensor is the curvature of certain light-like planes.

1.1. Our results. In this paper, we primarily consider 9-costs, which we define as follows.

Definition (9-cost). Let 9 :M→ R be a locally strongly convex C4 function2 on an open domain M
in Euclidean space.

For open domains X and Y in Rn, a 9-cost is a cost function of the form

c : X × Y → R, c(x, y)=9(x − y).
1More precisely, the assumption is that the supports of µ and ν are relatively c-convex.
2Here, a function being locally strongly convex means that the Hessian is positive definite. Furthermore, it is possible to work

with less regular convex functions, but we will not do so in this paper.
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These costs were previously studied by Gangbo and McCann [1995] and by Ma, Trudinger and Wang
[2005]. For such a cost to be well-defined, M must contain the difference set X − Y, defined as

X − Y := {z ∈ Rn
| there exists x ∈ X, y ∈ Y such that z = x − y}.

We can now summarize the main results of our work, which associate a complex manifold to a given
9-cost. To do so, we consider M as a Hessian manifold, using 9 as its potential function (i.e., setting
gi j = ∂

29/(∂ui∂u j )). Such manifolds naturally admit a dual pair of flat connections, which we denote
by D and D∗ [Shima 2007].

Using the primal flat connection D and the metric g, there is a canonical Kähler metric on the tangent
bundle, known as the Sasaki metric and denoted by (TM, gD, J D). Our main result shows the following
correspondence between the curvature of this metric and the MTW tensor.

Theorem. Let X and Y be open sets in Rn and c be a 9-cost. Then the MTW tensor S satisfies the
identity

1
2S(η, ξ)=RgD (ξ, J Dη], ξ, J Dη])−RgD (η], ξ, η], ξ),

where ξ and η are an orthogonal real vector-covector pair (which we extend3 to TM) and RgD is the
curvature of (TM, gD, J D) (where the metric is induced by the potential 9).

For reasons that we will explain later, we call the right-hand expression the orthogonal antibisectional
curvature. We furthermore show that relative c-convexity of sets is geodesic convexity with respect to the
dual affine connection on M.

Proposition. For a 9-cost, a set Y is c-convex relative to X if and only if , for all x ∈ X , the set x − Y is
geodesically convex with respect to the dual connection D∗. Here, D∗ is the connection on M satisfying

X (g(Y,Z))= g(DXY,Z)+ g(Y, D∗XZ)

for all vector fields X ,Y and Z .

Apart from providing a new geometric framework for the regularity problem, we can use these results
to address several questions of independent interest.

1.1.1. Applications to complex geometry. This approach can be used to construct several examples of
interesting metrics with subtle nonnegativity properties. In particular, we find a complete complex surface
which is neither biholomorphic to C2 nor Hermitian symmetric but whose orthogonal antibisectional cur-
vature is nonnegative. Many of the complex manifolds constructed using this approach are of independent
interest, and we will provide a few examples which we will study in depth in future work.

1.1.2. Applications to mathematical finance. Our second main application is to establish regularity for a
certain problem in portfolio design theory. The recent work [Pal and Wong 2016] studies the problem
of finding pseudoarbitrages, which are investment strategies that outperform the market almost surely
in the long run under mild and realistic assumptions on the stock market. Their work shows that this is

3To be more precise, we consider certain lifts of these vectors to TM. For a more formal statement, see Theorem 6.
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equivalent to solving an optimal transport problem where the cost function is a divergence function (in
information-geometric language) that is closely related to the free energy in statistical physics.

For this problem, our approach relates the MTW tensor of this cost to a Kähler manifold with constant
positive holomorphic sectional curvature. As such, this cost function satisfies the MTW(0) condition (and
also satisfies a stronger condition known as nonnegative cost-curvature [Figalli et al. 2011]). We further
show that relative c-convexity corresponds precisely to the standard notion of convexity on the probability
simplex. Combining these calculations, we can apply the results of [Trudinger and Wang 2009] to obtain
a regularity theory of portfolio maps and their associated displacement interpolations. This addresses a
question asked in [Pal and Wong 2018b], and intuitively shows that when the market conditions change
slightly, the investment strategy similarly does not change by much.

A preliminary announcement of some of these results (stated in terms of the so-called D(α)9 -divergences)
appeared in [Khan and Zhang 2019].

1.2. Layout of the paper. In Section 2 we discuss some background information on optimal transport.
In Section 3 we review some complex and Kähler geometry. Section 4 discusses some background
information on Hessian manifolds and the curvature of the Sasaki metric. In Section 5, we state our main
results, which show the precise interaction between complex/information geometry and the regularity
theory of optimal transport. In Section 6, we explore various applications of this result. In Section 7, we
conclude with a section of open questions, which we hope to explore in future work.

1.3. Notation. We have attempted to preserve the notation from [De Philippis and Figalli 2014; Satoh
2007] as much as possible, while minimizing abuse of notation or overlap. For clarity, we introduce some
notational conventions now.

Throughout the paper, X and Y will denote open domains in Rn. Invariably, these will be smooth and
bounded. We will use {x i

}
n
i=1 as coordinates on X and {yi

}
n
i=1 as coordinates on Y. To study optimal

transport, we will use c(x, y) to denote a cost function c : X ×Y → R, which will generally be C4 in this
paper. Often times, the domain of c will be larger than X ×Y, but we will ignore this. To avoid confusion
with coordinate functions and the notation for tangent spaces, we denote the solutions to equations of
Monge–Ampère type by U, and the associated optimal map by TU.

For the most part, M will be an open domain in Euclidean space which contains X − Y, and 9 will
denote a convex function 9 :M→ R. It is instructive to also consider M as an affine manifold, and we
will use {ui

}
n
i=1 as its coordinates. When considering the tangent bundle of M (denoted by TM), we will

use bundle coordinates {(ui , vi )}ni=1. This notation is a change from [Satoh 2007] and is done to avoid
overusing x and y.

In order to prescribe TM with a Hermitian structure, it is necessary to consider a flat affine connection
on M, which we denote by D. More precisely, this will be the affine connection induced by differentiation
within the u-coordinates. Furthermore, we use W,X ,Y,Z and ξ to denote tangent vectors on M (i.e.,
elements of TM). This is the convention of [Satoh 2007], except with calligraphic font to avoid confusion
with our notation for domains. When computing the MTW tensor, we will denote the vectors in the MTW
tensor by ξ and the covectors by η.
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To simplify the derivative notation, for a two-variable function c(x, y), we use cI,J to denote ∂x I ∂y J c
for multi-indices I and J. Furthermore, ci, j denotes the matrix inverse of the mixed derivative ci, j . For a
convex function 9, we use the notation 9J to denote ∂u J9 for a multi-index J and the notation 9 i j to
denote the matrix inverse of 9i j . Finally, we will use Einstein summation notation throughout the paper.

2. Background on the regularity theory of optimal transport

The main focus of our paper is to study the assumptions needed to ensure optimal transport is regular. In
order to understand these, we first review several preliminary results on the regularity theory of optimal
transport.

As our primary interest is the geometric structure of the regularity problem, we will not make use of
the sharpest possible regularity estimates. The material in this section is based on the survey [De Philippis
and Figalli 2014], which provides a more complete background for the regularity theory. For a more
thorough overview on optimal transport, see [Villani 2009].

The regularity problem arises when the optimal coupling in the Kantorovich optimal transport problem
is induced by a deterministic transport map. As such, we first discuss some conditions which ensure
the Kantorovich optimal transport problem has a deterministic solution. The following theorem was
originally proven in [Brenier 1987] for the quadratic cost and in more generality in [Gangbo and McCann
1996]. It gives sufficient conditions for deterministic transport and shows that the optimal maps can be
found by solving an equation of Monge–Ampère type.

Theorem 1. Let X and Y be two open domains of Rn and consider a cost function c : X × Y → R.
Suppose that dµ is a smooth probability density supported on X and that dν is a smooth probability
density supported on Y. Suppose that the following conditions hold:

(1) The cost function c is of class C4 with ‖c‖C4(X×Y ) <∞.

(2) For any x ∈ X , the map Y 3 y→ cx(x, y) ∈ Rn is injective.

(3) For any y ∈ Y, the map X 3 x→ cy(x, y) ∈ Rn is injective.

(4) det(cx,y)(x, y) 6= 0 for all (x, y) ∈ X × Y.

Then there exists a c-convex function U : X→ R such that the map TU : X→ Y defined by TU(x) :=
c- expx(∇U(x)) is the unique optimal transport map sending µ onto ν. Furthermore, TU is injective
dµ-a.e.,

|det(∇TU(x))| =
dµ(x)

dν(TU(x))
dµ-a.e., (1)

and its inverse is given by the optimal transport map sending ν onto µ.

In order to express (1) more concretely, we recall the notion of the c-exponential map (denoted by
c- expx ).

Definition (c-exponential map). For any x ∈ X , y ∈ Y , p ∈ Rn, the c-exponential map satisfies the
identity

c- expx(p)= y ⇐⇒ p =−cx(x, y).
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For the squared-distance cost on a Riemannian manifold, the c-exponential is exactly the standard
exponential map, which motivates its name. For this cost in Euclidean space, (1) becomes the standard
Monge–Ampère equation

det(∇2U(x))=
f (x)

g(∇U(x))
. (2)

Due to the comparatively simple form for (2), much of the initial work on the regularity problem was
done for the quadratic cost in Euclidean space. In this setting, Caffarelli [1992] and others proved a priori
estimates under certain convexity and smoothness assumptions on the measures (for a more complete
history, see [De Philippis and Figalli 2014]). Caffarelli also observed there is no hope of proving interior
regularity for TU without assuming that the support of the target measure is convex.

For more general cost functions, Ma, Trudinger and Wang’s breakthrough work [Ma et al. 2005] gave
three conditions that ensure C2 regularity for the solutions of the Monge–Ampère equation (1). In this
paper, we will use a stronger version of this result, originally proven in [Trudinger and Wang 2009].

Theorem 2. Suppose that c : X ×Y → R, µ, and ν satisfy the hypothesis of Theorem 1, and the densities
dµ and dν are bounded away from zero and infinity on their respective supports X and Y. Suppose further
that the following hold:

(1) X and Y are smooth.

(2) The domain X is strictly c-convex relative to the domain Y.

(3) The domain Y is strictly c∗-convex relative to the domain X.

(4) For all vectors ξ, η ∈ Rn with ξ ⊥ η, the following inequality holds:

S(ξ, η) :=
∑

i, j,k,l,p,q,r,s

(ci j,pcp,qcq,rs − ci j,rs)cr,kcs,lξ iξ jηkηl
≥ 0. (3)

Then U ∈ C∞(X) and TU : X→ Y is a smooth diffeomorphism, where TU(x)= c- expx(∇U(x)).

While we will not discuss the proof in detail, we note that the main challenge is obtaining an a priori
C2 estimate on U. Once such an estimate is established, the Monge–Ampère equation can be linearized
at U, at which point standard elliptic bootstrapping yields estimates of all orders and implies that TU is
smooth.

The main results of this paper concern the assumptions of Theorem 2, so we discuss these in more
detail. The first condition is self-explanatory, while the second and third provide the proper notions of
convexity for the supports. To explain this in detail, we recall the notion of c-convexity for sets.

Definition (c-segment). A c-segment in X with respect to a point y is a solution set {x} to c,y(x, y) ∈ `
for ` a line segment in Rn. A c∗-segment in Y with respect to a point x is a solution set {y} to cx,(x, y)∈ `,
where ` is a line segment in Rn.

Definition (c-convexity). A set E is c-convex relative to a set E∗ if for any two points x0, x1 ∈ E and
any y ∈ E∗, the c-segment relative to y connecting x0 and x1 lies in E. Similarly we say E∗ is c∗-convex
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relative to E if for any two points y0, y1 ∈ E∗ and any x ∈ E , the c∗-segment relative to x connecting y0

and y1 lies in E∗.

Finally, we discuss inequality (3), which is known as the MTW(0) condition and is a weakened version
of the MTW(κ) condition.

Definition (MTW(κ), κ > 0). A cost function c satisfies the MTW(κ) condition if for any orthogonal
vector-covector pair ξ and η we have S(ξ, η)≥ κ|ξ |2|η|2 for κ > 0.

Ma, Trudinger and Wang’s original work relied on the MTW(κ) assumption, and this stronger condition
is used in many applications. Although it is not immediately apparent, S(ξ, η) is tensorial (coordinate-
invariant) so long as one considers η as a covector [Kim and McCann 2010], which we will do throughout
the rest of the paper. Furthermore, it transforms quadratically in η and ξ , but is highly nonlinear and
nonlocal in the cost function.

The geometric significance of the MTW tensor is an active topic of research. On a Riemannian
manifold, Loeper [2009] gave some insight into its behavior. His work showed that for the quadratic cost,
the MTW tensor is proportional to the sectional curvature on the diagonal x = y. In this paper, he also
showed that c-convexity and nonnegativity of the MTW tensor are essentially necessary conditions to
prove regularity of optimal transport.

Building on Loeper’s results, Kim and McCann [2010] gave a geometric framework for optimal
transport. In their formulation, optimal transport is expressed in terms of a pseudo-Riemannian metric on
the manifold X × Y and the MTW tensor becomes the curvature of light-like planes. This interpretation
holds for arbitrary cost functions, and gives intrinsic geometric structure to the regularity problem. Our
geometric interpretation is different, but many of the formulas appear similar, in part due to the fact that
Kim and McCann chose notation reminiscent of complex geometry.

Before concluding our background discussion on optimal transport, we will introduce one more
strengthening of the MTW(0) condition, known as nonnegative “cross-curvature” [Figalli et al. 2011].

Definition (nonnegative cross-curvature). A cost function c has nonnegative (resp. strictly positive κ > 0)
cross-curvature if, for any vector-covector pair η and ξ ,

S(ξ, η)≥ 0 (resp. κ|ξ |2|η|2 for some κ > 0).

Note that nonnegative cross-curvature is stronger than MTW(0), as the nonnegativity must hold for all
pairs η and ξ , not simply orthogonal ones. Cross-curvature was introduced by Figalli, Kim, and McCann
[Figalli et al. 2011] to study a problem in microeconomics. In later work, they also showed that stronger
regularity for optimal maps can be proven with this assumption [Figalli et al. 2013]. Cross-curvature was
also studied in [Sei 2013] for an application in statistics.

3. Background on Kähler geometry

In order to connect optimal transport with Kähler geometry, we will review some background on Kähler
manifolds. We will only discuss what is needed for this work, and refer the reader to [Zheng 2000] for a
more complete reference on complex geometry.
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Given a smooth manifold4 X, an almost complex structure J is a smoothly varying endomorphism of
T X which satisfies J 2

= −Id. In this case, we say that the pair (X, J ) is an almost-complex manifold.
From the definition, it immediately follows that any almost-complex manifold must be even-dimensional
and orientable.

We say that an almost complex manifold X is complex if it admits an atlas of holomorphic coordinate
charts satisfying zi

= ui
+
√
−1yi such that J∂x i = ∂yi and J∂yi =−∂x i . In other words, around each

point in X, a complex manifold admits a local biholomorphism to a subset of Cn (in which J acts on
tangent vectors as multiplication by

√
−1). If this can be done, we say that the almost complex structure

is integrable. Due to a deep theorem of [Newlander and Nirenberg 1957], integrability of an almost
complex structure J is equivalent to the vanishing of the so-called Nijenhuis tensor, which is defined as

NJ (X ,Y)=−J 2
[X ,Y] + J [X , JY] + J [JX ,Y] − [JX , JY].

Showing that this condition is necessary is relatively straightforward,5 but it highly nontrivial to show
that it is also sufficient.

We say that an almost complex structure is compatible with a Riemannian metric g if it satisfies
g(X ,Y) = g(JX , JY) for all tangent vectors X and Y . In this case, the triple (X, g, J ) is said to be
a Hermitian manifold. Furthermore, we say a Hermitian manifold is Kähler if J is integrable and the
Kähler form ω= g(J · , · ) is closed (i.e., dω= 0). This closedness has many important consequences for
the geometry of Kähler metrics. Most importantly, in any set of holomorphic coordinates {zi

}
n
i=1, we can

express the Kähler form as

ω =
√
−1

∂28

∂zi ∂̄z j
dzi
∧ dz̄ j

for some strictly plurisubharmonic potential 8. This leads to many important geometric properties, only
a few of which we will explore here.

3.1. The curvature of Kähler manifolds. In this paper, we will study the curvature for a certain class
of Kähler manifolds. As such, it is necessary to review some background on the curvature of Kähler
metrics. We will specialize our focus to the curvature of the Levi-Civita connection on X, which we
denote as ∇. For non-Kähler Hermitian manifolds, there are several canonical connections which have
distinct curvature tensors. Fortunately, all these connections coincide for Kähler manifolds. As such, we
can unambiguously denote the curvature tensor as R, which is defined6 as

R(X ,Y,Z,W)= g(∇X∇YZ −∇Y∇XZ −∇[X ,Y]Z,W). (4)

4Not to be confused with our notation for domains.
5The Nijenhuis tensor vanishes if the Lie bracket of any two holomorphic vectors is holomorphic, which is automatically true

for complex structures.
6For this definition to be meaningful, we must extend each of the vectors to vector fields, but since the expression is tensorial,

the choice of extension does not matter.
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Apart from the usual symmetries of the Riemannian curvature, the curvature of a Kähler metric satisfies
the following identity (when X is regarded as a (real) manifold):

R(X ,Y,Z,W)=R(JX , JY,Z,W). (5)

After repeatedly applying this identity and using the other symmetries of the curvature tensor, it is
possible to show that we can determine the entire curvature tensor from the values R(X ,Y,Z,W), where
X ,Y,Z,W are holomorphic7 vector fields and the overline represents conjugation.8

3.1.1. Sectional and bisectional curvature. Aside from the full curvature tensor, there are various notions
of sectional and bisectional curvature on Kähler manifolds, which are important in the study of complex
differential geometry.

As a preliminary, we first recall the definition of sectional curvature for Riemannian manifolds. Let
X ,Y be nonparallel tangent vectors. The sectional curvature is defined as

K (X ,Y)=
R(X ,Y,Y,X )

g(X ,X )g(Y,Y)− g(X ,Y)2
.

It is a classic theorem in Riemannian geometry that the sectional curvature completely determines the
entire curvature tensor, which can be proven using the polarization formula and a careful application of
the Bianchi identity. The sectional curvature is a fundamental concept in Riemannian geometry, and many
theorems depend on either upper or lower bounds for it. Furthermore, the assumption that the sectional
curvature is nonnegative greatly restricts the topology and geometry of a given Riemannian manifold.

For a Kähler manifold, there are several notions of curvature closely related to the sectional curvature.
One natural type of sectional curvature on a Kähler manifold is the holomorphic sectional curvature. For
a tangent vector X ∈ T X, this is defined as

H(X )=
R(X , JX , JX ,X )

‖X‖4
.

Similarly to the sectional curvature, the holomorphic sectional curvature determines the entire curvature
tensor of a Kähler manifold; see [Ballmann 2006, Proposition 4.51].

Of particular interest are Kähler manifolds whose holomorphic sectional curvature is constant c. In
this case, the polarization formula can be used to show that such a Kähler manifold X is a Hermitian
symmetric space whose curvature satisfies

R(X ,Y,Z,W)=
c
4

(
g(X ,Z)g(Y,W)− g(X ,W)g(Y,Z)+ g(X , JZ)g(Y, JW)

−g(X , JW)g(Y, JZ)+ 2g(X , JY)g(Z, JW)

)
.

Spaces with constant holomorphic sectional curvature serve as the Kähler analogues of manifolds of
constant sectional curvature. It is worth noting that when the complex dimension is greater than 1, a
complex manifold cannot have constant sectional curvature (unless it is flat), so the definition of a complex
space form is not a Kähler manifold with constant sectional curvature, but rather a Kähler manifold with

7In other words, vectors which satisfy JX +
√
−1X = 0 in a holomorphic coordinate chart.

8In fact, this shows that R(X ,Y,Z,W), R(X ,Y,Z,W), and R(X ,Y,Z,W) all vanish on a Kähler manifold.
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constant holomorphic sectional curvature. The sectional curvature of such a metric (with n > 1) ranges
between c and 1

4 c, so the metric is quarter-pinched from the view of Riemannian geometry.
Despite the similarity between the holomorphic sectional curvature and the sectional curvature, the

former is a much more subtle invariant than the latter. For instance, nonnegative holomorphic sectional
curvature does not imply nonnegative Ricci curvature, but does imply nonnegative scalar curvature [Ni
and Zheng 2018].

As such, it is worthwhile to consider other curvature quantities which more directly control the geometry
of a Kähler manifold. One such example is the bisectional curvature,9 which was introduced in [Goldberg
and Kobayashi 1967]. For two unit vectors X and Y , it is defined as

B(X ,Y)=R(X , JX , JY,Y).

The reason that this is known as the bisectional curvature is that it satisfies the identity

B(X ,Y)=R(X , JY, JY,X )+R(X ,Y,Y,X ),

which can be proven using the Bianchi identity.
A metric is said to have nonnegative bisectional curvature if B(X ,Y) ≥ 0 for all vectors X and Y .

Nonnegative bisectional curvature is a weaker condition than nonnegative sectional curvature (as the
bisectional curvature is the sum of two sectional curvatures) but still provides very strong control over the
geometry of a Kähler manifold.

There are several further curvatures of interest. For instance, it is possible to consider the bisectional
curvature when it is restricted to unit tangent vectors X and Y satisfying g(X ,Y)= g(X , JY)= 0. This
is known as the orthogonal bisectional curvature. We say that a Kähler manifold has (NOB) (nonnegative
orthogonal bisectional curvature) if for all unit tangent vectors X and Y satisfying g(X ,Y)= g(X , JY)=0
we have B(X ,Y)≥ 0.

In this paper, we will need to consider a curvature tensor we call the antibisectional curvature. For
totally real vectors10 X and Y , we define this to be

A(X ,Y)=R(X , JY, JY,X )−R(X ,Y,Y,X ).

Similarly, we define the orthogonal antibisectional curvature (denoted by OA) to be the restriction of
the antibisectional curvature to vectors X ,Y satisfying g(X ,Y)= g(X , JY)= 0. More precisely,

OA(X ,Y) := A(X ,Y)|{X ,Y | g(X ,Y)=g(X ,JY)=0}.

The reason for the term “antibisectional” curvature is that A and B differ only in that we subtract
rather than add the sectional curvatures. However, these curvatures are very different. For instance, the
bisectional curvature is J -invariant, in that we can multiply either X or Y by J and get the same result.

9This is more commonly called the holomorphic bisectional curvature, but we will omit the “holomorphic” for the sake of
exposition.

10In other words, vectors whose imaginary component is zero within a particular holomorphic chart.
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On the other hand, A changes sign if we multiply one of the vectors by J.11 As such, it takes some care
to define nonnegative orthogonal antibisectional curvature.

We say that a Kähler metric on a domain in Cn has (NAB) if, for all totally real vectors X ,Y ,

A(X ,Y)≥ 0.

Similarly, we say that a Kähler metric has (NOAB) if, for all orthogonal totally real vectors X ,Y ,

OA(X ,Y)≥ 0.

Due the previous discussion, we define nonnegativity for antibisectional curvature when restricted to
totally real vectors. This definition inherently relies on a canonical decomposition of T X into real and
imaginary vectors (i.e., an embedding into Cn). For the spaces of interest in this paper, this can be done
in a natural way. However, for more general Kähler manifolds, formulating nonnegative antibisectional
curvature is less clear.

It is worth observing that if a Kähler manifold X has constant holomorphic sectional curvature, then
the orthogonal antibisectional curvature identically vanishes. In fact, if we require that OA(X ,Y)≥ 0 for
all orthogonal vectors X and Y , then the polarization formula shows that Hermitian symmetric spaces are
the only spaces satisfying this property.12

3.2. Positively curved Kähler metrics. One question of considerable interest in complex geometry is
to understand complete Kähler metrics with various nonnegativity properties. Most famously, Frankel
conjectured that if a compact Kähler manifold has positive holomorphic bisectional curvature, it is
biholomorphic to the complex projective space CPn. This conjecture was independently proven in [Mori
1979; Siu and Yau 1980].

For compact Kähler manifolds, it is possible to obtain this result under weaker curvature assumptions.
For instance, all compact Kähler manifolds with positive orthogonal bisectional curvature are biholo-
morphic to CPn; see [Chen 2007; Feng et al. 2017; Gu and Zhang 2010]. Furthermore, all compact
irreducible Kähler manifolds with nonnegative isotropic curvature are either Hermitian symmetric or
else biholomorphic to CPn [Seshadri 2009]. For complex surfaces, nonnegative orthogonal bisectional
curvature is equivalent to nonnegative isotropic curvature13 [Li and Ni 2019] so the previous result gives
a classification of such surfaces.

For noncompact manifolds, it is natural to ask whether similar results hold. The most famous conjecture
in this direction is Yau’s uniformization conjecture [1994], which states that any complete irreducible
noncompact Kähler metric with nonnegative bisectional curvature is biholomorphic to Cn. Although the
full conjecture is still open, Liu [2019] proved it under certain volume growth assumptions.

Although these results are not directly related to the work in this paper, they provide much of the
intuition for how positive curvature of a Kähler metric imposes strong restrictions on the geometry of

11This was pointed out to us by Fangyang Zheng.
12Thanks to Fangyang Zheng for this observation.
13In higher dimensions, nonnegative isotropic curvature is a stronger assumption than nonnegative orthogonal bisectional

curvature.
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that manifold. In this spirit, by drawing a connection between the curvature of Kähler metrics and the
MTW tensor in optimal transport, we hope to provide strong restrictions on cost functions which have
nonnegative MTW tensor. We plan to develop this idea further in future work.

4. Hessian manifolds and the Sasaki metric

In order to interpret the MTW tensor as a complex-geometric curvature, we study the Sasaki metric,
which is an almost-Hermitian metric on the tangent bundle of a Riemannian manifold. We discuss some
background on this metric, focusing on the case of Hessian manifolds, in which case the Sasaki metric is
Kähler.

4.1. The Sasaki metric on the tangent bundle. On a Riemannian manifold (M, g) with a flat14 affine
connection D, the tangent bundle naturally inherits a Hermitian structure (TM, gD, J D) [Dombrowski
1962]. The metric gD is known as the Sasaki metric and the complex structure J D is called the canonical
complex structure. For completeness, we present a brief overview of this construction. For a more
complete reference, we refer to [Satoh 2007].

Since D is flat, we can find local coordinates {ui
}

n
i=1 on M in which the Christoffel symbols of

D vanish. Using these coordinates, define smooth functions v1, . . . , vn on the tangent bundle TM by
v j (X )=X j for a vector X =X i∂ui . The collection of functions {(ui , vi )}ni=1 then forms local coordinates
for TM. Then, for a tangent vector ξ ∈ TuM (which we consider as a point in the tangent bundle TM)
and a tangent vector X = X i∂ui ∈ TuM, we can define vertical and horizontal lifts of X at ξ , denoted by
X V
ξ and X H

ξ , respectively. These are elements of Tξ (TM), which are defined as

X V
ξ = X i∂vi , X H

ξ = X i∂ui . (6)

This yields a decomposition of Tξ (TM) into horizontal and vertical subspaces, which depends on the
choice of connection D:

Tξ (TM)= Hξ (TM)⊕ Vξ (TM).

As such, there is a natural identification Hξ (TM) ∼= Vξ (TM) ∼= TuM, which we use to construct the
Sasaki metric [Satoh 2007, Definition 2.1].

Definition (the Sasaki metric and canonical complex structure). Let (Mn, g) be a Riemannian manifold
with a flat affine connection D. For X ,Y ∈ TuM and ξ ∈ TM with ξ = (u, v) in bundle coordinates, the
canonical complex structure J D is defined as

J DX H
ξ = X V

ξ , J DX V
ξ =−X

H
ξ .

Furthermore, the Sasaki metric gD is defined as

g̃D(X H
ξ ,Y

H
ξ )= g̃D(X V

ξ ,Y
V
ξ )= g(X ,Y), g̃D(X H

ξ ,Y
V
ξ )= 0.

14It is possible to define the Sasaki metric for arbitrary connections, but that will not be necessary for this paper.
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This induces a Hermitian structure on TM, which depends on both the choice of metric and flat
connection on M. To see that this is indeed a Hermitian manifold (and not merely almost Hermitian), we
rely on the following result.

Theorem 3 [Dombrowski 1962]. Let (M, g) be a Riemannian manifold with an affine connection D. The
almost-Hermitian manifold (TM, gD, J D) satisfies the following:

(1) The almost-complex structure J D is integrable whenever the connection D is flat.

(2) (TM, gD, J D) is Kähler if and only if D and D∗ are both flat connections, which further implies
that g is a Hessian metric.

4.2. Hessian manifolds. We are primarily interested in the case where TM is Kähler, for which we
must study Hessian manifolds (also known as affine-Kähler manifolds, due to the parallel with Kähler
geometry). There are two equivalent definitions for such manifolds; with the former definition primarily
used in differential geometry and the latter primarily used in information geometry.

Definition (Hessian manifold: differential-geometric). A Riemannian manifold (M, g) is Hessian if
there is an atlas of local coordinates {ui

}
n
i=1 so that for each coordinate chart there is a convex potential 9

such that

gi j =
∂29

∂ui ∂u j .

Furthermore, the transition maps between these coordinate charts are affine (i.e., M is an affine manifold).

Definition (Hessian manifold: information-geometric). A Riemannian manifold (M, g) is said to be
Hessian if it admits dually flat connections. That is to say, it admits two flat (torsion- and curvature-free)
connections D and D∗ satisfying

X (g(Y,Z))= g(DXY,Z)+ g(Y, D∗XZ) (7)

for all vector fields X , Y , and Z. Because of these dual flat connections, a Hessian manifold is often
said to be dually flat.

Although these definitions initially appear different, they are actually equivalent. If we choose an
atlas of coordinate charts (we will abuse notation and refer to this chart as u) in which the metric g is
of Hessian form, we can induce a flat connection D by differentiation with respect to the u-coordinates.
The requirement that the transition maps be affine is exactly what is necessary for this connection to be
well-defined when we switch coordinates.

Before moving on, we take a moment to discuss the properties of the connection D in more detail.
Firstly, by definition we have that the Christoffel symbols of D vanish in the u-coordinates. As a result,
the D-geodesic equations

d2ui

ds2 +0
i
jk

du j

ds
duk

ds
= 0

simplify to the equations
d2ui

ds2 = 0.
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As a result, D-geodesics correspond to straight lines in the u-coordinates. It is worth noting that these
geodesics are distinct from the geodesics with respect to the Levi-Civita connection.

We now turn our attention to the dual connection D∗. We can induce the dual connection by differenti-
ation with respect to the so-called dual coordinates θ , which are defined as

θ i
:=
∂9

∂ui . (8)

It is a straightforward calculation to show that the connection induced by the u-coordinates and the
connection induced by the θ -coordinates are indeed dual, in the sense of (7). For more information, see
Chapter 2 of [Shima 2007]. Similarly to the situation for the primal connection, the Christoffel symbols
of D∗ vanish in the θ-coordinates and D∗-geodesics correspond to straight lines in the θ-coordinates.
Furthermore, we can define D∗-convexity for subsets of M in terms of whether a subset entirely contains
the D∗-geodesics between its points. This can be extended to define strict convexity as well. Strict
convexity will be important in Proposition 8, so we draw attention to it here.

In the dual coordinates, the metric is also of Hessian form, where the potential is the Legendre
transform 9∗, defined as

9∗(θ)= sup
u∈M
〈θ, u〉−9(u).

When 9 is a convex function, 9∗ is as well. In this case, we say that 9 and 9∗ are Legendre duals.15

For further details on this correspondence, we refer the reader to [Shima 2007, Chapter 2].
There are topological and geometric obstructions for a given Riemannian manifold to admit a Hessian

structure. In dimensions 4 and higher, there are local curvature obstructions as well; see [Amari and
Armstrong 2014]. As all of the manifolds of interest in this paper are open domains in Rn (which admit a
global coordinate chart), we can construct Hessian metrics simply by choosing a convex potential.

4.3. The curvature of the Sasaki metric. We now calculate the curvature of a Kähler Sasaki metric. To
do so, we use the curvature formulas for a general Sasaki metric [Satoh 2007, Proposition 2.3] and then
simplify them using the dually flat structure. Applying Satoh’s Proposition 2.3 in the case where D is a
flat connection, we have the following.

Proposition 4. Let (M, g, D) be an affine manifold with flat connection D and Levi-Civita connec-
tion ∇. Let RgD be the Riemannian curvature tensor of the Sasaki metric gD on TM. For vectors
X ,Y,Z,W, ξ ∈ TuM,

RgD (ZH
ξ ,W

H
ξ , X H

ξ ,Y
H
ξ )= R∇g (Z,W,X ,Y),

RgD (ZV
ξ ,W

V
ξ ,X

V
ξ ,Y

V
ξ )=−

1
4

∑
i

[(Dei g)(X ,Z)(Dei g)(Y,W)−(Dei g)(Y,Z)(Dei g)(X ,W)],

RgD (ZH
ξ ,W

V
ξ ,X

V
ξ ,Y

V
ξ )=RgD (ZH

ξ ,W
V
ξ ,X

H
ξ ,Y

H
ξ )= 0,

RgD (ZH
ξ ,W

V
ξ ,X

H
ξ ,Y

V
ξ )=−

1
2
(D2

XZg)(Y,W)−
1
2
(Dγ (X ,Z)g)(Y,W)+

1
4

∑
i

(DX g)(W,ei )·(DZg)(Y,ei ).

15This is indeed a duality: for a convex function 9, 9 =9∗∗.
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Here, {ei } is an orthonormal basis of TuM and γ D is the difference between D and the Levi-Civita
connection on M:

γ D(X ,Y)= DXY −∇XY.

When (M, g, D) is dually flat (i.e., Hessian), the situation simplifies further. To ease the computations,
recall that we are working in coordinates {ui

}
n
i=1 where the Christoffel symbols of D vanish. Doing so,

we find the following identities:

(1) The Riemannian metric g is given by the Hessian of a convex potential 9.

(2) In the induced coordinates {(ui , vi )}ni=1 on the tangent bundle (TM, gD, J D), the complex structure
can be written as J D∂ui = ∂vi and J D∂vi = −∂ui . As such, the coordinate chart (u1, v1, . . . , un, vn) is
biholomorphic to an open set in Cn under the natural identification.

(3) There are simple expressions for the Riemannian curvature and the Christoffel symbols of the
Levi-Civita connection.

(a) The Riemannian curvature of the (M, g) is (see [Shima 2007, Proposition 3.2])

R∇g (∂ui , ∂u j , ∂uk , ∂ul )=− 1
49

pq(9 jlp9ikq −9ilp9 jkq).

(b) The Christoffel symbols of the Levi-Civita connection satisfy the identity

0i jk =
1
29i jk, 0k

ji =
1
29i jm9

km .

(4) Using these formulas for the Christoffel symbols, we obtain a simple formula for Dγ D(X ,Z) for two
vector fields X = X i∂ui and Z = Zk∂uk :

Dγ D(X ,Z) =−X iZk0r
ik D∂ur =−X iZk9iks9

sr D∂ur

Combining these identities with the curvature formulas for the Sasaki metric, we find the following
proposition.

Proposition 5 (curvature of a Kähler Sasaki metric). Let (M, g, D) be a Hessian manifold. The Riemann-
ian curvature of the Sasaki metric on (TM, gD, J D) (in the (u, v)-coordinates defined on page 16) is

RgD (∂ui , ∂u j , ∂uk , ∂ul )=RgD (∂vi , ∂v j , ∂vk , ∂vl )=− 1
49

rs(9 jlr9iks −9ilr9 jks), (9)

RgD (∂ui , ∂v j , ∂uk , ∂vl )=− 1
29i jkl +

1
4(9iks9

sr9 jlr )+
1
4(9

sr9 jks9ilr ). (10)

Furthermore, when stated in terms of holomorphic vectors, the curvature of TM satisfies the identity

(RgD )i j̄ kl̄ =RgD (∂ui , ∂v j , ∂uk , ∂vl )−RgD (∂ui , ∂u j , ∂uk , ∂ul )=− 1
29i jkl +

1
29

rs9iks9 jlr . (11)

We remark that for a Hessian manifold, Shima [2007] defined the Hessian curvature to be the negative
of formula (11). We will not use this convention and instead work in terms of complex geometry.
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4.4. The geometry when M is a domain. The previous calculation provides the curvature of TM for
an arbitrary Hessian manifold. However, in the special case where M is a domain in Euclidean space and
g is induced by a global potential 9, it is possible to construct this Kähler manifold explicitly as a subset
of Cn.

In this case, we consider the associated global coordinates {u}ni=1 as being defined on domain in Rn.
By a slight abuse of notation, we will denote the domain of the u-coordinates as M. We can then write
zi
= ui
+
√
−1vi as the standard holomorphic coordinate on Cn, and TM can be identified with the

domain
TM= {(u, v) | u ∈M, v ∈ Rn

} ⊂ Cn.

This class of domains are known as tube domains and have been studied in various contexts. For an
introduction on these spaces, we refer the reader to page 41 of [Hörmander 1973] and for a more detailed
study of their geometry, we refer the reader to [Yang 1982].

As for the associated Kähler metric, we can write the Kähler form as

ω =
√
−19i j dzi

∧ dz̄ j

and the Sasaki metric as

g =
(
9i j (u) 0

0 9i j (u)

)
.

As can be seen from these formulas, the Kähler Sasaki metric is translation symmetric in its fibers (since
9 does not depend on the fiber coordinates v). However, from (9) we can see that the fiber directions are
not “flat” unless the underlying Hessian manifold M is Riemannian curvature free.

5. Optimal transport and complex geometry

With the background concluded, we can now state the central results of this paper, which relate the
regularity theory of optimal transport to the complex geometry of the Sasaki metric.

5.1. The MTW tensor and the curvature of TM. When c : X ×Y →R is a 9-cost (as in the definition
on page 398), Ma, Trudinger and Wang observed that the MTW tensor takes the form

S(x,y)(ξ, η)= (9i j p9rsq9
pq
−9i jrs)9

rk9slξ iξ jηkηl . (12)

In this formula, k and l are summed over, despite the double superscript resulting from the vector-covector
ambiguity.

To make the connection between (11) and (12) precise, we do the following. Firstly, we induce M
with the structure of a Hessian manifold. To do so, we use 9 as a potential for a Riemannian metric
and let D be the flat connection induced by differentiation with respect to the u-coordinates. This then
induces (TM, gD, J D) with a Kähler metric. Secondly, given a tangent vector ξ ∈ Tx X and a point y ∈ Y,
we induce a tangent vector (also denoted by ξ ) in Tx−yM by shifting the base by y and leaving the
components unchanged. We also use this same construction to induce cotangent vectors in T ∗x−yM, given
a point x ∈ X and a cotangent vector η ∈ T ∗y Y.
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After doing so, by comparing (9), (10) and (12), we obtain the following result.

Theorem 6. Let X and Y be open sets in Rn and c be a 9-cost. Furthermore, let (ξ, η) be a vector-
covector pair in Tx X × T ∗y Y such that the associated vector-covector pair on Tx−yM × T ∗x−yM is
orthogonal. Finally, let ζ be an arbitrary vector in Tx−yM.

Then the MTW tensor satisfies the identity

S(ξ, η)= 2RgD (ξ H
ζ , (η

])Vζ , ξ
H
ζ , (η

])Vζ )− 2RgD ((η])H
ζ , ξ

H
ζ , (η

])H
ζ , ξ

H
ζ ). (13)

Here, RgD is the curvature of the Sasaki metric on (TM, gD, J D) after sharping η (recall that the η in
the MTW tensor is a covector with η(ξ)= 0). Furthermore, the cross curvature satisfies the same identity
when we allow ξ and η to be an arbitrary vector-covector pair.

Here, due to the symmetries of the Kähler Sasaki metric, the choice of ζ is arbitrary. We will discuss
this fact in Section 7. Note that it is important to be careful with the indices in the previous result.16

Recalling our previous discussion on the curvature of Kähler metrics, if we consider TM as a tube
domain, then the right-hand side of (13) is twice the orthogonal antibisectional curvature, which implies
the following corollary.

Remark 7. The MTW tensor for a 9-cost is nonnegative if and only if TM has (NOAB) on the set
T (X − Y )⊂ TM.

5.2. Relative c-convexity of sets and dual geodesic convexity. In order to establish regularity for optimal
transport (as done in Theorem 2), not only is it necessary to assume that the MTW tensor is nonnegative,
there are also assumptions about the relative c-convexity of the supports of µ and ν. For 9-costs, there is
a natural geometric interpretation for this notion, which we establish here.

Proposition 8. For a 9-cost, a set Y is c-convex relative to X if and only if , for all x ∈ X , the set
x − Y ⊂M is geodesically convex with respect to the dual connection D∗.

Proof. Recall that for x ∈ X , a c-segment in Y is the curve c- expx(`) for some line segment ` and a set Y is
c-convex relative to a set X if, for all x ∈ X , Y contains all c-segments between points in Y. For a 9-cost,
relative c-convexity corresponds with geodesic convexity with respect to the dual connection17 D∗.

We now apply (8) to see
−ci, =−9i (x − y)=−θ i (x − y),

where θ i (x− y) is the point x− y ∈M in terms of the dual coordinates θ i. By the definition on page 402,
c-segments correspond to straight lines in the θ-coordinates. From the discussion after (8), this shows
that c-segments are geodesics with respect to the dual connection D∗.

As such, a set Y contains all its c-segments if and only if, for all x ∈ X , x − Y contains all of D∗

geodesics, which is another way of saying that x − Y is geodesically convex with respect to D∗. �

16A previous version of this paper [Khan and Zhang 2019] mistakenly switched the roles of j and k, leading to an incorrect
claim of a correspondence of the MTW tensor to the orthogonal bisectional curvature.

17Recall that the dual connection D∗ satisfies (7), where D is the flat connection induced by differentiation with respect to
the u-coordinates.
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An analogous result holds for relative c-convexity of X relative to Y. Combining the previous two
results, we can restate Theorem 2 in this new language.

Theorem. Suppose X and Y are smooth bounded domains in Rn and that dµ and dν are smooth
probability densities supported on X and Y, respectively, bounded away from zero and infinity on their
supports. Consider a 9-cost for some convex function 9 :M→ R and suppose the following conditions
hold:

(1) 9 is C4 and locally strongly convex (i.e., its Hessian is positive definite).

