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COMPLETENESS OF SETS OF TRANSLATED COSINES

R. P. Boas, Jr.

1. Introduction. Conditions for the completeness on (0,7) of sets {cos h,x}
are well known. llere we shall consider sets {cos (A,x + g,)}. Such sets seem
first to have been considered by Ditkin [3], who proved that {cos (nx + qn)z
is L-complete in (0,77) if 0 < ¢, < 77/2.

©
0

Ditkin’s very simple proof uses Fourier series and does not seem capable of
extension to the more general sets considered here. Our principal object is to
show how the problem may be attacked by complex-variable methods; we shall
not attempt an exhaustive discussion.

As a specimen we quote the following case. If A, > 0 and I)\n - ni <
§ < 1/2, then the sets {cos (A,x + g,)o and {sin (A,x + q,)} are L-
complete in (0,77) if 78/2 < ¢, < 7(1 — §)/2. (The statement “ ffn(x)f is
LP-complete” means that the only functions of LP which are orthogonal to all
fnlx) are almost everywhere zero,) A further result, not covered by the present
paper, has been given by Bitsadze [1], who showed that every function satisfy-
ing a lidlder condition admits a uniformly convergent expansion in terms of the
set {cos (nx + 7/4)1; he indicates an application of this result to the Tricomi
partial differential equation.

We remark that although Ditkin’s set {cos (nx + qn)zgoremains complete when
all g, = 7/2, it may fail to be complete if some but not all g, = 7/2. In fact,
the set {1, sin x, cos 2x, cos 3x,* * * { is orihogonal to cos x. However, we shall
show that not only is the set {sin (nx + ¢,)}y complete if}O < qp <7/2, but
even the set {sin (nx + qn) 1T is complete.

By applying the completeness theorem of Paley and Wiener [5,p.100] to the
equivalent set {cos nx + a, sin nx}, 0 < lan| < 1, we can show at once that
fcos (nx + gqp)i5 is L?-complete if either 0 < ‘qnf < & < 7m/4for all nor
else 7/4 <8 < |qn| < m/2 for all n. The problem of necessary and sufficient

conditions for the completeness of {cos (nx + qn)§ remains open.

2. A general theorem. We shall obtain our results on {cos (A x + gn)} as
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322 R. P. BOAS, JR.

corollaries of a theorem on a related set of more artificial appearance.

THEOREM. Let {N,}5 be an increasing unbounded sequence of nonnegative
numbers; let Ny(r) and Ny(r) denote respectively the number of Nyp and of Nyp+q
not exceeding r. If both

- 1
(2.1) flrt IN(t)de >§ r ~v log r — constant,
and
_ 1 1
(2.2) flrt 1N2(t)dt > ~2— r——(’y + 5) log r — constant,

where y = 1/@2p')if 1l < p <@,p’ =p/(p —D,and y <1/2ifp = @, then
the set

(2.3) cos Aant + agn sin Aot
~ Qap+1 COS }\2,”.1 t + sin )\2n+1 t
is LP-complete on ( —m/2, 1/2) if the a, are real numbers all of the same sign.

CoROLLARY 1. The set (2.3),with the ay, all of the same sign, is LP-complete
on (=7/2,m/2)if 0 < N\, <+ 1+ 1/p',1 < p <®;itis L -complete if
0< A, <n+35,8<2.

COROLLARY 2. If A, > 0 and

1 78 7(1 = 8)
A, — < § <—, —< <
] n n| = 9 9 = qn 2

’

then the set {cos (Ayx + qnﬂgO is L-complete on (0, 7).

For 8 = 0, Corollary 2 reduces to Ditkin’s theorem; for & # 0, the range of
gn is more restricted. If the A, are confined to one side of n, a sharper result

is true.

COROLLARY 3. Ifn < Ay, <n+ 8,0<8<1,and 0 < ¢q, < 7(1 — §)/2,
n>050rifn —86< Ny <nforn>0,0<58<1,andn(l—8)/2<q,< 0,
then {cos (Nyx + qp) 13 is L-complete in (0,7).

The following result on sets of sines includes the fact that §sin (nx + qn) }lm
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is L-complete on (0,7) if 0 < ¢, < 7/2.

