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RATIO TESTS FOR CONVERGENCE OF SERIES

R A L P H P A L M E R AGNEW

1. Introduction, The following theorem was proved and used by Jehlke [2] to

obtain elegant improvements of the classic tests of Gauss and Weierstrass for

convergence of series of real and of complex terms.

THEOREM 1. If the terms of two series Σ ^ = 0 o r t and Σ ^ = 0 ^ Λ are such that

(1) ^-=—(1+0 ( n = O f l , ),

where Σ^= o cn is absolutely convergent, then the two series

Έin=obn are both convergent or both divergent.
=o a

n

It is the main object of this note to prove that Theorem 1 is a best possible

theorem in that no hypothesis weaker than the hypothesis that Σ n =o I cn I < °°is

sufficient to imply the conclusion of the theorem. The final result, Theorem 4, is

obtained from two preliminary theorems, Theorems 2 and 3, which seem to have

independent interest.

2. Preliminary theorems. We first establish the following result.

THEOREM 2. Let cn ψ ~~1> n ~ 0,1,2, β . In order that the sequence \cn}

be such that Σ Λ = 0 bn converges whenever (1) holds and Σ Λ = 0 an converges, it

is necessary and sufficient that

00

( 2 ) Σ | ( 1 + c o ) ( l + c χ ) - - - ( l + c ^ K I < o o .

Proof. To prove Theorem 2, let (l) hold. Then

(3) ^ — - ( 1 + c J (n=0Λ2. . ).
α n + l α n

and hence
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RALPH PALMER AGNEW

(4) ^ - = ^ - ( l + c o ) ( l + c 1 ) • • . ( l + c n - 1 ) ( n = l , 2 , . ) .
an a0

Let

(5) pn = — (1 + c o ) ( l + c θ ••• (1 + c n - x ) (n - 1,2, •••) .
α 0

Then i>Λ

 = pnan9 But by a well-known theorem of Hadamard Li] , Σ^°=o pnan con-

verges whenever Σ£°=o an converges if and only if Σ^°=o \pn+ι """ Pn I < °° . But

(5) implies that

(6) p n + i - p n = — (1 + c o ) ( l + C l ) ••• (1 + 0 ^ ! ) ^ ,
α 0

and the conclusion of Theorem 2 follows.

THEOREM 3. Let cn ψ — 1 , n = 0,1,2, . In order that the sequence \cn\

be such that Σ Λ = 0 an converges whenever (l) holds and Σ^= o bn converges, iί is

necessary and sufficient that

(7)
n-\

1 1

1 + Co 1 + c x 1 + cn-x I + cn
< °° .

Proof. Theorem 3 may be proved by revising the proof of Theorem 2 to use the

relations

(n = 0, 1, 2, )()
an bn 1 + cn

instead of (l) or, which amounts to the same thing, replacing 1 + c^ by 1/(1 + c'^)

in (2) and then removing the primes.

3. Theorem. Our main result is the following.

THEOREM 4. Let cn f1 — 1 , n — 0,1,2, ' . In order that this sequence be

such that the two series Σ Λ = 0 an and Σ π = 0 bn are both convergent or both di-

vergent whenever (1) holds, it is necessary and sufficient that Σ ^ = o \cn\ < °°.

Proof. To prove necessity, suppose Σ^=o an and Σ^=o bn are both convergent

or both divergent whenever (1) holds. Then, by Theorems 2 and 3, both (2) and (7)
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hold. Denoting the nth terms of the series in (2) and (7) by un and vn, we see that,

as n—>°°, we have un—>0 and vn—>0 and hence

(9)

This implies that cn—» 0 and hence that 11/(1 + cn) \ > 1/2 for n sufficiently

great. This and (7) imply that

(10) Σ
1 1 1

< °° .1 + Co 1 + c j 1 + c π - i

If w e l e t x n - I (1 + c o ) ( l + cx) • • • ( ! + c n - χ ) | , t h e n (2) a n d (10) imply t h a t

(ID Σ (x + x'1) \c\xn » xn ) \cn

But the mere fact that xn > 0 implies that (xn + %Λ

ι ) > 2, and it follows that

2«=o I c n I < °°. This proves necessity. To prove sufficiency, suppose that

^n-o \cn\ ^ °° Then the infinite product H ( l "̂  c^) converges to a number not

zero, and this means that each of (1 + c o ) ( l + c t ) (1 + cn-ι) and [(1 + c 0)

(1 + cι) (1 + c n )] x converges to a number not zero. This and Σ^=o \cn\

< °° imply (2) and (7). Therefore Theorems 2 and 3 imply that Σ °̂=o an and Σ^=o bn

are both convergent or both divergent. This completes the proof of Theorem 4.
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TOPOLOGIES FOR FUNCTION SPACES

RICHARD ARENS AND JAMES DUGUNDJI

1. Introduction. Let Z^denote the class of continuous functions (or "mappings,"
or "maps ")

(1.1) f:Y~>Z

of a topological space Y into another Z. A great variety of topologies t may be
introduced into Z^ making it into a topological space Z^(ί). The topologies we
deal with in this paper can be classified by using the notion of "continuous con-
vergence" of directed sets (generalized sequences) fβ in Z^ as follows: with no
reference to any topology Z^, we can say fμ converges continuously (Frink [ l ] ;
Kuratowski [2]) to f (fμ and fare elements of Ẑ O if

(1.2) fμ.{yv)^f(y)

whenever yv —* y in Y. (We use the "—>"for convergence as in (1.2), as well as for
indicating the domain-range relation as in (1.1). The context prevents confusion.)
We can classify the topologies t for Z^ according as to whether

(1.3) convergence in Z^(t) implies continuous convergence

or

(1.4) continuous convergence implies convergence in Z^(ί)

Certainly there are other topologies possible in Z^, but we do not discuss

these. There may be a topology t satisfying both (1.3) and (1.4), but if so it is

unique; see (5.6).
An apparently different approach to the same classification is suggested by

homotopy theory. Beside Y and Z, consider a third space X. For a function g de-
fined on X X y with values in Z, we can define g* (x) mapping X into 7? by
setting g* (x) (y) = g(x9y) Then a topology ί for Z^ may be such that, for any X,

(1.5) if g is continuous, then g* is continuous,

or

(1.6) if g* is continuous, then g is continuous.

Received May 12, 1950.
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6 RICHARD ARENS AND JAMES DUGUNDJI

It is proved ((2.4), (2.5)) that (1.5) is equivalent to (1.3) and (1.6) is equivalent
to (1.4). We call the former class of topologies proper, and the latter admissible.

The following questions about this class of topologies in Zγ are considered in
this paper: What are the relations (in the sense of the conventional partial ordering
of topologies) of the proper topologies to the admissible topologies? What can be
said about the order-type of the proper topologies? of the admissible topologies?

We write s < t if s and t are topologies such that a set open in Z^(s) is open
in ZY(t) Then (a) if s < t and t is proper, s is proper; (b) iί s < t and s is admis-
sible, so also is ί; (c) if 5 is proper and t is admissible, then s < ί; (d) there is
at most one proper admissible topology, and such a topology is both the greatest
proper and least admissible topology.

The proper topologies form a principal ideal in the lattice of all topologies for
Z^; thus there is always a greatest proper topology. The admissible topologies are
much more disorganized. We state some findings for the special case in which Z is
the real line, (e) When Y is not locally compact, but is completely regular, there is
no least admissible topology and (hence) no proper admissible topology; (f) if Y is
a metric space, not locally compact, then there always exists a pair of admissible
topologies none of whose common lower bounds are admissible.

When Y is locally compact, there does exist a proper admissible topology, as
is well known, which we call the ^-topology (see below (4.3)). We ask:To what
extent do any of these properties of the A -topology persist when Y is not locally
compact? It is always proper, but sometimes not the greatest of the proper topolo-
gies even if Y is completely regular. Admissibility does not often persist (See (c),
above).

We consider a special class of topologies, the set-open topologies, whose defi-
nition is patterned after that of the ώ-topology except that arbitrary families \A ]
of sets are admitted. We determine fairly complete criteria as to whether a given
one is proper or admissible. The fc-topology is always the greatest proper set-
open topology, when Z is metric, and also the g. 1. b. of all admissible set-open
topologies.

A subclass of the set-open topologies are the σ-topologies defined in terms of
coverings (just as the A -topology is definable in terms of the covering by open sets
with compact closure when Y is compact). These topologies are admissible, and
for any pair there is a common lower bound.

Considering that the space F of closed subsets of Y can be regarded as a
function space, we felt it appropriate to point out that the usualHausdorff topology,
even when Y is a compactum, is not proper, and that A -topology is not a Hausdorff
topology.

One interesting by-product of our investigation of admissible topologies is that
it enables us to answer in the negative, surprisingly enough, the following simple
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question about topological products:

Let Y be a space, let s, t be two topologies for a set X , and let u be the
greatest lower bound of the topologies s and £• Then is the (product) topology of

X(u) X Y

the greatest lower bound of the topologies of X(s) X Y, X{t) X Y ?

Finally, we determine a necessary and sufficient condition that, when Y is a
locally compact regular space, X is a set, and a topology t has been given to
X X Y, a topology s can be found for X such that t is the product topology of

X(s) X Y.

2.Admissible topologies and proper topologies. By a space Y we shall mean
a set Y in which certain subsets, including Y and the empty set, are designated
as open, and which have the property that their finite intersections and arbitrary
unions are also open; no separation axioms are assumed. A basis for a space Y is
a collection σ of open sets such that any open set in Y can be represented as the
union of sets of σ ', a subbasis for the space Y is a collection of open sets which,
together with their finite intersections, form a basis. Compactness in this paper
shall always be the bicompactness of Alexandroff-Hopf [ l ] a space with the
property that every infinite subset has a limit point is called Frechet compact.
A space Y is locally compact if every point lies in an open set having compact
closure. Y is completely regular if, given any y eY and open U with yβU, there
exists a continuous real-valued function / satisfying f{y) = 1 and f(x) = 0 for
x £f/ If Yt and Y2 are two spaces, the topological product Yt X Y2 is the space
whose points are all collections of ordered pairs (yvy2 )> J^ Yi> Ϊ2e\> a n c ^ * n

which a basis consists of all sets of form (Uι X ί/2), t/j being open in Y\, i — l,2 0

If Y and Z are two spaces, the symbol"/: Y —> Z" will always denote a con-
tinuous mapping of Y into Z ; the totality of all such continuous maps will be
written Z . Various topologies can be introduced into the set Z a set Z with a
topology is called a function space. In this section, we shall single out two im-
portant types of topologies in Z ^, and give elementary consequences of the
definitions.

(2.1) DEFINITION. Let Z and Y be two given spaces. A topology t in Z ^ is

called admissible if the mapping co(γ9f) = f(y) of Y X ZY into Z is continuous in

y and /.

The set ZY with the topology t will be denoted by ZY{t)9 but when no ambiguity

is involved regarding the topology t under discussion, the (t) will be omitted. The

mapping ω will be called the evaluation mapping.
We now make the following observation. Let X, Y9 Z, be three spaces and g a
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mapping of X X Y into Z . Setting g*(x)(y) — g{x,y) = fx(y) and varying x, we
can evidently regard g* as a mapping of X into ZY Conversely, if we have a
mapping g* of Z into ZY, we can write g(*,y) = g*U)(y) = 4 ( y ) and regard g
as a mapping of X X Y into Z . Two maps g and g* related as just described will
be called associated.

We can now show the intimate relationship between mappings of cartesian
products and admissible topologies in function spaces: the continuity of any g*
implies the continuity of the associated g .

(2.2) THEOREM. Let Z and Y be two given spaces. A topology t in Z is
admissible if and only if

(2.21) for every space X, g*: X —> Z^(t) implies g:X X Y —> Z, where g is
the associated mapping.

Proof. Assume t is admissible, and g * : ί - > Z ^ ( ί ) Define

h:YXX->YXZY(t) by h(x,y) = {gHx),y).

If oύ is the evaluation map, we have cύh\ Y X X ~> Z , and it is not hard to see

that ωh is the mapping associated with g*. Hence, (2.21) holds.
Assume now (2.21) holds. In particular, select X— Z (t) and the identity map

/* : ZY(t) -» Zγ(t); by (2.21) this means the associated map of Y X Zγ(t) into
Z is continuous, and this associated mapping is precisely the evaluation mapping.

The other important class of topologies in Zγ is given in the following defi-

nition.

(2.3) DEFINITION. Let Z and Y be two spaces. A topology t in Zγ is proper
if for every space X, g: X*Y -» Z implies g*: X -> Zγ(t), where g* is the
associated map.

An extremely useful equivalent formulation of the notion 'proper can be given
which is based on directed sets and continuous convergence. We therefore insert
an explanatory paragraph (cf. Birkhoff [2J)

A directed system Δ is a partially ordered system with the property that for
any μ, μ' € Δ, there exists a μ" e Δ with μ" > μ, μ" > μ' . Every directed
system Δ gives rise to a directed space Δ ' by addition of one ideal point o° satis-
fying oo > μ for all μ e Δ . The topology in Δ ' = Δ u {oo$ is obtained by defining
all μ to be open sets, and neighborhoods of oo to be all sets of form \μ; μ> μ'
for some μ'} , μ' € Δ. If Γ = i ^] is another directed system, the set

of all pairs is also a directed system if we define ( μ f v ) > ( μ ' , v1) whenever
both μ > μ1 and v > V1 . A (Δ-) directed set in a space Y is a function on a
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directed system Δ with values in Y, and is denoted by \y \ ^ or more briefly by
XJμ] 5 a directed set [yμ] converges to y (in symbols, γμ —» y) if for every

neighborhood V of yj^here exists a μ' e Δ with y e F for all μ > μ'. Furthermore,
we have g: Y —» Z if and only if for every directed s e t { y μ ] , y —» y implies
g(yμ) " " ^ ( y ) ( s e e Tukey [ l , p . 2 8 ] ) Let \fμ) be a directed set in the set ZY\
fμ converges continuously to f 6 Z ^ if for every y and every neighborhood IF of
f(y) there is a μ ' and a neighborhood V of y such that for μ > μ' we have
f(V) C ίF. (This definition is equivalent to that made in Section 1.) Notice that
the idea of continuous convergence does not require any topology in Z ^

With these preliminaries, we prove the following result,

(2.4) THEOREM. Let Z and Y be two spaces. A topology t in ZY is proper if
and only if for every directed system Δ and every Δ-directed set \f \ in Z^(t)9

the continuous convergence of fμ to f implies fμ~*f according to t.

Proof. Suppose,first, t is proper and let fμ converge continuously to /, \fμ}
being directed by Δ . Let Δ ' be the corresponding directed space. Then define
g(μ9y) = fμ(y)9 g(co9y) = f(y) Now we have g: Δ ' X Y —» Z , by the definition
of continuous convergence. Hence fμ — g*(μ) ~~> g*(oo) = / as desired.

Now suppose continuous convergence always implies convergence, and suppose
we have g: X X Y ~^> Z. Suppose xμ —> x in X. It is easy to see that g*(xμ ) con-
verges continuously to g*(x) since g is continuous. Thus g*(xμ) ~> g*(x) in Z.
This proves that we have g* : X —* Z. Consequently t is proper.

We remark that if every continuously convergent sequence in Z^(t) converges,
the topology need not necessarily be proper.

A rather parallel criterion for admissibility can also be stated. We formulate
it now but leave the proof, which resembles that of (2.4), to the reader.

(2.5) THEOREM. Let Z and Y be two spaces. A topology t in Z ^is admissible
if and only if for every directed system Δ and /^-directed set \f \ the convergence
fμ ~~* f in Z(t) implies the continuous convergence of fμ to f

Kuratowski [ l l ] has shown that the idea of continuous convergence can be
used to introduce a convergence (in Kuratowski's case [10] , L*-convergence)
in Z provided also Y and Z are L*-spaces. The convergence obtained is both
admissible and proper, in a suitable sense (see Kuratowski [ l l ] ) . There is not
always a corresponding topology in Z ^ associated with this convergence, but the
poor showing of topologies in this connection (see (6.01)) seems to commend this
step beyond the class of topological spaces, as Kuratowski points out.

3. Comparison of topologies. Since we are going to be concerned with various

topologies for Z ^ it is natural to recall that there is a useful partial ordering for

all the topologies on a fixed fundamental set E For references, see Birkhoff

[5, P .173] .
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To define this partial ordering, it is useful to take the attitude th&t a topology

t on a set E is (rather than merely determines) the class of those sets which are

open in the topology. Thus a topology is a subset of 2^, the class of all subsets

of E Hence for two topologies t and u on the same set E the set-theoretic state-

ment of inclusion, "t (Z u," is meaningful and leads to the following definition.

(3.1) DEFINITION. If t and u are two topologies for a set Ef we shall write

t < u or u > t or t is smaller than u or u is greater than t when every set open

in t is open in u, that is, when t C u.

Notice that the statement "t is smaller than u" is not comparable with the

statement "u is not greater than t"since the former is not intended to exclude the

possibility: t — u. If t < u we shall sometimes call u an expansion of t and t a

contraction of u. This partial ordering is easily seen to have the property that

t < u if and only if the identity mapping

(3.2) E(u)~>E(t)

is continuous.

Since the class τ(E) of all topologies is a subset of 2^, and since the relation

"< "defined above is just that which is inherited from the natural partial ordering

(by inclusion) (see Birkhoff [5]) in 2 , we have the following result.

(3.3) THEOREM. The relation "<" in the class τ(E) of topologies on E is a

partial ordering.

τ(E) is not a sublattice of 2^ because, while t n u is always a topology, t u u

is not always a topology.. This does not exclude the possibility that τ(E) be

nevertheless a lattice (see Birkhoff [5, p. 19]).

(3*4) THEOREM (Birkhoff [4]). τ(E) is a lattice; that is, for two topologies

t and u there is a least upper bound t v u and a greatest lower bound t Λ u. In fact,

every subset T of τ(E) has a least upper bound (briefly: "join )

V t

teT

and a greatest lower bound (briefly: "meet )

Λ t

teT

that is, τ(E) is a complete lattice with greatest and least members.

The greatest lower bound of a class T of topologies has the open sets

Π t

teT
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which are open in all. On the other hand, if we take as a basis the class of sets

U t

teT

we obtain a topology which is easily seen to be the least one including all the

members of T The discrete topology is the greatest of all, topologies and the

trivial topology (only E and the void set are open) is least.

The familiar classes of topologies (for example, Hausdorff, completely regular,

normal) are not all well behaved with reference to expansion and contraction (see

Hewitt [9]). Since there will emerge some trouble with admissible topologies

under the operation "meet," it is only fair to show that things do not go smoothly

with every one of the familiar classes of topologies. The following theorem is in-

tended only for orientation. The statement that a property T is preserved under

"meeting of two" means that if t and u have property T then so does t Λ w,and so

on for the other terms to be used.

(3.5) THEOREM. In the lattice of topologies on a set E,

(3.51) The Riesz [ 7 \ ] , Hausdorff [T2], and Urysohn (see Hewitt [9]) separa-

tion properties are each preserved under arbitrary expansions (Hewitt L9J), and

hence under joining:

(3.52) Although not preserved under arbitrary expansion (Hewitt [9]), regularity

and complete regularity are preserved under joining of two',

(3.53) Riesz separation is preserved under meeting (Birkhoff [4]);

(3.54) Hausdorff and Urysohn separation, regularity, complete regularity, nor-

mality, complete normality, and metrizabilitγ are not generally preserved under

meeting of two.

Proof Statements (3.51) through (3.53) may be found in the references or easily

proved. We content ourselves by supplying an example supporting (3.54).

Let E be any denumerable infinite set, and let x\, X2 be a pair of distinct ele-

ments of E. Consider the topology ί r in which any set is open if it either excludes

xι or has a finite complement. This (compact) space has all the properties men-

tioned in (3.54). By interchanging the roles of xι and x2 we obtain another topology

ί2. Since tγ Λ t2 is a non-Hausdorff Riesz space, all the properties in (3.24) also

fail since each guarantees Hausdorff separation when points are closed sets. This

completes (3.5).

The result (3.54) just obtained entitles one to consider that perhaps the com-

parison of topologies based on (3.1) is not the most satisfactory one possible.

However, no other generally applicable definition of ordering seems to have been

proposed anywhere.
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We now apply these ideas to topologies on a function space Z^.

(3.6) T H E O R E M . Let t and u be topologies on Z . If t is admissible and u>t

then u is admissible. If u is proper and t < u then t is proper.

These facts follow at once from the definition and property (3.2). In particular,

admissibility is preserved under joining, and propernessis preserved under meeting.

We shall see in (5.1) and (5.2) that the proper topologies form a principal ideal

{tm) in the lattice of all topologies; that is, there exists a topology tm such that t

is proper if and only if t < tm. In particular, they constitute a sublattice. For ad-

missible topologies, there sometimes exists a topology u such that u < t precisely

for the admissible topologies, but sometimes (see (6.3)) not even t Λ U is admissi-

ble when t and u are.

The general position of the admissible topologies with respect to the proper

ones is this:

(3.7) THEOREM. If t is proper and u is admissible then t < u.

Proof. Since u is admissible, the mapping

• ω:Zγ(u)X Y~>Z

is continuous. From the definition of "proper," we obtain

ω+: Zγ(u)->Zγ(t).

From (3.2) we conclude that t < u.

See also (6.01) below.

4. Examples of function spaces. In this section we shall give examples of

function spaces, some having a proper topology, and some an admissible topology;

we also investigate in some detail a method for introducing topologies in the set

ZY. Notice that the discrete topology in the set Zγ is always an (the greatest)

admissible topology, and the trivial topology (3.4) in Zγ is always a (the smallest)

proper topology. We proceed to less trivial methods for introducing a topology.

(4.01) DEFINITION. Let A and B be subsets of the spaces Y and Z respec-

tively. The symbol (A9B) denotes the set of all / £ Z y satisfying f(A) C B.

We utilize this notation to define a class of topologies in Zγ: the σ-topologies.

Let σ be an arbitrary covering of Y by open sets; we keep σ fixed throughout this

discussion. Introduce a topology in Zγ as follows. Let F be any closed set in Y

contained in some member of σ9 and V an open set in Z. The class of all sets of

form (F,V) is taken as a subbasis in Zγ.

(4.02) DEFINITION. The topology in Zγ thus determined by σ is called the

σ-topology.
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(4.1) THEOREM. Let Y be regular, Z arbitrary. Then for any σ, the σ-topology
in Zγ is always admissible.

Proof. We are to show that we have ω: Y X Zγ -* Z. Let / e Zγ, y e Y, and
let IF be a neighborhood of f(y) in Z. Since Y is regular, we can find an open V
containing y with closure F~~ in f~ι(W) and also in some member of σ then
ω(FX (V~9 W)) C W and ω is continuous, as was to be shown.

The following fact about σ -topologies is to be compared with (6.3) below.

(4.11) THEOREM. Let σ{ and σ2 be open coverings of Y. If cri is a refinement
of σ2 then the σι-topology is less than or equal to the σ2-topology. If Y is regular,
the meet of two σ -topologies is also admissible.

Proof. The first assertion is obvious. It implies the second as follows. Let σ
be a common refinement of σχ and σ2. When Y is regular, the σ-topology is ad-
missible, and since

σ -topology < σγ -topology Λ σ2 -topology,

the latter is admissible. There is no reason why the latter should be a σ-topology,
of course.

Variants of the σ-topologies can be found by varying the allowable sets in Y,
that is, by permitting open, or arbitrary, subsets of members of σ to be used in the
definition of the subbasis. Although these variants of σ-topologies are also
always admissible (when Y is regular) there is a reason for preferring the σ-topol-
ogies. To see this, we first remark that the existence of a proper admissible
topology in Zγ is a desirable property. For example, it is easily seen that with
such a topology, the homotopy of two maps Y —> Z is equivalent with their being
joined by an arc in the functional space. Now, when Y is regular, it is easy to see
that the σ-topology is always less than or equal any of its variants, so that the
former is "nearer" to the proper topologies than any of the latter. For this reason,
the σ-topologies appear better suited to our work.

We shall now introduce a class of topologies including the class of σ-topol-
ogies. Let Y and Z be as before and let a family {̂ 4} of subsets of Y be given.
Taking the family of sets (A,W) (see (4.01)), where W is open in Z and A belongs
to \A}9 as a subbase in Z^ we obtain a topology.

(4.2) DEFINITION. The topology described above is called t h e J l p

topology. Any such topology will be called an S-topology, or set-open topology.

The space Zγ with the {y4|-open topology will be written Zγ (S : {A})

One reason for st i l l limiting W to open subsets of Z in (A,W) is that in this
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way we can be sure that if we consider only the class of constant functions, it will
be homeomorphic to Z.

The next result shows how a large class of proper topologies may be obtained.
(Recall that σ -topologies provide a way of obtaining admissible topologies.)

(4.21) THEOREM. Lei Z and Y be two spaces. If all the sets in {A} are com-
pact, then the \A\-open topology in Z^ is proper.

Proof. Suppose we have g: X X Y —» Z; to prove g* continuous, it is enough
to show that given any subbasic open set (A, V) 9 g*(xo)f there is a neighborhood
U of x0 with g*(U) C (A, V). Using the continuity of g and the definition of g*, we
see that from x0 X A being contained in the open set g~ι(V) we have to conclude
that U X A C g~ι{V) for some neighborhood U of x0. To do this, for each (xQ, y)
in x0 X A we find a set Wy open in X X Y with (xo,y) € Wy a g~ι(V); this gives
a covering of x0 X A, and the compactness of x0 X A allows us to extract a finite
covering. The intersection of the projections of the sets of this finite covering on
Z gives an open U containing x0 and clearly U X A d g~ι(V).

On the basis of this theorem, an important special case of the set-open topol-
ogies is singled out: the case where {A} is the collection of all the compact sub-
sets of Y (see Arens [2], Fox [7]). We will call this special case, for ready
reference, the k-topology. For separation properties of the ̂ -topology, see Arens
[2] . For example, if Z is a Hausdorff space, the A -topology is a Hausdorff topol-

ogy. It is evident that the A -topology is the greatest set-open proper topology
based on compact sets.

The proof of the properness of a set-open topology contains essentially the
following question: What conditions on the sets \A\ insure that, for every X, an
open V in X X Y containing x0 X A also contains an "open tube " U X A (U a
neighborhood of x0 in X)? With this observation, we are ready to approach the
problem: Which of the set-open topologies are proper? Our procedure enables us
to answer a more inclusive question: What conditions on the class {A} follow
from the assumption that the {/l}-open topology is < every admissible topology?
(See (3.7).) A sufficient condition has been given in (4.2); we have several neces-
sary conditions, but have not found both necessary and sufficient conditions,
except in isolated instances.

We first treat the special case of real-valued functions.

(4.3) THEOREM. Let Y be a completely regular space, and Eγ the Euclidean
line. If the \A\-open topology in E^ is < every admissible topology, then the sets
of {A} must all have compact closure.

Proof. Let B be any set of {̂ 4} and σ: } V\ an arbitrary covering of the closure
β~ of B. We are to show that we can extract a finite covering of B~.

Let / be the constant function 0 in £ t

y . Then / € (β, W), where W is the com-
plement of 1 in Eχ Now form the σ-topology based on the covering of Y by the



TOPOLOGIES FOR FUNCTION SPACES 15

sets I V\ together with the complement of B~ * By (4.11) this topology is admis-
sible, and by hypothesis there exists a neighborhood

£/=(Cι, C 2 , , Cn\ IΓi, W2, - ,Wn)

in Zγ{σ-topology) such that f € U d {B,W). Let C denote the closed union of
Ci> * * ' > Cn. If C does not contain β~, there is a point ό in B~ which is not inC,
and which hence has a neighborhood V not meeting C; since b € B~, it follows
that V contains some point b' in B not in C Construct a continuous real-valued
function r with r(b') — 1 and r(y) = 0 for y ^ V. It is clear that r € U since it
coincides with / on C, but evidently r φ (β, W) Hence, B~~ is contained in C. Let
Vι, , Vn be sets of the covering σ~ containing the closed sets C^ * , Cn

respectively; then β"" is contained in the union of the former. Hence, β~ is com-
pact, as was to be shown.

It is evident that a similar theorem holds for mappings of a completely regular
space Y into any space Z that contains at least one non-degenerate arc Thus an
application of the special case (4.3) yields the same conclusion in many more
general cases.

(4.31) THEOREM. Let Y be a completely regular space, and Z a space con-
taining a non-degenerate arc. A necessary and sufficient condition that a set-open
topology based on closed sets be < every admissible topology is that it be a
proper topology.

Proof. The necessity stems from (4.3) and (4.21).The sufficiency arises from
(3.7).

(4.311) COROLLARY. Let Y be a completely regular space, and Z a space
containing a non-degenerate arc. A set-open topology based on closed sets is
proper if and only if all the sets are compact.

The following concept is useful in the further investigation of {̂ 4] when the
fy4}-open topology is proper. Let β be a subset of Y. A point y0 of Y is ines-

sential to B if, for every /: Y —» E\ there exists a y in β, γ ^ y0, such that
f(y) = f(yo) Note that in a metric space Y no point is inessential to any β. In a
completely regular space, y0 is essential (that is, not inessential) to B if and only
if y0 is a Gg-set relative to β.

(4.4) THEOREM. Let Y be an arbitrary space, Z a space containing a non-
degenerate arc. If the \A\-open topology in ZY is < every admissible topology,
then each set A of {A} must contain all points of its closure which are essential
to A.

Proof. One may regard Eγ a s embedded in Z . Let A belong to {A}9 and let

Ύ e AT -A. Suppose y0 is e s sent ia l to A. Then there ex is t s an / : Y - * Eι with
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f(y) Φ f{y0 ) for every y in A. Let us take /(y0) = 0.
Select X = Ex and define g: £\ X Y -> £ t by the condition g(x,y) = * + f(y).

We can now define an admissible topology t in Z^ as follows: (a) the set

G = \gHχ); x eE,}

is open and homeomorphic to Eγ (b) all other elements are isolated. This topology
is clearly admissible, due to the continuity of g. By hypothesis there must exist a
set U open in Zγ (t) with f e U C (A, W); and due to the definition of t9 this U is
(or at least contains) the image of some interval (~e,e), e > O Now, since y0 is a
limit point of A, and / is continuous, there must exist a y0 in A with — e <f(yo)<e.
Construct /i = g* [-f(yι)]. This /i belongs to U9 but it does not belong to (A,W)
since fiiγγ) = —/"(ft ) + /(ji) = 0. This is a contradiction, and shows that y0 is
inessential to A. This proves (4.4).

We give an example to show that the sets {A} on which a proper 5-topology is
based need not be closed. Let Y be any uncountable set in which all points are
declared open sets except one, y0 , whose neighborhoods are defined as the com-
plements of finite sets excluding y0. Introduce a set-open topology t into E^ based
on the non-closed set A = Y — yb Note that g e (Y-yθ9W) if and only if g e (Y,W),
since otherwise g would assume a value at y0 different from all its other values,
and y0 would be a G§. Thus this topology is the same as that based on Ax ~Y,
which is proper, by (4.3), since Aγ is compact.

With the aid of this Theorem (4.4), one can refine the results of (4.31) and
(4.311). We state the result but leave the proof to the reader.

(4.41) THEOREM. Let Y be a completely regular space in which every point is
a G$, and Z any space that contains a non-degenerate arc. A set-open topology in
Z^ is proper if and only if it is based on sets that are all compact. A necessary
and sufficient condition that a set-open topology in Z^ be proper is that it be
< every admissible topology.

