ON DEDEKIND’S FUNCTION $\eta(\tau)$

WHILHELM FISCHER
1. Introduction. A transformation of the form

\[\tau' = \frac{a\tau + b}{c\tau + d}, \]

where \(a, b, c, d\) are rational integers satisfying

\[\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - cb = 1, \]

is called a modular transformation. Without loss of generality we may assume \(c > 0\). A function \(f(\tau)\), analytic in the upper halfplane \(\Im(\tau) > 0\), and satisfying the functional equation

\[f(\tau) = (c\tau + d)^k f\left(\frac{a\tau + b}{c\tau + d}\right), \]

is called a modular form of dimension \(k\). An example of a modular form is the discriminant

\[\Delta(\tau) = \exp\{2\pi i\tau\} \prod_{m=1}^{\infty} (1 - \exp\{2\pi im\tau\})^{24}, \]

which is of dimension \(-12\); that is, it satisfies the equation*

\[\Delta(\tau') = (c\tau + d)^{12}\Delta(\tau). \]

An important role in the theory of modular functions is played by the function

\[\eta(\tau) = \exp\left\{\frac{\pi i \tau}{12}\right\} \prod_{m=1}^{\infty} (1 - \exp\{2\pi im\tau\}), \]

Received June 12, 1950.

* Cf. Hurwitz [6]; however, he gives this formula only in homogeneous coordinates.

which is the 24th root of $\Delta(\tau)$. The transformation formula for this function may
be obtained from (1.5) and is conveniently written as:

$$(1.7) \quad \eta(\tau') = \eta\left(\frac{a \tau + b}{c \tau + d}\right) = \epsilon \sqrt{-i \left(c \tau + d\right)} \eta(\tau).$$

Since we have assumed $c \geq 0$ and $\Re(\tau) > 0$, the radicand has a nonnegative real
part. By the square root we always mean the principal branch; that is, $\Re(\sqrt{\cdot}) > 0$.
The ϵ appearing in (1.7) is a 24th root of unity. The purpose of the present paper
is to determine this ϵ completely.

Investigations concerning this root of unity were carried out first by Dedekind
[2] and later by Tannery and Molk [10] and Rademacher [8; 9]. However, they
use the theory of $\log \eta(\tau)$, which requires much more than is needed for this
purpose. Hurwitz discusses only $[\Delta(\tau)]^{1/12}$ and remarks that the transformation
formula of $\eta(\tau)$ can be obtained by means of θ-functions. The investigations of
Hermite [5] are likewise not sufficient for our purpose, because he discusses
only $\eta^3(\tau)$, and therefore a third root of unity remains still undetermined.

In the following, we shall approach the determination of ϵ directly by investi-
gations of the function $\eta(\tau)$, which, by a well-known formula due to Euler, can
be written as the following sum:

$$(1.8) \quad \eta(\tau) = \exp\left\{\frac{\pi i \tau}{12}\right\} \sum_{\lambda=-\infty}^{+\infty} (-1)^\lambda \exp\left\{\pi i \tau \lambda (3 \lambda - 1)\right\}$$

$$\quad = \sum_{\lambda=-\infty}^{+\infty} (-1)^\lambda \exp\left\{3 \pi i \tau \left(\frac{\lambda - \frac{1}{6}}{6}\right)^2\right\}.$$

Our starting point is formula (1.8); our principal tools are a Poisson transforma-
tion formula and Gaussian sums.

2. Application of a Poisson formula. We introduce a new variable z with
$\Re(z) > 0$ by the substitution*

$$\tau' = \frac{i z}{c} + \frac{a}{c}, \quad c > 0; \quad (a, c) = 1,$$

*This requires $c \neq 0$, but the case $c = 0$ is trivial.
and obtain, from (1.8)

\[\eta \left(\frac{a}{c} + \frac{iz}{c} \right) = \sum_{\lambda = -\infty}^{+\infty} (-1)^\lambda \exp \left\{ \frac{3\pi i}{c} \left(a + iz \right) \left(\lambda - \frac{1}{6} \right) \right\} \]

\[= \sum_{j \equiv \lambda \mod 2c} \exp \pi i \left\{ j + \frac{3a}{c} \left(j - \frac{1}{6} \right)^2 \right\} \times \sum_{q = -\infty}^{+\infty} \exp \left\{ -\frac{3\pi z}{c} \left(2cq + j - \frac{1}{6} \right)^2 \right\}. \]