(2) For all x ∈ X , x − Y ⊂M is strictly geodesically convex with respect to the dual connection D∗.

(3) For all y ∈ Y, X − y ⊂M is strictly geodesically convex with respect to the dual connection D∗.

(4) The Kähler manifold (TM, gD, J D) has (NOAB) on the subset T (X − Y ).

Let TU be the c-optimal transport map carrying µ to ν as in Theorem 1. Then U ∈ C∞(X) and
TU : X→ Y is a smooth diffeomorphism.

We should note that for many 9-costs of interest, 9 will not be uniformly strongly convex over its
entire domain. This is no issue for the regularity theory, as we will restrict our attention to bounded sets
X and Y, so that X − Y is precompact. As such, 9 will be strongly convex on X − Y.

5.3. Information-geometric interpretation. The previous results provide new interpretations of the reg-
ularity theory, but we can also use this approach to find new examples of cost functions which satisfy
MTW(0). Before doing so, we will briefly discuss information geometry, which is where many of these
examples originate.

Information geometry studies the geometry of parametrized statistical models. For a more complete
background, we refer readers to [Amari 2016]. All of the examples in this paper are constructed from
exponential families, so we will focus only on the information geometry of exponential families.

Given a sample space S (about which we make no assumptions), an exponential family is a parametrized
family of probability distributions whose probability density functions are of the form

fS(s | u)= h(s) exp(η(u) · T (s)− A(u)) (14)

for some known functions h : S→ R, η :U → Rn , T : S→ Rn, and A :U → R. Here, u ∈U serve as
parameters of the distributions, and they are generally defined on an open domain U in Rn. Note that η
should not be confused with the covector notation; it is instead a function of the parameters. This class of
statistical models includes many commonly used parametrized families, such as the univariate normal
and multinomial distributions (both of which we consider in the application section).

An exponential family is said to be in canonical form if η(u)= u, in which case u is said to be the
natural parameters. In this case, we can rewrite (14) as

fS(s | u)= h(s) exp(u · T (s)−9(u)). (15)
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Here, 9(u) is known as the log-partition function, and serves to preserve the probability normalization
(i.e.,

∫
S fS(s | u) ds = 1). When an exponential family is written in terms of its natural parameters, 9(u)

is a convex function whose domain is also convex.

5.3.1. The Fisher metric. Given any parametrized statistical model (not just an exponential family), there
is a canonical Riemannian metric that can be induced on the parameter space. This metric, known as the
Fisher metric, takes the form

g
(
∂

∂ui ,
∂

∂u j

)
=

∫
S

∂ log f (s | u)
∂ui

∂ log f (s | u)
∂u j f (s | u) ds. (16)

There are several reasons to consider the Fisher metric as a canonical metric, and this is just one of
several equivalent definitions for it. However, a more complete discussion of this topic would take us too
far from the central aim of the this project. For more information, we refer the reader to the paper by Ay,
Jost, Vân Lê, and Schwachhöfer [Ay et al. 2015].

For an exponential family in canonical form, the Fisher metric takes a special form. More precisely, it
can be written as a Hessian metric

g
(
∂

∂ui ,
∂

∂u j

)
=

∂2

∂ui∂u j 9(u), (17)

where 9(u) is the log-partition function (which is guaranteed to be convex). From this, there is a natural
statistical reason to consider Hessian manifolds, which we can further use to construct cost functions for
optimal transport.

This paper is not the first work to consider using the log-partition function to find interesting 9-costs.
This construction was first introduced in [Pal 2017], who developed some of the optimal transport theory
for costs of this form. We thank the reviewer for bringing this paper to our attention.

5.3.2. The case of D(α)9 -divergences. Although our main results are stated in terms of 9-costs, they also
hold (with minor modifications) for cost functions that are D(α)9 -divergences, which were previously
studied by the second author [Zhang 2004] in the context of information geometry.

Definition (D(α)9 -divergence). Let 9 :M→R be a convex function on a convex domain M in Euclidean
space. For two points x, y ∈M and α ∈ R, a D(α)9 -divergence is a function of the form

D(α)9 (x, y)=
4

1−α2

[
1−α

2
9(x)+

1+α
2

9(y)−9
(

1−α
2

x +
1+α

2
y
)]
.

For cost functions of this form, we use 9 to construct a Hessian metric on M and consider X and
Y as subsets of M. Theorem 6 relates18 the MTW tensor of a D(α)9 -divergence on M to the orthogonal
antibisectional curvature of TM and Proposition 8.

There are several reasons to extend our results to the case of a D(α)9 -divergence. Firstly, they are a natural
class of divergences which interpolate between dual Bregman divergences [1967] (as α approaches ±1).

18There is a scaling factor of 1
2 (1−α

2) between the curvature and the MTW tensor for a D(α)9 -divergence.
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Secondly, such divergences satisfy a natural “biduality”, which is important to the study of information
geometry [Zhang 2004]. Thirdly, D(α)9 -divergences are often more natural than 9-costs for optimal
transport on statistical manifolds for the following reason.

Both 9-costs and D(α)9 -divergences involve a convex function defined on an open domain of Rn. When
choosing to use one versus the other as a cost function, the primary difference is whether to assume that
X − Y ⊂M (as for the former), or that X, Y, 1

2(1−α)X +
1
2(1+α)Y ⊂M (as for the latter).

For a D(α)9 -divergence induced by a log-partition function 9, the domain M is convex. As such, if we
consider X and Y to be subsets of the natural parameters of an exponential family and let α ∈ (−1, 1),
we are assured that 1

2(1−α)X +
1
2(1+α)Y ⊂M. Because of this, the D(α)9 -divergence is guaranteed to

be well-defined. We will give an example of such a divergence function and prove the regularity for an
associated optimal transport problem in Section 6.1.3.

More broadly, divergences are a generalization of distance functions, where the assumptions of
symmetry and the triangle inequality are dropped. Such functions are widely used in statistics and
information geometry because they can be seen as generalizations of the relative entropy. Using divergences
as cost functions in order to connect information geometry with optimal transport is an active field of
research [Wong and Yang 2019], and we expect that there are interesting connections yet to be found.

6. Applications

As the results in the previous section give a new interpretation for prior work, it is natural to ask for
original results that can be found using this approach. In this section, we give several such applications.
We will not provide the derivations of the identities in this section, as they are very involved but otherwise
routine. In order to compute the associated curvature tensors, we have written a Mathematica notebook,
which is available online [Khan 2018].

6.1. A complete, complex surface with (NOAB). Since the antibisectional curvature appears similar to
the bisectional curvature, we can also ask how much control nonnegative antibisectional curvature or
(NOAB) provides over the geometry of a Kähler manifold. Using the polarization formula [Hawley 1953],
it can be shown that any metric of constant holomorphic sectional curvature has vanishing orthogonal
antibisectional curvature, so any Hermitian symmetric space satisfies (NOAB). One can then ask whether
there are other examples.

The following example gives a very interesting metric which satisfies (NOAB) and completeness but is
neither Hermitian symmetric nor biholomorphic to Cn.

Example 9 (a complete surface with (NOAB)). Consider the negative half-plane

M= H := {(u1, u2) | u2 < 0}.

Prescribe a Hessian metric associated with the potential function 9 : H→ R given by

9(u)=−
(u1)2

4u2 −
1
2

log(−2u2).
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For a vector ξ = ∂u1 + a∂u2 and a covector η = adu1
− du2, the associated orthogonal antibisectional

curvature19 on T H is given by

OA(η], ξ)=
6a2(−a(u1)2+ u2)2

(u2)2
.

As such, the metric has (NOAB). This metric is of independent interest, and for a more complete discussion,
we refer the reader to [Molitor 2014]. We will note in passing a few of its curvature properties. For a
vector ξ = ∂u1 + a∂u2 and a covector η = du1

+ adu2, the antibisectional curvature is given by

A(η, ξ)= 2− 12a2
− 12

au1

u2 + 6
(

au1

u2

)2

.

As such, the antibisectional curvature does not have a definite sign. It can similarly be shown that the
orthogonal bisectional curvature also does not have a definite sign. However, the metric does have constant
negative scalar curvature. This manifold is complete and Stein (it is biholomorphic to an open set in C2).
However, it has the standard complex structure on a half-space in R4, so is not biholomorphic to C2.

6.1.1. The Fisher metric of the normal distribution N (µ, σ ). Although this example has interesting
theoretical properties, it may appear to be a somewhat ad hoc construction without context. In fact, it is a
natural example from information geometry. If we consider u1 and u2 as the natural parameters of the
normal distribution with mean µ and standard deviation σ (i.e., u1

= µ/σ 2 and u2
=−1/(2σ 2)), then

the Riemannian metric gi j = 9i j is the Fisher metric on the statistical manifold of univariate normal
distributions (with unknown mean and variance). As a Riemannian manifold, (H, g) is a complete
hyperbolic surface (which motivated our choice of notation). Note, however, that the (u1, u2)-coordinates
do not induce the standard half-plane model of hyperbolic space.20

6.1.2. A closely related example. Using the normal statistical manifold, it is possible to construct another
Kähler metric which satisfies (MTW). This space is actually Hermitian symmetric and was first constructed
by Shima [2007, Example 6.7].

Consider the domain
M̃ := {(θ1, θ2) | θ2

− (θ1)2 > 0}

and prescribe it with a Hessian metric with potential 9∗(θ)=− 1
2 − log(θ2

− (θ1)2).
This potential arises from the parametrization of the univariate normal distribution in terms of its dual

parameters θ1
= µ and θ2

= µ2
+ σ 2 and the potential 9∗(θ) is the Legendre dual of the above potential

in Example 9. Computing the antibisectional curvature for a vector ξ and covector η, we find that it
satisfies

A(ξ, η])=−η(ξ)2.

As such, the orthogonal antibisectional curvature vanishes and the holomorphic sectional curvature is a
negative constant. From this, we can see that the geometry of TM̃ is of independent interest, as it is a

19By computing antibisectional curvature solely on real vectors and covectors, we are slightly abusing notation. To formalize
this, extend ξ and η to their real counterparts on TM.

20In (µ, σ )-coordinates, the Fisher metric is ds2
= (1/σ 2)(dµ2

+ 2dσ 2), which is much closer to the standard model.
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complete Hermitian symmetric space with constant negative holomorphic sectional curvature. This is an
example of a Siegel upper half-space.

We note that it is possible to construct other Kähler metrics with (NOAB) that are very similar to TM̃.
Using a similar construction for round multivariate Gaussian distributions, it is possible to construct such
a Hermitian symmetric space in arbitrary dimensions. For another example, we can consider the potential
9(θ1, θ2)=− 1

2 − log(θ2
− (θ1)4), which also has (NOAB).

6.1.3. Regularity for an associated cost function. We can also use the potential

9(u)=−
(u1)2

4u2 −
1
2

log(−2u2)

to construct a cost function with a natural regularity theory. Due to the fact that the domain of 9 is
convex, it is more natural to consider a D(α)9 -divergence rather than a 9-cost. As such, we will consider
the cost function

c(x, y)= D(0)9 (x, y)

= 2
(
−
(x1)2

4x2 −
1
2

log(−2x2)

)
+2
(
(y1)2

4y2 +
1
2

log(−2y2)

)
+4
(
(x1
+y1)2

8(x2+y2)
+

1
2

log(−x2
−y2)

)
.

For this cost function, we can apply our previous calculations to obtain the following result.

Corollary. Suppose µ and ν are probability measures supported on bounded subsets X and Y of the
normal statistical manifold M. Suppose further that the following regularity assumptions hold.

(1) µ and ν are absolutely continuous with respect to the Lebesgue measure. Furthermore, dµ and dν
are smooth and bounded away from zero and infinity on their respective supports.

(2) For all x ∈ X , 1
2(x + Y ) is strictly convex with respect to the coordinates θ1

= µ and θ2
= µ2

+ σ 2.
Furthermore, the same property holds for 1

2(X + y) for all y ∈ Y.

Let c(x, y) be the cost function given by

c(x, y)= D(0)9 (x, y)= 29(x)+ 29(y)− 49
(

x + y
2

)
,

where 9 is the convex function given in Example 9. Then the c-optimal map TU taking µ to ν is smooth.

6.2. The regularity of pseudoarbitrages. Recently, a series of papers [Pal and Wong 2016; 2018a; 2018b;
Wong 2018; 2019] has studied the problem of finding pseudoarbitrages, which are investment strategies
which outperform the market portfolio under “mild and realistic assumptions”. Their work combines
information geometry with optimal transport and mathematical finance to reduce the problem to solving
optimal transport problems where the cost function is given by a so-called log-divergence.

A central result in [Pal and Wong 2018a] shows that a portfolio map π outperforms the market portfolio
almost surely in the long run if and only if it is a solution to the Monge problem for the cost function
c : Rn−1

×Rn−1
→ R given by

c(x, y) := log
(

1+
n−1∑
i=1

ex i
−yi
)
− log(n)−

1
n

n−1∑
i=1

x i
− yi . (18)



THE KÄHLER GEOMETRY OF CERTAIN OPTIMAL TRANSPORT PROBLEMS 419

To give some context for this cost function, it is instructive to consider x and y as the natural parameters
of the multinomial distribution. For natural parameters {x i

}
n−1
i=1 , we can compute the probability pi of the

i-th event (in this context, the i-th market weight) using the formulas

pi =
ex i

1+
∑n−1

j=1 ex j
for 1≤ i < n, (19)

pn =
1

1+
∑n−1

j=1 ex j
. (20)

To write this cost function in a more familiar form, we similarly find probabilities qi associated to the
y-parameters and fix π = (1/n, . . . , 1/n) ∈ 4n. Rewriting our cost in these terms,21 we have

ĉ(p, q) := log
( n∑

i=1

π i
pi

qi

)
−

n∑
i=1

π i log
(

pi

qi

)
.

This quantity is known as the free energy in statistical physics [Pal and Wong 2018a] and by various
different names in finance (such as the “diversification return”, the “excess growth rate”, the “rebalancing
premium” and the “volatility return”). Since Pal and Wong refer to this as a logarithmic divergence, we
refer to this cost as the logarithmic cost. This cost function is not symmetric, so is not induced by any
distance function. However, Jensen’s inequality shows that it is a divergence.

The main focus of Pal and Wong’s work is to study the information-geometric properties of diver-
gence functions induced by exponentially concave functions, of which ĉ is only a single example. For
any exponentially concave function, one can define a corresponding divergence which has a self-dual
representation in terms of the logarithmic cost; see [Pal and Wong 2018a, Proposition 3.7]. In order to
study optimal transport, we do not specify the exponentially concave function a priori. In fact, such a
function induces the solution to an optimal transport problem.

For the logarithmic cost, only the first term affects optimal transport. As such, we instead consider the
cost function

c̃(x, y) := log
(

1+
n−1∑
i=1

ex i
−yi
)
.

This is now a 9-cost for the convex function

9(u)= log
(

1+
n−1∑
i=1

eui
)
.

As such, we can apply Theorem 6 to compute the MTW tensor for the cost c̃. For a vector ξ and a
covector η, the antibisectional curvature of T Rn−1 (denoted by A) with Hessian metric induced by 9 is

A(ξ, η])= 2(g(η], ξ))2.

As such, the MTW tensor identically vanishes and the cost has nonnegative cross-curvature. A proof
for this identity can be found in [Shima 2007, Proposition 3.9]. From the curvature formulas, we see that

21This is what Pal and Wong denote by T (p | q).
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this potential induces a Kähler metric on Cn with constant positive holomorphic sectional curvature. As
such, it is a Hermitian symmetric space (although it is not complete).

In order to apply the result of [Trudinger and Wang 2009], we must also determine what relative
c-convexity means in this context. To do so, we solve for the dual coordinates to the natural parameters ui

by calculating ∂ui9 for i = 1, . . . , n− 1. Doing so, we find that the dual coordinates are

θ i
=

eui

1+
∑n−1

j=1 eu j
for 1≤ i < n,

which are exactly the formulas for the market weights pi (i.e., θ i
= pi ). This is initially surprising, but

has a natural interpretation in terms of information geometry.

6.2.1. The information geometry of the multinomial distribution. It is worth discussing the geometry of
this example in more detail. It turns out that if we consider the {x i

} as natural parameters, the potential 9
induces the Fisher metric of the multinomial distribution, which is an important exponential family in
statistics. Geometrically, this is the round metric on the positive orthant of a sphere, which immediately
shows that neither the underlying Hessian metric nor the Sasaki metric is complete. It is worth mentioning
that this metric cannot be extended to a Kähler Sasaki metric on the tangent bundle of the entire sphere,
due to the fact that the sphere is not an affine manifold.

For an exponential family of probability distributions, the dual coordinates are the expected values of
the natural sufficient statistics. More specifically, for the multinomial distribution the dual coordinates are
precisely the original market weights, which explains the relationship between the market weights and
the partial derivatives of the potential function. As such, if we let P be the coordinate transformation
from the natural parameters x to the market weights p (i.e., P(x) is as given in (19)), a subset X ⊂ Rn−1

is relatively c-convex if and only if the set P(X) is convex as a subset of the probability simplex in the
usual sense. Using this transformation, we say that a subset P(X) of the probability simplex has uniform
probability if X is a precompact set. More concretely, a subset P(X) has uniform probability if and only
if there exists δ > 0 so that for all p ∈ P(X) and 1≤ i ≤ n, pi > δ.

6.2.2. Regularity of optimal transport. From these observations and the previous identity for the MTW
tensor (13), we can derive the following regularity result.

Corollary 10. Suppose µ and ν are smooth probability measures supported respectively on subsets X
and Y of the probability simplex 4n . Suppose further that the following regularity assumptions hold:

(1) X and Y are smooth and strictly convex. Furthermore, both have uniform probability (as defined
above).

(2) µ and ν are absolutely continuous with respect to the Lebesgue measure and dµ and dν are bounded
away from zero and infinity on their supports.

Let ĉ(p, q) be the cost function given by

ĉ(p, q)= log
(

1
n

n∑
i=1

qi
pi

)
−

1
n

n∑
i=1

log
qi

pi
.

Then the ĉ-optimal map TU taking µ to ν is smooth.
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Pal and Wong [2018b] study the cost function ĉ and use it to define a displacement interpolation
between two probability measures. In their paper, they inquire about the regularity problem for this
interpolation. We can now answer this question using the previous result.

Corollary 11. Suppose that µ and ν are smooth probability measures satisfying the assumptions of
Corollary 10 and that TU is the ĉ-optimal map transporting µ to ν. Suppose further that T(t)µ is the
displacement interpolation from µ to ν induced by the one-parameter family of exponentially concave
potentials ϕ(t), with

ϕ(t)= t U+ (1− t)ϕ0, where ϕ0 =
1
n

n∑
i=1

log pi .

Then Tϕ(t) is smooth, both as a map on the probability simplex for fixed t and also in terms of the
t-parameter.

For t = 1, the solution to the interpolation problem is simply TU and so Corollary 10 shows that the
potential U is smooth. Since the displacement interpolation linearly interpolates between smooth potential
functions, the associated displacement interpolation is also smooth for 0 ≤ t ≤ 1. The displacement
induced by linearly interpolating the potential functions is exactly the transport considered in [Pal and
Wong 2018b] (see Definition 6), and so this establishes regularity for this transport.

In closing, we note that the cost function considered here is very similar, but not identical, to the radial
antennae cost, which was studied in [Wang 2004]. It is of interest to determine whether there is some
deeper connection between these two costs which explains their apparent similarity.

6.3. Other examples in complex geometry and optimal transport. While writing this paper, we were
able to find several more examples of Hessian manifolds whose tangent bundles have nonnegative
bisectional curvature or (NOAB).

Relatively few examples of positively curved metrics are known (for some examples, see [Wu and
Zheng 2011]), so this method may be helpful for finding new ones. One limitation of this approach is
that many of the manifolds are not complete as metric spaces. It would be of interest to determine which
convex functions induce complete Kähler metrics with nonnegative or positive orthogonal bisectional
curvature, and we plan to study this problem in future work.

Each of these examples further induces a cost with nonnegative MTW tensor. Furthermore, since
many of these examples are obtained from statistical manifolds, it may be possible to use them to induce
meaningful statistical divergences.

(1) 9(u)=− log
(
1−

∑n
i=1 eui )

defined on the set M=
{
u
∣∣∑n

i=1 eui
< 1

}
. This potential induces TM

with a Sasaki metric of constant negative holomorphic sectional curvature:

A(ξ, η])=−η(ξ)2.

From an information-geometric point of view, this is the Fisher metric of the negative multinomial
distribution. As a Hessian manifold, M is a noncompact metric of constant negative holomorphic sectional
curvature, but is not complete.
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(2) 9(u)= (eu1
+ eu2

)p for 0< p < 1. For a vector ξ = ∂u1 + a∂u2 and covector η = adu1
− du2, the

associated orthogonal antibisectional curvature of the Sasaki metric is given by

OA(ξ, η])=
2(1/p− 1)(a− 1)2(eu1

+ aeu2
)2

(eu1
+ eu2

)2+p
.

This is nonnegative, and so the Kähler metric has (NOAB). As Hessian manifolds, this family of
metrics is neither compact nor complete.

(3) 9(u)= log(cosh(u1)+ cosh(u2)). This potential induces a Sasaki metric on T R2 whose bisectional
curvature is nonnegative. For a vector ξ = ξ1∂u1+ ξ2∂u2 and covector η= η1 du1

+η2 du2, the associated
bisectional curvature is given by

B(ξ, η])= |ξ |2|η|2+ 4ξ1ξ2η1η2,

where |ξ |2 = ξ 2
1 + ξ

2
2 and |η|2 = η2

1+ η
2
2.

Furthermore, the antibisectional curvature also satisfies the same formula:

A(ξ, η])= |ξ |2|η|2+ 4ξ1ξ2η1η2.

As such, this metric has (NOAB) and nonnegative bisectional curvature. As a Hessian manifold, this
metric is bounded, and so is not complete. Note that the curvature of this metric is in fact parallel with
respect to D, which makes it an interesting example. We will explore this metric further in future work.

7. Open questions

7.1. The complex geometry of optimal maps. It is of interest to understand the geometry of optimal maps
from the perspective of the complex geometry. Although we were able to give a complex-/information-
geometric interpretation of the Ma–Trudinger–Wang conditions, we do not have a complex-geometric
interpretation for Theorem 1.

It is worth comparing the situation to the pseudo-Riemannian theory of optimal transport of [Kim and
McCann 2010]. One striking feature in this theory is the natural geometric interpretation for optimal maps.
More precisely, if one deforms the pseudometric by a particular conformal factor (which is determined by
the respective densities), the optimal map is induced by a maximal codimension-n surface with respect to
the conformal pseudometric [Kim et al. 2010].

For a 9-cost, we hope that [Gangbo and McCann 1995] will allow us to encode optimal transport
problems within TM so that the solution corresponds to some submanifold (or a less regular subset
when the transport is discontinuous). Intuitively, this should indicate the “direction” in which the mass
is transported from (X, µ) to (Y, ν). However, at present we cannot make this intuition rigorous, so we
leave it for future work.

If we are able to complete the previous step, a natural follow-up question would be to try to establish
the regularity theory for optimal transport with 9-costs in terms of complex Monge–Ampère equations.
For an overview on complex Monge–Ampère equations, we refer the reader to the paper by Phong, Song
and Sturm [Phong et al. 2012].
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7.2. A potential non-Kähler generalization. While 9-costs yield many interesting examples, there are
many relevant cost functions which are not of this form. As such, one natural generalization of the
construction considered here is to instead consider a Lie group G and cost functions of the form 9(x · y−1)

for x, y ∈ G. Our work thus far can be interpreted as doing this calculation in the special case where G
is Abelian. For non-Abelian groups, we hope it is possible to recover the MTW tensor as a curvature
tensor in almost-complex geometry. In this case, there would be correction terms due to the non-Abelian
nature of the group. Furthermore, the natural connections on a non-Abelian Lie group are not flat, so the
associated almost-complex structure on the tangent bundle TG would fail to be integrable.22

There are several key difficulties in making this program rigorous. Firstly the curvature of an almost-
Hermitian manifold is much more complicated than that of a Kähler manifold, in that it does not satisfy (5).
Furthermore, there is not one, but several canonical connections to choose from, and it’s not immediately
clear which is the right one to use. Finally, the cut locus of a Lie group can be nontrivial, which plays an
important role in the regularity theory of optimal transport on manifolds. It seems that before any of these
issues can be addressed, it will be necessary to understand the optimal map in terms of complex geometry.
Hopefully this will provide insight into the correct generalization in the almost-complex setting.

However, there is reason to be hopeful about this approach, as there are several examples of MTW(κ)

costs induced from this construction. Most strikingly, it is known that the squared distance cost on RP3

with its round metric satisfies a stronger version of the MTW condition which implies regularity [Loeper
and Villani 2010]. However, RP3 is diffeomorphic to SO(3) and the round metric is one example of a
left-invariant Berger metric (see [Brown et al. 2007] for a more complete discussion of left-invariant
metrics). As such, we hope that this approach can be used to find other examples of cost functions
satisfying MTW(κ), either by considering other Lie groups or by considering other left-invariant metrics
on SO(3).

7.3. Implications for optimal transport. The primary focus of this work is to use optimal transport
theory to study complex geometry and information geometry. However, it remains an open question what
can be proven about optimal transport using this approach. For instance, it is hard to find cost functions
which satisfy MTW(0). Similarly, relatively few Kähler metrics of positive curvature are known and there
are various stability and gap theorems about them (see, e.g., [Liu 2019; Ni and Niu 2019]). In optimal
transport, we expect that similar results can be proven using complex geometry. We plan to explore this
topic in future work.

7.4. The complex geometry of the antibisectional curvature. The orthogonal antibisectional curvature
is a very subtle invariant, and its geometry is quite mysterious. It does not determine the full curvature
tensor of the manifold, since all spaces with constant holomorphic sectional curvature have vanishing
orthogonal antibisectional curvature. However, it is nonnegative for some important metrics which do not
have any other obvious nonnegativity properties. In future work, we hope to understand this curvature
more fully and to understand what sort of control it exerts over the geometry of a complex manifold.

22If we restrict our attention to torsion-free connections, we may be able to recover an almost-Kähler theory (see [Satoh 2007,
Theorem 1.1]), but it’s not clear that this is the best option.
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SEMICLASSICAL ASYMPTOTICS FOR
NONSELFADJOINT HARMONIC OSCILLATORS

VÍCTOR ARNAIZ AND GABRIEL RIVIÈRE

We consider nonselfadjoint perturbations of semiclassical harmonic oscillators. Under appropriate
dynamical assumptions, we establish some spectral estimates such as upper bounds on the resolvent near
the real axis when no geometric control condition is satisfied.

1. Introduction

Motivated by earlier work of Lebeau [1996] on the asymptotic properties of the damped wave equation,
Sjöstrand [2000] initiated the spectral study of this partial differential equation on compact Riemannian
manifolds. He proved that eigenfrequencies satisfy Weyl asymptotics in the high-frequency limit [Sjöstrand
2000, Theorem 0.1] — see also [Markus 1988; Markus and Macaev 1979]. Moreover, he showed that
eigenfrequencies lie in a strip of the complex plane which can be completely determined in terms of the
average of the damping function along the geodesic flow [Sjöstrand 2000, Theorems 0.0 and 0.2] — see
also [Lebeau 1996; Rauch and Taylor 1975]. Following [Sjöstrand 2000], showing these results turns
out to be the particular case of a more systematic study of a nonselfadjoint semiclassical problem which
has since then been the object of several works. More precisely, it was investigated how these generalized
eigenvalues are asymptotically distributed inside the strip determined by Sjöstrand and how the dynamics
of the underlying classical Hamiltonian influences this asymptotic distribution. Mostly two questions have
been considered in the literature. First, one can ask about the precise distribution of eigenvalues inside the
strip and this question was addressed both in the completely integrable framework [Hitrik 2002; Hitrik and
Sjöstrand 2004; 2005; 2008a; 2008b; 2012; 2018; Hitrik et al. 2007] and in the chaotic one [Anantharaman
2010]. Second, it is natural to focus on how eigenfrequencies can accumulate at the boundary of the strip
and also to get resolvent estimates near the boundary of the strip. Again, this question has been explored
both in the integrable case [Asch and Lebeau 2003; Hitrik and Sjöstrand 2004; Burq and Hitrik 2007;
Anantharaman and Léautaud 2014; Burq and Gérard 2018] and in the chaotic one [Christianson 2007;
Schenck 2010; Nonnenmacher 2011; Christianson et al. 2014; Rivière 2014; Jin 2017].

The purpose of this work is to consider the second question for simple models of completely integrable
systems. Via these models, we aim at illustrating the influence of the subprincipal symbol of the selfadjoint
part of our semiclassical operators on the asymptotic distribution of eigenvalues but also on resolvent
estimates near the real axis. As briefly reminded below, this is related to the decay of the corresponding
semigroup [Lebeau 1996]. Among other things, our study is motivated by [Asch and Lebeau 2003,

MSC2010: 35P20.
Keywords: semiclassical analysis, nonselfadjoint operators, resolvent estimates, integrable systems, averaging method.
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Theorem 2.3]. In that reference, they indeed showed how a selfadjoint perturbation of the principal
symbol of the damped wave operator on the 2-sphere can create a spectral gap inside the spectrum in
the high-frequency limit. Theorem 7 below shows how this result can be extended to our context.1 A
major ingredient in the proof of [Asch and Lebeau 2003] but also in [Hitrik and Sjöstrand 2004; 2005;
2008a; 2008b; 2012; 2018; Hitrik et al. 2007] is the analyticity of the involved operators. One of the
novelties of the present article compared with these references is Theorem 3, where we only suppose that
the operators are smooth, i.e., quantizing C∞ symbols. This theorem shows what can be said under these
lower regularity assumptions and how this is influenced by the subprincipal symbols of the selfadjoint
part, as was the case in [Asch and Lebeau 2003]. This will be achieved by building on the dynamical
construction used by the first author and Macià [Arnaiz and Macià 2018] for studying Wigner measures
of semiclassical harmonic oscillators — see also [Macià and Rivière 2016; 2019] in the case of Zoll
manifolds. As in [Arnaiz and Macià 2018], we restrict ourselves to the case of nonselfadjoint perturbations
of semiclassical harmonic oscillators on Rd. Yet it is most likely that the methods presented here can be
adapted to deal with semiclassical operators associated with more general completely integrable systems,
including damped wave equations on Zoll manifolds.

1.1. Nonselfadjoint harmonic oscillators. Let us now describe the spectral framework in which we are
interested. We fix ω = (ω1, . . . , ωd) to be an element of (R∗

+
)d and we set Ĥh̄ to be the semiclassical

harmonic oscillator given by

Ĥh̄ :=
1
2

d∑
j=1

ωj (−h̄2∂2
x j
+ x2

j ). (1)

We want to understand the spectral properties of nonselfadjoint perturbations of Ĥh̄ . Before being more
precise on that issue, let us recall that the symbol H of Ĥh̄ is given by the classical harmonic oscillator

H(x, ξ)= 1
2

d∑
j=1

ωj (ξ
2
j + x2

j ), (x, ξ) ∈ R2d , (2)

whose induced Hamiltonian flow will be denoted by φH
t . A brief account on the dynamical properties of

this flow is given in Section 2. For any smooth function a ∈ C∞(R2d), we define its average 〈a〉 by the
Hamiltonian flow φH

t as

〈a〉(x, ξ) := lim
T→∞

1
T

∫ T

0
a ◦φH

t (x, ξ) dt ∈ C∞(R2d), (3)

whose properties are related to the Diophantine properties of ω— see Section 2 for details.
Fix now two smooth functions A and V in C∞(R2d ,R) all of whose derivatives (at any order) are

bounded. Following [Zworski 2012, Chapter 4], one can define the Weyl quantization of these smooth
symbols:

Âh̄ := Opwh̄ (A) and V̂h̄ := Opwh̄ (V ).

1Observe that, compared with [Asch and Lebeau 2003], our operators are not necessarily associated with a periodic flow.
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These are selfadjoint operators which are bounded on L2(Rd) thanks to the Calderón–Vaillancourt
theorem. We aim at describing the asymptotic properties of the following nonselfadjoint operators in the
semiclassical limit h̄→ 0+:

P̂h̄ := Ĥh̄ + δh̄ V̂h̄ + i h̄ Âh̄,

where δh̄→ 0 as h̄→ 0+. More precisely, we focus on sequences of (pseudo-)eigenvalues λh̄ = αh̄+ i h̄βh̄

such that there exist β ∈ R and (vh̄)h̄→0+ in L2(Rd) for which

(αh̄, βh̄)→ (1, β) as h̄→ 0+ and P̂h̄ vh̄ = λh̄ vh̄ + rh̄, ‖vh̄‖L2 = 1. (4)

Here rh̄ should be understood as a small remainder term which will be typically of order o(h̄). This
remainder term allows us to encompass the case of quasimodes, which is important to get resolvent
estimates.

Remark 1. Throughout this work, we shall consider subsequences h̄n → 0+ such that the above con-
vergence property holds. In order to alleviate notation, we will omit the index n and just write h̄→ 0+,
λh̄ = λh̄n , vh̄ = vh̄n , etc. For a similar reason, we do not relabel subsequences. This kind of convention is
standard when working with semiclassical parameters.

Recall from [Markus 1988; Markus and Macaev 1979; Sjöstrand 2000, Theorem 5.2] that true
eigenvalues exist and that, counted with their algebraic multiplicity, they satisfy Weyl asymptotics as
h̄→ 0+. It also follows from [Rauch and Taylor 1975; Lebeau 1996; Sjöstrand 2000, Lemma 2.1] that:

Proposition 2. Let (λh̄ = αh̄+ i h̄βh̄)h̄→0+ be a sequence satisfying (4) with βh̄→ β and rh̄ = o(h̄). Then,
one has

β ∈
[

min
z∈H−1(1)

〈A〉(z), max
z∈H−1(1)

〈A〉(z)
]
. (5)

Note that one always has

min
z∈H−1(1)

A(z)≤ A− := min
z∈H−1(1)

〈A〉(z)≤ A+ := max
z∈H−1(1)

〈A〉(z)≤ max
z∈H−1(1)

A(z),

where the inequalities may be strict. For the sake of completeness and as it will be instructive for our proof,
we briefly recall the proof of this proposition2 in Section 3.1. One can verify that the quantum propagator
(ei t P̂h̄/h̄)t≥0 defines a bounded operator on L2(Rd) whose norm is bounded by e|t |‖Oph̄(A)‖L(L2) . Moreover,
if we suppose in addition that 〈A〉 ≥ a0 > 0 on R2d, we say that the damping term is geometrically
controlled and one gets exponential decay of the quantum propagator in time [Lebeau 1996; Helffer and
Sjoestrand 2010]. More generally, controlling the way pseudoeigenvalues accumulate on the real axis
provides information on the decay rate of the quantum propagator [Lebeau 1996; Helffer and Sjoestrand
2010], and this is precisely the question we are aiming at when 〈A〉 may vanish.

2In the case where the nonselfadjoint perturbation is� h̄ and where the symbols enjoy some extra analytical properties, this
proposition remains true (after a proper renormalization) when rh̄ = 0 and when ω satisfies appropriate Diophantine properties,
such as (9) below.
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1.2. The smooth case. Let us now explain our main results, which show how the selfadjoint term V̂h̄

influences the way that the eigenvalues may accumulate on the boundary of the interval given by
Proposition 2. In the smooth case, our main result reads as follows:

Theorem 3. Suppose that A ≥ 0 and that, for every (x, ξ) ∈ H−1(1)∩〈A〉−1(0), there exists T > 0 such
that

〈A〉 ◦φ〈V 〉T (x, ξ) > 0, (6)

where φ〈V 〉t is the Hamiltonian flow generated by 〈V 〉. For every R > 0, there exists3 εR > 0 such that, for

δh̄ ≥ ε
−1
R h̄2,

and, for every sequence (λh̄ = αh̄ + i h̄βh̄)h̄→0+ satisfying (4) with ‖rh̄‖ ≤ εR h̄δh̄ , we have

lim inf
h̄→0+

βh̄

δh̄
> R.

Remark 4. If δh̄ � h̄2 and ‖rh̄‖� h̄δh̄ , then this theorem shows that

lim
h̄→0+

βh̄

δh̄
=+∞.

In other words, under the geometric control condition (6), eigenvalues cannot accumulate too fast on
the real axis as h̄→ 0+. We emphasize that, compared with the analytic case treated in [Asch and Lebeau
2003], our result applies a priori to quasimodes. Hence, it also yields the following resolvent estimate in
the smooth case. For every R > 0, there exists some constant εR > 0 such that, for h̄ > 0 small enough
and for δh̄ ≥ ε

−1
R h̄2,

Im λ

h̄
≤ Rδh̄ =⇒ ‖(P̂h̄ − λ)

−1
‖L2→L2 ≤

1
εR h̄δh̄

, (7)

which is useful regarding energy decay estimates and asymptotic expansion of the corresponding semi-
group — see, e.g., [Helffer and Sjoestrand 2010].

Note that the assumption that A ≥ 0 makes the proof a little bit simpler but we could deal with
more general functions by using the (nonselfadjoint) averaging method from [Sjöstrand 2000] and by
making some appropriate Diophantine assumptions — see, e.g., Section 4. Our proof will crucially use
the Fefferman–Phong inequality (hence the Weyl quantization) and this allows us to reach perturbations
of size δh̄ & h̄2. If we had used another choice (say for instance the standard one), we would have only
been able to use the Gårding inequality and it would have led us to the stronger restriction δh̄ & h̄.

In the case where V = 0 and under some analyticity assumptions in dimension 2, it was shown in
[Hitrik and Sjöstrand 2004, Theorem 6.7] that one can find some eigenvalues such that βh̄ is exactly of
order h̄ provided that φH

t is periodic and that 〈A〉 vanishes on finitely many closed orbits. Hence, our
hypothesis (6) on the subprincipal V is crucial here. Note that this geometric condition is similar to the
one appearing in [Arnaiz and Macià 2018] for the study of semiclassical measures of the Schrödinger
equation — see also [Macià and Rivière 2016; 2019] in the case of Zoll manifolds. As we shall see,

3The (more or less explicit) constant εR coming out from our proof satisfies limR→+∞ εR = 0.
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ensuring this dynamical property depends on the Diophantine properties of ω. Recall that, to each ω, one
can associate the submodule

3ω := {k ∈ Zd
: ω · k = 0}. (8)

When the resonance module satisfies 3ω = {0}, we will see in Section 2 that our geometric control
condition (6) can only be satisfied if 〈A〉 > 0. A typical case in which our dynamical condition holds
is when H−1(1)∩ 〈A〉−1(0) consists of a disjoint union of a finite number of minimal φH

t -invariant tori
(Tk)k=1,...,N . In this case, our dynamical condition is equivalent to saying that the Hamiltonian vector
field X〈V 〉 satisfies

for all 1≤ k ≤ N , for all z ∈ Tk, X〈V 〉(z)=
d
dt
(φ
〈V 〉
t (z))|t=0 /∈ TzTk .

1.3. The analytic case. We now discuss the case where the functions A and V enjoy some analyticity
properties. To that aim, we follow a method introduced in [Asch and Lebeau 2003] in the case of the
damped wave equation on the 2-sphere. We will explain how to adapt this strategy in the framework of
harmonic oscillators which are not necessarily periodic. The upcoming results should be viewed as an
extension of Asch and Lebeau’s construction to semiclassical harmonic oscillators and as an illustration on
what can be gained via analyticity compared with the purely dynamical approach used to prove Theorem 3.
We emphasize that the argument presented here only holds for true eigenmodes, i.e., rh̄ = 0 in (4). In
particular, it does not seem to yield any resolvent estimate like (7), which is crucial to deducing some
results on the semigroup generated by P̂h̄ .

We now assume some extra conditions on the symbols H, V and A. First, given the vector of frequencies
ω := (ω1, . . . , ωd) of the harmonic oscillator H, we shall say that ω ∈ Rd is partially Diophantine [de la
Llave 2001, equation (2.19)] if one has

|ω · k|−1
≤ C |k|ν for all k ∈ Zd

\3ω. (9)

This restriction is due to the fact that, in the process of averaging, we will deal with the classical problem
of small denominators in KAM theory. To keep an example in mind, note that ω= (1, . . . , 1) is obviously
partially Diophantine.4

We will make use of some analyticity assumptions on the symbols V and A in the following sense:

Definition 5. Let s > 0. We say that a ∈ L1(R2d) belongs to the space As if

‖a‖s :=
∫

R2d
|â(w)|es‖w‖ dw <∞,

where â denotes the Fourier transform of a and ‖w‖ the Euclidean norm on R2d.
Let ρ, s > 0. We introduce the space Aρ,s of functions a ∈ L1(R2d) such that

‖a‖ρ,s :=
1

(2π)d
∑
k∈Zd

‖ak‖s eρ|k| <∞, (10)

4In that example, the flow is periodic and we are in the same situation as in [Asch and Lebeau 2003].
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where
ak(z)=

∫
Td

a ◦8H
τ (z)e

−ik·τ dτ, k ∈ Zd ,

with 8H
τ defined by (15).

Remark 6. Observe that, for any a element in As and for every multi-index α ∈ Zd
+

, ∂̂αa belongs to L1.
Hence, a is smooth and one has ∂αa ∈ L∞ for every α ∈ Zd

+
. Hence, any element in As belongs to the

class S(1) of symbols that are amenable to semiclassical calculus on Rd. In particular, by [Zworski 2012,
Lemma 4.10], one has,

for all a ∈As, ‖Opwh̄ (a)‖L(L2) ≤ Cd,s‖a‖s . (11)

As a consequence of (30), one can show that ‖a‖s ≤ ‖a‖ρ,s for all ρ > 0.

Our next result reads:

Theorem 7. Suppose that A and V belong to the space Aρ,s for some fixed ρ, s > 0 and that 〈A〉 ≥ 0.
Assume also that ω is partially Diophantine and that, for every (x, ξ) ∈ H−1(1)∩ 〈A〉−1(0), there exists
T > 0 such that

〈A〉 ◦φ〈V 〉T (x, ξ) > 0.

Then there exists ε := ε(A, V ) > 0 such that, for

δh̄ = h̄,

and for any sequence of solutions to (4) with rh̄ = 0,

β ≥ ε. (12)

This theorem shows that eigenvalues of the nonselfadjoint operator P̂h̄ cannot accumulate on the
boundary of the strip given by Proposition 2. Compared with Theorem 3, it only deals with the case
of true eigenvalues and it does not seem that a good resolvent estimate can be easily deduced from the
proof below. Finally, for the sake of simplicity, we also supposed that δh̄ = h̄ but it is most likely that the
argument can be applied when δh̄ does not go to 0 too slowly.