If a simple condition be satisfied by Z, we lose no proper set-open topologies
by limiting ourselves to f/ί}-open topologies where every A is compact. This is
shown in the next theorem.

(4 5) THEOREM. Let Y be a completely regular space, Z a metric space con-
taining a non-degenerate arc. If an \A\-open topology in Z^ is < every admissible
topology, then it is equivalent to the set-open topology based on the compact
sets M 5.

Proof. We have, by (4.3), that all the sets A' are compact; on the basis of
(4.4) every A contains all points of A" that are essential to A. Let AQ be the set
of points of A" inessential to A; then A u Ao — AT. The theorem will be proved
when we show that, for the subbasic open sets, we have {A u A0,W) = (A,W). The
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inclusion (A u Λo ,W) C (A,W) is evident. To prove also (A,W) C (A u Aθ9W) we

need only show that / e C4,IF) implies f(a0) e W for every α0 € 4 0 . To this end
denote by d the metric in Z, and set F (y) = d(f(y)f f(a0)) then we have

F : Y - > £ ! ,

and since α 0 eA 0 , this means there must be a point a e A with F (α) = F(α 0 ) = 0;

this in turn implies that f(ao) = /(α) € IF, finishing the proof as indicated. (All
that is really needed for this theorem is that (a) Z be completely regular, (b) every
point of Z be a Gg, and(c) Z contain a non-degenerate arc.)

If we specialize Z instead of Y, we get a more complete converse to (4.2). Let
us take Z to be the Sierpinski space consisting of two points, which we call 0
and 1, with the empty set, the entire space, and the point 0 as the only open sets.

(4.6) THEOREM. Let Y be an arbitrary space, S the Sierpinski space. A neces-

sary and sufficient condition that an \A\-open topology in Sγ be < every admis-

sible topology is that all the sets of [A] be compact.

Proof. The sufficiency follows from (4.2). We need only prove the necessity.

Let B be an arbitrary set of the collection {A} and {Vn \ an arbitrary covering of

B. We shall reduce \Vβ\ to a finite covering. Let V be the union of all the Vβ

Let k 6 S^ be the function which is 0 precisely on V. Introduce an admissible

topology t in S^ as follows: (a) All elements of S^ except k are isolated, (b) the

neighborhoods of k are of form (Ft u V2 u ' u Vβ, 0) where the F; are open

sets with V( CZ Vβi . In fact, t is admissible, as is not hard to verify. The hy-

pothesis then gives us a neighborhood in t with

k e (Vt u V2 u u Vn9 0) c (β,0).

Selecting Vβi ID V( , we form their union G. This set covers B for otherwise, if g

is the function vanishing precisely on G we have g e (V\ u * # * υ Vn, 0) and

g ^ (B,0), a contradiction. Hence B is compact, proving (4.6).

We now turn to the admissible case, and seek conditions under which a set-

open topology is admissible.For convenience we make another definition. A family

of sets [A] is a regular family in Y if, given any y in Y and neighborhood JJ of y,

there exists an A in {A} contained in U and containing γ in its interior.

This concept permits the following statement.

(4.7) THEOREM. Let Z and Y be arbitrary spaces. A set-open topology in ZY

based on a regular family of sets is always admissible.

Proof. We are to show that we have ω: Y X ZY -» Z. Let / e Z y , y e Y and

ψ a neighborhood of f{y); then f~~ι(W) is open in Y, and y € f~ι{W); by regularity

of the family \A] we can find an A with γ € int A, A CZ f~ι(W). It is clear that

ω [int A X C4i, IF)] a W, and so ω is continuous.
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This theorem has two interesting consequences, the first of which has been
known for a long time; see Fox [7] and Arens [2] .

(4.71) THEOREM. Let Y be a regular locally compact space, and Z arbitrary.
Then the k-topology (see (4.2)) in Z^ is admissible and proper.

Proof. The totality of all compact subsets of Y, since Y is locally compact
and regular, forms a regular family.

A corollary of (4.71) particularly useful in discussions of homotopies is the
following.

(4.72) COROLLARY (FOX [7]). Let Y be regular, and let X and Yboth satisfy
the first axiom of countability. Then g: X X Y —* Z is equivalent with

g*:X->Zγ(k),

for any Z.

Proof. One half of the result comes from (4.2); we prove g*: X —> Z^ (k) im-
plies g: X X Y —* Z. Note that (4.71) implies g is continuous on all sets of form
A X Y where A is a compact subset of X. In particular, g is sequentially con-
tinuous, and with our hypothesis this implies that g is continuous.

5 The proper topologies. The situation of the proper topologies in the class
of all topologies in a class Z^ is a particularly simple one: with the partial
ordering of (3.1), they form an ideal with a (smallest and a) greatest element. We
establish first the completeness of the class of proper topologies.

(5.1) LEMMA. Let Z and Y be arbitrary spaces; let {ta} an arbitrary collection
of proper topologies in Z*l Then Λα ία and Vαία are also proper topologies in Z*l

Proof. That Λα£oc is a proper topology is immediate from (3.6). To prove the
remaining part, suppose we have g: X X Y ~* Z we are to show that we have
g*: X —>Z^(Vαία). Select an open set U in Z^(Vαία); since it is sufficient
to consider only the subbasic open sets, this selected set can be assumed open
in some topology tβ. Since tβ is proper, the inverse image of U under g* is open
in X. Hence g* is continuous, as was to be shown.

Since an application of (5.1) gives a greatest and a least proper topology, we
may reformulate (5.1) in the following way.

(5.2) THEOREM. Let Z and Y be arbitrary spaces. With the partial ordering of
(3.1), the proper topologies in Z^ form an ideal with a greatest element.

The least proper topology is, of course, the trivial topology. The (unique)
greatest proper topology tm can be characterized as follows: let {ίoJ be the col-
lection of all the proper topologies in Zγ then tm = Vαία . We have been unable
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to characterize this greatest proper topology more directly in terms of the topologi-
cal structures of Z and Y. So far as its properties are concerned, since tm > k-
topology, all properties of the A-topology invariant under expansion (such as
Hausdorff separation, disconnection) are inherited by tm. A method for obtaining
the greatest proper topology that sometimes works will be given in Section 6; we
merely remark here that a proper admissible topology in Zγ is the greatest proper
topology.

The problem initiating this paper was to determine the status of the λ>topology
From (4.71) and the above remark, we note that if Y is locally compact, the k-
topology is in fact the greatest proper topology inZ^. We ask then if the A -topology
has any distinguished role in the hierarchy of proper topologies for Z ^ Theorems
(5.4) and (5.5), below, will give a reason why the /c-topology is a convenient topol-
ogy to be used in function spaces. However, it is not distinguished by being
always the greatest proper topology in Z ^ We now present an example.

(5.3) THEOREM. Let Z be the unit interval [ θ , l ] in E\. Then there exists a

completely regular space Y such that the k-topology in Z* is not the greatest

proper topology.

Proof. Let Y be the set of all ordered pairs of positive integers, and one

additional element which we will call °o. The topology in Y is obtained by taking

each pair (i, j) as an isolated point, and the neighborhoods of °° to be all sets

obtained as follows: if /V, /#+i, JN+2 > * ' * γs a n v collection of integers, the set

V= Ui9j); i>N and / > / J

is a neighborhood of °°. We remark that, in this space Y, all the compact sets are
finite sets; see Arens [3, p. 234] .

Define a function fn: Y —* Z, fn (i, j) = 0 or 1 according as i Φ n or i = n, and
/π(oo) = O Expand the topology of Zγ(k) by declaring the set B = {fi9 f29

 # #l
closed, thus obtaining a topology k* in Z . We note first that k+ > k since fn~*0
in the A -topology, bur not in the k+ -topology.

The theorem will be proved when we show that k+ is a proper topology in Z ^
To this end, let gμ converge continuously to g (see (2.4)); we are to prove
gμ —> g. Our proof breaks into two cases.

Case 1 : g ^ O . Since Z^{k) is a Hausdorff space (see (4.3)), if g Φ 0, we can
find a ^-neighborhood JJ of 0 that excludes the sequence β, because /Λ —* 0 im-
plies that 0 is the only limit point of B in Z? (k). Since the topologies of ZY(A; + )
and Zγ(k) coincide at all points g Φ 0, and A; is a proper topology, this means g μ

is ultimately in {/, and so converges to g in k and in & + .
Case 2 : g = 0. Let {/+ be a neighborhood of 0 in &+. Then U+ = U ~ B

(U open in A -topology), and gμ is again ultimately in {/. Let us assume that
nevertheless g μ Ά θ in k+. Then we must have gμβ B cofinally; that is, given
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μ9 there exists a μ' > μ with gμι e B. The gμι still converge continuously to
0. Hence there is a neighborhood V of °° (say the one described in the first para-
graph) and a μ0 such that for μ' > μθ9 we have gμι = 0 on V. But since g μι € B,
we have gμι — fn(μt); and since gμι = fn(μt) — 0 on V for μ' > μ09 we would
have 1 <n(μ') <N for μ' > μo» Since the fn(μ*) converge continuously to 0,
they converge also in the A -topology (see (2.4)). Hence there exists a μx such that
μ > μi implies fn(μ) (i, 1) = 0 for i = 1, 2, , N this means that for μ' > μ09

A6' > Mu w e have gμι = 0 = fn(μ') Thus the gμ/ are finally all 0, contradicting
that they all lie on B. Hence, gμ —> 0 in k*. This concludes the proof of the fact
that k+ is proper.

If we do not require Y to be a completely regular space, then a construction of
a proper topology greater than the A -topology becomes simpler. We append such an
example for later use.

(5.31) LEMMA. Let Y be a completely regular space, satisfying the first axiom
of countability, and Z the unit interval in Eχ Let Y~ be an expansion of the
topology of Y in such a way that the sets Z^ and Z^ are the same. Then for any
space Xy g: X X Y ~ —» Z implies g: X X Y —> Z.

Proof. We first establish the following results.

(5.311) A point y in Y~ has a basis of neighborhoods of the form V — D~,
where V is open in Y, D~ is closed in Y~, and V n D~ has no interior in Y.

To see this, note that any neighborhood of y in Y ~ has the form Y~ — E~,
where E~ is closed in Y~ Suppose now that the interior / of E~ in Y has y as
limit point. Pick a basis Vx , V2 , of y in Y such that

Vy ^ F2~ F2 r> Vf, ",

in such a manner that / n {Vn ~ F̂ ~+ι) ^ 0. Define /„: Y —* Z by

{1 at some point of/ n (Vn — F^+i)

Ofory i I n ( F n - F B + , ) .

Then / = Σn fn is a continuous on Y except at y. In Y~, however, it is continuous
even at y because / = 0 o n Y~— £"". The real-valued continuous functions being
the same, this can only happen if / does not have y as a limit point in Y. Hence,
we can pick V so that V π £ ~ has no interior in Y, as was to be shown.

(5.312) g: X X Y~ -> Z ύnp/ίes g : Z X y - > Z .

With the notations of (5.311), g : Z X Y ~ - > Z implies that there exists a
neighborhood U of %0 and a F — D"" containing y0 such that
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for (x9 y) e U X (V — Z)~). Now, each point of V n Z)~is a limit point of V — Z)~;
so if y 6 (F n D~), there exists a sequence {y^ ] with yμ 6 (V ~ D~) and yμ ~* y
in Y. Since g(%, ) is still continuous on Y, we have |g(%, y) ~~ g(#o>yo) I £ ^
and therefore g : X X Y —» Z, as desired,

(5.32) THEOREM. Lei Y 6e α completely regular space, satisfying the first
axiom of countability9 and let Z be the unit interval of E^. Let Y~ be an expansion
of the topology of Y that introduces no new continuous real-valued functions. Let
ZY (k~) be the functional space with the k-topology~9 and let Z^ (k) be the same
functional space with the k-topology of Z^. Then k > k~ 9 and k is also proper.
Hence, the k-topology in ZY is not the greatest proper topology.

Proof. It is not hard to verify that in fact k > &~.To see that k is a l so proper,

note that g : XX Y~ -> Z implies g:XXY->Z9 which yields

as was to be shown.

An example of such a space is exhibited in (6.21) below
The position of the Λ-topology in the proper topologies for Z ^ can now be

somewhat clarified; and a reason for its utility will appear from the following
sequence of theorems.

(5.4) THEOREM. Let Y be a completely regular space, and Z an arbitrary
space. Then the k-topology is the greatest of the proper set-open topologies based
on closed sets.

(5.5) THEOREM. Let Y be a completely regular space, Z a metric space con-
taining a non-degenerate arc. Then the k-topology is the greatest of the proper
set-open topologies.

The proofs of these theorems are immediate from (4.311) and (4.5).

(5.51) COROLLARY. Let Y be a completely regular space, and Z a metric
space containing a non-degenerate arc. If the k-topology is not the greatest proper
topology, then the greatest proper topology is not a set-open topology.

From consideration of the results in (3.6) it is clear that, if a proper admis-
sible topology exists, there must be a delicate balancing of open sets. In general,
there is no such topology (see (6)). But we now show there can never be more than
one, if any.

(5.6) THEOREM. Let Z and Y be arbitrary spaces. If t is a proper admissible
topology in Z^, then t is unique. That is, there is no other proper admissible
topology except t.
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Proof* Let s be another proper admissible topology. Since s is proper and t is
admissible, by (3.6), we have s < t. Reversing the roles of s and t, we get also
t < s. Hence, t = s.

Some of the considerations of this section can be applied to more general
situations in which topologies for a set X are considered, there being no function
space in the picture. The following generalization of (5.1) is related to a con-
struction of Choquet's [6,p 85].

(5.7) LEMMA. Let L be a "notion of convergence," that is, a rule which
assigns, to some directed sets in X, a point. Let a topology t for X be called
"L-proper" if whenever L assigns x to \Xμ} then Xμ —* x in X. Then, if T is any

family of L-proper topologies, the topology

t - = V t
teT

is also L-proper,

Proof. Let L assign x to {xμ] Let a neighborhood U of x in X(t~) be given.
There exist tif , tn in T such that U = ί/t n n Un, where ί/, is open
in X(t() Hence there is some μι such that the relation μ > μt implies X( e ί/, .
Select μ0 > μlf , μn For μ > μ0, we have xμ e U Thus t~ is proper.

To obtain (5.1), let L be the notion of continuous convergence, and let T be
the class of all L-proper topologies.

One may also define what is meant by an "L-admissible "topology. A topology
t for X is L-admissible if whenever xμ —* x in X, then L assigns x to {Xμ} The
next Section shows that the L-admissible topologies do not always have the
property dual to that established for the L-proper topologies in (5.7), not even
when T is limited to finite sets.

6. Admissible topologies. The σ-topologies provide many examples of admis-
sible topologies. We shall now see that proper admissible topologies are scarce,
and that the hierarchy of admissible topologies rarely forms a lattice.

(6.01) THEOREM. A proper admissible topology for Zγ is both the greatest
proper topology and the least admissible topology.

Proof, The proof rests on the fact that any proper topology is smaller than or
equal to any given admissible topology (see (3.7)).

One conceivable way of determining whether there is a proper admissible
topology is to examine the greatest proper topology itself. It is unique and is
admissible if and only if there exists a proper admissible topology. A direct ex-
amination of the greatest proper topology seems rather cumbersome. The following
partial converse to (5.71) shows that, under fairly general conditions, when Y is
not locally compact, there is no proper admissible topology.



TOPOLOGIES FOR FUNCTION SPACES 23

(6.1) THEOREM (FOX [7, Theorem 3]) . // Y is separable and metrizable and

Z is the real line, and if there exists a proper admissible topology, then Y is

locally compact.

Now (6.1) is, by (6.01), immediately deducible from the following somewhat

stronger result.

(6.2) THEOREM (Arens [2, Theorem 3 ] ) . If Y is a completely regular space

and Z is the real interval [0, l ] , and if there exists a least admissible topology

for ZY, then Y is locally compact.

In particular, the "separable and metrizable" in (6.1) can be replaced by

"completely regular." As to the necessity of complete regularity in (6.2): a locally

compact Hausdorff space must be completely regular. However, this justification

for assuming Y to be completely regular is not as convincing as is the following

example.

(6.21) THEOREM. There exists a non-locally-compact Hausdorff space Y such

that ZY can be given a least admissible topology, where Z is the real interval

[ 0 , 1 ] .

Proof Let Yo be the real interval [0, l ] with the ordinary topology. Let y be

the interval [0, l ] with the topology generated by the following subbasic open

sets (cf. Alexandroff-Hopf [ l , p . 3 l ] ) : first, the complement of the set D, where

is the set of numbers \/n {n~ 1,2, •); second, the open sets of Yo . Thus Y

differs from Yo only at 0, but the mutilation at 0 is enough to make Y an irregular

Hausdorff space. Hence it cannot be locally compact. The remaining part of the

argument hinges on the fact that a function / : [0, l ] —> Z is continuous on Y if

and only if it is continuous on Yo. We leave the proof of this to the reader. (This

in itself implies that Y is not completely regular.) Let [A] be the class of sets

which are compact in Yo. In Z^ these determine a set-open topology (see (4.2))

which we shall call the A;0-topology. It is clearly admissible, by (4.7). Let t be

any other admissible topology for Z ^ . Suppose / β Z^ and let (A,Wγ ) be a neigh-

borhood of / in ZY(ko) Now the image f(Λ) is surely compact in Z so that we can

find an open set W in Z such that f(A) CZ W and W~ CZ Wx. For each y in A there

is a neighborhood V\ (y) of γ and a neighborhood U(f,y) of f in ZY(t) so that

z € Vι (y) and so that the relation g e U(f9y) implies g(z) e W. Let V (y) be the

interior of the closure of Vx (y). It is easy to see that g(z) 6 Wx for z 6 V (y) and

g as before. Since each V(y) is open in Yo, where A is compact, we can find

J\ > * # ' > Jn s u c n t n a t

A c F(y t) u u V(yn).

Let ί / ( / ) = U(f,yι) n n U(f,yn). It is easy to see that U (/) is contained in

(A,Wχ) (see Arens [2, p . 4 8 2 ] ) . We infer from this that t >kΌ.
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The complete regularity is used in the proof of (6.2) (see Arens [2, p 483])
in constructing an element of Z ^ which distinguishes a closed set from a disjoint
point. Hence the proof may be duplicated in any other case where such separation
by continuous functions is always possible.

An application, rather than extension, of (6.2) shows that in (6.2) the space Z
may be taken as any To -space containing a non-degenerate arc. Thus we obtain a
result when Z is the Sierpinski space f θ , l | However, in this particular case the
proof of (6.2)can be adapted so as to give a still better result: complete regularity
is relaxed to regularity. We state the result but leave the proof to the reader.

(6.25) THEOREM. // Y is a regular space and Z is the Sierpinski space (see
(4.6)), and if there exists a least admissible topology for Z^, then Y is locally
compact.

Returning to the remark just made about having an arc in Z, we wish to show
that this requirement cannot be simply omitted. Let us consider an extreme ex-
ample in which Y is connected but Z is totally disconnected. Then Z ^ consists
only of constant functions and can hence be given the topology of Z , which is
both proper and admissible, regardless of any other properties of Y.

Theorem (6.2) says that when Y is completely regular, and Z is [0, l ) but Y
is not locally compact, then there is at least one class Ct of admissible topologies
whose greatest lower bound is not admissible. The class & which (6.2) exhibits
for this purpose is a large one—in fact the largest possible. One might ask whether
any two admissible topologies have an admissible "meet" topology (greatest lower
bound) (see (3.4)), especially since we know of an extensive class of admissible
topologies (see (4.11)) for which the meet of two is always admissible. The follow-
ing theorem shows that the answer is " n o " for any metric non-locally compact
space Y. We define a Fre'chet-compact set to be one in which every infinite sub-
set has a limit point.

(6.3) THEOREM. Let Y be a completely regular Hausdorff space in which each

point has a countable basis, and let Z be the real line or the interval [0,1 ] . / /

the meet of every pair of admissible S-topologies for Z^ is admissible then Y is

locally Frechet-compact.

Proof. Suppose Y is not locally Fre'chet-compact. One can then find a point
y0 for which one can construct a basis Vx D F2 3 V3 Z) , and a sequence
of infinite sets rι, r2, r 3, , none of which has a limit point and such that rn is
contained in Vn — FΛ~+i Break each rn into disjoint infinite subsets sn9 tn. Let
r be the union of r 1 ? r2 ? r3 , A set A will be called an R-set if A" intersects
r in but a finite set. Let Bn be any open subset of Vn — Vn +1 containing all of tn

and no points of sn, and let An be any /{-set. Then let {Vn ~~ Bn) U An be called
an Sn-set (n = 1,2, •)•
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Define an S-topology in Z ^ by taking as a subbase the sets (A,W) where W is
open in Z and A is an R-set or an S^-set for some n. (The notation (A, If7), defined
earlier, refers to the class of functions sending A into W.) Designate this topology
simply by "S .

We first show that S is admissible.
Let / and γ be given, as well as a neighborhood W of /(y). We consider two

cases.

Case 1: y = y 0. There is a neighborhood Vn on which / h a s all its values in
W For each x in sn obtain a neighborhood Bx contained in Vn — Ĵ ~+i and avoid-
ing the set tn. Let Bn be the union of these Bx. Then (Vn — Bn, W) is a neighbor-
hood of /, and for g therein and x in Vn +ι we surely have g(x) in W.

Case 2: y — y^. We can find a neighborhood /4 of y which is an β-set and on
which f has values only in W. For g in 04, IF) and x in /4 we have gGc) in ϊF. With
the completion of this second case we have shown the admissibility.

Replacing each S by a T9 each s by a t9 and each ί by an s, regardless of sub-
scripts, we obtain the definition and admissibility of another topology, T

(6.31) The meet S A T is not admissible.

Suppose it were admissible. Let W be the complement of 1 in Z, and let fQ be
a function in Z ^ such that fo(yo) — 0 and fo(y) — 1 for some y in r t . Then there
is a set U open in both S and T9 and a Vp , such that:

(6.32) The relations f e U and γ β Vp together imply f(γ) e W.

Continuing the proof of (6.3) we now deduce the following from (6.32):

(6.33) // U contains an f which assumes the value 1 on some point of rm9 then

it contains an /\ which assumes that value on some point of rn for some n greater

than m.

Proof, We may suppose that f in U assumes the value 1 on some point of sm.
Now f has a neighborhood Uf ~ (^i> * * * > A.] Ί W\, * , Wj ), where the latter
expression denotes the intersection of ( / l i , ^ ) , ' , (Aj9Wj) in T, Some Wi
clearly excludes 1, for otherwise the constant function 1 belongs to U, violating
(6.32). Let Wί 9 * , W'k be those that exclude 1, and suppose A t is a 7^-set with
the lowest value of n. The closures of the finitely many R-sets figuring in Uγ
clearly cannot cover tn Hence there is a point yι in tn with a neighborhood V
intersecting none of A χ> * * * , Aj, Ŵe construct a continuous real-valued function
g with g{y\) — 1 ~~ /(yi), vanishing outside F, and having 0 and 1 — /(y t ) as its
bounds. Let fι = f + g this function has the property required by (6.33), but it
remains to show that we have n > m. If we had n < m then sm would be inside Aγ
Now / assumes the value 1 somewhere on sm. Thus 1 belongs to W^ This con-
tradicts the earlier finding that lί^ does not contain 1. Hence (6.33) is proved.
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To prove (6.3) we observe that from the f0 and an iterated application of

(6.33) we finally obtain an f in U which assumes the value 1 somewhere on Vp.

This contradicts (6.32). Hence (6.3) is proved.

As in the case of (6.2), this result (6.3) can be extended automatically to the

case in which Z merely possesses a non-degenerate arc, and is a jP0"space. The

Sierpinski space" (see (4.6)) is an example. However, one can do a little better

in the case of the Sierpinski space, as follows.

(6.4) THEOREM. Let Y be a Hausdorff space in which each point has a count-

able basis, and let Z be the Sierpinski space f θ , l | (see (4.6)). If the meet of

every pair of S-admissible topologies in ZY is admissible, then Y is locally

compact.

The reader can obtain the proof out of that of (6.3), observing these changes:

(a) instead of having no limit points, the rn have no complete limit points (see

Alexandroff and Urysohn [14, p. 7 ] ) ; (b) the Λ-sets may intersect each rn

in a set of power less than that of rn; (c) the value j need not exceed 1; and (d)

the sets Bn may be taken as tn. In fact, our method of investigating these matters

was to consider first the case where Z is the Sierpinski space.

The following observation is of interest. In (6.3) we saw that the meet t of two

admissible topologies may not have enough open sets to be itself admissible,

unless Y is locally compact. Although there are obviously topologies which are

neither admissible nor proper, one might wonder whether any such are accessible

through lattice operations from admissible topologies. In other words, if the t

above is not admissible is it necessarily proper? A consideration of the proof of

(6.3) shows that the meet t of S and T need not be proper: each set of the form

04, JO, where A is an /ί-set, is open in t; but there is no reason why all R sets

should be compact, and hence (by (4.41)) why t should be proper.

An observation which sometimes leads to the identification of the greatest

proper topology is this: If the meet of two admissible topologies is proper, this

meet is the greatest proper topology. An application of this to the reasoning of

(6.3) yields a result which should be compared with the earlier example (5.3).

(6.5) THEOREM. When Y is not locally compact, and Z is the Sierpinski

space {0,15, then the k-topology may be the greatest proper topology.

Proof. Let y be the space of pairs of positive integers (i9 j) with an added

point "oo". Neighborhoods of oo shall be Vn{n = 1,2, * •) of points with / > n,

plus °° itself. Other points are isolated. Define an S-topology as follows. Let An

be the set of points (j, j) where j' > n + 1 when i is odd and j >n when i is even,

plus °° itself. Let Aa> be void. A set denoted by B shall be any finite set. The

S-topology shall be based on such A or B sets; call it S. The sets of the form

(An u B, 0), where 0 e {θ, \\ is the open point, clearly form a basis. Interchange

"odd" and "even" in the above and arrive at another topology T. Both these
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topologies are admissible, and hence > k, whence 5 Λ T > k. Let U be open in
S Λ T, and contain the function O Select an (An u B9 0) containing 0 and con-
tained in {/, the former being open in S. Then there must be an element f in U
which has the value 1 at almost all points with j <n, and also at almost all points
(i, j) with j = n and i odd. Now select another neighborhood (Ap u Bι,0)oί / in ί/,
the former being open in T Then clearly p > n. There is then a g in U with value
1 at almost all points with j < p and at almost all points (i, j) with j = p and i
even. By induction we arrive at a set K of points, finitely many on each row, such
that, if h(i,j) = 0 for / > N (any N) and for (i9 j) e K, then we have h € U. Let
Kι — K u \ω}. What we have just said is that if h β {Kί9 0) then h 6 U. Hence U
is open in Z^(k) If in the first neighborhood {An u B,0) we have n — °°, then we
have already a A -open set containing 0 and contained in t/ The argument is still
simpler for any function which is not 0 identically. Thus we have S Λ T < k9 or

It is probable that this example can be adapted to the case where Z is the
real interval [0, l ]

7. The space of closed sets. Let S be the Sierpinski space of two points 0 and
1, where {θ} is open and £ l | is not open. Consider S^ for any space Y. Let
f 6 S^9 and let F be the class of points on which f(y) — 1. Then F is evidently a
closed set, and clearly every closed set can be obtained in this way. The notation
of S has been so chosen that the correspondence f *-* F preserves the lattice
operations {S obviously is a lattice, and this introduces lattice ordering into S^ in
an obvious way) and the Boolean ring operations (where we use intersection and
symmetric difference (F t u F2 ) — (F t n F2 ) in the class 3 of closed sets). We
sum up this situation briefly as a theorem.

(7.1) THEOREM. S^ and 3 are isomorphic.

We shall henceforth prefer the symbol " 3 " , or "3(Y)" , to "S*"9 and shall
write the elements as F, ^ , , using F in a dual way when we write

(7.11) y e F if and only if F (y) = 1.

Having decided to regard 3 as a space of continuous functions, we naturally
investigate first the interpretation of any kind of convergence in 3 which does not
require introduction of any topology in the function space.

(7.2) THEOREM. Let \Fμ] be a directed set in 3 . Then Fμ converges con-
tinuously (see circa 2.4) to F if and only if F 3 lim sup Fμ.

Before proceeding to the proof, we must explain what the lim sup of a directed
set of sets Eμ is. Generalizing Hausdorff's definition (Alexandroff-Hopf [ l ,
p. I l l ]) in an obvious way (see Choquet [6]) we say:
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(7.21) y e lim sup Eμ if and only if for every μ and every neighborhood V of

y there is a μ' > μ such that Eμi intersects V,

We add the customary companion:

(7.22) y 6 lim inf Eμ if and only if for every neighborhood V of y there is a

μ such that for every μ1 > μ, £μ/ intersects F.

Proof of 7.2. Let lim sup F μ be denoted by L. Then L (y) — 0 precisely if for
some μ and some V of y and every μ ' > μ we have Fμ / (y) = 0 Now suppose
that Fμ converge continuously to F (the definition precedes (2.4)), and suppose
F(y) = O It follows at once that L (y) — O Hence the continuous convergence
implies L CL F (see (7.11)) Conversely, suppose F Z> L. To check continuous
convergence we need only consider y such that F(y) — 0. Then L(y) — 0. Reading
the second sentence of this proof, we see that the condition of continuous con-
vergence is satisfied.

Observe that continuous limits are not unique. Everything converges con-
tinuously to Y itself, for example.

The condition that a topology for 3 should be admissible is easily deducible

from (2.5) and (7.2).

(7.23) THEOREM. A topology t for 3 is admissible if and only if for every
directed set of closed sets \Fμ\ which converges to F according to t we have
F 3 lim sup Fμ.

We shall now consider the significance of proper topologies.

(7.3) THEOREM. Let X and Y be spaces, and let Φ be a closed subset of
X X Y. For each x let Fx be the closed set of points y for which (x9y) € Φ. Then
a necessary and sufficient condition that a topology for o be proper is that for
every Φ the associated mapping

be continuous*

According to (6.25), (6.01), and (4.71), when Y is a regular space we can
obtain a topology t with the properties of (7.23) and (7.3) if and only if Y is locally
compact, and that topology will be the ά-topology. We wish to compare this topol-
ogy with that introduced by Hausdorff into 9 when Y is a compact metric space
(see Alexandroff-Hopf [ l ] ) and further generalized by Choquet [6, pp.87-93].
Hausdorff's topology H is surely not the same as the A-topology, for S^(H) is a
Hausdorff space whereas in S^(k) the closed set Y has, as its only neighborhood,
3 itself. Theorem VI (Alexandroff-Hopf [ l , p.115]) shows that convergence in
SY(H) fulfills the condition of (7.23), so that H is admissible, and thus H > k. As
a matter of fact, the void set is omitted in Hausdorff's treatment; but a formal
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application of definitions shows that it would be isolated, as it is in the A -topology.
Since Hausdorff's topology H makes 3 compact [ l ] ,there is no other Hausdorff

topology H' lying between k and H. This supports the conjecture that H is the
least admissible Hausdorff topology.

8. Topological products. The techniques of this paper enable us to give an
answer to the following question: If X is an arbitrary set and Y a space, if T is a
topology in the set of all couples (x,y), x β X, y β Y, yielding a topological
space P, when can a topology t be introduced in I so that P is the topological
product X(t)XY?