To the inner sum,

\[F_c(z) = \sum_{q = -\infty}^{+\infty} \exp \left\{ -12\pi cz \left(q + \frac{6j - 1}{12c} \right)^2 \right\}, \]

we apply Poisson's formula (cf. [11]),

\[\sum_{m = -\infty}^{+\infty} \exp \left\{ -\pi \left(m + \omega \right)^2 t \right\} = \frac{1}{\sqrt{t}} \sum_{m = -\infty}^{+\infty} \exp \left\{ \frac{2\pi im\omega - \pi \omega^2}{t} \right\}, \quad \Re(t) > 0, \]

and obtain

\[F_c(z) = \frac{1}{2\sqrt{3cz}} \sum_{q = -\infty}^{+\infty} \exp \left\{ 2\pi i q \frac{6j - 1}{12c} - \frac{\pi q^2}{12cz} \right\}. \]

Putting this in (2.2), we get:

\[\eta \left(\frac{a}{c} + \frac{iz}{c} \right) = \frac{1}{\sqrt{3cz}} \sum_{q = -\infty}^{+\infty} \exp \left\{ -\pi q^2 \frac{12c}{12cz} \right\} T_q(c), \]

where

\[T_q(c) = \frac{1}{2} \sum_{j \equiv \lambda \mod 2c} \exp \pi i \left\{ j + \frac{3a}{c} \left(j - \frac{1}{6} \right)^2 + q \frac{6j - 1}{6c} \right\} \]

\[= \frac{1}{2} \exp \pi i \left\{ \frac{a - 2q}{12c} \right\} \left[1 + \exp \pi i \left\{ 3ac + c - a + q \right\} \right] \times \sum_{j = 1}^{c} \exp \left\{ \frac{\pi i}{c} \left[3aj^2 + j(c - a + q) \right] \right\}. \]

But, \(a \) and \(c \) being coprime, and thus
only the T_q with odd subscripts actually appear so that we have

$$(2.4) \ T_{2r+1}(c) = \exp \pi i \left\{ \frac{a-4r-2}{12c} \right\} \sum_{j=1}^{c} \exp \left\{ \frac{\pi i}{c} [3aj^2 + j(c-a+1+2r)] \right\}.$$

In order to have a complete square in the exponent we multiply each term of the sum by

$$\exp \pi i \left\{ j \frac{ad-1}{c} (c-1+2r) \right\} = \exp \pi i \{jb(c+1)\}.$$

As we do not wish to change T_{2r+1} by this multiplication, we have to assume that, for c even, b also is even. Using the abbreviation

$$(2.5) \ \beta = cd + d - 1,$$

we obtain from (2.4):

$$(2.6) \ T_{2r+1}(c) = \exp \pi i \left\{ \frac{a-4r-2}{12c} \right\} \sum_{j=1}^{c} \exp \left\{ \frac{\pi i}{12c} [36j^2 + 12j(cd+d-1+2rd)] \right\} \times \sum_{j=1}^{c} \exp \left\{ \frac{\pi i}{12c} (6j + \beta + 2rd)^2 \right\}.$$