2. The classical harmonic oscillator

The Hamiltonian equations corresponding to H are given by{
ẋ j = ωjξj ,

ξ̇j =−ωj x j , j = 1, . . . , d.
(13)

Hence, we can write the solution to this system as a superposition of d-independent commuting flows:

(x(t), ξ(t))= φH
t (x, ξ) := φ

Hd
ωd t ◦ · · · ◦φ

H1
ω1t(x, ξ), (x, ξ) ∈ R2d , t ∈ R,

where Hj (x, ξ)= 1
2(x

2
j + ξ

2
j ) and φHj

t (x, ξ) denotes the associated Hamiltonian flow. In other words, the
solution to (13) can be written in terms of the unitary block matrices(

x j (t)
ξj (t)

)
=

(
cos(ωj t) sin(ωj t)
− sin(ωj t) cos(ωj t)

)(
x j

ξj

)
, j = 1, . . . , d. (14)
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Observe that each flow φ
Hj
t is periodic with period 2π . We now introduce the transformation

8H
τ := φ

Hd
td ◦ · · · ◦φ

H1
t1 , τ = (t1, . . . , td) ∈ Rd . (15)

Note that τ 7→8H
τ is 2πZd -periodic; therefore we can view it as a function on the torus Td

:= Rd/2πZd.
Considering now the submodule

3ω := {k ∈ Zd
: k ·ω = 0},

we can define the minimal torus
Tω :=3

⊥

ω/(2πZd
∩3⊥ω ),

where3⊥ω denotes the linear space orthogonal to3ω. The dimension of Tω is dω= d−rk3ω. Kronecker’s
theorem states that the family of probability measures on Td defined by

1
T

∫ T

0
δtω dt

converges (for the weak-? topology) to the normalized Haar measure νω on the subtorus Tω ⊂ Td.
For any function a ∈ C∞(R2d), we have a ◦φH

t = a ◦8H
tω. Thus, we can write the average 〈a〉 of a by

the flow φH
t as

〈a〉(x, ξ)= lim
T→∞

1
T

∫ T

0
a ◦8H

tω(x, ξ) dt =
∫

Tω

a ◦8H
τ (x, ξ)νω(dτ) ∈ C

∞(R2d). (16)

Recall that the energy hypersurfaces H−1(E)⊂ R2d are compact for every E ≥ 0. For E > 0, due to the
complete integrability of H, these hypersurfaces are foliated by the invariant tori: {8H

τ (x, ξ) : τ ∈ Tω}.
Note that some invariant tori of the energy hypersurface H−1(E), E > 0, may have dimension less than dω.
For instance, if ω= (1, π) then dω = 2, but the torus {8H

τ (0, 1, 0, 1) : τ ∈Tω} ⊂ H−1(π) has dimension 1.
Observe also that 1 ≤ dω ≤ d. In the case dω = 1 and ω = ω1(1, . . . , , 1), the flow φH

t is (2π/ω1)-
periodic. On the other hand, if dω = d , then, for every a ∈ C∞(R2d), there exists I(a) ∈ C∞(Rd) such that
〈a〉(z) = I(a)(H1(z), . . . , Hd(z)). In particular, for every a and b in C∞(R2d), one has {〈a〉, 〈b〉} = 0
whenever dω = d .

To conclude this section, we prove the following lemma:

Lemma 8. If a ∈As then 〈a〉 ∈As and ‖〈a〉‖s ≤ ‖a‖s .

Proof. By (16), we can write the Fourier transform of 〈a〉 as

〈̂a〉(x, ξ)=
∫

Tω

â ◦8H
τ (x, ξ)νω(dτ).

Moreover, since â ◦8H
τ (x, ξ)= â ◦8H

τ (x, ξ) thanks to (14), we have 〈̂a〉 = 〈â〉. Thus, using (14) one
more time, one finds

‖〈a〉‖s =
∫

R2d
|〈â〉(z)|es|z| dz ≤

∫
Tω

∫
R2d
|â ◦8H

τ (z)|e
s|z| dz νω(dτ)

=

∫
R2d
|â(z)|es|z| dz = ‖a‖s . �
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3. Proof of Theorem 3

We now give the proof of our main result in the C∞ case. Before doing that, we briefly recall the proof
of Proposition 2 in order to make the proof of Theorem 3 more comprehensive. Note that we use the
following convention for the scalar product on Rd :

〈u, v〉L2 =

∫
Rd

u(x)v(x) dx .

3.1. Proof of Proposition 2. Let λh̄ = αh̄ + i h̄βh̄ be a sequence of (pseudo-)eigenvalues satisfying (4).
Denote by (vh̄)h̄→0+ the corresponding sequence of normalized quasimodes. Introduce the Wigner
distribution W h̄

vh̄
∈ D′(R2d) associated to the function vh̄ :

W h̄
vh̄
: C∞c (R

2d) 3 a 7−→W h̄
vh̄
(a) := 〈Opwh̄ (a)vh̄, vh̄〉L2(Rd ).

According to [Zworski 2012, Chapter 5] and modulo extracting a subsequence, there exists a probability
measure µ carried by H−1(1) such that W h̄

vh̄
⇀µ. The measure µ is called the semiclassical measure

associated to the (sub-)sequence (vh̄)h̄→0+ . Note that these properties of the limit points follow from
the facts that vh̄ is normalized and that Ĥh̄vh̄ = vh̄ + oL2(1). We will now make use of the eigenvalue
equation (4) to derive an invariance property of µ. Using the symbolic calculus for Weyl pseudodifferential
operators [Zworski 2012, Chapter 4], we have, for every a ∈ C∞c (R2d ,R),

〈[Ĥh̄ + δh̄ V̂h̄,Opwh̄ (a)]vh̄, vh̄〉L2(Rd ) =
h̄
i
〈Opwh̄ ({H, a})vh̄, vh̄〉L2(Rd )+ O(h̄(δh̄ + h̄)).

On the other hand, using that vh̄ is a quasimode of P̂h̄ and the composition rule for the Weyl quantization
[Zworski 2012, Chapter 4], we also have

〈[Ĥh̄ + δh̄ V̂h̄,Opwh̄ (a)]vh̄, vh̄〉L2(Rd ) = 2i h̄〈Opwh̄ (a(A−βh̄))vh̄, vh̄〉L2(Rd )+ O(‖rh̄‖)+ O(h̄3).

Note that there is no O(h̄2)-term due to the fact that a is real-valued and to the symmetries of the Weyl
quantization. Passing to the limit h̄→ 0+ and recalling that ‖rh̄‖ = o(h̄), one finds that µ({H, a}) =
2µ((β − A)a) for every a in C∞c (Rd). This is equivalent to the fact that, for every t ∈ R and for every
a ∈ C∞c (R2d), one has ∫

R2d
a(z)µ(dz)=

∫
R2d

a ◦φH
t (z)e

2
∫ t

0 (A−β)◦φ
H
s (z) dsµ(dz). (17)

Taking a to be equal to 1 in a neighborhood of H−1(1), identity (17) implies

e2βt
=

∫
R2d

e2
∫ t

0 A◦φH
s (z) dsµ(dz) for all t ∈ R, (18)

from which Proposition 2 follows thanks to (3). In the case where β = 0 and A ≥ 0, one can deduce
from (18) that,

for all t ∈ R, supp(µ)⊂ H−1(1)∩ {z : A ◦φH
t (z)= 0}.

Hence, we can record the following useful lemma:
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Lemma 9. Suppose that A ≥ 0. Let µ be a semiclassical measure associated to the sequence (vh̄)h̄→0+

satisfying (4) with β = 0 and rh̄ = o(h̄). Then

suppµ⊂ {z ∈ H−1(1) : 〈A〉(z)= 0}. (19)

3.2. Proof of Theorem 3. Let us now reproduce the same argument but suppose that a = 〈a〉, implying
in particular that {H, 〈a〉} = 0. From this, we get

〈[Ĥh̄ + δh̄ V̂h̄,Opwh̄ (〈a〉)]vh̄, vh̄〉L2(Rd ) =
h̄δh̄

i
〈Opwh̄ ({V, 〈a〉})vh̄, vh̄〉L2(Rd )+ O(h̄3).

As before, recalling that a is real-valued, one still has

〈[Ĥh̄ + δh̄ V̂h̄,Opwh̄ (〈a〉)]vh̄, vh̄〉L2(Rd ) = 2i h̄〈Opwh̄ (〈a〉(A−βh̄))vh̄, vh̄〉L2(Rd )+ O(‖rh̄‖)+ O(h̄3).

Hence, one gets 〈
Opwh̄

(
(2(A−βh̄)+ δh̄ XV )〈a〉

)
vh̄, vh̄

〉
L2(Rd )

= O(‖rh̄‖h̄−1)+ O(h̄2),

where XV is the Hamiltonian vector field of V. Suppose now that A≥ 0 and 〈a〉 ≥ 0. From the Fefferman–
Phong inequality [Zworski 2012, Chapter 4], one knows that there exists some constant C > 0 such that

2βh̄〈Opwh̄ (〈a〉)vh̄, vh̄〉L2(Rd ) ≥ δh̄〈Opwh̄ (XV 〈a〉)vh̄, vh̄〉L2(Rd )−C(h̄2
+‖rh̄‖h̄−1),

where the constant C depends only on A, V, and a. Now, we fix R > 0 and we would like to show that
lim infh̄→0+ βh̄/δh̄ > R provided that δh̄ ≥ ε

−1
R h̄2 and that ‖rh̄‖ ≤ εR h̄δh̄ for some small enough εR > 0

(to be determined later on). To that end, we proceed by contradiction and suppose that, up to an extraction,
one has 2βh̄/δh̄→ c0 ∈ [0, 2R] (in particular β = 0). One finally gets, after letting h̄→ 0+,

c0µ(〈a〉)≥ µ(XV 〈a〉)−CεR (20)

for some C ≥ 0 depending on A, V, and a. Using one more time Lemma 9, one can also deduce that
µ is invariant by φH

t . Hence,
µ({V, 〈a〉})= µ({〈V 〉, 〈a〉}),

which implies
c0µ(〈a〉)≥ µ(X〈V 〉〈a〉)−CεR. (21)

By our geometric control condition (6) and since H−1(1)∩ 〈A〉−1(0) is compact, there exist T1 > 0 and
ε0 > 0 such that ∫ T1

0
〈A〉 ◦φ〈V 〉t (z) dt > ε0 for all z ∈ H−1(1)∩ 〈A〉−1(0),

where φ〈V 〉t is the flow generated by X〈V 〉. Up to the fact that we may have to increase the value of C > 0
(in a way that depends only on T1, A, V, and a), we can suppose that (21) holds uniformly for every
function 〈a〉 ◦φ〈V 〉t with 0≤ t ≤ T1; i.e., for every t ∈ [0, T1],

c0µ(〈a〉 ◦φ
〈V 〉
t )≥ µ({〈V 〉, 〈a〉} ◦φ〈V 〉t )−CεR.
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This is equivalent to the fact that d
dt

(
e−c0t

∫
R2d 〈a〉 ◦φ

〈V 〉
t dµ

)
≤ CεRe−c0t for every t ∈ [0, T1]. Hence, if

c0 6= 0, one finds that, for every t ∈ [0, T1],∫
R2d
〈a〉 ◦φ〈V 〉t (z)µ(dz)≤ ec0t

∫
R2d
〈a〉(z)µ(dz)+

CεR(etc0 − 1)
c0

. (22)

We now apply this inequality with a = A and integrate over the interval [0, T1]. In that way, we obtain

ε0 <

∫ T1

0

∫
R2d
〈A〉 ◦φ〈V 〉t (z)µ(dz) dt ≤

∫ T1

0

CεR(etc0 − 1)
c0

dt ≤
CεRT1(eT1c0 − 1)

c0
.

Observe that, for c0 = 0, we would get the upper bound CεRT 2
1 . In both cases, this yields the expected

contradiction by taking εR small enough (in a way that depends only on R, A, and V ) and it concludes
the proof of Theorem 3.

Remark 10. Note that we could get the conclusion faster under the stronger geometric assumption

for all z ∈ H−1(1)∩ 〈A〉−1(0), {〈A〉, 〈V 〉}(z) 6= 0, (23)

which implies (but is not equivalent to) the geometric control condition (6) of Theorem 3. Together
with (21), this yields the upper bound

µ(X〈V 〉〈A〉)≤ CεR.

Hence, provided εR > 0 is chosen small enough in a way that depends only on A and V (but not R), we
get a contradiction. This shows that, for a small enough choice of εR > 0, one has in fact βh̄ � δh̄ under
the geometric condition (23).

4. The averaging method

From this point on in the article, we will make the assumption that

δh̄ = h̄.

This will slightly simplify the exposition and it should a priori be possible to extend the results provided
h̄ ≤ δh̄ does not go to 0 too slowly. In this section, we briefly recall how to perform a semiclassical
averaging method in the context of nonselfadjoint operators following [Sjöstrand 2000; Hitrik 2002]. For
that purpose, we define

F̂h̄ := Opwh̄ (F1+ i F2),

where F1 and F2 are two real-valued and smooth functions on R2d that will be determined later on. We
make the assumption that all the derivatives (at every order) of F1 and F2 are bounded. For every t in
[0, 1], we set Fh̄(t) = ei t F̂h̄ . By [Engel and Nagel 2000, Theorem III.1.3], the family Fh̄(t) defines a
strongly continuous group (note that Fh̄ is invertible) on L2(Rd) such that

‖Fh̄(t)‖L(L2) ≤ e|t |‖Opwh̄ (F2)‖L(L2) . (24)
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For simplicity, we shall set Fh̄ = Fh̄(1) and we will study the properties of the conjugated operator

Q̂ h̄ := Fh̄ P̂h̄F−1
h̄

for appropriate choices of F1 and F2. Using the conventions of [Zworski 2012, Chapter 4], symbols of
order m ∈ R are defined by

S(〈z〉m) := {(ah̄)0≤h̄≤1 ∈ C∞(R2d ,C) : for all α ∈ N2d, |∂αa(z)| ≤ Cα〈z〉m},

where 〈z〉 = (1+ ‖z‖2)1/2. We shall denote by 9m
h̄ the set of all operators of the form Opwh̄ (a) with

a ∈ S(〈z〉m).

4.1. Semiclassical conjugation. Writing the Taylor expansion, one knows that, for every a in S(〈z〉m),

Fh̄ Opwh̄ (a)F
−1
h̄ = Opwh̄ (a)+ i[F̂h̄,Opwh̄ (a)] +

∫ 1

0
(1− t)Fh̄(t)[F̂h̄, [F̂h̄,Opwh̄ (a)]]Fh̄(−t) dt. (25)

Observe from the composition rules for semiclassical pseudodifferential operators [Zworski 2012, Chap-
ter 4] that [F̂h̄, [F̂h̄,Opwh̄ (a)]] is an element of h̄29m

h̄ . Moreover, a direct extension of the Egorov theorem
[Zworski 2012, Theorem 11.1] to the nonselfadjoint framework shows that the third term in the right-hand
side is in fact an element of h̄29m

h̄ . Then one can verify from the composition rules for pseudodifferential
operators that

Fh̄ Opwh̄ (a)F
−1
h̄ = Opwh̄ (a)+ h̄ Opwh̄ ({F1, a})+ i h̄ Opwh̄ ({F2, a})+ h̄2 R̂h̄,

where R̂h̄ is an element in 9m
h̄ . Applying this equality to the operator P̂h̄ , one finds

Q̂ h̄ = P̂h̄ + h̄ Opwh̄ ({F1, H})+ i h̄ Opwh̄ ({F2, H})+ h̄2 R̂h̄, (26)

where R̂h̄ is now an element in 92
h̄ . We now aim at choosing F1 and F2 in such a way that

{F1, H}+ V = 〈V 〉 and {F2, H}+ A = 〈A〉. (27)

If we are able to do so, then we will have

Fh̄ P̂h̄F−1
h̄ = Ĥh̄ + h̄ Opwh̄ (〈V 〉)+ i h̄ Opwh̄ (〈A〉)+ h̄2 R̂h̄ . (28)

4.2. Solving cohomological equations. In order to solve cohomological-type equations like (27), we
need to make a few Diophantine restrictions on ω. Let g ∈ C∞(R2d) be any smooth function such that
〈g〉= 0 and all of whose derivatives (at any order) are bounded. We look for another function f ∈ C∞(R2d)

all of whose derivatives (at any order) are bounded and which solves the cohomological equation

{H, f } = g. (29)

We then apply this result with g = V −〈V 〉 (resp. A−〈A〉) in order to find f = F1 (resp. F2).
For any f ∈ C∞(R2d) all of whose derivatives (at any order) are bounded, we can write f ◦8H

τ as a
Fourier series in τ ∈ Td :

f ◦8H
τ (x, ξ)=

∑
k∈Zd

fk(x, ξ)
eik·τ

(2π)d
, fk(x, ξ) :=

∫
Td

f ◦8H
τ (x, ξ)e

−ik·τ dτ. (30)
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Notice that fk ◦8
H
τ = fk eik·τ and that, for τ = 0, we have f = (2π)−d∑

k fk . Recalling (16) and the
definition (8) of 3ω, one has

〈 f 〉 ◦8H
τ (x, ξ)=

∑
k∈Zd

fk(x, ξ)
(

lim
T→+∞

1
T (2π)d

∫ T

0
eik.(τ+tω) dt

)
=

1
(2π)d

∑
k∈3ω

fk(x, ξ)eik·τ .

In particular, as 〈g〉 ◦8H
τ = 0 for every τ ∈ Td, one finds that gk = 0 for every k ∈3ω and thus,

for all τ ∈ Td , g ◦8H
τ (x, ξ)=

1
(2π)d

∑
k∈Zd\3ω

gk(x, ξ)eik·τ .

Observe also that, if f is a solution of (29), then so is f +λ〈 f 〉 for any λ ∈ R, since {H, 〈 f 〉} = 0 thanks
to (16). Thus, we can try to solve the cohomological equation (29) by supposing f ◦8H

τ to be of the form

f ◦8H
τ (x, ξ)=

1
(2π)d

∑
k∈Zd\3ω

fk(x, ξ)eik·τ ,

and writing

{H, f ◦8H
τ } =

d
dt
( f ◦8H

τ+tω)|t=0 =
1

(2π)d
∑

k∈Zd\3ω

ik ·ω fkeik·τ .

Hence, if we set

f ◦8H
τ (x, ξ)=

1
(2π)d

∑
k∈Zd\3ω

1
ik ·ω

gk(x, ξ)eik·τ , (31)

then f will solve (29) (at least formally). It is not difficult to see that, unless we impose some quantitative
restriction on how fast |k · ω|−1 can grow, the solutions given formally by (31) may fail to be even
distributions — see for instance [de la Llave 2001, Exercise 2.16]. On the other hand, if ω is partially
Diophantine, and g ∈ C∞(R2d) has all its derivatives (at any order) bounded and is such that 〈g〉 = 0, then
(31) defines a smooth solution f ∈ C∞(R2d) of (29) all of whose derivatives (at any order) are bounded.
As a special case, we observe that, if ω = (1, . . . , 1), then an explicit solution of (29) is given by

f =−
1

2π

∫ 2π

0

∫ t

0
g ◦φH

s ds dt. (32)

4.3. Proof of Theorem 7. We now turn to the proof of Theorem 7 and, to that aim, we should exploit
the analyticity assumptions on A and V in order to improve the result of Theorem 3 when rh̄ = 0 in (4).
It means that we are not considering anymore quasimodes but true eigenmodes. Hence, from this point
on in the article,

rh̄ = 0.

The point of using analyticity is that the symbolic calculus on the family of spaces As is extremely well
behaved — see the Appendix for a brief review. This will allow us to construct a second normal form for
the operator P̂h̄ via conjugation by a second operator so that the nonselfadjoint part of the operator is
averaged by the two flows φH

t and φ〈V 〉t .
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Recall from (28) that

Fh̄ P̂h̄F−1
h̄ = Ĥh̄ + h̄ Opwh̄ (〈V 〉)+ i h̄ Opwh̄ (〈A〉)+ h̄2 R̂h̄ . (33)

Let us now make a few additional comments using the fact that A and V belong to some space As . First
of all, according to Lemma 8, we know that, as soon as A and V belong to the space As , both 〈A〉 and
〈V 〉 belong5 to the space As . Moreover the functions F1 and F2 used to define Fh̄ are constructed from
A and V using (31). In particular, by (9) and for every 0< σ < ρ, the following inequalities hold:

‖F1‖s ≤ ‖F1‖ρ−σ,s .ρ,s ‖V ‖ρ,s and ‖F2‖s ≤ ‖F2‖ρ−σ,s .ρ,s ‖A‖ρ,s .

We can make use of this regularity information to analyze the regularity of the remainder term R̂h̄

in (33). Recall that part of this term comes from the remainder term when we apply the composition
formula to [Opwh̄ (A),Opwh̄ (Fj )] and to [Opwh̄ (V ),Opwh̄ (Fj )] for j = 1, 2. In that case, Lemma 15 from the
Appendix tells us that the remainder is a pseudodifferential operator whose symbol belongs to As−σ for
every 0< σ < s. There is another contribution coming from the integral term in the Taylor formula (25)
with Opwh̄ (a) replaced by P̂h̄ . For that term, we first make use of Lemma 15 and of the fact that Fj solve
cohomological equations6 (27) in order to verify that the double bracket is a pseudodifferential operator
whose symbol belongs to As−σ for every 0< σ < s. Then, an application of the analytic Egorov lemma
from the Appendix (point (1) of Lemma 11 with G = h̄(F1+ i F2)) shows that this remainder term is still
a pseudodifferential operator whose symbol now belongs to As−σ for every 0<σ < s. To summarize, we
have verified that R̂h̄ =Opwh̄ (Rh̄) with ‖Rh̄‖s−σ ≤Cs,σ,ρ for every 0<σ < s and uniformly for 0< h̄≤ h̄0.

We now perform a second conjugation whose effect will be to replace 〈A〉 in (33) by a term involving V.
Let F3 be some real-valued element in As−σ for some 0< σ < s satisfying 〈F3〉 = F3. We set, for ε > 0
small enough (independent of h̄),

F̃ h̄(t) := e(t/h̄)F̂3,h̄ , t ∈ [−ε, ε],

where F̂3,h̄ = Opwh̄ (〈F3〉). We can define the new conjugate of Ĥh̄ :

F̃ h̄(−ε)Fh̄ P̂h̄F−1
h̄ F̃ h̄(ε)= Ĥh̄ + h̄F̃ h̄(−ε)

(
Opwh̄ (〈V 〉)+ i Opwh̄ (〈A〉)+ h̄ R̂h̄

)
F̃ h̄(ε),

where we used that [Ĥh̄,Opwh̄ (〈F3〉)] = 0. In fact, as H is quadratic in (x, ξ) and as we used the Weyl-
quantization, the fact that H and 〈F3〉 (Poisson-)commute implies that [Ĥh̄,Opwh̄ (〈F3〉)] = 0. Suppose
now that ε‖〈F3〉‖s−σ ≤

1
2σ

2 so that we can use the (analytic) Egorov lemma, Lemma 11, with G = i F3.
This tells us that

F̃ h̄(−ε)R̂h̄F̃ h̄(ε)= Opwh̄ (Rh̄(ε)), (34)

with Rh̄(ε) belonging to As−σ uniformly for h̄ small enough. Using the conventions of the Appendix,
one also has

F̃ h̄(ε)(Opwh̄ (〈V 〉)+ i Opwh̄ (〈A〉))F̃ h̄(−ε)= Opwh̄ (9
i F3,h̄
ε (〈V 〉+ i〈A〉)). (35)

5Recall also that As ⊂ S(1).
6This comment is to handle the contribution coming from Ĥh̄ .
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Consider now a sequence (λh̄ = αh̄ + i h̄βh̄)0<h̄≤1 solving (4) with rh̄ = 0 and βh̄→ β. In particular,
one can find a sequence of normalized eigenvectors (ṽh̄)0<h̄≤1 such that

F̃ h̄(−ε)Fh̄ P̂h̄F−1
h̄ F̃ h̄(ε)ṽh̄ = λh̄ ṽh̄ .

Implementing (34) and (35), one obtains

Im〈Opwh̄ (9
i F3,h̄
ε (〈V 〉+ i〈A〉))ṽh̄, ṽh̄〉+ O(h̄)= 1

h̄
Im〈F̃ h̄(−ε)Fh̄ P̂h̄F−1

h̄ F̃ h̄(ε)ṽh̄, ṽh̄〉 = βh̄ .

From point (3) of Lemma 11, one then finds

βh̄ = 〈Opwh̄ (〈A〉− ε{〈F3〉, 〈V 〉})ṽh̄, ṽh̄〉+ O(ε2)+ O(h̄).

Up to another extraction, we can suppose that the sequence (ṽh̄)h̄>0 has a unique semiclassical measure µ̃
which is still a probability measure carried by H−1(1). Letting h̄→ 0+, one finds

β = µ̃(〈A〉+ ε{〈V 〉, 〈F3〉})+ O(ε2).

Given 0<σ < s, suppose now that we can pick F3 in As−σ such that {〈F3〉, 〈V 〉}<0 on 〈A〉−1(0)∩H−1(1).
Then, one can find some c0 > 0 such that c0ε+ O(ε2)≤ β. In particular, β cannot be taken equal to 0,
which concludes the proof of Theorem 7 except for the proof of the existence of F3.

Let us now show that the geometric control assumption (6) of Theorem 7 implies the existence
of F3. Since 〈A〉 and 〈V 〉 belong to As , Remark 12 from the Appendix and the compactness of the set
H−1(1)∩ 〈A〉−1(0) show that, for every 0< σ < s, there exists some small enough t0 > 0 such that

F3(z) :=
∫ t0

0

(∫ t

0
〈A〉 ◦φ〈V 〉τ (z) dτ

)
dt

belongs to As−σ . One has, for every z ∈ H−1(1)∩ 〈A〉−1(0),

{〈V 〉, F3}(z)=
∫ t0

0
〈A〉 ◦φ〈V 〉t (z) dt.

It remains to verify that this quantity is positive for every z0 in 〈A〉−1(0)∩H−1(1). Still using Remark 12,
one has the analytic expansion

〈A〉 ◦φ〈V 〉t (z)=
∞∑
j=0

t j

j !
Ad j
〈V 〉(〈A〉)(z), (36)

uniformly for t ∈ [−t0, t0] and z ∈ H−1(1). This implies that, if we fix some z0 in H−1(1), then the map
t 7→ 〈A〉 ◦ φ〈V 〉t (z) is analytic on R. Now, given some z0 ∈ 〈A〉−1(0)∩ H−1(1), there exists some z1 in
the orbit of z0 such that 〈A〉(z1) > 0 thanks to our geometric control assumption (6). In particular, the
analytic map t 7→ 〈A〉◦φ〈V 〉t (z0) is nonconstant and there exists some j ≥ 1 such that Ad j

〈V 〉(〈A〉)(z0) 6= 0.
Hence, {〈V 〉, F3}(z0) > 0, which concludes the proof.
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Appendix: Symbolic calculus on the spaces As

We collect some basic lemmas about the quantization of the spaces As . We fix s > 0 throughout this
appendix. Let a, b ∈As . The operator given by the composition Opwh̄ (a)Opwh̄ (b) is another pseudodif-
ferential operator with symbol c given by the Moyal product c = a]h̄b, which can be written by the
following integral formula [Dimassi and Sjöstrand 1999, Chapter 7, p. 79]:

c(z)= a]h̄b(z)=
1

(2π)4d

∫
R4d

â(w∗)b̂(z∗−w∗)e(i h̄/2)ς(w∗,z∗−w∗)ei z∗·z dw∗ dz∗, (37)

where ς(x, ξ, y, η) := ξ · y− x · η is the standard symplectic product and where

â(w) :=
∫

R2d
e−iw·za(z) dz.

We set [a, b]h̄ := a]h̄b− b]h̄a. Given now a,G ∈As , the following conjugation formula holds formally:

ei(t/h̄)Opwh̄ (G) Opwh̄ (a)e
−i(t/h̄)Opwh̄ (G) = Opwh̄ (9

G,h̄
t a),

where

9
G,h̄
t a :=

∞∑
j=0

1
j !

(
i t
h̄

)j

Ad]h̄ , j
G (a), t ∈ R, (38)

and
Ad]h̄ , j

G (a)= [G,Ad]h̄ , j−1
G (a)]h̄, Ad]h̄ ,0

G (a)= a.

One of the aims of this appendix is to prove the following analytic version of Egorov’s theorem:

Lemma 11 (analytic Egorov’s lemma). Let 0< σ < s. Consider the family of Fourier integral operators
{Gh̄(t) : t ∈ R} defined by

Gh̄(t) := e−(i t/h̄)Ĝ h̄ ,

where Ĝ h̄ = Opwh̄ (G) for some G ∈As . Assume

|t |<
σ 2

2‖G‖s
. (39)

Then, there exists a constant Cσ > 0 (depending only on σ ) such that, for every a ∈As ,

(1) 9G,h̄
t a ∈As−σ ;

(2) ‖9G,h̄
t a− a‖s−σ ≤ Cσ |t |‖G‖s‖a‖s ;

(3) ‖9G,h̄
t a− a+ t{G, a}‖s−σ ≤ Cσ |t |2‖G‖s‖a‖s for some Cσ > 0 depending only on σ .

Remark 12. With the hypothesis of Lemma 11, one also has that a ◦φG
t ∈As−σ . To see this, it is enough

to follow verbatim the proof of Lemma 11 noting that Lemma 14 below remains valid for −i h̄{a, b}
instead of [a, b]h̄ and then using the formal expansion

a ◦φG
t =

∞∑
j=0

t
j !

Ad j
G(a),

where Ad j
G(a)= {G,Ad j−1

G (a)} and Ad0
G(a)= a instead of the analogous quantities for 9G,h̄

t a.
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A.1. Preliminary lemmas. Before proceeding to the proof, we start with some preliminary results.

Lemma 13. For every a, b ∈As , the following holds:

‖ab‖s ≤ ‖a‖s‖b‖s .

Proof. To see this, write

‖ab‖s =
∫

R2d
|âb(w)|es|w| dw

=

∫
R2d

∣∣∣∣∫
R2d

â(w−w∗)b̂(w∗) dw∗
∣∣∣∣es|w| dw

≤

∫
R2d

∫
R2d
|â(w−w∗)|es|w−w∗|

|b̂(w∗)|es|w∗| dw∗ dw ≤ ‖a‖s‖b‖s . �

We shall also need some estimates on the Moyal product of elements in As :

Lemma 14. Let a, b ∈As . Then, for every 0< σ1+ σ2 < s, we have [a, b]h̄ ∈As−σ1−σ2 and

‖[a, b]h̄‖s−σ1−σ2 ≤
2h̄

e2σ1(σ1+ σ2)
‖a‖s‖b‖s−σ2 .

Proof. From (37), we have

[a, b]h̄(z)= 2i
∫

R4d
â(w∗)b̂(z∗−w∗) sin

( 1
2 h̄ς(w∗, z∗−w∗)

) ei z∗·z

(2π)4d dw∗ dz∗.

Then, using that
|ς(w∗, z∗−w∗)| ≤ 2|w∗||z∗−w∗|, (40)

we obtain

‖[a, b]h̄‖s−σ1−σ2 ≤
2h̄

(2π)4d

∫
R4d
|â(w∗)||w∗||b̂(z∗−w∗)||z∗−w∗|e(s−σ1−σ2)(|z∗−w∗|+|w∗|) dw∗ dz∗

≤
2h̄

(2π)4d

(
sup
r≥0

re−σ1r)(sup
r≥0

re−(σ1+σ2)r
)
‖a‖s‖b‖s−σ2

≤
2h̄

e2σ1(σ1+ σ2)
‖a‖s‖b‖s−σ2 . �

Finally, one has:

Lemma 15. Let a, b ∈As and 0< σ < s. Then there exists a constant Cσ > 0 depending only on σ such
that ∥∥∥∥ i

h̄
[a, b]h̄ −{a, b}

∥∥∥∥
s−σ
≤ Cσ h̄2

‖a‖s‖b‖s−σ . (41)

Proof. First write

[a, b]h̄(z)+ i h̄{a, b}(z)

= 2i
∫

R4d
â(w∗)b̂(z∗−w∗)

(
sin
( 1

2 h̄ς(w∗, z∗−w∗)
)
−

1
2 h̄ς(w∗, z∗−w∗)

) ei z∗·z

(2π)4d dw∗ dz∗.
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Using (40) and sin(x)= x − 1
2 x2

∫ 1
0 sin(t x)(1− t) dt , we obtain

‖[a, b]h̄ + i h̄{a, b}‖s−σ ≤
h̄3

(2π)4d

∫
R4d
|â(w∗)||w∗|3 |b̂(z∗−w∗)||z∗−w∗|3e(s−σ)(|z

∗
−w∗|+|w∗|) dw∗ dz∗

≤ Cσ h̄3
‖a‖s‖b‖s−σ . �

A.2. Proof of the analytic Egorov lemma. We are now in position to prove Lemma 11. Let us start with
points (1) and (2). By definition (38), we have

‖9
G,h̄
t a− a‖s−σ ≤

∞∑
j=1

1
j !

(
|t |
h̄

)j

‖Ad]h̄ , j
G (a)‖s−σ .

Using Lemma 14, we also find that, for every j ≥ 1,

‖Ad]h̄ , j
G (a)‖s−σ ≤

2h̄ j
e2σ 2 ‖Ad]h̄ , j−1

G (a)‖s−( j−1)σ/j‖G‖s

≤
22h̄2 j3

e4σ 4( j − 1)
‖Ad]h̄ , j−2

G (a)‖s−( j−2)σ/j‖G‖2s

≤ · · · ≤
2 j h̄ j j2 j

e2 jσ 2 j j !
‖a‖s‖G‖ j

s .

Then, using Stirling’s formula and as 2|t |‖G‖s/σ 2 < 1, one gets

‖9
G,h̄
t a− a‖s−σ ≤

∞∑
j=1

j2 j
|t | j‖G‖ j

s

( j !)2(eσ)2 j ‖a‖s ≤ Cσ |t |‖G‖s‖a‖s (42)

for some constant Cσ > 0 depending only on σ . In order to prove point (3), we now write

‖9
G,h̄
t a− a+ t{G, a}‖s−σ ≤ |t |

∥∥∥∥ i
h̄
[G, a]h̄ −{G, a}

∥∥∥∥
s−σ
+

∞∑
j=2

1
j !

(
|t |
h̄

)j

‖Ad]h̄ , j
G (a)‖s−σ .

We can now reproduce the above argument and combining this bound with Lemma 15, we can deduce
point (3) of Lemma 11.
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ON THE SOLUTION OF LAPLACE’S EQUATION
IN THE VICINITY OF TRIPLE JUNCTIONS

JEREMY HOSKINS AND MANAS RACHH

We characterize the behavior of solutions to systems of boundary integral equations associated with
Laplace transmission problems in composite media consisting of regions with polygonal boundaries. In
particular we consider triple junctions, i.e., points at which three distinct media meet. We show that,
under suitable conditions, solutions to the boundary integral equations in the vicinity of a triple junction
are well-approximated by linear combinations of functions of the form tβ , where t is the distance of the
point from the junction and the powers β depend only on the material properties of the media and the
angles at which their boundaries meet. Moreover, we use this analysis to design efficient discretizations
of boundary integral equations for Laplace transmission problems in regions with triple junctions and
demonstrate the accuracy and efficiency of this algorithm with a number of examples.

1. Introduction

Composite media, i.e., media consisting of multiple materials in close proximity or contact, are both
ubiquitous in nature and fascinating in applications since their macroscopic properties can be substantially
different than those of their components. One property of particular interest is the electrostatic response
of composite media, typically the electric potential in the medium which is produced by an externally
applied time-independent electric field. In such situations one often assumes that the associated electric
potential satisfies Laplace’s equation in the interior of each medium and that along each edge where two
media meet one prescribes the jump in the normal derivative of the potential. Typically the potentials in
these jump relations appear multiplied by coefficients depending on the electric permittivity. This leads
to a collection of coupled partial differential equations (PDEs). In addition to classical electrostatics
problems, the same equations also arise in, among other things, percolation theory, homogenization theory,
and the study of field enhancements in vacuum insulators; see, for example, [Lee 2008; Fredkin and
Mayergoyz 2003; Milton 2002; Tully et al. 2007; Tuncer et al. 2002; Fel et al. 2000; Ovchinnikov 2004].

Using classical potential theory this set of partial differential equations (PDEs) can be reduced to
a system of second-kind boundary integral equations (BIEs). In particular, the solution to the PDE in
each region is represented as a linear combination of a single-layer and a double-layer potential on the
boundary of each subregion. If the edges of the media are smooth then the corresponding kernels in the
integral equation are as well. Near corners, however, the solutions to both the differential equations and
the integral equations can develop singularities.

Analytically, the behavior of solutions to both the PDEs and BIEs has been the subject of extensive
analysis; see, for example [Craster and Obnosov 2004; Keller 1987; Helsing 1991; Chung et al. 2005;

MSC2010: 31A10, 35Q60, 45L05, 65E05, 65R20.
Keywords: boundary integral equations, multiple junction interfaces, corners, singular solutions, potential theory.

447

http://msp.org/paa/
https://doi.org/10.2140/paa.2020.2-2
http://https://doi.org/10.2140/paa.2020.2.447
http://msp.org


448 JEREMY HOSKINS AND MANAS RACHH

Schächter 1998; Berggren et al. 2001; Techaumnat et al. 2002; Afanas’ev et al. 2004; Greengard and Lee
2012; Claeys et al. 2015]. In particular, the existence and uniqueness of solutions in an L2-sense is well
known, under certain natural assumptions on the material properties [Claeys et al. 2017; McLean 2000].
Moreover, the asymptotic form of the singularities in the vicinity of a junction has been determined for
the solutions of both the PDE and its corresponding BIE [Chung et al. 2005; Schächter 1998; Craster and
Obnosov 2004; Milton et al. 1981; Helsing 2011].

Computationally the singular nature of the solutions poses significant challenges for many existing
numerical methods for solving both the PDEs and BIEs. Typical approaches involve introducing many
additional degrees of freedom near the junctions which can impede the speed of the solver and impose
prohibitive limits on the size and complexity of geometries which can be considered. Recursive compressed
inverse preconditioning (RCIP) is one way of circumventing the difficulty introduced by the presence of
junctions in the BIE formulation [Helsing 2013]. In this approach, the extra degrees of freedom introduced
by the refinement near the junctions are eliminated from the linear system. Moreover, the compression
and refinement are performed concomitantly for multiple junctions in parallel. This approach gives an
algorithm which scales linearly in the number of degrees of freedom added to resolve the singularities
near the junction. The resulting linear system has essentially the same number of degrees of freedom as it
would if the junctions were absent.

In this paper we restrict our attention to the case of triple junctions, extending the existing analysis by
showing that under suitable restrictions the solution to the BIEs can be well-approximated in the vicinity
of a triple junction by a linear combination of tβ j, where t is the distance from the triple junction and the
β j ’s are a countable collection of real numbers defined implicitly by an equation depending only on the
angles at which the interfaces meet and the material properties of the corresponding media. This analysis
enables the construction of an efficient computational algorithm for solving Laplace’s equation in regions
with multiple junctions. In particular, using this representation we construct an accurate and efficient
quadrature scheme for the BIE which requires no refinement near the junction. The properties of this
discretization are illustrated with a number of numerical examples.

This paper is organized as follows. In Section 2 we state the boundary value problem for the Laplace
triple junction transmission problem, summarize relevant properties of layer potentials, and describe the
reduction of the boundary value problem to a system of boundary integral equations. In Section 3 we
present the main theoretical results of this work, the proofs of which are given in Appendices A and B. In
Section 4 we discuss two conjectures extending the results of Section 3 based on extensive numerical
evidence. In Section 5, we describe a Nyström discretization which exploits explicit knowledge of the
structure of solutions to the integral equations in the vicinity of triple junctions, and in Section 6 we
demonstrate its effectiveness of numerical solvers. Finally, in Section 7 we summarize the results and
outline directions for future research.

2. Boundary value problem

Consider a composite medium consisting of a set of n polygonal domains �1, . . . , �n (see Figure 1)
with boundaries consisting of m edges 01, . . . , 0m and k vertices v1, . . . , vk . For a given edge 0i let L i
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Figure 1. Example of a composite region.

denote its length, ni its normal, `(i), r(i) the polygons to the left and right, respectively, and let γi be an
arc length parametrization of 0i . Finally we denote the union of the regions �1, . . . , �n by � and denote
the complement of � by �0.

Given positive constants µ1, . . . , µn and ν1, . . . , νn we consider the boundary value problem

1ui = 0 x ∈�i , i = 0, 1, 2, . . . , n,

µ`(i)u`(i)−µr(i)ur(i) = fi , x ∈ 0i , i = 1, . . . ,m,

ν`(i)
∂u`(i)
∂ni
− νr(i)

∂ur(i)

∂ni
= gi , x ∈ 0i , i = 1, . . . ,m,

lim
|r |→∞

(r log(r)u′0(r)− u0(r))= 0,

(1)

where fi and gi are analytic functions on 0i , i = 1, . . . ,m, and `(i), r(i) denote the regions on the left
and right with respect to the normal of edge 0i .

Remark 2.1. In this work we assume that all the normals n1, . . . , nm to 01, . . . , 0m are positively
oriented with respect to the parametrization γi (t) of the edge 0i . Specifically, if 0i is a line segment
between vertices v`, vr , and γi (t) : [0, L i ] → 0i is a parametrization of 0i , given by

γi (t)= v`+ t
vr − v`

‖vr − v`‖
, (2)

then the normal on edge 0i is given by

ni =
(vr − v`)

⊥

‖vr − v`‖
, (3)

where for a point x = (x1, x2) ∈ R2, we have x⊥ = (x2,−x1).

Remark 2.2. The existence and uniqueness of solutions to (1) is a classical result [McLean 2000].

Remark 2.3. In this paper we assume that no more than three edges meet at each vertex. Similar analysis
holds for domains with higher-order junctions and will be published at a later date.