(8.1) THEOREM. With the notations as above, assume T has the following
properties:

(8.11) For each fixed x0, the mapping fχQ(y) = (%o,y) of Y into P is continuous;

(8.12) The mapping g(x,y) — y of P into Y is continuous;

(8.13) Given any two points ( * 0 , y 0 ) , ixo,yό~) of P, and any neighborhood V
°f (χo>yo)i there exists a neighborhood ψ of y0 and a neighborhood V of (XQ^Q)
such that ix,y~) 6 V and y 6 W imply (x,y) € V.

Then, if PY has a proper and admissible topology, there exists a topology t in
XwithX(t)X Y = P.

Proof. Since by (8.11), for each x, fx(y) e PY, the map F*, F*U)(y) = fx(y),
is a one-to-one mapping of X into P Y, and so in all that follows we shall consider
X C PY. We now give X the topology t of a subset of the space P Y. Then we have
F* : X(t) —* PY; and, due to the admissibility, for the associated map we have
F: X(t) X Y ^> P. It is evident that F is the identity map.

On the basis of (8.13) we note that defining h[y9 {x,y~)] = (x,y) we get
h : y X P —» P; by the properness we find A* : P —• PY, and it is easy to see that
Λ* maps P into X C pY9 so that we have A* : P —» X. Using (8.12), we also have
g: P - > Y . D e f i n i n g H(x,y) = [h*(x,y),g(x,y)], w e t h u s h a v e H:P ~>X(t)XY,

and H is the identity map. Hence, from the above we find that X (t) X Y and P are
homeomorphic, and the theorem is proved.

Note that in case Y is locally compact and regular, then from (4.71) the k-
topology in pY, for any space P, is admissible and proper.

(8.2) THEOREM. Let Y be a locally compact regular space, and let X be an
arbitrary set. A necessary and sufficient condition that a topology T in the set
X X Y be a product topology with one factor the space Y, is that T satisfy (8.11)
through (8.13).

Proof. The necessity of (8.11) through (8.13) is immediate from elementary
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properties of topological products. The sufficiency of (8.11) through (8.13) stems
from (4.71) and (8.1).

Another result on the behavior of topological products that is implied by our
results will now be given. Let Y be a fixed space, and X a set carrying topologies
5 and t. In the set of all pairs, XX Y, let S be the product topology of Y X Z(s),
T the product topology of Y X X(t), and R the product topology in Y X X(s A t).

(8.3) THEOREM. In the set XX Y, we always have R < S A T. Furthermore:

(8.31) // Y is locally compact and regular, then R — S A T;

(8.32) // Y is not locally compact, then in general R Φ S A T.

Proof. If W is open in R9 and iy,x) € W, then there is a set of the form ί / X F ,
U open in Y, V open in X{s) and in X(t), with (y,x) 6 U XV C W. This means
that LI X V is open in 5 and in T, hence in S A T. It follows that W is open in
5 Λ T, so that R <S A T.

Ad (8.31). Let P denote the set X X Y with topology S A Γ. Since Y is locally
compact, pY has, by (4.71), an admissible and proper topology. We first remark
that for the identity map, we have g: Y X X{s) —» P; due to properness, we have
for the associated map g*:X{s)—> P?. Using the same map, we also obtain
g* : X(t) —> PY, and so evidently we have g*: X(s Λ t) —» PY. By admissibility
we find for the identity map g: Y X X{s Λ t) —* P. This shows that S A T < R
and, with what we have already shown, this gives S Λ Γ — R,

Ad (8.32). Let us take Y to be the space of (6.4) and X to be the set Zγ of
(6.4). Let s and t be two admissible topologies whose meet is not admissible. We
show that R^S A T. First we note that the evaluation map ω of Y X Z^{s A t)
into Z is not continuous in R since s A t is not admissible. But ω is clearly
continuous in S A T, since it is continuous in both S and T. This proves that
R Φ S A T, and also establishes the theorem.

In case both factors are allowed to change, the assertion (8.32) always holds,
regardless of whether Y is compact or not.

(8.4) T H E O R E M . Let X be an arbitrary set, and let s and t be two topologies
in X. IfS is the topology ofX(s) X X{s)f T the topology ofX(t) X X(t), and R the
topology of X(s A t) X X(s A ί), then in general R Φ S A T.

Proof. We take X to be the countable set of (3.54) and s and t the two compact
Hausdorff topologies mentioned there. We remark that it is trivial to prove that the
diagonal D = \{x9y)\ x ~ y\ in a space X(r) X X(r) is closed if and only if r is
a Hausdorff topology To prove the theorem, we note that on the basis of this
remark, D is closed in S and in T, hence in S A T, but that D is not closed in R
since s Λ ί is not a Hausdorff topology.
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DISTRIBUTIVE LATTICES WITH A THIRD OPERATION DEFINED

B. H. ARNOLD

1. Introduction. If L is the direct union of two distributive lattices, one may
define a new operation ^ between any two elements (a,b) and (c,d) of L by

(1) (a,b) * (c,d) = (a fl c, bΌd).

This operation % is:

PI . Idempotent
P2. Commutative
P3. Associative
P4. Distributive with * , U, Π in all possible ways.

The main results of this paper are the following.
First (Theorem 16), this is essentially the only way in which an operation with

properties P1-P4 can arise in a distributive lattice. That is, if L is a distributive
lattice with a binary operation * having properties P1-P4, then L is a sublattice
of the direct union of two distributive lattices, and the operation * is given by
equation (1).

Second (Theorem 9), if

P5. L contains an identity element e for the operation ^ ,

then L is the entire direct union. Here P5 is sufficient but not necessary; a neces-
sary and sufficient condition is given in Theorem 17. In case * is identical with
U or Π, Theorems 9, 16, and 17 still hold, but give trivial decompositions.

Finally, Section 5 shows that the presence of an operation % is equivalent to
the existence of a partial ordering with certain properties, so that our theorems
may be restated so as to apply to distributive lattices with an auxiliary partial
ordering.

2. Preliminary considerations. Throughout the paper, L is a distributive lat-

tice with an operation * having at least properties P1-P4. By an isomorphism
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between two such algebraic structures, we shall mean a one-to-one correspondence
which preserves the operations U, Π, * ; as is customary, in the direct union
A X B of two such algebraic structures, all operations act coordinate wise; for
example , {a,b) * (cfd) = (a* c, b * d).

For later reference, we collect here several simple consequences of P1-P4.
The proofs consist of repeated applications of the idempotent and other laws, and
will be presented briefly and without annotation of the separate steps. These re-
sults will be used frequently in later proofs without any explicit reference being
made In these theorems, small Latin letters represent arbitrary elements of L.

T H E O R E M 1. x Γ ) y < χ * y < χ ϋ y .

Proof. We have

(x Π y) U (x * y) = [(* Π y) U x] * [(* Π y) U y] = x * y

thus x Π y < x * y. Similarly for the other inequality.

THEOREM 2. If χ\ < χ2

 an& J\S. J2> t^ιen x ι * ϊι £ *2 * >2

Proo/. We have

(*i * 7i) Π (%! * y2) = «! * (y! Π y2) = «i * yi

thus Λ;L ̂  yt < %t * y2. Similarly, Λ;L ̂  y2 < %2 * 72 > a n <^ ̂ e theorem follows.

THEOREM 3. x * (x \J y) = x \J (x * y) and x * {x Γ\ y) = x Γi (x * y).

Proof. Clearly,

* * U U y) = (* * *) U U * y) = * U (* * y) .

Similarly for the other equation.

T H E O R E M 4. * * y = U Π y) * (% U y).

Proof. The result follows from the continued equation,

(* Π y) * (* U y) = [(* Π y) * x] U [U Π y) * y]

= [(* * y) Π Λ] U [U * y) n y]

= U * y) Π (* U y) = * * y.

T H E O R E M 5. x * (x * y) = Λ * y .

Proof. Clearly,

* * (Λ * y) = (x * Λ) * y = * * y .
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T H E O R E M 6. lfχ<u<χ*y<v<y9 then u * v - % * y.

Proof. Since x < u and x * y < v9 Theorem 2 shows that

x*y = x*(x*y)< u* v.

Similarly,

3. The operation * has properties Pl-P5 In this section, we prove one of the
main results of the paper (Theorem 9), using the assumption that L contains an
element e which is an identity element for the operation * .

THEOREM 7. If a < e and c < e, then a * c = a Γ) c.

Proof. Since a * c = (α Π c) * (a U c), it i s sufficient to consider the case
a ^ c ^ e a n ( l prove a % c — α. But then a<a<a%:e<c<e9 and Theorem 6
shows that a^c~a^e~a.

THEOREM 8. If b >e and d > e, then b * d- b U d.

The proof is similar to that of Theorem 7

THEOREM 9. If L is a distributive lattice with a binary operation * having
properties P1-P5, then L is isomorphic to the direct union of two distributive lat-
tices Ay B each with an operation % having properties PI-PS; and if (a,b)9 (c,d)
are any two elements of A X B, then (a,b) * (c,d) = (α Π c, b U d).

Proof. Set

A = {a I a < e } 9 β = { b \ b > e } ;

then, with the same operations as in L, A and B are distributive lattices each
with an operation *fc having properties PI-PS,

We prove that the correspondence {a,b) —> α * ό is the required isomorphism
from A X B onto L. It is clearly a single valued correspondence from A X B into L.
It covers L because, for any element x of L, we have x Γ) e 6 A9 x \J e € B and,
by Theorem 4, ( a c ί l e ) * ( x U e ) = * * e = 3 c . It is one-to-one because, for any
α € Ay b e By we have e Π (α * b) = (e Π α) * (e ΓΊ b) = a * e = α. Thus Ίί a * b
— c * dy c € Ay d € By then a — c. Similarly, b ~ d.

This correspondence preserves the three operations U, Π, * . For instance,

(α,6) U (cyd) = ( α U c , i U Λ ^ ( α U c ) * ( 4 U ( ί ) = ( α U c ) * [(b U d) * (6 U Λ]

By Theorem 8, 6 U f i ? = & * G ? ; making this replacement in one parenthesis only,
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and rearranging the factors connected by * , we have [{a U c) * b] * [(b U d) # d].
But b = b U c, ίi = α U cί, so that we have

[(α U c ) ^ ( t U c)] * [(b U d) * (α U <0]

= [(α * A) U <?] * [(b * α) U d] = (β * £) U (c * </),

whence the operation U is preserved by our correspondence. Similarly for Π .
For the operation * ,

(a9b) * {c,d)- {a * c, b * d) ~* (a * c) * (b * d) - (a * b) * (c * d).

Thus our correspondence is an isomorphism.

By Theorems 7 and o, {a,b) * (c,eθ - (α Π c, ί> U cO This completes the proof.

REMARK. The element e will be the / in A and the 0 in β. The lattice A will
have an 0 if and only if L has one; β will have an / if and only if L has one.

4. The operation * has properties P1-P4. In this section, we prove one of the
main results of the paper (Theorem 16). The method employed is to complete L in
such a way that * has properties P1-P5 and then to apply Theorem 9. Several pre-
liminary definitions and theorems will be of use.

DEFINITION l We extend the operations U 9 Π, * to act on any subsets H, K
of L by defining H U K = ! % U y | * e / / , y e X } , and similarly for the other
operations.

Notice that // U K, for example, is a subset of L, and is usually neither the
supremum of the elements in the subsets H and Knor the point set union of H andK.

D E F I N I T I O N 2. A subset P of L is a *-ideal if P * L c P.

For any fixed a € L, the set a * L is a *-ideal; it is called the principal
%-ideal generated by α.

THEOREM 10. An element % of L is in the principal %-ideal A generated by a

if and only if a % x ~ x.

The sufficiency is evident. To prove necessity, we note that ϊϊ x β A, then
x — a * y; by Theorem 5 it follows that a * x — a * (a * γ) = x.

D E F I N I T I O N 3. A subset H of L is interυally closed iί x e H, y e H, and
x 5 z £ 7 imply z e //. The interval closure of a set G is the smallest intervally
closed subset containing G.

It is easily seen that the interval closure of any set is the collection of ele-

ments which lie between two elements of the set.
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D E F I N I T I O N 4. A subset R of L is special if it is

(a) a *- ideal,
(b) a sublattice, and
(c) intervally closed.

THEOREM 11. Each principal %-ideal is also a special subset.

Proof. Let A be the principal *-ideal generated by α, and let x, γ be any two
elements of A. Then a * (x U y) = (α * x) U (α * y) = x U y, and % U y 6 4, by
Theorem 10. Similarly x Γ) y € A, and A is a sublattice of L.

If %, y are any two elements of A, and x < z < y, we must show that z is in /I.
Since A contains a Γ\ x and α U y, there is no loss in generality in supposing that
x 5: β < 7 Set α * (α U 2:) = α. We prove first that u — α U z. Since α * y = y
and α < u < y, Theorem 6 shows that w ̂  y ~ y, so that

(2) (α U 2) Π (u * y) = (α U z) Π y = a U z.

By Theorem 5, u % (a U z) — u. From the definition of it and Theorem 1, we have
u < a U z, so that

(3) [(α U z ) n J * [ ( α U z ) n y ] = w * ( α U z ) = M.

But, from the distributive law, the left-hand members of equations (2) and (3) are
equal, and u ~ a U z

We now proceed with the proof that z e A Set

v = z Π (α * z) = z * (α.ΓΊ z) .

Then, by Theorem 1, a Π z < v < 2, and

a U 1; = α U [z * (α Π z)] = (α U z) * [α U (α Π z)] = (α U z) * α = M = a U 2.

But now

i; = (α Π z) U v = (α U v) Π (z U v) = (σ U z) Π (z U v) = (α U z) Π z = z.

That is, z Π (α ̂  2) — z, whence z < α * z . Similarly, z > a ^ z . Thus z — α ̂  z
and, by Theorem 10, z 6 A .

THEOREM 12. // P is any %-ideal, the interval closure of the sublattice

generated by P is a special subset of L.

Proof. Let Q be the sublattice generated by P, and let Q be the interval
closure of Q. Then evidently Q is intervally closed.

Q is a sublattice because if x9 γ € () , there exist elements uί9 u29 vl9 v2 of Q
such that uγ< x < vu u2 < y <L V 2 Then u\ U u2 < x U y < «ι U v2 and, since (?
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is ajattice, x U y 6 Q. Similarly x Π y 6 Q, so that Q is a sublattice of L.
Q is a *-ideah Since * distributes over U, Π, Q is a *-ideal, and Theorem 2

then shows that Q is a *-ideal. This completes the proof.

REMARK. It is evident that any special subset containing P must contain Q.
Thus Theorem 12 gives a construction for the smallest special subset containing
(generated by) a given *-ideal.

T H E O R E M 13. If R9 S are special subsets of L, then R * S, R U S, R Π S
are special subsets of L.

Proof. That each of the sets R * S, β U S , Λ Π S is a *-ideal is a simple
consequence of the distributive laws and Definition 1.

To see that R * S is a special subset, note that R X S is contained in both /ϋ
and S, since both are ^-ideals; but clearly R % S contains the point-set inter-
section of R and S since X is idempotent Thus R % S is this intersection, which
is easily seen to be a special subset of L.

i? US is intervally closed because, if rι U s t < x < r 2 U s 2 , then

r ι Π r2 < x Π r2 < r2

and, since R is a special subset, x Γ\ r2 € R. Similarly, x Π s2 € S. But then

(x Π r2) U ( % ί l s 2 ) = x ί l (r2 U s2) = x

lies in /? U S, and i£ U S is intervally closed.
/ί U S is a sublattice of L because, if rL U si9 r2 U s2 are any two elements of

fiUS, clearly (rt U s j U (r2U s 2 ) = (r t U r2) U (s t U s2) lies in R U S. Also, since
Γi Π r2 < (rt U s j Π (r2 U s2) and s t Π s 2 < (rt U s j Π (r2 U s2), we have

(ri n r2) u (Sι n s2)< (Γ ι u Sl) n (r2 u s2)< (Γ ι u r2) u ( S ι u s2).

But the two extreme elements of this sequence of inequalities lie in R U S ; thus,
since R U S is intervally closed, the center element also lies in R U S. This com-
pletes the proof that R U S is a special subset; dually, i? Π S is a special subset.

DEFINITION 5. £ = [Λ, S, Γ, •} is the collection of all special subsets

of L with the three operations U, Π, * .

THEOREM 14. The set <C with the operations U, Π is α distributive lattice

and * has properties PI-PS.

Proof. Theorem 13 shows that £ is closed under the operations U, Π, * . To
show that £ is a distributive lattice, we prove
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1 . l i ϋ R = R , R Γ ) R = R ,
2 . RUS = SΌR, R Π S = S Π R,
3. (R U 5) U T = R U (5 U T\ (R Γ) S) Π T = R Π (S Π Γ),
4. /? U (# Π S) = /?,
5. Λ u(s n n = (β us) n (R U n.

Numbers 1,2, and 3 are evident. To prove 4, we note that clearly

R U(/ί ΠS) 3 Λ;

we show that Λ U (R Π S) d R. If % = rt U (r2 Π s) is any element of R (J (R Π S),
then ^ < Λ; < Γj U r2, and x € R,

To prove 5, we note that clearly (R U S) Π (Λ U Γ) D R U (S Π Γ); we show
that (R U S) Π (R U 71) C R U (S Π Γ). If * = (Γl U 5) n (r2 U t) is any element of
( A U S ) n ( Λ U Γ), then (rt Π r 2 ) u M ί ) < x < (rL U r2) U M ί ) , and

x e R U(S Π Γ ) .

The proofs that the operation * has properties P1-P4 are similar to those just
given and will be omitted. For PS, the lattice L itself is a special subset of L
and acts as the identity element for the operation ^ in <C

THEOREM 15. The correspondence x —*• the principals-ideal generated by
x is an isomorphism of L onto a sublattice of <C which identifies the operations
% in L and the sublattice of £1

Proof, By Theorem 10, if x, y generate the same principal ^-ideal, then
y = x*y = y*x = x, so that the above correspondence is one-to-one β

To prove that this correspondence is an isomorphism, let

χ-> X = x* L, y~>Y = y * L then * U y - > ( * U y ) * L = Z .

Clearly Z c X U Y. Conversely, Ίi w = (x * u) U (y * v) is any element of X U Y,
then (x U y) * (u Π v) < w < (x U y) * U U v), and M; € Z. The proofs for Π, *
are similar, and will be omitted.

Theorems 9,14, and 15 give immediately our main result:

THEOREM 16. // L is any distributive lattice with an operation * having
properties P1-P4, then L is isomorphic to a sublattice of the direct union of two
distributive lattices A, B9 each with an operation * having properties P1-P5;
and if (a,b), {c,d) are any two elements of A X B9 then

(a,b)*(c,d) = (aΓi c, b U.d).

THEOREM 17. // L is any distributive lattice with an operation * having
properties P1-P4, then L is isomorphic to a direct union in which the operation *
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is given by equation (1) if and only if each pair of elements of L is contained in

some principal ^-ideaL

Necessity. If L is a direct union with * given by equation (l), the two arbitrary

elements (α,ό), (c,d) are contained in the principal *-ideal generated by (α U c,

b Πrf).

Sufficiency. By Theorem 16, L may be considered a s a sublatt ice of a direct

union in which * is given by equation (1). Let (xi9yι) be any fixed element of Lf

and define A = \x \ U,y t ) e l \ , B=\y\ (xuy) e Li; then A X δ C L. In fact,

if G c ^ ) and (%1,y) are in the principal *-ideal generated by (a,b)9 then

and L contains

[U,yt) Π (α,6)] * [fe^yί U (α,fc)] - U,« * (α,y) = U,y)

Conversely, L CZ A X B, {or if (*,y) is any element of L, and (σ,6) generates a

principal *-ideal containing (x,y) and U p y ^ then L contains

[U,y) Π (α,W] U {Ui, y ι ) Π [U,y)* Uι,yi)Jl

= (χ,b) U ί'U^yi) Π (% Π χt, y U y t) | = U,y t) .

Similarly, (^,y) is in L, and (ρc9y) e A X B.

CAUTION. The decomposition of L will be trivial (one of A, B consisting of a

single element) if and only if * is identical with U o r Π .

5, The ordering equivalent to * . In any distributive lattice L with an opera-

tion * having properties P1-P4, we may define an auxiliary order relation by

making x >• y mean x * y = y. It is easily seen that this order relation has the

following properties:

0 1 . x > x;

02. x >- y, y > x imply x = y

03. % > y, y > z imply x >~ z
04. Any two elements %, y of L have a greatest lower bound (namely

* * y ) »
05. The operation of taking the greatest lower bound is distributive

with itself and with the two lattice operations in all possible ways.
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Conversely, if L is any distributive lattice (with no additional operation % de-

fined) with an auxiliary order relation having properties 01-05, then the operation

% defined in L by setting x % y equal to the greatest lower bound of x and y has

properties P1-P4. Moreover, the operation * will have property P5 if and only if

the order relation satisfies:

06. There is a greatest element e in L.

Our results may thus be restated as theorems concerning distributive lattices

with an auxiliary order relation.
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CONCERNING HEREDITARILY INDECOMPOSABLE CONTINUA

R.II.BiNG

1. Introduction. A continuum is indecomposable if it is not the sum of two

proper subcontinua It is hereditarily indecomposable if each of its subcontinua is

indecomposable. In [3] Knaster gave an example of a hereditarily indecomposable

continuum which was not a point. In this paper we study some properties of the

Knaster example and describe some other hereditarily indecomposable continua.

2. Chained hereditarily indecomposable continua are homeomorphic. The he-

reditarily indecomposable continuum given [3J by Knaster was a plane continuum

which was described in terms of covering bands. For each positive number 6, it

could be covered by an 6-chain. Moise used [5] a hereditarily indecomposable

continuum to exhibit a continuum which was topologically equivalent to each of its

nondegenerate subcontinua. He called it a pseudo-arc and noted that it was similar

(if not in fact topologically equivalent) to Knaster's example. It could be chained.

Bing used [2] such a continuum as an example of a homogeneous plane continuum.

Anderson showed [ l ] that the plane is the sum of a continuous collection of such

continua. Theorem 1 reveals that all of these continua are topologically equivalent.

We follow the definitions used in [2] In particular, we recall the following.

A chain D — [dχ9 d2, , dn] is a collection of open sets d\9 d2, , dn such

that dι intersects dj if and only if i is equal to y — l,y, or y + 1. If the links are of

diameter less than 6, the chain is called an 6-chain. We do not suppose that the

links of a chain are necessarily connected.

If the chain E — [βi, e2> * #>e7l] is a refinement of the chain D — ldί9 d2,

• , dm] , E is called crooked in D provided that if A; — A > 2 and e{ and ey are

links of E in links dfr and d^ of D, respectively, then there are links er and e s of

E in links cίfc-i and c/̂  + i , respectively, such that either i > r > s > j or i <

r <s < y .

EXAMPLE 1. The pseudo-arc. The following description of a chained heredi-

tarily indecomposable continuum appeared in [2] and is much like one given
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earlier in [ 5 ] . In the plane let D\, D2, be a sequence of chains between the

distinct points p and q such that for each positive integer i9 (a) Dj + i is crooked in

Dj, (b) no link of D; has a diameter of more than l / i , and (c) the closure of each

link of Dj + i is a compact subset of a link of D .The common part of the sum of the

links of Dί9 the sum of the links of D2, is a pseudo-arc. That it is heredi-

tarily indecomposable is shown in [2] and [ 5 ] .

A continuum can be chained if for each positive number €, the continuum can

be covered by an 6-chain. A composant of a continuum IF is a set H such that for

some point p of W, H is the sum of all proper subcontinua of W containing p. We

recall that a nondegenerate indecomposable compact continuum has uncountably

many composants and no two of its composants intersect each other. The follow-

ing result holds in a metric space.

THEOREM 1. The compact nondegenerate hereditarily indecomposable continua

M and M' are homeomorphic if each can be chained.

In fact, if p and q are points of different composants of U while p ' and q' are

points of different composants of M , there is a homeomorphism carrying M into

M ' , p into p ' , and q into q ' .

Proof Since M can be chained, there is a sequence C\, C2, * such that

C( is a lΛ'-chain covering M, each element of Q intersects M9 and C + i is a re-

finement of Q .

Fir s t , we show that there is an integer n2 so large that Cn is crooked in

Ci — [clt j , clf2 , * , c l t t ] . If this were not true there would be elements

clth and c l f/(. of CΊ such that k — h > 2 and for infinitely many integers m,

Cm = t c m,i> cm,2> ' * * > cm,tm^ would have two links cmji and cmjin clfh and

clpfc respectively such that if cmj is in cίtjί-ί and between cm>ι and cmj9 then

there is not a link of Cm in cltfι + i which is between cm^τ and cm^. Denote by

Wm the sum of cm , cm Γ, and the elements of Cm between them, where we sup-

pose that no element of Cm in c 1 # / c - 1 is between c m > ι and c m > r . L e t Vm be the

sum of c m r , cmj , and the elements of Cm between them.

Let Oi , α 2 > ' ' be an increasing sequence of integers such that both Wa 1 ,

Wa29 ' * ' and Vaγ , Va2 9 ' ' ' converge. But the limiting se t W of Waγ , Wa2 9
 # # *

is a continuum which intersects c ^ b u t not c 1 # £ . Also, the limiting se t V of

Va 9 Va2 9 * * ' is a continuum which intersects Cγ^ but not ci ^ . Hence the

assumption that there is no integer n2 such that Cn2 is crooked in C i h a s led to

the contradiction that the hereditarily indecomposable continuum M contains the
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decomposable continuum W + V.

Hence, there is a subsequence Cnι, Cn2 , Cn^ , of Cί9 C2 , C3 , such

that Cnι+ is crooked in Cn ί .

Let p and ^ be points belonging to different composants of M Then for each

integer /, there is an integer k greater than j such that the subchain of Cnk from

p to q has a link that intersects the first link of Cn • and has a link that intersects

the last link of Cn .. To see that this is so, let Wι be the sum of the links of the

subchain of Cni from p to ςr. Since the limiting set of each subsequence Wι , W2 ,

• is a continuum in M containing p + q9 each such limiting set is M Hence,

some Wk(k > j) intersects both the first and last links oiCn^ and the subchain of

Cn, corresponding to ]\% has links intersecting the first and last links of Cn ••

We find from Theorem 4 of [2] that there is a chain Ej such that the first link

of Ej contains p, the last contains q9 Ej is a consolidation of Cnj, while each link

of Ej lies in the sum of two adjacent links of Cn and is therefore of diameter less

than 2//. Hence, there is no loss of generality in supposing that each of the chains

^ι9 C2 9 * * * is from p to q. Therefore, there is a sequence Dί9 D2 9 * * * oί chains

from p to q such that for each positive integer i9 (a) D-h +j_ is crooked in Ό{, (b) the

closure of each link of Dj + L is a subset of a link of Dι, (c) no link of Dj has a

diameter of more than \/i9 and (d) M is the common part of the sum of the links of

D{, the sum of the links of D 2 , .

Similarly, we find that if p ' and q' are points of different composants of M',

there is a sequence D[9 D2 , of chains from p' to q' such that (a) Ό\ +χ is

crooked in Ώ\9 (b) the closure of each element of D\ +1 is a subset of an element

of /)/, (c) no element of D[ has a diameter of more than \/i , and (d) D{ covers M'

Theorem 12 of [2] shows that there is a homeomorphism that carries M into M' ,

p into p ; , and q into q'.

The preceding theorem shows that M is homogeneous and homeomorphic with

each of its nondegenerate subcontinua It also reveals that the continua studied by

Knaster [ 3 ] , Moise [ 5 ] , Bing [ 2 ] , and Anderson[l] are all topologically equiv-

alent and are pseudo-arcs.

QUESTION. It would be interesting to know if each nondegenerate bounded

hereditarily indecomposable plane continuum which does not separate the plane is

homeomorphic to M This question would be answered in the affirmative if it were

shown that each bounded atriodic plane continuum which does not separate the

plane can be chained (see Section 6, below).

3. Most continua are pseudo-arcs. Mazurkiewicz showed [4] that the continua
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contained in a circle plus its interior which were not hereditarily indecomposable

were of the first category. We go even further to show that those which are not

pseudo-arcs are of the first category.

The space of compact continua in the metric space S is the metric space C(S)

whose points are the compact continua of S, where the distance between two ele-

ments gι, g2 of C{S) is the Hausdorff distance between them in S, namely L.U.B.

(distance from x to gι in S), x £ gι + g2 ί = 1,2. By saying that most compact

continua of S have a certain property, we mean that there is a dense inner limiting

(G§) subset W of C(S) such that each element of W has the property (when regarded

as a continuum in S). The collection of continua of S with this property is said to

be of the second category.

The following theorem holds in a space S which is either a Hubert space or a

Euclidean /i-space {n > 1).

THEOREM 2. Most compact continua are pseudo-arcs.

Proof. Let Fι be the collection of all compact continua f in S such that /can

not be covered by a 1/i-chain. If / t , f2 , ' is a sequence of elements of Fι con-

verging to a compact continuum / 0 , /0 is an element of F( because if a 1/i-chain

covers / 0 , it covers some fj Hence, Fj is closed in C(S).

Let G( be the set of all compact continua K such that K contains a subcon-

tinuum K' which is the sum of two continua Kι and K2 such that K\ contains a

point at a distance (in S) of \/i or more from K2, while K2 contains a point at a

distance of \/i or more from K\ Then G( is a closed subset of C(S) Furthermore,

the collection of points of S is closed in C(S)

The collection of all pseudo-arcs is dense in C(S). For suppose that g is an

element of C(S) and € is a positive number. There is a broken line ab whose dis-

tance (in C(S)) from g is less than e /2 . Let D be an e/2-chain from a to b covering

ab such that each element of D is the interior of a sphere. There is a pseudo-arc h

containing a + b which is covered by D. The distance from g to h is less than € in

C(S).

Each element of C(S) not belonging to Σ F ; can be chained and each element of

C(S) not belonging to ΣGj is hereditarily indecomposable. Let W be the set of all

elements g of C(S) such that g is not a point of S, g is not an element of any Fi,

and g is not an element of any Gj By Theorem 1, each element of {F is topologi-

cally equivalent to M However, W is a dense inner limiting subset of C(S)

4. Decomposition of a pseudo-arc. Like a simple closed curve, the pseudo-arc
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is homogeneous; and like an arc it is homeomorphic with each of its nondegenerate

subcontinua. We now show that like both a simple closed curve and an arc, it is

topologically equivalent to itself under a nontrivial monotone decomposition.

THEOREM 3. If an upper semi-continuous collection of continua fills a chained

compact continuum, the resulting decomposition space is chained.

Proof, Suppose G is an upper semi-continuous collection of continua filling the

chained continuum M and that the resulting decomposition space W is given a

metric. We show that for each positive number €, an e-chain in M' covers M',

Let δ be a positive number so small that if two elements of G are no farther

apart in M than δ, then the points in M' corresponding to them are no farther apart

than e/5 in M'. Let [c( l) , c(2), , c(n)] be a δ-chain covering M Let 7ix= 1,

n2 9 n39 ' ' ' 9 nj = n be a monotone increasing sequence of integers such that an

element of G intersects c(n() and c(fy + 1 ) , but none intersects c(nι) and c(n( + ^ 1 ) .

