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1. Introduction and summary. In 1907, P. and T. Ehrenfest [1] used a simple
urn scheme as a pedagogic device to elucidate some apparent paradoxes in thermo-
dynamic theory. Their model undergoes fluctuations intuitively related to fluctu-
ations about equilibrium of certain thermodynamic systems. In view of an apparent
discord among physicists [6, pp.139-145] we shall not try to force an analogy
with entropy.

The original Ehrenfest scheme was defined as follows. Initially, 2N balls are
divided in an arbitrary manner between two urns, 1 and 2, the balls being numbered
from 1 to 2N. An integer between 1 and 2N is selected at random, each such
integer having probability (2¥)?, and the ball with the number selected is trans-
ferred from one urn to the other. The process is repeated any number of times. If
ny and n, are the numbers of balls in urns 1 and 2 respectively before a transfer,
it is clear that the probability is n;/(2N) that the transfer is from urn 1 to urn 2
and n,/(2N) that it is in the contrary direction.

Let x'(n) be the number of balls in urn 1 after n transfers, and let L 1 be
be the smallest ihteger m such that x' (m) = k, given that x' (0) = j. If k = j,we
call L k the recurrence time for the state k. If & 7£ j» we call L'j,k the first-
passage time from j to k. The distribution of x'(n), known classically, was
derived by Kac [5] as an example of the use of matrix methods. Kac then found
the mean and variance of L ;, attributing some of his methods to Uhlenbeck.
Friedman [4] found the moment-generating function for x’ (n) (for the Ehrenfest
and more general models) by solving a difference-differential equation.

Instead of the original Ehrenfest model, we shall discuss a modified scheme
with a continuous time parameter, which was apparently first suggested by
A.J.F.Siegert [9]. In this scheme there are two urns and 2N balls initially
divided between them arbitrarily. Each ball acts, independently of all the others,
as follows: there is a probability of (1/2) dt + o(dt) that the ball changes urns be-
tween ¢ and ¢ + dt, and a probability of 1 — [(1/2)dt + o(d¢)] that the ball remains
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in place between ¢ and ¢ + d¢. Standard reasoning then shows that the total proba-
bility of a change by some ball between ¢t and ¢t + dt is Ndt + o(dt), and that
consequently the probability density for the length of time between transfers is
Ne ™% dt. When a transfer occurs, it is readily seen that the probabilities that it
is from urn 1 to urn 2 or from urn 2 to urn 1, respectively, depend on the relative
number of balls in the two urns exactly as for the original Ehrenfest model. Thus
we see that the present scheme is essentially the original Ehrenfest scheme where
the drawings are made at random times. As we shall see, the time-continuous
scheme is easier to handle analytically.

Let x(¢) be the number of balls in urn 1 at time ¢; we shall sometimes speak of
this number as the state of the system. Then x(¢) is a random function which can
take integer values from 0 to 2N ; x(¢) executes a random walk—with a “restoring
force ’—about the equilibrium value N. It is clear that the random walk is a Markov
process.

Let Lj,k, ]7£ k, be the first-passage time from state j to state k; that is, Ljk
is the infimum of ¢ such that x(¢) = k, given that x(0) = j. Let L ; be the re-
currence time for the state k; that is, Lj j is the infimum of ¢ such that x(¢) = k&
and x(7) Z k for 0 < 7 < t, given that x(0) = k. We shall diseuss the probability
distributions of L; , and Ly 4.

The probability distribution of Lj ; depends, of course, on the size of the
model (that is, on the number N). When it is necessary to emphasize this de-
pendence we shall sometimes employ the notation L;ka) in place of L; 1.

We shall use the notation P(4) for the probability of the event 4; P(4 | B) for
the conditional probability of 4, given B; E(X) for the mean, or expected value, of
the random variable X. By the distribution of a random variable X we mean the
function (of say u) given by P(X < u). The statement that a sequence of dis-
tributions converges to a distribution F(u) will mean convergence at all continuity
points of F(u).

There are two limiting situations in which the distribution of L  is of interest.