Remark 2.4. Here we assume that µ1, . . . , µn , and ν1, . . . , νn are positive constants. In principle the
analysis presented here extends to the case where the constants are negative or complex provided the
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constants (µ jνi +µiν j )/(µ jνi −µiν j ) across each edge are outside the closure of the essential spectrum
of the double-layer potential defined on the boundary, and the underlying differential equation admits a
unique solution. Note that for nonnegative coefficients this is always true, since these constants are all of
magnitude greater than 1, and the spectral radius of the double-layer potential is bounded by 1.

2A. Layer potentials. Before reducing the boundary value problem (1) to a boundary integral equation
we first introduce the layer potential operators and summarize their relevant properties.

Definition 2.5. Given a density σ defined on 0i , i = 1, . . . ,m, the single-layer potential is defined by

S0i [σ ]( y)=−
1

2π

∫
0i

log ‖x− y‖σ(x) d Sx, (4)

and the double-layer potential is defined via the formula

D0i [σ ]( y)=
1

2π

∫
0i

n(x) · ( y− x)
‖x− y‖2

σ(x) d Sx . (5)

Remark 2.6. In light of the previous definition, evidently the adjoint of the double-layer potential is
given by the formula

D∗0i
[σ ]( y)=

1
2π

∫
0i

n( y) · (x− y)
‖x− y‖2

σ(x) d Sx . (6)

Definition 2.7. For x ∈ 0 we define the kernel K (x, y) by

K (x, y)=
1

2π
n(x) · ( y− x)
‖x− y‖2

. (7)

The following theorems describe the limiting values of the single- and double-layer potential on the
boundary 0i .

Theorem 2.8. Suppose that x0 is a point in the interior of the segment 0i . Suppose the point x approaches
a point x0 along a path such that

−1+α <
x− x0

‖x− x0‖
· γ ′i (t0) < 1−α (8)

for some α > 0. If (x− x0) · ni < 0, we will refer to this limit as x→ x−0 , and if (x− x0) · ni > 0, we will
refer to this limit as x→ x+0 .

Then

lim
x→x±0

S0i [σ ](x)= S0i [σ ](x0), (9)

lim
x→x±0

D0i [ρ](x)= p.v.D0i [ρ](x0)∓
ρ(x0)

2
, (10)

lim
x→x±0

ni · ∇S0i [ρ](x)= p.v.D∗0i
[ρ](x0)±

ρ(x0)

2
, (11)

where p.v. refers to the fact that the principal value of the integral should be taken.
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Moreover, both the limits

lim
x→x±0

ni · ∇D0i [ρ](x) (12)

exist and are equal.

Remark 2.9. In the following we will suppress the p.v. from expressions involving layer potentials
evaluated at a point on the boundary. Unless otherwise stated, in such cases the principal value should
always be taken.

2B. Integral representation. In classical potential theory the boundary value problem (1) is reduced to
a boundary integral equation for a new collection of unknowns ρi , σi ∈ L2(0i ), i = 1, . . . ,m, related to
ui :�i → R, i = 1, . . . , n, in the following manner:

ui (x)=
1
µi

m∑
j=1

S0 j [ρ j ](x)+
1
νi

m∑
j=1

D0 j [σ j ](x), x ∈�i . (13)

We note that by construction ui is harmonic in �i , i = 0, 1, . . . , n. Enforcing the jump conditions across
the edges and applying Theorem 2.8 yields the following system of integral equations for the unknown
densities ρi and σi for i = 1, . . . ,m:

−
1
2σi +

µr(i)ν`(i)−µ`(i)νr(i)

µr(i)ν`(i)+µ`(i)νr(i)

m∑
`=1

D0`[σ`] =
ν`(i)νr(i) fi

µr(i)ν`(i)+µ`(i)νr(i)
, (14)

−
1
2ρi +

µr(i)ν`(i)−µ`(i)νr(i)

µr(i)ν`(i)+µ`(i)νr(i)

m∑
`=1

D∗0`[ρ`] = −
µ`(i)µr(i)gi

µr(i)ν`(i)+µ`(i)νr(i)
. (15)

We note that the preceding representation has several advantages. Firstly, the kernels of integral
equations (14) and (15) are smooth except at the vertices. In particular, the weakly singular terms arising
from the single-layer potential and the hypersingular terms arising from the derivative of the double-layer
potential are absent. Secondly, the equations for the single-layer density ρ and the double-layer density σ
are completely decoupled and can be analyzed separately. Moreover, (15) is the adjoint of (14) and hence
the structure of solutions to (15) can be inferred from the behavior of solutions to (14).

Remark 2.10. The above representation also appears in [Helsing 2011] and is related to the work
in [Greengard and Lee 2012]. It has been shown in [Claeys et al. 2017] that the boundary integral
equations (14) and (15) are well-posed for fi , gi ∈ L2

[0i ].

2C. The single-vertex problem. The following lemma reduces the problem of analyzing the behavior of
the densities ρ and σ in the vicinity of a triple junction with locally analytic data to the analysis of an
integral equation on a set of three intersecting line segments.

Lemma 2.11. Let σ, ρ satisfy the boundary integral equation (14) and (15), respectively. Consider three
edges 0i , 0 j , and 0k meeting at a vertex vp. If xp denotes the coordinates of the vertex vm then there
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0(2,3)
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Figure 2. Geometry near a triple junction.

exists an r > 0 such that∫
0\Br (xp)

K (x, y)σ (x) d Sx and
∫
0\Br (xp)

K ( y, x)ρ(x) d Sx (16)

are analytic functions of y for all y ∈ Br (xp). Here Br (xp) denotes the ball of radius r centered at xp.

Remark 2.12. We note that by choosing r sufficiently small we can assume that the intersection of all
three-edges with Br (xp) are of length r . Moreover, since Laplace’s equation is invariant under scalings,
the subproblem associated with the corner can be mapped to an integral equation on three intersecting
edges of unit length.

In light of the preceding remark, in the remainder of this paper we restrict our attention to the geometry
shown in Figure 2.

The following notation will be used in our analysis of triple junctions.

Remark 2.13. Suppose that 0(`,m) and 0(`′,m′) are two (possibly identical) edges of a triple junction in
which all edges are of length 1. For (`,m) and (`′,m′) in {(1, 2), (2, 3), (3, 1)} and t ∈ (0, 1) let

D(`,m);(`′,m′)[σ ](t)= p.v.D0(`,m)[σ ]
∣∣
0(`′,m′)

, (17)

D∗(`,m);(`′,m′)[ρ](t)= p.v.D∗0(`,m)[ρ]
∣∣
0(`′,m′)

(18)

for any σ, ρ ∈ L2(0(3,1)∪0(1,2)∪0(2,3)). Note that if (`,m)= (`′,m′) then both quantities are identically
zero for any σ and ρ. If (`,m) 6= (`′,m′) then the principal value is not required.

Finally, in the following we will also denote the restrictions of σ and ρ to an edge 0(`,m) by σ(`,m) and
ρ(`,m), respectively.

3. Main results

In this section we state several theorems which characterize the behavior of the solutions σ, ρ to (14)
and (15) for the single-vertex problem with piecewise smooth boundary data f and g. Before doing so
we first introduce some convenient notation. To that end, let 0(1,2), 0(2,3) and 0(3,1) be three edges of
unit length meeting at a vertex as in Figure 2. Let θ1, θ2, and θ3 be the angles at which they meet and
suppose that 0< θ1, θ2, θ3 < 2π are real numbers summing to 2π . Let �1 denote the region bordered by
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0(3,1) and 0(1,2), �2 denote the region bordered by 0(1,2) and 0(2,3), and �3 denote the region bordered
by 0(2,3) and 0(3,1). Finally, let µi and νi be the parameters corresponding to �i , i = 1, 2, 3, and define
the constants d(1,2), d(2,3) and d(3,1) by

d(1,2) =
µ1ν2−µ2ν1

µ1ν2+µ2ν1
, d(2,3) =

µ2ν3−µ3ν2

µ2ν3+µ3ν2
, d(3,1) =

µ3ν1−µ1ν3

µ3ν1+µ1ν3
. (19)

Remark 3.1. We note the following properties of d(3,1), d(1,2), d(2,3) which, for notational convenience,
we will denote by a, b, and c, respectively. Firstly, since µi , νi are positive real numbers, it follows that
a, b, c ∈ (−1, 1). Secondly, a simple calculation shows that c =−(a+ b)/(1+ ab). Thus, at each triple
junction, there are two parameters (a, b) which encapsulate the relevant information regarding material
properties at that junction. For the rest of the paper, in a slight abuse of notation, we will refer to (a, b)
as the material parameters.

Next we define several quantities which will be used in the statement of the main results. Let J denote
the set of indices {(1, 2), (2, 3), (3, 1)} and X = L2(0(1,2))⊗L2(0(2,3))⊗L2(0(3,1)). Let Kdir : X→ X and
Kneu : X→ X denote the bounded operators in (14) and (15) respectively. For any operator A : X→ X ,
h ∈ X , and (i, j) ∈ J, we denote the restriction of A[h] to the edge 0(i, j) by A[h](i, j). For example,
given h(t)= [h(1,2)(t), h(2,3)(t), h(3,1)(t)]T ∈ X , and (i, j) ∈ J,

Kdir[h](i, j) =−
1
2 h(i, j)+ d(i, j)

∑
(`,m)∈J

D(`,m);(i, j)[h(`,m)], (20)

where the operators D(`,m);(i, j) are defined in (17).
We are interested in the following two problems:

(1) For what collection of h ∈ X are Kdir[h] and Kneu[h] piecewise smooth functions on each of the
edges 0(i, j), (i, j) ∈ J ?

(2) Given h(i, j) ∈ PN , a polynomial of degree at most N, construct an explicit basis for K−1
dir [h] and

K−1
neu[h].

In Section 3A, we address these questions for Kdir, while in Section 3B we present analogous results
for Kneu.

3A. Analysis of Kdir. Suppose that h(t) = [h(1,2)(t), h(2,3)(t), h(3,1)(t)]T = vtβ , where t denotes the
distance along the edge 0(i, j) from the triple junction, and v ∈ R3 and β ∈ R are constants.

In the following theorem, we derive necessary conditions on β, v such that Kdir[h](i, j) is a smooth
function on each edge 0(i, j), (i, j) ∈ J.

Theorem 3.2. Let Adir(a, b, β) ∈ R3×3 denote the matrix given by

Adir(a, b, β)

=

 sin (πβ) b sinβ(π − θ2) −b sinβ(π − θ1)

(a+ b)/(1+ ab) sinβ(π − θ2) sin (πβ) −(a+ b)/(1+ ab) sinβ(π − θ3)

a sinπβ(1− θ1) −a sinπβ(1− θ3) sin (πβ)

 . (21)
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Suppose that β is a positive real number such that detAdir(d(3,1), d(1,2), β)= 0 and that v is a null vector
of Adir(d(3,1), d(1,2), β). Let h(t) = vtβ , 0 < t < 1. Then Kdir[h](i, j) is an analytic function of t , for
0< t < 1, on each of the edges 0(i, j), (i, j) ∈ J.

The above theorem guarantees that for appropriately chosen densities h ∈ X , the potential Kdir[h] is
an analytic function on each of the edges.

We now consider the construction of a basis for K−1
dir [h], when h(i, j) ∈ PN , (i, j) ∈ J, for some N > 0.

In order to prove this result, we require a collection of β, v satisfying the conditions of Theorem 3.2.
The following lemma states the existence of a countable collection of β, v which are analytic on a subset
of (−1, 1)2.

Lemma 3.3. Suppose that θ1, θ2, θ3 are irrational numbers summing to 2π , and (a, b) ∈ (−1, 1)2. Then
there exists a countable collection of open subsets of (−1, 1)2, denoted by Si, j , as well as a corresponding
set of functions βi, j : Si, j → R, i = 0, 1, 2, . . . , j = 0, 1, 2, such that detAdir(a, b, βi, j ) = 0 for all
(a, b) ∈ Si, j . The corresponding null vectors vi, j : Si, j→R3 of Adir(a, b, βi, j ) are also analytic functions.
Finally, for any N > 0, we have

∣∣⋂N
i=0

⋂2
j=0 Si, j

∣∣> 0.

In the following theorem, we present the main result of this section, which gives a basis for K−1
dir [h].

Theorem 3.4. Consider the same geometry as in Figure 2, where θ1, θ2, and θ3 sum to 2π and θ1/π ,
θ2/π , and θ3/π are irrational. Let βi, j , vi, j , Si, j , i = 0, 1, 2, . . . , j = 0, 1, 2, be as defined in Lemma 3.3,
and for any positive integer N, let SN denote the region of common analyticity of βi, j , vi, j , i.e., SN =⋂N

i=0
⋂2

j=0 Si, j . Finally, suppose that hk
(i, j), (i, j) ∈ J, k = 0, 1, 2, . . . N, are real constants, and define

h(i, j) by

h(i, j)(t)=
N∑

k=0

hk
(i, j)t

k, (22)

0 < t <1. Then there exists an open region S̃N ⊂ SN ⊂ (−1, 1)2 with |S̃N | > 0 such that the following
holds. For all (a, b) ∈ S̃N , there exist constants pi, j , i = 0, 1, . . . N, j = 0, 1, 2, such that

σ =

σ1,2(t)
σ2,3(t)
σ3,1(t)

= N∑
i=0

2∑
j=0

pi, jvi, j tβi, j (23)

satisfies

max
(i, j)∈J

|h(i, j)−Kdir[σ ](i, j)| ≤ Ct N+1 (24)

for 0< t < 1, where C is a constant.

3B. Analysis of Kneu. Suppose that h(t)= [h(1,2)(t), h(2,3)(t), h(3,1)(t)]T =wtβ−1, where t denotes the
distance on the edge 0(i, j) from the triple junction, and w ∈ R3 and β are constants. In the following
theorem, we discuss necessary conditions on β,w guaranteeing that Kneu[h](i, j) is a smooth function on
each edge 0(i, j), (i, j) ∈ J.
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Theorem 3.5. Let Aneu(a, b, β) ∈ R3×3 denote the matrix given by

Aneu(a,b,β)=

 sin(πβ) −b sinβ(π−θ2) b sinβ(π−θ1)

−(a+b)/(1+ab)sinβ(π−θ2) sin(πβ) (a+b)/(1+ab)sinβ(π−θ3)

−a sinβ(π−θ1) a sinπβ(1−θ3) sin(πβ)

 . (25)

Suppose that β is a positive real number such that detAneu(d(3,1), d(1,2), β) = 0 and let w denote a
corresponding null vector of Aneu(d(3,1), d(1,2), β). Let h = wtβ−1, 0 < t < 1. Then Kneu[h](i, j) is an
analytic function of t , for 0< t < 1, on each of the edges 0(i, j), (i, j) ∈ J.

Before proceeding a few remarks are in order.

Remark 3.6. We note that detAdir(a, b, β)= detAneu(a, b, β). Thus, the existence of β,w which satisfy
the conditions of Theorem 3.5 is guaranteed by Lemma 3.3.

Remark 3.7. For a given β, if there exists a v ∈ R3 such that Kdir[vtβ] is piecewise smooth then there
also exists a vector w ∈ R3 such that Kneu[wtβ−1

] is also a smooth function. However, the requirement
that wtβ−1

∈ X implies that, for Kneu, only β’s which satisfy β > 1
2 are admissible.

For Kdir, note that β0, j = 0 for j = 0, 1, 2 (see the proof of Lemma 3.3 contained in Appendix A.1).
These densities are essential for the proof of Theorem 3.4, since these are the only basis functions for
which the projection of their image under Kdir onto the constant functions are nonzero.

However, since β0, j 6>
1
2 , the densities w0, j tβ0, j−1 are excluded from the representation for the solution

to the equation Kneu[σ ] = h. Note that, unlike Kdir[vi, j tβi, j ], Kneu[wi, j tβi, j−1
], i = 1, 2, . . . , j = 0, 1, 2,

have a nonzero projection onto the constants (see Lemma B.2).

The following theorem is a converse of Theorem 3.5 under suitable restrictions.

Theorem 3.8. Consider the same geometry as in Figure 2, where θ1, θ2, and θ3 are irrational numbers
summing to 2. Let βi, j ,wi, j , Si, j , i = 0, 1, 2, . . . , j = 0, 1, 2, be as defined in Lemma 3.3. Let Ti, j

denote the open subset of (−1, 1)2 on which βi, j and wi, j are analytic and βi, j >
1
2 . For any positive

integer N, let Sneu
N denote the region of common analyticity of βi, j ,wi, j ; i.e., Sneu

N =
⋂N+1

i=1
⋂2

j=0 Ti, j .
Finally, suppose that hk

(i, j), (i, j) ∈ J, k = 0, 1, 2, . . . N, are real constants, and define h(i, j) by

h(i, j)(t)=
N∑

k=0

hk
(i, j)t

k, (26)

0< t < 1.
Then there exists an open region S̃neu

N ⊂ Sneu
N ⊂ (−1, 1)2 with |S̃neu

N |> 0 such that the following holds.
For all (a, b) ∈ S̃neu

N , there exist constants pi, j , i = 1, 2, . . . N + 1, j = 0, 1, 2, such that

σ =

σ1,2(t)
σ2,3(t)
σ3,1(t)

= N+1∑
i=1

2∑
j=0

pi, jwi, j tβi, j−1 (27)

satisfies
max
(i, j)∈J

|h(i, j)−Kneu[σ ](i, j)| ≤ Ct N+1 (28)

for 0< t < 1, where C is a constant.
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4. Conjectures

There are four independent parameters that completely describe the triple junction problem, any two
out of the three angles {θ1, θ2, θ3}, and any two of the parameters {d(1,2), d(2,3), d(3,1)} = {b, c, a}. Let
Y ⊂ R4 denote the subset of R4 associated with the four free parameters that completely describe any
triple junction given by

Y = {(θ1, θ2, a, b) : 0< θ1, θ2 < 2π, θ1+ θ2 < 2π, −1< a, b < 1}. (29)

When θ1, θ2, are irrational multiples of π , and (a, b) are in the neighborhoods of a = 0, b= 0, and c= 0,
Theorems 3.4 and 3.8 construct an explicit basis of nonsmooth functions for the solutions of Kdir[σ ] = h
and Kneu[σ ] = h and show that this basis maps onto the space of boundary data given by piecewise
polynomials on each of the edges meeting at the triple junction. However, extensive numerical studies
suggest that both of these results can be improved significantly. In particular, we believe that this analysis
extends to all (θ1, θ2, a, b)∈ Y, except for a set of measure zero. Moreover, on the measure-zero set where
this basis is not sufficient, we expect the solution to have additional logarithmic singularities; including
functions of the form tβ log (t)v should be sufficient to fix the deficiency of the basis. We expect the
analysis to be similar in spirit to the analysis carried out for the solution of Dirichlet and Neumann
problems for Laplace’s equations on vicinity of corners; see [Serkh and Rokhlin 2016; Serkh 2019].

In this section, we present a few open questions for further extending Theorems 3.4 and 3.8, and
present numerical evidence to support these conjectures.

4A. Existence of βi, j . The solutions βi, j , i = 0, 1, 2, . . . , j = 0, 1, 2, are constructed as the im-
plicit solutions of detAdir(a, b, β) = 0 (recall that detAdir(a, b, β) = detAneu(a, b, β)). Note that
detAdir(a, b, β)= sin (πβ) ·α(a, b, c;β), where α is as defined in (52). From this, it follows that βi,0= i
always satisfies detAdir(a, b, β)= 0 for all θ1, θ2, and that β0, j = 0 results in three linearly independent
basis functions of the form tβv since Adir(a, b, 0)= 0.

The remaining βi, j , i=1, 2, . . . , j=1, 2, are constructed in the following manner. α(a, b, c;β) simpli-
fies significantly along a= 0, b= 0, and c= 0, and the existence of βi, j which satisfy detAdir(a, b, β)= 0
is guaranteed based on the explicit construction detailed in [Hoskins 2018]. The construction then uses
the implicit function theorem to extend the existence of βi, j to a subset of (a, b) ∈ (−1, 1)2. The implicit
function theorem is a local result and only guarantees existence in local neighborhoods of the initial
points. However, extensive numerical evidence suggests that the βi, j are well-defined and analytic for all
(a, b) ∈ (−1, 1)2 and all θ1, θ2. In Figure 3, we plot a few of these functions to illustrate this result.

Conjecture 4.1. There exists a countable collection of βi, j , i = 1, 2, . . . , j = 1, 2, which satisfy
α(a, b, c;βi, j )= 0. Moreover, these βi, j are analytic functions of θ1, θ2, a, and b for all (θ1, θ2, a, b)∈ Y.

An alternate strategy for proving this result is by making the following observation. For fixed θ1, θ2,
consider the curve γm : (m,m+ 1)→ R3 defined by

γm(β) :=
1

sin (πβ)
(sinβ(π − θ2), sinβ(π − θ3), sinβ(π − θ1)), (30)
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b
b

a

Figure 3. Plots for β(a, b) which satisfy detAdir(a, b, β)= 0 at a triple junction with
angles θ1=π/

√
2, θ2=π/

√
3, with β(0, 0)=4 for the figure on the left, and β(0, 0)=10

for figure on the right. In both of the figures, the solid black lines indicate sections of the
conjectured measure-zero set S defined in Conjecture 4.2.

where m is an integer. This defines a curve in R3 for which |γm | →∞ for each m. Then consider the
family of hyperboloids parametrized by (a, b) given by

H(x, y, z; a, b) := −
b(a+ b)
1+ ab

x2
−

a(a+ b)
1+ ab

y2
+ abz2

+ 1= 0. (31)

It follows immediately that the solutions to α(a, b, c;β)= 0 can be characterized geometrically as points
in the intersection of the hyperboloid H(x, y, z; a, b) with the curve γm .

4B. Completeness of the singular basis. Having identified the βi, j and the corresponding null vectors vi, j

for Adir and wi, j for Aneu, the second part of the proof shows that every set of boundary data which
is a polynomial of degree less than or equal to N on each of the edges has a solution to the integral
equations (14) and (15) in the vi, j tβi, j basis for Kdir and wi, j tβi, j−1 for Kneu which agrees with the
boundary data with error O(t N+1).

This part of the proof relies on constructing an explicit mapping from the coefficients of the density σ
in the vi, j tβi, j to the coefficients of Taylor expansions for Kdir[σ ]. Then, along a = 0, b = 0, or c = 0,
based on the results in [Hoskins 2018], we show that this mapping is invertible along these edges. It then
follows from the continuity of determinants that the mapping is invertible for open neighborhoods of
the line segments a = 0, b = 0, c = 0. This implies that in the basis vi, j tβi, j there exists a σ such that
|Kdir[σ ] − h| ≤ O(t N+1) for all boundary data f in the space of polynomials with degree less than or
equal to N.

While we prove this result for an open neighborhood (a, b) of the line segments a = 0, b = 0, c = 0,
when the angles θ1, θ2 are irrational multiples of π , we expect the bases to have this property for all
(θ1, θ2, a, b) ∈ Y except for a measure-zero set. Moreover, this measure-zero set is the set of (θ1, θ2, a, b)
for which the multiplicity of βi, j as a repeated root of detAdir(a, b, βi, j ) = 0 is not the same as the
dimension of the null space of Adir(a, b, βi, j ).
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Conjecture 4.2. Suppose that Conjecture 4.1 holds; i.e., βi, j : Y → R are analytic functions. Suppose
further that hk

(i, j), (i, j) ∈ J, k = 0, 1, 2, . . . N, are real constants, and suppose that

h(i, j)(t)=
N∑

k=0

hk
(i, j)t

k, (32)

0< t < 1. Then there exists a measure-zero set S such that for all (θ1, θ2, a, b) ∈ Y \ S the following result
holds. There exist constants pi, j , i = 0, 1, . . . N, j = 0, 1, 2, such that

σ =

σ1,2(t)
σ2,3(t)
σ3,1(t)

= N∑
i=0

2∑
j=0

pi, jvi, j tβi, j (33)

satisfies

max
(i, j)∈J

|h(i, j)−Kdir[σ ](i, j)| ≤ Ct N+1 (34)

for 0< t < 1, where C is a constant.

In Figure 3, we plot sections of the zero measure set on which Conjecture 4.2 does not hold.

5. Discretization of (14) and (15)

In this section we discuss a numerical method for solving (14) and (15) for the unknown densities σ, ρ
which exploits the analysis of their behavior in the vicinity of triple junctions. There are two general
approaches for discretizing these integral equations: Galerkin methods, in which the densities ρ and σ are
represented directly in terms of appropriate basis functions, and Nyström methods, where the solution is
represented in terms of its values at specially chosen discretization nodes. In this paper, we use a Nyström
discretization for solving (14), though we note that the expansions in Theorems 3.4 and 3.8 can also be
used to construct efficient Galerkin discretizations.

In [Bremer et al. 2010], the authors developed a Nyström discretization for resolving the singular
behavior of solutions to integral equations in the vicinity of corners. In this approach, the authors obtain a
basis of solutions to the integral equation in the vicinity of the corner by solving a small number of local
problems. Based on these families of solutions, discretization nodes capable of interpolating the span of
these solutions, coupled with quadratures for handling far-field interactions (inner products of the basis of
solutions with smooth functions), and special quadratures for handling near interactions (for resolving the
near-singular behavior of the kernel in the vicinity of the corner) are developed. This approach was later
specialized for the solution of Laplace’s equation on polygonal domains to obtain universal discretization
nodes, and quadrature rules [Bremer and Rokhlin 2010].

Recent advances in the analysis of integral equations for Laplace’s equation have provided analytic
representations of solutions to integral equations in the vicinity of the corners [Serkh and Rokhlin 2016;
Serkh 2019], obviating the need for obtaining the span of solutions in the vicinity of corners through
numerical means. Based on the approach above, these analytical results have been exploited to construct
universal discretization and quadratures for solutions in vicinity of corners [Hoskins et al. 2017]. Below
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we briefly discuss the construction of the Nyström discretization in [Hoskins et al. 2017]. Let F denote
the family of functions

F =
{
tβ for all β ∈ {0} ∪

[ 1
2 , 50

]
, 0< t < 1

}
. (35)

Then there exist t j ∈ [0, 1], w j > 0, an orthogonal basis φ j (t), j = 1, 2, . . . , kAB = 36, and a kAB× kAB

matrix V whose condition number is O(1), with the following features. For any f ∈ F, there exists c j

such that ∣∣∣∣ f (t)−
kAB∑
j=1

c jφ j (t)
∣∣∣∣
L2[0,1]

< ε. (36)

Let f j = f (t j )
√
w j denote the samples of the function at the discretization nodes scaled by the square

root of the quadrature weights. The matrix V maps f j to its coefficients c j in the φ j basis. Finally the
weights w j are such that∣∣∣∣∫ 1

0
f (t) dt −

kAB∑
j=1

f j
√
w j

∣∣∣∣= ∣∣∣∣∫ 1

0
f (t) dt −

kAB∑
j=1

f (t j )w j

∣∣∣∣≤ ε. (37)

Specialized quadrature rules for handling the near-singular interaction between corner panels which
meet at the same vertex are also constructed. The Dirichlet problem for Laplace’s equation can then be
discretized using panels with scaled Gauss–Legendre nodes for panels which are away from corners, and
using scaled nodes t j for panels at corners.

In the vicinity of triple junctions, the behavior of the solution σ of (14) can be represented to high-order
as a linear combination of functions in F. Thus the discretization for the Dirichlet problem discussed above
can be used to obtain a Nyström discretization for (14). Unfortunately, the same is not true when solving
(15), since the singular behavior of ρ is not contained in the span of F. In particular, the leading-order
singularity in ρ is of the form tβ , where β ∈

(
−

1
2 , 0

)
. The nature of the singularity of ρ is similar to the

singular behavior of solutions to integral equations corresponding to the Neumann problem on polygonal
domains.

Recall that (15) is the adjoint of (14). Thus, formally, one could use the transpose of the Nyström
discretization of (14) to solve (15). Specifically, if ρ̄ = {ρ j }

N
j=1 are the unknown values of ρ at the

discretization nodes, and ḡ={g j }
N
j=1 denote the samples of the boundary data for (15) at the discretization

nodes, then we solve the linear system

MT ρ̄ = ḡ, (38)

where M is the matrix corresponding to Nyström discretization of (14). The solution ρ̄ is a high-order
accurate weak solution for the density ρ which can be used to evaluate the solution to (15) accurately
away from the corner panels of the boundary 0. This weak solution can be further refined to obtain
accurate approximations of the potentials in the vicinity of corner panels through solving a sequence of
small linear systems for updating the solution ρ j in the vicinity of the corner panels. This procedure is
discussed in detail in [Hoskins and Rachh 2020].
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μ1 = 1, ν1 = 0.174

μ2 = 1
ν2 = 1.935

μ3 = 1, ν3 = 0.133

ν1 = 0.22
μ1 = 1

ν2 = 0.681
μ2 = 1

ν3 = 0.174
μ3 = 1ν4 = 0.507

μ4 = 1

ν5 = 0.165
μ5 = 1

ν6 = 0.277
μ6 = 1

Figure 4. Discretization of geometry along with material parameters µi , νi (left), the
panels at corners/triple junctions are indicated in red; exact solution u j in the domains
(center), and log10 of the absolute error in the solution (right). The geometry consists of
7 vertices, 8 edges, 3 regions, and is discretized with 768 points. In order for the solution
of the linear system to converge to a residual of 10−16, GMRES required 35 iterations
for (14) and 48 iterations for (15).

6. Numerical examples

We illustrate the performance of the algorithm with several numerical examples. In each of the problems let
�0 denote the exterior domain and�i , i=1, 2, . . . Nr , denote the interior regions. Let c j,k , k=1, 2, . . . 10,
denote points outside of the region � j for j = 1, 2, . . . Nr . The results in Sections 6B and 6C have
been computed using dense linear algebra routines, while the results in Sections 6A and 6D have been
computed using GMRES where the matrix vector product computation has been accelerated using fast
multipole methods [Greengard and Rokhlin 1986].

6A. Accuracy. In order to demonstrate the accuracy of our method we solve the PDE with boundary data
corresponding to known harmonic functions using our discretization of the integral equation formulation.
We set u j (x)=

∑10
k=1 log |x − c j,k | and set u ≡ 0 for x ∈�0. We then compute the boundary data

fi = µ`(i)u`(i)−µr(i)ur(i), gi = µ`(i)
∂u`(i)
∂n
−µr(i)

∂ur(i)

∂n
, (39)

and solve for σ, ρ. Given the discrete solution for σ, ρ, we compare the computed solution and plot the
error in the computed at targets in the interior of each of the regions. In Figures 4 and 5, we demonstrate
the results for two sample geometries.

Remark 6.1. Note that we do not use special quadratures for handling near boundary targets which is
responsible for the loss of accuracy close to the boundary. For panels away from the corner, the potential
at near boundary targets can be computed accurately using several standard methods such as quadrature
by expansion, or product quadrature; see [Klöckner et al. 2013; Helsing and Ojala 2008b; Barnett et al.
2015]. In order to evaluate the solution at points lying close to a corner panel, a different approach
is required. A detailed description of a computationally efficient algorithm for evaluating the solution
accurately arbitrarily close to a corner is presented in [Hoskins and Rachh 2020].
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μ1 = 1, ν1 = 0.174

μ2 = 1
ν2 = 1.935

μ3 = 1, ν3 = 0.133

ν1 = 0.22
μ1 = 1

ν2 = 0.681
μ2 = 1

ν3 = 0.174
μ3 = 1ν4 = 0.507

μ4 = 1

ν5 = 0.165
μ5 = 1

ν6 = 0.277
μ6 = 1

Figure 5. Discretization of geometry along with material parameters µi , νi (left), the
panels at corners/triple junctions are indicated in red; exact solution u j in the domains
(center), and log10 of the absolute error in the solution (right). The geometry consists
of 20 vertices, 24 edges, 5 regions, and is discretized with 1952 points. In order for
the solution of the linear system to converge to a residual of 10−16, GMRES required
22 iterations for (14) and 28 iterations for (15).

6B. Condition number dependence on µ, ν. In this section, we discuss the dependence of the condition
number of the discretized linear systems as a function of the material parameters of the regions. Recall
that the condition number of a linear system A, which we denote by κ(A), is the ratio of the largest
singular value smax to the smallest singular value smin, i.e., κ(A)= smax/smin. As discussed in Section 3,
for fixed angles the integral equation and the analytical behavior of integral equations (14) and (15) are
solely a function of d(1,2), d(2,3), d(3,1) defined in (19). Furthermore, d(1,2) can be expressed in terms of
d(3,1), d(2,3) which are contained in the interval (−1, 1). As before, let a = d(3,1) and b= d(2,3). Since the
discrete linear system corresponding to (15) is the adjoint of the linear system corresponding to (14), it
suffices to study the condition number for either linear system.

In Figure 6, we plot the condition number of the discretization of (14) as we vary (a, b) ∈ (−1, 1)2 by
holding the values of µ in each of the regions to be fixed. In particular, we set µ1 = 0.37, µ2 = 0.81,
µ3 = 1, and ν3 = 0.77. The constants ν1, ν2 can then be defined in terms of (a, b) as

ν1 =
ν3µ1

µ3

1+ a
1− a

, µ2 =
ν3µ2

µ3

1− b
1+ b

. (40)

We note that the problem is well-behaved for almost all values of (a, b) and becomes ill-conditioned
as we approach the lines b = −1 and a = 1. This behavior is expected since the underlying physical
problem also has rank-deficiency along these limits since these values of the parameters correspond to
interior Neumann problems in regions 1 and 2 respectively.

6C. Condition number dependence on angles at the triple junction. In this section we discuss the
dependence of the condition number of the discretized linear systems as a function of the angles at the triple
junction. Let θ1, θ2, θ3, denote the angles at the triple junction; then θ1+ θ2+ θ3 = 2π . The three angles
at any triple junction can be parametrized by θ1, θ2 in the simplex {(θ1, θ2) : θ1 > 0, θ2 > 0, θ1+θ2 < 2π}.
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μ2, ν2 = ν3μ2
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1 + b
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Figure 6. Left: discretization of geometry and material parameters µ, ν as a function
of a, b. Right: condition number as a function of (a, b) with µ1 = 0.37, µ2 = 0.81,
µ3 = 1, and ν3 = 0.77.

Suppose that we split this simplex into four regions as shown in Figure 7. By symmetry it suffices to vary
the angles (θ1, θ2) ∈ (0, π)2.

The physical problem as either of the angles approach 0 or 2π becomes increasingly ill-conditioned
due to close-to-touching interactions on the entire edge (not just near the corner). In order to avoid these
issues and to automate geometry generation as we vary the angles θ1, θ2, we use two different types of
geometries for regions I and IV, which are shown in Figure 7.

Resolving the close-to-touching interactions has numerical consequences as well; due to the increased
number of quadrature nodes required as the angles tend to 0 in the universal quadrature rules. In order for
the universal quadrature rules to remain efficient, they are generated for the range (θ1, θ2) ∈

(
π
12 , 2π− π

12

)
.

Regions with narrower angles should be handled on a case-by-case basis and regions with careful
discretization of the boundary should be coupled with special purpose quadrature rules which account for
the specific singular behavior of the solutions in the vicinity of triple junctions. In Figure 7, the top right
missing corner corresponds to θ3 ∈

(
0, π12

)
.

Referring to Figure 7, we observe that the condition number of the discrete linear systems varies mildly
as we vary the angles θ1, θ2, with a maximum condition number of 2.8. The discontinuity in the plot is
explained by the different choice of geometries for regions I, IV.

6D. Application: polarization computation. In this section, we demonstrate the efficiency of our ap-
proach for computing polarization tensors for a perturbed hexagonal lattice with cavities. The polarization
computation corresponds to the following particular setup of the triple junction problem, µi = 1,
fi = 0, νi = εi , where εi denotes the permittivity of the medium, and g1(x) = (ε`(i) − εr(i))n1(x)
or g2(x) = (ε`(i)− εr(i))n2(x), where x = (x1, x2) ∈ 0i , n(x) = (n1(x), n2(x)), and ε`(i), εr(i) are the
conductivities of the regions on either side of the edge 0i . If u1 is the solution corresponding to g1 and
u2 is the solution corresponding to g2, then the polarization tensor P is the 2× 2 matrix given by

P =
[∫
0

x1 · (∂u1/∂n) ds
∫
0

x2 · (∂u1/∂n) ds∫
0

x1 · (∂u2/∂n) ds
∫
0

x2 · (∂u2/∂n) ds

]
. (41)
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Figure 7. Regions I–IV in (θ1, θ2) simplex (top left); condition number of discretized
linear system corresponding to (14) as a function of (θ1, θ2) (top right); sample domain
for (θ1, θ2) in region I (bottom left); sample domain for (θ1, θ2) in region IV (bottom
right).

Note that in this particular setup, we only need to solve the problem corresponding to the operator Kneu,
as the solution σ for Kdir[σ ] = 0 is σ = 0. Let ρ1, ρ2 denote the solutions of (15) corresponding to
boundary data g1 and g2 respectively. Using properties of the single-layer potential, the integrals of the
polarization tensor can be expressed in terms of ρ as

P =
[∫
0

x1 · ρ1 ds
∫
0

x2 · ρ1 ds∫
0

x1 · ρ2 ds
∫
0

x2 · ρ2 ds

]
. (42)

We compare the efficiency of our approach to RCIP, which to the best of our knowledge is the state-
of-the-art method for such problems. The geometry is generated using a regular hexagonal lattice inside
the unit square whose vertices are perturbed in a random direction by a tenth of the side length, and the
permittivity ε is region i is given by 10ci, where ci is a uniform random number between [−1, 1]. The choice
of parameters for the problem setup is identical to the setup in Section 11 in [Helsing and Ojala 2008a].

We discretize the geometry with 3 panels on each edge of roughly equal size, and the reference solution
is computed using 5 panels on each edge. The geometry contains 10688 vertices, 15855 edges, and 5189
regions. There are 1395240 degrees of freedom for the coarse discretization (approximately 88 degrees
of freedom per edge) and 1902600 degrees of freedom for the reference solution. These discretizations
required 131 iterations for GMRES to converge to a relative residual of 10−16, and the absolute error in



464 JEREMY HOSKINS AND MANAS RACHH

Figure 8. Material parameters νi for each of the regions (left), exact solution u j in
the domains (center), and log10 of the absolute error in the solution (right). The
geometry consists of 10688 vertices, 15855 edges, 5189 regions, and is discretized
with 1395240 points. In order for the solution of the linear system to converge to a
residual of 10−16, GMRES required 138 iterations for (14), and 130 iterations for (15)
in the accuracy tests, and 131 and 130 iterations (for g1, and g2 respectively) for (15)
in computing the polarization tensors.

the polarization tensor when compared to the reference solution is 5.1× 10−12. In comparison, RCIP
using approximately 71 degrees of freedom per edge in a hexagonal lattice with 5293 inclusions obtained
an accuracy of 2×10−14 in computing the 2, 2 entry of the polarization matrix and required 105 GMRES
iterations to converge.

The polarization tensor for this configuration, correct to 13 significant digits, is given by

P =
[
−0.038291586646 −0.004056508957
−0.004056508957 0.045585776453

]
. (43)

In Figure 8, we plot the material parameters νi , an analytical solution generated using a process similar to
the one described in Section 6A, and the error in the computed solution using our discretization.

Remark 6.2. We note that the performance of our approach is close to current state of the art methods
such as RCIP [Helsing 2013]. In our examples, further improvements in speed can be achieved using
additional compression techniques to reduce the degrees of freedom in the resulting linear system [Bremer
et al. 2015; Greengard et al. 2009].

7. Concluding remarks and future work

In this paper we analyze the systems of boundary integral equations which arise when solving the Laplace
transmission problem in composite media consisting of regions with polygonal boundaries. Our discussion
is focused on the particular case of composite media with triple junctions (points at which three distinct
media meet), though our analysis extends to higher-order junctions in a natural way.

We show that under some restrictions the solutions to the boundary integral equations corresponding
to a triple junction are well-approximated by a linear combination of powers tβ j, where t denotes the
distance from the corner along the edge, and the β j , j = 1, 2, . . . , form a countable collection of real
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numbers obtained by solving a certain equation depending only on the material properties of the media
and the angles at which the interfaces meet.

In addition to the theoretical interest of the result, our analysis also enables an easy construction of near-
optimal discretizations for triple junctions. In particular, RCIP, which is the leading method for solving
electrostatic problems on multiple junction interfaces, requires approximately 71 discretization nodes
per edge to compute solutions to near machine precision accuracy, whereas our proposed discretization
achieves an accuracy of 5× 10−12 using roughly 88 discretization nodes per edge. Finally, we illustrate
the properties of this discretization with a number of numerical examples.

The results of this paper admit a number of natural extensions and generalizations. Firstly, the analysis
outlined in this paper extends almost immediately to junctions involving greater numbers of media.
However, the construction of an efficient Nyström discretization of higher-order junctions requires special
care since the solutions to corresponding integral equations are not L2 functions on the boundary; in fact the
solutions are known to be L1 functions on the boundary [Helsing 2011]. Secondly, with a small modification
a similar analysis should be possible for boundary integral equations arising from triple junction problems
for other partial differential equations such as the Helmholtz equation, Maxwell’s equations, and the
biharmonic equation. This line of inquiry is being vigorously pursued and will be reported at a later date.

Finally, a similar approach will also work for generating discretizations of triple junctions in three
dimensions. This is particularly valuable since geometric singularities in three-dimensions can often
result in prohibitively large linear systems. Accurate discretization with few degrees of freedom would
greatly improve the size and complexity of systems which could be simulated.

Appendix A. Analysis of Kdir

First we present the proof of Theorem 3.2. In order to do so, we require the following technical lemma
which describes the double-layer potential defined on a straight line segment with density sβ at an arbitrary
point near the boundary. Here s is the distance along the segment.

Lemma A.1. Suppose that 0 is an edge of unit length oriented along an angle θ , parametrized by
s(cos (θ), sin (θ)), 0 < s < 1. Suppose that x = t (cos (θ + θ0), sin (θ + θ0)) (see Figure 9) where
0< t < 1, and x 6∈ 0. Suppose that σ(s)= sβ for 0< s < 1, where β ≥ 0. If β is not an integer, then

D0[σ ](x)=
sin (β(π − θ0))

2 sin (πβ)
tβ +

1
2π

∞∑
k=1

sin (kθ0)

β − k
tk . (44)

If β = m is an integer, then

D0[σ ](x)=
(π − θ0) cos (mθ0)

2π
tm
−

sin (mθ0)

2π
tm log (t)+

1
2π

∞∑
k=1
k 6=m

sin (kθ0)

m− k
tk . (45)

In the following lemma, we compute the potential Kdir[vtβ], in the vicinity of a triple junction with
angles θ1, θ2, θ3, and material parameters d = (d(1,2), d(2,3), d(3,1)), where v ∈ R3 and β are constants
(see Figure 2).
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Figure 9. Illustrative figure for geometry in Lemma A.1.