Denote by D{i,j) the open subset of M' consisting of those points corresponding to

elements of G which are covered by c(i) + c(i + 1)+ +c(y) . Then

D(nί9 n5), D{n4, n8), D(n7, nn), , /

/ - 5 < 3& + 1 < / - 3

is an e-chain covering M' ,

The following result follows from Theorems 1 and 3.

THEOREM 4. If M is α pseudo-arc and G is an upper semi-continuous collection

of proper subcontinua of M filling M, the resulting decomposition space is topologi-

cally equivalent to M,

5. Other types of hereditarily indecomposable plane continua. The pseudo-arc

can be imbedded in the plane. We now show that there are nondegenerate heredi-

tarily indecomposable plane continua which are not topologically equivalent to the

pseudo-arc. In fact, there are as many topologically different hereditarily indecom-

posable plane continua as there are plane continua.

A method which differs from the one below of showing that there are topologi-

cally different nondegenerate plane continua is to consider in 3-space the inter-

section of a plane with a hereditarily indecomposable continuum which separates

3-space. That there are such continua in 3-space will be shown in my paper,

Higher dimensional hereditarily indecom,posable continua, which proves that

there are hereditarily indecomposable continua of all dimensions.
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EXAMPLE 2. A hereditarily indecomposable continuum that separates the

plane. A circular chain differs from a chain in that its first and last links inter-

sects each other. In the plane let Dί9 D29 * be a sequence of circular chains

such that (a) each element of D{ is the interior of a circle of diameter less than

1/t, (b) the closure of each element of Dj + t lies in an element of Di, (c) the sum

of the elements of D( is topologically equivalent to the interior of an annulusring,

(d) each complementary domain of the sum of the elements of Di+γ contains a

complementary domain of the sum of the elements of D t , and (e) if E( is a proper

subchain of Dj and Eι+χ is a subchain of D( +1 contained in E{ , then £ j + i is

crooked in £ j Condition (c) is superfluous since it follows from condition (a). The

required continuum M is the intersection of the sum of the elements of Dl9 the sum

of the elements of D2 , ' * .

Suppose that a chain Dι — [dl9 d2 , * * , dn] satisfying the preceding con-

ditions has been found. To see that there is a chain D{ + t satisfying the required

conditions, it might be convenient first to consider a chain D'i — [d[, d2 , * * ,

d3n] in Di which follows the following pattern: d[9d^λr\9 d^n + i a r e subsets

of dγ\ d'29 dn+2, d'3n are subsets of ĉ  d3' , d'n+39 d3n-ι are subsets of d3;

dh> Φln* d2n + ιare subsets of dn Roughly speaking, D[ goes through D( twice in

one direction and once in the opposite direction. Then the circular chain ί ) ί +1

satisfying the required conditions is the sum of two chains one of which is crooked

in [d[, d2 , , <̂ 2rc+ι ] a n d the other of which is crooked in

That M separates the plane follows from conditions (c) and (d). We show that

it is hereditarily indecomposable by showing that each of its proper subcontinua is

indecomposable.

Suppose M' is a proper subcontinuum of M Let m be an integer so large that

some element of Dm does not intersect M1. If £&(& > m) is the collection of

elements of D^ which intersect M' 9 then Em, £ m + i > * * * i s a sequence of chains

such that Ek + i is crooked in £&. If M' were the. sum of two proper subcontinua H

and K, there would be a point p of H; a point q of K9 and an integer w such that the

distances from p to K and from q to H are each greater than 2/w. Suppose e; and

e, are elements of £M ; + 1 containing p and q respectively. Since Ew+ι is crooked in

Ew9 there are elements er and e s in Ew+ι such that eΓ separates e; from e s in

£ M ; + 1 , each point of es is nearer than 2/w to p, and each point of er is nearer to g

than 2/w. Then # would not be connected because it has a point in e s , a point in
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e/, but none in e Γ .

QUESTIONS. Theorem 1 shows that if Mi and M2 are two nondegenerate

chained hereditarily indecomposable continua, they are topologically equivalent

and each is homogeneous. Suppose Wx and W2 are two continua, each defined as

described in Example 2. It would be interesting to know if Wγ would necessarily

be homeomorphic to W2 Also, is any such continuum homogeneous?

E X A M P L E 3. Another hereditarily indecomposable continuum. The following

example of a hereditarily indecomposable plane continuum is somewhat of a combi-

nation of Examples 1 and 2.

If IF is a nondegenerate indecomposable plane continuum, it contains a non-

degenerate subcontinuum H such that no point of H is accessible from the

complement of IF. To see that this is true, consider two parallel lines L\ and L2 >

each of which separates W Let G be an uncountable collection of mutually exclu-

sive subcontinua of W each irreducible from Lγ to L2, and let K be the sum of

Lγ9 L29 and the closure of the sum of the elements of G. If D is a complementary

domain of K between L± and L2 , its closure does not intersect three elements of

G. Hence, some element of G is not accessible from any complementary domain of K

between Lγ and L 2 K H is a subcontinuum of this element of G which does not

intersect L\ + L2 , no point of H is accessible from the complement of IF.

If Wo is a nondegenerate hereditarily indecomposable plane continuum, there

is a point p of Wo such that if W' is a nondegenerate subcontinuum of Wo contain-

ing p, then p is not accessible from the complement of W' To find such a point,

let Wι , W2 , be a sequence of continua such that W( is a subcontinuum of

Wi-i, no point of ίFj+x is accessible from the complement of W{ , and Wi is of

diameter less than \/u Then Wo Wι W2 is a point p; and if W ' is a

nondegenerate subcontinuum of Wo containing p, it contains one of the W( ' s . Hence,

p is not accessible from the complement of W'

Let Mi be a pseudo-arc in the plane and M2 be a hereditarily indecomposable

plane continuum as described in Example 2. Let p be a point of Mi such that p is

not accessible from the complement of any nondegenerate subcontinuum of Mi.By

a theorem of R. L. Moore, there is a continuous transformation T of the plane into

itself such that T~ι(p) — {M2 plus its interior) and the inverse of each other point

is a point. We show that M3 = ( Γ " 1 ^ ) minus the interior of M2 ) is hereditarily

indecomposable. That M2 and M3 are not homeomorphic follows from the fact that

M2 is irreducible with respect to separating the plane but M3 is not.
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If W is a subcontinuum of Λ/3 intersectingM2

 a n c ^ containing a point of Λ/3 ~~M2>

it contains M2 For suppose that it does not contain some point of M2 Then there

is an arc α from the exterior of M2 to M2 that does not intersect IF. But Γ(α) would

be an arc, revealing that p is accessible from the complement of T(W) This is con-

trary to the definition of p

Suppose that some subcontinuum M' of M3 is the sum of two proper subcontinua

H and K Since M2 is hereditarily indecomposable, U' is not a subset of M2

Since Mi is hereditarily indecomposable, we may suppose that T(H) — T(M') But

H would equal M' because T is one-one on the exterior of M2 and H contains M 2

if it intersects it.

A variation of the method used in obtaining Example 3 may be used to get other

topologically different hereditarily indecomposable plane continua. Instead of re-

placing a point of U\ by a continuum homeomorphic to M2 , we can replace each of

several points of U\ by such a continuum.

THEOREM 5. There are as many topologically different hereditarily indecom-

posable bounded plane continua as there are real numbers.

Proof. Suppose nu n 2> ' * * is a monotone increasing sequence of positive

integers. The collection of such sequences has the power of the continuum. For

each such sequence we describe a hereditarily indecomposable plane continuum

such that no two of these continua are topologically equivalent.

The hereditarily indecomposable continuum associated with nί9 n2, ' * # will

have one composant containing exactly nx continua each topologically equivalent

to M2 of Example 2, another composant containing exactly n2 continua each topo-

logically equivalent to M2 > * * ' no other composant contains a continuum

topologically equivalent to M2 .

Let Mi be a pseudo-arc in the plane. Suppose

P l , l > P l , 2 > * " * 9 P i , J l ι > P 2 , l > ' * *

is a converging sequence of different points of M\ such that P ι?y is not accessible

from the complement of any nondegenerate subcontinuum of Mx containing it, and

γ>i9j belongs to the composant containing pr fS if and only if i = r.

Suppose Mιtι , Mi t2 , , Afi f 7 l l, M2Λ , is a sequence of mutually ex-

clusive continua in the plane all topologically equivalent to M2 of Example 2 such

that the sequence converges to a point and each of the continua lies in the exterior
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of each of the others. There is a continuous transformation T of the plane into it-

self such that T~ι(pifj) is (Mi9j plus its interior), and T~ι(q) is a point if q is not

a pi9j The argument used in Example 3 shows that M3 ~ {T~ι(Mι) minus the sum

of the interiors of the Mij's) is a hereditarily indecomposable continuum. Further-

more, one composant of M3 contains exactly nx mutually exclusive subcontinua,

each topologically equivalent to M2 > another composant contains exactly n2 such

subcontinua, , while the other composants of M3 contain no such continua.

6. Added in proof. R. D. Anderson answered the question at the end of Section

2 in the negative by announcing at the February, 1951, meeting of the American

Mathematical Society in New York that there are nondegenerate bounded heredi-

tarily indecomposable plane continua other than pseudo-arcs which do not separate

the plane.
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GENERALIZATIONS OF HYPERGEODESICS

DAVID B. D E K K E R

l Introduction. In a recently published paper [ l ] the author studied families

of hypergeodesic curves on a surface in ordinary euclidean space of three di-

mensions. Here we wish to define a more general class of curves on a surface

which will contain all the hypergeodesics as a subclass and at the same time will

possess most of the properties of the subclass of hypergeodesics.

The summation convention of tensor analysis with regard to repeated indices

will be observed with Greek letter indices taking on the values 1, 2, and Latin

letter indices taking on the values 1, 2, 3. The notation of Eisenhart [2J will be

used throughout.

2. The differential equation. Consider a surface S in ordinary space of three

dimensions represented by the three parametric equations

xι = xHu\u2) (i = 1,2,3)

referred to a rectangular cartesian coordinate system. A family of hypergeodesics

on S is defined as the set of all solutions ua — ua(s) ((X = 1,2) of a differential

equation [ l ]

(2.1) Kg = Ω α / S r u ' α u ' ^ ' ^ ,

where Kgis the expression for geodesic curvature of a curve C given by wα— u (s)

(α = 1,2) in which the parameter s is arc-length, the primes indicate differentia-

tion with respect to s, and the Ωαβy are the covariant components of a tensor of

the third order relative to transformations of the surface coordinates uι and u2 If

we use the scalar Ω to abbreviate the right member of (2.1), the equation reads

Kg — Ω where Ω is a polynomial homogeneous of degree three in the parameters

u ι and u2 with coefficients as analytic functions of uι and u2. Division by

(uΛ)3 and some further simplification reduces this differential equation to a form

stating that the second derivative of u2 with respect to u is equal to a cubic in

the first derivative.

Received September 24, 1950.
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In order to retain most of the properties of hypergeodesics for our generali-

zations we replace only the polynomial Ω by a rational function U/V with the

same homogeneity property. Thus a curve C: ua — ua(s) (cί = 1,2) will be called

a supergeodesic if it satisfies a differential equation of the form

(2.2) Kg = W

where the scalar W is the quotient U/V of the two scalars

(2.3) U = ί / α i α 2 α 3 ••• α n " α * u ' " 2 " ' * 3 u ' α "

and

(2.4) V = Vβlβ2β3 . . . βn-3u'h nβ2 uβ* . . . u ' ^ -3 .

If we d iv ide e q u a t i o n (2.2) by (u1)3 i t r e d u c e s t o

du2 (du2\2 (du2\n

^2#5) d (du \ du \du / \du I

or, if we divide by (u ) , a similar equation is obtained.

It is easy to see that there exists a unique solution [3, p.lOό] to (2.5) at any

point (uι,u2) in any direction (u'ι>u'2) for which V does not vanish. Hence,

(2.2) defines a two-parameter family of supergeodesics on the surface S with the

property that at any point of S there is a supergeodesic in every direction except

those directions in which V = O It may be said that V = 0 defines n — 3 one-

parameter families of curves which are never tangent to any supergeodesic of the

family defined by (2.2) within a region R on S at each point of which U and V

considered as polynomials in u'α are relatively prime. (This excludes points of

S where U and V have common factors.)

Now IF is a polynomial in u α if and only if the family defined by (2.2) is a

family of hypergeodesics. Otherwise, (2.2) represents a more general family of

supergeodesics.

3 Supergeodesic curvature. We define the supergeodesic curvature of a curve

u* — ua{s) at a point P of the curve as the scalar Ks given by

(3.1) Ks Ξ L - W.
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The supergeodesic curvature vector we define as the vector whose contra variant

components λ. are given by

(3.2) λδ Ξ (Kg - W) μS Ξ Ksμ
ξ

where μ = €^ gy-ηu'7^ is a unit vector which makes a right angle with the unit

vector u a

We see from (3.1) and (2.2) that a curve C is a supergeodesic of the family if

and only if the supergeodesic curvature along the curve is identically zero in s.

4. The elements of the cone related to the super geodesies through a point. The

elements of the cone enveloped by the osculating planes of a family of super-

geodesies through a point P of the surface S may be determined by the procedure

sketched in Section 4 of [ l ] The only change is that the symbol Ω be replaced

by W. This replacement is possible since only the homogeneity of Ω was used,

and W possesses this same homogeneity property. The direction numbers c of the

element of the cone corresponding to the supergeodesic in the direction u α will

have the values

(4.1) cfc= eα^|^χfc (Kn = 0, W^O)

or

(4.2) ch = raxh

ιa + Xh (Kn φo, V £ 0)

where

(4.3) r α Ξ e/3« - ^ (W/Kn) (Kn φ 0 , VφO).

5. A geometric interpretation of supergeodesic curvature. It can be demon-

strated that the supergeodesic curvature of a curve C : ua = ua(s) is the curvature

of the curve C' which is the projection of the curve C upon the tangent plane at

the point P9 the lines of projection being parallel to that element of the cone

determined by the direction u at P. The proof of this property consists of re-

placing Ω by IF in Section 5 of [ l ] Of course at points of C for which Kn — 0

or V = 0 there can be in general no geometric interpretation of this type since the

element lies in the tangent plane or does not exist.
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6. Supergeodesic torsion of a curve. The torsion at P of the supergeodesic

ua = ua(s) of the family having the same direction as a curve C at P (if such a

supergeodesic of the family exists) will be called the supergeodesic torsion 7̂

of C at the point P. The expression for τs as found by the calculations in Section

6 of [ l ] with Ω replaced by W is

(6.1) τ s = ~^- eβS | r " [(l/L) , α + j d

" [(rβ/L) , α Λ α r BΎβ}} Λ ' 8 (Kn φ 0, V f 0),

where φ is the angle between the vector c as given by (4.2) and the unit tangent

vector xι

)Cru
σ', L is the length of the vector c , and r is defined by (4.3).

7. A geometric condition that a supergeodesic be a plane curve. If we find

the differential equation for the special related intersector net of the complex of

cone elements for the family of supergeodesics under consideration, it will be

exactly the same as the differential equation

(7.1) τ s = 0,

as can be verified by simply replacing Ω by IF in Section 7 of [ l ] . Now a curve

of the special related intersector net is a curve for which the elements c at each

point of the curve corresponding to the direction u of the curve form a develop-

able surface. Hence, we may state that a supergeodesic not in an asymptotic

direction is a plane curve if and only if it is a curve of the special intersector

net of the complex of cone elements.

Geometrically speaking the theorem reads: A supergeodesic not in an asymp-

totic direction is a plane curve if and only if the one-parameter family of cone

elements^ which are the elements of contact of the osculating planes of the

supergeodesic with the cones, constitutes a developable.

8. A study of the special related intersector net. If we discard the nonzero

multipliers from the left side of the differential equation (7.1) and make use of

(4.3), the differential equation reads

(8 υ «4 " aM^L + e ί r ^ ( έ K + ^ Λ ' s =o
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After performing the partial and covariant differentiation in (8.1) and clearing

the fractions we see that the equation is of the first order and in general (when JJ

and KnV are relatively prime) of degree N — 3n ~~ 1 where n is the degree of

homogeneity of JJ in the parameters u a

If JJ and KnV have exactly m common factors then the degree N of (8.1) is

3(τι — m) -~1. For hypergeodesics, V divides JJ so that N is 8 in general. However,

for union curves, KnV divides JJ so that N is 2. Now union curves are specializa-

tions of hypergeodesics in that Kn divides Ω [ l ] A similar specialized class

of supergeodesics containing the class of union curves as a subclass is obtained

when Kn divides JJ.

9 Pangeodesics. In the case of the family of pangeodesics [4, pp. 203-204]

on the surface, it is observed that the differential equation is of the type (2.5) and

hence the pangeodesics constitute an example of a family of supergeodesics. For

the pangeodesics n is 6 so that in general /V is 17.
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RELATIONS AMONG CERTAIN RANGES OF VECTOR MEASURES

A . D V O R E T Z K Y , A . W A L D , AND J . W O L F O W I T Z

1. Introduction and definitions. The purpose of the present paper is to prove

certain measure theoretical results concerning ranges of measures. One of our

results (the closure and convexity result implied by Theorem 4) may be regarded

as a generalization of a theorem of Liapounoff [ 5 ] . The results obtained here

have applications to statistics and the theory of games.

Throughout this paper \x\ — X denotes an arbitrary space, and \s\ = S de-

notes a Borel field of subsets of X; that is, 6 is a nonempty family of subsets of

X which is closed with respect to the operations of complementation (with respect

to I ) and countable union. The phrase, S is measurable, will be used as synony-

mous with S € S

A real-valued countably additive set function defined for all measurable sets

will be called a measure. Thus we admit measures assuming negative or infinite

values. A measure cannot, however, assume the value -h00 for one measurable set

and — °° for another such set, since in such a case additivity cannot be defined

satisfactorily. A measure is called finite if it assumes finite values for all meas-

urable sets. It is called nonnegative if it assumes nonnegative values for all

such sets .

We say that f(x) is a measurable function if it is real-valued, defined for all

x e X9 and if, moreover, the set fc of all x e X for which f(x) < c is measurable

for every real number c. A step function is a measurable function which assumes

only a finite number of values.

If n is a positive integer and T)j(x)(j = 1, , n) are nonnegative measurable

functions satisfying

(1) Vι(x) + " * + nι(x) = 1 for every x e X,

then T)(χ)= [rjί(χ)9 , Ύ]n(x)] will be called a probability /ι-vector. The func-

tions Tjj (x) are called the components of this vector. If all the components of

Received July 20, 1950. This research was sponsored (in part) by the Office of Naval
Research; the main results of the paper were announced without proof in an earlier publi-
cation [ l j . T h e first author is on leave of absence from the Hebrew University, Jerusalem,
Israel.
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T)(x) are step functions, then Ύ]{x) is called a (probability) step n-vector. We shall

occasionally denote such vectors by T)°(x). If, in particular, all components of

Ύ](x) assume only the two values zero and one, that is, if for every x e X one

T)j(χ) is equal to one and all others vanish, then T)(x) is called a pure n-vecton

Such vectors will be denoted by η*(Λ;) If the th component (/ = 1, , n) of T)*(x)

is considered as the characteristic function of a set Sj, then the sets Sί9 , Sn

are measurable and disjoint and their union is X. Conversely, if S^, , Sn is a

decomposition of Zinto n disjoint measurable sets, and rfj (x)\s the characteristic

function of Sj , then 77*(x) = [T7*(Λ;), , rfc{x)] is a pure rc-vector. We therefore

call Ύ] (x) also a decomposition n-vector or, more specifically, a decomposition

rc-vector corresponding to the decomposition X — St U # U Sn.

Let μk(S)(k = 1, , p)be a finite set of measures, and let 7}{x) be a proba-

bility rc-vector. We denote by v(rj) = v(rj μχ9* *, /x«) the np dimensional vector

(or point in np space),

Vi(x)dμp(x\
Λ

I η 2 U ) Gί/xχ(x), •••, I η P ( * ) d μ p ( x ) I .

The set of all points ^(97) =iv(7j; /Xi, * ' , μp) corresponding to all probability

7i-vectors rj(x) is called the n-range of μl9 , /Xp and is further denoted by

Vn (μι9' , /Xp) or, more concisely, by Vn . In the same way we define the step

n-range of μl9 , μp as the set of all points v(rj°) = v(τ)°; μi9 , μp)corre-

sponding to all step zz-vectors T)°(x)9 and denote it by Vn(μl9 , μp) or Vn

Similarly V^ or V^iμu ' * *> Mp) denotes the set of all points

corresponding to all pure ^-vectors 77 (#) and is called the decomposition n-range

of μ l f , /Xp When no confusion is possible we replace w-range in the above

terms by range.

It is shown in Section 2 that if μl9 , μp are finite measures then the rangeί

Vn (μx, , μp) is compact and convex and coincides with the step-range

^(/Xp , μp) Actually a stronger result is proved; this states that the points

v(τ) μi9 , μp) for which the components of 77^) assume at most 2np p ι
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different values already fill Vn . Applying a theorem of Liapounoff we deduce, in

Section 3, the result that if the measures are atomless then the decomposition

range Vn{μί9' ,μ,p) is identical with Vn(μγ,m ,μp) . This result is extended

in Section 4 to arbitrary (not necessarily finite) atomless measures. Applications

of these results to statistics and the theory of games are briefly indicated in

Section 5.

2. Identity of the step range and the range for finite measures. First, we prove

the following result.

THEOREM 1. // μ i , # , μp are finite measures, then for every n, the range

Vn{μ\9 *, /Xp) is a compact and convex set in Euclidean np dimensional space.*

Proof. Let A — v(rj) and A ' — v(rj') be any two points of Vn . Then every

point of the segment joining them is represented vectorially by cA + (l — c) A ' ,

with 0 < c < 1. But such a point is clearly v [CΎ] + (1 — c)rf ] and, since

cΎ] + (1—c)η' is a probability ra-vector, the point also belongs to the range.

Thus Vn is convex.

The proof of compactness is more difficult. We start by establishing a lemma

on sequences of measures.

LEMMA 1. Let \B \ = 35 be a Borel field of subsets of X generated by count-

ably many sets. Let μ {t — 1,2, •) and μ be measures over 35 satisfying, for

all B e 53,

(2) 0 <μ*(B) <μ(B) <oc ( t = l , 2 , • • • ) .

Then there exists a measure v over % satisfying

(3) 0 < v{B) < μ(B) for all B e 35,

and a sequence of integers tq (q — 1,2, *) satisfying

(4) 0 < h < t2 < < tq < tq+1 < •

such that

(5) lim μtq (B) = v (B) for every B e 35 .
g=00

*For the special case when X is a finite-dimensional Euclidean space and all the
are absolutely continuous, this theorem follows from Theorems 3.1 and 3.2a of [6] .
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The proof of the lemma proceeds as follows. Let Bo = X, Bγ9 ' , Bn be

a countable basis of S. Then, according to the well-known diagonal procedure of

Cantor, there exists a sequence (4) for which

βr = lim μ"(Br)
(J=CO

exists for r — 0,1,2, " . To prove the existence of the limit in (5) for every B,

and the fact that this limit is a measure, it suffices to show that: (a) if μι ^{B)

tends to a limit as q —»o° , then so does μt(l{B) where B is the complement of B

with respect to X; and (b) if Bs(s = 1,2, ') are disjoint sets of S for which
t(l(Bs) exists for s = 1,2, , then we have also

(6) lim μtq ( u β s ) = J lim μ*<β8) .
g=co \ s = l / s-l ςf=oo

Now (a) follows immediately when we write μt (B) — μt (X)-—μt (B) and observe

that μt(ι{X) has the limit /30 To prove (6) it is sufficient to observe that the

functions μι are countably additive, that by (2) we have μt(i{Bs) < μ(Bs), and

that Σs=i/x(βs) is a convergent series of nonnegative terms. (This is the standard

bounded convergence argument.) Since (2) and (5) obviously imply (3), the proof

of Lemma 1 is completed.

Let now η *(#)($ = 1,2, •) be any sequence of probability /i-vectors. The

compactness of Vn will be proved if we show that there exist a probability rc-vector

and a sequence (4) satisfying

k =(7) lim ί VjHx) dμk(x) = ί τu(x) dμk{χ)
q=co JX JX

Denote by Bljtp{t = 1,2, / = 1, , n; p rational with 0 < p < 1) the

set of all x for which rfΛx) < p, and let IB ] = S C S be the smallest Borel

field containing these sets. Write \ μ k\ f°Γ t n e absolute measure* associated with

μk. Put μ(B) = I μx \ (B) + + | μp \ (B) for every B e 35. The n δ , μ , and

•That is, I μk\ (S) - sup [lμ*(S' ) I + Ufe(S" )l] for all decompositions of S into two
disjoint measurable sets S* and S".
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μ , defined by

μf(β) = f -η\(χ) dμ{x) (t = 1,2, , B e B) ,

satisfy the conditions of Lemma 1. Hence there exists a nonnegative measure

Vγ over 33 and a sequence (4), for which

(8) lim ί 7)\q(x)dμ(x) = Vi(B)
q=oz JB

for every B e S.

Again applying Lemma 1, we can extract from the sequence tq a further sub-

sequence for which (8) holds with the subscript 1 replaced by 2. Repeating this

n — 1 times, and again denoting, for simplicity of writing, the final subsequence

by tq> w e s e e t n a t there exist nonnegative measures vi9 , vn over δ and a

sequence (4) satisfying

(9) lim I v)q (x) dμ{x) - ΪΛ (B) (J•= 1, « ,n)im Γ ηjq (x) dμ(x) = V] (B) (j = 1,
=00 JB

for every β e S, Clearly, we have

(10) vx(B) + +vπ(β) = μ ( β ) (β € 8 ) .

By the Radon-Nikodym theorem there exist SB -measurable functions fj(x)

(j = 1, , n) such that

(ID Vj{B) = f fj(x) dμ(x) 0 = 1 , ••-,«)

for every B 6 53. Since the τ̂ y are nonnegative measures, we may assume that the

fj are nonnegative functions; and, because of (10), we may further assume that

fι(x) + ' * + fn(
χ) — 1 f°r every %. The fj are S-measurable and are, a fortiori,

S-measurable; hence [ft(x), , fn(x)] is a probability 7i-vector We denote

this vector by rj{x) and proceed to show that (7) holds with this 7] and the above

constructed sequence (4) satisfying (9).

Let gfΐ(x)(k = 1, , p) denote a 33-measurable Radon-Nikodym derivative
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dμfc(x)/dμ(x) Then, replacing fj in (11) by rjj , we have

I Tjj(χ) dμk(x) = Vj(x) gk(x)dμ(x)

= f gk(x)d(ηJ{x)dμ(x) = f gk(x)dvj(x).

Similarly, the left side of (7) may be rewritten as

lim Γ gk(x) d f τA(*) dμ(x) ,
q=Cβ Jx J J

and thus (7) follows from (9) This completes the proof of Theorem 1.

For any compact convex set C in a Euclidean space, we designate as extreme

points of C, all those points of C which are not interior points of any segment

lying in C. Our next result is the following.

THEOREM 2. // the measures μ u , μp are finite, and v(r)) is an extreme

point of Vn, then the set of x for which 0 < τ)j{x) < 1 for at least one j(y = 1, β ,

n) is a null-set* for each of the measures μ\,' ' *, μ n ln particular, all extreme

points of Vn belong to the decomposition range Vn.

Proof. Let Y denote the set of x defined in the theorem. If Y is not a null-set

for μjς with 1 < &0 < p, then there exist integers y0, j\ with 1/^yΌ ^ /lί^ n<> a

number δ > 0, and a measurable set Z CZ Y, such that

(12) δ < T]j (x) < 1 - S for x e Z and j = jQ , j i ,

and

μ k o ( z ) ^ o .

Let ζ = ζU) = [ζi (x), ' * * , ζΛ(%)] be the vector defined as follows:

if x e Z

*A measurable S is a null-set for the measure ^ if μ(5 ) — 0 for every measurable S' c S.
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and all other components vanish identically.

Because of (12), Ύ](x) + θζ(x) is a probability ^-vector whenever —1 < θ< 1.

Since

jχ

= 2Sμko(Z) φQ,

the points v(τ] + ζ) and v(rj — ζ) are different. But clearly as θ increases from

— 1 to +1 the point V{TJ + θζ) moves from v(τ) — ζ) to v(rj + ζ) along the seg-

ment connecting them. Moreover, v(rj) is the middle point of this segment and

thus it cannot be an extreme point of Vn.

If v(rj) is an extreme point, then Y is a null-set for all μ^ Therefore, if we

put Tj (x) = Ύ)(x) for x ^ Y and, say, T)ι{x) ~ 1 for % e Y, the decomposition

vector -η*{x) thus defined satisfies v{rf) — v(τ)). This proves the last assertion

of Theorem 2.

THEOREM 3. If the measures μi9 , μp are finite, then the step-range Vn

coincides with the range Vn. More precisely, every point of Vn may be represented

as V(TJ°)9 where T)° is a step n-vector whose components assume not more than

2nP~P + ι different values.

Proof. According to Theorem 1, Vn is a compact convex set in Euclidean

zip-dimensional space. However, because of the p equations

n Λ

Vn lies in an N — np ~ p dimensional linear subspace. Hence, according to well-

known facts on convex bodies, every point P of Vn may be represented vectorially

by
P = CλPχ + ••• + CNPN + Cyv + iP/V+i ,

where Pί9 ' ' , P/v+i a r e extreme points of Vn and cί9 , c/y+i are nonnegative

constants whose sum is 1. According to Theorem 2, we have Pr — V{TJ Γ) with

?7*Γ a decomposition rc-vector (r = 1,2, , N + 1).
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Hence, putting η° = Σ^Jj1 cr ?7*Γ, we have P = v(η°). Clearly, for every #,

every component of Tj°{x) equals ^reK cr, where K is a subset of [l,2, ,/V + l | .

There being 2 ι such subsets, Theorem 3 is proved,

3 Identity of the range and the decomposition range for finite atomless meas-

ures, A measurable set S is called an atom of the measure μ if μ(S) φ 0 and if,

moreover, for every measurable S' C S we have either μ(Sι) = 0 or μ(S') — μ(S).

If the measure μ(S) has no atoms it is called atomless.

For atomless measures we can improve on Theorem 3 by establishing the

following result.

THEOREM 4. // μi9 , μp are finite atomless measures then, for every n,

the range Vn and the decomposition range Vn are identical.

According to Theorem 1, the common range is convex and compact.

Proof. In view of Theorem 3 it suffices to prove that, in the present case ,

V* — V°vn vn

For this purpose we shall use the following fact: If μγ, , μp are finite

and atomless, then, given 0 < c < 1, there exists a measurable set S for which

(13) μk(S) =cμk(X) (k = 1, ••• , p) .

The existence of such a setS follows immediately from a result of Liapounoff

[5] (see also [3]) according to which, under the above stated conditions, the

set of points μι(S)9 , μp(S) in Euclidean p-space corresponding to all measur-

able S is convex. Indeed, the empty set A and X are certainly measurable and

(1 ~ c) μk{K) + cμk(X) = cμk(X) for all k.

To complete the proof of Theorem 4, we use the following lemma.

LEMMA 2o // μl9 , μp are finite and atomless and cl9 , cn are non-

negative numbers satisfying cι + + cn = I, then there exists a decomposition

of X into n disjoint measurable sets Sί9 * , Sn having the property that

(14) μk(Sj) = cjμkiX) (j = 1, •'•, n; k = 1, ••-, p) .