COROLLARY 4 If |n + 1 —=A\,| < 8 <1/2and 78/2 < q, <7(1 — 8)/2,
then the set {sin (N,x + q,)} is L-complete on (0,7).

By demanding only LP-completeness instead of L-completeness, we can allow

the A, to be larger than in Corollary 2.

COROLLARY 5. If 1 < p < ®andn + 2 — 8§ <A, <n+2-1/p,1/p<
& < 1, then the set {cos (Ayx + qp)}s is [P-complete on (0,7) if /2 <
gn <T7/2.

3. Proof of the general theorem. We now prove the theorem stated above. We

must show that if f(x) € [P and if

m/
(3.1) f_n/; (cos Agnt + agy sin Nan t) f(t)dt

__fw/z _ .
= ( —azm+1cos Aapeyt + sin N1 t) f(t)de

=71/2
= 0 (n:O’l’z’--.),
where all @, satisfy a, > 0 or else all a, satisfy a,, < 0, then f(x) = 0 almost
everywhere.
Write

(3.2)  F(z) =f_;’jjf(t) cos zt dt,  G(z) = _:jjf(t) sin zt dt ;

then (3.1) is
(3.3) F()\Zn)+a2nG()\2n)=O,
~agn+1F(Nan+1) + G(Agney) = 0.

Let /(z) = F(z)G(z); then H(0) = 0; if A; = 0, then #'(0) = H"(0) = 0; and
H(A; )H( Ny 41) < 0. Note that H(z) is an odd function. Let N(t) = N, () +
N,(t), and let A(t) denote the number of zeros of H(z) in 0 < ] z l <t.

We prove first that

(3.4) Ar) >2N(r) +1.
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To begin with, if A, = 0, we have, for 0 < r < A, the relations N(¢) = 1,
Ar) > 35 if Ay > 0, we have N(t) = 0 for 0 < r < Ay, A(r) = 1. We proceed by
induction. Suppose that (3.4) is true for r < Aj. Then it remains true for r < Ag4y,
since N(r) does not change in A\ < r < Ap4;. If HOANG ) H(Ng4,) # 0, then
H(N) and H(Ajg4,) have opposite signs and so A(Ap4; ) > A(N,) + 2 >
2N(Ng) + 3 = 2N(Ag+1) + 1, so that (3.4) is true forr = Ap4q. HH( A4 )=
0, then (3.4) is true for r = A4, since A(r) increases by 2 at r = Ay 4, while
N(r) increases by 1. Finally, suppose H(A;) = 0, H(Ag4y) # 0.1 H(N;) =0
for j = 0,1,2,% «+,k, then A(Az4;) = A(Ng) > 2k + 3 = 2N(Ngyy) + 1,
and (3.4) is verified for r = Aj4,. Otherwise there is a largest j < /& for which
H()\j) # 0, and A( )\]-) > 2N( )\j) + 1; there are at least & — j zeros of /i(z) in
)\j <x < Ag4y; but the number of zeros in this interval is even if £ —; + 1 is
even [since H(A,4,) and H( )\j) then have the same sign], odd if & —j + 1 is
odd; so the number of zeros cannot be & —j and hence must be at least &/ —; + 1.
This completes the proof of (3.4).
By combining (3.4) with (2.1) and (2.2), we see that

(3.5) flr t"1A(t)dt > 2r — 47y log r — constant,

where 4y = 2/p' if 1 < p <0 ,4y < 2ifp = @,
We now appeal to a modification of a result of Levinson [4,pp.7-9] to show
that //(z) = 0. This is as follows.

LEmMMA. Let {x,3% be a sequence of real numbers arranged in nondecreasing
order, and let H(z) be an entire function which is known to vanish at all xp; if
H(z) is known to have a multiple zero at some x,, that x, is to be repeated, ac-
cording to its multiplicity, in the sequence. Let v(r) denote the number of x,, such

that |xp| < r and suppose that
flr t"Yv(t)dt >2r — & log r — constant .
Suppose finally that
. /2 2
G+ iy)l < {f) h(t)etlyl d}

where h(t) > 0, h(t) € [P(0,7/2),1 < p < ©, Then H(z) = 0if a < 2/p’,
p' =p/(p =1).Ifp = @, then H(z) = 0 if a0 < 2.
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The proof of the lemma is parallel to that given by Boas and Pollard [2] for a
similar result, and we omit it.