Lemma A.2. Consider the geometry setup of the single vertex problem presented in Section 3. For a
constant vector v ∈ R3, suppose that the density on the edges is of the form

σ =

σ1,2

σ2,3

σ3,1

= vtβ . (46)

If β is not an integer, then

Kdir[σ ] = −
1

2 sin (πβ)
Adir(d3,1, d1,2, β)vtβ +

∞∑
k=1

1
β − k

C(d, k)vtk, (47)

where Adir is defined in (21) and

C(d, k)=
1

2π

 0 −d(1,2) sin (kθ2) d(1,2) sin (kθ1)

d(2,3) sin (kθ2) 0 −d(2,3) sin (kθ3)

−d(3,1) sin (kθ1) d(3,1) sin (kθ3) 0

 . (48)

If β = m is an integer, then

Kdir[σ ] = −
(−1)m

2π
Adir(d3,1, d1,2,m)vtm log (t)+

∞∑
k=1
k 6=m

1
m− k

C(d, k)vtk
+Cdiag(d,m)vtm, (49)

where
Cdiag(d,m)

=−
1

2π

 π d(1,2)(π − θ2) cos (mθ2) −d(1,2)(π − θ1) cos (mθ1)

−d(2,3)(π − θ2) cos (mθ2) π d(2,3)(π − θ3) cos (mθ3)

d(3,1)(π − θ1) cos (mθ1) −d(3,1)(π − θ3) cos (mθ3) π

 . (50)

Proof. The result follows from repeated application of Lemma A.1 for computing D(l,m):(i, j)σ(i, j). �

The proof of Theorem 3.2 then follows immediately from Lemma A.2.
We now turn our attention to the proof of Lemma 3.3, which provides a construction of β, v satisfying

the conditions of Theorem 3.2. In order to do that, we first observe that if one of a, b, or c is 0, then the
expression of detAdir simplifies significantly, and there exists an explicit construction of β satisfying
detAdir(a, b, β)=0. Recall that we interchangeably use the following variables for the material properties:
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(a, b, c)= (d3,1, d1,2, d2,3). Having established the existence of analytic β, v on a 1-dimensional manifold
which is a subset (a, b) ∈ (−1, 1)2, we now analytically continue these values of β, v to carve out the
open region S on which β, v can be analytically extended. This proof is discussed in Appendix A.1.

A1. Existence of β, v satisfying Theorem 3.2. The determinant of the matrix Adir(a, b, β) is given by

detAdir(a, b, β)= sin (πβ) α(a, b, c;β), (51)

where c =−(a+ b)/(1+ ab), and

α(a, b, c;β)= sin2 (πβ)+ bc sin2 (β(π − θ2))+ ac sin2 (β(π − θ3))+ ab sin2 (β(π − θ1)). (52)

Given the formula above, for all (a, b) ∈ (−1, 1)2 when β = m ≥ 0 is an integer, detAdir(a, b, β) = 0.
When m 6= 0, the matrix Adir has rank 2, since the matrix is similar to an antisymmetric matrix and is not
identically zero. The null vector v of Adir(a, b,m) is given by vm = [sin (mθ3), sin (mθ1), sin (mθ2)]

T ;
i.e., the pair (m, vm) always satisfies (21). When β = 0, Adir(a, b, β)= 0 and hence for any v ∈ R3, the
pair β, v satisfies (21). Based on this observation we set

βm,0 = m, vm,0 = [sin (mθ3), sin (mθ1), sin (mθ2)]
T , Sm,0 = (−1, 1)2,

β0,0 = 0, v0,0 = [1, 0, 0]T , S0,0 = (−1, 1)2,

β1,0 = 0, v1,0 = [0, 1, 0]T , S0,1 = (−1, 1)2,

β2,0 = 0, v2,0 = [0, 0, 1]T , S0,2 = (−1, 1)2.

(53)

We now turn our attention to constructing the remaining βi, j , the corresponding vectors vi, j , and
their regions of analyticity Si, j , i = 1, 2, . . . , j = 1, 2. From (51), the remaining values of βi, j

as a function of the material parameters (a, b) are defined implicitly via the roots of the equation
α(a, b, c(a, b);βi, j (a, b))= 0, where c =−(a+ b)/(1+ ab) and α is defined in (52).

It turns out that the implicit solutions β(a, b) of α(a, b, c(a, b);β(a, b))= 0, are known when a = 0,
b = 0, or c = 0. This gives us an initial value for defining βi, j in order to apply the implicit function
theorem, and extend it to a region containing the segments a = 0, b = 0, or c = 0. Given this strategy, let
R1, . . . , R6 ⊂ (−1, 1)× (−1, 1) be defined as follows (see Figure 10):

R1 = {(x, 0) : x > 0}, (54)

R2 = {(−x, 0) : x > 0}, (55)

R3 = {(0, x) : x > 0}, (56)

R4 = {(0,−x) : x > 0}, (57)

R5 = {(−x, x) : x > 0}, (58)

R6 = {(x,−x) : x > 0}. (59)

In the following, we will consider only the segment R1, and construct an open region S1
i, j ⊂ (−1, 1)2

which contains R1 on which we define a family of functions βi, j (a, b) : S1
i, j → R, j = 1, 2, which

satisfy the conditions of Lemma 3.3. Analogous results hold for the open sets containing the remaining
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(−1, − 1) (1, − 1)

(1,1)(1, − 1)

a

b R1R2

R3

R4

R5

R6

S1
i, j

Figure 10. Illustration of the edge segments Ri , i = 1, 2, . . . 6, and a typical region of
analyticity of βi, j denoted by S1

i, j .

segments R2, R3, . . . R6 with almost identical proofs. The region of analyticity for βi, j is then given by
Si, j =

⋃6
k=1 Sk

i, j .

Definition A.3. For (a, 0) ∈ R1 and i = 1, 2 . . . let βi,1(a, 0) be the solution to the equation

sin (πβi,1)=−a sin (βi,1(π − θ3)) (60)
such that

lim
a→0

βi,1(a, 0)= i. (61)

Similarly, for i = 1, 2, . . . let βi,2(a, 0) be the solution to the equation

sin (πβi,2)= a sin (βi,2(π − θ3)) (62)
such that

lim
a→0

βi,2(a, 0)= i. (63)

The existence of βi, j for i = 1, 2, . . . and j = 1, 2 satisfying these conditions is guaranteed by the
following Lemma A.4, proved in [Hoskins 2018].

Lemma A.4. Suppose that δ ∈ R, 0 < |δ| < 1, and θ ∈ (0, 2π) and θ/π is irrational. Consider the
equations

sin(π z)=±δ sin(z(π − θ)).

Then there exist a countable collection of functions z±i (δ), i = 1, 2, . . . , such that

(1) sin2(π z±i (δ))= δ
2 sin2(z±i (δ)(π − θ)) for all δ ∈ [0, 1], and i = 1, 2, . . . ,

(2) the functions z±i are analytic in (0, 1),

(3) limδ→0 z±i (δ)= i ,

(4) z+i (δ) > i and z−i (δ) < i for all δ ∈ (0, 1).
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The following lemma extends the domain of definition of the functions βi, j , j = 1, 2, to some open
subset S1

i, j containing R1.

Lemma A.5. Suppose θ1, θ2 and θ3 are positive numbers summing to 2π , and θ1/π , θ2/π , and θ3/π are
irrational numbers. Suppose that βi, j are defined as above for i = 1, 2, . . . and j = 1, 2. For a ∈ (0, 1),
the function βi, j satisfies

α(a, 0,−a;βi, j )= 0. (64)

Moreover, there exists a unique extension of βi, j to an analytic function of (a, b) on an open neighborhood
R1 ⊂ S1

i, j ⊂ (−1, 1)2 which satisfies

α(a, b, c(a, b);βi, j )= 0. (65)

Proof. We begin by observing that, for j = 1, 2, βi, j satisfies

α(a,0,−a;βi, j )=−a2 sin2(βi, j (π−θ3))+sin2(πβi, j )= 0,
∂α

∂β
(a,0,−a;βi, j )= 2

(
−(π−θ3)a2 sin(βi, j (π−θ3))cos(βi, j (π−θ3))+π sin(πβi, j )cos(πβi, j )

)
.

(66)

Upon multiplication by

g(a;β)= (π − θ3)a2 sin(β(π − θ3)) cos(β(π − θ3))+π sin(πβ) cos(πβ)

and using (66) we get

g(a;βi, j )
∂α

∂β
(a, 0,−a;βi, j )=−2 sin2(πβi, j )

(
π2
− a2(π − θ3)

2
− (π2

− (π − θ3)
2) sin2(πβi, j )

)
,

which does not vanish for all a>0. Thus by the implicit function theorem, there exists an analytic extension
of βi, j to a neighborhood (a, b) ∈ R1 ⊂ S1

i, j ⊂ (−1, 1)2 which satisfies α(a, b, c(a, b);βi, j )= 0. �

The following theorem establishes the analyticity of the null vectors of Adir(a, b;β) in a neighborhood
of R1 when β = βi, j .

Theorem A.6. For each j = 1, 2, and i = 1, 2, . . . , the matrix Adir(a, b, βi, j ) defined in (21) has a null
vector vi, j whose entries are analytic functions of (a, b) on S1

i, j .

Proof. Since βi, j is such that the matrix Adir(a, b, βi, j ) is singular, it has a null vector vi, j . Moreover,
as long as (a, b) 6= (0, 0) and βi, j is not an integer, the matrix Adir has rank at least 2. Thus 0 is an
eigenvalue of Adir(a, b, βi, j (a, b)) with multiplicity 1 for all (a, b) ∈ S1

i, j . Since the entries of the matrix
Adir are analytic functions of (a, b), we conclude that the entries of vi, j are analytic on S1

i . �

Finally, each Sk
i, j is an open subset containing the segments Rk , k = 1, 2, . . . 6. Then Si, j =

⋃6
k=1 Sk

i, j
is an open subset of (−1, 1)2 containing

⋃6
k=1 Rk . Thus, for any finite N,

∣∣⋂N
i=0

⋂2
j=0 Si, j

∣∣> 0.
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A2. Completeness of density basis. Recall that for any β, v which satisfy the conditions of Theorem 3.2,
and σ = vtβ, the potential Kdir[σ ] corresponding to any of these densities is an analytic function. In
order to show that the potential corresponding to a particular collection of β, v span all polynomials of a
fixed degree on all the three edges meeting at the triple junction, we explicitly write down the linear map
from the coefficients of the density in the vtβ basis to the coefficients of Taylor series of the potentials
on each of the edges using Lemma A.2. We then observe that this mapping is invertible along the line
segments corresponding to a = 0, b = 0, or c = 0, and since the mapping is an analytic function of the
parameters (a, b), it must also be invertible in an open region containing the segments a = 0, b = 0 or
c = 0. This part of the proof is discussed in this section.

For any integer N > 0, let ŜN , denote the common region of analyticity of βi, j , vi, j , j = 0, 1, 2,
i = 0, 1, 2 . . . N; i.e., SN =

⋃6
k=1 Sk

N , where Sk
N =

⋂N
i=0

⋂2
j=0 Sk

i, j . By construction, R j ⊂ S j
N for all N.

We now prove the result Theorem 3.4 in one of the components of SN , say S1
N . The proof for the other

components follows in a similar manner.
Let pi = [pi,0, pi,1, pi,2]

T , and suppose that

σ(t)=
N∑

i=0

2∑
j=0

pi, jvi, j |t |βi, j . (67)

Then, using Lemma A.2, since βi, j , vi, j are such that Adir(a, b, βi, j ) ·vi, j = 0, the potential corresponding
to this density on the boundary (0(1,2), 0(2,3), 0(3,1)) is given byu(1,2)(t)

u(2,3)(t)
u(3,1)(t)

= N∑
i=0

( N∑
j=0

Bi, j · p j

)
|t |i + O(|t |N+1), (68)

where Bi, j are the 3× 3 matrices given by

Bi, j =



[
1

β j,0−i
C(d, i)v j,0

1
β j,1−i

C(d, i)v j,1
1

β j,2−i
C(d, i)v j,2

]
if i 6= j,[

Cdiag(d, i)v j,0
1

β j,1−i
C(d, i)v j,1

1
β j,2−i

C(d, i)v j,2

]
if i = j 6= 0,[

Cdiag(d, i)v j,0 Cdiag(d, i)v j,1 Cdiag(d, i)v j,2
]

if i = j = 0.

(69)

Let B denote the 3(N +1)×3(N +1) matrix whose 3×3 blocks are given by Bi, j , i, j = 0, 1, 2, . . . , N.
Recall that on R1 ⊂ S1

N , b = 0, βi,0 = i , βi,1, satisfies sin (πβi,1)=−a sin (βi,1(π − θ3)), βi,2 satisfies
sin (πβi,2) = a sin (βi,2(π − θ3)), i = 0, 1, 2 . . . , and the corresponding vectors vi, j , i = 0, 1, 2 . . . ,
j = 0, 1, 2, are given by

vi,0 =
1
ηi

sin (iθ3)

sin (iθ1)

sin (iθ2)

 , vi,1 =
1
√

2

0
1
1

 , vi,2 =
1
√

2

 0
1
−1

 , (70)

where

ηi =
√

sin2 (iθ1)+ sin2 (iθ2)+ sin2 (iθ3). (71)
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Furthermore, the matrices C and Cdiag defined in (48), and (50) respectively also simplify to

C =
a

2π

 0 0 0
− sin (mθ2) 0 − sin (mθ3)

− sin (mθ1) sin (mθ3) 0

 , (72)

Cdiag =−
1

2π

 π 0 0
a(π − θ2) cos (mθ2) π −a(π − θ3) cos (mθ3)

a(π − θ1) cos (mθ1) −a(π − θ3) cos (mθ3) π

 . (73)

Let u(1,2),i , u(2,3),i , u(3,1),i denote the coefficient of |t |i in the Taylor expansions of u(1,2), u(2,3), u(3,1)
respectively. Let P denote the permutation matrix whose action is given by

P



p0,0

p0,1

p0,2

p1,0

p1,1

p1,2

...

...

...

pN ,0

pN ,1

pN ,2



=



p0,0

p1,0
...

pN ,0

p0,1

p1,1
...

pN ,1

p0,2

p1,2
...

pN ,2



. (74)

Then along R1, the matrix PBPT is demonstrated in Figure 11.
The matrices D1, D2 are diagonal and are given by

D1=


sin (θ3)

sin (2θ3)
. . .

sin ((N − 1)θ3)

sin (Nθ3)

 , D2=−
1
2


η1

η2
. . .

ηN−1

ηN

 . (75)

The matrices C1,C2 are Cauchy matrices whose entries are given by

C1,i, j =
1

βi,1− j
, C2,i, j =

1
βi,2− j

. (76)

Since we have assumed θ1/π , θ2/π , θ3/π , to be irrational, we note that ηi > 0 and that sin (mθ3) 6= 0 for
all m 6= 0. Thus, the diagonal matrices D1, D2 are invertible. Furthermore on (a, 0), neither of βi,1 or
βi,2 take on integer values by Lemma A.4. Thus, the Cauchy matrices C1,C2 are invertible.
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−1/2

−1/2

−1/2

0 0

0 0

0

0 D1D2

q2

q3

q4

q5

D1C1 −D1C2

D1C1 D1C2

q

−q

1

N

2(N + 1)

2(N + 1)N1

N1 N1

N

1

N

1

0

Q1

Figure 11. Structure of the matrix PBPT.

Let T denote the bottom-right 2(N + 1)× 2(N + 1) block. Then from the structure of PBPT and the
fact that the diagonal matrix D1 D2 is invertible, it is clear that B is invertible if and only if T is invertible.

Remark A.7. The matrix T is the mapping from the coefficients of the singular basis of solutions for
the transmission problem with angle πθ3 and material parameter a to the corresponding coefficients of
the Taylor expansion of the potential on the edges (2, 3), (3, 1). The invertibility of T follows from the
analysis in [Hoskins 2018]. We present the proof here in terms of the notation used in this paper.

Upon applying an appropriate permutation matrix P2 to T from the right and the left, we note that

P2T PT
2 =


−

1
2 q 0 0
−q −1

2 0 0
q2 q4 D1C1 −D1C2

q3 q5 D1C1 D1C2

 . (77)

The matrix P2T PT
2 is invertible if and only if its bottom-right 2N × 2N corner is invertible. Let IN

denote the N × N identity matrix; then the bottom right corner of P2T PT
2 factorizes as[

D1 0
0 D1

] [
IN −IN

IN IN

] [
C1 0
0 C2

]
, (78)

which is clearly invertible since the matrices D1,C1,C2 are invertible.
Finally, using all of these results, it follows that the matrix B is invertible for all (a, 0)= R1. Since all

of the quantities involved are analytic, on every compact subset of S1
N , we conclude that the matrix B is

invertible in an open neighborhood R1 ⊂ S̃1
N ⊂ S1

N . By construction |S̃1
N |> 0.
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Appendix B. Analysis of Kneu

All the proofs for the analysis of Kneu are similar to the corresponding proofs of Kdir. We only present
the analogs of Lemmas A.1 and A.2.

In the following lemma we present the directional derivative of a single-layer potential defined on
straight line segment with density sβ at an arbitrary point near the boundary. Here s is the distance along
the segment, at an arbitrary point near the boundary.

Lemma B.1. Suppose that 0 is an edge of unit length oriented along an angle πθ , parametrized by
s(cos (θ), sin (θ)), 0< s < 1. Suppose x= t (cos(θ+θ0),sin(θ+θ0)) and n= (−sin(θ+θ0),cos(θ+θ0))

(see Figure 9) where 0< t < 1, and x 6∈ 0. Suppose that σ(s)= sβ−1 for 0< s < 1, where β ≥ 1
2 . If β is

not an integer, then

∇S[σ ](x) · n=−
sin (β(π − θ0))

2 sin (πβ)
tβ−1
−

1
2π

∞∑
k=1

sin (kθ0)

β − k
tk−1. (79)

If β = m is an integer, then

∇S0[σ ](x) · n=−
(π − θ0) cos (mθ0)

2π
tm−1
+

sin (mθ0)

2π
tm−1 log (t)−

1
2π

∞∑
k=1
k 6=m

sin (πkθ0)

m− k
tk−1. (80)

In the following lemma, we compute the potential at a triple junction with angles πθ1, πθ2, πθ3, and
material parameters d = (d(1,2), d(2,3), d(3,1)) (see Figure 2).

Lemma B.2. Consider the geometry setup of the single vertex problem presented in Section 3. For a
constant vector v ∈ R3, suppose that the density on the edges is of the form

σ =

σ1,2

σ2,3

σ3,1

= wtβ−1. (81)

If β is not an integer, then

Kdir[σ ] = −
1

2 sin (πβ)
Aneu(d3,1, d1,2, β)wtβ −

∞∑
k=1

1
β − k

C(d, k)wtk−1, (82)

where Aneu is defined in (25), and C(d, k) is defined in (48). If β = m is an integer, then

Kneu[σ ] =−
(−1)m

2π
Aneu(d3,1,d1,2,m)wtm log(t)−

∞∑
k=1
k 6=m

1
m−k

C(d,k)wtk−1
−Cdiag(d,m)wtm−1, (83)

where Cdiag is defined in (50).

Proof. The result follows from repeated application of Lemma B.1 for computing D∗(l,m):(i, j)σ(i, j). �

The proof of Theorem 3.5 then follows immediately from Lemma B.2.
In the following lemma, we prove that βi, j , Si, j , i = 1, 2, . . . , j = 0, 1, 2, defined in Appendix A.1

satisfy βi, j (a, b) > 1
2 for all (a, b) in an open subset Ti, j ⊂ Si, j .
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Lemma B.3. Suppose that βi, j , Si, j , i = 1, 2, . . . , j = 0, 1, 2, are as defined in Appendix A.1. Then there
exists an open subset Ti, j ⊂ Si, j such that βi, j (a, b) > 1

2 for all (a, b) ∈ Ti, j . Moreover for any N > 0,⋂N+1
i=1

⋂2
j=0 |Ti, j |> 0.

Proof. Since βi,0 = i , the statement is trivially true with Ti, j = (−1, 1)2. Since βi, j = z±i (δ, θ) on
a = 0, b = 0, or c = 0, for appropriate parameters δ, θ , we conclude that βi, j >

1
2 , on a = 0, b = 0, or

c= 0, for i = 1, 2, . . . , j = 1, 2. Since βi, j are analytic on Si, j , there exists an open subset containing the
segments a=0, b=0, or c=0, which we denote by Ti, j , such that βi, j (a, b)> 1

2 for all (a, b)∈Ti, j . Since
each Ti, j is an open subset of (−1, 1)2 containing

⋃6
k=1 Rk , we conclude that

∣∣⋂N+1
i=1

⋂2
j=0 Ti, j

∣∣> 0. �
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ENHANCED CONVERGENCE RATES AND ASYMPTOTICS
FOR A DISPERSIVE BOUSSINESQ-TYPE SYSTEM

WITH LARGE ILL-PREPARED DATA

FRÉDÉRIC CHARVE

We obtain, for a stratified, rotating, incompressible Navier–Stokes system, generalized asymptotics as the
Rossby number " goes to zero (without assumptions on the diffusion coefficients). For ill-prepared, less
regular initial data with large blowing-up norm in terms of ", we show global well-posedness and improved
convergence rates (as a power of ") towards the solution of the limit system, called the 3-dimensional
quasigeostrophic system. Aiming for significant improvements required us to avoid as much as possible
resorting to classical energy estimates involving oscillations. Our approach relies on the use of structures
and symmetries of the limit system, and of highly improved Strichartz-type estimates.

1. Introduction

1.1. Geophysical fluids. The primitive system (also called primitive equations; see for example [Chemin
1997; Babin et al. 2001]) is a rotating Boussinesq-type system used to describe geophysical fluids located
at the surface of the Earth (in a large physical extent) under the assumption that the vertical motion is
much smaller than the horizontal one. Two phenomena exert a crucial influence on geophysical fluids:
the Coriolis force induced by the rotation of the Earth around its axis and the vertical stratification of the
density induced by gravity. The former induces a vertical rigidity in the fluid velocity as described by the
Taylor–Proudman theorem, and the latter induces a horizontal rigidity to the fluid density: heavier masses
lie under lighter ones.

In order to measure the importance of these two concurrent phenomena, physicists defined two numbers:
the Rossby number Ro and the Froude number Fr. We refer to the introduction of [Charve 2005; 2018a;
2018b] for more details and to [Bourgeois and Beale 1994; Cushman-Roisin 1994; Bougeault and
Sadourny 1998; Pedlosky 1979] for an in-depth presentation.

The smaller these numbers, the more important these two phenomena become and we will consider the
primitive equations in the whole space, under the Boussinesq approximation and when both phenomena
are of the same scale, i.e., RoD " and FrD "F with F > 0. In what follows " will be called the Rossby
number and F the Froude number. The system is then written as follows (we refer to [Chemin 1997;
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Babin et al. 2001] for the model):8<:
@tU"C v" � rU"�LU"C

1
"
AU" D 1

"
.�rˆ"; 0/;

div v" D 0;
U"jtD0 D U0;":

(PE")

The unknowns are U" D .v"; �"/D .v1" ; v
2
" ; v

3
" ; �"/ (where v" denotes the velocity of the fluid and �" the

scalar potential temperature) and ˆ" which is called the geopotential and gathers the pressure term and
centrifugal force. The diffusion operator L is defined by

LU"
def
D .��v"; �

0��"/;

where �; �0 > 0 are the kinematic viscosity and the thermal diffusivity. The matrix A is defined by

A def
D

0BB@
0 �1 0 0

1 0 0 0

0 0 0 F�1

0 0 �F�1 0

1CCA :
We will also make precise later the properties satisfied by the sequence of initial data U0;" (as " goes to
zero). Let us now state some remarks about this system (we refer to the introductions of [Charve 2005;
2018a; 2018b; Charve and Ngo 2011] for more details):

� This system generalizes the well-known rotating fluids system (see [Chemin et al. 2000; 2002; 2006]).
The penalized terms (which are divided by the small parameter "), namely AU" and the geopotential, will
impose a special structure to the limit when " goes to zero.

� As A is skew-symmetric, thanks to the incompressibility, any energy method (that is based on L2

or H s= PH s-inner products) will not “see” these penalized terms and will work as for the classical
incompressible Navier–Stokes system (AU �U D 0 and .rˆ"; v"/H s= PH s D 0). Therefore the Leray and
Fujita–Kato theorems provide global-in-time weak solutions if U0;" 2L2 and local-in-time unique strong
solutions if U0;" 2 PH

1
2 (global for small initial data).

� There are two distinct regimes: F ¤ 1 or F D 1. The first one features very important dispersive
properties. In the second case, the operators are simpler but we cannot rely on Strichartz estimates and
the methods are completely different (see [Chemin 1997; Charve 2018b]). In the present article we focus
on the case F ¤ 1.

1.2. Strong solutions. As explained before, thanks to the skew-symmetry of matrix A, any computation
involving L2 or Sobolev inner products will be the same as for the Navier–Stokes system. So given the
regularity of the initial data (even if some norms can blow up in "), we can adapt the Leray and Fujita–Kato
theorems as well as the classical weak-strong uniqueness results: for a fixed " > 0, if U0;" 2 PH

1
2 .R3/,

we denote by U" the unique strong solution of system (PE"), defined on Œ0; T � for all 0 < T < T �" . In
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addition, if the lifespan T �" is finite then we have (blow up criterion)Z T �"

0

krU".�/k
2
PH1=2.R3/

d� D1: (1-1)

Moreover, if U0;" 2 PH s then we also can propagate the regularity as done for the Navier–Stokes system.

1.3. The limit system, the QG/osc decomposition. We are interested in the asymptotics, as the small
parameter " goes to zero. Let us recall that the limit system is a transport-diffusion system coupled with a
Biot–Savart inversion law and is called the 3-dimensional quasigeostrophic system:�

@t z�QGC QvQG � r z�QG�� z�QG D 0;

zUQG D . QvQG; Q�QG/D .�@2; @1; 0;�F@3/�
�1
F
z�QG;

(QG)

where the operator � is defined by

�
def
D ���1F .�@21C �@

2
2C �

0F 2@23/;

with �F D @21C @
2
2CF

2@23. Moreover we also have the relation

z�QG D @1 zU
2
QG� @2

zU 1QG�F@3
zU 4QG D @1 Qv

2
QG� @2 Qv

1
QG�F@3

Q�QG:

Remark 1. The operator �F is a simple anisotropic Laplacian but � is in general a tricky nonlocal
diffusion operator of order 2 (except in the case F D 1 where �F D� and � D �@21C �@

2
2C �

0@23, or
in the case � D �0 where � D ��). We refer to [Charve 2016; 2018a] for an in-depth study of � in the
general case (neither its Fourier kernel nor singular integral kernel have a constant sign and no classical
result can be used).

This limit system is first formally derived, and then rigorously justified (see [Chemin 1997; Charve
2005]). Led by the limit system we introduce the following decomposition: for any 4-dimensional vector
field U D .v; �/ we define its potential vorticity �.U / by

�.U /
def
D @1v

2
� @2v

1
�F@3�

and its quasigeostrophic and oscillating (or oscillatory) parts by

UQG DQ.U / def
D

0BB@
�@2
@1
0

�F@3

1CCA��1F �.U / and Uosc D P.U / def
D U �UQG: (1-2)

As emphasized in [Charve 2005; Charve and Ngo 2011] this is an orthogonal decomposition of 4-
dimensional vector fields (similar to the Leray orthogonal decomposition into divergence-free and gradient
vector fields) and if Q and P are the associated orthogonal projectors on the quasigeostrophic or oscillating
fields, they satisfy (see [Chemin 1997; Charve 2004; 2005; 2018a; 2018b]):

Proposition 2. For any function U D .v; �/ 2 PH s ( for some s) we have:

(1) P and Q are pseudodifferential operators of order 0.
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(2) For any s 2 R, we have .P.U / jQ.U //
H s= PH s D .AU j P.U //H s= PH s D 0 (when defined).

(3) P.U /DU”Q.U /D0”�.U /D0.

(4) Q.U /DU”P.U /D0” there exists a scalar functionˆ such that U D .�@2; @1; 0;�F@3/ˆ.
Such a vector field is said to be quasigeostrophic (or QG) and is also divergence-free.

(5) If U D .v; �/ is a quasigeostrophic vector field, then v � r�.U /D�.v � rU/ and �U DQ.LU /.

(6) Denoting by P the Leray orthogonal projector on divergence-free vector fields, PP D PP and
PQDQPDQ.

Thanks to this, system (QG) can for example be rewritten in one of the equivalent following velocity
formulations: 8<:

@t zUQGCQ. QvQG � r zUQG/�� zUQG D 0;

zUQG DQ. zUQG/; (or equivalently P. zUQG/D 0/;

zUQGjtD0 D zU0;QG;

(QG)

or 8<:
@t zUQGC QvQG � r zUQG�L zUQG D P ẑQG;

zUQG DQ. zUQG/;

zUQGjtD0 D zU0;QG:

(QG)

Remark 3. We recall that Theorem 2 from [Charve 2004] claims that if zU0;QG 2H
1 then system (QG)

has a unique global solution zUQG 2 PE
0 \ PE1 (see below for the space notation). We refer to [Charve

2004; 2008] and to the next sections for more details.

Remark 4. It is natural to investigate the link between the quasigeostrophic/oscillating parts decom-
position of the initial data and the asymptotics when " goes to zero. This leads to the notion of well-
prepared/ill-prepared initial data depending on whether or not the initial data is already close to the
quasigeostrophic structure, i.e., when the initial oscillating part is small/large (or going to zero/blowing
up as " goes to zero). In the present article we consider large and ill-prepared initial data with very large
oscillating parts depending on ".

Going back to system (PE"), we introduce �" D �.U"/, U";QG D Q.U"/ and U";osc D P.U"/. We
showed in [Charve 2005] that for an initial data in L2 (independent of "), the oscillating part U";osc of a
weak global Leray solution U" goes to zero in L2loc.RC; L

q.R3// (q 2 �2; 6Œ), and the quasigeostrophic
part U";QG goes to a solution of system (QG) (with the QG-part of U0 as initial data). This requires
the study of system (A-79), and its associated matrix in the Fourier space: As explained in detail in
Proposition 43, when � ¤ �0 there are four distinct eigenvalues (it is necessary to perform frequency
truncations to obtain their expression). The first one is explicit but discarded as its associated eigenvector
is not divergence-free, the second one is real (and mainly linked to the quasigeostrophic part). The last
two are nonreal and mainly linked to the oscillating part.

Let us denote by Pi (i 2 f2; 3; 4g) the associated projectors. When � D �0, many simplifications arise
(see Remark 44). Unfortunately none of these simplifications are true anymore in general (when � ¤ �0)
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but we are able to bound their operator norms and prove that the P2-part of an oscillating divergence-free
vector field is small (we refer to [Charve 2005; 2006]; see also Proposition 43).

Moreover we are able to obtain Strichartz estimates for the last two projections P3C4. In [Charve
2005] we obtained the following Strichartz estimate upon which the main result depended:

kP3C4Pr;Rf kL4L1 � Cr;R"
1
4 .kPr;Rf0kL2 CkPr;RF kL2/:

In [Charve 2004] we focused on strong solutions. We first proved that if the initial QG-part U0;QG is
H 1 then the limit system has a unique global solution zUQG. We proved that if U0;osc 2 PH

1
2 then U" is

global if " is small enough. For this we filtered some waves: we constructed a solution W T
" of (A-79)

with a particular external force term (constructed from zUQG) and proved that U"� zUQG�W
T
" goes to

zero thanks to a generalization of the previous Strichartz estimates (allowing different regularities for the
external force term):

kP3C4Pr;Rf kL2L1 � Cr;R"
1
4 .kPr;Rf0kL2 CkPr;RF

b
kL1L2 CkPr;RF

l
kL2L2/:

In [Charve 2006] we generalized the previous result for initial data depending on " and with large
oscillating part (bounded by jlnjln "jj in the general case and jln "j when � D �0) considering frequency
truncations Pr";R" with radii depending on " allowing us to exhibit explicit convergence rates. In this
work we distinguished the case � D �0 for which we were able to produce Strichartz estimates without
frequency truncations in inhomogeneous spaces:

kW"kL2Bs1;q � C"
1
8 .kf0kBsC3=42;q

CkGk
L1.B

sC3=4
2;q /

/:

In the second part of [Charve 2006], inspired by the work of Dutrifoy [2004] on vortex patches in the
inviscid case and by the work of Hmidi [2005] for Navier–Stokes vortex patches, we investigated the case
of initial potential vorticity which is a regularized patch, and very large initial oscillating part (regular but
bounded by a negative power of ") when � D �0. This work was recently generalized in the case � ¤ �0 in
[Charve 2016; 2018a] where we deeply studied the limit quasigeostrophic operator � which is nonlocal
and nonradial. In this setting, the fact that � ¤ �0 highly complicates every computation.

Let us also mention that in [Charve 2008] we obtained global existence when the initial QG-part is
only H

1
2
C�. This required real interpolation methods (inspired by [Gallagher and Planchon 2002]) in

order to obtain economic estimates for the limit system (see (1-12)). In [Charve and Ngo 2011] with
V. S. Ngo we studied the asymptotics in the case of evanescent viscosities (as a power of ") and for
simplified oscillating initial data (as the initial QG part is zero, the limit is also zero).

Let us now give a survey of other results on this system. In the nondispersive setting F D 1 there are
few works: let us mention the seminal work [Chemin 1997] (that we recently generalized in [Charve
2018b]) and [Iftimie 1999a] in the inviscid case.

In [Koba et al. 2012] the authors distinguish the rotation and stratification effects, in the case �D �0 for
initial data in PH

1
2 \ PH 1 and for a special condition @2u10� @1u

2
0 D 0 (the initial potential vorticity only

depends on the temperature), and they obtain existence of a unique global solution to (PE") in C.R0; PH 1/
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for strong enough rotation and stratification. If the initial data is small in PH
1
2 they manage to obtain that

rU" 2 L
2 PH

1
2 .

Lee and Takada [2017] studied global well-posedness in the case of stratification only (no rotational
effects) when �D �0 and for large initial oscillating part (independent of "). They first give global existence
of a unique mild solution in L4.RC; PW

1
2
;3.R3// for large initial oscillating part in PH s (s 2

�
1
2
; 5
8

�
, there

is a kind of smallness condition; see Remark 17) and small QG-part in PH
1
2 . Then they show global

well-posedness in the case s D 1
2

and for any initial oscillating part and small QG-part, of a unique mild
solution in C.RC; PH

1
2 /\L4.RC; PW

1
2
;3.R3//.

These results are adapted to the primitive system in [Iwabuchi et al. 2017]. Iwabuchi, Mahalov and
Takada focused on the case � D �0 and obtained (through stationary phase methods) the following
Strichartz estimates, which we state with our notation:

Proposition 5 [Iwabuchi et al. 2017, Theorem 1.1 and Corollary 1.2]. Assume F ¤ 1. If r 2 �2; 4Œ and
p 2 �2;1Œ\

�
1=
�
2
�
1
2
�
1
r

��
; 2=

�
3
�
1
2
�
1
r

���
, there exists a constant C D CF;�;p;r such that, if f solves

the homogeneous (A-79),

kf kLp.RC;Lr / � C"
1
p
� 3
2
. 1
2
� 1
r
/
kf0kL2 :

If s 2
�
1
2
; 5
8

�
, there exists a constant C D C.F; s; �/ such that

kf k
L4.RC; PW s;6=.1C2s//

� C"
1
2
.s� 1

2
/
kf0k PH s :

From this they are able to obtain through a fixed point argument the following global well-posedness
results for initial data (independent of ") with small quasigeostrophic part (assume � D �0 and F ¤ 1):

� If s 2
�
1
2
; 5
8

�
, there exist ı1; ı2 > 0 (depending on �; F; s) such that for any " > 0 and any initial data

U0 D U0;QGCU0;osc with .U0;QG; U0;osc/ 2 PH
1
2 � PH s and�

kU0;QGk PH1=2 � ı1;

kU0;osck PH s � ı2"
� 1
2
.s� 1

2
/;

(1-3)

there exists a unique global mild solution in L4.RC; PW s; 1
3 .R3//.

� There exists ı > 0 such that for any initial data U0 D U0;QGCU0;osc 2 PH
1
2 with kU0;QGk PH1=2 � ı,

there exists "0 > 0 such that for any 0 < " < "0, system (PE") has a unique global mild solution in
C.RC; PH

1
2 /\L4.RC; PW

s; 1
3 .R3//.

Let us also mention works in the periodic case where resonances have to be studied (see for example
[Gallagher 1998; Ngo 2009; Ngo and Scrobogna 2018; Scrobogna 2018]), in the rotating fluids system
case (see [Chemin et al. 2000; 2002; 2006; Giga et al. 2008; Hieber and Shibata 2010; Koh et al. 2014a])
or in the inviscid case (see [Dutrifoy 2004; 2005; Koh et al. 2014b; Takada 2016; Widmayer 2018]).

In the present article we wish to generalize our results from [Charve 2004; 2006; 2008] and motivated
by the very interesting results in [Iwabuchi et al. 2017] we want to obtain full asymptotics (as in [Charve
and Ngo 2011; Charve 2018a]) for very large ill-prepared initial data (less regular, depending on " and
bounded by a negative power of "). In our work we will provide global well-posedness results but also
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precise convergence rates as " goes to zero. We also generalize [Iwabuchi et al. 2017] in the sense that
we consider initial data with large quasigeostrophic part (with low-frequency assumptions) and provide
solutions in homogeneous energy spaces PEs both in the particular case � D �0 and in the general case
� ¤ �0. Let us also mention that our methods closely rely on the special structures and properties of the
3-dimensional quasigeostrophic system.

1.3.1. Statement of the results. We will consider general ill-prepared initial data U0;"DU0;";oscCU0;";QG,
whose QG-part converges to some zU0;QG (without any smallness condition), and whose oscillating part is
very large (see below for details).

The aim of the present article is to generalize Theorem 3 from [Charve 2004], Theorems 1.2 and 1.3
from [Charve 2006] and Theorem 4 from [Charve 2008] with the least possible extra regularity for the
initial data and the biggest possible blowing-up initial oscillatory part (as a negative power of "). The
energy methods used in [Charve 2004; 2005; 2006] would only allow at best an initial blow-up of U0;";osc

as jln "jˇ. Indeed, these methods require the use of energy estimates for the oscillations W" and W T
" and

produce large terms involving exp.kU0;";osck
2/ that can only be balanced thanks to "
 provided by the

Strichartz estimates. We need to change our point of view and try to not resort to energy estimates for
these oscillations. This will require us to make more flexible dispersive estimates so that the oscillations
can be estimated with minimal use of their energy (the only term where it was unavoidable is F8; see
below for details). We will here state only the new results. Let us define (in the whole space R3) the
family of spaces PEsT for s 2 R,

PEsT D CT . PH s/\L2T .
PH sC1/;

endowed with the following norm (where we define �0Dmin.�; �0/; see the Appendix for other notation):

kf k2
PEsT

def
D kf k2

L1T
PH s
C �0

Z T

0

kf .�/k2
PH sC1

d�:

When T D1 we write PEs and the corresponding norm is over RC in time. Let us now state the main
result of this article (we do not assume � D �0).

Theorem 6. Assume F ¤ 1. For any C0 � 1, ı 2
�
0; 1
10

�
, and ˛0 > 0, there exist five constants

"0; �;B0; �; ˇ > 0 (depending on F; �; �0;C0; ˛0) such that for all " 2 �0; "0� and all divergence-free
initial data U0;" D U0;";QGCU0;";osc satisfying

(1) U0;";QG converges towards some quasigeostrophic vector field zU0;QG 2H
1
2
Cı with�

kU0;";QG� zU0;QGkH1=2Cı � C0"
˛0 ;

k zU0;QGkH1=2Cı � C0;
(1-4)

(2) kU0;";osck PFı
� C0"

��ı, where the space PFı is defined as follows
�
q D 2

1Cı

�
:

PFı D

(
PH
1
2
�ı
\ PH

1
2
Cı if � D �0;

PB
1
2
q;q \

PH
1
2
Cı if � ¤ �0;
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then system (QG) has a unique global solution zUQG 2 PE
0\ PE

1
2
Cı , and system (PE") has a unique global

solution U" 2 PEs for all s 2
�
1
2
� �ı; 1

2
C �ı

�
, which converges towards zUQG with the estimate

kU"� zUQGkL2L1 � B0"
min.˛0;ıˇ/:

Remark 7. In the general case, � is small
�
less than 1

4000

�
, whereas in the case � D �0, � < 1

2
(and is as

close to 1
2

as we want). We refer to the next section for a more precise statement of this theorem.

Remark 8. It is interesting to adapt these results to the case with only stratification.

1.4. Precise statement of the main results. This section is devoted to giving the precise statement of
Theorem 6, which will be split into two formulations based on whether we have � D �0 or � ¤ �0. This
statement requires us to introduce auxiliary systems, which is the subject of the first two subsections, and
state additional regularity properties for the solution of the limit system (we refer to the third subsection).
Then we will state the results we will prove in this article.

1.4.1. Auxiliary systems in the general case � ¤ �0.

Remark 9. In what follows, we will systematically write, for f W R3! R4, f � rf D
P3
iD1 fi@if .

Following [Charve 2004] we rewrite the primitive system, projecting onto the divergence-free vector
fields (P is the classical Leray projector):�

@tU"�LU"C
1
"

PAU" D�P.U" � rU"/:

U"jtD0 D U0;":
(1-5)

Notice that we can rewrite (QG) as follows (we also refer to [Charve 2004] where it was first used):�
@t zUQG�LU"C

1
"

PA zUQG D�P. zUQG � r zUQG/CG;

zUQGjtD0 D zU0;QG:
(QG)

where

G DGbCGl
def
D PP. zUQG � r zUQG/�F.� � �

0/���2F

0BB@
�F@2@

2
3

F@1@
2
3

0

.@21C @
2
2/@3

1CCA z�QG: (1-6)

Remark 10. It is important to notice that G is the sum of two terms, both divergence-free and whose
potential vorticity is zero, which is crucial to fully take advantage of (A-84). We refer to [Charve 2004;
2008] for more details.