Indeed, according to (13) there exists a measurable S t satisfying (14) for

/ = 1. Similarly, there exists a measurable 5 2 ^ X ~~ SΊ satisfying

c2

-Si)= c2μk(X) ,
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where we interpret

c2

as zero if c2 — * = cn = 0. That is, S2 satisfies (14) for j = 2* In the same

manner S

But then

manner Sj C X — U ̂ S ; satisfying (14) may be obtained for / = 1, , n — 1.

7=1

thus

- V s) = 1 - (C l + + cn-!) μfc(*) - cnμk(X)

n-l

= x - u
7 = 1

satisfies (14) for j — n as required. Hence, Lemma 2 holds.

The proof of Theorem 4 can now easily be completed. Let τj°{x) be any step

ra-vector. Then X can be decomposed into a finite number of disjoint measurable

subsets Yι over each of which all the components of Ύ]°(x) are constant. According

to Lemma 2, Yt may be decomposed into n disjoint measurable sets Sltt,
 # ' * 9Snft

such that

(15) μk(Sjft) = Vj°(x) dμkix) (j = 1, •• * , n; k = 1, , p) .

Putting Sj — UtSjft(] — 1, * * * , n) we have, from (15),

ηj°(x) dμk(x) = μk(Sj) ( j = 1 , •••, n ; k = 1, •••, p ) .

J Λ

Thus the point v(τ)°; μl9 , μp) coincides with v(rj μ l t ' , μ p ) , where

77, W = 1 if x £ Si and zero otherwise. In other words, Fn° C Fπ Since the con-

verse inclusion is obvious, Theorem 4 is proved.

Remarks, (a) Liapounoff [5] proved that if the conditions of Theorem 4 are

satisfied then the set of all points [μi(S), , μp(S)] in Euclidean p-space
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corresponding to all measurable S is convex and compact. This result is clearly

implied by the convexity and compactness of Vn thus the convexity and compact-

ness of Vn may be considered as a generalization of Liapounoff's theorem. If we

put S — X — S, then Liapounoff's result is easily seen to be equivalent to the

statement that the set of all points [/^(S), ' , μp(S)9 μ\(S)9 , μp(S)] in

Euclidean 2p dimensional space is convex and compact. But this amounts pre-

cisely to the assertion that V% is convex and compact for n — 2. That this as-

sertion remains valid also for n > 2 is precisely the generalization of Liapounoff's

result contained in Theorem 4.

We used in our proof the convexity part of Liapounoff's result. This is, how-

ever, the easier part (cf. Halmos [3]), and thus our method furnishes also a new

proof of Liapounoff's theorem.

(b) The values 0 and 1 are among those which the components of Ύ]° in Theo-

rem 3 are allowed to assume. Hence, on combining the results of Theorems 3 and

4 we see that, if all but p' of the measures μl9 , μp are atomless, we may

replace p by p ' in the exponent of 2 in Theorem 3. This estimate is again inde-

pendent of the number of atoms.

(c) If the measures μl9 , μp in Theorem 4 are not assumed to be atom-

less, then of course Vn need not be convex. It is, however, compact as can easily

be seen on decomposing into atomless and purely atomic parts and dealing sepa-

rately with each (see, for example, [3]) .

(d) For some applications the following is of importance: If 97 is a probability

7i-vector, then there exists a decomposition ^-vector 77* with v(rf) — v(r)) having

the further property that, for every x eX and / = 1, , n, the vanishing of

Ύ]j{χ) implies that of Ύ)*(x). This assertion follows easily from Theorem 4. Indeed,

X may be decomposed into a finite number of measurable sets Y with the following

property: If rjj(x) — 0 for some x e Y, then rjj(x) — 0 for all x β Y. Let j i 9 , j m

be those j for which Ύ)j(x) > 0 when x e Y. We may now define rj (x) for x e Y by

applying Theorem 4 (with X replaced by Y and n by m) to the m-vector formed by

these components, and putting rjj{x) = 0 for all other j and x e Y. Combining these

definitions for all sets Y, we obtain an 77* with the required property.

4. Extension to arbitrary atomless measures. The assumption of finiteness in

Theorem 4 is unnecessary. Indeed, we shall prove the following result.

THEOREM 5. // the measures μι,* , μp are atomless, then, for every n,
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the range Vn and the decomposition range Vn are identical.

Since the measures are now allowed to assume infinite values, the components

of V (Ύ]) are no longer necessarily finite and one should look upon Vn and V% as

imbedded in Euclidean space extended by allowing each coordinate to assume

also infinite values.

Before proceeding to the proof we establish the following lemmas,

LEMMA 3. // μ is a nonnegative atomless measure with μ(X) — °°, and u is

any finite positive number, then there exists a measurable set T with μ(T) = u.

Proof. Since μ is nonnegative and atomless, there exists a set S with 0 <

μ(S) < °°. We first show that α = sup μ for all such sets 5 is infinite. Indeed,

assume (λ finite; then, for every integer m, there exists a measurable Sm with

μ(Sm)> U-l/m. P u t S' = U ^ S ™ ; t h e n μ{S')= Cί. B u t μ(X - S') = oo

hence, there exists a measurable S" CI X — S1 with 0 < μ(S") — b < oo. Thus

(λ< μ(S' US"), contradicting the assumption that OC is finite.

Therefore, given u there exists a measurable T' with u < μ(T' ) < °°. But

then, according to the intermediary values theorem of Sierpinski (see, for example,

[2,52]) , or the one dimensional case of Liapounoff's theorem, there exists a

measurable T d T' with μ(T) — u.

LEMMA 4. If μ is a nonnegative atomless measure with μ(X) — °°, and q is

any positive integer, then X may be decomposed into q measurable disjoint sets

Xl9 , Xq with μ{Xχ) = = μ{Xq) = 00.

Proof. According to Lemma 3, there exist a set 7\ with μ ( Γ 1 ) = l , a set

T2 CZ X- Tx with μ(T2) = l, a set Γ3 C X - ( ^ U T2) with μ(T3) = l, and

so on.Putting X{ = U^=o Tqn+i for i = 1, , q — 1 and Xq = X — U i = \Xi we

obtain the required result.

LEMMA 5. // vl9 , vm are nonnegative atomless measures with v X{X)

~ ' * * vm(X) — °°5 and q is any positive integer, then X may be decomposed into

q measurable sets /Y1? , Xq satisfying ViiXγ) — — Vi(Xq) = 0° for

i'' — lj , m.

Proof. For m — 1, this lemma reduces to the preceding one. Assume m > 1 and

the lemma proved for m — 1. According to Lemma 4, X is the union of m disjoint
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measurable sets Yt, , Ym with vm(Yx) = = vm{Ym) = oo. For every

i(i = 1, , m — 1) let i' denote the smallest integer for which v, (}£/) = °°.

(Since Vi{X) = oo we have 1 < i' < m.) PutY '=l lΓ=7 Yv and Y" =X- Y1.

Then v m (Y") = 0° and Y" is the union of disjoint measurable sets Y/', , Yq

with ^(Y/ ' ) = = vm(Y%) = oo. Also V;(Y") = oo for i = 1, , m - 1 and

hence, by the assumption of induction, it can be decomposed into measurable sets

Y{ > * ' , Yq with Vi (Y{ ) = = Vi (Yg') for i = 1, , m - 1. Putting

Z x = Y/ U Y/', , Xq = Ŷ ' U Yq i we obtain the required decomposition.

LEMMA 6. Le£ μ, v be nonnegative atomless measures with μ(X) < °°,

v(X) — oo m Then either X may be decomposed into countably many measurable

sets9 each having finite v measure, or there exists a measurable set T with

μ(T) = 0, v(T) = oc.

Proof. For every positive integer t consider the measure μt defined by

μt(S) =v(S) ~tμ(S) .

According to Hahn (see for example [2, p.18] or [4, p.121] ) X may be decomposed

into two disjoint measurable sets Yt and Yt with μt(S) < 0 for every measurable

S CZ Yt and μt (S) > 0 for every measurable S C Y. Clearly,

v(Yt) <tμ(Yt) <tμ(X) <oc.

Put now Yt' = Yt U U Yί a n d Z ! = Y{, Zt = Yt' - YΛi for ί = 2,3, ,

and denote by Z o the complement of 11?=! Z t . Then X = U?=o Z f and τ^(Zί)<oo

for ί_> 1. If v(Z 0) < 0° then this is a decomposition of Z into countably many sets

of finite v measure. If, on the other hand, v(Z0) — °° then, by Lemma 3, there

exists for every integer u a measurable Tu C Z o with v(Tu) — u. Moreover,

μ (Tu) — 0 since, according to the construction of ZQ9 μ (S) > 0 for S CI ZQ

implies v(S) — °°. Thus T = U^=i Tu has the properties required in Lemma 6.

Proof of Theorem 5. Since every measure is the difference between two

nonnegative measures, we may assume throughout the proof that the measures

μk(k = 1, , p) are nonnegative.

Let rj be any probability π-vector For every /(/ = 1, , n) we denote by

Yj9o the set of x for which T)j(x) = 0 and by Yj9t(t — 1,2, •) the set of x for

which

< U )
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We use Y to denote any set of the form

Γl Yjtj with tj = 0,1,2, (/ = 1, , n) .

The space X is thus decomposed into countably many sets Y having the

following property: There exists a nonempty subset / — /(Y) of {l, , n] and

a positive δ = δ(Y) such that for all x 6 Y we have

(16) Vj(χ) > δ > 0 if j e J , Tjj{x) — 0 if j ψ J .

Let Y be any such set and consider the subset K' of {1, , p] consisting

of all those k for which Y can be decomposed into countably many sets, all having

finite μ k measure. If K' is empty, we call Y final, if not we decompose Y into

countably many measurable sets Y' with μk(Y') < °° for k e K'. Let Y1 be any

such set and denote by K" the subset of {l, , p } consisting of all k for which

Y' can be decomposed into countably many sets, all having finite μk measure.

Clearly, K' CT K". If K ' = K" we call Y' final, if not we decompose it into

countably many Y" with μk(Y") < °o for k e K"* Again a K'" Z) K" is defined and

Y;/ is called final if K" — K'"9 and so on. After not more than p steps we always

end with a final set Z

We have thus decomposed Y, and hence X9 into countably many sets Z having

the following property: To every Z there corresponds a decomposition of {1,2,

• , p } into two disjoint sets K and K such that μk(Z) < °° if A € X, while if
k 6 K then Z cannot be decomposed into countably many sets, all having finite
μ k measure. Furthermore, since Z is contained in some Y, (16) holds for all

x e Z.

Next, we show how to decompose Z into disjoint measurable sets Z\9

 #, Zn

satisfying

j) = I 7j7 (*) d μ f e ( χ ) 0 = 1, •-. , n; fc - 1, •••, p) .(17) μk(Zj

(If rjj (x) = 0 for all x e Z, the right side of (17) is understood to be 0 even when

If K is empty, then the possibility of such a decomposition is assured by

Theorem 4.

If K is empty then, by (16), the integral in (17) is infinite if / e J and is zero
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otherwise. By Lemma 5 it is possible to decompose Z into sets Zj (/ 6/) with

μk(Zj) = ™ for * = 1, - - - . p .

Denoting the empty set, for j $ /, by Zj , we have a decomposition satisfying (17).

Finally, assume both K and K nonempty. We define a nonnegative measure μ

by μ(S) — Σ^ e^/x^(S). Clearly, μ is atomless and μ{Z) < c°. According to

Lemma 6 there exists, for every k e K, a measurable 7& C Z with μ(Γ&) — 0,

fJ-k^Tk) — °° Let Γ be the union of Γ (̂A; € K). Then (see the treatment of the

case when K is empty) it is possible to decompose T into disjoint measurable sets

Z[, , Zn so that Zj is empty for j § / , while for all j € J and k 6 K we have

μ/b(Z/ ) = °°. Since μ(Γ) = 0we have, for all y, μ^(Z/ ) = 0 whenever k £ K. Let

7" = Z — Γ; then it is possible, by Theorem 4, to decompose T' into disjoint

measurable sets 7\', , Γ^ such that Tj is empty for j $ J, while for j e J and

k e K we have

= I , η / * ) cί/xΛ(x) = I

Putting Zj ~ Tj' U Zy for y = 1, , n, we have a decomposition satisfying

(17).

We now define the decomposition rc-vector rj * as follows: For x e Z, put

Ύ]^(x) = 1 if Λ; e Zy , and T;*(Λ;) = 0 for all other x 6 Z. Because of the countable

additivity of the measures and the integrals, (17) implies υ(rf) = (̂77) and the

proof is completed.

Remarks, (a) The last remark after Theorem 4 applies also here. Indeed, our

construction in the proof of Theorem 5 yields a vector having the properties re-

quired of rf in that remark.

(b) In applications usually X can be decomposed into countably many sets of

finite μ^ measure {k = 1, * , p). For this special case Theorem 5 is, of course,

an immediate consequence of Theorem 4.

4. Application to statistics and the theory of games.* Theorem 4 (together

with its extension mentioned in the last remark of the preceding section) has

* A more detailed discussion and other results, including a discussion of the sequential
statistical decision problem, are contained in our paper, Elimination of randomization in
certain statistical decision procedures and zero-sum two-person games, Annals of Mathe-
matical Statistics, 22, No. 1, March, 1951. A brief discussion of these applications was
also given in an earlier publication LlJ
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immediate applications to the following statistical decision problem: Let y =

lyι> * " • 9 Jt > be a random vector with t components, where ί is a given positive

integer. For every point x = (xl9 ? xt) of the ί-dimensional Euclidean space

X, let F(x) denote the probability that yι < x{ for i — 1, , t; that is, F(x) is

the distribution function of y. The distribution function F {x) is assumed to be

unknown. It is known, however, that F (x) is one of the distribution functions

^ l (χ)> * * " 9 Fm{x), An observation x is made on y and according to the observed

value x the statistician may adopt any one of n decisions /(/ — 1, , n). Let

W{j (x) denote the loss sustained by the statistician when F( (x) is the true

distribution of y, x is the observed value of y9 and the yth decision is adopted,

Wi^j (x) is assumed to be a finite nonnegative and measurable function of x If the

statistician, on observing the value x, adopts the various decisions with proba-

bilities T)j(χ), where these are nonnegative measurable functions satisfying (1),

then the risk, or expected loss, when F t (x) is the true distribution function, is

given by

7 = 1 JX
dFx (x) .

The decision function η . (x) is said to be nonrandomized if for every x all but

one of the Ύ)j{x) vanish. Theorem 4 yields without difficulty the following result:

// the distribution functions Fι(x)(i — 1, * , m) are atomless then, given any

decision function T](x), there exists a nonrandomized decision function Ύ)*{x) such

that r^rj) = r; (r)*)(i = 1, , m).

Similar application can be made to the theory of games. In fact, the above

described statistical decision problem maybe interpreted as a zero-sum two-person

game as follows: Player 1 has a finite number of pure strategies i{i = 1, , m),

while a pure strategy of Player 2 is a nonrandomized decision function 7] *(x)

(decomposition ^-vector). If i is the pure strategy of Player 1 and T)*(x) the pure

strategy of Player 2, the outcome is defined by

Rίι,η*(x)] = rtiη*).

A mixed strategy of Player 1 is represented by a vector ξ = [ξγ, , ξm) with

nonnegative components whose sum is one, while a mixed strategy of Player 2 is

given by a probability τι-vector rj(x) The expected value of the outcome corre-

sponding to the mixed strategies ξ and T}{x) is given by
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=Σ iind)

The above s tated result for the s t a t i s t i c a l decis ion problem can be restated in

game terminology a s follows: // the distribution functions F( (x)(i = 1, , m)

are atomless, then given any mixed strategy T)(x) of Player 2, there exists a pure

strategy T)*{x) such that R[ξ, 7)*{#)] = R[ξ, τj(x)] for all strategies ξ of

Player 1.
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SCHLICHT TAYLOR SERIES WHOSE CONVERGENCE ON THE

UNIT CIRCLE IS UNIFORM BUT NOT ABSOLUTE

P. E R D O S , F . H E R Z O G , AND G. P I R A N I A N

1. Summary. That a Taylor series which converges uniformly on the unit circle

C need not converge absolutely on C was proved by Hardy [2] (see also Landau

[4, p.68] for a simpler example, see Herzog and Piranian [3, Section 4 ] ) . The

present paper exhibits two functions that are schlicht on the closed unit disc, and

whose Taylor series converge uniformly but not absolutely on C. Each of the

examples satisfies an additional restrictive requirement: the first function has

only one singular point on C9 and the Taylor series

00

(1) Σ *kzmk

k = 0

of the second function has the property that lim(m&+i *"" mh) ~ °°

The condition that (l) represent a schlicht function and converge uniformly

but not absolutely on C imposes restrictions on the sequence of exponents \mk\

For the condition implies that Σ/£=o m^ | α& | 2 < °° (see Landau [4, p. 65]);

since, by Schwarz's inequality, we have

it follows that

00

(2) Σ l/mk - 0 0 .
k = o

It remains an open question whether the condition implies a restriction on

which is stronger than (2)

Received July 31, 1950.

Pacific J. Math. 1 (1951), 75-82.
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In the construction of both examples, the basic idea consists of the observation

that if

(3) h(z) = z + kail - (1 - z/co)1/n]

(where k is a real constant, | ω | — 1, n is a positive integer and the function

(1 — z/ω)ί/n is chosen to be positive when z — ω/2)9 then h{z) maps the unit

disc into a region which consists roughly of the unit disc with a tooth of length k

protruding at the point z — ω The tooth can be made arbitrarily narrow by choosing

n large enough. If additional terms are joined to the right member of (3), the map

of the unit disc by h(z) bristles with teeth; and if the lengths, widths and po-

sitions of these teeth are chosen appropriately, the Taylor series of h (z) con-

verges uniformly, but not absolutely, on C. The geometric and analytic motivation

for the devices that induce h (z) to satisfy the additional requirements will be

obvious from the text,

2. The first example. Let \φ j \ be a decreasing sequence of real numbers

(277> φί9 φ: —•> 0), and \ δy 5 a sequence of positive numbers such that the discs

I z — e ι w < δy are disjoint. For each index / , Ωy shall denote the complement,

relative to the disc \z\ < 2, of the union of the disc j z — e ί ιw | < δy and the

line segment z — reι<^J9 1 < r < 2 Also, for each index / , p; shall denote a real

number subject to the condition

(4) 1 < pj < 1 + δ ;/2

Nj shall denote a positive integer such that, for every pj satisfying (4) and

every ΠJ greater than Nj , the function

fj(z) Ξ l - (1 -z/oύjY'*)

{cύj — pjel(^j, (1 — z/ωj)ι/ni positive when z = ωy/2) satisfies the inequality

I fj (z) I < 2" ; throughout Ωy.

We now proceed to select the integers τij in such a way that, in a suitable

region about the origin, the series

00

(5) 2 + Σ COjfj(z)/j
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converges uniformly to a function which is endowed with the desired properties.

To this end, we define the numbers α m j by the equations

00

fj(z) = Σ amtJ(ze-^J)m ,
ί ϊ i = l

keeping in mind that at this stage of the discussion the numbers α m j must be

regarded as functions of the still undetermined constants pj and nj . It should

be noted that the amfj are all positive; that, for each fixed /, they form a de-

creasing i sequence whose first element is (p; nj) ι and that

(6) £ amiJ = fjie**') = 1 - (1
m = l

Let nι be an integer greater than 7VL and let pι be a real number satisfying

condition (4), and near enough to one so that (1 — l/pt)
l/ni < 2 ι . Once nv and

pv have been chosen for v = 1,2, * ,y" — 1, let My denote an integer so large

that

and let nj be greater than Nj and so large that, for all pj satisfying (4),

(8) Σ αuJ <2'i

m<Mj

finally, let pj be chosen near enough to one so that

(9) (1

Then the series (5) converges uniformly in some closed region whose interior

contains all points of the closed unit disc except the point z — 1. Its sum F(z) is

therefore continuous on the closed disc, and holomorphic at all its points except

at z — l The Taylor series Σ ^ = i α m z m of F {z) does not converge absolutely on

C; for
00

αα= Σ K A ) αn,ve-ιφ"* , m > 2,
v- 1
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and therefore

|α«| > a*,j/j " 2 Σ °>m,v

hence it follows from (6)—(9) that

Σ k|>r1-o(2"J").
Mj <m<Mj+ι

That Σ ^ = 1 CLmzm converges uniformly on C can be shown directly; but it will also

follow from the continuity of F (z) and Fejer's Theorem, once univalence has been

established (see Fejer [ l ] or Landau [4, pp.65, 66] ).

To establish univalence of the function F (z)9 it is sufficient to note that

(d/dz)ί- ωj

whence the argument of the quantity on the left is —(1 — 1/τij) arg(l — z/cύj);

since —"77/2 < arg(l — z/cύj) < 77/2, the real part of the derivative of ωjfj(z) is

positive throughout the open unit disc, and therefore 5RF' (z) > 1 when \ z\ < 1.

This implies that | FizJ — F(z2) | > | zγ — z2 \ for all pairs of points z t and z2

in the open unit disc; and because F(z) is continuous in the closed unit disc, it

is schlicht in the closed unit disc.

3 The second example. The schlicht function whose Taylor series has Fabry

gaps and converges uniformly but not absolutely on C is obtained from the first

example by simple modifications. Let

00

(10) G(z) ΞΞ z + Σ gj(z) ,
7 = 1

where

gj(z) ^kjz{l-ll-(z/ωj)PψΛi\;

the symbols ωy and Πj play the same role as in the first example; kj is a certain

real number; and pj is an integer, much smaller than rij For the sake of intuitive

clarity, it should be observed that the value of gj {z) is kj z when {z/ύύj)pJ = 1,
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and that it is small whenever | z | < \oύj \ and (z/cύj)pJ is very different from

one, A rough idea of the image of C under the mapping by G(z) can be obtained by

attaching to C a tooth of length ki at each of the points

z = ex P [ i (Φi + 2 π h / p 1 ) ] l h = 0, 1, 2, ••• ,p i - 1 ,

then adding further sets of teeth as dictated by the parameters k29 ω 2 , p2> and

so forth.

A rigorous proof that the parameters can actually be chosen in such a way that

the function G{z) is schlicht and will be schlicht after it has been modified

through the introduction of gaps in its Taylor series is based on the study of

Kι//'U), where

( I ω I > 1, p and n integers, 1 < p < n). If t = {z/ω)p, then

ψ'(z) = 1 + (I- t)1/nΛ(l + p/n) t - 1 ] Ξ Φ< t ) .

We wish to show that

(11) %ψ'(z) >-3p/n ,

In order to do this we shall prove that

(12) RΦ(t) >-3p/n , \t\ < 1,

Since Φ(ί) is holomorphic for | ί | < 1, t ^ 1, it will suffice to show that (12)

holds

(a) when t is inside the unit circle (of the ί-plane) and sufficiently near the

point t = 1;

(b) when 11 \ — 1, t φ 1.

Since the coefficients of the powers of t in the power series of Φ(ί) are all real,

we may restrict ourselves in (a) and (b) to values of t whose imaginary part is

nonnegative; if t has one of these values,

0 > arg(l - t) >-7τ/2 .

(a) Let t = u + iv, and consider those values of t for which

p

1+p/n ' ~V 2n2{l+p/n)
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We then have

and

r , x -, (1 +p/n)v p/2n2 π
0 < arg[(l + p/n) t - l] = arctan < < — ,

" (1 +p/n)u~l P/2n In '

whence R$(ί) > 1.

(b) Let t = e , where 0 < θ < π. A simple computation gives

» φ ( t ) = 1-^2 sii(1 3) »Φ(t) = 1 - (2 sin

(n + 1)0-77
sin h sin

In

?\1/n π -
= 1 — (2 sin - I cos2/ 2n

(2 sin — sin
2>

(bt) If 0 < θ < Ή/(Π + 1) then, from the second expression for RΦ(ί) in (13),

we have

> 1 - (2 sin <9/2)1/ncos[(τr - θ)/2n] > 0 .

(b2) If 77/(71 + 1) < 6* <77, then the content of the braces in the first expression

for 3lΦ(ί) in (13) is less than

(1 +p/n)(2 sin 0/2) cos [(77 - θ)/2n] ,

and hence

»Φ(t) > l - 2 1 / n ( l +p/n) > - 3 p / n .

This establishes the validity of (12), and therefore that of (11).

Now let

{pj] = \1, 2,2, 4,4, 4,4, 8,8, 8, ••• };
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kj = 1/py;

\Φj/2π] = {0, 0 , 1/4, 0, 1/16, 2/16, 3/16, 0, 1/64, 2/64, ••• } .

The choice of the parameters rij and pj is similar to the analogous procedure in

the first example. However, here we restrict ourselves entirely to the closed unit

disc and choose as the region Ωy the complement, relative to \ z\ < 1, of the

union of certain neighborhoods of the points

e x p [ ι ( φ ; + 2πh/Pj)] . /* = 0,1,2, ••• ,Pj - 1 .

These neighborhoods are chosen sufficiently small so that if a point z of the

closed unit disc fails to lie in Ωy , it lies in Ω r whenever r ψ /and pΓ = pj.

Furthermore, the indices ΠJ should be greater than pj and such that

00

Σ 1/πj < 1/8 .
7 = 1

In this manner we will again arrive at the result that the series in (10) converges

uniformly for z \ < 1, and that the convergence of the Taylor series for G(z) is

not absolute on z I — 1 because, as in the first example,

(14) Σ Wm\>kj -O(2~J)
MJ<m<MJ+1

and Σy°=1 kj = «>.

The function G{z) has all the properties that are required of the second ex-

ample (see Summary), except that it fails to possess Fabry gaps. In order to

introduce these, we replace each gj(z) by a partial sum SJ{Z) of its Taylor series.

Because the Taylor series of gj(z) and gj'(z) converge uniformly in the closed

unit disc, it is possible to choose the degrees Pj of the polynomials sy (z) large

enough so that

\gj(z)-S](z)\ <2~)

when I z | < 1 (this ensures uniform convergence of the series

00

S(z) =z + Σ sj(z)
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on the closed unit disc); so that

when I z \ < 1, and in turn

CO

nS'(z) > 1 - 4 Σ l/nj > 1/2
7 = 1

(this guarantees univalence of the function S(z) in the closed unit disc); and so

that the analogue to (14) holds for the Taylor series of S{z). The function S(z)

then has the desired properties.
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ON DEDEKIND'S FUNCTION η{τ)

WILHELM FISCHER

l Introduction, A transformation of the form

ar + b
(1.1)

CT -\- d

where α, b, c, d are rational integers satisfying

a b
(1.2)

c d
= ad — cb = 1 ,

is called a modular transformation. Without loss of generality we may assume

c > 0. A function /(r), analytic in the upper halfplane <St(τ) > 0, and satisfying

the functional equation

(i 3) f { ) ( ) f

\cr

is called a modular form of dimension k. An example of a modular form is the

discriminant

(1.4) Δ(r) = exp[2πir} Π (l "" exp{2ττmτ})24 ,
TO= 1

which is of dimension —12; that is, it satisfies the equation*

(1.5) Δ ( r ' ) = ( c r + ( ί ) 1 2 Δ ( τ ) .

An important role in the theory of modular functions is played by the function

( Ή i T ) °°
- — Π (1 - exp{2πιmτ}) ,

12 J m = i

Received June 12, 1950.

*Cf. Hurwitz [6] however, he gives this formula only in homogeneous coordinates.

Pacific J. Math. 1(1951), 83-95.
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which is the 24th root of Δ (τ) The transformation formula for this function may

be obtained from (1.5) and is conveniently written as:

(1.7)
cτ

Since we have assumed c > 0 and <&(τ) > 0, the radicand has a nonnegative real

part. By the square root we always mean the principal branch; that is, R(/~) > 0.

The € appearing in (1.7) is a 24th root of unity. The purpose of the present paper

is to determine this € completely.

Investigations concerning this root of unity were carried out first by Dedekind

[2] and later by Tannery and Molk [lO] and Rademacher [8; 9] However, they

use the theory of log T)(τ), which requires much more than is needed for this

purpose. Hurwitz discusses only [ Δ ( τ ) ] I / I 2 and remarks that the transformation

formula of T){τ) can be obtained by means of (9-functions. The investigations of

Hermite [5] are likewise not sufficient for our purpose, because he discusses

only 7]2(τ), and therefore a third root of unity remains still undetermined.

In the following, we shall approach the determination of 6 directly by investi-

gations of the function T}(τ), which, by a well-known formula due to Euler, can

be written as the following sum:

177" i T ] + n o

Σ H ) λ exP{τ7iτλ(3λ-l)ί
1 2 J \=-<x>

= Σ (-] exp
/ i\2

I 6/

Our starting point is formula (1.8); our principal tools are a Poisson transfor-

mation formula and Gaussian sums.

2. Application of a Poisson formula. We introduce a new variable z with

H(z) > 0 by the substitution*

(2.1) τ ' = — + - , c > 0 ; (α, c) = 1 ,
c c

* This requires c ^ 0, but the case c - 0 is trivial.
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and obtain, from (1.8)

(2.2) 7,/-+-^)= Σ H ) λ e x P

e x p 771 •

j mod 2c

J +

+ 00

x Σ eχp
q—— oo

3o/ IV

3772 /

- — \ 2 c q

To the inner sum,

+ 00

ft (z) = Σ e xP
g = - o o

we apply P o i s s o n ' s formula (cf [ l l ] ) ,

Σ exp{— 77 (m -ί-(x)2t| = — Σ
m=-C0 V * - = - c

— Ί \2

12c

77/n2

and obtain

Σ exP
. 6; - 1

12c 12cz

Putting this in (2.2), we get:

(2.3)
Ί +00

Σ eχp '
V3 CZ g=-00 12cz

Tq(c),

where

2
exp 77i

mod 2c 6c

1 ί α - 2 g ] Γ
= ~ exp77ΐ j 1 |_1 + exp 77i {3ac + c — a + q\\

2 I 12c J

R (ί) > 0,

X Σ e x p | — [3aj2 + J (c - α + g)] | .

But, α and c being coprime, and thus
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3αc + c — a = 1 (mod 2} ,

only the Tq with odd subscripts actually appear so that we have

(2.4) Γ2 r + 1(c) =expπi\—^ - I £ exp(— [3α/2 + j (c -α +1 +2r)]l
I 12c J J = 1 Ic J

In order to have a complete square in the exponent we multiply each term of

the sum by

exp7τi \j (c — 1 + 2 r ) | = expπi {jb(c + l ) ] .
I c J

As we do not wish to change 7^r+i by this multiplication, we have to assume

that, for c even, i also is even. Using the abbreviation

(2.5) β = cd + d ~ 1 ,

we obtain from (2.4):

/ x ία~4r—2 I JL ίπia Γ
(2.6) T2r+i(c) = expTii f ]Γ exp [36j 2 + 12j (ccί +cf-l

I 12c -'j^i 112c

α-α/3 2 -2 r
e x p 771 •

12 c 3c j

v ^ \ π i a

£ pli2c
In the sum appearing here, / can be taken as running over any full residue

system mod c, because β = c (mod 2) and therefore the sum remains unchanged

if j is replaced by / + c. Consequently, β can be chosen arbitrarily, mod 6, and

Γ2 Γ+1(c) can be simplified by the substitution r = 3μ + v* We note that

expTTij— (αd2r + adβ +
13c

= exp π£I — (3/xd + 3μbcd + 2dv + bcβ + cd + d)
[ c

V 1

{dv + bcdv + 6c/3 + cd + cί)
3c J
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and considering

exp{— uiμ (pβ+d + 3μ6d) ] = exp{~77 i

we obtain

87

exp {ττiμ] ,

= exp77i
αff2_vΓ f
12c 3 I c '

with the abbreviation

(2.7) ffβiC OS) =
mod

1 2 c

= c (mod 2) .