In the sum appearing here, j can be taken as running over any full residue system mod c, because $\beta \equiv c \ (mod \ 2)$ and therefore the sum remains unchanged if j is replaced by $j + c$. Consequently, β can be chosen arbitrarily, mod 6, and $T_{2r+1}(c)$ can be simplified by the substitution $r = 3\mu + \nu$. We note that

$$\exp \pi i \left\{ \frac{-r}{3c} (ad^2r + ad\beta + 1) \right\}$$

$$= \exp \pi i \left\{ \frac{-\mu}{c} (3\mu d + 3\mu bcd + 2d\nu + bc\beta + cd + d) \right\}$$

$$- \frac{\nu}{3c} (d\nu + bcd\nu + bc\beta + cd + d) \right\};$$
and considering
\[\exp\{-\pi i \mu (b \beta + d + 3 \mu b d)\} = \exp\{-\pi i \mu (b c d - b + d)\} = \exp\{\pi i \mu\}, \]
we obtain
\[T_{\mu+2\nu+1}(c) = \exp \pi i \left\{ \frac{a-a \beta^2 - 2}{12c} - \frac{\nu}{3} \left[bd\nu + d + b \beta + \frac{d}{c} (\nu + 1) \right] \right. \]
\[\left. - \frac{\mu}{c} \left[3 \mu d + d (1 + 2 \nu) + c \right] \right\} H_{a,c} (\beta + 2 \nu d) \]
with the abbreviation
\[(2.7) \quad H_{a,c} (\beta) = \sum_{j \mod c} \exp \left\{ \frac{\pi i a}{12c} (6j + \beta)^2 \right\}, \quad \beta \equiv c \pmod{2}. \]

Looking back to (2.3), we see that the result we have obtained so far may be written as:

\[(2.8) \quad \eta \left(\frac{a}{c} + \frac{iz}{c} \right) = \frac{1}{\sqrt{3cz}} \exp \pi i \left\{ \frac{a-a \beta^2 - 2}{12c} \right\} \]
\[\times \sum_{\nu=0}^{2} \exp \left\{ \frac{-\pi i \nu}{3} \left[bd\nu + d + b \beta + \frac{d}{c} (\nu + 1) \right] \right\} U_{\nu}(z) H_{a,c} (\beta + 2 \nu d), \]
with
\[U_{\nu}(z) = \sum_{\mu=-\infty}^{+\infty} \exp \left\{ \pi i \left[\mu - \frac{3d}{c} \mu^2 - \frac{d}{c} \mu (2 \nu + 1) \right] - \frac{3\pi}{cz} \left(\mu + \frac{2 \nu + 1}{6} \right)^2 \right\}. \]

These expressions are easy to sum, since, according to (1.8), we have
\[U_{0}(z) = \sum_{\mu=-\infty}^{+\infty} \exp \left\{ \pi i \left[\mu - \frac{3d}{c} \left(\mu^2 + \frac{\mu}{3} \right) \right] - \frac{3\pi}{cz} \left(\mu + \frac{1}{6} \right)^2 \right\} \]
\[= \exp \left\{ \frac{\pi id}{12c} \right\} \eta \left(\frac{d}{c} + \frac{i}{cz} \right); \]
and, replacing \(\mu \) by \(-\mu - 1 \), we see that
\[U_1(z) = -U_1(z), \quad \text{or} \quad U_1(z) = 0, \]
\[U_2(z) = -\exp \left\{ \pi i \frac{2d}{c} \right\} U_0(z). \]

Now, by the meaning of \(z \) in (2.1), we get
\[-\frac{d}{c} + \frac{i}{cz} = \frac{-d \tau' + b}{c \tau' - a} = \tau,\]
and have therefore:

\[\eta(\tau') = \frac{1}{\sqrt{3c}} \exp \pi i \left\{ \frac{a(1-\beta^2) - 2 + d}{12c} \right\} \]
\[\times \left[H_{a,c}(\beta) - \exp \left(-\frac{2\pi i}{3} (d + 2bd + b\beta) \right) \right] \]
\[\times \left[H_{a,c}(\beta + 4d) \right] \eta(\tau). \]

Comparing this with (1.7), we see that we have obtained so far:

\[(2.91) \quad \epsilon = \frac{1}{\sqrt{3c}} \exp \pi i \left\{ \frac{a(1-\beta^2) - 2 + d}{12c} \right\} \]
\[\times \left[H_{a,c}(\beta) - \exp \left(-\frac{2\pi i}{3} (d + 2bd + b\beta) \right) H_{a,c}(\beta + 4d) \right] \]
\[= \frac{1}{\sqrt{3c}} \exp \pi i \left\{ \frac{bd(1-c^2) - cd}{12} + \frac{(1-d)(b+ad)}{6} \right\} \]
\[\times \left[H_{a,c}(\beta) - \exp \left(-\frac{2\pi i}{3} (d + 2bd + b\beta) \right) H_{a,c}(\beta + 4d) \right] \]
and it remains to be shown that this is a root of unity.

