
Pacific Journal of
Mathematics

ON DEDEKIND’S FUNCTION η(τ)

WHILHELM FISCHER

Vol. 1, No. 1 November 1951



ON DEDEKIND'S FUNCTION η{τ)

WILHELM FISCHER

l Introduction, A transformation of the form

ar + b
(1.1)

CT -\- d

where α, b, c, d are rational integers satisfying

a b
(1.2)

c d
= ad — cb = 1 ,

is called a modular transformation. Without loss of generality we may assume

c > 0. A function /(r), analytic in the upper halfplane <St(τ) > 0, and satisfying

the functional equation

(i 3) f { ) ( ) f

\cr

is called a modular form of dimension k. An example of a modular form is the

discriminant

(1.4) Δ(r) = exp[2πir} Π (l "" exp{2ττmτ})24 ,
TO= 1

which is of dimension —12; that is, it satisfies the equation*

(1.5) Δ ( r ' ) = ( c r + ( ί ) 1 2 Δ ( τ ) .

An important role in the theory of modular functions is played by the function

( Ή i T ) °°
- — Π (1 - exp{2πιmτ}) ,

12 J m = i

Received June 12, 1950.

*Cf. Hurwitz [6] however, he gives this formula only in homogeneous coordinates.
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8 4 WILHELM FISCHER

which is the 24th root of Δ (τ) The transformation formula for this function may

be obtained from (1.5) and is conveniently written as:

(1.7)
cτ

Since we have assumed c > 0 and <&(τ) > 0, the radicand has a nonnegative real

part. By the square root we always mean the principal branch; that is, R(/~) > 0.

The € appearing in (1.7) is a 24th root of unity. The purpose of the present paper

is to determine this € completely.

Investigations concerning this root of unity were carried out first by Dedekind

[2] and later by Tannery and Molk [lO] and Rademacher [8; 9] However, they

use the theory of log T)(τ), which requires much more than is needed for this

purpose. Hurwitz discusses only [ Δ ( τ ) ] I / I 2 and remarks that the transformation

formula of T){τ) can be obtained by means of (9-functions. The investigations of

Hermite [5] are likewise not sufficient for our purpose, because he discusses

only 7]2(τ), and therefore a third root of unity remains still undetermined.

In the following, we shall approach the determination of 6 directly by investi-

gations of the function T}(τ), which, by a well-known formula due to Euler, can

be written as the following sum:

177" i T ] + n o

Σ H ) λ exP{τ7iτλ(3λ-l)ί
1 2 J \=-<x>

= Σ (-] exp
/ i\2

I 6/

Our starting point is formula (1.8); our principal tools are a Poisson transfor-

mation formula and Gaussian sums.

2. Application of a Poisson formula. We introduce a new variable z with

H(z) > 0 by the substitution*

(2.1) τ ' = — + - , c > 0 ; (α, c) = 1 ,
c c

* This requires c ^ 0, but the case c - 0 is trivial.
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and obtain, from (1.8)

(2.2) 7,/-+-^)= Σ H ) λ e x P

e x p 771 •

j mod 2c

J +

+ 00

x Σ eχp
q—— oo

3o/ IV

3772 /

- — \ 2 c q

To the inner sum,

+ 00

ft (z) = Σ e xP
g = - o o

we apply P o i s s o n ' s formula (cf [ l l ] ) ,

Σ exp{— 77 (m -ί-(x)2t| = — Σ
m=-C0 V * - = - c

— Ί \2

12c

77/n2

and obtain

Σ exP
. 6; - 1

12c 12cz

Putting this in (2.2), we get:

(2.3)
Ί +00

Σ eχp '
V3 CZ g=-00 12cz

Tq(c),

where

2
exp 77i

mod 2c 6c

1 ί α - 2 g ] Γ
= ~ exp77ΐ j 1 |_1 + exp 77i {3ac + c — a + q\\

2 I 12c J

R (ί) > 0,

X Σ e x p | — [3aj2 + J (c - α + g)] | .

But, α and c being coprime, and thus
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3αc + c — a = 1 (mod 2} ,

only the Tq with odd subscripts actually appear so that we have

(2.4) Γ2 r + 1(c) =expπi\—^ - I £ exp(— [3α/2 + j (c -α +1 +2r)]l
I 12c J J = 1 Ic J

In order to have a complete square in the exponent we multiply each term of

the sum by

exp7τi \j (c — 1 + 2 r ) | = expπi {jb(c + l ) ] .
I c J

As we do not wish to change 7^r+i by this multiplication, we have to assume

that, for c even, i also is even. Using the abbreviation

(2.5) β = cd + d ~ 1 ,

we obtain from (2.4):