Looking back to (2.3), we see that the result we have obtained so far may be

written as:

/ x la lZ\ l

X

with

exp 77 i'
a-aβ2~2

12c

+ 00

e χ p 771
f 3d 0 d , Λ 3τ7
μ~ — μ2--μ(27.+l) « —

L c c J cz 6

These expressions are easy to sum, since, according to (1.8), we have

3d/ „ . μ\l 3τr/ . l ^ 2

e x p 1771 I μ — •

ίπid) I d i \
F l l 2 c J \ c czl

and, replacing μ by — μ — 1, we see that
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U1(z)=-U1(z), o r l / 1 ( z ) = 0 >

πι— j ί/0(z).

Now, by the meaning of z in (2.1), we get

d i -dr' + b
= τ

c C2 CT — a

and have therefore:

(2.9) η(τ') = — : exp77i
12c

X [Ha,c (β) ~ (d+2bd+bβ)

X

Comparing this with (1.7), we see that we have obtained so far:

η(r)

(2.91) e = J L exP77^
V3c

a(l-β2)-2+d

12c

exp 77 i
12

X -h

and it remains to be shown that this is a root of unity.

3. Reduction to Gaussian sums. The sums Ha c (β) which appear in (2.91) are

defined in (2.7) only for β = c (mod 2). In this section, however, it will be more

convenient to consider the more general sums*

* We have used the letters h and k instead of a and c in order to indicate that the
investigations of this section are independent from our previous results.
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(3-D Hk,k{y)=\ Σ expf^(6; +7)4 ,
2 j mod 2k l U k J

with no restriction on y . These sums can be expressed in terms of Gaussian sums

(3.2) G(h,k) = Σ

j mod k

Comparing the definitions (3.1) and (3.2) one finds immediately that

Hh,k (0) +Hhιk (1) +Hhιk (2) +Hhιk (3) + Hhιk (4) + ffM (5) = 7

fffc.fc (0) +fffc,* (2) +Hh)k (4) = i

fffc,fc (0) +Hh>k (3) = 7 G ( 3
4

If we consider that

nh,k ( - r ) = Hh,k (r) = flfc,t ( r + 6 n ) ,

we get the following relations:

(3.31) HKk(0)=]-G(3h,2k) ,

(3.32) Hh<k (3) = - G(3h, 8k) - - G(3h, 2k) ,

(3.33) ^ k (2) = ~ G(/ι, 6/0 - ~ G(3/ι, 2fe) ,

4 4

(3.34) tfΛ k(l) =~ G(h, 24k) ~ ~ G(3h, Sk) - - G(h, 6k) + - G(3/ι, 2fe) .
8 8 4 4

In order to obtain the sums Hh9k (y) explicitly, the following rules concerning

Gaussian sums may be useful,*

* For the formulas (3.41M3.47) see [ l ] or [ 3 ] ; (3.46) may also be found in [ 7 ] .
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As elementary consequences of the definition (3.2) we have:

(3.41) G(mh,mk) =mG(h,k) m > 0

(3.42) G{h,k1k2)=G(hk1,k2) G(/ιfe2,fe!) ( f e , , f e 2 ) = l

(3.43) G{m2h,k) =G{h,k) {m,k) = \

(3.44) G(h,m2k) = nιG(h, k) (m, h) = 1 * > 0 and odd.

The following results, due to Gauss [ 4 ] , are a little deeper:

( 3 . 4 5 ) G{hφ2ίk) = ί — j G(h2lk) (/»i/»2,*) = l , k odd

(3.46) G(l,k) = Vfe iH*-υ/aj k o d d

h odd , α = 1
(3.47) G(h, 2α) = 2f+1

The symbol I-7 I is the Jacobi symbol.

The following discussion may be restricted to the case y = k (mod 2), which

will be sufficient for our purpose. Furthermore, we put* throughout k — 1 kγ

{k 1 being odd), and have then to distinguish whether 3 does or does not divide

Assume first 3 | kχ> Then we find, using (3.41) and (3.44), that

(3.51) Hhιk (1) = 0 , Hhιk (2) - 0

and, applying (3.41), (3.42), (3.44), (3.45), and (3.47), we obtain:

(3.52) Hhιk(0) = 2 λ / 2 ί - ) exp f- nihk^h, 3kt) ,

(3.53) Hh,k(3) = expί-7rihfe| G(2h,3k) .

* We do this in order to avoid the reciprocity law for Gaussian sums which would
require additional distinctions concerning the sign of h.
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As a consequence of (3.46) we have:

e x p l — ( 3 f e - l ) 2 | = - V j f p ( |
I 8 J I 2 J

and therefore, according to (3.45),

G(2h,3k) = (^) G(l,3fe) = - ( γ ) >#" e x p f 1 ^ ) G(2/ι,fe)

This formula enables us to express (3.52) and (3.53) in the single formula:

/ x r λ/o / \ f i ( ) i h2-!

( 3 . 6 ) flί) ^ λ / 2 ( ) j ^ ^ + i λ

In caseS/fA;!, by use of (3.42) and (3.43) we can express the more complicated

sums //Λ,Λ(Ό and Hh,k(2) ^ϊ ^Λ,A(3) and ίfe^(O), respectively:

(3.71) //M (1) = exp{^ πihfej //Λ|ik (3) ,

(3.72) ffΛ|ife (2) = exp J - π ιhk\ Hh>k (θ) .

More generally, the following recursion formula holds:

(3.73) Hh}k (γ + 2n) = e x p j y {j + n) nhk^ Hhfk (y) .

In order to compute Hh9kW) and ^Λ,/c(3), we apply (3.42), (3.43), (3.45), and

(3.47) to obtain:

Applying this on (3.71) and (3.72), and considering

f4 3 1 \hk 3 , A
exp 77i j - hk + - hki\ = exp 77 i ] — + - h\kι — k ) \ ,

13 4 J 112 4 J
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we can combine (3.71) and (3.72) into:

(3.8) Hk.k (k) =

X exp 77 i
hk
—
12

* i - l . k2-l
λ-

8

4. Determination of the root of unity. Now we go back to our result (2.9) and

consider the following expression:

(4.D
z

v3c

X Ua,c (β) - (d

According to the results of the preceding section, we have to distinguish whether c

is divisible by 3 or not and to keep in mind that c — 2 c\9 ci odd.

Let us assume first 3 | c according to (3.51) we know that:

Ha,c (β) =Ha>c (dc +d - 1) = 0

Ha,c (β + id) = HafC (dc + 5d - l ) = 0

Therefore we have:

i f d ~-l (mod 3) ,

i f d = + 1 (mod 3) .

ff.,c (c)

Considering that

+ad+c) - c)]J =

and therefore that



ON DEDEKIND'S FUNCTION τ?(τ) 93

- (α-l) cx
Zi J

= expf— [(d-

Γ77i 1

= expj— c{d-a)\ ,

-c) - c(d~α)]

we get from (4.2) and (3.6):

(4.3) p = - L
a2-I

6 12 8

In case 3/f c, we can apply (3.73), which gives us

G ( 2 α , C l ) .

Ha,c (β + Ad) = a c d

= exp
f 2771 , J , .

j ~ γ - (bβ +2bd+d- c)] Wα,c OS) ,

and obtain from (4.1):

P = ~ = expjy ( l-d)(6 +α l - exp j] Ha,c (β)

Now we apply (3.37) once more, putting

Ha,c (β) = H0>c (c + β - c) = e x P { ~ (c +

- ( ^ - c 2 ) ac} ffβiC(c)

ac j HaιC (c)
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Using (3.8) and considering

^ (/32-c2) αcj

= expί^- [αc(c2-l)(d2-l) +2αc(oί-l) (ccί +d)]\

= exp[— (d-l)(bc+c+b+c2)\

(d-i)(6 + α d) - ί (d-l)(ca-l) +7 (cf-l)l ,
6 I 0 J

we see that the expression for p becomes again (4.3) Therefore, we have in all

cases:

(4.4) e = e x p 7 τ i | — [bd(l-c2)+c(a+d)]+a ^—- + \-
I 12 4 8 J

X - r z G(2a, c,) ,

with the only restriction that, for even c9 b also has to be even.

In order to show that our formula (4.4) holds even if this condition is not

satisfied, we put

' a τ + b
 A J J

T = , c even, o odd,
cr + d

CT + d

Then, for r*, formula (4.4) holds; considering

which is an immediate consequence of (1.6), we find:
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= e*η(τ) = exP{~) η(τf) = exp j^ j eη(r)

(4.5)
[πi]

Pll2J

Now, if we compute 6* by means of (4.4), and then e, using (4.5), the result will

be exactly the same as we get computing 6 directly by means of (4.4).

Finally, we can omit the Gaussian sums in (4.3) and, using (3.45) and (3.46),

obtain:

(4.6) •£)
X exp77i — [bd(l - c 2 ) +c(a +d)] +

1212 4 4 8

This formula agrees with the one given by Tannery and Molk[lO, p. 112] .
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THE HEAVY SPHERE SUPPORTED BY A

CONCENTRATED FORCE

WERNER LEUTERT

1. Introduction. In the linear three-dimensional theory of elasticity only a few

particular solutions are known which describe the action of a concentrated force

on an isotropic homogeneous solid. The fundamental particular solution which ex-

presses the displacement due to a force at a point within an indefinitely extended

solid was given first by Lord Kelvin [5] It was found again at a later date by

Boussinesq [ l ] along with other particular solutions which can be derived from it

and which lead to the solution of the problem of a concentrated force acting on an

infinite solid bounded by a plane, Michell [4] obtained the displacements and

stresses in an infinite cone acted on by a concentrated force at the vertex by using

Boussinesq's results. The solids considered by these authors all extend to infinity.

In this paper a particular solution describing the action of a concentrated force

on a finite solid will be considered.

2. The problem. Let there be given an isotropic homogeneous sphere of radius

α, which is supported by a radial concentrated force at the south pole. Our problem

is the determination of the displacement vector at any point of the sphere in the

case of equilibrium, that is, in the case in which the magnitude of the force

is equal to the total weight of the sphere,

3 General theory. In the linear theory of elasticity for an isotropic homo-

geneous medium, the components u, v, w of the displacement vector u with respect

to a cartesian coordinate system x9 y9 z satisfy the differential equations of Lame"

[ 2 ] ,

(1) Δu + Cί grad div u + /3X = 0 ,

where

Λ= — — —
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The vector X with components X, Y, Z respectively denotes the body force per

unit volume, and

λ +G
<x =

are two constants depending on the material considered. The first component of

(1) is given by

3 2 α
~ddy ~dd J

which explains the vector notation used. We restrict our attention to the physically

important case

1 < α , 0 < β

The components Fx , Fy , F z of the distributed force per unit surface area F which

is necessary to maintain the displacement u throughout the solid are given by

\
= ( — , n ) + — + ( α ~ l ) n, div u

(2)
/Bu \ Bi,

βFy=[ — , n + —
\ By / on

/Bu \ Bw;

\ όz I on

- 1) n y div u

^ , Tiy, nz are the components of the exterior unit normal n. The first line in (2)

may be written in the form

+ r*y + ^z Γ + nx

ox όx Ox ox

+ riy h π z \- (α — 1) nΛ

3 U dv όw
- j - -j

B x By B z
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4. Particular solutions when no body forces are present. Boussinesq showed

[ l ] that particular solutions of (1) for X = 0 may be obtained from a scalar func-

tion φ(x9 y9 z) by putting

^φ 3 φ Bφ ct + 1
(d) u=—— v=—— w=—r - Δ φ,

όό ^d ό Cί
v w

όχόz ^ydz όz

provided φ is a biharmonic function,

(4) Δ Δ φ = 0 .

Let

then

(5) φ = r

represents the action of a concentrated force in the z direction at the origin within

an infinite solid [5]

The function

(6) φ= z log(r + z) - r

leads to Boussinesq's solution [ l ] for an infinite solid bounded by the (x,y)-plane

and acted upon by a concentrated force at the origin in the z direction. Michell's

solution [4] can be obtained by a linear combination of (5) and (6).

The function

= ( r 2 - 3z2) lo g(r + 2) +3zr

was used by the author [3] to describe the displacements in a spherical shell

under concentrated radial forces.

Since for X = 0 the system (1) is linear homogeneous with constant coefficients,

particular solutions can be obtained from (5)—(7) by partial differentiation.

If (5) and (6) are differentiated with respect to z, two new particular solutions

(8) φ = - ,
r
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(9) φ= log(r + z)

result. From (9) the particular solution

1
(10)

r

can be derived, A linear combination of (10) and the derivative of (8) with respect

to z yields

(ID Φ = 4
r3

5 A particular solution for constant body force in the z-direction. If u, v9 w

are computed from

(12) <*= , ^ w , 7 V T [ - ( 2 C C - 1 ) r * - 6 r 2 z 2

64 77(α + l ) ( 3 α - l ) α 3

+ (4α + 7) z 4 - 16(α + l ) az3 + 8(α + l ) ar2z ] ,

according to (3), it can be verified that (1) is satisfied for

3P

(13) X = Y = 0, Z =
4τ7"α

Equation (4) is no longer valid for the φ of (12).

6. Solution of the problem. The south pole of the sphere is taken as the origin

of the coordinate system, with the z axis directed vertically upward. The sphere is

then represented by the equation

(14) r 2 < 2αz .

The components of the exterior unit normal n are

anx = x , any — y , anz — z — α .

It can be verified that the function

(15) φ= , \ f — - [ - ( 2 α - l ) r 4 - 6 r V
64TT((A + l ) ( 3 α - l) a3
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+ (40C + 7) z 4 - 16(α + l ) az3 + 8(α + l ) ar2z ]

Pβ
+ r ό [ 9 ( α + l ) z r 4 ~ 12(2α + l ) α r 4

96 π (α + l ) α r 3 L V V 7

- 4 8 α α 2 z r 2 + 16 (α. - l ) «3 r 2 + 16αα3 z 2 ]

satisfies (1) provided the body forces are distributed according to (13). The par-

ticular solution (14) consists of a linear combination of (5)—(11) added to (12). On

the surface of the sphere r2 = 2az it is found that the distributed force F per unit

surface area (2) vanishes on the whole surface except at the origin, where the

particular solution (15) has a singularity.

Because the resulting body force must be in equilibrium with the resulting ex-

terior force, it follows from (13) that the latter is radial upward and of magnitude P.

Since φ in (15) possesses a singularity at the origin, the corresponding dis-

placements and stresses will be infinite at that point. To avoid this difficulty we

can imagine the material near the origin cut out and the concentrated force P

replaced by the statically equivalent forces distributed over the surface of the

small cavity.

The displacements belonging to (15) can be computed by using (3).
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ON THE DEFINITION OF NORMAL NUMBERS

IVAN N I V E N AND H. S. Z U C K E R M A N

1. Introduction, Let R be a real number with fractional part . ^ ^ 2 ^ 3 * * ' w hen

written to scale r. Let N(b,n) denote the number of occurrences of the digit b in

the first n places. The number R is said to be simply normal to scale r if

(1)

for each of the r possible values of b R is said to be normal to scale r if all the

numbers R,rR,r2R, are simply normal to all the scales r,r2,r3, . These

definitions, for r = 10, were introduced by Emile Borel [ l ] , who stated (p.261)

that "la propriete' caracte'ristique" of a normal number is the following: that for

any sequence B whatsoever of v specified digits, we have

where N(B,n) stands for the number of occurrences of the sequence B in the first

n decimal places.

Several writers, for example Champernowne [ 2 ] , Koksma [3, p. 116], and

Cope land and Erdos [ 4 ] , have taken this property (2) as the definition of a normal

number. Hardy and Wright [5, p. 124] state that property (2) is equivalent to the

definition, but give no proof. It is easy to show that a normal number has property

(2), but the implication in the other direction does not appear to be so obvious. If

the number R has property (2) then any sequence of digits

B = 6 χ 6 2 • • • & „

appears with the appropriate frequency, but will the frequencies all be the same

for i — 1,2, , v if we count only those occurrences of B such that bγ is an

i, ί + v, i + 2v9 -th digit? It is the purpose of this note to show that this is

Received August 14, 1950, and, in revised form, November 22, 1950.
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so, and thus to prove the equivalence of property (2) and the definition of normal

number.

2. Notation. In addition to the notation already introduced, we shall use the

following:

S α is the first CC digits of R.

BXB is the totality of sequences of the form bγb2* ' * bvxx χbίb2 * * * bv,

where xx * * x is any sequence of t digits.

λj(θc) is the number of times that B occurs in S α with bι in a place congruent

to ί(mod v).

1=0

#£ (α) is the number of occurrences of BXB in S α .

* i f J (α) = fci(α) - fc j (α) , i ^ J -

S is any block of digits of length from υ Ί~ 1 to 2v — 1 whose first t> digits

are B and whose last t> digits are B. Such a block need not exist.

3. Proof. We shall assume that the number R has the property (2), so that we

have

(3) lim

and

(4) l i . '-

for each fixed ί, and we prove that

K3 (n)
(5) lim — = 0 ,

π-oo n

from which it follows that R is a normal number.

Now Aj (α* + s) ~ A;j(α) is the number of B with bγ in a place congruent to

to £ (mod v) that are in S<χ+S but not entirely in S α . Therefore
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j
i=0, 1, , v-2

jf = l , 2 , , v - l

counts the number of BXB and β* that occur in S α + S such that the first B is not

contained entirely in S α . Here the number t of digits in X runs through all values

pO(mod v) with 0 < ί < s — ι> — 1. We take n> s and sum the above expression

to get

α=o . i<j
i=0, 1, ,v-2

jr =1, 2, ,v- l

Considering Sn and any BXB contained in it with t < s — v — 1, we see that BXB

is counted in σ a certain number of times. In fact if BXB is not too near either

end of Sn it is counted just s ~ t ~ t> times and it is never counted more than this

many times. Furthermore if BXB is preceded by at least 5 ~~ t ~~ 2v digits and is

followed in Sn by at least s — t — υ — 1 digits then BXB is counted exactly

s ~~ t ~ v times. Therefore we have, ignoring any B blocks which may be counted

by σ,

s-v-l

(7) σ> Σ (s-t-v)\θt{n-s)-θt{s)\.
ί=o

Using (4) we find

for any fixed s; hence, from (7), we have

σ s'v~1 I
lim - > Y (s ~ t - v ) ~— .

It is now convenient to take s, which is otherwise arbitrary, to be congruent to



1 0 6 IVAN NIVEN AND H. S. ZUCKERMAN

0(mod v). Then the above formula reduces to

(8)
σ ( v - l ) ( s - v ) 2

lim — > —
n-co 2v -2v '

In a similar manner we count the BXB in Sn where the number t of digits of X

is congruent to 0(mod t>) This gives us

im- Σ Σ \
α=o i=o

Now, by (3) we have

-i n-s v-1

im — > > U

α=o i=o

and (9) reduces to

Σ
v)

= l im
oo

Δn α=n-s+l

(10) Σ Σ {ki(
α=o i=o

From (6), (8), and (10) we find that

2v

α=o

s s \

r

n α=o
i=Q, 1, ,t/-2
j = l, 2, , v-l

( v — l ) s (v — l)(s — v)

for any fixed s = 0(mod υ) Using the inequality
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Σ *\>-
1 = 1 1 = 1

we obtain

Σ
α=o

n - s + 1

1

n - s + 1

1

n - s + 1

This with (11) implies

n-s

Σ
oc=o

n~s

Σ
α=o

s - i

s - l

α=o

(12) lim
"-*00 n(rι - s + l )

ι<7
ί = 0, 1, , v-2
7 = 1, 2, , v-1

Σ khJ(n-a)- Σ *i,y(α)
α= o α= o

|

(y -

From the definition we have kij(u) | < (X and hence

l im
"- 0 0 n(n - s + l )

s - i

α=o

and

lim V hi Ί- (n - α) T fei v (α) = 0

for fixed s.
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Therefore (12) implies

1 _
lim
"- 0 0 n(n - s + 1)

j

i-0, 1, , i>~2
; = 1, 2, , v - l

s - ί

Z * 1 > J >•
α=o

• + •

which can be written in the form

1 _
l im

ω n(n -
α=o7

i = 0 , 1, ,v~2

; = 1, 2 , , t / - l

|

But I ki9j(n — a) — kifj{n) I < 2α so that this implies

{fei7 (n)

i = 0 , 1, , ι / - 2
; = 1, 2 , , v - l

. ι

(v-ϊ)(s-υ)

or

n(n-s+l) s2r2v

i = 0 , 1, , v - 2
J = l, 2, ,v-l

From this we have

l im — l i m + •
s2r2v

for any fixed s — 0(mod v) Since the right member can be made arbitrarily small,

we have



or
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lim = 0

ki(n) _ _ kj(n)
lim — lim
n-*co n n - oo n
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COMPLETE MAPPINGS OF FINITE GROUPS

L. J. PAIGE

l Introduction. A complete mapping of a group, loop, or quasigroup G is a

biunique mapping x—> θ{x) of G upon G such that x X θ(x) = Ύ] (x) is a biunique

mapping of G upon G This concept was introduced by H.B.Mann L3J other

applications have been indicated by R.H. Bruck [2] , and Paige [6] However,

the determination of all groups which possess a complete mapping is still an

open question. For abelian groups and groups of infinite order the problem has

been answered in [ l ] and L5]

The first part of the present paper considers the question of complete map-

pings for finite non-abelian groups; the latter part is devoted to an application of

complete mappings in the construction of orthogonal Latin squares.

2. Complete mappings. We shall consider finite groups G written multiplica-

tively, the identity element being gx = 1. A group G will be called an admissible

group if there exists a complete mapping for G; otherwise G is said to be non-

admissible.

It should be noted that all groups of odd order are admissible by letting

θ(x) = x.

THEOREM I* A necessary condition that G be an admissible group is that

there exist an ordering of the elements of G such that gι X g2 ^ # " * ̂  gn = l

COROLLARY. If G is an admissible group9 the product of the elements of G

in any order is an element of the commutator subgroup of G.

Proof. Assume that x —> θ{x) is a complete mapping for G. Without loss of

generality we can take θ(l) — η ( l ) = 1. Now consider g2 X Θ{g2)\ here g2

l

Φ ^(g2)> s o t n a t @(g2J~l occurs among the remaining elements of G. Then let

^ Q ^ ) " 1 ~ g3 a n d form the product g2 X $(#2) * #3 * &(&$)• ^ e continue in this

manner and ultimately reach a product

(l) g 2 xθ(g2) x g 3 x # ( g 3 ) x ••• x g s xθ(gs) = 1,

Received October 16, 1950.
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where Θigi-J = gjι{i = 3, , 5) and θ(gs) = g2

ι.

If s < n, we repeat the process beginning with g s+1 X $(gs+i) and finally we

arrive at a series of cycles similar to (1) whose product is the identity. Thus,

7?(gi) X 7?(#2) X* X v(gn) ~ 1> completing the proof and yielding the corollary

as a consequence.

We note that in the cycle represented by (1), the elements

g 2 X # ( g 2 ) X ••• Xgi X 0 ( g i ) = η ( g 2 ) X •••

are all distinct; for the equality of two such products would imply θ(gι) = θ(gj )

or i — . Hence, we have the following result.

THEOREM 2 A necessary condition that G be admissible is that there exist

an ordering of the elements of G into subsets, such that in each subset, the

elements

(2) gi2, gi2 X g i 3 , •••, gi2 Xgi3 X ••• X g i s = 1

are all distinct.

In the most favorable case where G possesses a single subset of n — 1 non-

identity elements which satisfy condition (2), we may prove that G is an admissi-

ble group To do this, let g2 be the element that is not represented in the set of

elements (2). Construct the mapping θ(χ) as follows: (9(1) = 1, θ(g2) is the

solution of the equation g2 X x — gi2f and successively let gi+x = θ(gι) *, and

let 0(gι+i) be the solution of the equation gi+χ X x — Si{+i ^Π the θ(x)'s are

are distinct and different from 1; for if <9(g&) = θ(gs), k ψ s9 we would have

g2 Xθ(gk) =gi2 X ••• X g π =Zi2

 X ••' XZis =82

the inner equality being contrary to hypothesis for k ψ s. Moreover if #(gfc) = 1,

we would have g2 — gi2 X X gik, contrary to the selection of g2 Thus, we

have proved the following theorem.

THEOREM 3. A sufficient condition that G be an admissible group is that

there exist an ordering of the nonidentity elements of G, such that the elements

g 2 X ••• X g i f o r ( i = 2, •••, n)

are all distinct and g2 X X gn = 1.

For abelian groups, Theorem 1 is also a sufficient condition that G be admis-

sible and we conjecture that this is likewise the case for non-abelian groups.
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However, the best we have been able to prove are theorems of the following type.

THEOREM 4. Let H be a normal subgroup of G. If G/H admits a complete

mapping θγ, H a complete mapping θ2, then G is an admissible group.

Proof. Let G/H = K, the elements of K being e, p, q9 . Let Up be an

element of G that maps upon p C K. Every element of G has the form up X h or

h X Up, where p £ ! K, h C H. The equality of Up X λ and UqX h' implies

p — q and h = h'.

Define <9(wp X A) = #2(W w#t(p) Obviously this mapping is biunique of G

upon G. Consider

(3) up Xh X (92(/ ι)u5 l ( p) = ug/ι'<92(/ι')u<9l((j) .

This implies

XH OΓ Up^θ^p) X # = "gX0i(g) X # »

whence p X ^i(p) = ^ X 6^ (g) or p = q, since 0 t is a complete mapping for K. It

then follows from (3) that h — h' and θ is a complete mapping for G.

THEOREM 5. If G is a group containing a subgroup H of odd order such that

G/H is a nonadmissible abelian group, then G is nonadmissible.

Proof. If G/H is a nonadmissible abelian group, G/H possesses a single

element of order 2 [6; p . 4 9 ] . Let this coset be g2 X H. Considering the product

of the elements of G modulo H9 we have H?=igι — g2 m°d H Since g2 is not in

H9 the product of the elements of G in any order is not in H. However, H contains

the commutator subgroup of G and it follows from Corollary 1 of Theorem 1 that G

is not admissible.

The two preceding theorems may be used to establish the admissibility or

nonadmissibility of many groups. Often it is necessary to develop other tech-

niques, as for example in groups of order 2". Here we are able to argue modulo

the commutator subgroup and establish by mathematical induction the admissi-

bility of those groups whose commutator subgroups are not cyclic. The remaining

cases have been analyzed by Bruck and found to be admissible except in the

obvious case where G is cyclic of order 2n.

3. Orthogonal Latin squares. Recalling the definition of a Latin square [ 3,

p.418] ,we see that the multiplication table of a quasigroup, loop, or group G is
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a Latin square. Indeed, any Latin square of order m may be used to define a

quasigroup of order m. Mann L3, 4j has shown how Latin squares, orthogonal to

a group G, may be constructed by means of complete mappings. (A Latin square L

is said to be orthogonal to a group G if L is orthogonal to the multiplication table

of G.) We may extend these results in the following manner.

For convenience we shall assume henceforth that the elements of a group or

quasigroup G are 1,2, , n.

THEOREM 6. Let G be a quasigroup. Let θi, θ2, * * * , θn be n complete

mappings of G with the following property*

( 4 > *i(g)M (s), for i ϊ j , all g € G.

Construct a Latin square S by placing j in the kth row and θj (k)th column. Then

S is orthogonal to G.

Moreover, all Latin squares S, orthogonal to G, may be represented in this

manner.

Proof. Obviously the square S is a Latin square and it is orthogonal to G

since the number pairs [k X θj (k)9 /] assume n2 distinct values.

Conversely, let S be any Latin square orthogonal to G. Let / occupy the row

and column positions (1, ijt\)y * * * > (n9 ijfn) i*1 5, where (ij9\i * * # > ι/,n) is> °f

necessity, some permutation of (1,2, , n) Let θj (k) be defined by θj (k)

— ijtk The assumption that k X θj {k) "= h X θj (h) ~ m for k φ h leads to a con-

tradiction, in that the number pair (m, j) would occur twice in the orthogonal Latin

squares G and S. Since iτ^ ψ iSi\i for r ψ s, property (4) is satisfied, and this

completes the proof.

Although anticipated in part by Theorem 2 of [3] , we may improve upon the

previous result for a group G.

THEOREM 7. A necessary and sufficient condition that there exist a Latin

square orthogonal to a group G is that there exist a complete mapping θ(x) for G.

Proof. The necessity follows trivially from Theorem 6. The sufficiency is

evident from the fact that, given one complete mapping θ(x) of G, we may define n

complete mappings of G satisfying (4)by letting θ(x) X i = #i(%), i ~ 1,2, , n.

A more convenient method of obtaining a Latin square orthogonal to a group G

is to apply the following theorem.

THEOREM 8. Let G be a group, θ(x) a complete mapping for G. Construct a
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Latin square S as follows: In the ith row and kth column place i X k X θ(k) Then

5 is a Latin square orthogonal to G,

Proof, Trivially, S is a Latin square. In the orthogonal squares the number

pairs are [i X k, i X k X θ(k)] and every pair (r, s), (r,s = 1,2, , n), exists

since the equations i X k — r, i X k X θ(k) — s have a unique solution. Thus the

Latin square S is orthogonal to G.

Theorem 8 is a variation of the method employed by Mann [4, p. 253] and is

simpler to compute.

The problem of finding more than two mutually orthogonal Latin squares has

its basis in investigations of finite plane geometries [4] and nets [2] . Theorem

6 yields easily formulated but involved results in this connection. The repre-

sentation of Theorem 8 yields more interesting results. Consider the case of two

Latin squares Sι and S2 represented in the manner of Theorem 8 and orthogonal

to a group G. Then 5 t will be orthogonal to 52 if and only if the number pairs

[ι Xk X0i(ft), i Xk X 0 2 ( Ό ] (i.fe = 1.2, ••• , π )

take on every value (r, s), (r, s — 1,2, , n). Hence, we can conclude immedi-

ately that a necessary and sufficient condition for Sι to be orthogonal to S2 is that

the equation

(5) r XfliOO"1 - s Xθ2(k)~1

have a unique solution k for all pairs (r, s). The generalization to any number of

mutually orthogonal Latin squares of this type should be apparent.

We note from (5) that if θ2 (x) — θ\ (x) X % is a complete mapping, our condition

is trivially satisfied. In the case that G is abelian of order 2n(n > 1) and every

element of order 2, Θ2(x) ~ θγ (x) X x is a complete mapping. Thus for this group

it is always possible to find at least two Latin squares mutually orthogonal to

G. This brings us to an interesting question that we have been unable to answer:

For a given group G, what is the maximum number of mutually orthogonal Latin

squares orthogonal to G?

In conclusion, we would like to conjecture that there exist no Latin squares

orthogonal to a symmetric group.
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ON A TAUBERIAN THEOREM FOR ABEL SUMMABILITY

OTTO SZASZ

1. Introduction. In 1928 the author proved the following theorem [2, Section

2 ] :

T H E O R E M A. If p > 1 and

n

(1.1) Σ v P l«vl P =0(n) , n - ^ o o ;

then Abel summability of the series Σ n = 0 an to s implies its convergence to s.

