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1. Introduction, Given a real symmetric linear operator 4 on a vector space &,
we wish to describe a procedure for finding a “minimum” characteristic vector
of A, that is, a characteristic vector with least characteristic value, supposing
such to exist. The method to be used is, in a general way, the following. Select
an initial vector x° and a positive integer s > 1. Imbed x° in an s-dimensional
linear subspace £° (appropriately selected). Determine the next approximation x'
as the minimum characteristic vector relative to this subspace (to be defined

2 as the

later). Next, imbed x' in an s-dimensional subspace &' and determine x
minimum characteristic vector relativetothis subspace. Proceedingin this manner,
construct a sequence of subspaces £°, €1, « <+ of fixed dimension s, with a

2 +e«. It is to be expected that under

corresponding sequence of vectors x', x
appropriate hypotheses the sequence of vectors will converge to a minimum char-
acteristic vector of 4.

We shall treat the case when & is of finite dimension n, and €% is chosen as
the subspace spanned by the vectors x%, Ax?, A%%, - « » , 457 1x% We shall es-
tablish the desired convergence under these circumstances, the sequence fx#
AR S e '77i with (x?, ni) = 0. The main
result is formulated in Theorem 2 of §6. An analogous result holds for a “maximum”

satisfying at the same time a relation x

characteristic vector.

It is of interest to compare the present iteration method with what might be
called Rayleigh-Ritz procedures. In the latter, one fills out the space £ by a
judiciously chosen monotone sequence of subspaces

g,cgcg ... (dim &; = i)

of increasing dimension. One then obtains successive approximations to a mini-

mum vector of 4 by determining minimum characteristic vectors of the successive
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234 W. KARUSH

subspaces. This procedure has the serious computational drawback that to obtain
an improved approximation a problem of increased complexity, that is, of higher
dimension, must be solved. This restriction is important even in the finite dimen-
sional case where the iteration, in theory, terminates in a finite number of steps.
The method of the present paper, however, requires only the solution of a problem
of fixed dimension s at each step, the dimension s being chosen from the outset
as any desired value. The €% form a chain of subspaces in which successive sub-
spaces €% and €*1 overlap in x**!; in general this chain will be infinite even
when € is finite-dimensional. Thus the method is useful where it is desired to fix
beforehand the degree of complexity for all steps; and yet a great many iterations
may readily be performed. This is the case with high speed computing machines.

The present procedure may be interpreted as a gradient method; cf [1]. For
s = 2, in the equation x**! = x* + 1), 1* is a multiple of the gradient at x = xt
of the function (x, Ax)/(x, x). For s > 2, the vector 7) contains higher order terms.
The applicability of the present procedure with s = 2 to quadratic functionals in
infinite-dimensional spaces has been pointed out to the author by M.R.Hestenes

in conversation, and has been outlined by L.V.Kantorovitch [2].

2. Subspaces. Before describing in detail the iteration procedure to be used,
and proving its convergence, we find it convenient to formulate some preliminary
results. In this section we construct an orthogonal basis for the space spanned
by the powers of 4 operating on a fixed vector x; in the next section we describe
the characteristic roots and vectors relative to certain subspaces of this space.
We shall encounter polynomials p;(\) of central importance. In these two sections
we. shall be treating, essentially, only one level of the iteration. Accordingly, the
superscript i denoting the various steps of the iteration will not appear until $4,
where we are concerned with the progression from one level to the next.

Let € denote the n-dimensional space of n-tuples of real numbers; by vector
we understand always an element of €. We consider a linear operator A on € which

is real and symmetric; that is, one for which 4x is a real vector and
(Az, z) = (x, Az)

for arbitrary real vectors x, z. A characteristic number (root, value) of 4 is a

number A for which there exists a non-null vector y such that
Ay = )\y.

There are n (real) characteristic numbers (counting multiplicities).



CHARACTERISTIC VECTORS OF A SYMMETRIC MATRIX 235

With a non-null vector x we associate the number

(a1
&)=

and the vector
£(x) = Ax — plx)x .

Let A pin (A max) be the least (greatest) characteristic root, of 4. It is well known
that

@ Mmin = min w(x) ’ Amax = max i(x) , (x € 8) .
x#0 x#0

For a non-null vector x we define the subspaces
a’](x) = (x’Axl '.‘:Aj—lx) (j=1’2’3’ ..‘)'

O(x) = (x,Ax,A%x, *=-),

where, in each case, the right side of the equation denotes the space spanned by
the designated vectors. The space ((x) is the smallest invariant subspace con-
taiffing x ; denote its dimension by r = r(x). Clearly G, € G, C .-+ C(, =0,
where “C” denotes strict inclusion. The space (i contains r independent char-
acteristic vectors of 4. We now construct an orthogonal basis for CL]- .