3. Reduction to Gaussian sums. The sums \(H_{a,c}(\beta) \) which appear in (2.91) are defined in (2.7) only for \(\beta \equiv c \) (mod 2). In this section, however, it will be more convenient to consider the more general sums*

* We have used the letters \(h \) and \(k \) instead of \(a \) and \(c \) in order to indicate that the investigations of this section are independent from our previous results.
ON DEDEKIND'S FUNCTION $\eta(\tau)$

(3.1) \[H_{h,k}(\gamma) = \frac{1}{2} \sum_{j \mod 2k} \exp \left(\frac{\pi i h}{12k} (6j + \gamma)^2 \right), \]

with no restriction on γ. These sums can be expressed in terms of Gaussian sums

(3.2) \[G(h,k) = \sum_{j \mod k} \exp \left(\frac{2\pi i h}{k} j^2 \right). \]

Comparing the definitions (3.1) and (3.2) one finds immediately that:

\[H_{h,k}(0) + H_{h,k}(1) + H_{h,k}(2) + H_{h,k}(3) + H_{h,k}(4) + H_{h,k}(5) = \frac{1}{4} G(h,24k), \]

\[H_{h,k}(0) + H_{h,k}(2) + H_{h,k}(4) = \frac{1}{2} G(h,6k), \]

\[H_{h,k}(0) + H_{h,k}(3) = \frac{1}{4} G(3h,8k). \]

If we consider that

\[H_{h,k}(-\gamma) = H_{h,k}(\gamma) = H_{h,k}(\gamma + 6n), \]

we get the following relations:

(3.31) \[H_{h,k}(0) = \frac{1}{2} G(3h,2k), \]

(3.32) \[H_{h,k}(3) = \frac{1}{4} G(3h,8k) - \frac{1}{2} G(3h,2k), \]

(3.33) \[H_{h,k}(2) = \frac{1}{4} G(h,6k) - \frac{1}{4} G(3h,2k), \]

(3.34) \[H_{h,k}(1) = \frac{1}{8} G(h,24k) - \frac{1}{8} G(3h,8k) - \frac{1}{4} G(h,6k) + \frac{1}{4} G(3h,2k). \]

In order to obtain the sums $H_{h,k}(\gamma)$ explicitly, the following rules concerning Gaussian sums may be useful.*

* For the formulas (3.41)-(3.47) see [1] or [3]; (3.46) may also be found in [7].
As elementary consequences of the definition (3.2) we have:

(3.41) \[G(mh, mk) = mG(h, k) \quad m > 0 \]

(3.42) \[G(h, k_1 k_2) = G(hk_1, k_2) G(hk_2, k_1) \quad (k_1, k_2) = 1 \]

(3.43) \[G(m^2 h, k) = G(h, k) \quad (m, k) = 1 \]

(3.44) \[G(h, m^2 k) = mG(h, k) \quad (m, h) = 1; \quad m > 0 \text{ and odd.} \]

The following results, due to Gauss [4], are a little deeper:

(3.45) \[G(h_1 h_2, k) = \left(\frac{h_1}{k}\right) G(h_2, k) \quad (h_1 h_2, k) = 1, \quad k \text{ odd} \]

(3.46) \[G(1, k) = \sqrt{k} i^{[(k-1)/2]^2} \quad k \text{ odd} \]

(3.47) \[G(h, 2^\alpha) = \begin{cases} 0 & h \text{ odd, } \alpha = 1 \\ 2^{(\alpha+1)/2} \left(\frac{2}{h}\right)^{\alpha+1} e^{n i h/4} & h \text{ odd, } \alpha \geq 2. \end{cases} \]

The symbol \(\left(\frac{h}{k}\right) \) is the Jacobi symbol.