As explained in [Charve 2004; 2005; 2006; 2008; 2018a; Charve and Ngo 2011], in the case F ¤ 1
the oscillatory part enjoys dispersive properties that allow us to obtain Strichartz-type estimates. More
precisely the oscillatory part satisfies system (A-79) (we refer to the Appendix for details), and in all the
cited articles, we used that the frequency-truncated third and fourth projections of the oscillatory part
satisfy Strichartz-type estimates as given by Proposition 46. As in [Charve 2004; 2008; Charve and Ngo
2011], in the present article we will consider some particular oscillatory terms whose existence is devoted
to absorbing some constant terms in order to get the desired convergence rate for the asymptotics as "
goes to zero.
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More precisely, we introduce the following linear system (we refer to the Appendix for the notation
r"; R" and Pr";R"): �

@tW
T
" �LW

T
" C

1
"

PAW T
" D�Pr";R"P3C4G;

W T
" jtD0 D Pr";R"P3C4U0;";osc:

(1-7)

Remark 11. We recall that it would be useless to consider the free system: indeed the system satisfied
by U"� zUQG features G as an external force term which is independent of " and blocks any convergence.
It is then necessary to absorb a large part of this term, which is the reason why we considered such an
external force term in system (1-7). In other words, W T

" is small due to dispersive properties, but still it
allows us to “eat” a large part of G. We refer to [Charve 2004] for more details.

Finally we define ı" D U"� zUQG�W
T
" , which satisfies the following system (see [Charve 2004] for

details): �
@tı"�Lı"C

1
"

PAı" D
P8
iD1 Fi Cf

bCf l ;

ı"jtD0 D .U0;";QG� zU0;QG/C .Id�Pr";R"/U0;";oscCPr";R"P2U0;";osc;
(1-8)

where we define

F1
def
D�P.ı"�rı"/; F2

def
D�P.ı"�r zUQG/; F3

def
D�P. zUQG�rı"/; F4

def
D�P.ı"�rW

T
" /;

F5
def
D�P.W T

" �rı"/; F6
def
D�P. zUQG�rW

T
" /; F7

def
D�P.W T

" �r
zUQG/; F8

def
D�P.W T

" �rW
T
" /;

f b
def
D�.Id�Pr";R"/G

b
�Pr";R"P2G

b;

f l
def
D�.Id�Pr";R"/G

l
�Pr";R"P2G

l :

(1-9)

1.4.2. Auxiliary systems in the special case � D �0. In this case, many simplifications arise in the
computations of the eigenvalues and eigenvectors of system (A-79) (see Remark 44). In this case, as used
in the first part of [Charve 2006], we can use the following system instead of (1-7):�

@tW"�LW"C
1
"

PAW" D�Gb;
W"jtD0 D U0;";osc:

(1-10)

We will be able in the present article to provide for this system much more accurate Strichartz
estimates without any frequency restrictions (generalizing the ones obtained in [Charve 2006]). If we
write ı" D U"� zUQG�W", it satisfies the system�

@tı"�Lı"C
1
"

PAı" D
P8
iD1 Fi ;

ı"jtD0 D U0;";QG� zU0;QG:
(1-11)

Remark 12. We choose here to use the same notation as in the general case; the only difference is that
W T
" has to be replaced by W".

1.4.3. The limit system. Let us recall that Theorem 2 from [Charve 2004] states that when the initial
data zU0;QG is in the inhomogeneous Sobolev space H 1, system (QG) has a unique global solution
zUQG 2 PE

0\ PE1; moreover there exists a constant C DC.ı/ > 0 such that for all s 2 Œ0; 1� and all t 2RC
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(and denoting as usual �0 Dmin.�; �0/ > 0)

k zUQGk
2

L1t
PH s
C �0

Z t

0

kr zUQG.�/k
2
PH s
d� � C.k zU0;QGk

1�s
L2
k zU0;QGk

s
PH1
/2 � Ck zU0;QGk

2
H1 :

In [Charve 2008] we used real interpolation methods from [Gallagher and Planchon 2002] (we also refer
to [Calderón 1990]) to obtain a much more accurate estimate, which allowed us to bound the energy in
PE0 \ PE

1
2
Cı only with the H

1
2
Cı initial norm instead of the full H 1-norm (we refer to Lemma 2:1 in

[Charve 2008]; our aim was to consider less regular initial data): for any ı > 0 there exists a constant
C D Cı;�0 > 0 such that for all t 2 RC

k zUQGk
2
L1t H

1=2CıC�0

Z t

0

kr zUQG.�/k
2
H1=2Cı d��Cı;�0k

zU0;QGk
2
H1=2Cı max.1;k zU0;QGk

1
ı

H1=2Cı /: (1-12)

Remark 13. The reader may wonder why the right-hand side is not simply Cı;�0k zU0;QGk
2C 1

ı

H1=2Cı as
stated in [Charve 2008; Gallagher and Planchon 2002]. This is the right formulation when k zU0;QGkH1=2Cı

is large (in [Charve 2008] we implicitly focused on large initial QG part). When it is small, the right-hand
side is even simpler: Cı;�0k zU0;QGk

2
H1=2Cı . In the proof in [Charve 2008] of (1-12) it is crucial to use

Lemma 4.3 from [Gallagher and Planchon 2002], and for this some threshold j0 � 1 has to be defined:

� either k zU0;QGkH1=2Cı > 2
3
c�02

2ı (where c is the smallness constant from the Fujita–Kato theorem),
and we can define the threshold j0 as stated in [Charve 2008] so that the right-hand side of (1-12) is

C0.1� 2
�4ı/�2

�
3

2c�0

�1
ı

k zU0;QGk
2C 1

ı

H1=2Cı

(C0 is a universal constant),

� or k zU0;QGkH1=2Cı �
2
3
c�02

2ı and then we can simply choose the threshold j0 D 1 and obtain (1-12)
with right-hand side that can be simplified into C0.1� 2�4ı/�2k zU0;QGk

2
H1=2Cı .

In other words, the right-hand side of (1-12) is in general

C0.1� 2
�4ı/�2ık zU0;QGk

2
H1=2Cı max

�
1;
1

4

�
3

2c�0
k zU0;QGkH1=2Cı

�1
ı
�
:

Our first result is devoted to the limit system and generalizes Theorem 2 from [Charve 2004] using the
precise estimates obtained in [Charve 2008]:

Theorem 14. Let ı > 0 and zU0;QG 2H
1
2
Cı be a quasigeostrophic vector field (that is, zU0;QGDQ zU0;QG).

Then system (QG) has a unique global solution in E
1
2
Cı
D PE0\ PE

1
2
Cı and the previous estimates hold

true.

1.4.4. Statement in the case � D �0.

Theorem 15. Assume F ¤ 1. For any C0 � 1, ı 2
�
0; 1
10

�
, 
 2

�
0; ı
2

�
, and any ˛0 > 0, if we define � > 0

such that

 D .1� 2�/ ı

2

�
that is, �D 1

2

�
1� 2


2

��
;
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there exist "0;B0 > 0 (both of them depending on F; �;C0; ı; 
; ˛0) such that for all " 2 �0; "0� and all
divergence-free initial data U0;" D U0;";QGCU0;";osc satisfying

(1) there exists a quasigeostrophic vector field zU0;QG 2H
1
2
Cı such that�

kU0;";QG� zU0;QGkH1=2Cı � C0"
˛0 ;

k zU0;QGkH1=2Cı � C0;
(1-13)

(2) U0;";osc 2 PH
1
2 \ PH

1
2
Cı with kU0;";osck PH1=2\ PH1=2Cı � C0"

�
 ,

then system (PE") has a unique global solution U" 2 PEs for all s 2
�
1
2
; 1
2
C �ı

�
, and if we define

� zUQG as the unique global solution of (QG) in PE0\ PE
1
2
Cı ,

� W" as the unique global solution of (1-10) in PE
1
2 \ PE

1
2
Cı ,

� ı" D U"� zUQG�W",

then for all s 2
�
1
2
; 1
2
C �ı

�
kı"k PEs � B0"

min.˛0;
ı�
2
/: (1-14)

Moreover if we ask for more low-frequency regularity for the initial oscillating part, that is, U0;";osc 2

PH
1
2
�ı
\ PH

1
2
Cı with kU0;";osck PH1=2�ı\ PH1=2Cı � C0"

�
 then (1-14) is true for all s 2
�
1
2
� �ı; 1

2
C �ı

�
and we also can get rid of the oscillations W" and obtain that

kU"� zUQGkL2L1 � B0"
min.˛0;

ı�
2
/:

Remark 16. Compared to Theorem 1.3 from [Charve 2006] we highly reduced the regularity of the
initial data, only the quasigeostrophic part lies in a inhomogeneous space, and we allow a far greater
blowup in " for the oscillating part, keeping a satisfying convergence rate as a power of " (in accordance
with physicists) for any size of the initial quasigeostrophic part.

Remark 17. In [Lee and Takada 2017; Iwabuchi et al. 2017] there is a smallness condition for the initial
quasigeostrophic part (and also for the oscillating part in some sense). Their result states there exist
ı1;2 > 0 such that for any initial data satisfying (1-3), there exists a global unique mild solution for any
" > 0. This has to be compared with our formulation, where we prove that for any size C0 and any initial
data with kU0;";QGk � C0 and kU0;";osck � C0"

�
, there exists a unique global solution when "� "0.

Remark 18. Compared to the assumptions in [Iwabuchi et al. 2017, Theorems 1.3 and 1.5], we reach
the same regularity for the oscillating part, we ask more regularity for the initial QG-part, and we ask
more low-frequency regularity for both of them (we have to assume U0;" 2 PH

1
2 as we need to consider

Fujita–Kato strong solutions)�
U0;";osc 2 PH

1
2 \ PH

1
2
Cı . PH

1
2
Cı in [Iwabuchi et al. 2017]/;

U0;";QG 2H
1
2
Cı . PH

1
2 in [Iwabuchi et al. 2017]/;

but we do not ask any smallness to the initial quasigeostrophic part, and we provide global strong solutions
in the energy spaces PEs for any s 2

�
1
2
� �ı; 1

2
C �ı

�
(compared to mild solutions in L4.RC; PW

1
2
;3/).
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Remark 19. At first sight our blow-up rate seems slightly less general than the one from [Iwabuchi et al.
2017]

�
in that work they require "

ı
2 kU0;";osck PH1=2Cı be smaller than some ı2 > 0, and in the present

work, we choose any C0 and require "
kU0;";osck PH1=2\ PH1=2Cı � C0 for any 
 < ı
2

�
but in our result we

look for explicit rates of convergence as powers of ". We refer to Remark 32 for more details.

Remark 20. We refer to Remark 48 for a comparison of the Strichartz estimates we use and the ones
from [Iwabuchi et al. 2017].

1.4.5. Statement in the general case � ¤ �0.

Theorem 21. Assume F ¤ 1. Let ı 2
�
0; 1
2

�
, q D 2

1Cı
, ˛0 > 0, m 2

�
0; 1
100

�
, and M;� > 0 such that

0 < 2�� M
m
�
1
2

1
5Cı

;

and let 
0 2
�
0; Mı

4

�
. If we define R" D "�M and r" D "m then for all C0 � 1 there exist "0, B0 (all of

them depending on F; �; �0;C0; ı; 
; ˛0) such that for all initial data U0;" D U0;";oscCU0;";QG satisfying

(1) there exists a quasigeostrophic vector field zU0;QG 2H
1
2
Cı such that�

kU0;";QG� zU0;QGkH1=2Cı � C0"
˛0 ;

k zU0;QGkH1=2Cı � C0;
(1-15)

(2) U0;";osc 2 PB
1
2
q;q \

PH
1
2
Cı with kU0;";osck PB1=2q;q \ PH1=2Cı � C0"

�
 ,

system (PE") has a unique global solution U" 2 PEs for all s 2
�
1
2
� �ı; 1

2
C �ı

�
. Moreover, with the same

notation as in Theorem 14 (replacing W" by W T
" , which involves m;M ),

kı"k PEs � B0"
min.˛0;Mı

4
/; (1-16)

and finally, thanks to the Strichartz estimates, we can get rid of the oscillations W T
" and obtain

kU"� zUQGkL2.RC;L1/ � B0"
min.˛0;Mı

4
/:

Remark 22. This generalizes the first result from [Charve 2006]: in the present work we reduced the
assumptions on high and low frequencies for the initial oscillating part, and the choice for r" and R" now
correctly fits the power of " provided by the Strichartz estimates, which produces a convergence rate as a
power of " without any assumption on the viscosities.

Remark 23. The low-frequencies assumption U0;";osc 2 PB
1
2
q;q is mainly needed to produce a pos-

itive power of " when estimating k�.jDj=R"/�.jD3j=r"/U0;";osck PH s

�
the other need is to reach

regularities less than 1
2

�
, and the high-frequencies assumption U0;";osc 2 PH

1
2
Cı helps to estimate

k.1��.jDj=R"//U0;";osck PH s .

Remark 24. The classical Bernstein estimate ensures that PB
1
2
q;q ,! PH

1
2
� 3
2
ı so that U0;";osc 2 PH s for all

s 2
�
1
2
�
3
2
ı; 1
2
C ı

�
.
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The rest of this article is structured as follows: we will first prove Theorem 14, then turn to the proof
of Theorem 15 in the case � D �0 (much easier computations to obtain the eigenvalues and vectors, but
needs more careful use for the Strichartz estimates as W" is not frequency-truncated) and we will finish
with the proof of Theorem 21 (the eigenvectors are not mutually orthogonal anymore, and care is needed
for the frequency-truncated terms). We end the article with an Appendix gathering results on Sobolev
and Besov spaces, the process of diagonalization of system (A-79), and the new Strichartz estimates that
allow us to reach this level of precision.

2. Proof of the results

2.1. The limit system. If zU0;QG is as described in Theorem 14, we regularize it by introducing for � > 0
(where � is the smooth cut-off function introduced in the Appendix)

zU �0;QG
def
D �

�
jDj

�

�
zU0;QG:

Then zU �0;QG 2 H
1 and applying Theorem 2 from [Charve 2004] there exists a unique global solution

zU �QG 2
PE0\ PE1 to system (QG) and thanks to Lemma 2:1 from [Charve 2008] we apply (1-12) to zU �QG

and for all t 2 RC (taking C0 Dmax.1; k zU0;QGk PH1=2Cı /)

k zU �QGk
2
L1t H

1=2Cı Cmin.�; �0/
Z t

0

kr zU �QG.�/k
2
H1=2Cı d�

� Cı;�0





�� jDj�
�
zU0;QG





2
H1=2Cı

max
�
1;





�� jDj�
�
zU0;QG





 1ı
H1=2Cı

�
� Cı;�0k

zU0;QGk
2
H1=2Cı max.1; k zU0;QGk

1
ı

H1=2Cı /� Cı;�0C
2C 1

ı

0 : (2-17)

Then (taking �D n) we prove that . zU nQG/n2N� is a Cauchy sequence in E
1
2
Cı
D PE0\ PE

1
2
Cı. For n�m,

let us define Qın;m D zU nQG�
zUmQG, which satisfies the system8<:

@t Qın;m�� Qın;m D�Q. zU nQG � r
Qın;mC Qın;m � r zU

m
QG/;

Qın;mjtD0 D

�
�

�
jDj

n

�
��

�
jDj

m

��
zU0;QG:

(2-18)

For any s 2
�
0; 1
2
C ı

�
, taking the PH s-inner product and then using the classical Sobolev product laws

(see Proposition 38), we get
�
.s1; s2/ 2

˚�
1; s� 1

2

�
;
�
s; 1
2

�	�
1

2

d

dt
kQın;mk

2
PH s
C �0kr Qın;mk

2
PH s

� Ck zU nQG � r
Qın;mC Qın;m � r zU

m
QGk PH s�1k

Qın;mk PH sC1

� C.k zU nQGk PH1k
Qın;mk

1
2

PH s
kQın;mk

3
2

PH sC1
Ck zUmQGk PH3=2k

Qın;mk PH sk
Qın;mk PH sC1/

�
�0

2
kr Qın;mk

2
PH s
C
C

�0
kQın;mk

2
PH s

�
kr zUmQGk

2
PH1=2
C
1

�20
k zU nQGk

2
PH1=2
kr zU nQGk

2
PH1=2

�
: (2-19)
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Thanks to the Gronwall lemma and using (2-17), we obtain that

kQın;mk
2
E1=2Cı

� kQın;m.0/k
2
H1=2Cıe

.Cı;�0=�
2
0/C

2C1=ı
0 .1C.Cı;�0=�

2
0/C

2C1=ı
0 /:

As kQın;m.0/kH1=2Cı goes to zero when mDmin.n;m/ goes to infinity, the sequence is Cauchy and if
we denote by zUQG its limit in E

1
2
Cı, we immediately get that it solves system (QG) and satisfies the

expected estimates. �
As an immediate consequence we easily bound Gb;l (introduced with the auxiliary systems) as follows:

Proposition 25. There exists a constant CF > 0 such that, for all ı 2
�
0; 1
2

�
and s 2

�
0; 1
2
C ı

�
,Z 1

0

kGb.�/k PH s d� �
CF

�0
Cı;�0C

2C 1
ı

0 ;Z 1
0

kGl.�/k2
PH s�1

d� � CF
j� � �0j2

�0
Cı;�0C

2C 1
ı

0 :

(2-20)

Remark 26. In [Charve 2004] the previous terms were estimated for any s 2 Œ0; 1� with k zU0;QGkH1 .

Proof of Proposition 25. Gl is estimated as in [Charve 2004], and for Gb , as we wish to use only 1
2
C ı

derivatives on zU0;QG, a much better way than in that work is to write (thanks to the Bony decomposition;
see the Appendix for details)

kGbk PH s � CF k zUQG � r zUQGk PH s � CF k div. zUQG˝ zUQG/k PH s

� CF .2kT zUQG
zUQGk PH sC1 CkR. zUQG; zUQG/k PH sC1/

� CF .2k zUQGkL1 Ck zUQGk PB01;1
/k zUQGk PH sC1 :

(2-21)

Then using the injection PB0
1;1 ,! L1 together with the Bernstein lemma and Lemma 27 below (whose

proof is close to Lemma 5 from [Charve 2016]), we obtain that

2k zUQGkL1 Ck zUQGk PB01;1
� 3k zUQGk PB3=22;1

� Ck zUQGk
1
2

PH3=2�ı
k zUQGk

1
2

PH3=2Cı
; (2-22)

and we end up with (using also (1-12))Z 1
0

kGbk PH s d� � CF kr zUQGk
1
2

L2 PH1=2�ı
kr zUQGk

1
2

L2 PH1=2Cı
kr zUQGkL2 PH s

�
CF

�0
Cı;�0C

2C 1
ı

0 : (2-23)

This completes the proof of the proposition. �

Lemma 27. For any ˛; ˇ > 0 there exists a constant C˛;ˇ > 0 such that for any u 2 PH s�˛ \ PH sCˇ we
have u 2 PBs2;1 and

kuk PBs2;1
� C˛;ˇkuk

ˇ
˛Cˇ

PH s�˛
kuk

˛
˛Cˇ

PH sCˇ
: (2-24)
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2.2. The case � D �0.

2.2.1. Estimates for W". Let us first focus on the linear system (1-10). Let us recall that thanks to
Proposition 25 we obtain that (see [Charve 2004] for details) for any s 2

�
1
2
; 1
2
C ı

�
kW"k

2
PEs
�

�
kU0;";osck

2
PH s
C
1

2

Z t

0

kGb.�/k PH s

�
e
1
2

R t
0 kG

b.�/k PHs � D0.kU0;";osck
2
PH s
C 1/; (2-25)

with
D0

def
D
CF

�0
Cı;�0C

2C 1
ı

0 e
CF
�0
Cı;�0C

2C1=ı
0 :

One of the main ingredients is to provide a generalization of the Strichartz estimates obtained in [Charve
2006]. Our new Strichartz estimates are much more flexible and we refer to the Appendix for the most
general formulation (see Propositions 47 and 51). We also postpone to the end of the next section the
precise statement of the Strichartz estimates we will use.

2.2.2. Energy estimates. As explained in Section 1.3, we already have a local strong solution U" whose
lifespan is denoted by T �" . As seen in the previous section zUQG and W" exist globally, and ı" is well-
defined in PE

1
2

T \
PE
1
2
Cı

T for all T < T �" and we can perform for any s 2
�
1
2
; 1
2
C �ı

�
the inner product in

PH s of system (1-11) with ı". We have to bound each term from the right-hand side.
Let us begin with the easiest terms, namely F1, F2 and F3: thanks to the classical Sobolev product

laws (.s1; s2/D
�
1
2
; s
�
; see Proposition 38), we obtain that

j.F1 j ı"/ PH s j � kı" � rı"k PH s�1kı"k PH sC1 � Ckı"k PH
1
2
kı"k

2
PH sC1

: (2-26)

Similarly we obtain that

j.F2 j ı"/ PH s j � Ckr zUQGk PH
1
2
kı"k PH skı"k PH sC1 �

�

16
kı"k

2
PH sC1
C
C

�
kr zUQGk

2
PH1=2
kı"k

2
PH s
;

j.F3 j ı"/ PH s j � Ck zUQGk PH1kı"k PH sC1=2kı"k PH sC1 �
�

16
kı"k

2
PH sC1
C
C

�3
k zUQGk

4
PH1
kı"k

2
PH s
:

(2-27)

Compared to [Charve 2004; 2006] we cannot use for the other Fi the same methods because they would
produce (after using the Gronwall lemma) a coefficient of the form ekW"k PEs which would ruin our efforts
to allow large initial blow up for the oscillating part (which could only be of size .� ln "/ˇ ). We need to
estimate carefully these terms and especially use as much as possible the new Strichartz estimates (giving
positive powers of " thanks to Proposition 47) and the least possible basic energy estimates on W" (that
produce "�
 from (2-25)).

The most obvious way would be to use the paraproduct and remainder laws (see the Appendix). For
example with F7, as s� 1 < 0, we have

j.F7 j ı"/ PH s j � kW"�r zUQGk PH s�1kı"k PH sC1

�C.kTW"r
zUQGk PH s�1CkTr zUQG

W"k PH s�1Ckdiv.R.W"; zUQG//k PH s�1/kı"k PH sC1

�C.kW"kL1kr zUQGk PH s�1Ckr zUQGk PH s�1kW"k PB01;1
CkW"k PB01;1

k zUQGk PH s /kı"k PH sC1

�CkW"k PB0
1;1
k zUQGk PH skı"k PH sC1 �

�

16
kı"k

2
PH sC1
C
C

�
kW"k

2
PB0
1;1

k zUQGk
2
PH s
: (2-28)
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This result could be also usable for F5 but to deal with kW"kLp PB0
1;1

from Proposition 47 we would have
to use Lemma 27 which would force us to have a slightly smaller range for 
 . More important, for F8
this method would force us to require 
 < ı

4
, which is clearly not optimal.

Finally, the most important problem is that the previous estimates cannot be used to estimate F4 and F6.
Indeed for instance if we wish to estimate F6 the same way

kF6k PH s�1 � C.kT zUQG
rW"k PH s�1 CkTrW"

zUQGk PH s�1 Ck div.R. zUQG; W"//k PH s�1/;

and the first paraproduct (see the Appendix for the Bony decomposition) leads to an obstruction as the
only possibilities to estimate it are (for ˇ > s)

kT zUQG
rW"k PH s�1 � C

�
k zUQGkL1kW"k PH s ;

k zUQGk PH s�ˇkW"k PBˇ1;1
;

(2-29)

In the first estimate each term is well-defined but the PH s-norm of W" produces negative powers of ", and
in the second one the first term is not defined ( zUQG is not defined for negative regularities). It is possible
to deal with this term using the same idea as in [Charve 2004] (with a; b � 1 so that 1

a
C
1
b
D 1),Z t

0

k zUQG � rW"k
2
PH s�1

d� � C

Z t

0

k zUQG � rW"kL2k zUQG � rW"k PH2.s�1/ d�

� k zUQGkL1L2krW"kLaL1k zUQGkLb PH sC1=2kW"kL1 PH s ; (2-30)

and due to the gradient pounding on W", the most interesting use of Proposition 47 consists in choosing
a as close as possible to 1, which implies that b is very large. As sC 1

2
� 1, this forces us to use (1-12)

for regularity index close to 1 (in this case it would be necessary to require that zU0;QG 2H
s with s close

to 1), which was something we wished to avoid as we only consider indices s � 1
2
Cı. Moreover it would

also produce a clearly nonoptimal decrease in ".
Finally both of these two methods fail for F4: the former for the same reason as for F6, and the latter

as we cannot consider kı"kL2 : there is a lack of derivatives pounding on ı".
To overcome this lack of derivatives, we will distribute them differently among the whole PH s-inner

product. We will do this for all the last five external force terms and the idea will be to do as in [Charve
2016; 2018a] and deal with the nonlocal operator jDjs applied to a product and dispatch s derivatives
on ı" and obtain something close to the second line of (2-29). More precisely, we directly deal with the
inner product as follows:

j.F4 j ı"/ PH s j D j.div.ı"˝W"/ j ı"/ PH s j D j.jDj
s.ı" �W"/ j jDj

s
rı"/L2 j: (2-31)

The nonlocal operator jDjs can be written as a singular principal value integral (we refer to [Stein 1970;
Córdoba and Córdoba 2004; Hmidi and Keraani 2007; Abidi and Hmidi 2008; Charve 2016; 2018a]) and
when the index s lies in �0; 1Œ

�
which is the case here as s is close to 1

2

�
it is a classical singular integral:

jDjsf .x/D Cs

Z
R3

f .x/�f .y/

jx�yj3Cs
dy D Cs

Z
R3

f .x/�f .x�y/

jyj3Cs
dy:
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Let us recall that an equivalent formulation of the Besov norm involves translations as stated in the
following result:

Theorem 28 [Bahouri et al. 2011, 2.36]. Let s 2 �0; 1Œ and p; r 2 Œ1;1�. There exists a constant C such
that for any u 2 PBsp;r

C�1kuk PBsp;r
� k
ku. � �y/�u. � /kLp

jyjs
k
Lr.Rd I dy

jyjd
/ � Ckuk PBsp;r

:

From this we can prove exactly as in [Charve 2018a] (see Section A.3.1 there) the following result:

Proposition 29. For any s 2 �0; 1Œ and any smooth functions f; g we can write

jDjs.fg/D .jDjsf /gCf jDjsgCMs.f; g/;

where the bilinear operator Ms is defined for all x 2 R3 by

Ms.f; g/.x/D

Z
R3

.f .x/�f .x�y//.g.x/�g.x�y//

jyj3Cs
dy: (2-32)

Moreover there exists a constant Cs such that for all f; g and all p; p1; p2; r1; r2 2 Œ1;1� and s1; s2 > 0
satisfying

1

p
D

1

p1
C

1

p2
; 1D

1

r1
C
1

r2
; s1C s2 D s;

we have

kMs.f; g/kLp � Cskf k PBs1p1;r1
kgk PBs2p2;r2

: (2-33)

Remark 30. The additional term Ms allows us to freely dispatch the derivatives as desired provided
that s1; s2 > 0, which will force us to spend a small extra amount of derivative in order to meet these
conditions. So even if it is not possible to use Proposition 29 for .s1; s2/D .s; 0/, our method will enable
us to do nearly as if we could estimate kMs.ı"; W"/kL2 by kı"k PH1=2kjDj

sW"kL6 .

More precisely for a small ˛1 > 0, instead of (2-31), we will write (also using the Sobolev injections):

j.F6 j ı"/ PH s j

D j.div. zUQG˝W"/ j ı"/ PH s jD j.jDj
sC˛1. zUQG�W"/ j jDj

s�˛1rı"/L2 j

� k.jDjsC˛1 zUQG/�W"C zUQG�jDj
sC˛1W"CMsC˛1.

zUQG;W"/kL6=.3C2˛1/ �kjDj
s�˛1rı"kL6=.3�2˛1/

�C.kjDjsC˛1 zUQGkL2kW"kL3=˛1Ck
zUQGkL3kjDj

sC˛1W"kL6=.1C2˛1/Ck
zUQGk PH skW"k PB˛1

3=˛1;2

/

�kjDjs�˛1rı"k PH˛1

�C.k zUQGk PH sC˛1
kW"kL3=˛1Ck

zUQGk PH1=2kjDj
sC˛1W"kL6=.1C2˛1/Ck

zUQGk PH skW"k PB˛1
3=˛1;2

/�kı"k PH sC1

�
�

16
kı"k

2
PH sC1
C
C

�

�
k zUQGk

2.1�˛1/

PH s
k zUQGk

2˛1
PH sC1
kW"k

2
L3=˛1

Ck zUQGk
2
PH1=2
kjDjsC˛1W"k

2
L6=.1C2˛1/

Ck zUQGk
2
PH s
kW"k

2
PB
˛1
3=˛1;2

�
: (2-34)
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Remark 31. Notice that as ı"; W"; zUQG are divergence-free, we will systematically (thanks to integration
by parts) transfer the divergence as a gradient on the right-hand part of the inner product, and as a
consequence the computations are the same respectively for F4 and F5 and for F6 and F7.

Let us continue with F4, by the classical Sobolev interpolation and Young estimates, we can write that
(for ˛2 > 0 small)

j.F4 j ı"/ PH s j

D j.div.ı"˝W"/ j ı"/ PH s jD j.jDj
sC˛2.ı"�W"/ j jDj

s�˛2rı"/L2 j

�Ck.jDjsC˛2/�W"Cı"�jDj
sC˛2W"CMsC˛2.ı";W"/kL6=.3C2˛2/ �kjDj

s�˛2rı"kL6=.3�2˛2/

�C
�
kjDjsC˛2ı"kL2kW"kL3=˛2Ckı"kL3kjDj

sC˛2W"kL6=.1C2˛2/Ckı"k PH skW"k PB˛2
3=˛2;2

�
�kjDjs�˛2rı"k PH˛2

�Ckı"k
1�˛2
PH s
kı"k

1C˛2
PH sC1
kW"kL3=˛2CC

�
kı"kL3kjDj

sC˛2W"kL6=.1C2˛2/Ckı"k PH skW"k PB˛2
3=˛2;2

�
kı"k PH sC1

�
�

16
kı"k

2
PH sC1

CCkı"k
2
PH s

�
1

�
1C˛2
1�˛2

kW"k
2

1�˛2

L3=˛2
C
1

�
kW"k

2
PB
˛2
3=˛2;2

�
C
C

�
kı"k

2
PH1=2
kjDjsC˛2W"k

2
L6=.1C2˛2/

: (2-35)

Finally we estimate F8 with the same method, but the termMsC˛3.W"; W"/ has to be estimated differently
(otherwise we end up with the same problem as explained in the beginning of this section): instead of
estimating it as for the other terms by

kW"k PH skW"k PB˛3
3=˛3;2

(the first term being L1, and the second L2 in time), we will estimate it by

kW"k PH sC˛3�ˇı
kW"k PBˇı

3=˛3;2

;

for small enough ˛3; ˇ > 0 so that the first term keeps L1 in time and the second one is L2 (we try to
be as close as possible to the forbidden choice ˇ D 0). As we will make precise below, dealing with

kW"k
2.1�˛3/

L1 PH s
kW"k

2˛3

L2 PH s
kW"k

2
L2L3=˛3

(for the first term) will only lead to 
 < ı
4

, whereas

kW"k
2

L1 PH sC˛3
kW"k

2
L2L3=˛3

will allow us to reach 
 < ı
2

. For the same reason we will estimate the other term by

kW"kL2 PBˇı
3=˛3;2

instead of

kW"kL2=.1�˛3/ PBˇı
3=˛3;2

:
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Although this choice seems very close to the other, it allows us to use a smaller p in the Strichartz
estimates, which allows a slightly wider range for � helping us to reach 
 < ı

2
instead of 
 < ı

4
. Once

more, we try to obtain as close as possible to what we would get if it Proposition 29 could be applied for
s1 D sC˛3 and s2 D 0:

j.F8 j ı"/ PH s jD kjDj
sC˛3.W"˝W"/kL6=.3C2˛3/kjDj

s�˛3rı"kL6=.3�2˛3/

� .2kjDjsC˛3W"kL2kW"kL3=˛3CkW"k PH sC˛3�ˇı
kW"k PBˇı

3=˛3;2

/�kjDjs�˛3rı"k PH˛3

�
�

16
kı"k

2
PH sC1
C
C

�
.kW"k

2
PH sC˛3

kW"k
2
L3=˛3

CkW"k
2
PH sC˛3�ˇı

kW"k
2
PB
ˇı

3=˛3;2

/: (2-36)

We can now gather all the external force term estimates (2-26), (2-27), (2-35), (2-34), (2-36) and taking
the PH s-inner product of system (1-11) with ı", we obtain that for all s 2

�
1
2
; 1
2
C �ı

�
and all t < T �"

1

2

d

dt
kı"k

2
PH s
C �krı"k

2
PH s

�

�
Ckı"k PH1=2 C 8

�

16

�
kı"k

2
PH s

C
C

�
kı"k

2
PH s

�
kr zUQGk

2
PH1=2

�
1C

1

�2
k zUQGk

2
PH1=2

�
C

1

�
2˛2
1�˛2

kW"k
2

1�˛2

L3=˛2
CkW"k

2
PB
˛2
3=˛2;2

�
C
C

�

�
k zUQGk

2.1�˛1/

PH s
k zUQGk

2˛1
PH sC1
kW"k

2
L3=˛1

Ck zUQGk
2
PH1=2
kjDjsC˛1W"k

2
L6=.1C2˛1/

Ck zUQGk
2
PH s
kW"k

2
PB
˛1
3=˛1;2

Ckı"k
2
PH1=2
kjDjsC˛2W"k

2
L6=.1C2˛2/

CkW"k
2
PH sC˛3

kW"k
2
L3=˛3

CkW"k
2
PH sC˛3�ˇı

kW"k
2
PB
ˇı

3=˛3;2

�
: (2-37)

In order to perform the bootstrap argument (we refer to in [Charve 2004; 2006]), let us now define

T"
def
D sup

�
t 2 Œ0; T �" Œ W for all t 0 � t; kı".t 0/k PH1=2 �

�

4C

�
: (2-38)

Due to the assumptions, kı".0/kH1=2Cı � C0"
˛0 so that we are sure that T" > 0 if

"�

�
�

8CC0

� 1
˛0

:

Thanks to the Gronwall and Young estimates, and estimating the first terms in the last block asZ 1
0

k zUQGk
2.1�˛1/

PH s
k zUQGk

2˛1
PH sC1
kW"k

2
L3=˛1

d�

�

�Z 1
0

k zUQGk
2
PH sC1

d�

�̨
1
�Z 1

0

kW"k
2

1�˛1

L3=˛1
k zUQGk

2
PH s
d�

�1�˛1
; (2-39)

we can now state that for all s 2
�
1
2
; 1
2
C�ı

�
and all t � T", we have (as W" and zUQG are globally defined,

each time integral in the right-hand side is over RC)
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kı".t/k
2
PH s
C
�

2

Z t

0

krı".�/k
2
PH s
d�

�

�
kı".0/k

2
PH s
C
C

�

�
k zUQGk

2.1�˛1/

L1 PH s
k zUQGk

2˛1

L2 PH sC1
kW"k

2
L2=.1�˛1/L3=˛1

Ck zUQGk
2

L1 PH1=2
kjDjsC˛1W"k

2
L2L6=.1C2˛1/

Ck zUQGk
2

L1 PH s
kW"k

2

L2 PB
˛1
3=˛1;2

CkjDjsC˛2W"k
2
L2L6=.1C2˛2/

CkW"k
2

L1 PH sC˛3
kW"k

2
L2L3=˛3

CkW"k
2

L1 PH sC˛3�ˇı
kW"k

2

L2 PB
ˇı

3=˛3;2

��
�exp

C

�

�
kr zUQGk

2

L2 PH1=2

�
1C

1

�2
k zUQGk

2

L1 PH1=2

�
C

1

�
2˛2
1�˛2

kW"k
2

1�˛2

L2=.1�˛2/L3=˛2
CkW"k

2

L2 PB
˛2
3=˛2;2

�
: (2-40)

It is now time to properly use the new Strichartz estimates we proved in the present article (see the
Appendix for Proposition 47 and its proof).

Let us begin with the case .d; p; r; q/ D
�
s C ˛; 2; 6

1C2˛
; 2
�
, for all � 2

�
0; 1�˛
1�4˛

�
\ �0; 1� D �0; 1�.

Thanks to Proposition 40 (for simplicity we will not track the dependency in �),

kjDjsC˛W"kL2tL6=.1C2˛/

� CkjDjsC˛W"kzL2t PB
0
6=.1C2˛/;2

� CF;�;p;�;˛"
�
12
.1�4˛/

�
kU0;";osck PH sC.�=6/.1�4˛/ C

Z t

0

kGb.�/k PH sC.�=6/.1�4˛/ d�

�
; (2-41)

and if we choose ˛ 2
�
0; 1
4

�
, and

� D
6.ıC 1

2
� s/

1� 4˛�
which is in �0; 1� if ı � s� 1

3
�
2˛
3

, recall that s � 1
2

�
, then we obtain (thanks to Proposition 25)

kjDjsC˛W"kL2tL6=.1C2˛/
� CkjDjsC˛W"kzL2t PB

0
6=.1C2˛/;2

� CF;�;s;ı;˛"
1
2
.ıC 1

2
�s/

�
kU0;";osck PH1=2Cı C

Z t

0

kGb.�/k PH1=2Cı d�

�
� CF;�;s;ı;˛"

1
2
.ıC 1

2
�s/D0.kU0;";osck PH1=2Cı C 1/: (2-42)

Let us continue with the case .d; p; r; q/D
�
˛; 2; 3

˛
; 2
�
, for all

� 2

�
0;

1
2
�
˛
3

1� 4˛
3

�
;

if we assume ˛ 2 �0; 3
4
Œ, and choose � D 6ı

3�4˛
, then

kW"kzL2t PB
˛
3=˛;2

� CF;�;ı;˛"
ı
2D0.kU0;";osck PH1=2Cı C 1/: (2-43)
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For the case .d; p; r; q/D
�
0; 2
1�˛

; 3
˛
; 2
�
, for all

� 2

�
0;

1
2
�
˛
3

1� 4˛
3

�
;

if ˛ 2
�
0; 3
4

�
, and if we choose � D 6ı

3�4˛
, then

kW"kL2=.1�˛/t L3=˛
� CkW"kzL2=.1�˛/t

PB0
3=˛;2

� CF;�;ı;˛"
ı
2D0.kU0;";osck PH1=2Cı C 1/: (2-44)

All these estimates are verified for ˛1 D ˛2 D ˛ D 1
16

if ı � 1
8

. Then we turn to the last two terms from
(2-36), let us begin with the first one: as announced, due to the first factor (estimated thanks to (2-25)),
doing as before will only allow us to get "

ı
2D0.kU0;";osck PH1=2Cı C 1/

2, which leads to 
 < ı
4

. In order
to reach the announced bound ı

2
, we will try to take a slightly smaller p which will allow us to widen

the range for � . But taking p D 2 instead of 2
1�˛

requires that kW"k PH sC˛3
is L1; that is, we need that

sC˛3 �
1
2
C ı. More precisely with .d; p; r; q/D

�
0; 2; 3

˛
; 2
�
, we have

kW"kL2tL
3=˛3 �CkW"kzL2t PB

0
3=˛3;2

�CF;�;�;s"
�
4
.1�

4˛3
3
/D0.kU0;";osck PH1=2�˛3C.�=2/.1�4˛3=3/

C1/ (2-45)

and as we want

˛3C s D
1
2
C ı D 1

2
�˛3C

�
2

�
1� 4˛3

3

�
we choose

.˛3; �/D

�
ıC

1

2
� s;

2.ıC˛3/

1� 4˛3
3

�
:

This is possible (according to the condition from Proposition 47) when

� <

1
2
�
˛3
3

1� 4˛3
3

;

that is if

ı < 7s�2
13

; (2-46)

which is realized
�
recall that s 2

�
1
2
; 1
2
C �ı

��
when ı � 1

10
< 3
26

. Then we have

kW"kL2tL
3=˛3 � CkW"kzL2t PB

0
3=˛3;2

� CF;�;ı;s"
1
2
.2ıC 1

2
�s/D0.kU0;";osck PH1=2Cı C 1/: (2-47)

Now, for the last term, ˛3 is fixed and we will adjust � and ˇ. For .d; p; r; q/D
�
ˇı; 2; 3

˛3
; 2
�
, we choose

� so that the corresponding � (see Proposition 47) is equal to 1
2
C ı; that is

�
2

�
1� 4˛3

3

�
D .2�ˇ/ıC 1

2
� s;

which is possible when

� 2

�
0;

1
2
�
˛3
3

1� 4˛3
3

�
;
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that is ı < 7s�2
13�6ˇ

, which is realized when (2-46) is true (when ˇ 2 �0; 1Œ). In this case, we end up with

kW"kzL2t PB
ˇı

3=˛3;2

� CF;�;˛;ı;s"
1
2
..2�ˇ/ıC 1

2
�s/D0.kU0;";osck PH1=2Cı C 1/: (2-48)

Combining (2-40) with all these Strichartz estimates, namely (2-42), (2-43), (2-44), (2-47) and (2-48), we
end up with for all s 2

�
1
2
; 1
2
C �ı

�
, all ˇ > 0 small and all t � T"

kı".t/k
2
PH s
C
�

2

Z t

0

krı".�/k
2
PH s
d�

�
�
kı".0/k

2
PH s
CD0

�
."ıC

1
2
�s
C "ı/.kU0;";osck PH1=2Cı C 1/

2

C ."2ıC
1
2
�s
C ".2�ˇ/ıC

1
2
�s/.kU0;";osck PH1=2Cı C 1/

4
��

� expfD0.1C "ı.kU0;";osck PH1=2Cı C 1/
2/g

� D0Œ"
2˛0 C ."ıC

1
2
�s
C "ı/kU0;";osck

2
PH1=2Cı

C ."2ıC
1
2
�s
C ".2�ˇ/ıC

1
2
�s/kU0;";osck

4
PH1=2Cı

�

� expfD0.1C "ıkU0;";osck
2
PH1=2Cı

C ."
ı
2 kU0;";osck

2
PH1=2Cı

/
2

1�˛2 /g: (2-49)

As s 2
�
1
2
; 1
2
C �ı

�
, we can write that

kı".t/k
2
PH s
C
�

2

Z t

0

krı".�/k
2
PH s
d�

� D0Œ"
2˛0 C ".1��/ı�2
 C ".2��/ı�4
 C ".2���ˇ/ı�4
 �eD0.1C"

ı�2
 /; (2-50)

so that we need

 <min

�
.1� �/ ı

2
;
�
1� �

2

�
ı
2
;
�
1� ˇC�

2

�
ı
2

�
:

If we fix ˇ D �, the condition is reduced to 
 < .1� �/ ı
2

, so that if 0 < 
 < ı
2

, we define �D 1
2

�
1� 2


ı

��
or equivalently 
 D .1� 2�/ ı

2

�
; then with ˇ D �, for all s 2

�
1
2
; 1
2
C �ı

�
and t � T", we end up with (as

soon as "� 1)

kı".t/k
2
PH s
C
�

2

Z t

0

krı".�/k
2
PH s
d� � D0e

2D0"2min.˛0;
�ı
2
/: (2-51)

We can now conclude the bootstrap argument: there exists "0 > 0 such that for any 0 < " < "0 the
previous quantity is bounded by

�
�
8C

�2, so that
�
in particular for s D 1

2

�
if we assume by contradiction

that T" < T �" , then
kı"kL1T"

PH1=2 �
�

8C
;

which contradicts the maximality of T"
�
in this case, we would have kı".T"/k PH1=2 D

�
4C

�
. Then T"D T �"

and the previous estimates hold true for any t < T �" , so that by the blowup criterion T" D T �" D1 and
the previous estimate is true for all t � 0 and all s 2

�
1
2
; 1
2
C �ı

�
:

kı"k PEs � B0"
min.˛0;

�ı
2
/:

Finally, to prove the last part of the theorem, we only have to remark that the previous argument is then
true for any s 2

�
1
2
� �ı; 1

2
C �ı

�
when we require ı < 3

26C14�
(instead of ı < 3

26
; see (2-46)), and use
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Lemma 27:

kı"kL2L1 � kı"kL2 PB0
1;1
� .kı"kL2 PH3=2��ıkı"kL2 PH3=2C�ı /

1
2 � B0"

min.˛0;
�ı
2
/:

For .d; p; r; q/D .0; 2;1; 1/ and for all � 2
�
0; 1
2

�
, from Proposition 47,

kW"kL2L1 � C0"
�
4

�
kU0;";osck PB1=2C�=22;1

C

Z 1
0

kGb.�/k PB1=2C�=22;1

d�

�
:

Using Lemma 27 with .˛; ˇ/D
�
�
2
; k �
2

�
, and if � D 2ı

1Ck
(for some small k > 0),

kU0;";osck PB1=2C�=22;1

� kU0;";osck
k
1Ck

PH1=2
kU0;";osck

1
1Ck

PH1=2C.1Ck/.�=2/
� C0"

�
 : (2-52)

Choosing k D �
1��

, we get

kW"kL2L1 � D0"
ı
2
. 1
1Ck
�.1�2�//

D D0"
�ı
2 ;

and the conclusion follows from the fact that U"� zUQG D ı"CW". �

Remark 32. Going back to (2-49), in the case sD 1
2

if we only seek for global well-posedness, we retrieve
here the same condition as in [Iwabuchi et al. 2017], except for the last term because Proposition 29
imposes ˇ > 0, so that the condition for global well-posedness is still 
 < ı

2
. If ˇ could reach zero, the

conditions would be:

� kU0;";osck
2
PH1=2\ PH1=2Cı

"ı � c, with c some fixed small constant, if we want global well-posedness.