/ x ία~4r—2 I JL ίπia Γ
(2.6) T2r+i(c) = expTii f ]Γ exp [36j 2 + 12j (ccί +cf-l

I 12c -'j^i 112c

α-α/3 2 -2 r
e x p 771 •

12 c 3c j

v ^ \ π i a

£ pli2c
In the sum appearing here, / can be taken as running over any full residue

system mod c, because β = c (mod 2) and therefore the sum remains unchanged

if j is replaced by / + c. Consequently, β can be chosen arbitrarily, mod 6, and

Γ2 Γ+1(c) can be simplified by the substitution r = 3μ + v* We note that

expTTij— (αd2r + adβ +
13c

= exp π£I — (3/xd + 3μbcd + 2dv + bcβ + cd + d)
[ c

V 1

{dv + bcdv + 6c/3 + cd + cί)
3c J
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and considering

exp{— uiμ (pβ+d + 3μ6d) ] = exp{~77 i

we obtain

87

exp {ττiμ] ,

= exp77i
αff2_vΓ f
12c 3 I c '

with the abbreviation

(2.7) ffβiC OS) =
mod

1 2 c

= c (mod 2) .

Looking back to (2.3), we see that the result we have obtained so far may be

written as:

/ x la lZ\ l

X

with

exp 77 i'
a-aβ2~2

12c

+ 00

e χ p 771
f 3d 0 d , Λ 3τ7
μ~ — μ2--μ(27.+l) « —

L c c J cz 6

These expressions are easy to sum, since, according to (1.8), we have

3d/ „ . μ\l 3τr/ . l ^ 2

e x p 1771 I μ — •

ίπid) I d i \
F l l 2 c J \ c czl

and, replacing μ by — μ — 1, we see that
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U1(z)=-U1(z), o r l / 1 ( z ) = 0 >

πι— j ί/0(z).

Now, by the meaning of z in (2.1), we get

d i -dr' + b
= τ

c C2 CT — a

and have therefore:

(2.9) η(τ') = — : exp77i
12c

X [Ha,c (β) ~ (d+2bd+bβ)

X

Comparing this with (1.7), we see that we have obtained so far:

η(r)

(2.91) e = J L exP77^
V3c

a(l-β2)-2+d

12c

exp 77 i
12

X -h

and it remains to be shown that this is a root of unity.

3. Reduction to Gaussian sums. The sums Ha c (β) which appear in (2.91) are

defined in (2.7) only for β = c (mod 2). In this section, however, it will be more

convenient to consider the more general sums*

* We have used the letters h and k instead of a and c in order to indicate that the
investigations of this section are independent from our previous results.
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(3-D Hk,k{y)=\ Σ expf^(6; +7)4 ,
2 j mod 2k l U k J

with no restriction on y . These sums can be expressed in terms of Gaussian sums

(3.2) G(h,k) = Σ

j mod k

Comparing the definitions (3.1) and (3.2) one finds immediately that

Hh,k (0) +Hhιk (1) +Hhιk (2) +Hhιk (3) + Hhιk (4) + ffM (5) = 7

fffc.fc (0) +fffc,* (2) +Hh)k (4) = i

fffc,fc (0) +Hh>k (3) = 7 G ( 3
4

If we consider that

nh,k ( - r ) = Hh,k (r) = flfc,t ( r + 6 n ) ,

we get the following relations:

(3.31) HKk(0)=]-G(3h,2k) ,

(3.32) Hh<k (3) = - G(3h, 8k) - - G(3h, 2k) ,

(3.33) ^ k (2) = ~ G(/ι, 6/0 - ~ G(3/ι, 2fe) ,

4 4

(3.34) tfΛ k(l) =~ G(h, 24k) ~ ~ G(3h, Sk) - - G(h, 6k) + - G(3/ι, 2fe) .
8 8 4 4

In order to obtain the sums Hh9k (y) explicitly, the following rules concerning

Gaussian sums may be useful,*

* For the formulas (3.41M3.47) see [ l ] or [ 3 ] ; (3.46) may also be found in [ 7 ] .
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As elementary consequences of the definition (3.2) we have:

(3.41) G(mh,mk) =mG(h,k) m > 0

(3.42) G{h,k1k2)=G(hk1,k2) G(/ιfe2,fe!) ( f e , , f e 2 ) = l

(3.43) G{m2h,k) =G{h,k) {m,k) = \

(3.44) G(h,m2k) = nιG(h, k) (m, h) = 1 * > 0 and odd.

The following results, due to Gauss [ 4 ] , are a little deeper:

( 3 . 4 5 ) G{hφ2ίk) = ί — j G(h2lk) (/»i/»2,*) = l , k odd

(3.46) G(l,k) = Vfe iH*-υ/aj k o d d

h odd , α = 1
(3.47) G(h, 2α) = 2f+1

The symbol I-7 I is the Jacobi symbol.

The following discussion may be restricted to the case y = k (mod 2), which

will be sufficient for our purpose. Furthermore, we put* throughout k — 1 kγ

{k 1 being odd), and have then to distinguish whether 3 does or does not divide

Assume first 3 | kχ> Then we find, using (3.41) and (3.44), that

(3.51) Hhιk (1) = 0 , Hhιk (2) - 0

and, applying (3.41), (3.42), (3.44), (3.45), and (3.47), we obtain:

(3.52) Hhιk(0) = 2 λ / 2 ί - ) exp f- nihk^h, 3kt) ,

(3.53) Hh,k(3) = expί-7rihfe| G(2h,3k) .