LEMMA 1. Let the vectors & (j = 0,1, « « «, r) be defined by

(2) o ==x, &1 =4%0 — oo (o = pu(x)),
Ejo1 = AL —péj = & (nj=m&),

;1
tj = If']ll : (] =1,2,°", r—l)-

-

Then for j, k = 0,1, + ¢ «,r — 1, we have fj # 0, and
(3) G‘j+l(x):(§0 :§11“"§j): (f],fk)zo,
(A&, &j+q) = !§j+1'2 (j #k).

The lemma may be verified directly by induction. We remark that & = 0.
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LEMMA 2. Let the polynomials pj(N) (j=0,1, ¢« +,r) be defined by
po(MN =1, pi(N=0A=go), ps(N==po)(A=py) = ¢f,
Piar(N =p;(N(A=p;) = t7p;_, (N (=12, r=1).
Suppose B is an invariant subspace containing x ; write
(4) x=ayy; tazys ++°+ a1 y;
in terms of a basis of characteristic vectors of B. Then
5) &5 = aypj(\)ys +azpj(Adys ++* 2+ arpi(A)yr (G =01, *++, r),

where Ny, is the characteristic number of yy.

The lemma follows immediately from the definitions (2).

The polynomials pj(A) have also been used by C. Lanczos [3].

3. Characteristic values relative to subspaces. Let B be an arbitrary (linear)
subspace of €; let 77 be the operator on £ which carries any vector into its pro-
jection on B. We define a linear operator 4 (B) on B to B as follows:

A(B)x=7T(Ax) (x€%).

Then A(B) is a symmetric operator on B, since 4(B) = 7A7. By the characteristic
roots and vectors of A relative to the subspace B, we mean the corresponding
quantities of A(B). If B is invariant, then these quantities are characteristic for 4
itself. We shall use the following easily verified fact: y is a characteristic vector
relative to B with characteristic value A if and only if y #0,y € 13, and (4y, 2)
= Ny, z) for z € B. By a minimum characteristic vector of B we shall mean a
characteristic vector relative to 13 with least characteristic value. When no con-
fusion can arise we shall omit the qualifying term “relative.”

LEMMA 3. The j characteristic roots relative to the subspace (i]-(x) are dis-
tinct and are given by the solutions of

Pi(N) =0.
Each characteristic vector (relative to (1,-) has a non-null projection on x.

To prove the last statement, suppose that y is a characteristic vector with
characteristic value \. If (y, x) = 0, then (y, 4x2) = (4y, x) = Ay, x) = 0, and
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(y, A%x) = (Ay, Ax) = A(y, Ax) =0, « + +, and (y, A771%) = 0. From the definition
of G’j it follows that y is orthogonal to this space. But y belongs to this space;
hence y = 0, a contradiction.

The distinctness of the roots now follows.Forif two independent characteristic
vectors belong to A then there is a non-null linear combination orthogonal to x
belonging to A.

To complete the proof we use the basis (3) of G*j . The matrix representation,
call it Ai’ of A(G,j) relative to this basis has as element in the (¥ + 1)st row and
(I + 1)st column;

(4&. &)
el 1£1]

Using (2) and the second line of (3) we find that

(k,1=0,1-+,j—1).

Mo ty O - -
ty K1 ta
0
0 ty py -
A] = . . . .
0
. . tj"'l
tj-1 Hj=1

Thus, the characteristic roots are the roots of the polynomial
q;(N) = |NI; = 451,

where /; is the j-rowed square identity matrix. Let g (A\) = 1. Direct calculation
shows that ¢, (A) = p; (A), and that the g;(A) satisfy the same recursion relation
as the p;(A). Hence the two sets of polynomials are identical. This completes
the proof.

LEMMA 4. Let v be the minimum characteristic root relative to (i,-; that is,
vj = min, root of pj()\) (=12 -, r).
Then

(6) )\1 = Vp < Vp=-1 < eee < vV,
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where Ny is the minimum characteristic root of the invariant subspace G,. Further,
each root o of each polynomial p;(\) satisfies

@ Apin £ 0 £ Apax-

The last statement follows at once from Lemma 3 and (1) when we notice that
each characteristic root o is a value of n(z) = (z, 42)/(z, z); namely, o is that
value obtained by replacing z by the corresponding characteristic vector.