� kU0;";osck
2
PH1=2\ PH1=2Cı

"ı!0 as "! 0 if we want ı" to go to zero.

� 
 < ı
2

, if we want ı" to go to zero as a positive power of " (which is what we originally searched for).

In our case, due to this ˇ > 0 these three conditions coincide.

2.3. The general case.

2.3.1. Estimates on W T
" . Let us begin by recalling the energy estimates for W T

" (we refer to Theorem 21
for m;M ).

Proposition 33. Assume M < 1
2

, there exist "0 D "0.�; �0;M/ > 0, and B0 D B0.C0; �; �
0; F; ı/ � 1

such that for any 0 < "� "0 and s 2
�
1
2
�
3
2
ı; 1
2
C ı

�
, we have

kW T
" k

2

L1.RC; PH s/
C �0kW

T
" k

2

L2.RC; PH sC1/
� B0."

�2

C 1/: (2-53)

Proof. We know from [Charve 2004] that there exists a constant CF > 0 such that for any s 2 Œ0; 1� and
t 2 RC, we have

kW T
" k PEst

� e
R t
0 kG

b.�/k PHs d�

�

�
kW T

" .0/k
2
PH s
CCF .1C"R

2
" j���

0
j/2
Z t

0

�
kGb.�/k PH sC

1

�0
kGl.�/k PH s�1

�
d�

�
: (2-54)
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Combined with (A-86), Proposition 25 allows us to obtain that when s 2
�
1
2
�
3
2
ı; 1
2
C ı

�
kW T

" k PEst
� CF .1Cj� � �

0
j"R2" /

2e
CF
�0
Cı;�0C

2C 1
ı

0

�

�
kPr";R"U0;";osck

2
PH s
C

�
1

�0
C
j� � �0j2

�20

�
Cı;�0C

2C 1
ı

0

�
: (2-55)

We have j� � �0j"R2" � 1 as soon as M > 1
2

and "� "0 D j� � �0j
�1

1�2M , which leads to (2-53). �

2.3.2. Estimates on ı". As explained in the previous section (see also [Charve 2004; 2018a]), asU0;"2 PH s

for all s 2
�
1
2
�
3
2
ı; 1
2
C ı

�
, in particular it lies in PH

1
2 and thanks to the Fujita–Kato theorem there exists

a unique local strong solution U" 2 L1T PH
1
2 \L2T

PH
3
2 for all 0 < T < T �" , where T �" > 0 denotes the

maximal lifespan. In addition, if T �" is finite then we haveZ T �"

0

krU".�/k
2
PH1=2.R3/

d� D1:

Moreover, as our initial data enjoys additional regularity properties, they are transmitted to the solution:
for all s 2

�
1
2
�
3
2
ı; 1
2
C ı

�
and T < T �" , we have U" 2 L1T PH

s \L2T
PH sC1. As before, with a view to a

bootstrap argument, let us now define

T"
def
D sup

�
t 2 Œ0; T �" Œ W for all t 0 � t; kı".t 0/k PH1=2 �

�

4C

�
: (2-56)

Thanks to (2-59), we are sure that kı".0/k PH1=2
�

�
8C

(and then T" > 0) if " is small enough. Assuming
that T" < T �" , the computations from the previous case imply that, for all s 2

�
1
2
� �ı; 1

2
C �ı

�
, and all

t � T",

kı".t/k
2
PH s
C
�0

2

Z t

0

krı".�/k
2
PH s
d�

�

�
kı".0/k

2
PH s
C
C

�0

�
�0kf

b
k
L1 PH sCkf

l
k
2

L2 PH s�1
Ck zUQGk

2.1�˛1/

L1 PH s
k zUQGk

2˛1

L2 PH sC1
kW T

" k
2
L2=.1�˛1/L3=˛1

Ck zUQGk
2

L1 PH1=2
kjDjsC˛1W T

" k
2
L2L6=.1C2˛1/

Ck zUQGk
2

L1 PH s
kW T

" k
2

L2 PB
˛1
3=˛1;2

CkjDjsC˛2W T
" k

2
L2L6=.1C2˛2/

CkW T
" k

2.1�˛3/

L1 PH s
kW T

" k
2˛3

L2 PH sC1
kW T

" k
2
L2=.1�˛3/L3=˛3

CkW T
" k

2

L1 PH s
kW T

" k
2

L2 PB
˛3
3=˛3;2

��
�exp

C

�0

�
�0kf

b
k
L1 PH sCkr zUQGk

2

L2 PH1=2

�
1C

1

�20
k zUQGk

2

L1 PH1=2

�
C

1

�

2˛2
1�˛2

0

kW T
" k

2
1�˛2

L2=.1�˛2/L3=˛2
CkW T

" k
2

L2 PB
˛2
3=˛2;2

�
: (2-57)

Compared to (2-40), the only differences are:

� The force terms f b;l (dealt with as in [Charve 2004; 2006]).
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� The simpler estimates for F8: as precision will be imposed by the truncated terms, we only write

j.F8jı"/ PH s j �
�0

16
kı"k

2
PH sC1
C
C

�0
.kW T

" k
2.1�˛3/

L1 PH s
kW T

" k
2˛3

L2 PH sC1
kW"k

2
L2=.1�˛3/L3=˛3

CkW"k
2

L1 PH s
kW"k

2

L2 PB
˛3
3=˛3;2

/: (2-58)

2.3.3. Estimates for the truncated quantities. We will now bound much more precisely than in [Charve
2004; 2006] the external force terms and initial data (see (1-9)):

Proposition 34. There exists a constant B0 � 1 such that for all s 2
�
1
2
� �ı; 1

2
C �ı

�
,

kf bk
L1 PH s � B0."

1�2M
C "M.1��/ı C "

m
6
�M. 5

6
C�ı//;

kf lk
L2 PH s�1 � B0."

1�2M
C "M.1��/ı C "m.

1
2
��ı//;

kı".0/k PH s � B0."
˛0 C "1�2M�
 C "ı.M��m/�
 C "ı..

1
2
��/m�M/�
 /:

(2-59)

Remark 35. Note that as we want positive powers of ", the previous estimates imply the conditions

M;�; �ı 2
�
0; 1
2

�
;

� < M
m
<min

�
1

5C6�ı
; 1
2
� �

�
;


 <min
�
1� 2M; ı.M � �m/; ı

��
1
2
� �

�
m�M

��
:

(2-60)

Proof of Proposition 34. Let us begin with the terms involving G: thanks to (A-84), and Remark 10
and Proposition 25, we immediately obtain that there exists a constant B0 (only depending on C0; �; �

0

and F ) such that for all s 2
�
1
2
� �ı; 1

2
C �ı

�
kPr";R"P2G

b
k
L1 PH s CkPr";R"P2G

l
k
L2 PH s�1 � B0"R

2
" :

Thanks to Lemma 42 (see the Appendix), Proposition 25 and (2-17), the second term in f1 can be bounded�
for all s 2

�
1
2
� �ı; 1

2
C �ı

��
according to

k.Id�Pr";R"/G
b
k
L1 PH s �





�Id��
�
jDj

R"

��
Gb





L1 PH s

C





�� jDjR"
�
�

�
jD3j

r"

�
Gb





L1 PH s

�
1

R
1
2
Cı�s

"





�Id��
�
jDj

R"

��
Gb





L1 PH1=2Cı

CRs"





�� jDjR"
�
�

�
jD3j

r"

�
Gb





L1L2

�
1

R
1
2
Cı�s

"

kGbk
L1 PH1=2CıCR

s
".R

2
" r"/

2
3
� 1
2 k zUQG�r zUQGkL1L3=2

�
1

R
1
2
Cı�s

"

kGbk
L1 PH1=2CıCR

sC 1
3

" r
1
6
"

Z 1
0

k zUQG.�/kL6kr zUQG.�/kL2 d�

� B0

�
1

R
1
2
Cı�s

"

CR
sC 1

3
" r

1
6
"

�
; (2-61)
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which implies the first estimates in (2-59) for all s 2
�
1
2
� �ı; 1

2
C �ı

�
. Similarly, we have



�Id��

�
jDj

R"

��
Gl




2
L2 PH s�1

�
B0

R
2. 1
2
Cı�s/

"

; (2-62)

and using that the expression of Gl (see (1-9)) features some derivative @3, for all s 2
�
1
2
� �ı; 1

2
C �ı

�
we have



�� jDjR"

�
�

�
jD3j

r"

�
Gl





L2 PH s�1

� CF j� � �
0
j





�� jDjR"
�
�

�
jD3j

r"

�
@3r zUQG






L2 PH s�1

� CF j� � �
0
jrs"k@

1�s
3 r

zUQGkL2 PH s�1

� CF j� � �
0
jrs"k
zUQGkL2 PH1 : (2-63)

Let us now turn to bound the initial data ı".0/:

kı".0/k PH s � kU0;";QG� zU0;QGk PH s CkPr";R"P2U0;";osck PH s Ck.Id�Pr";R"/U0;";osck PH s

� C0"
˛0 CkPr";R"P2U0;";osck PH s

C





�Id��
�
jDj

R"

��
U0;";osc






PH s

C





�� jDjR"
�
�

�
jD3j

r"

�
U0;";osc






PH s

: (2-64)

As before, we easily estimate the second and third terms for all s 2
�
1
2
� �ı; 1

2
C �ı

�
by

CF j� � �
0
j"R2"kU0;";osck PH s C

CF

R
1
2
Cı�s

"

kU0;";osck PH1=2Cı � B0"
�


�
"R2" C

1

R
1
2
Cı�s

"

�
: (2-65)

It is here that the PB
1
2
q;q-assumption on the initial data will be specifically used (everywhere else we only

use the fact that this space is embedded in PH
1
2
� 3
2
ı ). To bound the last term, thanks to Proposition 40 let

us write that (we recall that q D 2
1Cı

< 2)



�� jDjR"
�
�

�
jD3j

r"

�
U0;";osc






PH s

D





�� jDjR"
�
�

�
jD3j

r"

�
jDjsU0;";osc






L2

� C.R2" r"/
1
q
� 1
2R

s� 1
2

"





�� jDjR"
�
�

�
jD3j

r"

�
jDj

1
2U0;";osc






Lq

� CR
ıCs� 1

2
" r

ı
2
" kjDj

1
2U0;";osck PB0q;q

� CR
ıCs� 1

2
" r

ı
2
" kU0;";osck PB1=2q;q

: (2-66)

Note that this can be done only if s � 1
2

. In the case s 2
�
1
2
� �ı; 1

2

�
, we simply go back to (2-64) and

write that (taking advantage of the frequency localization)

k.Id�Pr";R"/U0;";osck PH s �
1

r
1
2
�s

"

k.Id�Pr";R"/U0;";osck PH1=2

�
CF

r
1
2
�s

"

�
1

Rı"
kU0;";osck PH1=2Cı CR

ı
"r

ı
2
" kU0;";osck PB1=2q;q

�
: (2-67)
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We can sum up as follows: for all s 2
�
1
2
� �ı; 1

2
C �ı

�
k.Id�Pr";R"/U0;";osck PH s � C0"

�

�

8<:
1

R
.1��/ı
"

CR
.1C�/ı
" r

ı
2
" if s 2

�
1
2
; 1
2
C �ı

�
;

1

r
�ı
"

�
1

Rı"
CRı"r

ı
2
"

�
if s 2

�
1
2
� �ı; 1

2

�
� C0"

�

�

�
"Mı.1��/C "ı.

m
2
�.1C�/M/ if s 2

�
1
2
; 1
2
C �ı

�
;

"ı.M�m�/C "ı..
1
2
��/m�M/ if s 2

�
1
2
� �ı; 1

2

�
:

(2-68)

As

M.1� �/� .M �m�/D �.m�M/; and
�
m
2
� .1C �/M

�
�
��
1
2
� �

�
m�M

�
D �.m�M/;

and as m>M (see (2-60)), we obtain the announced result. �

2.3.4. Strichartz estimates for W T
" . We will need the following Strichartz estimates to complete our

bootstrap argument:

Proposition 36. There exist "0;B0 > 0 such that for any ˛ > 0 and " < "0, W T
" satisfies

kW T
" kzL2 PB˛

3=˛;2

� B0"
1
4
�˛
3
�M. 9

2
�4˛�ı/�m. 9

2
�2˛/
� B0"

1
4
�˛
3
� 9
2
.MCm/;

kW T
" kL2=.1�˛/L3=˛ � B0"

1
4
�˛
3
�M. 9

2
�3˛�ı/�m. 9

2
�3˛/
� B0"

1
4
�˛
3
� 9
2
.MCm/;

kjDjsC˛W T
" kL2L6=.1C2˛/ � B0"

1
12
�˛
3
�M. 7

2
�3˛/�m. 7

2
�2˛/
� B0"

1
12
�˛
3
� 7
2
.MCm/:

(2-69)

Proof. Using Proposition 51 in the case .d; p; r; q/D
�
˛; 2; 3

˛
; 2
�
, we obtain that

kW T
" kzL2 PB˛

3=˛;2

�B0"
1
4
.1� 4˛

3
/R

4�3˛
"

r
7
2
�2˛

"

�
kPr";R"U0;";osck PH˛CkPr";R"G

b
k
L1 PH˛C

1

�
1
2

0 r"

kPr";R"G
l
k
L2 PH˛

�

�B0"
1
4
.1� 4˛

3
/R

4�3˛
"

r
7
2
�2˛

"

�

�
1

r
1
2
� 3ı
2
�˛

"

kU0;";osck PH1=2�3ı=2CkG
b
k
L1 PH˛C

1

�
1
2

0 r"

R
1
2
�ı�˛

" kGlk
L2 PH1=2Cı

�
�B0"

1
4
�˛
3
�M.4�3˛/�m. 7

2
�2˛/."�
�m.

1
2
� 3ı
2
�˛/
C"�m�M.

1
2
�ı�˛//: (2-70)

From (2-60), we know that 
 < ıM so that

mCM
�
1
2
� ı�˛

�
�
�

 Cm

�
1
2
�
3ı
2
�˛

��
DM

�
1
2
� ı�˛

�
Cm

�
1
2
C
3ı
2
C˛

�
� 
 > 0;

which leads to the first estimate. Similarly, considering Proposition 51 in the case .d; p; r; q/ D�
0; 2
1�˛

; 3
˛
; 2
�
, we get (thanks to Proposition 40)

kW T
" kL2=.1�˛/L3=˛ � kW

T
" kzL2 PB0

3=˛;2

� B0"
1
4
.1� 4˛

3
/R

4�3˛
"

r
7
2
�3˛

"

�
1

r
1
2
� 3ı
2

"

kU0;";osck PH1=2�3ı=2 CkG
b
kL1L2

C
1

�
1
2

0 r"

R
1
2
�ı

" kGlk
L2 PH1=2Cı

�
� B0"

1
4
�˛
3
�M.4�3˛/�m. 7

2
�3˛/."�
�m.

1
2
� 3ı
2
/
C "�m�M.

1
2
�ı//; (2-71)
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which leads to the second estimate. In the case .d; p; r; q/D
�
sC˛; 2; 6

1C2˛
; 2
�
, we obtain that (provided

0 < ˛ < ıC 1
2
� s)

kjDjsC˛W T
" kL2L6=.1C2˛/ � kW

T
" kzL2 PBsC˛

6=.1C2˛/;2

� B0"
1
12
.1�4˛/R

5
2
�3˛

"

r
5
2
�2˛

"

�
kPr";R"U0;";osck PH sC˛ CkPr";R"G

b
k
L1 PH sC˛

C
1

�
1
2

0 r"

kPr";R"G
l
k
L2 PH sC˛

�

� B0"
1
12
.1�4˛/R

5
2
�3˛

"

r
5
2
�2˛

"

�
"�
 C 1C

1

r"
R
sC˛C 1

2
�ı

" kPr";R" zUQGkL2 PH3=2Cı

�
� B0"

1
12
�˛
3
�M. 5

2
�3˛/�m. 5

2
�2˛/."�
 C "�m�M /; (2-72)

which concludes the proof. �

2.3.5. Bootstrap. We are now able to conclude the bootstrap argument (see the previous section and
[Charve 2004; 2006]). Gathering (2-57), (2-59) and (2-69), we obtain that for all t � T"

kı".t/k
2
PH s
C
�0

2

Z t

0

krı".�/k
2
PH s
d�

� D0
�
"2˛0 C "2.1�2M�
/C "2.ı.M��m/�
/C "2.ı..

1
2
��/m�M/�
/

C "1�2M

C "M.1��/ı C "
m
6
�M. 5

6
C�ı/
C "2.1�2M/

C "2M.1��/ı

C "2m.
1
2
��ı/
C "

1
4
�˛
3
� 9
2
.MCm/�


C "
1
12
�˛
3
� 7
2
.MCm/

�
� exp

C

�0
f1C "1�2M C "M.1��/ı C "

m
6
�M. 5

6
C�ı/
C "min.2; 2

1�˛
/. 1
4
�˛
3
� 9
2
.MCm//

g: (2-73)

For simplicity we will require, instead of the second condition from (2-60), that

2�� M
m
�
1
2

min
�

1
5C6�ı

; 1
2
� �

�
:

This obviously implies that �� 1
10

, so we will finally ask that

M 2
�
0; 1
4

�
; � 2

�
0; 1
10

�
;

2�� M
m
�
1
2

1
5Cı

;


 <min
�
1
2
.1� 2M/; 1

2
ı.M � �m/; 1

2
ı
��
1
2
� �

�
m�M

��
:

(2-74)

Moreover, if we take ˛ D 
 and ask that
9
2
.M Cm/� 1

8
and 4

3
ı � 1

2

�
1
4
�
9
2
.M Cm/

�
;

7
2
.M Cm/� 1

24
and ı

3
�
1
2

�
1
12
�
7
2
.M Cm/

�
:

(2-75)

As M � m
10

, this is realized when

m 2
�
0; 1
100

�
; 2�� M

m
�
1
2

1
5Cı

:
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When

 �min

�
Mı
4
; mı
16
; m
12
; 1
32

�
D

Mı
4
;

we obtain that all powers of " in the exponential are positive so that for small enough ", we get that for
all s 2

�
1
2
� �ı; 1

2
C �ı

�
and t � T"

kı".t/k
2
PH s
C
�0

2

Z t

0

krı".�/k
2
PH s
d� � D0e

2D0"min.2˛0;Mı
2
/; (2-76)

so that we finally end up with (for small enough "), ı".T"/� �0
8C

, which clearly contradicts the maximality
of T". We can conclude that T"D T �" and then the previous estimate is valid for all t < T �" , which implies
for s D 1

2
that the integral in (1-1) is finite. Therefore T �" D1 and (2-76) is then valid for all t � 0. The

rest of the theorem is done as for the case � D �0. �

Appendix

A.1. Notation and Sobolev spaces. For s2R, PH s andH s are the classical homogeneous/inhomogeneous
Sobolev spaces in R3 endowed with the norms

kuk2
PH s
D

Z
R3
j�j2sj Ou.�/j d� and kuk2H s D

Z
R3
.1Cj�j2/sj Ou.�/j d�:

We also use the following notation: if E is a Banach space and T > 0,

CTE D C.Œ0; T �; E/ and L
p
TE D L

p.Œ0; T �; E/:

Let us recall the Sobolev injections, and product laws:

Proposition 37. There exists a constant C > 0 such that if s < 3
2

, then for any u 2 PH s.R3/, we have
u 2 Lp.R3/ with p D 6

3�2s
and

kukLp � Ckuk PH s :

Proposition 38 [Bahouri et al. 2011, Chapter 2]. There exists a constant C such that for any .u; v/ 2
PH s1.R3/� PH s2.R3/, if s1; s2 2

�
�
3
2
; 3
2

�
and s1C s2 > 0 then uv 2 PH s1Cs2�

3
2 .R3/ and we have

kuvk PH s1Cs2�3=2
� Ckuk PH s1

kvk PH s2
:

A.2. Besov spaces. We refer to Chapter 2 from [Bahouri et al. 2011] for an in-depth presentation of the
classical homogeneous and inhomogeneous Besov and Sobolev spaces. We also refer to the appendix of
[Charve 2018a] for a quick presentation.

Let us just recall that  is a smooth radial function supported in the ball B
�
0; 4
3

�
, equal to 1 in a

neighborhood of B
�
0; 3
4

�
and such that r 7!  .r � er/ is nonincreasing over RC. If we set '.�/ D

 
� �
2

�
� .�/, then ' is compactly supported in the annulus C D

˚
� 2 Rd W c0 D

3
4
� j�j � C0 D

8
3

	
and

we define the homogeneous dyadic blocks: for all j 2 Z,

P�ju WD '.2
�jD/uD 2jdh.2j � /�u; with hD F�1':

We recall that 2�.D/u.�/D �.�/ Ou.�/ and we can define the homogeneous Besov norms and spaces:
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Definition 39. For s 2 R and 1� p; r �1, we set

kuk PBsp;r
WD

�X
l2Z

2rlsk P�luk
r
Lp

�1
r

if r <1 and kuk PBsp;1
WD sup

l

2lsk P�lukLp :

The homogeneous Besov space PBsp;r is the subset of tempered distributions such that

lim
j!�1

k PSjukL1 D 0

and kuk PBsp;r is finite (where PSjuD
P
l�j�1

P�luD  .2
�jD/u).

� The space PBsp;r is complete whenever s < d=p, or s � d=p and r D 1.

� For any p 2 Œ1;1�, we have the continuous embedding PB0p;1 ,! Lp ,! PB0p;1.

� If � 2 R, 1� p1 � p2 �1, and 1� r1 � r2 �1, then we have PB�p1;r1 ,! PB
��d. 1

p1
� 1
p2
/

p2;r2 .

� The space PB
d
p

p;1 is continuously embedded in the set of bounded continuous functions (going to 0 at
infinity if p <1).

� PH s D PBs2;2.

� Interpolation: if 1� p; r1; r2; r �1, �1 6D �2, and � 2 .0; 1/,

kf k
PB
��2C.1��/�1
p;r

. kf k1��
PB
�1
p;r1

kf k�
PB
�2
p;r2

: (A-77)

Proposition 40 [Bahouri et al. 2011]. We have the following continuous injections:

� PB0p;1 ,! Lp for any p � 1.

� PB0p;2 ,! Lp for any p 2 Œ2;1Œ.

� PB0p;p ,! Lp for any p 2 Œ1; 2�.

Let us then define the spaces zL�T PB
s
p;r from the following norm:

Definition 41. For T > 0, s 2 R, and 1� r; � �1, we set

kukzL�T PB
s
p;r
WD


2jsk P�qukL�TLp

`r .Z/:

Any product of two distributions u and v may be formally written through the Bony decomposition:

uv D TuvCTvuCR.u; v/; (A-78)

where

Tuv WD
X
l

PSl�1u P�lv; Tvu WD
X
l

PSl�1v P�lu and R.u; v/ WD
X
l

X
jl 0�lj�1

P�lu P�l 0v:

The above operator T is called a “paraproduct”, whereas R is called a “remainder”. We refer to [Bahouri
et al. 2011] for general properties and for paraproduct and remainder estimates but we can recall that

�
if

1
r
D

1
r1
C

1
r2

and 1
p
D

1
p1
C

1
p2

�
:

� For any s 2 R, we have kTuvk PBsp;r . kukL1kvk PBsp;r .
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� For any .s; t/ 2 R�� �R, we have kTuvk PBsCtp;r
. kuk PBsp1;r1kvk PBtp2;r2 .

� For any s; t 2 R with sC t > 0, we have kR.u; v/k PBsCtp;r
. kuk PBsp1;r1kvk PBtp2;r2 .

A.3. Dispersion and Strichartz estimates. Consider the system�
@tf �

�
L� 1

"
PA

�
f D Fext;

fjtD0 D f0:
(A-79)

If we apply the Fourier transform, the equation becomes (see [Charve 2005] for details)

@t Of �B.�; "/ Of D yFext;

where

B.�; "/D
3
L�

1

"
PAD

0BB@
��j�j2C�1�2=."j�j

2/ .�22C�
2
3 /=."j�j

2/ 0 �1�3=."F j�j
2/

�.�21C�
2
3 /=."j�j

2/ ��j�j2��1�2=."j�j
2/ 0 �2�3=."F j�j

2/

�2�3=."j�j
2/ ��1�3=."j�j

2/ ��j�j2 �.�21C�
2
2 /=."F j�j

2/

0 0 1=."F / ��0j�j2

1CCA :
For 0 < r < R we will denote by Cr;R the set

Cr;R D f� 2 R3 W j�j �R and j�3j � rg:

We also introduce the following frequency truncation operator on Cr;R:

Pr;R D �
�
jDj

R

��
1��

�
jD3j

r

��
; (A-80)

where � is the smooth cut-off function introduced before and (F�1 is the inverse Fourier transform)

�

�
jDj

R

�
f D F�1

�
�

�
j�j

R

�
Of .�/

�
and �

�
jD3j

r

�
f D F�1

�
�

�
j�3j

r

�
Of .�/

�
;

and jDjs the classical derivation operator jDjsf D F�1.j�js Of .�//.
In what follows we will use it for particular radii r" D "m and R" D "�M, where m and M will be

made precise later. Let us end with the following anisotropic Bernstein-type result (we refer to [Charve
2005], and to [Iftimie 1999b] for more general anisotropic estimates):

Lemma 42. There exists a constant C > 0 such that for any function f , ˛ > 0, 1� q � p �1, and all
0 < r < R, we have



�� jDjR

�
�

�
jD3j

r

�
f






Lp
� Ckf kLp ;



�� jDjR

�
�

�
jD3j

r

�
f






Lp
� C.R2r/

1
q
� 1
p





�� jDjR
�
�

�
jD3j

r

�
f






Lq
:

(A-81)

Moreover if f has its frequencies located in Cr;R, then

kjDj˛f kLp � CR
˛
kf kLp : �
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A.3.1. Eigenvalues, projectors. We begin with the eigenvalues and eigenvectors of matrix the B.�; "/.
We refer to [Charve 2004; 2005; 2006; 2018a; Charve and Ngo 2011] for details about the following
proposition. We will only state the results and skip details as the proof is an adaptation of Proposition 3.1
from [Charve and Ngo 2011] (there in the anisotropic case).

Proposition 43. If � ¤ �0 there exists "0 > 0 such that for all " < "0, for all r" D "m, and R" D "�M,
with M < 1

4
and 3M Cm< 1, and for all � 2 Cr";R" , the matrix B.�; "/D 3L� 1

"
PA is diagonalizable

and its eigenvalues have the following asymptotic expansions with respect to ":

�0 D��j�j
2; �D��.�/j�j2C i

j�jF

"F j�j
C "E.�; "/;

�D�.��21 C ��
2
2 C �

0F 2�23 /
j�j2

j�j2F
C "2D.�; "/; N�D��.�/j�j2� i

j�jF

"F j�j
C "E.�; "/;

(A-82)

where j�j2F D �
2
1 C �

2
2 CF

2�33 , and D;E denote remainder terms satisfying for all � 2 Cr";R"

"2jD.�; "/j � CF j� � �
0
j
3"2j�j6 � CF j� � �

0
j
3"2�6M � 1;

"jE.�; "/j � CF j� � �
0
j
2"j�j4 � CF j� � �

0
j
2"1�4M � 1;

"j@�2E.�; "/j � CF j� � �
0
j
2"j�j3 � CF j� � �

0
j
2"1�3M � 1;

and

�.�/D
�

2

�
1C

F 2�23

j�j2F

�
C
�0

2

�
1�

F 2�23

j�j2F

�
�min.�; �0/ > 0:

Moreover, if we denote by Pi .�; "/ the projectors onto the eigenspaces corresponding to �, � and N�
(i 2 f2; 3; 4g), and set

Pi .u/D F�1.Pi .�; "/. Ou.�///; (A-83)

then for any divergence-free vector field f whose Fourier transform is supported in Cr";R" and s 2 R, we
have the estimates:

kP2f k PH s � CF kf k PH s �

�
1 if �.f /¤ 0;
j� � �0j"R2" D j� � �

0j"1�2M if �.f /D 0;
(A-84)

and, for i D 3; 4,

kPif k PH s � CF
R"

r"
kf k PH s D CF "

�.mCM/
kf k PH s : (A-85)

Finally, if we define P3C4f
def
D .P3CP4/f D .Id �P2/f (as divf D 0), then

kP3C4f k PH s � CF .1Cj� � �
0
j"R2" /kf k PH s : (A-86)

Remark 44. In the case � D �0 everything is simpler: the eigenvalues have simple explicit expressions:
��j�j2 (double, � and �0 coincide), ��j�j2˙ .i j�jF /=."F j�j/, the eigenvectors do not depend on "
and are mutually orthogonal (so that Pi are of norm 1) and this basis exactly corresponds to the QG/osc
decomposition (for divergence-free vector fields): P D P3C4 and QD P2 so that the quasigeostrophic
part only depends on W2 and the oscillating part only depends on W3;4. Finally the operator � reduces to
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a simple anisotropic Laplace operator. We refer to [Charve 2006, Appendix B; 2016; 2018a] for more
details.

Remark 45. We emphasize that the leading term in � is the Fourier symbol of the quasigeostrophic
operator �. Moreover, the dispersion is related to the term .i j�jF /=."F j�j/, and when F D 1 this term
reduces to the constant i

"
. This is why dispersion does not occur in the case F D 1 (we refer to [Chemin

1997; Charve 2018b] for a study of the asymptotics in the special case F D 1).

A.3.2. Dispersion, Strichartz estimates. Combining Proposition 3 from [Charve 2018a] (covering the
range p � 4) with the convolution arguments from the appendix of [Charve 2004] allows us to cover the
full range p � 1 and obtain the following Strichartz estimates satisfied by the last two projections of the
solution of system(A-79):

Proposition 46. Assume that f satisfies (A-79) on Œ0; T Œ, where divf0 D 0 and the frequencies of f0
and F are localized in Cr";R" . Then there exists a constant C D CF;p;�;�0 > 0 such that, for i 2 f3; 4g
and p � 1, we have

kPif kLpTL1
� CK."/

�
kf0kL2 C

Z T

0

kFext.�/kL2 d�

�
:

where

K."/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:
"
1
4
R4"

r
5
2
C 2
p

"

�
4

�0

�
1

p
�
1

4

��1
p
� 1
4

D "
1
4
�.4MC. 5

2
C 2
p
/m/

�
4

�0

�
1

p
�
1

4

��1
p
� 1
4

if p 2 Œ1; 4�;

"
1
p
R
5
2
C 6
p

"

r
2C 4

p

"

D "
1
p
�.. 5

2
C 6
p
/MC.2C 4

p
/m/ if p � 4:

Unfortunately these estimates would be completely useless in our case: we need more flexibility than
only Lp-L1-estimates, and in the case � ¤ �0 we need to take into account the second term Gl as done
in [Charve 2004]. We begin with the case � D �0, where we have to deal with the fact that we obtain
Strichartz estimates on W", which is not frequency-localized (we improve the method from [Charve 2006,
Appendix B]). Then we deal with the case � ¤ �0.

A.3.3. Strichartz estimates in the case � D �0. The main result of this section is stated as follows:

Proposition 47. There exists a constant CF > 0 such that for any d 2 R, r > 4, q � 1, and

� 2

�
0;

1
2
�
1
r

1� 4
r

�
\ �0; 1�; p 2

�
1;

4

�
�
1� 4

r

��;
if f solves (A-79) for initial data f0 and external force Fext both with zero divergence and potential
vorticity, then

�
c0 refers to the smaller constant appearing in the Littlewood–Paley decomposition, usually

c0 D
3
4

�
.

kjDjdf kzLpt PB
0
r;q
� CF

Cp;�;r

�
1
p
� �
4
.1� 4

r
/
"
�
4
.1� 4

r
/
�

�
kf0k PB�2;q

C

Z t

0

kFext.�/k PB�2;q
d�

�
; (A-87)
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where

� D d C 3
2
�
3
r
�
2
p
C
�
2

�
1� 4

r

�
; Cp;�;r D

�
2

c20

�
1
p
�
�
4
.1� 4

r
/
�� 1
p
� �
4
.1� 4

r
/ 2

1
2
.1� 2

r
�2�.1� 4

r
//

1� 2�
1
2
.1� 2

r
�2�.1� 4

r
//
:

Remark 48. It is interesting to compare our Strichartz estimates with the ones from [Iwabuchi et al. 2017;
Scrobogna 2017] (see Proposition 5). In our estimates we use the range r > 4, whereas in Proposition 5
they consider the case r 2 �2; 4Œ and they use it for r close to 3. Our index p is mostly equal to 2 but
we can reach p D 1 (which is useful when there are derivatives), whereas in [Iwabuchi et al. 2017],
p > 1=

�
1� 2

r

�
> 2.

Proof of Proposition 47. Let us first assume that Fext D 0. As � D �0, the fact that f0 is divergence-free
and with zero potential vorticity implies that

f0 D Pf0 D PPf0 D P3C4Pf0 D P3C4f0;

so that we only consider the last two eigenvalues (we recall the eigenvectors are orthogonal). The idea is
to push further the Strichartz estimates without the frequency truncation we obtained in [Charve 2006]:
we will once more use a simple nonstationary phase argument (see for example the works of Chemin,
Desjardins, Gallagher and Grenier [Chemin et al. 2000; 2002; 2006]). As outlined previously, in this special
case there is no need to truncate in frequency through the operator Pr";R" but within the computations we
will truncate considering the vertical Littlewood–Paley decomposition ( P�v

k
uD '.2�jD3/u):

k P�jf kLpt L
r
x
D k P�jf kLpLr D

jC1X
kD�1

k P�vk
P�jf kLpLr :

Now we will use the methods leading to the general Strichartz estimates (previously used when frequencies
are truncated on some Cr;R) as in our case r D c02k and R D C02j. We recall that ' is the truncation
function involved in the Littlewood–Paley decomposition, we denote by '1 another smooth truncation
function, with support in a slightly larger annulus than ' and equal to 1 on supp', and by B the set

B def
D f 2 C10 .RC;R

3/ W k kL Np.RC;LNr .R3// � 1g:

Then following the same classical steps as in [Charve 2006] we get that (we choose for simplicity to write
it only for the third eigenvalue) for any ˇ � 1

k P�vk
P�jf kLpLr

D sup
 2B

Z 1
0

P�vk
P�jf .t; x/ .t; x/ dx dt

D C sup
 2B
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Z
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e��t j�j

2Ci t
"

j�jF
F j�j
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Z 1
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Z
R3
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�.t C s/;

jt � sj

"
; x

�
� . .t/� N .s//.x/ dx ds dt

� 1
2

;

� C sup
 2B
k P�jf0kL2

�Z 1
0

Z 1
0





K��.t C s/; jt � sj"
; �

�




L Ň
k .t/� N .s/kLˇ ds dt

� 1
2

; (A-88)
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with K defined as follows (we refer to [Charve 2006] for details):

K.�; �; x/D

Z
Aj;k

eix���� j�j
2Ci�

j�jF
F j�j '1.2

�j
j�j/2'.2�kj�3j/

2 d�;

where

Aj;k
def
D f� 2 R3 W c02

j
� j�j � C02

j and c02k � j�3j � C02kg: (A-89)

Interpolating the following estimates (we refer to [Charve 2006, Section B.2] for more details), and using
as in [Charve 2018a, Section 3.2] that for all a; b > 0 and � 2 Œ0; 1� we have min.a; b/� a1��b� ,

kK.�; �; � /kL1 � CF e
�c20�2
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�
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�22j 2
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2 2
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2 ;

we get for any r 2 Œ2;1�, 1
r
D

1�˛
1
C
˛
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2
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23j
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:

(A-90)

Now we can go back to (A-88), by the Cauchy–Schwarz inequality, fixing ˇ � 1 so that

k .t/� N .s/kLˇ � k .t/kLNrk .s/kLNr ;

that is, choosing Ň D ˇ
ˇ�1
D

r
2

(which implies that r � 4), and using (A-90), we obtain that

k P�vk
P�jf kLpLr � CF sup

 2B
k P�jf0kL2"

�
4
.1� 4

r
/2
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2
.1� 2
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�Z 1
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Z 1
0

h.t/h.s/
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2
.1� 4

r
/
ds dt

� 1
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; (A-91)

with

h.t/D e�
c2
0
2
�t22j
k .t/kLNr :

Next we will use the Hardy–Littlewood–Sobolev estimates, which we recall in R for the convenience of
the reader (we refer to [Hardy and Littlewood 1930; Sobolev 1938; Lieb 1983]):

Proposition 49. There exists a constant C >0 such that for any function hi 2Lqi .R/ (qi >1 for i D 1; 2)
and any ˛ > 0, with 1

q1
C

1
q2
C˛ D 2, we haveZ

R

Z
R

h1.t/h2.s/

jt � sj˛
dt ds � Ckh1kLq1kh2kLq2 :
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Choosing h1 D h2 D h1RC , ˛ D �
2

�
1� 4

r

�
> 0, and 1

q
D 1� �

4

�
1� 4

r

�
, we get thatZ 1

0

Z 1
0
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jt � sj
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/
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(A-92)

for m 2 Œ1;1� chosen so that 1
m
C

1
Np
D

1
q

, that is,

1
m
D

1
p
�
�
4

�
1� 4

r

�
:

Remark 50. Note that this implies the condition p � 4
�

�
1=
�
1� 4

r

��
.

Combining with (A-91), we can write that
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It is possible to sum this for k � j C 1 if and only if

1� 2
r
� 2�

�
1� 4

r

�
> 0;

that is, as r > 4, when

� <
1� 2

r

2
�
1� 4

r

� :
Summing over k we obtain that for all j ,

k P�jf kLpLr � CF
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4
.1� 4
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�
4
.1� 4
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2
� 3
r
� 2
p
C �
2
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r
//
k P�jf0kL2 ; (A-94)

which leads to the desired result in the homogeneous case. The inhomogeneous case (i.e., when Fext ¤ 0)
easily follows thanks to the Duhamel formula. �

A.3.4. Strichartz estimates in the case � ¤ �0.

Proposition 51. There exists a constant CF;! > 0
�
where ! D max.�;�0/

�0

�
such that for any d 2 R, r > 4,

and p < 4=
�
1� 4

r

�
, if f solves (A-79) for initial data f0 and external force Fext D F

bCF l, all three of
them with zero divergence and potential vorticity, then for i D 3; 4
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; (A-95)
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where Dp;r Dmax.bp;r ; dp;r/ with

bp;r D
�
2
�c2

� 1
p
� 1
4
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r
/� 1
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�� 1
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4
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/
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p
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4
.1� 4

r
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e�x

x
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4
.1� 4

r
/
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�1
p

:

Remark 52. We could prove like in the previous section some refined estimate with � 2 �0; 1�
�
allowing

p � 4=
�
�
�
1� 4

r

���
but we will only need the case � D 1 and p close to 2 in this article.