Since H(z) = 0, we have either F(z) = 0 or G(z) = 0. If F(z) = 0,(3.3) shows
that G( Ay ,4+1) = 0; if G(z) = 0, (3.3) shows that F(A,,) = 0.

We first consider the case when F(z) = 0. Then, in particular, we have

m/2 _
S f(e)dt =0,

and
/2 —
f—ﬂ/Zf(t) COos )\2n+1t dt =0 (n—0,1,2,"- ),
m/2 .
f-n/zf(t) sin Agp4pt dt = 0 (n=0,1,2,++);
hence
(3.6) L:;zf(t) ei#«nt dt =0 (n: ,E1,+2, +-- ))
where

(3.7 Po =0, tn=Aae1 0>0), pn==N_gy (n <0).
A result of Levinson [4,p.6], reduced to the interval (—7/2,7/2), is that

[} is [P-complete if M(2), the number of | uy| < ¢, satisfies

(3.8) flr t" ! M(t)dt >r — (1/p') log r — constant,

1 £ p < ®©; his proof also shows that L”-completeness follows from (3.8) if
1/p' is replaced by any number less than 1. Since 3(¢) = 2N,() + 1, (3.8) is
true in virtue of (2,2). Thus (2.2) implies f(¢) = 0 almost everywhere if F(z) = 0.

Now suppose that G(z) = 0. In the same way we have

f—'n/’z f(t) eiunt dt =0 '

7/ 2
where now

(3.9) pn = hon (n > 0), #n=-— Aozn-z (n < 0).
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In this case M(t) = 2N,(t) and (3.8) follows from (2.1). The rest of the argument

is as before.

4. Proof of Corollary 1. To prove Corollary 1 we have to show that (2.1) and
(2.2) follow from 0 < A, < n + 8§ (n = 0,1,2,**+), where $ =1 + 1/p',

1 < p <@, In the interval 2k + 3 < u <2k + & + 2,wherek =

0,1,2,+ -,

we have V(u) > £ + 1. Letx > land definen by 2n + § < x <2 + § + 2

Then

f5 Ny (u f2+8 du f4+8 Z:U boees +j;2n+8

n-2+3§

2+8

= i klog(1+—ip—)

o 2k +6 — 2

—

v
e

=1

v

= n+ 1-——5—“)logn+0(1)

n 1
,Z:Q[H 2k Z(k—-l)}
+

1
= —x
2

On the other hand, in the interval 24 + 1+ § <u <2t +3+ 8(£=0,1,2,- -

we have N,(u) > & + 1. Thus

x N2(u)
flequl+S _u—+.”+f

" 2 1
Y[R B Y
Sk —1+8 22k —1+8

i 1 2
k —_— —_—
z {2k+3~2 2(2k+8~2

n
— du

]

1 1
logx+0(1) -2~x-'~‘

2p

2

]

log x +0(1) .

.)’
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" 1-—3
> Y11+ S
el 2k +1 2% —1
= x+=-(1=8)—-=+0(1)
11
= x-— == +0(1)
2p 2

5. Proof of Corollaries 2—~5, In proving Corollaries 2—5, it is convenient to

write —a, instead of a,, and t = x — 77/2, so that (2.3) becomes
cos (Apx — MNpT/2) = a, sin (Apx — A,71/2) (n even) ;
an(cos Apx — Apm/2) + sin (Apx — A,7/2) (n odd) .

Put ay(1 + a2)" Y2 = sinb,, (1 + a2)"¥2 = cos by, 0 < b,<7/20r —7/2 <
bp, < 0, according as a, > 0 or ap < 0. Then the completeness of (2.3) is
equivalent to that of

[ cos (Apx = Ap7/2) cos bp = sin (Apx — N,7/2) sin b, (n even) ;
sin (Apx = Ap7/2) cos b, + cos (Apx — Ap7/2) sin by, (n odd) ;

that is, to the completeness of

l cos (Apx — Np7/2 + b)) (n even) ;
sin (Apx = ANy71/2 + by, ) (n odd) .
Now let A, = m — 2€, /7, where m is an integer of the same parity asn. Thenthe

completeness of (2.3) is equivalent to that of

(5.1) cos (Nnx + €n + bp) (h=0,1,2,°).
Thus a set

(5.2) cos (Apx + qn)

is equivalent to a set of the form (2.3) if for all n either

(5.3) €n S qn < 77/2 + €n
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or
(5.4) _77/2 + €n < gn < €.