To prove (6) we apply (1) to the operator A(aj). Using the fact that (4z, z)
= [A(@]-)z, z] for z in G’j’ we find that

v; = T;lél(: w(z) , (z in @]) .

From th C CLj+1 we infer that the roots are non-increasing. Suppose that vy
= Vk+1. Denote the common value by v. From the recursion formula for the poly-

nomials it follows that
Pr-1(¥) = ppo,(¥) = o0 =py(v) =0,
contrary to the definition p, () =1

LEMMA 5. The minimum characteristic vector relative to O‘j is given by

p1(vj) pa(v;) pj —1(V)
(8) z.=x + J §1+ J §2+ e 4 —— ] ]
J T} 73

gi-1,

where

19

||

Tp =1ty * ty *** g = .

More generally, the characteristic vector belonging to an arbitrary root o is
obtained by replacing v by o on the right in (8). To prove this, let z denote the
vector obtained by this substitution. It is sufficient to show that nn = 4z — oz
is orthogonal to G’j; to this end we use the basis in (3). Using the definition of
z and the relations (2) and (3), we find that

( )

(x,1) = (x, Ax) + 2272 £, ]2 = o |2

= [P1(‘7) ll Coy Mo)]lxlz

b



CHARACTERISTIC VECTORS OF A SYMMETRIC MATRIX 239

P~ 1() (0')

& ,m)=———"1¢1*+ |2
71-1 r
Pl+1(a) ()
e I L 2l L
Tl+l ’7'l

|§ll2

l

[Pl+1(°') {Pz(o’)(c'"’#l) "Pl-l(o') tfi] =0

for{ =1,2,+++,j— 2. Forl=j— 1, the term in p;4+, does not appear, and we
obtain

]2
&j=1, M) =— li_gll pjlo) =0.
j=1

This completes the argument.

4, The iteration procedure. We sh;ll henceforth be dealing with a sequence
{x’} of vectors; with each vector we associate the quantities described previ-
ously for an arbitrary vector x. To indicate dependence upon x‘ we shall adjoin
the superscript i to the symbols denoting these quantities.

0 [=r(x°)] is the dimension

Consider an initial vector x° # 0. By definition r
of G° [= ((x°)], the smallest invariant subspace containing x°. Since (° =

a (x°), according to Lemma 3 there are r° distinct characteristic roots
r0 g
)\l<)\2< oo <)\r0

relative to (°; and the corresponding. characteristic vectors can be normalized
so that

C=yity t+ o *+ Y0

All vectors considered below will lie in the invariant space (°. Henceforth the
symbols )\]- and y; will denote the characteristic quantities of this subspace.

To specify the iteration procedure at hand we require, besides x°, the selection
of a fixed dimension s > 1. We remark at this point that the significant case is
that for which the dimension of the invariant space ((x%) at every stage exceeds
s; that is,
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(9) (i=0,1,2, *=*) .

To simplify presentation, unless otherwise stated it will be assumed that this
condition holds. The trivial case in which (9) fails will be treated at the end of
this section.

Consider now the s-dimensional subspace (2 = U (x°). Relative to this sub-
space there is, by Lemma 3, a unique minimum characteristic vector x° + 7° with
(x°, m°) = 0; call it x'. Now form G} = (5 (x!) and select x? as the unique mini-
mum characteristic vector relative to this space of the form x* + 7', (x!, n') = 0.

i+1

In general we define x*”! as the minimum characteristic vector x* + 7°, (x*, %)

= 0, relative to the subspace (ii. Notice that these subspaces form a chain in

. . . . . o ; +
which successive subspaces of index i and i + 1 overlap in x*™!.

LEMMA 6. The sequence {x%} is given by

i i i Vi
10) LIt = i +P(1fli))2 Ef oo +f’_zis_li(lT2) £i,
where V' is the least root of pi(\) . Further,
) vi= u(xtt)
Also §v'} is decreasing; in fact
(12) N < Vo= i< v < oo < o= u(xt),

where V]‘: is the minimum zero ofp;.- (M)

By Lemma 3 the minimum characteristic root relative to (% is . It follows

by the definition of x**! that the equality (11) holds. The relations (12) follow
from Lemma 4, condition (9), and definition. The formula (10) is (8) of Lemma 5

interpreted for x = and j = s,

LEMMA 7. In terms of the characteristic basis of (° we have

(13) xt = aiyl +aby, +eoo+ aioyro ,

(14) f} = d} p]i()\l)yl + a} PJi (N)ya + +»» + aiopf (No)y,o

(i=0,1,2 *=+; j=0,1, ==, rt).
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where
(15) it = gf (G IS (VR S CO I SCYY)
(71)? (T41)?
(k=1,2, *»*, r°) .
Furthermore, ak 1 and
(16) 1 = af < a} < @} < *»-

Formula (14) follows from (13) by Lemma 2; (15) is a consequence of (13), (14)
and (10) of Lemma 6. To prove (16) we notice that p L(N) (j=1,2,¢++,s—1)
is not zero, and has the same sign, at A\, and at v’ [smce by (12) the least root
of the polynomial exceeds these values] . Hence each term in braces in (15) is

positive; this completes the proof.