Proof of Proposition 51. Let us first assume that Fext D 0. With the same notation as in the previous
section, we get that (see previous section, as well as [Charve and Ngo 2011; Charve 2018a] for details)
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where
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Like before, to obtain the L
r
2 -norm, we will interpolate between L2 and L1. It is easy to obtain

kL.s; t; "; � /kL2 � CFR
3
2
" e
�c2

�0
4
.tCs/r2" ;

and we refer to [Charve and Ngo 2011; Charve 2018a] where we proved that (there we were working
with local-in-time solutions, and we dropped the exponential)
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so that we obtain for any ˇ � 2
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Thanks to (A-85), and doing the same as previously, we end up with
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with

g.t/D e�
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Using once more Proposition 49, we end up with
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Then it is easy to deduce the nonhomogeneous case with F b only. Let us now focus on the other external
force term; we extend the method from [Charve 2004]. If we denote by S.t/f0 the solution of system
(A-79) with Fext D 0, we have by the Duhamel formula



Z t

0

S.t � t 0/Pr";R"PiF
l.t 0/ dt 0






L
p
t L

r

D sup
 2B

Z 1
0

Z
R3

5
PiPr";R"F

l.t 0; �/

�

Z 1
t 0

e�.t�t
0/�.�/j�j2Ci.t�t 0/

j�jF
"F j�j

C"tE.�;"/�

�
j�j

2R"

��
1��

�
2j�3j

r"

��
O .t; �/ dt d� dt 0

� C sup
 2B
kPiPr";R"F

l
kL2L2

�Z 1
0

Z 1
t 0

Z 1
t 0
kL.t � t 0; s� t 0; "; � /kLr=2k .t/�

N .s/kLr=.r�2/ ds dt

� 1
2

� CF;!kPr";R"F
l
kL2L2

R
4� 9

r
"

r
3� 8

r
"

"
1
4
.1� 4

r
/

� sup
 2B

�Z 1
0

Z 1
0

Z 1
0

1ft 0�min.t;s/g
e�c

2 �0
4
.tCs�2t 0/r2"

jt � sj
1
2
.1� 4

r
/
k .t/kLNrk .s/kLNr ds dt dt

0

� 1
2

: (A-99)

Computing the integral in t 0,Z min.s;t/
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and using the fact that jt � sj D sC t � 2min.s; t/, we get
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Then setting
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we just have to estimate a convolutionZ 1
0

Z 1
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provided that p � 2 and p
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Finally, to obtain the announced estimates, we just have to apply this estimate to P�j jDjdf . �
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DISPERSIVE ESTIMATES, BLOW-UP AND FAILURE OF
STRICHARTZ ESTIMATES FOR THE SCHRÖDINGER EQUATION

WITH SLOWLY DECAYING INITIAL DATA

RAINER MANDEL

The initial value problem for the homogeneous Schrödinger equation is investigated for radially symmetric
initial data with slow decay rates and not too wild oscillations. Our global well-posedness results apply to
initial data for which Strichartz estimates fail.

1. Introduction

In this paper we investigate the initial value problem for the Schrödinger equation

i∂tψ +1ψ = 0 in Rn, ψ(0)= φ, (1)

for radial initial data φ with slow decay at infinity. In particular, we are interested in a solution theory
for (1) without assuming φ to belong to one of the Lebesgue spaces Lr (Rn) with r ∈ [1, 2]. In this case
Strichartz estimates are not available and local or global well-posedness results for (1) are unknown.
Surprisingly, we could not find a complete statement about Strichartz estimates for such initial data in the
literature, so we clarify this point here.

Theorem 1. Let n ∈ N and p, q ∈ [1,∞], r > 2. Then there is no Strichartz estimate

‖ei t1φ‖L p
t (R;Lq (Rn)) . ‖φ‖Lr (Rn). (2)

This theorem partly generalizes the known fact that for any given t > 0 the Schrödinger propagator ei t1

is unbounded as a map from Lr (Rn) to Lq(Rn) for all r > 2, q ∈ [1,∞]; see [Linares and Ponce 2015,
p. 63] for the case q = r . Theorem 1 may seem surprising in view of the fact that the optimal conditions
for Strichartz estimates in the most important special case r = 2 do not provide any obvious reason why
the estimates should break down completely for r > 2. Recall that these conditions are given by

p, q ≥ 2, (p, q, n) 6= (2,∞, 2), 2
p
+

n
q
=

n
2
;

see for instance [Cazenave 2003, Theorem 2.3.3]. We refer to [Strichartz 1977; Keel and Tao 1998;
Ginibre and Velo 1985] for three milestone contributions related to the discovery of these conditions. At
least for n≥ 3, each of the above conditions has a counterpart in the range r > 2. The scaling invariance of
the Schrödinger equation implies 2/p+n/q = n/r so that q ≥ r would be an immediate consequence that

MSC2010: primary 35Q41; secondary 35B40, 35B44.
Keywords: Schrödinger equation, failure of Strichartz estimates, dispersive blow-up.

519

http://msp.org/paa/
https://doi.org/10.2140/paa.2020.2-2
http://https://doi.org/10.2140/paa.2020.2.519
http://msp.org


520 RAINER MANDEL

replaces the condition q≥ 2. As we discuss in the Appendix p≥ 2 generalizes to p≥ 2r/(2n− r(n− 1))+.
In particular, there is no evident reason for the necessity of r ≤ 2 so that Theorem 1 seems to fill a gap
in the literature. Its short proof relies on a thorough analysis of a counterexample due to Bona, Ponce,
Saut, and Sparber [Bona et al. 2014]. The main feature of their solution is that the corresponding initial
datum oscillates quadratically with respect to the distance to the origin, which produces L∞-blow-up (or
dispersive blow-up) of the solution at some prescribable finite time; see [Bona et al. 2014, Lemma 2.1].
We reconsider this self-similar blow-up analysis for partly more general initial data and estimate the
blow-up rate in Lq(Rn), which eventually leads to Theorem 1. Accordingly, our proof even reveals that
local Strichartz estimates cannot hold either and that no improvement in the radial situation is possible.

Given that Strichartz estimates fail, the question arises of how well-posedness results for the Schrödinger
equation can be achieved if the initial datum lies in Lr (Rn) only for r > 2. In view of the above-mentioned
counterexample it seems reasonable to impose a condition on the oscillations of the initial datum. In
the following we present one possible approach in the radially symmetric case which relies on suitably
weighted Sobolev norms of the initial data. For instance we identify a class of initial data lying in Lr (Rn)

only for r > 2n/(n− 1) with solutions that are bounded in time and uniformly localized in space; see
Corollary 3. In that case dispersion need not occur because there are solutions of the form

ψ(x, t)= e−iω2tφ(x), where φ(x)= |x |(2−n)/2 J(n−2)/2(ω|x |) for some ω ∈ R. (3)

Here, J(n−2)/2 denotes the Bessel function of the first kind and φ solves the linear Helmholtz equation
1φ+ω2φ = 0 in Rn. Aiming for a more general result in this direction, we first consider initial profiles of
the form φ(x)= eiω|x |φω(|x |), where φω belongs to the function spaces X and Ym for some m ∈ {0, . . . , n},
which we introduce now. The space X is defined to be the completion of C∞c (R≥0;C) with respect to the
norm ‖ · ‖X := ‖ · ‖X1 +‖ · ‖X2 given by

‖ f ‖X1 := sup
z>0

z(1−n)/2
∫ z

0
(| f (r)|rn−2

+ | f ′(r)|rn−1) dr,

‖ f ‖X2 :=

∫
∞

0

∣∣∣ d
dr
( f (r)r (n−1)/2)

∣∣∣ dr + sup
z>0

(
z
∫
∞

z
| f (r)|r (n−5)/2 dr

)
.

Similarly, we define Ym to be the completion of C∞c (R≥0;C) with respect to the norm

‖ f ‖Ym :=

m∑
k=0

∫
∞

0
| f (k)(r)|rn−m+k−1 dr if m ∈ {0, . . . , n− 1},

‖ f ‖Yn :=

n∑
k=1

∫
∞

0
| f (k)(r)|r k−1 dr + sup

z>0
z−2

∫ z

0
f (r)r dr + | f (0)|.

One main feature of these spaces is that slow decay rates of their elements are admissible only provided
that their derivatives decay fast enough. For instance, we have that r 7→ (1+ r)−α lies in X if and only if
α ≥ (n− 1)/2 and in Ym if and only if α > n−m, whereas r 7→ eir (1+ r)−α belongs to X if and only if
α > (n+ 1)/2 and to Ym if and only if α > n. Using these spaces we find a local well-posedness theory
for at most linearly oscillating radial initial data.
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Theorem 2. Let n ∈ N, m ∈ {0, . . . , n}, and φ(x)= φω(|x |)eiω|x | for some ω ∈ R:

(i) If φω ∈ Ym then (1) has a unique global solution ψ satisfying

|ψ(x, t)| ≤ C(
√

t)m−n
‖φω‖Ym .

(ii) If φω ∈ X then (1) has a unique global solution ψ satisfying

|ψ(x, t)| ≤ C |x |(1−n)/2
‖φω‖X .

In (i) and (ii) the constant C does not depend on ω.

Here we used the term “global solution” to indicate a distributional solution of the Schrödinger
equation (1) away from t = 0, i.e., on R \ {0}×Rn. Given that the test functions are dense in both X and
Ym and that the above estimates hold, one even gets that such solutions are limits of smooth classical
solutions with respect to uniform convergence on all compact sets avoiding t = 0 and x = 0. By the
estimate (i) for m = n this convergence is even uniform on R×Rn if we assume φω ∈ Yn . Combining
the estimates (i) and (ii) we deduce the following.

Corollary 3. Let n ∈ N and assume φ(x) =
∫

R
φω(|x |)eiω|x | dµ(ω) for some Borel measure µ on R.

Then (1) has a unique global solution satisfying

|ψ(x, t)| ≤ C(1+ |x |)(1−n)/2
∫

R

(‖φω‖X +‖φω‖Yn ) dµ(ω),

provided the right-hand side is finite.

Corollary 4. Let n ∈ N, m ∈ {0, . . . , n}, and assume φ(x) =
∫

R
φω(|x |)eiω|x | dµ(ω) for some Borel

measure µ on R. Then (1) has a unique global solution satisfying

|ψ(x, t)| ≤ C(1+ t)−m/2
∫

R

(‖φω‖Yn−m +‖φω‖Yn ) dµ(ω),

provided the right-hand side is finite.

Remark 1. (a) In the case n ≥ 2 we can apply Corollary 3 to initial conditions that are sufficiently
regular superpositions of radially symmetric Herglotz waves. The corresponding densities a are assumed
to be Lebesgue measurable and to satisfy

∫
R
|a(ω)|(|ω|−1/2

+ |ω|(n−2)/2) <∞. Using the asymptotic
expansions of the Bessel functions at infinity one finds

φ(x) :=
∫
∞

0
a(ω)|x |(2−n)/2 J(n−2)/2(ω|x |) dω =

∫
R

φω(|x |)eiω|x | dµ(ω),

where dµ(ω)= dδ0(ω)+ dω (δ0 is the Dirac delta distribution) and

φω(r)= r1−n
·


a(ω)ω−n/2 Bn(ωr) if ω > 0,∫
∞

0 a(ξ)ξ−n/2 An(ξr) dξ if ω = 0,
a(−ω)|ω|−n/2 Bn(−ωr) if ω < 0.
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Here we anticipated the notation from (6). So Proposition 6 and a few computations yield that ω 7→
‖φω‖X +‖φω‖Yn is µ-integrable because of

‖φ0‖X +

∫
R

‖φω‖X dω .
∫

R

|a(ω)||ω|−1/2 dω,

‖φ0‖Yn +

∫
R

‖φω‖Yn dω .
∫

R

|a(ω)||ω|(n−2)/2 dω.

In particular, Corollary 3 provides an abstract framework for the observation that the solutions of the
Schrödinger equation with initial data given by sufficiently regular superpositions of radially symmetric
Herglotz waves as in (3) remain bounded in time and uniformly localized in space.

(b) Theorem 2(i) is a generalized version of the fact that integrable initial data yield bounded solutions.
Indeed, the latter statement corresponds to m = 0 in the theorem. So we get that less integrability of the
initial datum is still sufficient for the absence of finite time L∞-blow-up provided that the derivatives
decay sufficiently fast. Notice that some kind of control on the derivatives seems necessary given that there
are initial data in Ls(Rn) for any given s > 1, the corresponding solutions of which become unbounded
in finite time; see [Bona et al. 2014, Lemma 2.1 and Remark 2.2].

(c) The decay rates from Corollary 3 improve once we add regularity assumptions on µ. In the simplest
situation dµ(ω)= b(ω) dω for b ∈W k,1

0 (R) and ω 7→ φω ∈W k,∞(R; X ∩ Yn), the decay rate improves
to (1+|x |)(1−n)/2−k. This is proved using integration by parts as in the method of stationary phase. In the
Appendix we discuss the densities b(ω)= (ω− 1)−δ1[1,2](ω) with δ ∈ (0, 1) and find the intermediate
decay rates (1+ |x |)(1−n)/2−(1−δ).

(d) Theorem 2(i) tells us that nondispersive solutions of the Schrödinger equation (1) can only occur
for radial initial data φ(x)= φrad(|x |) that satisfy ‖φrad‖Ym =∞ for all m ∈ {0, . . . , n− 1}. For smooth
initial data this essentially means that for some k ∈ {0, . . . , n− 1} the function |φ(k)rad(r)| does not decay
faster than (1+ r)−1−k as r→∞. We conclude that the lack of dispersion is a phenomenon related to
slowly decaying or heavily oscillating initial data.

2. Proof of Theorem 2

In the following let ψ denote the unique solution of the Schrödinger equation (1) with initial datum φ given
by φ(x)= φrad(|x |)= φω(|x |)eiω|x |. By density, it suffices to prove the estimates for φω ∈ C∞c (R≥0;C).
In the following we use the abbreviations

f (r) := φrad(r)rn/2 J(n−2)/2

(
r |x |
2t

)
and g(ρ) := f (2

√
tρ). (4)

We first recall the representation formula of the solution for radial initial data.

Proposition 5. We have for all x ∈ Rn, t > 0,

ψ(x, t)= |x |(2−n)/2(
√

t)−1ei(|x |2/(4t)−nπ/4)
∫
∞

0
g(ρ)eiρ2

dρ. (5)
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Proof. From (4.2) in [Linares and Ponce 2015] or (2.2.5) in [Cazenave 2003] we get

ψ(x, t)=
1

(4iπ t)n/2

∫
Rn

ei |x−y|2/(4t)φ(y)dy

=
1

(4iπ t)n/2

∫
∞

0
φrad(r)rn−1ei(|x |2+r2)/(4t)

(∫
∂B1(0)

eir〈x,ω〉/(2t) dσ(ω)
)

dr

=
1

(4iπ t)n/2

∫
∞

0
φrad(r)rn−1ei(|x |2+r2)/(4t)

(∫
∂B1(0)

eir |x |ω1/(2t) dσ(ω)
)

dr

=
1

(4iπ t)n/2

∫
∞

0
φrad(r)rn−1ei(|x |2+r2)/(4t)

|∂B1(0)|0
(

n
2

)
2(n−2)/2

(
r |x |
2t

)(2−n)/2

J(n−2)/2

(
r |x |
2t

)
dr

=|∂B1(0)|0
(

n
2

)
(4π i)−n/22n−2

|x |(2−n)/2t−1ei |x |2/(4t)
∫
∞

0
f (r)eir2/(4t) dr

=|∂B1(0)|0
(

n
2

)
(4π i)−n/22n−1

|x |(2−n)/2(
√

t)−1ei |x |2/(4t)
∫
∞

0
f (2
√

tρ)eiρ2
dρ.

So the claim follows from |∂B1(0)| = 2πn/2/0(n/2). �

It will be convenient to split the integrand in (5) into three parts, g = g1+ g2+ g3. The function g1

will be identical to g for small arguments and the corresponding estimates rely on the behavior of the
Bessel function J(n−2)/2 on the interval [0, 1]. The sum g2+ g3 represents g for large arguments and their
definitions are based on the asymptotic expansion of the Bessel function at infinity. To be more precise,
we fix some cut-off function χ ∈ C∞0 (R) such that χ ≡ 1 on

[
0, 1

2

]
and χ ≡ 0 on [1,∞]. Then, much as

in [Watson 1944, p. 202], we write

zn/2 J(n−2)/2(z)= An(z)+ ei z Bn(z)+ e−i z Bn(z), (6)

where the functions An, Bn are given by

An(z) := χ(z)zn/2 J(n−2)/2(z), Bn(z) := (1−χ(z))e−i(n−1)π/4
∞∑

k=0

αkz(n−1)/2−k (7)

and the coefficients αk ∈ C are α0 := 1/
√

2π and for k ∈ N

αk :=
1
√

2π

(
n− 2

2
, k
)(

i
2

)k

, where (ν, k) :=
(4ν2
− 12)(4ν2

− 32) · · · (4ν2
− (2k− 1)2)

4kk!
; (8)

see [Watson 1944, p. 199]. The motivation for this decomposition is that An, Bn and its derivatives satisfy
useful uniform estimates that we provide next.

Proposition 6. We have supp(An)⊂ [0, 1], supp(Bn)⊂
[ 1

2 ,∞
)
, and for all j ∈ N0, z ∈ R,

|A( j)
n (z)|.


|z|n−1− j if j ∈ {0, . . . , n− 1},
|z| if j ∈ {n, n+ 2, n+ 4, . . .},
1 if j ∈ {n+ 1, n+ 3, . . .},∣∣∣∣ d j

dz j (Bn(z)z(1−n)/2)

∣∣∣∣. {1 if j = 0,
|z|−1− j if j ≥ 1.
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Proof. The estimate for An follows from

An(z)= χ(z)zn/2 J(n−2)/2(z)

= χ(z)zn/2
∞∑

m=0

(−1)m

m!0(m+ n/2)

(
z
2

)(n−2)/2+2m

= χ(z)
∞∑

m=0

(−1)m

2(n−2)/2+2mm!0(m+ n/2)
zn−1+2m .

(9)

The estimate for Bn follows from its series representation (7); see also [Watson 1944, p. 206]. �

Given the definition of g in (4) and the splitting (6) of the Bessel function, we decompose the integrand g
according to g = g1+ g2+ g3, where, for r := 2

√
tρ,

g1(ρ) := φrad(r)An

(
r |x |
2t

)(
|x |
2t

)−n/2

= e2i
√

tωρφω(r)An

(
r |x |
2t

)(
|x |
2t

)−n/2

,

g2(ρ) := eir |x |/(2t)φrad(r)Bn

(
r |x |
2t

)(
|x |
2t

)−n/2

= e2i
√

t(ω+|x |/(2t))ρφω(r)Bn

(
r |x |
2t

)(
|x |
2t

)−n/2

,

g3(ρ) := e−ir |x |/(2t)φrad(r)Bn

(
r |x |
2t

)(
|x |
2t

)−n/2

= e2i
√

t(ω−|x |/(2t))ρφω(r)Bn

(
r |x |
2t

)(
|x |
2t

)−n/2

.

We now remove the linear phase factors by putting g j,a j (ρ) := g j (ρ)e−ia jρ for

a1 := 2
√

tω, a2 := 2
√

t
(
ω+
|x |
2t

)
, a3 := 2

√
t
(
ω−
|x |
2t

)
. (10)

This implies, again for r := 2
√

tρ,

g1,a1(ρ)= φω(r)An

(
r |x |
2t

)(
|x |
2t

)−n/2

,

g2,a2(ρ)= φω(r)Bn

(
r |x |
2t

)(
|x |
2t

)−n/2

,

g3,a3(ρ)= φω(r)Bn

(
r |x |
2t

)(
|x |
2t

)−n/2

.

(11)

So we infer from Proposition 5

ψ(x, t)|x |(n−2)/2√te−i(|x |2/(4t)−nπ/4)
=

∫
∞

0
g(ρ)eiρ2

dρ =
3∑

j=1

∫
∞

0
g j,a j (ρ)e

i(ρ2
+a jρ) dρ. (12)

In order to estimate these terms, we make use of the following auxiliary result.

Proposition 7. Let a ∈ R and 4m
a ∈ C∞(R;C) for m ∈ N0 be inductively defined by

40
a(s) :=

∫
∞

s
ei(ρ2

+aρ) dρ, 4m
a (s) :=

∫
∞

s
4m−1

a (ρ) dρ.

Then |4m
a (s)| ≤ Cm for all a ∈ R, s ≥ 0.
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Proof. This follows from 4m
a (s)= e−ia2/44m

0 (s+ a/2) once we have proved the estimate

|4m(s)| ≤ Cm(1+ s+)−m−1 for all s ∈ R,

where 4m
:=4m

0 . The existence of the improper Fresnel integral 40(s) is a well-known consequence of
the residue theorem. Moreover, l’Hôpital’s rule gives

40(s)(−2is)e−is2
→ 1 and s2(1+ 2is40(s)e−is2

)→
i
2

as s→∞.

(For the second limit one may proceed as we do below in the computation of zk .) Since the improper
integral

∫
∞

s (1/ρ)eiρ2
dρ exists for s > 1 (again by the residue theorem), we obtain from the previous

statement that the integral 41(s) exists and

41(s)(−2is)2e−is2
→ 1 and s2(1− (−2is)241(s)e−is2

)→
3i
2

as s→∞.

By induction, we find that for all k ∈ N, k ≥ 2 the (proper) integral 4k(s) exists and

zk := lim
s→∞

s2(1− (−2is)k+14k(s)e−is2
)

= lim
s→∞

eis2
(−2is)−k−1

−4k(s)
eis2s−2(−2is)−k−1

= lim
s→∞

−eis2
(−2is)−k

+ 2(k+ 1)ieis2
(−2is)−k−2

− (4k)′(s)
−eis2s−2(−2is)−k − 2eis2s−3(−2is)−k−1+ 2(k+ 1)ieis2s−2(−2is)−k−2

= lim
s→∞

−(−2is)−k
+ 2(k+ 1)i(−2is)−k−2

+4k−1(s)e−is2

−s−2(−2is)−k − 2s−3(−2is)−k−1+ 2(k+ 1)is−2(−2is)−k−2

= lim
s→∞

−(k+ 1)is−2
− 2+ 2(−2is)k4k−1(s)e−is2

−2s−2− 2is−4− (k+ 1)is−4

= lim
s→∞

(k+ 1)i + 2s2(1− (−2is)k4k−1(s)e−is2
)

2+ 2is−2+ (k+ 1)is−2 =
(k+ 1)i

2
+ zk−1,

implying

zk = lim
s→∞

s2(1− (−2is)k+14k(s)e−is2
)=

(k+ 2)(k+ 1)i
4

.

This yields the bounds for 4m(s) and we are done. �

Let us remark that the proof actually yields the stronger estimate |4m
a (s)| ≤ Cm for 0 ≤ s ≤ a− and

|4m
a (s)| ≤ 2m+1Cm(1+ s)−m−1 for s ≥ a−. However, given that these estimates depend on a, it seems

difficult to make use of them. Moreover, the independence of a guarantees that our estimates below do not
depend on ω since the latter is completely absorbed in the definitions of a1, a2, a3 from (10). From (12)
and Proposition 7 we deduce the following estimate for the solution ψ .

Proposition 8. For all x ∈ Rn, t ∈ R, m ∈ {0, . . . , n}, we have

|ψ(x, t)| ≤ Cm−1|x |(2−n)/2t−1/2
(
δm,n|g

(n−1)
1,a1

(0)| +
∫
∞

0
|g(m)1,a1

(ρ)| + |g(m)2,a2
(ρ)| + |g(m)3,a3

(ρ)| dρ
)
, (13)

where g1,a1, g2,a2, g3,a3 are given by (11).
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Proof. In the following integration-by-parts scheme we use (4m
a j
)′ =−4m−1

a j
as well as

g j,a j (0)= g′j,a j
(0)= · · · = g(n−2)

j,a j
(0)= 0, g(n−1)

2,a2
(0)= g(n−1)

3,a3
(0)= 0, (14)

which follows from (11) and Proposition 6. Recall that the support of Bn is contained in
[ 1

2 ,∞
)

by
choice of the cut-off function χ so that the above estimate is actually trivial for j ∈ {2, 3}. So we have for
m ∈ {0, . . . , n− 1}∫

∞

0
g j,a j (ρ)e

i(ρ2
+a jρ) dρ

(14)
= lim

M→∞

∫ M

0

(∫ ρ

0
g′j,a j

(t) dt
)

ei(ρ2
+a jρ) dρ

= lim
M→∞

∫ M

0
g′j,a j

(t)
(∫ M

t
ei(ρ2

+a jρ) dρ
)

dt

=

∫
∞

0
g′j,a j

(t)40
a j
(t) dt

(14)
=

∫
∞

0

(∫ t

0
g′′j,a j

(s) ds
)
40

a j
(t) dt

=

∫
∞

0
g′′j,a j

(s)41
a j
(s) ds

...

=

∫
∞

0
g(m)j,a j

(ρ)4m−1
a j

(ρ) dρ. (15)

Notice that the limit M→∞ passes under the integral because g j,a j has compact support and the 4k
a j

are bounded by Proposition 7. So we obtain for m ∈ {0, . . . , n− 1}

|ψ(x, t)|
(12)
≤ |x |(2−n)/2(

√
t)−1

3∑
j=1

∣∣∣∣∫ ∞
0

g(m)j,a j
(ρ)4m−1

a j
(ρ) dρ

∣∣∣∣
≤ Cm−1|x |(2−n)/2(

√
t)−1

3∑
j=1

∫
∞

0
|g(m)j,a j

(ρ)| dρ.

Moreover, using (15) for m = n− 1 we get

|ψ(x, t)| = |x |(2−n)/2(
√

t)−1
∣∣∣∣ 3∑

j=1

∫
∞

0
g(n−1)

j,a j
(ρ)4n−2

a j
(ρ) dρ

∣∣∣∣
= |x |(2−n)/2(

√
t)−1

∣∣∣∣ 3∑
j=1

(
g(n−1)

j,a j
(0)

∫
∞

0
4n−2

a j
(ρ) dρ+

∫
∞

0

(∫ t

0
g(n)j,a j

(ρ) dρ
)
4n−2

a j
(t) dt

)∣∣∣∣
= |x |(2−n)/2(

√
t)−1

∣∣∣∣ 3∑
j=1

(
g(n−1)

j,a j
(0)4n−1

a j
(0)+

∫
∞

0
g(n)j,a j

(ρ)4n−1
a j
(ρ) dρ

)∣∣∣∣
(14)
≤ Cn−1|x |(2−n)/2(

√
t)−1

(
|g(n−1)

1,a1
(0)| +

3∑
j=1

∫
∞

0
|g(n)j,a j

(ρ)| dρ
)
. �
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For notational convenience we write x . y, respectively x & y, instead of x ≤ cy, respectively x ≥ cy,
for positive numbers c that are independent of ω, |x |, t , r but may depend on m ∈ {0, . . . , n} or the space
dimension n ∈ N.

Proposition 9. Let m ∈ {0, . . . , n}. Then the functions g1,a1, g2,a2, g3,a3 from (11) satisfy the following
estimates for all ρ ≥ 0 and r = 2

√
tρ:

|g(m)1,a1
(ρ)|. |x |(n−2)/2(

√
t)m−n+2

m∑
k=0

|φ(k)ω (r)|rn−m+k−1
·1[0,1]

(
r |x |
2t

)
if m < n,

|g(n)1,a1
(ρ)|.

(
|x |(n−2)/2(

√
t)2

n∑
k=1

|φ(k)ω (r)|r k−1
+ |x |(n+2)/2(

√
t)−2
|φω(r)|r

)
·1[0,1]

(
r |x |
2t

)
,

|g(m)2,a2
(ρ)| + |g(m)3,a3

(ρ)|. |x |−1/2(
√

t)1+m
m∑

k=0

|φ(k)ω (r)|r (n−1)/2−m+k
·1[1/2,∞)

(
r |x |
2t

)
.

Proof. We get for r = 2
√

tρ and m ∈ {0, . . . , n− 1}

|g(m)1,a1
(ρ)|

(11)
= (2
√

t)m
∣∣∣∣ dm

drm

(
φω(r)An

(
r |x |
2t

))∣∣∣∣( |x |2t

)−n/2

. (
√

t)m
m∑

k=0

∣∣∣∣φ(k)ω (r)A(m−k)
n

(
r |x |
2t

)∣∣∣∣( |x |2t

)m−k−n/2

Prop. 6
. (
√

t)m
m∑

k=0

|φ(k)ω (r)|
(

r |x |
2t

)n−1−m+k(
|x |
2t

)m−k−n/2

·1[0,1]

(
r |x |
2t

)

. |x |(n−2)/2(
√

t)m−n+2
m∑

k=0

|φ(k)ω (r)|rn−1−m+k
·1[0,1]

(
r |x |
2t

)
.

This implies the first estimate. For m=n we use the estimate for A( j)
n from Proposition 6 for j ∈{0, . . . , n}

and obtain

|g(n)1,a1
(ρ)|

(11)
= (2
√

t)n
∣∣∣∣ dn

drn

(
φω(r)An

(
r |x |
2t

))∣∣∣∣( |x |2t

)−n/2

. (
√

t)n
n∑

k=0

∣∣∣∣φ(k)ω (r)A(n−k)
n

(
r |x |
2t

)∣∣∣∣( |x |2t

)n/2−k

. (
√

t)n
( n∑

k=1

|φ(k)ω (r)|
(

r |x |
2t

)−1+k(
|x |
2t

)n/2−k

+ |φω(r)|
r |x |
2t

(
|x |
2t

)n/2)
·1[0,1]

(
r |x |
2t

)

.

(
|x |(n−2)/2(

√
t)2

n∑
k=1

|φ(k)ω (r)|r k−1
+ |x |(n+2)/2(

√
t)−2
|φω(r)|r

)
·1[0,1]

(
r |x |
2t

)
.

This yields the second estimate. The third estimate results from

|B( j)
n (z)|. |z|(n−1)/2− j , (16)

which is a consequence of Proposition 6. Thus
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|g(m)2,a2
(ρ)| + |g(m)2,a3

(ρ)|
(11)
= 2(2

√
t)m
∣∣∣∣ dm

drm

(
φω(r)Bn

(
r |x |
2t

))∣∣∣∣( |x |2t

)−n/2

. (
√

t)m
m∑

k=0

|φ(k)ω (r)|
∣∣∣∣B(m−k)

n

(
r |x |
2t

)∣∣∣∣( |x |2t

)m−k−n/2

(16)
. (
√

t)m
m∑

k=0

|φ(k)ω (r)|
(

r |x |
2t

)(n−1)/2−m+k(
|x |
2t

)m−k−n/2

·1[1/2,∞)

(
r |x |
2t

)
. |x |−1/2(

√
t)m+1

m∑
k=0

|φ(k)ω (r)|r (n−1)/2−m+k
·1[1/2,∞)

(
r |x |
2t

)
. �

Proof of Theorem 2(i). We combine the estimates from Propositions 8 and 9. Under the assumption
φω ∈ C∞c (R≥0;C) we get for all m ∈ {0, . . . , n− 1}

|ψ(x, t)|
Prop. 8
. |x |(2−n)/2(

√
t)−1

∫
∞

0
|g(m)1,a1

(ρ)| + |g(m)2,a2
(ρ)| + |g(m)3,a3

(ρ)| dρ

Prop. 9
. (
√

t)m−n+1
m∑

k=0

∫ √t/|x |

0
|φ(k)ω (2

√
tρ)|(2

√
tρ)n−m+k−1 dρ

+ |x |(1−n)/2(
√

t)m
m∑

k=0

∫
∞

√
t/(2|x |)

|φ(k)ω (2
√

tρ)|(2
√

tρ)(n−1)/2−m+k dρ

. (
√

t)m−n
m∑

k=0

∫ 2t/|x |

0
|φ(k)ω (r)|rn−m+k−1 dr

+ (
√

t)m−n
(

t
|x |

)(n−1)/2 m∑
k=0

∫
∞

t/|x |
|φ(k)ω (r)|r (n−1)/2−m+k dr

. (
√

t)m−n
m∑

k=0

(∫ 2t/|x |

0
|φ(k)ω (r)|rn−m+k−1 dr +

∫
∞

t/|x |
|φ(k)ω (r)|rn−m+k−1 dr

)
. (
√

t)m−n
‖φω‖Ym .

In the case m = n we use the second estimate in Proposition 9 instead of the first one. By density of
C∞c (R≥0;C) in Ym the result follows. �

Proof of Theorem 2(ii). For r = 2
√

tρ we use

|g′1,a1
(ρ)|. |x |(n−2)/2(

√
t)3−n(|φω(r)|rn−2

+ |φ′ω(r)|r
n−1) ·1[0,1]

(
r |x |
2t

)
,

as well as

|g′2,a2
(ρ)| + |g′2,a3

(ρ)|

(11)
= 4
√

t
∣∣∣∣ d
dr

(
φω(r)Bn

(
r |x |
2t

))∣∣∣∣( |x |2t

)−n/2

.
√

t
∣∣∣∣ d
dr
(φω(r)r (n−1)/2)

∣∣∣∣∣∣∣∣r (1−n)/2 Bn

(
r |x |
2t

)∣∣∣∣( |x |2t

)−n/2

+
√

t |φω(r)|r (n−1)/2
∣∣∣∣ d
dr

(
r (1−n)/2 Bn

(
r |x |
2t

))∣∣∣∣( |x |2t

)−n/2
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Prop. 6
.
√

t
∣∣∣∣ d
dr
(φω(r)r (n−1)/2)

∣∣∣∣r (1−n)/2
(

r |x |
2t

)(n−1)/2(
|x |
2t

)−n/2

·1[1/2,∞)

(
r |x |
2t

)
+
√

t |φω(r)|r (n−1)/2
(

r |x |
2t

)−2(
|x |
2t

)1/2

·1[1/2,∞)

(
r |x |
2t

)
.

(
|x |−1/2(

√
t)2
∣∣∣∣ d
dr
(φω(r)r (n−1)/2)

∣∣∣∣+ |x |−3/2(
√

t)4|φω(r)|r (n−5)/2
)
·1[1/2,∞)

(
r |x |
2t

)
.

This implies

|ψ(x, t)|
Prop. 8
. |x |(2−n)/2(

√
t)−1

∫
∞

0
|g(m)1,a1

(ρ)| + |g(m)2,a2
(ρ)| + |g(m)3,a3

(ρ)| dρ

Prop. 9
. (
√

t)2−n
∫ √t/|x |

0

(
|φω(2

√
tρ)|(2

√
tρ)n−2

+ |φ′ω(2
√

tρ)|(2
√

tρ)n−1
)

dρ

+|x |(1−n)/2√t
∫
∞

√
t/(2|x |)

∣∣∣∣ d
dr
(φω(r)r (n−1)/2)

∣∣∣∣
r=2
√

tρ
dρ

+|x |(−1−n)/2(
√

t)3
∫
∞

√
t/(2|x |)

|φω(2
√

tρ)|(2
√

tρ)(n−5)/2 dρ

. |x |(1−n)/2
(

t
|x |

)(1−n)/2 ∫ 2t/|x |

0
(|φω(r)|rn−2

+ |φ′ω(r)|r
n−1) dr

+|x |(1−n)/2
(∫

∞

t/|x |

∣∣∣∣ d
dr
(φω(r)r (n−1)/2)

∣∣∣∣ dr +
t
|x |

∫
∞

t/|x |
|φω(r)|r (n−5)/2 dr

)
. |x |(1−n)/2

‖φω‖X .

So we get the result by density of C∞c (R≥0;C) in X . �

3. Proof of Theorem 1

We estimate the solution of the Schrödinger equation for the initial datum

φ(x)= φrad(|x |), where φrad(ρ) := e−iρ2/41ρ≥1ρ
−σ

and σ is chosen according to (n−3)/2<σ < n. In this case, the formula (5) is well-defined and provides
a solution of the initial value problem (1). In [Bona et al. 2014, Section 2.1] it was shown that the solution
ψ blows up in L∞(Rn) as t→ 1 provided that n/2< σ < n holds. In fact, in this case the function

a(x) := 1|x |≥1|x |−σ

lies in L2(Rn) but not in L1(Rn) so that [Bona et al. 2014, Remark 2.2] applies. We now generalize
this analysis to the range (n − 3)/2 < σ < n and detect a self-similar blow-up in Lq(Rn) for all
q > n/(n−σ), and a lower estimate for the corresponding blow-up rate then implies ‖ψ‖L p(R,Lq (Rn))=∞

for p ≥ 2q/((n− σ)q − n)+. From this we will finally deduce the nonvalidity of Strichartz estimates for
initial data φ ∈ Lr (Rn), where r > 2.
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We set kt :=
√

1/(4t)− 1/4 for 0≤ t < 1 and write ψ(x)= ψrad(|x |). We get for |x | = 2tkt z

2|ψ(x, t)|kn−σ
t

(5)
= |x |(2−n)/2t−1kn−σ

t

∣∣∣∣∫ ∞
0

J(n−2)/2

(
ρ|x |
2t

)
φrad(ρ)ρ

n/2eiρ2/(4t) dρ
∣∣∣∣

= |x |(2−n)/2t−1kn−σ
t

∣∣∣∣∫ ∞
1

J(n−2)/2

(
ρ|x |
2t

)
ρn/2−σ eiρ2k2

t dρ
∣∣∣∣

= (2tkt z)(2−n)/2t−1kn−σ
t

∣∣∣∣∫ ∞
1

J(n−2)/2(ρkt z)ρn/2−σ eiρ2k2
t dρ

∣∣∣∣
= (2tkt z)(2−n)/2t−1k(n−2)/2

t

∣∣∣∣∫ ∞
kt

J(n−2)/2(sz)sn/2−σ eis2
ds
∣∣∣∣

→ (2z)(2−n)/2
∣∣∣∣∫ ∞

0
J(n−2)/2(sz)sn/2−σ eis2

ds
∣∣∣∣ as t→ 1

and the convergence is locally uniform in z ∈ (0,∞) due to (n− 3)/2< σ < n. Since the right-hand side
is not identically zero we may find δ > 0 and radii 0< R1 < R2 such that

|ψ(x, t)|& kσ−n
t for R1kt ≤ |x | ≤ R2kt and 1− δ < t < 1.

Hence we get∫ 1

1−δ

(∫
BR2kt (0)\BR1kt (0)

|ψ(x, t)|q dx
)p/q

dt &
∫ 1

1−δ

(∫ R2kt

R1kt

rn−1k(σ−n)q
t dr

)p/q

dt

&
∫ 1

1−δ
(kn+(σ−n)q

t )p/q dt

&
∫ 1

1−δ
(1− t)p(n+(σ−n)q)/(2q) dt.

This integral is finite if and only if (p/(2q))(n+ (σ − n)q) >−1. So ψ ∈ L p(R; Lq(Rn)) can only hold
for p < 2q/((n− σ)q − n)+. Moreover, the initial datum lies in Lr (Rn) if and only if σ > n/r . So,
for any r > 1 we can consider the limit σ ↘ max{n/r, (n− 3)/2}, and we find that the validity of the
Strichartz estimate (2) with initial datum in Lr (Rn), r > 1, implies

p ≤
2q

((n−max{n/r, (n− 3)/2})q − n)+
=max

{
2qr

n((r − 1)q − r)+
,

4q
((n+ 3)q − 2n)+

}
. (17)

On the other hand, the scaling invariance of the Schrödinger equation implies 2/p+ n/q = n/r and thus
p = 2qr/(n(q − r)). Plugging this into (17) we obtain r ≤ 2. Hence, the Strichartz estimate (2) cannot
hold for any r > 2, which finishes the proof. �

Appendix

In this appendix we briefly discuss the restriction p ≥ 2 in the context of Strichartz estimates of the form

‖ei t1φ‖L p
t (R;Lq (Rn)) . ‖φ‖L2(Rn),
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which results from an abstract reasoning involving translation-invariant operators due to [Hörmander
1960]; see [Keel and Tao 1998, p. 970–971]. Here we provide a family of explicit counterexamples that
not only implies p ≥ 2 for square integrable initial data, but even shows p ≥ 2r/(2n− r(n− 1))+ for
initial data in Lr (Rn) with r > 2n/(n+ 1). In order to avoid lengthy computations involving oscillatory
integrals, we only sketch the proofs. The starting point is a reasonable choice of an initial condition. We
choose

φ(x)= |x |(2−n)/2
∫ 2

1
(ω− 1)−δ J(n−2)/2(ω|x |) dω

for δ ∈ (0, 1). This function corresponds to a singular superposition of Herglotz waves; see Remark 1(c).
It is smooth and lengthy computations involving the van der Corput lemma [Stein 1993, p. 334] reveal

|φ(x)| ∼ 2|x |(1−n)/2−(1−δ)
∫
∞

0
Re(eiρα0ei(|x |−((n−1)π)/4))ρ−δ dρ as |x | →∞,

where α0 > 0 is the dominant term in the series expansion of the Bessel function near infinity; see (8). In
particular we get φ ∈ Lr (Rn) if and only if δ < (n+ 1)/2− n/r .

The above choice for the initial datum allows to write down the corresponding solution of the
Schrödinger equation semiexplicitly via

ψ̂( · , t)(ξ)= e−i t |ξ |2 φ̂(ξ)= e−i t |ξ |2
|ξ |−n/2(|ξ | − 1)−δ1[1,2](|ξ |).

Hence, one gets

ψ(x, t)= |x |(2−n)/2
∫ 2

1
e−i tω2

(ω− 1)−δ J(n−2)/2(ω|x |) dω,

and the van der Corput Lemma implies |ψ(x, t)| & ctδ−1 for small |x | and large t . In particular,
ψ ∈ L p(R; Lq(Rn)) implies p(1−δ)>1. So we conclude that for any r ∈ (2n/(n+1),∞]we can consider
the limit δ↗ min{1, (n+ 1)/2− n/r} in the above computations and obtain that ψ ∈ L p(R; Lq(Rn))

implies

p ≥
2r

(2n− r(n− 1))+
provided r >

2n
n+ 1

. (18)

For r = 2, i.e., for square integrable initial data, this implies p≥ 2, which is all we wanted to demonstrate.

Let us mention that a detailed analysis of ψ reveals ψ ∈ L p(R; Lq(Rn)) if and only if

q >max
{

2n− 1
n− δ

,
2n

n+ 1− 2δ

}
,

p >max
{

1
1− δ

,
2q

q(n− δ)+ 1− 2n
,

2q
q(n+ 1− 2δ)− 2n

}
.

Keeping the scaling condition 2/p+ n/q = n/r in mind, these a priori more restrictive conditions do
however not result in stronger necessary conditions than (18), so that further necessary conditions cannot
be deduced from this example.
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