The following discussion may be restricted to the case \(\gamma \equiv k \pmod{2} \), which will be sufficient for our purpose. Furthermore, we put* throughout \(k = 2^\lambda k_1 \) (\(k_1 \) being odd), and have then to distinguish whether 3 does or does not divide \(k_1 \).

Assume first \(3 \mid k_1 \). Then we find, using (3.41) and (3.44), that

(3.51) \[H_{h, k}(1) = 0, \quad H_{h, k}(2) = 0; \]

and, applying (3.41), (3.42), (3.44), (3.45), and (3.47), we obtain:

(3.52) \[H_{h, k}(0) = 2^{\lambda/2} \left(\frac{2}{h}\right)^\lambda \exp\left\{\frac{3}{4} \pi i h k_1\right\} G(2h, 3k_1) , \]

(3.53) \[H_{h, k}(3) = \exp\left\{\frac{3}{4} \pi i h k\right\} G(2h, 3k) . \]

*We do this in order to avoid the reciprocity law for Gaussian sums which would require additional distinctions concerning the sign of \(h \).
As a consequence of (3.46) we have:

\[G(1, 3k) = \sqrt{3k} \exp \left\{ \frac{\pi i}{8} (3k - 1)^2 \right\} = -\sqrt{3} \exp \left\{ -\frac{\pi i k}{2} \right\} G(1, k) , \]

and therefore, according to (3.45),

\[G(2h, 3k) = \left(\frac{2h}{3k} \right) G(1, 3k) = -\left(\frac{2h}{3} \right) \sqrt{3} \exp \left\{ -\frac{\pi i k}{2} \right\} G(2h, k) . \]

This formula enables us to express (3.52) and (3.53) in the single formula:

\[(3.6) \quad H_{h,k} (k) = \sqrt{3} \, 2^{\lambda/2} \left(\frac{h}{3} \right) \exp \pi i \left\{ \frac{k_1 (h-1)}{2} + \frac{hk_1}{4} + \frac{h^2-1}{8} \right\} G(2h, k_1) . \]

In case \(3/k_1\), by use of (3.42) and (3.43) we can express the more complicated sums \(H_{h,k}(1)\) and \(H_{h,k}(2)\) by \(H_{h,k}(3)\) and \(H_{h,k}(0)\), respectively:

\[(3.71) \quad H_{h,k} (1) = \exp \left\{ \frac{4}{3} \pi i h k \right\} H_{h,k} (3) , \]

\[(3.72) \quad H_{h,k} (2) = \exp \left\{ \frac{4}{3} \pi i h k \right\} H_{h,k} (0) . \]

More generally, the following recursion formula holds:

\[(3.73) \quad H_{h,k} (\gamma + 2n) = \exp \left\{ \frac{\pi i}{3} (\gamma + n) nhk \right\} H_{h,k} (\gamma) . \]

In order to compute \(H_{h,k}(0)\) and \(H_{h,k}(3)\), we apply (3.42), (3.43), (3.45), and (3.47) to obtain:

\[H_{h,k} (3) = \left(\frac{k}{3} \right) \exp \pi i \left\{ \frac{k-1}{2} + \frac{3hk}{4} \right\} G(2h, k) , \]

\[H_{h,k} (0) = \left(\frac{k}{3} \right) 2^{\lambda/2} \left(\frac{2}{h} \right)^{\lambda} \exp \pi i \left\{ \frac{k_1 - 1}{2} + \frac{3hk_1}{4} \right\} G(2h, k_1) . \]

Applying this on (3.71) and (3.72), and considering

\[\exp \pi i \left\{ \frac{4}{3} h k + \frac{3}{4} h k_1 \right\} = \exp \pi i \left\{ \frac{hk}{12} + \frac{3}{4} h (k_1 - k) \right\} , \]
we can combine (3.71) and (3.72) into:

\[(3.8) \quad \Pi_{h,k} (k) = 2^{\lambda/2} \left(\frac{k}{3} \right) \times \exp \pi i \left(\frac{hk}{12} + \frac{3}{4} h(k_1 - k) + \frac{k_1 - 1}{2} + \frac{\lambda h^2 - 1}{8} \right) G(2h, k_1). \]

