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1. Introduction. Let R be a real number with fractional part .x;x,%3 * * * when
written to scale r. Let N(b,n) denote the number of occurrences of the digit b in

the first n places. The number R is said to be simply normal to scale r if

@ lim = -

for each of the r possible values of b; R is said to be normal to scale r if all the

numbers R,rR,r?R,+ + * are simply normal to all the scales r,r%,r3,+ . These

definitions, for r = 10, were introduced by Emile Borel [1], who stated (p.261)

that “la propriet€ caracteristique” of a normal number is the following: that for
any sequence B whatsoever of v specified digits, we have

NBnr) 1

v

(2) lim ——— =

’
n—© n r

where N (B, n) stands for the number of occurrences of the sequence B in the first
n decimal places.

Several writers, for example Champernowne [2], Koksma [3, p.116], and
Copeland and Erdés [4], have taken this property (2) as the definition of a normal
number. Hardy and Wright [5, p.124] state that property (2) is equivalent to the
definition, but give no proof. It is easy to show that a normal number has property
(2), but the implication in the other direction does not appear to be so obvious. If

the number R has property (2) then any sequence of digits
B = b1b2 eee bv

appears with the appropriate frequency, but will the frequencies all be the same
for i = 1,2, +*, v if we count only those occurrences of B such that b; is an

i,i t v,i + 2v, « «+ -th digit? It is the purpose of this note to show that this is
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so, and thus to prove the equivalence of property (2) and the definition of normal

number,

2. Notation. In addition to the notation already introduced, we shall use the
following:
So is the first o digits of R,
BXB is the totality of sequences of the form b,b,° * *byxx* * *xb by * * by,
where xx ¢ ¢ * x is any sequence of ¢ digits.
ki (@) is the number of times that B occurs in Sy with b in a place congruent

to i (mod v).

60 =2 ki(a).

G (&) is the number of occurrences of BXB in S¢.

kijlo) = ki) —kj (), iF.

B* is any block of digits of length from v + 1 to 2v — 1 whose first v digits

are B and whose last v digits are B. Such a block need not exist.

3. Proof. We shall assume that the number R has the property (2), so that we

have
1
3) L g0 L
ne® n rY
and
. 6¢(n) 1
(4) L

for each fixed ¢, and we prove that

ki
(5) lim—']*(iz=0,

n—© n
from which it follows that R is a normal number.

Now k; (& + s) — k; @) is the number of B with 4; in a place congruent to

to i (mod v) that are in Sy+s but not entirely in Sy. Therefore
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> fki(x + ) ~ ki(o)3ik) (o +s) — kj ()3
i<j
10, 1, + -, v=2
j=1,2,---,v"1
counts the number of BXB and B* that occur in S+s such that the first B is not
contained entirely in S. Here the number ¢ of digits in X runs through all values

#0(mod v) with 0 < ¢ < s — » — 1. We take n > s and sum the above expression
to get

6 o=3 > fki (o + s) = ki ()3 {kj(a+s) —kj(a)}.
o0 'i=0, 1,if]-'-,u—2
J=1,2,--+,v"1

Considering S, and any BXB contained in it with ¢t <s — v — 1, we see that BXB
is counted in o a certain number of times. In fact if BXB is not too near either
end of S, it is counted just s — ¢ — v times and it is never counted more than this
many times. Furthermore if BXB is preceded by at least s — ¢ — 2v digits and is
followed in S, by at least s — ¢t — v — 1 digits then BXB is counted exactly
s — ¢t — v times. Therefore we have, ignoring any B* blocks which may be counted

by o,

s—v—1
(7 o> > (s —t—v){0i(n—s) —0:(s)}.
t;éof;gd v)

Using (4) we find

%l& T 2w

for any fixed s; hence, from (7), we have

It is now convenient to take s, which is otherwise arbitrary, to be congruent to
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0{mod v). Then the above formula reduces to

o (b=1)(s=v)? 1
.9 oL
®) 'll‘l’g} n=— 2v r2v
In a similar manner we count the BXB in S, where the number ¢ of digits of X

is congruent to 0(mod v). This gives us

1 n—-s v—1 l
(9) lim= Y ¥ = fki(a+s) —ki(w)}tki(a+s) —ki(x) — 1}
n=® p T2
o=0 1=0
sTvd 1 s(s —v) 1
N t§0 (s =t =v) r2v N 2v r2v
t#0(mod v)
Now, by (3) we have
n-s v-1 1 n7s
Lig — go E) thilo+s) = ki(0)} = lim og’ fela+s)—glw)}
1 15 s
=1 — o+s)—— Wi = ,
"% | 2n O(=n;s+l 8 ) 2n o 8 ’

and (9) reduces to

n-s v-1
(10) lin= ¥ Y fee(ots) —ki(0)}? == + =5 .
o=0 1=0 r

n—w

3|~

From (6), (8), and (10) we find that

(11 1lim
n—o

S |

T Y ikt s) — k@] = [ (ot ) — ks (@]
J=1L,2, 0,0

-2
1

<(v“1)s+(v~l)(s—v)

- rv r2v

for any fixed s = 0(mod v). Using the inequality
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we obtain
z Tei o+ s) = ke (@)] = [ (0 + 5) — k; (@2

“"n—s+1

! lz ki (o + s) — k, () — k (o<+s)+kj(0t)]}

n—s +1

- ‘z[kuows) ()],2

s—1 2
= kiiln—o) =% kii(a)} .
n“S+l z 1.](71 ogo 1,]( )]

This with (11) implies

- 1 s—1 s-1 2
(12) lim ————————— kiiln —oa) — ki (a
BTy 20 (T heeme s k@
l:0, 1, «c,v72
Jj=1,2,++-,v"1
(v=1)s (—1)(s - v)
- rv r2v

From the definition we have Ik,-’j(u) | < « and hence

1

lig —— z k”(al =

n—w® n(n—s +l)

and
1 s—1 s—1
11 k o k; () =0
n—l'gn(n-—s +1) ocz:o Wl )oczz:o ”()

for fixed s.
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Therefore (12) implies

n-mw n(n —s + 1) i<j o=0
1=0, 1, ++,v2
j=1,2,+---,v-1
(v—=1)s (v—l)(s—“v)
— rY 2v 4
which can be written in the form
o 1 s—1 2
lim ———— ki ;(n) + kij{n—0a) —k i(n
n}g n(n*‘s+l) E Sz,]() og:o [l,]( ) l,]()]
1=0,1,-++,v~2
j=1,2,-,v-1
(v—1)s (v—l)(s—v)
+ .
— rv r2v

But | kijln— o) = k; ;(n) | < 2a so that this implies

Tim —— Yl ()]

1 —_—
"}’r‘gn(n—s +l) 1<y
i=0,1,+++,v-2
j=1727...’v—1
w=1)s (- 1)(s —v)
+
_ rv 2v
or
T 5 ki, j(n)}? <v"1+(v*1)(8“v)
R i nh—s +1) = sr® sir?v )
1=0,1, -+ ,v-2
j=1,2, -+, 0-1

v=1 (v=1)(s =)
+

1i : =
% 2 n~®nn—s+1) " sr’ s r

for any fixed s = 0(mod v). Since the right member can be made arbitrarily small,

we have
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lim ‘ki,j (n)l -0

n—@ n

or

lim -
n—om n n—+ n
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