The theorem is the more general the smaller p is; it does not hold for p — 1

[2, Section 1; 1, pp.119,122]. However, for this case Re'nyi proved the following

theorem:

T H E O R E M B. //

i n

l im ~ Σ ^ | α v I = / < 00

exists, then Abel summability of Σn=0 an to s implies convergence of the series

to s.

2. Generalization. We give a simpler proof and at the same time a slight

generalization of Theorem B

THEOREM 1. Assume that

n

(2.1) Vn= Σ v\av\ =0(n) ,

v- 1

and that

(2-2) I y . - ί ,„_><>,
m n

Received April 10, 1950. The preparation of this paper was sponsored (in part) by the
Office of Naval Research.

Pacific J. Math. 1(1951), 117-125.
117
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for every sequence m — mn9 such that mn/n —> 1 as n —> °°. Then Abel summa

bility to s of ΣΛ=o an implies its convergence to s.

Property (2.2) is called slow oscillation of the sequence Vn/n.

Proof of Theorem 1. We write

n n

v=0 v-0

It is easy to verify that, for k — 0,1,2, , we have

(2-3) an_l-Orn+k=-JL-<fra.k-trn_l)-1±.-i (k + 1 - v)

It is known [see 2, Section 2] that if for a finite s we have

00

lim Σ anχΓl = 5 ,

then (2.1) implies σn —> s thus, if

(2.4) l . u . b . Iσ^.! — σn+k I = en ,
k>o

then en —» 0.

We now choose

(2.5) k =kn = [ne π

1 / 2 ] , so t h a t us < π e ^ 2 < k + 1

it follows, in view of (2.4), that

k + 1

In view of (2.3) our theorem will be proved if we show that

1 k

1
0 , π —> oo #
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Now

1

k + 1

+
(" + V) W

o

k + 1 - v 1 . ,
< - {Vn+k - V B - ! ) ,

n + v n

and

(2.6)
1
~
n

+ fe ft - 1
Γ

n + k n n — 1

} k Vn+k |

n -\- k n — 1 n π + f e n n ~ " l

using (2.2) and (2.5), we see that

(2.7) - (Vn+k - K π _ 1
as —

π
0 and π

and thus Theorem 1 is proved.

Re'nyi observed that the Theorems A and B are overlapping. We now show that

Theorem 1 includes not only Theorem B,but also Theorem A. Clearly (2.1) follows

from (1.1) by Holder's inequality. Furthermore,

n+k

vn+k-vn= Σ v H <
I n+k

Σ
\v=n+l

l/p

= k(P-i)/p 0[(n

hence,

~Vn)=-0 (fl -°[(Γ 0 as > 0 .
n

It now follows from (2.6) that (2.2) holds; thus (1.1) implies (2.1) and (2.2), which

proves our assertion.

An example of a sequence Vn > 0, and increasing, for which (2.2) holds,
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while n~ι Vn t oo, is

Vn = n log n , n > 2 ,

because

n + k n \ n) n

3. A more general result. A generalization of Theorem A is the following

[see 5, p.56] :

THEOREM A ' . If for some p > 1, we have

(3-D Σ ^P(kl ~ O P =0(π) , n - ^ oo,
v-\

then the Abel summability of Σ^=o an implies its convergence to the same value.

An analogue to Theorem 1 is the theorem:

THEOREM 2 Assume that

n

(3.2) un = Σ W k l - α v ) =O(n) ,
2 ^ = 1

αAiG? that

1 1 m
(3.3) -Vm~-Un—>0 as > 1 , n —> oo .

m n n

If now Σn=0 an is Abel summable to s, then it converges to s.

Proof of Theorem 2. We have

n n

hence [see 5, the Lemma on p. 52] Abel summability of Σ^=o an implies its

summability (C,l). From (2.3) we have
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sn-l n+k T

k T 1

1 k

κ τ χ £
from (2.4) and (2.5) we obtain

fe + 1
en

1/2

Using the same argument as in the proof of Theorem 1, replacing Vn by Un, we

find that

(3.4) lim sup sn < s .
π-oo

We next employ the identity, similar to (2.3),

1
+ T T T Σ (fe ^ v ) απ-v, k = o, l, 2, ,

and the inequality

av >. av ~~ \av I

The same reasoning as before now yields

(3.5) lim inf sn > s .

Finally (3.4) and (3.5) prove Theorem 2.

It is clear from the proof that condition (3.3) can be replaced by

as
n

4. An equivalent result. A glance at the proof of Theorem 1 shows that the

following lemma holds:
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LEMMA l // Vn is positive and monotone increasing, and if

(4.1) Vn = 0{n) , as n —> oo ,

and (2.2) holds, then

1 , N m
(4.2) - ( ^ - V n ) — » 0 , as »1, n^oo.

rc n

We now prove the inverse:

LEMMA 2. // Fn > 0, and increasing, and if (4.2) holds, then (4.1) and (2.2)

Proof. We write

Kι = n ω π , ωn > 0 ,

and

(4.3)

Let

~Vn) = ω l ι - ω n + ( - - l

max ω v -

then pn

/ϊp<C0 ltp<CC9 then FR = O(τι). Suppose now that p — o°; then there

are infinitely many indices m — /ŵ  , so that ωm — pm for m — m^ ,v— 1,2,3, ••

For these m and for n < m, from (4.3) we get

(44) ft K)

We now choose

so that

Pm
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then, using (4.4), we have

1
" (Vm ~Vn

1/2

n

in contradiction to the assumption (4.2). It follows that (4.1) holds; finally (2.2)

follows from (4.1), (4.2), and (4.3). This proves Lemma 2.

We now prove the following theorem:

T H E O R E M 3. Let Un — Σ J = 1 v{ I a v I — av)\ if

- ' - )—> - —> —>oo
n n

and if Σ^=o an is Abel summable9 then Σ^=o an is convergent to the same value.

Proof of Theorem 3. In view of Lemma 2, Theorem 3 includes Theorem 2; it

also includes Theorem 1, because of Lemma 2, and of the inequality

Um~Un<2(Vm ~Vn) , m>n.

Conversely, by Lemma 2, (4.5) implies (3.2) and (3.3), so that Theorem 3 is

equivalent to Theorem 2, and is thus valid.

To show that Theorem 1 is actually more general than Theorem B we give an

example of a sequence ωn so that nωn is increasing, ωn is slowly oscillating

and ωn — 0(1), but lim ωn does not exist. Let

n

ωn — Σ v~lev i where ev = ± 1 ;
v-\

choose £ v — + 1 as long as ωn < 3; v — 1, 2, , n u say. Choose ev — —\ as

long as ωn ί> 2; v — 1 + n\9 2 + n\9 * * , 2̂> s a y? a n ( l s o o n ^ is clear that

ωn — 0(1), and that lim ωn does not exist. Furthermore, for n < ^ ! , ω Λ t , for
Λ ι ^ ^ ~ 2̂> ω n ^ > a nd so on. Now

(n+l)ω ~nω = n(ω ~ ω ) + ω > - - ! = -

hence nωn t . Finally

Λ 1 TO - n m
£ o r

V
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hence ωn is slowly oscillating.

5 Another equivalent result. We first establish the following lemma.

LEMMA 3. Suppose that Un > 0 and increasing, with UQ — 0, and let

(5.1) bn = ~ (t/B - t/ n -i) , n > 1 , b0 = 0
n

n
(5.2) Bn = 2 6 V > π > 0 .

v = 0

Then whenever k — A (τz) is so chosen that k/n—*0, as n >0°, the two statements

(5.4) Bn + k-Bn—>0

are equivalent.

Proof. From (5.1) we have

n n+k

Now

V-̂  1 x-^ 1 / \

Bn+k~Bn= Σ ί > v < - Σ vbv=-(Un+k-Un);
v=n+l n v=n+l n

thus (5.3) implies (5.4). Furthermore,

1
Bn + k Bn > Γ (tfn + fe

n -f k

hence (5.4) implies (5.3). This proves the lemma.

We note that
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and

n - l

Un = nBn ~" X

It is an immediate consequence of Lemma 3 that Theorem 3 is equivalent to

the following theorem (for a direct proof see [4, Theorem IV] )•

THEOREM 4. //

π + fe

\a>v I — av) — > 0 , as — —> 0 • o o
n

then Abel summabilitγ of Σ w = 0 an implies convergence of the series to the same

value,

A generalization of this theorem to Dirichlet series and to Laplace integrals,

on different lines, is given in [ 3 ] .
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CLASSES OF MATRICES AND QUADRATIC FIELDS

OLGA TAUSSKY

l Introduction, in a recent paper [ l ] a correspondence between classes of

matrices with rational integral elements and ideal classes in algebraic number

fields was discussed. This is now studied in more detail in the case of quadratic

fields. In particular the ideal classes of order 2 are discussed and the significance

of the sign of the norm of the fundamental unit in real quadratic fields is displayed

in an example; further results in this connection will be published elsewhere,

ί'Όr completeness the result of [ l ] is repeated:

Let fix) ~ 0 be an irreducible algebraic equation of degree n with integral co-

efficients, Gv one of its algebraic roots, A — (α/^) an n X n matrix with rational

integers as elements which satisfies fix) = 0, and S a matrix with rational integers

as elements and determinant ±1. It was shown that the matrix classes S ιAS are

in one-to-one correspondence with the ideal classes in the ring generated by Cλ

The correspondence can be expressed in the following way: If Cί15 , Cin is a

module base for an ideal in the ring and A the matrix for which

U) cc(cίi , ••• , an) = 4 ( α i , ••• , ocπ)

then the ideal class determined by ( α 1 ? , αΛ) corresponds to the matrix class

determined by A .

2. Inverse classes. Let m be a square-free positive or negative integer. Con-

sider the quadratic field generated by mi/2 or (1/2)(—1 + mι/2) according as

tn = 2, 3 (l) or =1 (4). The first result to be proved is the following.

THEOREM l The inverse of an ideal class corresponds to the class deter-

mined by the transpose of the matrix class which corresponds to the ideal class.

Proof. We treat the two cases separately.

(a) The case π\ ~ 2, 3(4). Here choose U— m 1 / 2 . Let (λl5 Gί2 be a module base

for an ideal α. If

OCj = a + bmϊ/2 , &2 = c + dm 1 / 2

RecoivcΛ July 1 1, 1950.

Pacific /. Math. \ (]O5!) f 127-132* 127
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then norm (α ί9 α 2 ) = | ad — be |. Put ad -^ be — Δ. On the other hand, norm α

— OC 0C; when OC' is the conjugate of CC hence,

norm α = [b2m — a2 , d2m — c2 , ac — bam — Oί(ad — be) ,

ac — bdm -f \χ(ad — 6c)] .

In order to find the matrix

which corresponds to the ideal α, we use the fact that

CίCli = bm + αGC = kχ(a + 6α) + λ 2 (c + da) ,

ccα2 = dm + ca = μι(a + 6α)

Hence,

λ2

αc α
2 ~ 62m *

Δ Δ

d m — c ac — bdm

Δ Δ

The elements in this matrix are rational integers.

The ideal which corresponds to the transpose of this matrix is, by (1),

ac ~~ bdm ,2m- a2

\ ad — be ad — be J
which is equivalent to

6 = [ac — bdm — 0>{ad — be), b2m — α ] .

It will now be shown that this is an ideal inverse to α. For this purpose we

show that the product oh is a principal ideal, namely, the ideal (ad — bc)^ . For,

ctb = {[ac — bdm — Cί(ad — 6c)](λi, [ac — bdm — a(ad — 6c)]cc 2 ,

(b2m ~ a2)au (b2m - α 2 ) α 2 | .

The number (b2m— a2) σt2

 c a n be expressed in the following form:

~ (6m.1/2+ a) (a - bml/2) (c + dm1/2 ) = - C(i [αc — bdm + ϋt(ad ~ bc)\ .
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Similarly,

[ac — bdm — Oί(ad — be)] Cί2 ~ (d2m — c2) α t .

Hence, it follows that

cio — α.1 norm α .

(b) Case m = 1 ( 4 ) . Here we choose α = ( 1 / 2 ) ( - 1 + m 1 / 2 ) .

Let

2 α ~ b bm
4

l/2

129

Then

2c - d dmV2

α2 = c + du = -f

m-l
norm O*\ — a{μ—b) ~ b2 , norm Cί2 = c(c — d) —

m-l

m- 1
norm α = [norm (λι , norm tt

2
 > a(c — d) ~ bd -f a(bc — ad),

a(c - d) ~ bd — a(bc - ad)].

4

It follows that

= 6 + α(α - b) = λχ(α + 6α) + λ2(c + cfa) ,

αcc2 = J + a(c — d) = μι(a + 6α) + /χ2(c + oία) .

Hence,

n ^ \
c ( α - 6 ) d2 -

4 4

\
c - d ) \

Δ Δ

1

V

, v o /Λ 1 . .

α(α - 6) - b2 a(c ~ d) - bd

Δ Δ
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Again, all the numbers in this matrix are rational integers.

The ideal which corresponds to the transposed matrix is equivalent to:

6 = α(c - d) - bd ~ Cί(ad ~ be) , a (a ~ b) - b2 ,
1 4 4 J

The product ideal α£> is again shown to be the principal ideal {ad —

For it is

\( \ / x nι - 1 / NI

\{0iι norm Oti , α 2 n o r m aΐf <Zχ \a{c — d) — bd — 0\ad — bc)\ ,

I L 4 J

α2 \a(c - d) ~ bd O.(ad - 6c)]l.
L 4 JJ

We have

GC2 norm αi = (α +bίί)(a -\- b(λ')(c +

where ct' is the conjugate of Cί Further,

[_2α -f 6 (~~ 1 m
(α + 6 α ' ) ( c + dcί) =

= a(c - d) ~ bd + a(ad — be) .

Similarly,

Γ . m - 1 1
α 2 α(c — c/j — 6d (λ(αd — 6c) = Ccj norm Cί2 .

L 4 1
This shows that again, Ctfe — 0C j norm Ct.

3 Classes of order two. From Theorem 1 it follows that a matrix which cor-

responds to an ideal class of order 2 is equivalent to its transpose. The question

arises, when does the class to which this matrix belongs contain a symmetric

matrix? A result in this direction is the following.

THEOREM 2. A matrix class which corresponds to an ideal class of order two

contains a symmetric matrix if and only if every matrix in the class is transformed

into its transpose by a unimodular matrix of the form XX . In particular the trans-

forming matrix must be of determinant + 1.

Proof. Let A be a matrix equivalent with its transpose; that is,

A ' - SAS'1



CLASSES OF MATRICES AND QUADRATIC FIELDS 1 3 1

when S is unimodular Let T also be unimodular and assume that T AT is sym-

metric. We then have

T~ιAT= T' A' T'~ι

or

τ , - ι τ - ι A T T , = A i β

Hence, it is possible to transform A into its transpose by a matrix of the form XX'

Conversely, if

A' =X'~ι X~ι AXX'

we have

X1 Λ'X'~ι = X~ιAX .

Hence X ι AX is symmetric.

The question arises, are both cases possible, the one when the matrix class

contains symmetric matrices and the one w?hen it does not? Both cases, in fact,

are possible and it can even happen that the same field contains ideal classes of

order 2, some of which correspond to symmetric matrices, while others do not. An

example is the field generated by (410) ι / 2. An ideal of order 2 in this field is

[7, 19 + (410)1 / 2] , and a matrix which corresponds to it is

7

19

which is clearly symmetric. Another ideal of order 2 in the same field is the ideal

[2, 20 + (410)1 / 2] , a corresponding matrix being

2

20
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Any matrix which transforms the latter into its transpose is of the form

-406 +5d \

where b, d are parameters. In order to have integral coefficients we put d — 2d' .

The matrix will then be

-206 + 5d' 6 \

2d'

This will be unimodular if

' 2 - 6 2 = 410d' 2 - (6 + 2 0 α " ) 2 - ± 1 .

This equation for +1 is impossible, since the fundamental unit of the field gener-

ated by (410)1/2 has the norm +1. Hence, the matrix class which corresponds to this

ideal does not contain any symmetric matrix.

A symmetric matrix can correspond only to ideals in real fields since such a

matrix can have only real characteristic roots. It can further be seen easily that,

in this case, m has to be a sum of two squares.
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THE ASYMPTOTIC EXPANSION OF A RATIO

OF GAMMA FUNCTIONS

F. G.TRICOMI AND A.ERDELYI

1. Introduction. Many problems in mathematical analysis require a knowledge

of the asymptotic behavior of the quotient Γ (z + Gί)/F(z H~ β) for large values

of I z . Examples of such problems are the study of integrals of the Mellin-Barnes

type, and the investigation of the asymptotic behavior of confluent hypergeometric

functions when the variable and one of the parameters become very large simul-

taneously.

Stirling's series can be used to find a first approximation for our quotient for

very large z \ , it being understood that (λ and β are bounded. Without too much

algebra one finds

(I)
Γ(

as 2 —> °°, under conditions which will be stated later; but the determination of

the coefficients of z~2, z~3, , in the asymptotic expansion of which (1) gives

the first two terms, is a very laborious process, and the determination of the

general term from Stirling's series is a well-nigh hopeless task.

The present paper originated when the first-named author ( F . G Tricomi)

noticed that the asymptotic expansion of Γ (z + α)/Γ(z + β) can be obtained by

methods similar to those which he used in a recent investigation of the asymptotic

behavior of Laguerre polynomials [3] The first proof given in this paper, and

the detailed investigation of the coefficients An and Cn, are entirely due to him.

Afterwards, the second named author (A.Erdelyi) pointed out that a shorter proof

can be given by using Watson's lemma. His contributions to the present paper are

the second proof, the generating function (18) of the coefficients, and their ex-

pression in terms of generalized Bernoulli polynomials.

We may mention that the same quotient was recently investigated by J S. Frame

[i] but there is no overlapping with the results presented here.

Received April 17, 1950 and, with the contribution of A. Erde'lyi, July 24, 1950. This
research was sponsored by the Office of Naval Research.
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2. The case β — 0. Let us begin with the particular case β — 0 (after which

the general case will easily be treated), starting from the well-known formula

Γ 0 0 xu~ι Γ(U) Γ{v - u) t .
(2) / cf* = — , ( 0 < R α < R ί ; ) ,

•/o (1 + *) I ( v )

where each power has its principal value.

Putting

•j—ι/ . \

u = z + α f L = Z ^ α = F ( α f z ) ; * = - , ζ - β i a r δ z ,
Γ ( z ) t

from the previous equality, under the hypothesis

0 < R(α + z) < Rz

we obtain

Γ ( - α) F(OL, z) = za

But as long a s \t\ < \ z \ we have

e

= e~τ

£ ( i _ ! ί + 14-...)]
z \2 3 z 4 z2 l\

ί2mz-B /I I t I t 2 \m

- - - - + - —z — i .
«! \2 3 2 4 z2 /

Hence, if we put generally*

(3) I- +-w+-w2 +' X = Y 4m)zk, ( « = 0 , 1 , 2 , • • • ) ,
\2 3 4 / {=Ό

and in particular

(3') C ( - ) - J L C W - ' w ) ^

* The repeated use of the coefficients of the (formal) mth power of a power series is
one of the features of the methods of the paper quoted L3J .
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with the help of the substitution k + m = n, we obtain

00 ( — 1 )b
e-z]og(l + 0 ) = V^ V l )

hk, m-0

0 0 ( —-\)n n ( _ Ί \m
\ U) tn+m

This shows that our quotient F ( α , z) — Γ( z + α)/Γ(z) admits at least

formally the negative-powers expansion

where, for the sake of brevity, we put

Better still, because

since Rζ > 0, we can also write

Σ
In particular, we have

(5') Λ0(α) = 1, Ax(α)

•Q Q
3. Relations connecting the coefficients AΛ(α). The infinite series (4) is gener-

ally divergent because otherwise the function F would be the product of z α b y a

function regular at infinity, in contradiction with the fact that, as long as CC is not
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an integer, the function F has an infinite number of poles at z — 0, — 1, —2, ,

with the condensation point z — °° In spite of its divergence, the series (4) repre-

sents the function F asymptotically (in the sense of Poincare'); that is, we have

(6) > ^ ^

at least as long as

(7) 0 < - R α < Hz ,

because for any positive integer N we obviously have

H ! CU)

Let us now establish some relations connecting the coefficients An{<x) together;

these arise from the unicity theorem for the asymptotic expansions, and from the

functional equations

Mα. + l,z) = (α + z) f ( α , z ) , F(cc,z + 1) = ί l + - ] F(α,z) ,(8)

which are obviously satisfied by the function F

Precisely from the first equation (8) it follows immediately that

(9) Ania + 1) =An(a) + α A n - 1 ( α ) , (n = 1,2,3,

while from the second one it follows that

(
\ oo oo / -. \α-m

1-1 1 > Δ (Cί) γCL-πi ^/ > Λ {π) 7 \ Λ A I

This shows that

a- m (α— m\
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simplifying and changing n into n + 1, we thus obtain the important recurrence

relation

(10) An(ώ =- Σ( U m )A*{a)> (n = ],2, ) .

From the manner of deduction, it may seem that the validity of (9) and (10) is

conditioned by Rα < 0; but since these equalities are equalities between certain

analytic functions of (λ(even polynomials!), there is no doubt that, as a matter of

fact, both equations are true for any value of (λ.

4. On the condition (7). By use of the functional equations (8) and the relations

(9) and (10) between the coefficients, it would be possible to weaken progressive-

ly the conditions (7) by passing successively from (λ to Gί — 1 , Cί —2, , and

from z to z + 1, z + 2, But we do not need to enter into the details of this

reasoning because the method of Section 7 will give us directly the end results

free of unnecessary restrictions. Nevertheless, we state explicitly that the asympto-

tic expansion (6) is valid for any Cί {real or complex)on the whole complex z-plane

cut along any curve connecting z — 0 with z — °°*, provided that9 in going to
0 0 , z avoids the points z — 0, ~ 1 , ~2, * and z — "~"0ί, ~~0C ~ 1 , —CC —2, .

For example, when Cί is real and positive the expansion (6) is surely valid if

— 77 -f e < arg z < 77 — e ,

where 6 is an arbitrarily small positive number.

5. The asymptotic expansion. Now in order to obtain the asymptotic expansion

of the quotient indicated at the beginning, it is sufficient to observe that

Γ ( 2 + α )

Precisely, putting

a-β= a',

*This with regard to the many-valuedniϊss of the power
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we find thus

m=0 m = 0

, " /α ' -m\

In other words, if we put

(11) Cn(α',/8) = V ( α ~ " l W α l ) / 3 n - 1 1 , U = 0,1,2, ) ,

on the whole z-plane cut along any curve connecting z — 0 with z — °° , we have

provided that z avoids the points z = ~"CX, ~~α~"l, ~ α — 2 , ' α̂ fl? z =—/3, —/3—1,

-β-2, .
The coefficients Cn are given by (11), which shows in particular that

Co = l, d = - α ' ( α ' +2/3-1) = i (α-/S)(α + / 3 - l) ,

C2 = i ( α ] [ ( α ' - 2)(3α' - l ) + 12/Sία' + β - l ) ]

6. The coefficients C R . The calculation of the coefficients Cn by means of

(11) is quite easy, but in spite of this it may be useful to know that for such coef-

ficients there is also a recursion formula of the kind (10). Precisely, in a similar

manner as in Section 3, we notice first that the function Φ(z) satisfies the function-

al equation

Consequently, since

2

z
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we obtain

fe=o

~1)n ztx'~n Σ (-1

π=0

and further

on the other hand,

Φ(z + 1)

By comparing the two r e s u l t s we t h u s obtain

n

'm = Cn ( 1) CC S ( 1) β Cm >

Σ \(a>

m = 0

that is,

" - 1 Γ ' - ' m\

α1 .
ml J

In other words, detaching the last term of the sum and changing n into n + 1, we

have the recurrence relation

2 π-i
(14) Cn(a',β) = - V

n T^o

( n = 1 , 2 , 3 , • • • ) •
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7. An alternate proof. If we put u = exp ( — υ) in Euler's integral of the first

kind,

we have the integral representation

Γ(z + α)
(15)

Γ ( 2 + β) Γ(β-OL)
1 _ ΓV^+ α )Ml-β- v)5"α"
- α) Jo

We shall now show that an alternative proof of the asymptotic expansion (12) can

be obtained by applying the standard technique (Watson's lemma) to this integral

representation.

To begin with, (15) holds only if R(/3 -<χ) > 0 and R(z + Cί) > 0; but its

validity can be extended by the introduction of a loop integral. We assume that

z + (λ is not negative real. Then there is a δ such that

1 1
7 7 < S < - 7 7 , R S ( 2 + α ) e ι δ | > 0 .

z z
With such a δ, we have

Γfz + β)

where

(17) f{t) = Π l + α - / 3 ) eat (e* - l ) ^ * " 1 ,

and for small | t | ,

δ •— 77 < arg (e ~ 1) < δ + 77

on the loop of integration. Now (16) is valid for all Gt and β, with the trivial ex-

ception of α ~ β = — 1, —2, , and for all z in the complex plane slit along the

line from — a to —α~°° .

Watson's lemma can be applied directly to (16). It is usual to state this lemma

for an integral between 0 and °o , but it is clear that the customary proof [4 ]

goes through for a loop integral like (16) provided that the restriction on the growth

of f(t) is imposed along the whole loop, and that the expansion

(18)
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is valid in a neighborhood of t = 0 on the loop. Both assumptions hold good in our

case, and hence a term-by-term integration of (18) leads at once to the asymptotic

expansion

Γ(z + α) v ^ an *

valid for all α, β9 a — β φ~ 1, ~2, , and the complex z-plane slit from — α to

Comparing with (12), we see that

Γ ( α - / 3 - n + 1 ) Cn{0L-βtβ) = α n

has the generating function (17). The properties of Cn established in the earlier

sections can also be derived from this generating function. It also follows from the

generating function that the coefficients can be expressed in terms of generalized

Bernoulli polynomials. In Nδrlund's [2] notation* , we have

(19) an = — Γ ( l + <χ-/3) B < ° ^ + 1 > ( α ) .
n\

8. Particular cases. Finally, we notice that in the particular case Cί = n, for

n — 1,2, , the expansion (6) becomes

(20) Γ ( ' + n ) = z U + l ) ••• ( i + π - l ) = V 4 . ( B ) z —
^ Z ^ ffί = 0

hence, we have

(21) AΛ(n) = (-1)* Skm) ,

where S^77" denotes the sum of the products of the negative numbers ~ 1 , ~2, ,

— (n — 1) taken m at a time in all the possible manners (Stirling's numbers of the

first kind).

Another interesting particular case of (6) is the case GC = 1/2, z — n + 1, in

which we have

1 3 •••(2n- 1)
(22) (2n) inn}'* \X 8n ' 128n2

* In the first instance, n in B-J1 (x) is an integer, but Norlund remarks (p. 146) that it
may be replaced by an arbitrary complex parameter.
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Among the other things we can read from (22) is the following approximation formu-

la for 77:

for instance, taking n — 20 and neglecting the remainder e n , from (23) we obtain

the good approximation π— 3.141557, with an error of only 36 millionths.

Another interesting application concerns the asymptotic evaluation of the bi-

nomial coefficient (^) as n —> °° and x (which is not a positive integer) remains

bounded. Since

0-
Γ(* + 1 ) (-1)" Γ(n-χ)

Γ ( * - n + l)n! n Γ ( - x ) Γ(n) '

we obtain from (6), with z — n and <λ = — x, the relation

(-1)" _,,+ 1> A Am(~x)0 m = 0

This formula gives very good numerical results even for relatively small values

of n, for instance for n — 10, provided only that x/n is small.
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ON TOTALLY DIFFERENTIABLE AND SMOOTH FUNCTIONS

HASSLER WHITNEY

l Introduction. H. Rademacher has proved that a function of n variables satis-

fying a Lipschitz condition is totally differentiate a e. (almost everywhere) (see,

for instance, Saks, [6, pp. 310-311]). It was discovered by H. Federer (though not

stated as a theorem; see [2, p. 442]) that if / i s totally differentiable a.e. in the

bounded set P, then there is a closed set Q (Z P with the measure \P — Q\ as

small as desired, such that / i s smooth (continuously differentiable) in Q; that is,

the values of / in Q may be extended through space so that the resulting function

g is smooth there.

Theorem 1 of the present paper strengthens the latter theorem by showing that

/ i s approximately totally differentiable a.e. in P if and only if Q exists with the

above property. The rest of the paper gives further theorems in the direction of

Federer's Theorem, as follows.

Suppose the domain of definition of / were a bounded open set P. Then in ap-

plying the part (a) —> (c) of Theorem 1, we might alter / in a set P ~~ Q which in-

cluded a neighborhood of the boundary of P. In applications, it might be important

to keep the values of / in most of a subset close to the boundary of P, or in most

of some other subset. That such can be done follows from Theorem 2.

If / satisfies a Lipschitz condition, Theorem 3 shows that g may be made to

satisfy a Lipschitz condition also, with a constant which equals a number pn

(depending on the number n of variables only) times the constant for / ; in the case

of one variable, we may take pi — 1.

If we weaken the assumption on /, assuming only that it is measurable, then

Lusin's Theorem shows that we can alter / on a set of arbitrarily small measure,

giving a continuous function g. In the other direction, suppose we assume that /

(defined in an open set) has continuous rath partial derivatives, and that these

derivatives are totally differentiable a.e. Then Theorem 4 shows that we may alter

/ on a set of arbitrarily small measure, giving a function g which has continuous

partial derivatives of order m + 1. For the case of one variable, this is essen-

tially a theorem of Marcinkiewicz, [5, Theorem 3 ] .

Examples show that the hypotheses in the theorems cannot be materially

Received February 20, 1950.

Pacific J. Math. 1(1951), 143-159.
143



144 HASSLER WHITNEY

weakened without altering the conclusions. For instance, define a function φ of

one variable as follows. Let φ0 (t) be the distance from t to the nearest integer.

Using any sufficiently large integer α, set

Φi(t) = 2iΦo(ait)/ai, Φ(t)= Σ ΦM
ϊ = 0

Then φ satisfies a Lipschitz condition of order 1 — α, for any OL > 0; but Prop-

erty (c) of Theorem 1 is not true for it. If Φ(ί) = f*φ(s)ds, then $ is smooth, and

its first derivative satisfies a Lipschitz condition of order 1 — CX but the conclu-

sion of Theorem 4 (with m — \) fails.

2. The theorem for bounded sets. Let x — (xί9 , xn) denote points of

n-space En. With the unit vectors ei9 , en of a coordinate system, any vector

v can be written in the form Σi$ e/ The length of υ is | v \ ~ (Σvf ) ι/2 \y ~ x j

is the distance from x to y. Given n numbers fι{x)9 * , fn(χ\ s e ^

(2.D F(x) - υ = Σ fk(*)"k:

this is linear in υ If /Gc), /(y), and the / (̂Λ;) are defined, set

U 2 ; e U y ) =

for y^1 x, and e(%,%) = 0. Let S2 [a(z)] denote the set of elements z with the

property Cί. Given /, and so on, as above, set

( 2 3> H(x,e) = Sy[e(x,y) < e] .

The measurable function /defined in the set P is a.t.d. (approximately totally

differentiable) at x C P in terms of the fy{x) (see [6, p. 300]) if for each e > 0

the set H{x9 β) has x as a point of density. (Any standard definition of density

points may be used for the purposes of this paper.) If this holds, then x is a point

of density of P, and the ffcix) are uniquely determined; if x is a point of density in

the direction of each axis, then the f^ix) are the approximate partial derivatives of

/at x. The fa are measurable (see [6, p. 299] ).