(a) Consider a simple thermodynamic system such as an ideal gas in a con-
tainer. Let us think of the container as consisting of two halves which, however,
are not separated by a partition. Suppose that initially the molecules are spread
in a rather uniform manner through the two halves of the container. According to
classical kinetic theory, if we wait long enough, a time will come, in general,
when all the molecules are in one half of the container. Such events, where the

fraction of molecules in one half of the container is appreciably different from
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(1/2), are evidently enormously rare if the number of molecules is large. Corre-
spondingly, we should like to show that the random variable Ly x, where lk - N'
is of the order of magnitude of N, is very large with high probability when N is
large. Now the mean of Ly 4 is extremely large when N is large. However, as Kac
has observed, the standard deviation is of the same order of magnitude as the
mean. Thus we cannot conclude from the values of the first two moments that Ly
is large with high probability. We shall show, however, that the distribution of
LN,k/E(LN’k) converges to 1 — e ™% as N — © provided k/N remains less than
some fixed number Ay < 1 (Theorem 1).

The situation with respect to Ly ;, where again E/N < Ay < 1, is somewhat
different. If k/N is appreciably different from 0, a very short recurrence time is
not improbable. The distribution of Lk,k/E(Lk,k) has for large N a “lump” of
probability of magnitude &/N concentrated near 0, the remainder of the distribution
being exponential (Theorem 2).

{(b) In the theory of the Brownian motion and elsewhere in physics and sta-
tistics an important role is played by the stationary Gaussian Markov process z(t)

which we scale so that

E[z(t)] =0, Elz2(t)]?=1/2.

This process is defined bythe requirementthat the joint distribution of z(¢(), * * «,
z(ty,) for any distinct numbers ¢,, * * * ,¢,, is Gaussian and dependent only on the

differences ¢; —¢; and that the autocorrelation function is given by

E[z(s) z(t +s)] = (1/2) e~ 't

If N is large, the z(¢) process, under the conditional hypothesis that z(0) has an

appropriate value, is approximated by the process

x(t) =N

in a sense described in Section 6. (It should be remembered that x(z) depends on
N.) By considering the distribution of Ly, where (k — N/NV? — — & <0,
N — ®©, we obtain in Theorem 3 the Laplace transform of the distribution of L,
the first time at which z(¢) = — &, given z(0) = 0. This result is not new, having
been obtained by Siegert [10) and by Darling (unpublished). However, the present
method of derivation seems instructive.

Results similar to those given under (a) and (b) are obtained for the random
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variable LY j , the first time |x(t) = N| = N — £, given x(0) = N.

2. The mathematical model. Suppose that there are initially j balls in urn 1and
2N — j in urn 2. Associate with the ith ball a random function x;(¢) defined as
follows: x;(¢) is 1 if the ith ball is in urn 1 at time ¢, and O otherwise. From the

elementary theory of Markov processes (see, for example, Kolmogorov [7]), we

have

1+et
2 3
1—et

2

o) Plxi(t) = %;(0)] =

Plzi(t) =1~-=xi(0)] =

We may define the generating function of x;(¢) by

P[xi(t) = 0] +sP[x;(t) =1].

Then the generating function of x;(¢) is, from (1),
(12)[1 +et +(1—et)s],
or

(1/2)[1 —et + (1 +et)s],

according as x;(0) is 0 or 1. Since the quantities x;(¢), i = 1,

pendent, the generating function for x(t) = 2 x;(¢) is

(2) k}__‘, Plx(t) = k|x(0) =j]sk

s+ 2N, are inde-

=271 -+ (L4 e ) sV 1+ e+ (1—et)s]?N

2N
=X Qj,k(t)sk.
k=0

where we have introduced the notation Q;, 1(¢) for P [x(¢) = k|2(0) = j]. Formula

(2) was given by Siegert [9; 11].