* We do this in order to avoid the reciprocity law for Gaussian sums which would
require additional distinctions concerning the sign of h.
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As a consequence of (3.46) we have:

e x p l — ( 3 f e - l ) 2 | = - V j f p ( |
I 8 J I 2 J

and therefore, according to (3.45),

G(2h,3k) = (^) G(l,3fe) = - ( γ ) >#" e x p f 1 ^ ) G(2/ι,fe)

This formula enables us to express (3.52) and (3.53) in the single formula:

/ x r λ/o / \ f i ( ) i h2-!

( 3 . 6 ) flί) ^ λ / 2 ( ) j ^ ^ + i λ

In caseS/fA;!, by use of (3.42) and (3.43) we can express the more complicated

sums //Λ,Λ(Ό and Hh,k(2) ^ϊ ^Λ,A(3) and ίfe^(O), respectively:

(3.71) //M (1) = exp{^ πihfej //Λ|ik (3) ,

(3.72) ffΛ|ife (2) = exp J - π ιhk\ Hh>k (θ) .

More generally, the following recursion formula holds:

(3.73) Hh}k (γ + 2n) = e x p j y {j + n) nhk^ Hhfk (y) .

In order to compute Hh9kW) and ^Λ,/c(3), we apply (3.42), (3.43), (3.45), and

(3.47) to obtain:

Applying this on (3.71) and (3.72), and considering

f4 3 1 \hk 3 , A
exp 77i j - hk + - hki\ = exp 77 i ] — + - h\kι — k ) \ ,

13 4 J 112 4 J
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we can combine (3.71) and (3.72) into:

(3.8) Hk.k (k) =

X exp 77 i
hk
—
12

* i - l . k2-l
λ-

8

4. Determination of the root of unity. Now we go back to our result (2.9) and

consider the following expression:

(4.D
z

v3c

X Ua,c (β) - (d

According to the results of the preceding section, we have to distinguish whether c

is divisible by 3 or not and to keep in mind that c — 2 c\9 ci odd.

Let us assume first 3 | c according to (3.51) we know that:

Ha,c (β) =Ha>c (dc +d - 1) = 0

Ha,c (β + id) = HafC (dc + 5d - l ) = 0

Therefore we have:

i f d ~-l (mod 3) ,

i f d = + 1 (mod 3) .

ff.,c (c)

Considering that

+ad+c) - c)]J =

and therefore that
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- (α-l) cx
Zi J

= expf— [(d-

Γ77i 1

= expj— c{d-a)\ ,

-c) - c(d~α)]

we get from (4.2) and (3.6):

(4.3) p = - L
a2-I

6 12 8

In case 3/f c, we can apply (3.73), which gives us

G ( 2 α , C l ) .

Ha,c (β + Ad) = a c d

= exp
f 2771 , J , .

j ~ γ - (bβ +2bd+d- c)] Wα,c OS) ,

and obtain from (4.1):

P = ~ = expjy ( l-d)(6 +α l - exp j] Ha,c (β)

Now we apply (3.37) once more, putting

Ha,c (β) = H0>c (c + β - c) = e x P { ~ (c +

- ( ^ - c 2 ) ac} ffβiC(c)

ac j HaιC (c)
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Using (3.8) and considering

^ (/32-c2) αcj

= expί^- [αc(c2-l)(d2-l) +2αc(oί-l) (ccί +d)]\

= exp[— (d-l)(bc+c+b+c2)\

(d-i)(6 + α d) - ί (d-l)(ca-l) +7 (cf-l)l ,
6 I 0 J

we see that the expression for p becomes again (4.3) Therefore, we have in all

cases:

(4.4) e = e x p 7 τ i | — [bd(l-c2)+c(a+d)]+a ^—- + \-
I 12 4 8 J

X - r z G(2a, c,) ,

with the only restriction that, for even c9 b also has to be even.

In order to show that our formula (4.4) holds even if this condition is not

satisfied, we put

' a τ + b
 A J J

T = , c even, o odd,
cr + d

CT + d

Then, for r*, formula (4.4) holds; considering

which is an immediate consequence of (1.6), we find:
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= e*η(τ) = exP{~) η(τf) = exp j^ j eη(r)

(4.5)
[πi]

Pll2J

Now, if we compute 6* by means of (4.4), and then e, using (4.5), the result will

be exactly the same as we get computing 6 directly by means of (4.4).

Finally, we can omit the Gaussian sums in (4.3) and, using (3.45) and (3.46),

obtain:

(4.6) •£)
X exp77i — [bd(l - c 2 ) +c(a +d)] +

1212 4 4 8

This formula agrees with the one given by Tannery and Molk[lO, p. 112] .
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