Download this article
 Download this article For screen
For printing
Recent Issues
Volume 7, Issue 4
Volume 7, Issue 3
Volume 7, Issue 2
Volume 7, Issue 1
Volume 6, Issue 4
Volume 6, Issue 3
Volume 6, Issue 2
Volume 6, Issue 1
Volume 5, Issue 4
Volume 5, Issue 3
Volume 5, Issue 2
Volume 5, Issue 1
Volume 4, Issue 4
Volume 4, Issue 3
Volume 4, Issue 2
Volume 4, Issue 1
Volume 3, Issue 4
Volume 3, Issue 3
Volume 3, Issue 2
Volume 3, Issue 1
Volume 2, Issue 4
Volume 2, Issue 3
Volume 2, Issue 2
Volume 2, Issue 1
Volume 1, Issue 4
Volume 1, Issue 3
Volume 1, Issue 2
Volume 1, Issue 1
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN 2578-5885 (online)
ISSN 2578-5893 (print)
Author Index
To Appear
 
Other MSP Journals
Semiclassical limit of orthonormal Strichartz estimates on scattering manifolds

Akitoshi Hoshiya

Vol. 7 (2025), No. 4, 1173–1207
Abstract

We study a quantum and classical correspondence related to the Strichartz estimates. First we consider the orthonormal Strichartz estimates on manifolds with ends. Under the nontrapping condition we prove the global-in-time estimates on manifolds with asymptotically conic ends or with asymptotically hyperbolic ends. Then we show that, for a class of pseudodifferential operators including the Laplace–Beltrami operator on scattering manifolds, such estimates imply the global-in-time Strichartz estimates for the kinetic transport equations in the semiclassical limit. As a byproduct we prove that the existence of a periodic stable geodesic breaks the orthonormal Strichartz estimates. In the proof we do not need any quasimode. As an application we show the small data scattering for the cutoff Boltzmann equation on nontrapping scattering manifolds.

Keywords
quantum and classical correspondence, semiclassical analysis, Strichartz estimates, scattering manifolds
Mathematical Subject Classification
Primary: 35J10
Secondary: 35S05
Milestones
Received: 7 April 2025
Revised: 9 September 2025
Accepted: 10 October 2025
Published: 18 November 2025
Authors
Akitoshi Hoshiya
University of Tokyo
Tokyo
Japan