Because of the simple nature of the process under consideration it is easy to

show that L; ; and Ly j are (measurable) random variables with absolutely con-

tinuous distributions. We omit the proof. We let P; ;(u) be the probability density
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of Lj k,
) S Pk () dy =P[Lj,e <ul.
Define
. ALl
@ o =tim Qi (8) = () /2,

(5) me =1/[(V = k)Qk], k<N,
It is convenient to notice that, as N — @,

(6) mp = [)\7‘(21—1\))\2'7‘]"’ [ﬂ)\(i‘)\)]lnll +\l0 ([%)] ) k#0,

1A%

where we have put A = k/N, and OQL/N) is independent of A.
The quantities L ;, Qk, and so on, depend on the size of the model; when it

)
k

is necessary to emphasize this dependence we shall write L]('Nk) , Q , and so on.

3. Distribution of L; 1, j # k. In this section we consider the distribution of
the first-passage time from state j to state k for large N, where |j — k| is of the
order of magnitude of N. As far as the limiting distributions are concerned, we can
restrict ourselves without loss of generality to consideration of Ly ;, k < N. For
example, if j > N > k then we can write

Ljke =LjN +LNk .

The first-passage time from j to N, representing movement toward equilibrium, is
negligible relative to Ly j and does not affect the asymptotic result. On the other
hand if N > j > £, we have

Lik =Lnk —Ln,j

and it is not difficult to show that Ly,; 'is negligible comparedwith Ly j .
If the first passage to the state £ occurs at time 7, the probability that the
state at time ¢ is again & is Qj (¢ — 7). We have therefore

(7) Q) = L7 Pk () Qo (¢ =7) dr, j#k.

Formula (7) is the continuous counterpart of a formula long used for discrete
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processes and recently exploited by Feller [2]. Taking Laplace transforms of
both sides of (7) we have

. j(;mQj,k (t) e dt
(8) _]; Pk (t) e dt = , Rle) >0,

f;m Qr,k (t) et dt

Since the quantities Q; 4(¢) are polynomials in e™, as we observe from (2), both
the numerator and the denominator in (8) have a simple pole at o = 0, and their
quotient is therefore analytic in the circle |o| <1.

For simplicity denote Lﬁlk) by L;sN) . We have the following result.

THEOREM 1. The distribution function of L,(CN )/m,EN) converges to 1 — e %,
u >0, as N— @O, provided k/N < Ay < 1, the convergence being uniform in k

and u,
The proof will bring out the fact that likewise

(9 ELMYmM) — 1, N—>®, kN<A.
Theorem 1 will follow from this lemma:

LEMMA 1. For the complex variable o, let

qblsN) ©) = j;wPﬁ,"vk) (u) exp[—au/mkm] du.

Further, let {k(N)} be a sequence of nonnegative integers suck that k(N)/N — Ao
< Ay < 1as N=—> @, Then (the convergence being bounded and uniform provided
lo] <oo < 1),

(10 l:un ¢k(N) () =—— o] <1.

Proof of Theorem 1. The function qS(N)( —o) is the moment-generating
function” of the quantity L(N )/m(N) Lemma 1 then implies, as is well known, that

11 i (N) / (N) —-1—,7u
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uniformly for 4 > 0 provided k(N)/N — A, . Lemma 1 also implies, since we have

convergence in a complex neighborhood of o = 0, that
. A1 (N —
Lim E[Li Vmey =1,

so that (11) is still true if we replace mg&) by E [Lgi,z, )] .
Now if Theorem 1 were not true then an € > 0 and a sequence {R(N)3, R(V)/N
< Ay, would exist such that for infinitely many integers N we would have
1—e® —pLM M) <y >€.
02‘;}200 I € [ h(N)/mh(N) > U]I
Extracting a convergent subsequence from {A(N)/N}, we are led to a contradiction

of (11).