We conclude the present section with a consideration of the possible failure
of (9). Suppose that for some first value m of i this inequality fails. Then G is
an invariant subspace, and the minimum characteristic vector x™*1 relative to
this subspace is a characteristic vector of 4. Thus G7*! is a one-dimensional
M It follows that x° = x™*!

for i > m + 1. But the argument used in establishing (16) shows that x* = Ly,

invariant subspace containing only multiples of x

L>0,fri>m+1. The theorems to be proved in the next two sections now hold
trivially. We are thereby justified in the assumption of (9).

5. Convergence in direction. We shall first prove that the sequence fx43
converges in direction; in §6 we shall establish the more troublesome property

of convergence in length.

THEOREM 1. Starting with an initial vector x° 75 0, and a fixed dimension
s > 1, construct the sequence §x'} described above. Then

i

Y1
lim i
o |zt |y ]

Proof. From (12), the sequence {v*} is a strictly decreasing sequence bounded

from below by A, . Hence there is a number v such that
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Y=V 2 A

ivm
By (12) the smaller root v5 of the polynomial p’ (\) is not less than 7%, Hence
pit) = (W —ph) O —pd) - (20,
(¢)? < (=) (ui -0,

since ;Lf) = y(xi) = i1 [gee (2) and (11)]. By (1) there is a constant M, inde-
pendent of i, such that

17) (tH? < M@t =t)
In particular,
t'— 0 as i — ®,

Recalling (13), put

i
, aj
i 1
b] - lxi' lle .
Thus
i r° . r0
(18) lx—ll = X b}ﬁ, (bj)* = 1.
x j=1 Yj j=1
From (14) and the definition of t; , we have
12 — If”‘ - AV RN 2 2 » i )2 1TON )]2
(t1)? = ik = (b1 [pT (A2 + =+ + (870)* [pi(A 0 .

Since the sum of squares on the right tends to 0, each term must do the same. But
pil(}\j) = ()\j - ,uf,) = ()\j - ity — O‘j ~ ). From the second equation of

(18), it follows that for some index [ we have
o= N, bl —1, bl—0  for j#£ L
(The last two conditions follow from the distinctness of the )\]-.)

We propose to show that [ = 1. Suppose [ # 1. Then
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ly,l Iojl lafl
Using (12), we have
A< N < i <y]‘: G=1,2 *+, s—1).

It follows that p’: (M) has the same sign at A = A;, A, v, Furthermore, since
by Lemma 3 this polynomial has only real roots, we have

SIS HIP

Thus in formula (15) each term in braces for the coefficients a} and a’l' is positive,
and each term for a is not smaller than the corresponding term for a;'. Hence,

for all i, we have

|af*? |ail
. 3 L = 0 l 2 L .
la;’+1 - Ia}'! (1' 1 & )

By assumption, az =1,%k=1,2,+++,r° We now have a contradiction to (19).
Thus I = 1.
Since a} > 0 by (16), we have b% > 0. Hence

bi—>1, b]‘i——»o for j#1.
The theorem now follows from the first equation of (18).

6. The main theorem. Before proving the principal result, Theorem 2, we
establish two lemmas.

LEMMA 8. Let B be an invariant subspace with lowest charactefistic value
Ay having multiplicity one. Then for x # 0 in B, we have

1))
N nl) sl

w(x) =x < whenever p(x) < Ay .

Proof. (An alternative proof, applicable to normal matrices, is given by H.
Wielandt [4]).) Write x in the form (4) where y,,y,, ***, y, is a complete set of
orthonormal characteristic vectors in 13. We let

a*=x—ayy;, p=ux), pr=p(xr),
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and
E=&(x) =Ax —pux , £ =&(x*) = Ax* — prx*
From (x*, y,) = 0, we obtain
(SC*’ .'}’1)= 0.
From this and (£ *, x*) = 0, we obtain
(f*vx>= (f*a x* + al)’l) =0.
From the definition of £ *, we have
€' =Ax —aihyr —H*x taputyy
=&—(pr—wx+ (k=N ay
Hence
0= (" x) == (p*—=u)l=|* + (k> = N)ai .
Also
0S5 &Y =7 &)= |§|2 + (p* = A1) (A — p)ad
from the definition of £. Eliminating a? from the preceding equation, we obtain
(k=M (p*=—u)l=|? < I€17 .
Since x* € B and x* is orthogonal to y, , we have
AR

Hence, whenever u < A,, the inequality of Lemma 8 follows from the second
inequality above.