We may satisfy (5.3) or (5.4) in various ways. For example, (5.3) is certain-
ly true if |n — A,| < 8(n = 0,1,2,+++), with 8§ <1/2and 78/2 < ¢, <

(1 — §)/2; this establishes Corollary 2, since the condition of Corollary 1 is
certainly satisfied in this case. Corollary 1 requires only that A, < n + 1if
p = 1; if we restrict A, to lie always on one side of n we can therefore obtain
a stronger result than Corollary 2. In fact, if n < A, < n + 1 we have e, <0,
and (5.3) is satisfied if 0 < ¢, < 7/2 + €,, hence certainlyifn < A, <
nt+ 8,8<1,and 0 < ¢q, <7(1 —8)/2. On the other hand, ifn =1 < A\, < n
(n > 0), we have €, > 0 and (5.4) is satisfied if n — 8 < Ap\<n (n > 0),
6 <1,and —m(1 —8)/2 <gqp, < 0.

If we let A\, = m —2¢, /7, where m has opposite parity to n, (2.3) reduces to
fsin (A,x + €, + bp)i; by takingm = n + 1 we obtain Corollary 4. Finally,
Corollary 5 is obtained by taking m = n + 2. Further theorems of the same

character are readily written down.
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MATRICES OF QUATERNIONS

J. L. BRENNER

1. Introduction. In this note, some theorems which concern matrices of complex
numbers are generalized to matrices over real quaternions. First it is proved that
every matrix of quaternions has a characteristic root. Next, there exist n — 1
mutually orthogonal unit n-vectors all orthogonal to a given vector. It is shown
that Schur’s lemma holds for matrices of quarternions: every matrix can be trans-
formed into triangular form by a unitary matrix. For individual quaternions, it is
known that two quaternions are similar if they have the same trace and the same
norm——thus every quaternion has a conjugate a + 5j(b > 0). This fact is proved
again.

The quaternion A is called a characteristic root of a (square) matrix A pro-
vided a non-zero vector x exists such that Ax = x A. Similar matrices have the
same characteristic roots; if y = Tx, where T has an inverse, then TAT 'y
= TAx = TxX = yA. Another interesting fact is that if A is a characteristic
root, then so is o™ A p; for from Ax = x A follows 4 (x p) = (x p) ™'\ p; thusif
the vector corresponding to the characteristic root A is x, then x o is the vector

corresponding to the characteristic root o™\ p.
2. Lemma. We shall need the following result.

LEmMMA 1. If 4 = (ai,j) is a matrix of elements from any field or fields, then
a triangular matrix T exists such that T " AT = C = (ci,]-), where c;,j = 0 when-

ever i > j + 1. The elements of T are rational functions of the elements of A.

Proof. The proof consists in transforming 4 in steps so that an additional
zero appears at each step. First 4 is transformed so that all the elements in the
first column (except the first two) become zero; the transformed matrix is further
transformed so that all the elements in the second column (except the first three)
become zero, and so on. The formal proof is inductive; it will be sufficient to give

the idea of the proof. In the first column of 4, either a; ; = 0 forall j > 1, or else

Received December 1, 1950.
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330 J. L. BRENNER

aj 1 # 0 for some j > 1. In the former case, proceed directly to the second column.
In the other case, assume without loss of generality that a, , # 0 (otherwise
transform by a permutation matrix). Let / stand for the identity matrix, and let
€m,n be the matrix with 1 in the (m, n)th place and 0 elsewhere. Let w; , be an
element of the field. The transform B = (b,-,]') of A by the matrix ] + w; je;3,,
satisfies the conditions

bay =agz1, bszi1=az;twsaaz; .

It is evident that if w3, , is suitably chosen, then the condition b;5,; = 0 will be

satisfied. Further transformations by
1+w],2e],2 (]:4» "':”)

will successively replace the elements in the first column of A (except the first
two) by zeros. The second and later columns are handled in order by the same
method.

The above lemma and proof follow the lines of l.enma 4.4 of [1]; in that

reference, the elements of the matrix A are residue classes mod p’, a prime power.

3. The existence of chatacteristic roots. We shall show that every matrix 4
of quaternions has a characteristic root.

Since any characteristic root of ¢ is also a characteristic root of 4, itis
enough to prove that C has a characteristic root. The proof is by induction on n.
There are two cases. First, suppose that Ci+1,j = 0 for some j with j <n. Let
C(j) be the principal j-rowed minor of C;a non-zero vector x(f) and a characteristic
root A exist such that Cjx(;) = x(jyA. Then A is a characteristic root of C: the
corresponding vector is obtained from the vector x(j) by appending n — j zeros.

In the second case, it is true for each j that Cj+1,j # 0. There is a character-
istic vector (x,, x5, * * *, x,) with x,, = 1; it is found by solving a polynomial
equation of degree n with just one term of highest degree. The fact that every
such equation has a solution is proved in [5]. The equation in question comes
by eliminating x,_,, Xn_3,* * *, x, in turn from the set Cx = xA. This set is

indeed the following:
(1) Cn,n-1%Xn-1 + Cn,n = A ’

(2) Cn-1,n-2 Xn-2 + Cr-1,n-1%n-1 + chotn = xn—-1>\y
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(n—l) €a,1%1 F €o,90%Xy oo+ con_120-1 t o p = x5 A
(n) C1’1X1+C1,2X2 +"'+Cl,n_1xn_1+cl,n=x1>\.

First, A must be eliminated from (2), (3), + * + (n), using (1). Call the resulting
set (2°),(3"), +++,(n'). Then (2') must be solved for x,,_,; the resulting ex-
pression is substituted into (3'). Next the equation so obtained is solved for
%X,_3; the resulting expression is substituted into (4'), and so on. Since Cj+t,j
# 0 for each j, these steps are meaningful. At the last stage, (n') becomes an
equation of degree n in the one unknown x,_,. The single term of highest degree
is not zero. After x,,_, is determined, the values of x,,_,, * * *+, x, are determined
from (2') <+« (n'), and the value of A is determined from (1). These values

satisfy all requirements. This proves the following result.
THEOREM 1. Every mairix of quaternions has a characteristic root.

For an application, we note that the 2 X 2 matrix (a; ;) has characteristic root
a,,; corresponding to the vector (1,0) if ay,; = 0. If a,,; # 0, a characteristic
vector is (xy, 1), and the corresponding characteristic root is A = a, ;x; t ay,,,

where x; is a solution of x; ¢, x, =ay,; %y —x; ay,, tay ,.
4. Generalization of Schur’s lemma, To continue the discussion, we need:

LewmMmA 2. There exists a unitary matrix U of quaternion elements which has

: 1 = e ; ;
a preassigned unit' vector uy = (uy,1, uy,2 s Uy, n) in the first row.

Proof. Since the space of n-tuples over quaternions has the same dimension
independent of the choice of basis [6, pp.18-19], there is a set of n vectors
uys by, ¢+ ¢, b, which are linearly independent and span the space. From these
an orthonormal set uy, ***, u, can be constructed by Schmidt’s process of or-
thogonalization. The matrix which has these vectors for rows is unitary. The
process is exhibited in [3, p.10], where, however, the first displayed equation
should be changed to read by * b, = (b, * ap, — by * ap) [cl™ = 0; otherwise

the reference [3, p.21, line 2] to this equation would be inappropriate.

THe OREM 2. (Generalization of Schur’s lemma.) Ewvery mairix of real qua-

ternions can be transformed into triangular form by a unitary matrix.

1A matrix U is called unitary if L' U* = 1. A vector () is called a unit vector if wu*= 1.
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Proof. This theorem is a direct consequence of Theorem 1 and L.emma 2. The
proof, given in lo9, pp.25-26] , applies with equal force when the elements of the

matrices are quaternions.
5. Transformations of matrices. We shall establish several lemmas.

LEMMA 3. Let q be a quaternion. There exists another quaternion s such
that Is] =1, s'gs = A + Bj, where A + Bj is a complex number with B > 0.

Lemma 3 is a consequence of L.emmas 4, 5, 6, 7. It is proved also in (4],
which refers to [2]. Another proof is given here because this proof is so direct,

and because L.emma 5 appears to be new.

LEMMA 4. Let q=A + