ON THE DEFINITION OF NORMAL NUMBERS

Ivan Niven and H. Zuckerman
1. Introduction. Let R be a real number with fractional part $\dot{x}_1x_2x_3\cdots$ when written to scale r. Let $N(b, n)$ denote the number of occurrences of the digit b in the first n places. The number R is said to be simply normal to scale r if

$$\lim_{n \to \infty} \frac{N(b, n)}{n} = \frac{1}{r}$$

for each of the r possible values of b; R is said to be normal to scale r if all the numbers R, rR, r^2R, \cdots are simply normal to all the scales r, r^2, r^3, \cdots. These definitions, for $r = 10$, were introduced by Emile Borel [1], who stated (p.261) that "la propriété caractéristique" of a normal number is the following: that for any sequence B whatsoever of v specified digits, we have

$$\lim_{n \to \infty} \frac{N(B, n)}{n} = \frac{1}{r^v},$$

where $N(B, n)$ stands for the number of occurrences of the sequence B in the first n decimal places.

Several writers, for example Champernowne [2], Koksma [3, p.116], and Copeland and Erdős [4], have taken this property (2) as the definition of a normal number. Hardy and Wright [5, p.124] state that property (2) is equivalent to the definition, but give no proof. It is easy to show that a normal number has property (2), but the implication in the other direction does not appear to be so obvious. If the number R has property (2) then any sequence of digits

$$B = b_1b_2 \cdots b_v$$

appears with the appropriate frequency, but will the frequencies all be the same for $i = 1, 2, \cdots, v$ if we count only those occurrences of B such that b_1 is an $i, i + v, i + 2v, \cdots -th$ digit? It is the purpose of this note to show that this is
so, and thus to prove the equivalence of property (2) and the definition of normal number.

2. Notation. In addition to the notation already introduced, we shall use the following:

\(S_\alpha \) is the first \(\alpha \) digits of \(R \).

\(BXB \) is the totality of sequences of the form \(b_1 b_2 \cdots b_v x x \cdots x b_1 b_2 \cdots b_v \), where \(x x \cdots x \) is any sequence of \(t \) digits.

\(k_i(\alpha) \) is the number of times that \(B \) occurs in \(S_\alpha \) with \(b_1 \) in a place congruent to \(i(\text{mod} \ v) \).

\[
g(\alpha) = \sum_{i=0}^{v-1} k_i(\alpha)
\]

\(\theta_t(\alpha) \) is the number of occurrences of \(BXB \) in \(S_\alpha \).

\[
k_{i,j}(\alpha) = k_i(\alpha) - k_j(\alpha), \quad i \neq j.
\]

\(B^* \) is any block of digits of length from \(v + 1 \) to \(2v - 1 \) whose first \(v \) digits are \(B \) and whose last \(v \) digits are \(B \). Such a block need not exist.

3. Proof. We shall assume that the number \(R \) has the property (2), so that we have

\[
\lim_{n \to \infty} \frac{g(n)}{n} = \frac{1}{r^v}
\]

and

\[
\lim_{n \to \infty} \frac{\theta_t(n)}{n} = \frac{1}{r^{2v}}
\]

for each fixed \(t \), and we prove that

\[
\lim_{n \to \infty} \frac{k_{i,j}(n)}{n} = 0,
\]

from which it follows that \(R \) is a normal number.

Now \(k_i(\alpha + s) - k_i(\alpha) \) is the number of \(B \) with \(b_1 \) in a place congruent to \(i(\text{mod} \ v) \) that are in \(S_{\alpha+s} \) but not entirely in \(S_\alpha \). Therefore
\[
\sum_{\substack{i=0, 1, \ldots, v-2 \\
j=1, 2, \ldots, v-1}} \{k_i(\alpha + s) - k_i(\alpha)\} \{k_j(\alpha + s) - k_j(\alpha)\}
\]

counts the number of \(BXB\) and \(B^*\) that occur in \(S_{\alpha + s}\) such that the first \(B\) is not contained entirely in \(S_{\alpha}\). Here the number \(t\) of digits in \(X\) runs through all values \(\not\equiv 0(\text{mod } v)\) with \(0 \leq t \leq s - v - 1\). We take \(n > s\) and sum the above expression to get

(6) \[\sigma = \sum_{\alpha=0}^{n-s} \sum_{\substack{i<j \\
i=0, 1, \ldots, v-2 \\\nj=1, 2, \ldots, v-1}} \{k_i(\alpha + s) - k_i(\alpha)\} \{k_j(\alpha + s) - k_j(\alpha)\}.\]

Considering \(S_n\) and any \(BXB\) contained in it with \(t \leq s - v - 1\), we see that \(BXB\) is counted in \(\sigma\) a certain number of times. In fact if \(BXB\) is not too near either end of \(S_n\) it is counted just \(s - t - v\) times and it is never counted more than this many times. Furthermore if \(BXB\) is preceded by at least \(s - t - 2v\) digits and is followed in \(S_n\) by at least \(s - t - v - 1\) digits then \(BXB\) is counted exactly \(s - t - v\) times. Therefore we have, ignoring any \(B^*\) blocks which may be counted by \(\sigma\),

(7) \[\sigma \geq \sum_{t=0}^{s-v-1} (s - t - v) \{\theta_t(n - s) - \theta_t(s)\}.\]

Using (4) we find

\[
\lim_{n \to \infty} \frac{\theta_t(n - s)}{n} = \frac{1}{r^{2v}}
\]

for any fixed \(s\); hence, from (7), we have

\[
\lim_{n \to \infty} \frac{\sigma}{n} \geq \sum_{t=0}^{s-v-1} (s - t - v) \frac{1}{r^{2v}}.
\]

It is now convenient to take \(s\), which is otherwise arbitrary, to be congruent to
0(\text{mod} \, v). \text{Then the above formula reduces to}

\begin{equation}
\lim_{n \to \infty} \frac{\sigma}{n} \geq \frac{(v - 1)(s - v)^2}{2v} \cdot \frac{1}{r^{2v}}.
\end{equation}

In a similar manner we count the BXB in S_n where the number t of digits of X is congruent to 0(\text{mod} \, v). \text{This gives us}

\begin{equation}
\lim_{n \to \infty} \frac{1}{n} \sum_{\alpha = 0}^{n-s} \sum_{i = 0}^{v-1} \frac{1}{2} \{k_i(\alpha + s) - k_i(\alpha)\}\{k_i(\alpha + s) - k_i(\alpha) - 1\}
\end{equation}

\begin{equation}
= \sum_{t = 0}^{s-v-1} (s - t - v) \frac{1}{r^{2v}} = \frac{s(s - v)}{2v} \cdot \frac{1}{r^{2v}}.
\end{equation}

Now, by (3) we have

\begin{equation}
\lim_{n \to \infty} \frac{1}{2n} \sum_{\alpha = 0}^{n-s} \sum_{i = 0}^{v-1} \{k_i(\alpha + s) - k_i(\alpha)\}
\end{equation}

\begin{equation}
= \lim_{n \to \infty} \left\{ \frac{1}{2n} \sum_{\alpha = -s+1}^{n} g(\alpha + s) - \frac{1}{2n} \sum_{\alpha = 0}^{s-1} g(\alpha) \right\} = \frac{s}{2r^v},
\end{equation}

and (9) reduces to

\begin{equation}
\lim_{n \to \infty} \frac{1}{n} \sum_{\alpha = 0}^{n-s} \sum_{i = 0}^{v-1} \{k_i(\alpha + s) - k_i(\alpha)\}^2 = \frac{s}{r^v} + \frac{s(s - v)}{vr^{2v}}.
\end{equation}

From (6), (8), and (10) we find that

\begin{equation}
\lim_{n \to \infty} \frac{1}{n} \sum_{\alpha = 0}^{n-s} \sum_{i < j}^{i \equiv 0, 1, \cdots, v-2, j = 1, 2, \cdots, v-1} \left\{ [k_i(\alpha + s) - k_i(\alpha)] - [k_j(\alpha + s) - k_j(\alpha)] \right\}^2
\end{equation}

\begin{equation}
\leq \frac{(v - 1)s}{r^v} + \frac{(v - 1)(s - v)}{r^{2v}}
\end{equation}

for any fixed $s \equiv 0(\text{mod} \, v)$. Using the inequality
we obtain

\[
\sum_{\alpha=0}^{n-s} \{ [k_i(\alpha + s) - k_i(\alpha)] - [k_j(\alpha + s) - k_j(\alpha)] \}^2
\]

\[
\geq \frac{1}{n-s+1} \left\{ \sum_{\alpha=0}^{n-s} [k_i(\alpha + s) - k_i(\alpha) - k_j(\alpha + s) + k_j(\alpha)] \right\}^2
\]

\[
= \frac{1}{n-s+1} \left\{ \sum_{\alpha=0}^{n-s} [k_{i,j}(\alpha + s) - k_{i,j}(\alpha)] \right\}^2
\]

\[
= \frac{1}{n-s+1} \left\{ \sum_{\alpha=0}^{s-1} k_{i,j}(n - \alpha) - \sum_{\alpha=0}^{s-1} k_{i,j}(\alpha) \right\}^2
\].

This with (11) implies

\[
\lim_{n \to \infty} \frac{1}{n(n-s+1)} \sum_{i<j}^{i=0,1,\ldots,v-2}^{j=1,2,\ldots,v-1} \left\{ \sum_{\alpha=0}^{s-1} k_{i,j}(n - \alpha) - \sum_{\alpha=0}^{s-1} k_{i,j}(\alpha) \right\}^2 \leq \frac{(v-1)s}{rv} + \frac{(v-1)(s-v)}{r^{2v}}.
\]

From the definition we have \(|k_{i,j}(\alpha)| < \alpha\) and hence

\[
\lim_{n \to \infty} \frac{1}{n(n-s+1)} \left\{ \sum_{\alpha=0}^{s-1} k_{i,j}(\alpha) \right\}^2 = 0
\]

and

\[
\lim_{n \to \infty} \frac{1}{n(n-s+1)} \sum_{\alpha=0}^{s-1} k_{i,j}(n - \alpha) \sum_{\alpha=0}^{s-1} k_{i,j}(\alpha) = 0
\]

for fixed \(s\).
Therefore (12) implies

$$\lim_{n \to \infty} \frac{1}{n(n - s + 1)} \sum_{i<j, i=0, 1, \ldots, v-2, j=1, 2, \ldots, v-1} \left(\sum_{\alpha=0}^{s-1} k_{i,j}(n - \alpha) \right)^2$$

$$\leq \frac{(v - 1)s}{r^v} + \frac{(v - 1)(s - v)}{r^{2v}},$$

which can be written in the form

$$\lim_{n \to \infty} \frac{1}{n(n - s + 1)} \sum_{i<j, i=0, 1, \ldots, v-2, j=1, 2, \ldots, v-1} \left(s k_{i,j}(n) + \sum_{\alpha=0}^{s-1} [k_{i,j}(n - \alpha) - k_{i,j}(n)] \right)^2$$

$$\leq \frac{(v - 1)s}{r^v} + \frac{(v - 1)(s - v)}{r^{2v}}.$$

But $|k_{i,j}(n - \alpha) - k_{i,j}(n)| < 2\alpha$ so that this implies

$$\lim_{n \to \infty} \frac{1}{n(n - s + 1)} \sum_{i<j, i=0, 1, \ldots, v-2, j=1, 2, \ldots, v-1} \sum_{i<j} s^2 [k_{i,j}(n)]^2$$

$$\leq \frac{(v - 1)s}{r^v} + \frac{(v - 1)(s - v)}{r^{2v}}$$

or

$$\lim_{n \to \infty} \sum_{i<j, i=0, 1, \ldots, v-2, j=1, 2, \ldots, v-1} \frac{[k_{i,j}(n)]^2}{n(n - s + 1)} \leq \frac{v - 1}{sr^v} + \frac{(v - 1)(s - v)}{s^2r^{2v}}.$$

From this we have

$$\lim_{n \to \infty} \frac{[k_{i,j}(n)]^2}{n^2} = \lim_{n \to \infty} \frac{[k_{i,j}(n)]^2}{n(n - s + 1)} \leq \frac{v - 1}{sr^v} + \frac{(v - 1)(s - v)}{s^2r^{2v}}$$

for any fixed $s \equiv 0 \pmod{v}$. Since the right member can be made arbitrarily small, we have
\[
\lim_{n \to \infty} \frac{|k_{i,j}(n)|}{n} = 0
\]

or

\[
\lim_{n \to \infty} \frac{k_i(n)}{n} = \lim_{n \to \infty} \frac{k_j(n)}{n}.
\]

REFERENCES