We shall eventually show that the sequence of lengths |x’| converges. To do
this we shall require a bound on the ratio |p; %) l/'r; This is obtained in the

next lemma.

LEMMA 9. Suppose that for all i we have s < ri. Then there exists a constant
K, independent of i and j, such that for i sufficiently large we have
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;)| < K(7})? =12, s=1).

Proof. By Theorem 1, we have u(x?) = vi"! — \,. Hence we may confine

ourselves to i’s so large that, say,
Vit = < (1/2)(Ae = )

Consider first j = 1. Apply the inequality of Lemma 8 with x = x*, B=(G°. We
find that

1. (1})?
A vty

By (11), we have

M=) 2 = u)] = 1pi0h)]

and
1 1 2
- = ; <
Ay = p(x*) Ay — 7! Ay =Ny
Hence
(20) i) < k(eD)?,

as desired.

Let

R;-_—M (j=l,2,"‘,8"1).

1)2
)
The inequality (20) may be written Ry < K. We propose to show that for some

constant K, , independent of i and j, we have
: L )2 P = -
(21) R; < K,(R]_)) (j =23, =+, s—1).

This, together with (20), will establish the lemma.
For the remainder of the proof we omit the superscript i. Writing p;(\) as a

product of linear factors, we obtain from (12) and (7) the result that

(22) ;W) < Kalv—v;| < Kalv; — M)



246 W. KARUSH

In order to estimate the last difference we make use of the minimum characteristic
vector z relative to the subspace G'j = (xb, Axb, o oo, AT7140),
We have
p(z) =vj .
By (12) we may apgly the inequality of Lemma 8 with x = z and B = (°. Thus

1 G

(23) v; =N <
g l~>\2-V1 |Z|2

HOIK

S KS |Z|2 ’

where

£(z) =Az—vjz.

The vector £ (z) is orthogonal to G.]- and lies in O';'H' By (3) the vector is a scalar
multiple of fj . To determine the scalar we use (8) and (2). We find that

Pj~1(Vj)
) =" ¢ .
’rj_l
Since (v =) v < vj < Vj-y, the above coefficient of £; does not exceed Rj-,
(= R:_) in absolute value, Vj-1 being the least root of the polynomial. Also

|2|2'> |x |2, by (8). Thus

EO R

2 2
(24) HE < Rj., MER Ri_,7; .

The combination of (22), (23), and (24) yields the desired inequality (21).

We turn to the main theorem. The theorem has an obvious counterpart for the

maximum characteristic vector.

THEOREM 2. Let A be a real symmetric operator on a real vector space of
dimension n. Given an initial vector x° # 0 and a fixed dimension s (1 <s <n),
construct a sequence of vectors {x'} as follows: let x**! be the unique minimum
characteristic vector relative to the subspace G (x') of the form x* + 7', with
(x, ’r)i) = 0. Then x* converges to the minimum characteristic vector in ((x%),
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the smallest invarignt subspace containing x°. Further, the vector %'t is given
by (10), and the least root of p% (\) converges to Ay, provided (9) holds. (In the

event that condition (9) fails, the sequence {x'} is eventually constant, as re-

marked in the last paragraph of $4.)

Proof. By Theorem 1, it is sufficient to show that the increasing sequence
|x%|? converges. It is an easy consequence of (10) that

i
#7712 = 1202 T (1t ),
k=0

where
2 2
k pE(®) )
= T + o+ |
T1 Ts-1

By a well-known theorem on infinite products, to prove the desired convergence it

k

is sufficient to verify that If’=, ¢” converges. By Lemma 9, this requirement is

reduced to showing that each of the series 2%, (7%)? converges. For j =1,

this series converges by (17). There is a constant K, such that |4x| <K, |«

Using this inequality and (2), we obtain
S EN ALHEACHE P
Hence we have

i i
thy S K+ th .

It follows that for all ; we have

t; < K, (=23, s—1).

The convergence of the remaining series now follows from the convergence for

j = 1. This completes the proof.
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