4. Determination of the root of unity. Now we go back to our result (2.9) and consider the following expression:

\[(4.1) \quad \rho = \frac{1}{\sqrt{3c}} \exp \left(\frac{\pi i}{6} (1 - d)(b + ad) \right) \times \left[H_{a,c}(\beta) - \exp \left(\frac{-2\pi i}{3} (d + 2bd + b\beta) \right) H_{a,c}(\beta + 4d) \right]. \]

According to the results of the preceding section, we have to distinguish whether \(c\) is divisible by 3 or not and to keep in mind that \(c = 2^\lambda c_1, c_1 \text{ odd.}\)

Let us assume first \(3 \mid c\); according to (3.51) we know that:

- \(H_{a,c}(\beta) = H_{a,c}(dc + d - 1) = 0\) if \(d \equiv -1 \pmod{3}\),
- \(H_{a,c}(\beta + 4d) = H_{a,c}(dc + 5d - 1) = 0\) if \(d \equiv +1 \pmod{3}\).

Therefore we have:

\[(4.2) \quad \rho = \left(\frac{d}{3} \right) \frac{1}{\sqrt{3c}} \exp \left(\frac{\pi i}{6} (1 - d)(b + ad) + \frac{2}{3} (d - 1)(1 + b) \right) H_{a,c}(c)
\]

\[= \left(\frac{a}{3} \right) \frac{1}{\sqrt{3c}} \exp \left(\frac{\pi i}{2} (d - 1)(b + ad) \right) H_{a,c}(c). \]

Considering that

\[\exp \left(\frac{\pi i}{2} \left[(d - 1)(b + ad + c) + (a - 1)(c_1 - c) \right] \right) = 1,\]

and therefore that
\[
\exp \pi i \left\{ \frac{1}{2} (d-1)(b+ad) + \frac{1}{2} (a-1) \ c_1 \right\} \\
= \exp \left\{ \frac{\pi i}{2} \left[(d-1)(b+ad+c) + (a-1)(c_1-c) - c(d-a) \right] \right\} \\
= \exp \left\{ \frac{\pi i}{6} c(d-a) \right\},
\]
we get from (4.2) and (3.6):

\[
(4.3) \quad \rho = \frac{1}{\sqrt{c_1}} \exp \pi i \left\{ \frac{a}{4} (c_1-c) + \frac{cd}{6} + \frac{ac}{12} + \lambda \frac{a^2-1}{8} \right\} G(2a, c_1).
\]

In case 3/c, we can apply (3.73), which gives us

\[
H_{a,c} (\beta + 4d) = \exp \left\{ \frac{2 \pi i}{3} (\beta + 2d) \ acd \right\} H_{a,c} (\beta)
\]
\[
= \exp \left\{ \frac{2 \pi i}{3} (b\beta + 2bd + d - c) \right\} H_{a,c} (\beta),
\]
and obtain from (4.1):

\[
\rho = \frac{1}{\sqrt{3c}} \exp \left\{ \frac{\pi i}{6} (1-d)(b+ad) \right\} \left[1 - \exp \left\{ \frac{-2\pi ic}{3} \right\} \right] H_{a,c} (\beta)
\]
\[
= \frac{1}{\sqrt{c}} \left(\frac{c}{3} \right) \exp \pi i \left\{ \frac{1}{6} (1-d)(b+ad) - \frac{1}{2} + \frac{2c}{3} \right\} H_{a,c} (\beta).
\]