THEOREM 1. Let f be measurable in the bounded set P. Then the four follow-

ing conditions are equivalent:
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(a) The function f is α. ί. d. α. e. in P.

(b) The function f is approximately derivable with respect to each variable a. e.

in P.

(c) For each β > 0 there is a closed set Q C P such that | P — Q | < £ α/ιc?

/ J\S smooth in Q.

(d) There is a sequence of disjoint closed sets Q\, Q2 , # * * m P such that

I P — Qi U @2 U I = 0 αrcc? / is smooth in each Q(.

REMARK. If f is assumed totally differentiable a.e in P, the proof that (c)

holds is simplified; see [2, p. 442] .

Proof of Theorem 1. For the equivalence of (a) and (b), see [6, pp. 300-303] .

Note that (b) is an obvious consequence of (d). We shall prove the equivalence of

(a), (c) and (d).

Suppose (c) holds. We choose the disjoint closed sets Qι, Q2 > * * * in suc-

cession so that / is smooth in each and P{ \ < \ P \/2ι

 9 where

Pi = P - Q i U - UQi ,

as follows. Having found Q^, , Qι-ι 9 choose a closed set Q[ so that / is

smooth in Qi and | P - Q \ < \ P | / 2 ι + 1 . Let ί/δ (A) denote the S-neighborhood

of the set A. For small enough δ, we may use

Qi = Q'i'

Thus (d) holds.

Suppose (d) holds. Let Qi be the set of points of density of Qι9 and set

Q* - Qϊ U Qt U . Then \P -Q* \ = 0. Take any x C Q*; say x C Q*.

Since / is smooth in Qi and x is a point of density of Qi, /(considered now in P)

is a. t .d. at x. Thus / i s a.t . d. at all points of Q*9 and (a) holds.

Now given (a), we must prove (c). There is a number a > 0 with the following

property. For any points x9y9 and number r with | y ~~ x j < r, we have

| ί / r ( * ) n £ / Γ ( y ) | > 2a \ϋr(x)\ .

For x ζl P, set Fj = I LΊ/jU) I , and

( 2 5> </.,•(*) = g.l.b. S71[φι(x,r,)<aVi] .
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Since e(x,γ) is measurable in the pair of variables x, y, it follows that ψ((x, Tj)

is measurable for fixed ηη Also, as a function of τ)9 ψiix, rj) is monotone and con-

tinuous on the left; hence

(2.6) φ.(*) < ζ if and only if ψib, ζ) < aV( .

Therefore φι is measurable.

Let Qx be the set of points where / is a.t.d. then flf , fn are defined in

Qγ. Given x ζ- Qx and e' > 0, we may choose 8 > 0 so that

Ψi(x,e') < aVi if 1/i < S

using (2.6) shows that

(2-7) Urn φi (x) = 0 , x C Qi

By Lusin's and Egeroff's theorems, there is a closed set Q C Qι such that

I (?i "" Q I ^ e> t n e fk a r e continuous in (̂> a n d Φi(x)—^0 uniformly in Q We now

prove that for each e' > 0 there is a 8 > 0 such that

(2.8) e(x>y) < e' if χ,yCQ, \y - χ\ < § .

Setting βι — € / 6 , we may choose 8 so that

(2.9) \F(y) .V-F(x) v | <ex\v\ i f x f y G Q, | y - χ | . < 2 S f

(2.10) φ.( z j < € i i f Λ e ρ f x / ( + i) < s .

Now take any %, y £ () with | y ~ Λ; | < δ. Let / be the largest integer such

that l/y > I y ~ Λ; | , and set

R = Uι/j (x) Π ί/1/; (y) then |fl | > 2aVj .

Since l/( ; + 1) < | y - % | < δ , (2.10) and (2.6) give

Ψjfaf e ι ) » ^/(y^ 6 ι ) <aVj .

Hence there is a point z in R in neither corresponding set; that is,

\z ~ x\, \z ~ y\ < l/j e(x,z) , e(y,z) < e1 .

S i n c e F(x) v i s l i n e a r i n i ; a n d | z — a; | , | z ~ y | < 2 | y — % | , w e h a v e

+ 1/(2) -fiy) -F(yHz -y)\ + \[F(y) - f ( x ) ] (z - y ) |

< e i [ | z - * | + \z ~y\ + \z - y\] < e' \y - x\
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if y φ x, proving (2.8).

This fact, together with the continuity of the /&(#) in Q9 shows that / is "of

class C ι in terms of the fa in Q", as defined in [7j (the definition is given after

(6.3), below). Hence, by [7, Lemma 2] , we may extend / to be smooth in En

f

completing the proof. (The extension is described in Section 4, below; by use of

the results of that section, it is not hard to show that f has the required proper-

ties.)

3. The theorem for unbounded sets. We remove the restriction of boundedness

in Theorem 1, and give more information about the set in which / may be left

unaltered.

THEOREM 2. Let Ai9 A29 be open sets in En such that each has points

in common with, at most, a finite number of the others, and let €χ, € 2 , * * * be

positive numbers. Let K be the set of points x such that there is a sequence of

distinct sets Aμ^9 Aμ2, and a sequence of points X\9 x29 ' ' ' with
xi C Aμi and xι —* x. Let P be a measurable subset of En — K, and let f be

a, t, d. α. e. in P in terms of the f^. Then there is a set Q d P such that Q is

closed in En — K and \ (P ~ Q) Π A{ \ < £;, and there is a smooth function g in

En — K such that g(x) = f(x) and 'dg(x)/'dxjc = fj^x) in Q.

REMARKS. Clearly K is closed and K Π Ai = 0 for all i. If Q* C P, (?* is

closed in En ~ K, and for some positive continuous functions §i(%), δ2(%), * * * in

Q*,

e(χ,y)<l/2ι iίxCQ*. | y - * | < S i ( * ) ,

the proof shows that we may make Q ZD Q . For instance, we may make Q contain

any given set of points of P in which / is totally differentiable and which has no

accumulation points in En — K. On the other hand, we must expect to drop out a

neighborhood of the set of points where / is not totally differentiable. Further, we

cannot in general keep in Q any given closed set where f is approximately totally

differentiable, as is shown by the following example (in one variable):

fit) - t2 sin ( i / t ) ( ί 7^0), /(0) = 0 .

Proof of Theorem 2. For each pair {k, I) of positive integers, let U^j be the

set of points x satisfying the conditions (with a fixed x0 in En)

k - 1 < \χ ~ χ0 I < k + 1, 1/(1 ~ 1) > d i s t (*, K) > 1/(1 + l )

for k — 1 or I = 1, we drop out the first inequalities. If K is void, the index I is
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not needed, and the situation is simpler. The U/^/ are bounded open s e t s covering

En — K, and each one touches at most eight others . Arrange them in a sequence

uι, ί/2', .
For each ί, let Xj? 1 , λ ι > 2 > * * * be the (finite or infinite) set of numbers such

that U'\ i kΠ A{ ψ 0. Since the Uj are compact and in En — K9 each touches at

most a finite number of the A{ hence for given /, there is at most a finite number

of values of i such that λ j ^ = j for some k Let €y be the smallest of the num-

bers €(/2 , using these values of i and corresponding k

Considering /and the /& in P Π Uj alone, apply the proof of Theorem 1 to find

a closed set Qj C P Γ\ Uf such that | P Π Uj - Qj \ < β), and such that / is

of class Cι in terms of the fy in Qj. Set

Vj = U j - Q j , V = \ l j V j , Q = E n ~ K - V .

Then V is open, Q is closed in E" ~ K, and Q Π {// C Qj. Now

(p - ρ ) n At = P n F n Λ, = u ; ( P n F ; n ^ t j ,

|p nF, I = |p n υ j-Qj \ < e).

Since Vj CZ Uj', P Π Vj{\ Aι is void unless / = λ t ^ for some k. Hence

\(p-Q)nAi\ < Σ \pnVjt\Ai\ <Σ ^'λiΛ< Σ ^ / 2 k = et .
j k ' k

Since each Uj is open and Q Π Uj CZ Q- , f is clearly of class C1 in terms

of the fit in Q. Hence, as before, we may extend the values of / in Q through

En — Ky as required. (We are applying [7, Lemma 2] in an open set; the change

required in the proof is very simple. Or we could use [7, Theorem III ]•)

4. The theorem for Lipschitz functions. The following theorem has two parts,

corresponding to the two theorems above.

THEOREM3. For each positive integer n there is a number pn (we may take

pi = 1) with the following properties.

(a) Let f be defined and satisfy a Lipschitz condition in the bounded closed

setP C En:

(4.1) \f(y) -f(x)\ < N\y-χ\, x,y C P .

Then for each 6 > 0 there is a closed set Q C P such that \P — Q\ < € , and

there is a smooth function g in En satisfying a Lipschitz condition (see (4.15))

with the constant pnN> such that g — f in Q.
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(b) Let the Aι , €;, and K be as in Theorem 2. Let P be closed in En — K (it

may have accumulation points in K) Let f be defined in P and satisfy (4 1). Then

there is a set Q C P which is closed in P (and hence in En — K) such that

I (P ~~ Q) Π Ai I < 6j and there is a function g satisfying (4.15) in En which is

smooth in En — Q , where Q = Q — Q, such that g — fin Q.

(c) We may take Q [in either (a) or (b)] so that f is totally differentiable in Q

in terms of functions fl9 ' ' , fn we may then take g so that 'dg/'dx^ — f^ in

(ά) Given a positive continuous function T](x) in En ~" K [in En, for case

(a)J, we may make

< 4 2> \g(x) ~ f(χ) I < r,(x) , x CP .

REMARKS. It is no restriction to take P closed (or closed in En ~ X).For if P

is not closed, it is easily seen that we may extend /(uniquely) over P so that it is

continuous there; then (4.1) now holds in P . (We can in fact extend / t o satisfy

(4 .1) in£ Λ ; see [3] or [4].) Note that, in (b), Q* C P - P; if K is void, then

Q is void, and g is smooth in E n As an immediate consequence of (4.15), we

have

v | =(4.3) |Σtfc3g(*)/3*J < pnN if xCEn-Q*

The hypothesis of total differentiability a.e. in P, together with

\Σvkfk(x)\ <N\v\

where the /^ are defined, is not enough to give the theorem (unless, for instance,

P = En),as simple examples show. (Compare the examples in H. Whitney [β].)

If we wish to prove (4.3) rather than (4.15), the proof may be slightly simplified;

of course (4.15) follows from (4.3) if Q* — 0 (hence if K = 0). See also the remarks

following Theorem 2.

Proof of Theorem 3. To prove the theorem, we first note that (a) is contained

in (b); use Ax - En, eί = € . Next, (d) will follow at once from (4.1) and (4.15)

if we make sure that each point of P is sufficiently close to some point of Q this

will clearly be the case if, in applying the proof of Theorem 2, we take the e'j

small enough. Also, just as in Theorem 2, (c) will hold. It remains to show that we

can obtain the properties in (b), using the proof of Theorem 2. We do this here,

except for showing that we can make p γ— 1.

We must examine the proof of [7, Lemma 2] First, since / is totally differ-

entiable a .e . in P [6, p. 311 ] , we may choose Q as in the proof of Theorem 2;
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recall that the fa are continuous in Q. We shall use a cubical subdivision of

En — Q, essentially as in [ 7 ] , For each integer s (in [ 7 ] , only 5 > 0 was

used), let Ks' be the set of all cubes of edge length 1/2S, the coordinates of

whose corners are integral multiples of 1/2S. Let Kς consist of the cubes of Kg

whose distances from Q are at least 6τr/2s . Let Ks consist of the cubes of Kς

which are not in cubes of X's-i Take any cube C £ Ks suppose C C C 9

C £ Ks-i Then dis t(C , Q) < 6nι/2/2s~ι. Therefore, clearly

(4.4) 6nV2/2s < dist(C, Q) < Un1/2/2s , C £ Ks .

Take C £ &s 9 C £ Ks +2 Then each point of C' is within

from Q; hence

(4.5) dist(C, C ) > (5/2)n 1 / 2 /2 s , C £ Ks, C' £ Ks+2 .

Let y 1 , y 2 be the set of all corners of all cubes of all Ks . Choose
χV £ Q with U ^ ~~ y1"! = dist(yv, ^ ) . Let ί>v be the largest length of edge of

any cube of any Ks with yv as a corner, and let lv be the cube defined by

\χi ~~yVi\ < bv{i = 1, , Λ) .

Let φΌ be a smooth function which is positive within a fixed unit cube and is

zero outside; by a translation and similarity transformation, define φ'v, positive

within l v and zero outside. Set φv — φ^/Σφ' χ; then φv is positive within lv and

zero outside, and Σφv = 1 in £ n — Q . Since there is at most some fixed number

of shapes of cubes (of some Ks , and Ks+ι perhaps) forming any l v, there is

clearly a number Mn > 1 with the following property (compare [7, Section lOJ):

taking \v\ — 1,

(4.6) \Σvi'dφJ'dxi\ <2sMn if φv{y) φ 0 for some γ £ C £ Ks .

Extend / to be continuous in P (if P / P); (4.1) still holds. For any x* £ Q

and any x £ En, set

(4.7) ,/,(*;**) = / ( x ) + Σ /f (χ*)(*i - * f )

this is the value at x of the linear function approximating to / at x . Then set

(4-8) g(χ)=ΣΦΛχ) Ψ(*;χv), * € En-Q.
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It is not hard to show that if g = / in Q, then g is smooth in E n — Q* and

xi — fi in Q; see the proof of [7, Lemma 2 ] . We must still prove (4.15).

Take first any x and x' in En — Q; say for definiteness that

(4.9) x e c e Ks, x1 c c e κ8*, s >s*.

Let Λ* be a point of Q nearest to x. Since ΣφjXx) = 1, we may write

Hence

g(x') -g(x) =

+ Σ IΦΛx') -ΦΛχ)]fi(χv)(χi -xΐ) + Σ ΦMfi (*v)(*ί ~χi)
v% ί v,i

We shall find a bound for each non-zero term. First we show that

(4.11) \φv(x') -φv(χ)\ \f{xv)-f{x*)\ <64NMnn
1/2 \x' - x\ .

Consider first any v such that φv(x) ψ- 0. Then by (4.6),

(4.12) \Φv(x') ~Φv(x)\ <2sMn\x' -χ\ .

Also, since

\x* -χ\ < diam(C) + dist(C,Q) < 14n1/2/2s ,

\yv -x\ <2diam(C) < 2n1/2/2s ,

we have

and hence

\yv~χv\ < \χ* <16n1/2/2s ,

\xv -χ*\ < 3 2 n 1 / 2 / 2 s ,

\f(x") -f(x*)\ < 32/Vn1/2/2s .
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These relations give (4.11). Next consider any v such that φv(x') φ 0. Then

(using inequalities like those above) we obtain

\xv - ** I < \xv - x'\ + I*' ~ x I + \x - x* I

< 1 8 n 1 / 2 / 2 s ' + I * ' -χ\ + 1 4 n 1 / 2 / 2 s < 3 2 n 1 / 2 / 2 s ' + | * ' - χ | .

In the present c a s e , (4.12) holds with s ' . Suppose first that

\x' - χ \ <

Then

and (4.11) follows. If \x' - χ\ > S2nι/2/2s> , then | * v - * * | < 2 | « ' - x \ , and

since I < £ „ ( * ' ) " Φ v W I < 2 and 4Λ^ < 64>NMnn
V2 , (4.11) follows again.

Next we show that

(4.13) \ΦV(X')-ΦM\ \fi{xv)\ Wi-xvi\ <WMnn
ι/2\x' - * | .

We may suppose that φv(x') ψ 0, in which case \χ' — xv \ < 1 8 / ι ι / 2 / 2 s / , or

φv(x) 7̂  0, in which case | # ' - % v | < ISn^2^ + | Λ ' — Λ | in either case,

|*ί - * ? | < k' - * v | < 18n 1 / 2 /2 s ' + k' - % | .

First suppose that \x' - χ\ < 2nί/2/2s' . Then, by (4.5), 5 < s' + 1. Hence,

using (4.6) with s or s ' we get

\Φv(x')-ΦΛ*)\ <2 s '+ 1Mn |*' - * |

s ince l / f U 1 ' ) ! < Λ̂ , (4.13) follows. Next suppose that | * ' - * | > 2nV2/2s' .

Then | ς 6 v U ' ) - Φ v U ) | < 2, and U # f - « i | < 1 0 | % ; - x \ , giving (4.13) again.

Final ly, we have

(4.14) | Φ v W / i ( * " ) ( x ί " * i ) | < i V | * ' ~ * |

There is clearly a number cn such that for any x, there are at most cn values
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of v such that φv(x) ψ 0. In the three groups of terms in (4.10), there are at most

2cn9 2cnn, and cnn non-zero terms respectively. Hence, by (4.11), (4.13) and

(4.14), we have

cn
NMnn

1/2(m + 8 0 n + n ) | * ' - x\ ,

which gives

(4.15) | g ( χ ' ) - g ( * ) | <pnN\x' - χ \ , p n = 2 0 9 cnMnn
3/2.

If x and x' are in Q , (4.15) follows from (4.1), since g = /(or the extended /)

in Q . Suppose finally that x C (? , x' ζl En — Q (or vice versa)* Let %" be the

last point of the segment Λ Λ;' in () . Then (4.1) holds for x and x" , and (4.15) holds

for x'" and x', with %'" in x"x' and arbitrarily close to x"\ hence (4.15) holds in

all cases, and the proof is complete.

5. Lipschitz functions of one variable. We must prove Theorem 3, with n — 1,

Pi — 1. The proof is elementary in nature; we do not need L7J Find a closed

subset Qγ of Eι —K (or of E ι , in case (a)) as in the proof of Theorem 2 (or

Theorem 1, if we are only using (a)). Now (4.1) holds in Qί9 fι is continuous in

Qι , and f is smooth in terms of /\ in Q ι(see Section 3, above), that is, for each
χ C Qi a n d each e ' > 0 there is a δ > 0 such that

( 5 D \ f ( χ " ) - f { χ ' ) - ( * " - χ ' ) f i ( χ ' ) \ < e ' \ χ H - χ ' \

i f \x" ~ χ \ , \ x ' - χ \ < 8 , χ ' , χ " C Q l .

Let primes on functions denote differentiation. We shall find a set Q which is

closed in El - X, with | Qι - Q \ < e* in case (a) or | (Q t - Q) Π A t \ < 6*

in case (b), and a function g which satisfies (4.1) in E ! and is smooth in Eι — K,

and such that g — f and g' = fγ in Q; for e or the e t small enough, Q and g have

the required properties.

Let / t , / 2 , * # be the closed intervals whose interiors fill out Eι — Qγ UK.

Extend /through Eι so that (4.1) holds there; see [3] or [ 4 ] . Set g0 —fin

Qι U K, and let g 0 be linear in the I\, so that g0 is continuous in the closed

intervals. Then g0 is continuous in Eι , and satisfies (4.1) there.

We shall need the following lemma.

LEMMA 1. Let φ be defined and satisfy (4.1) in the closed interval [α*, £>],

and let φ be linear in the subinterval [α, b]. Then there is an arbitrarily small
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interval [a', a"] about a such that φ' (a1) exists, and there is a {unction φ in

[α*, b] which equals φ in [α*, a' ] U [ α " , b] and is smooth in [a' 9 b] 9 and

is suck that ι//' ( α ' ) = φ'(a1), am/ for x in [a ', a" ] , ιp' (x) lies between φ1 (a1)

andφ'{a").

We use the notation ΔφGc, y) = [φ(y) — φGc)]/(y ~~ * ) . If φ is linear in some

interval [xθ9 b] with %0 < α, we may set \p = φ. If not, we may choose c < a

arbitrarily close to a so that Δ φ ( c , a) ψ Δφ(α, ύ). Suppose for definiteness that

Δ φ ( c , α) < Δφ(o, 6). Take a" > a arbitrarily close to α. Because of (4.1), φ is

absolutely continuous, and φ(a") - φ{c) — J c

α φ' (x)dx. Hence there is a point

α' in [c,a] such that φ ' (α' ) exists and

φ'(a') <Δφ(α', a") < Δφ (α", 6) = φ'(α")

that is, the tangents at a' and α" intersect at a point Λ; ' between a1 and α" .

Using these tangents except near x' ,and smoothing near x1, gives the required ι//.

We return to the theorem. Let xl9 x 2 , * * be the set of end points of the

intervals /^. Let /'{ be an interval about x± , of length < e'[ for some β'{ (see

below), with one end point interior to an interval I^ with Xγ as end point. Apply

the lemma (or the lemma with x replaced by —#) to find an interior interval //
= ίa( 9 a'l ] about xί, and using φ = g0 in //', define ψ = g in // . We may re-

quire that neither α/ nor αj7 is any X( In general, having found disjoint intervals

//, * , Ij-i , let xfr be the first point of the sequence which is in none of these,

and let lj' be an interval about x^9 of length < €y', disjoint from the preceding

U Apply the lemma as before to find lj , and define g in lj . Set g = g0 elsewhere

in £ ι . Let (J be the set of points of (? t interior to no lj'. For small enough ej1,

the inequalities with €* or 6* hold. We shall show that g is smooth in Eι — K

and g ' = fx in Q\ the other properties of g are clear.

Clearly g' is continuous in a neighborhood of any point interior to an lj' or an

/^ , that is, in E1 — KΌQ Now take any x ζl Q; we shall show thatg 'Ot)

= fι (x) and g' is continuous at #, considering only points x' > Λ; for which

g ' (Λ; ' ) is defined. The same fact holds for x' < x9 and this will complete the

proof. By definition of g9 this is true if x is the left hand end point of some lj'

suppose this is not the case.

Given e ' > 0, choose S so that (5.1) holds, and so that \fχ(x') ~ / i U ) | < e'

for x ' G Qι 9 |Λ;' — # I < δ . Choose y > x in Qγ within δ of x. Now any dif-

ference quotient of /, with points in [x9 y] Π Qχ9 is within 2e' of f ι(x); hence
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clearly any difference quotient of g0 in [x9 y] i s within 2 e ' of fι{x) Hence, for

any Λ;' in [x9 y] such that g '0(x') ex i s t s , | g'o {x') — fι(x) \ < 2 e' . Because of

the last property in the lemma, \g'{x') — f\{x)\ < 2 e ' if g'(x') e x i s t s . Since

g(x' ) — g(x) — Jx

x g' (t) dt9 this shows that g' {x) ex is ts (as a right hand derivative)

and equals f\(x)y and proves the required continuity.

6, Functions with totally differentiable mth partial derivatives. We shall prove

a theorem corresponding to (a) —> (c) in Theorem 1; the extension to the case

corresponding to Theorem 2 is clear.

THEOREM 4. Let f and its partial derivatives of order < mbe defined in a

bounded open set P C En, and let each mth partial derivative be totally differ-

entiable α.e. in P. Then for each β > 0 there is a closed set Q C P such that

\P — Q\ < e, and there is a function g with continuous (m + 1) th partial deriva-

tives in En such that all partial derivatives of f of order < m + 1 exist in Q and

equal those of g there. In particular, g — / in Q.

Because of Theorem 1, we may suppose m > 1. We use the notation of [7]

thus

[do not confuse with the earlier /&(*)] , σ^ — kx + + kn9 and so on Also

where defined.

Take any k with cr^ = m "~ 1, and any integers i and /• Since *dfjς/^Xi and

j are defined in Pand are totally differentiable a.e in P9 it follows that

their partial derivatives 3 2 / ^ /dxidxj and 3 2 fk/^Xj ^xi exist a.e. in P; by a

theorem of Currier [ l ] , these are equal a.e. in P. Where this is so for all i9 j9 it

is clear that we may define fa with or^ — m + 1 uniquely. Let P ' be the subset

of P in which the f^ exist for σ^ < m + 1, and each f^ (σ^ = m) is totally differ-

entiable in terms of the // (/; > k( , σ[ — m + 1); then \P — P' \ = 0. As seen

in Section 2, the f^ are measurable.

As in [7] , let ψk(χ' Λ;), for cr̂ . < m9 be the value at x' of the polynomial of

degree at most m ~~ cr^ which has the same value and partial derivatives of order

< m~~ &k at x as f^. Then
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Let Rfc (x' x) be the corresponding remainder in Taylor's expansion:

(6.2) Rk(χ' χ) =fk(χ')-Ψk(χ';χ), σk<m.

Define \fj£ and /?/J similarly for x £ P ' , with m replaced by m + 1. We shall say

a remainder Rfc is of order m' at x° if the following is true. For each e ' > 0

there is a 8 > 0 such that

(6.3) |Λί(*;*°)| < e Ί * - * Ί " ' if | * - * ° | < δ .

Recall from [7] that in a closed set, / is of class Cm+ί in terms of the f^icr^

< m + 1) if and only if each ft/J is of order m + 1 "~ σfc uniformly in a neighbor-

hood of each point.

With the help of Lemma 2 below, we prove Theorem 4 as follows. By Lusin's

Theorem, there is a closed set Q' CZ P ' with | P' - Q' \ < e/2 such that

each fa (x) with σ^— m + 1 is continuous in Q' that is, R'kiσjς — m + 1) is of

order 0 in Q' . For each integer i and each x° £ () ' , let δ/ (%0) be the upper

bound of numbers S < 1 such that (6.3) holds with m' ~ m ^cr^^r 1, e' — 1/2*,

for all A with σ^ < m + 1. Then by the lemma, $i(x) > 0 in (?' . As in Section 2,

we see that the δ Oc) are measurable. Find sets Qι as in Section 2, and set

Q = QιΠQ2 Π . Then clearly / is of class C m + 1 in Q in terms of the fk, and

hence [7, Lemma 2] /may be extended from (̂  over En so that

in Q. This extension is the required g. There remains to prove

LEMMA 2. Let P be open, let

irc P /or cτ£ < m, Zeί /A U 0 ) fee defined for σ& = m + 1, am/ Zeί ίAe fkio-^ = m) 6e

totally differentiable in terms of the //(/j > &j, cr/ = m + 1) aί Λ;0. Define

Rfl (x; x°) as above. Then R^ is of order m ~~ cr^ 4- 1 aί x° if' σ^ < m — 1.

Note that the hypothesis shows that /?/£ for σ^ — m is of order 1 at %°.

Suppose we have proved Lemma 2 for the case that fk(x°) — 0 for all k,

^k — m ~^~ l Then it holds for the general case. For set

) = 0. Also, since ψί (x; x°) = 0 (using the / / ) , Rf, (x; x°) = ΛA'U; Λ:0
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Since the R k are of order m ~~ σk + 1 at Λ;0 for σk — m, the lemma shows that

this is true also for ak < m. Thus /?/. = R£ is of order m ~" σk + 1 at x° , as

required.

We shall need Taylor's Theorem with exact remainder:

LEMMA 3. Let φ be a function of one variable such that φ ' — d φ/dχh

exists for h < m' in an interval and is bounded. Then

Since 0 ^is bounded, ςέ^m "^satisf ies a Lipschitz condition; hence for

any smooth CC, β = Cίφ^m " 1 ' i s absolutely continuous, and

Therefore the usual proof applies.

We return to Lemma 2, assuming faix0) — 0 (σjς < m + 1). Set

^ \# 1 * 9 Xl9 Xl+l9 9 XΠ ) 9

then Λ;71 — Λ;. Take any i > 0, and any & with σ ^ < m ~ 1. Set m' — m~-

k(i) = (&!, , A; + m ' , ' , i Λ ) , and

Λ : 1 ( S ) = ( « i , l # f , Xi-ι, s, x°i + l 9 , x°n ) .

Then xHxi) = Λ*" 1 , Λ;' (Λ» ) = * * ' . For some δ t > 0, the fk(x) (σk < m) are

bounded for \χ —χ° \ < δι . Lemma 3 gives

1̂ 1
Since // Gcι (s)) = /?/ U ι (s) x°), and so on, the definition of R^ gives
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For a certain e* chosen below, choose δ < δj so that

Then if \x - x° I < S, using \χ*(s) - x° \ < \x ~ x° | for a? < s< xit and

so on, gives

_ r 0 I /• 9 ^ * I _ 0 iro' + l
x ι x x ' ώ t x Λ:*; s*-1) I S 2 ! ? 1 t, ' ίo"

/̂n — \)\ Jxi
m'\

Now in [7, (6.3)] , subtract fk(x") from both sides, and change x9 x', x" to

ly; this givesx , x 9 x respectively; this gives

Hence,

Λ; x f ) I < 26* |Λ - x°

Let /ί& denote the sum, and let A be the largest /l^. Since

for the case at hand, adding the inequalities for i = 1, , re gives

Given e' > 0, set €* = €'/(2Λ/1), and choose δ accordingly; this inequality then

completes the proof.
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Otto Szász: On a Tauberian theorem for Abel summability 117

Olga Taussky: Classes of matrices and quadratic fields 127

F. Tricomi and A. Erdélyi: The asymptotic expansion of a ratio of gamma functions 133

A. Wald with A. Dvoretzky and J. Wolfowitz 59

Hassler Whitney: On totally differentiable and smooth functions 143

J. Wolfowitz with A. Dvoretzky and A. Wald 59

H. Zuckerman with Ivan Niven 103



EDITORS

H E R B E R T BUSEMANN R. M. ROBINSON

University of Southern California University of California
Los Angeles 7, California Berkeley 4, California

E. F. BECKENBACH, Managing Editor
University of California
Los Angeles 24, California

ASSOCIATE EDITORS

R. P. DILWORTH P. R. HALMOS BQfRGE JESSEN J. J. STOKER
HERBERT FEDERER HEINZ HOPF PAUL LEVY E.G. STRAUS
MARSHALL HALL R. D. JAMES GEORGE POLYA KOSAKU YOSIDA

SPONSORS

UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA, BERKELEY WASHINGTON STATE COLLEGE
UNIVERSITY OF CALIFORNIA, DAVIS UNIVERSITY OF WASHINGTON
UNIVERSITY OF CALIFORNIA, LOS ANGELES * * *
UNIVERSITY OF CALIFORNIA, SANTA BARBARA AMERICAN MATHEMATICAL SOCIETY
OREGON STATE COLLEGE NATIONAL BUREAU OF STANDARDS,
UNIVERSITY OF OREGON INSTITUTE FOR NUMERICAL ANALYSIS

Vari-Type Composition by
Cecile Leonard
Ruth Stafford

With the cooperation of
E. F . Beckenbach

E. G. Straus

Printed in the United States of America by
Edwards Brothers, Inc., Ann Arbor, Michigan

UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LOS ANGELES
COPYRIGHT 1951 BY PACIFIC JOURNAL OF MATHEMATICS



Pacific Journal of Mathematics
Vol. 1, No. 1 November, 1951

Ralph Palmer Agnew, Ratio tests for convergence of series . . . . . . . . . . . . . . . . 1
Richard Arens and James Dugundji, Topologies for function spaces . . . . . . . . 5
B. Arnold, Distributive lattices with a third operation defined . . . . . . . . . . . . . 33
R. Bing, Concerning hereditarily indecomposable continua . . . . . . . . . . . . . . . 43
David Dekker, Generalizations of hypergeodesics . . . . . . . . . . . . . . . . . . . . . . . . 53
A. Dvoretzky, A. Wald and J. Wolfowitz, Relations among certain ranges of

vector measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
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