Proof of Lemma 1. The proof of Liemma 1, which is somewhat indirect, pro-
ceeds as follows. We can obtain an expression for qSSCN)(O') by substituting U/mch)
for o in (8), obtaining

@ -ot/my
fo Qn,k (t) e dt 5

__Jz.

12) oM (o) = -
SOk (2) et/ e

We can obtain an asymptotic estimate of /, as we shall see later. However, a di-
rect estimate of /, appears difficult to obtain. We shall therefore resort to another

(N)
k

expression for ¢;"’ (o) which is easier to estimate. Having estimates for qSS,tN)(U)

and for /1, we can get an estimate of J,, which will be necessary for Theorem 2.
Since a direct proof of Lemma 1 is easy if all terms in the sequence §E(N) 1 are
0 we can suppose & > Q. If 0 < k < N we have, from elementary reasoning, the

important relation

(13) Ly,o =Ln,k +Lk,o0 «

On account of the Markovian nature of the process, Ly i and L, o are independent
random variables and the Laplace transform of the distribution of their sum is the
product of the Laplace transforms of their individual distributions. Therefore,
using (8) and (13), we have

(14) E(estN,0) =E(e7stmk ) p(e7stk0) |



186 RICHARD BELLMAN AND THEODORE HARRIS

or

1) ¢V

I

ST Py (2) /™

L7 Puo (2) e/ dr [ Quo (2) €/ at

j;m Pro (t) e~t/mk gy _";m .0 (t) ot/ gy

j;’m (1 - e'2t)N e"O’t/lk dt

j;(x) (l_e"t)k(l +e"t)2N-k e‘O’_t/llk dt

The advantage of (15) over (12) is that Qj ¢ (¢) is a simpler function than Qy 1 (¢).
The numerator of the last fraction in (15) is (1/2)B [N + 1, (1/2)0'/mk 1. The

denominator, with the substitution e = y , becomes

(16) I - ‘I‘;l (1 _y)k(l +y)2N"k y(cr/m).)"l dy .

We now have to estimate / as N — ® under the hypothesis E/N— A, < 1.
[We shall write simply % for £(N).] We shall restrict o to the circumference of a
circle, say |o| = (1/2), since it is clearly sufficient to prove Lemma 1 for such
a circle. Write

I= j(;e'*' L1=Il+12, 0<€<1"‘)\0Sl.

Making use of (6) and the fact that (1 — y)* (1 + y)ZN—k increases to a maximum
aty = 1 — k/N and then decreases, 1 — k/N being larger than € for sufficiently
large N, we have

(17) Il= j‘;l/Nz_}_ j;e

/N2

=2 o)+ [ (1 =)k +y)Hk ylo/mt gy
o 1/N
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= Z—"— [1+0(1)] +0[(1— €k +€)*™* log N]

=" [1+o(1)] +om),

where o ) is independent of o for [o| = 1/2.
To estimate [, we distinguish the cases Ay > 0O and Ay =0.If Ay > 0, then

I, can be estimated using the method of Laplace; see [8, p. 77]. We obtain then,
setting k/N = \, (see (6)),

A2 — N

1/2
(18) I, =[\2-NTM [ N1 = }\)] [1+0(1)] =m[1+0(1)].

Going back to (15), we obtain (10) from (17) and (18), since
(1/2)BIN + 1, (1/2)o/me] = (me/o)[1 + 0(1)].

This completes the proof of Lemma 1 for the case Ay > 0. If A ;= 0, the integral
I, can be estimated by making a change of the variable of integration which shows
the integral to be asymptotically equivalent to a Beta function. We need not enter
into details.

4. Distibution of Ly ;. We shall establish the following result.
THEOREM 2. Assume A= k/N < A\, <1, and put
F\) =N+ (1-A) [1~e-(1-)‘)"], u>0.
Then for every b > 0 we have

1i L(N) (N) <uf-—F =0
im bz&g IP[; ) u] )\ u)l
uniformly in k.

Proof. As in the case of Theorem 1, it is sufficient to prove that the Laplace
transform of the distribution of NQ;ﬁ”) ngﬂk) approaches

Mo + (1 —Ao)%/(1 +0—X,)

provided /N = N — A\, < 1. (We know from the general theory of Markov proc-
esses that

ELR =1/(Nei"),
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see Feller, [3, p. 325].)
The relation which replaces (7) when j = £ is

(19) Qui () =e™ + [7 Pop () Quu (¢t —7) d7 ,

the term e V¢ in (19) being the probability that the system remains in state k the
entire time from 0 to ¢. From (19), we have

(20) j(')w Pek (t) e TNt gy

1

=1- , o] == .
NI +0Qk) [ Qi () %N g ?