Now we apply (3.37) once more, putting

\[
H_{a,c} (\beta) = H_{a,c} (c + \beta - c) = \exp \left\{ \frac{\pi i}{3} \left(c + \frac{\beta-c}{2} \right) \frac{\beta-c}{2} \ ac \right\} H_{a,c} (c)
\]
\[
= \exp \left\{ \frac{\pi i}{12} (\beta^2 - c^2) \ ac \right\} H_{a,c} (c).
\]
Using (3.8) and considering

\[\exp \left(\frac{\pi i}{12} (\beta^2 - c^2) ac \right) \]

\[= \exp \left(\frac{\pi i}{12} \left[ac(c^2 - 1) - 1 + 2ac(d - 1)(cd + d) \right] \right) \]

\[= \exp \left(\frac{\pi i}{6} (d - 1)(b + c + b + c^2) \right) \]

\[= \exp \left(\frac{\pi i}{2} [(a - 1)(c_1 - c) - (d - 1)(c^2 - 1)] \right) = 1 , \]

we see that the expression for \(\rho \) becomes again (4.3). Therefore, we have in all cases:

\[(4.4) \quad \epsilon = \exp \pi i \left\{ \frac{1}{12} \left[bd(1 - c^2) + c(a + d) \right] + a \frac{c_1 - c}{4} + \lambda \frac{a^2 - 1}{8} \right\} \]

\[\times \frac{1}{\sqrt{c_1}} G(2a, c_1) , \]

with the only restriction that, for even \(c, b \) also has to be even.

In order to show that our formula (4.4) holds even if this condition is not satisfied, we put

\[\tau' = \frac{a \tau + b}{c \tau + d} , \quad c \text{ even, } b \text{ odd,} \]

\[\tau^* = \frac{(a + c) \tau + (b + d)}{c \tau + d} = \tau' + 1 . \]

Then, for \(\tau^* \), formula (4.4) holds; considering

\[\eta(\tau + 1) = \exp \left(-\frac{\pi i}{12} \right) \eta(\tau) , \]

which is an immediate consequence of (1.6), we find:
ON DEDEKIND'S FUNCTION $\eta(\tau)$

\[\eta(\tau^*) = e^* \eta(\tau) = \exp\left(\frac{-\pi i}{12}\right) \eta(\tau') = \exp\left(\frac{-\pi i}{12}\right) \epsilon \eta(\tau) \]

(4.5)

\[\epsilon = \exp\left(\frac{\pi i}{12}\right) e^*. \]

Now, if we compute ϵ^* by means of (4.4), and then ϵ, using (4.5), the result will be exactly the same as we get computing ϵ directly by means of (4.4).

Finally, we can omit the Gaussian sums in (4.3) and, using (3.45) and (3.46), obtain:

\[\epsilon = \left(\frac{a}{c_1}\right) \times \exp\pi i \left[\frac{1}{12} \left[bd(1-c^2) + c(a + d) \right] + \frac{1-c_1}{4} + \frac{c - c_1}{4} + \frac{a^2 - 1}{8} \right]. \]

This formula agrees with the one given by Tannery and Molk [10, p. 112].

REFERENCES

UNIVERSITY OF PENNSYLVANIA
Ralph Palmer Agnew, *Ratio tests for convergence of series* 1
Richard Arens and James Dugundji, *Topologies for function spaces* 5
B. Arnold, *Distributive lattices with a third operation defined* 33
R. Bing, *Concerning hereditarily indecomposable continua* 43
David Dekker, *Generalizations of hypergeodesics* 53
A. Dvoretzky, A. Wald and J. Wolfowitz, *Relations among certain ranges of vector measures* .. 59
Paul Erdős, F. Herzog and G. Pirani, *Schlicht Taylor series whose convergence on the unit circle is uniform but not absolute* 75
Wilhelm Fischer, *On Dedekind’s function η(τ)* 83
Werner Leutert, *The heavy sphere supported by a concentrated force* 97
Ivan Niven and H. Zuckerman, *On the definition of normal numbers* 103
L. Paige, *Complete mappings of finite groups* 111
Otto Szász, *On a Tauberian theorem for Abel summability* 117
Olga Taussky, *Classes of matrices and quadratic fields* 127
F. Tricomi and A. Erdélyi, *The asymptotic expansion of a ratio of gamma functions* ... 133
Hassler Whitney, *On totally differentiable and smooth functions* 143