If we equate the right side of (8), with j = N and with o replaced by oNQy, to
the right side of (15) with o/m replaced by oNQ} , we obtain

® -oNQpt
fo Qwe(t) e dt -

= (P Naumn) = & (155),

S7 Qu (1) %t gy
or

foc0 Qn,k (t) e Nt gt
¢Mo/(1 = N)

CpMo/(1 = A) "

To estimate I3, which is the numerator of (12) with o replaced by o/ = \), we

(21) j“)"" Qkk (t) e Nty —

need two lemmas.

LEMMA 2. Given € > 0, let

() t loAM (2) =M
€)= :
N sup 05"11'?21\' Qr(N)
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Then
(22) tn(e) =0 (log N) , N—®,
Proof. By (2), Qu ,(¢) is the coefficient of s” in
(L—e 2 (1 + 25 + 222,

where z = z() = 2(1 + e 29)/A1 — &72%). Since for large N the root of the
equation

1—e2W=1-85, 0<8<1, & fixed,

is approximately ¢ ~ (1/2) log N, it suffices to prove Lemma 2 for the quantities

(N (4) — (W)
th(e) =sup{t: max M_c_'_'>€ ,
Ogre<aN c£N) -

where we have set

(23) (1+2s+s)V= ZciN) (t) s",

cfzv) - cﬁnr) @) =22NQ£N) .

" Suppose € > 0 is given.Choose an arbitrary & > 1. Let €, < € be a positive
number and define

(24) €N+l T €N(1 + l/NO(') , N= 1)21 ot

Note that {ey} is a bounded increasing sequence. We select €, small enough so
that €y < €, for all N. Now define a sequence z; < 7, < ** as follows:
t, = tf(el); ty +; for N >1 is the maximum of 7, and the positive root of

(25) (1/3)[2(t) —2](1 + en)/ex = 1/N*.
[Note that z(¢) is monotone decreasing.] It is then clear from (25) that
(26) ty ~(1/2)x log N, N—®,

We now wish to show inductively that

€9 (0) = )| ]
(27) (N) §€N for tZtN, N=l,2,"'
c
r
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Clearly (27) holds for N = 1,since €; < € and 7, = ] - Suppose that (27) is true
for a general N. From (23), we have

(28) M () =M (2) +2¢M (2) +cM (¢,
cf_”“) = cf.”) +20$_f)1 + cf,ﬂ, .

Using (27), (28), and the fact that c(f_)l/crw *1) < 1/3, we have fort > 7y,

D) () — WD) | 1 1+e¢,
(29) WD) Sefl+y |z(t) — 2| - I

Fromthe definition of €y it isthen clear that (27) holds with N replaced by N + 1.
Then ¢t > Ty implies that the left side of (27) is less than € . Use of (26) now com-
pletes the proof of Lemma 2.

LEMMA 3. Assume k/N < Ay. Then
max QM (t) <exp[ =3(1 = \y)2N/5].

0gtL®

Proof. Lemma 3 is an immediate consequence of a result of S. Bernstein on
sums of independent random variables; see Uspensky [12, p. 205]. To apply
Bernstein’s result, we consider the 2N balls as consisting of N pairs, each pair
having initially one ball in urn 1 and one in urn 2, letting Uspensky’s random vari-
variable x; be the number of balls from the ith pair in urn 1, minus 1, at time ¢

Now

N N
Qz(va(t)=P [Z xi =k—N]<P [2 x 5k~1v] ,
l:=l i:l

and the applicability of Bernstein’s result is obvious.

We now return to the proof of Theorem 2. To estimate the integral /; defined
in (21), write

(30) L= J° @k (t) — Q) €M@ dt + 1/ (Vo).

Write the integral on the right side of (30) as

ty(e) ©
A

v(e) =I3 +I3
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for an arbitrary € > 0, where ¢ty(€) is defined in Lemma 2. Using Lemmas 2 and
3, we have

(31) 3] < eQe fw e N&t gt <e/(No)

tN( 6)

I3 | =0flog N exp[—3(1 — A )2N/513 .

Thus I3 ~ 1/(No). Putting this estimate in (21) and recalling from Theorem 1 that

m (7 v
2 (1—>\) T Ttro/=ny)

we get the desired result from (20).

5. Intuitive interpretation. Theorem 1 means intuitively that if we take my
as our time unit, the attainment of the state 4 is an occurrence of the “chance”
type; that is, the probability of attaining & during a given time interval is almost
independent of the past history of the process. This interpretation suggests that
Theorem 1 should be true for more general types of processes with a central
tendency.

Theorem 2 seems to mean that if the initial state is % there is a probability A
of returning to k£ before leaving its immediate neighborhood; there is a probability

1 — N of getting completely away from the neighborhood before the first return; in
this case the first return has the distribution of first passage times given in Theo-
rem 1.

6. Application to stationary Gaussian Markov processes. In Theorems 1 and
2 we considered rare or microscopic fluctuations of x(¢). But if N is large x(¢) will
for the most part deviate little from its mean value N, and to consider the ordinary
fluctuations of x(t) we consider

zx(t) = [x(t) —N]/NV2

Letz;,***, t, be a fixed set of nonnegative numbers. The joint distribution of
zN(tl), © o0, zy(ty), given z,(0) = 0, approaches, as N— ®, the joint distrib-
ation of z(¢y), ¢+, z(¢,), given 2(0) = 0, where z(t) is the stationary Gaussian
Markov process with

Elz(¢t)]=0, E[z(s) z(s + t)] = (1/2) e~lth
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Define the random variable L to be the smallest value of ¢ for which z(t) =
—£, < 0, given z(0) = 0. It is intuitively clear that the distribution of L is given
by the limiting distribution of Ly, as N— ® provided we let

(32) (k '_N)/Nl/2‘—') —§0 .
A rigorous proof of this statement is not difficult but we omit it.

To find the limiting Laplace transform for the distribution of Ly 4 under the
hypothesis (32), we consider (15) with o > 0 in place of o/my, and let & =
N — &£NY?. The substitution e * = y/NY? puts the denominator in the form

. 1/2
1 N N2 y |
(33) N0'/2 l: 0 + -I]‘vo‘ (1 _N1/2

N+enV/?
N 1/2

x(l L yo! dyl,

where & is an arbitrary number between 0 and 1/6. If 0 < y < N%, then

/2 1/2
N-¢£N N+EN
y Y — ~y24ag -1/2+3a
(1 _N—V2) (1 +NV2) =V %Y [1 0oV ).

o _.2 _
j;" — j;mey“?foy yo gy,

The second integral inside the bracket in (33) goes to 0 as N — © ,
The numerator of (15), with ¢ in place of O’/mk, is

(L/2)B(N +1,0/2) N°/2,
We thus have the following result.

THEOREM 3. The Laplace transform of the distribution of L is given by

(1/2)T" (¢/2)
(34) o4} 2+ )
J; e_y 250.}' y o~1 dy

Formula (34) was obtained by Siegert and by Darling through direct consider-
ation of the z(¢) process. It is interesting to notice that the present procedure

utilizes (13) which has no counterpart for the z(¢) process.
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7. Two-sided limits. Let L}z, N > k, be the first time |x(t) = N| =N~k
given x(0) = N. Let L* be the first time |z ()| = &, > 0, given z(0) = 0. Argu-
ments similar to those used for Theorems 1 and 3 give the following two results.

THEOREM la. Under the conditions of Theorem 1 the limiting distribution of
L:'\(/’k/mk is1—e 2%, u> 0.

TuroREM 3a. The distribution of L* has the Laplace transform
1/2)T(c /2)

jo'm e=Y2y7=1 cosh (2&,y)dy

8. Added in proof. An argument has been found which rigorizes the remarks of

Section 5 and gives a proof of Theorems 1 and 2 for more general processes.
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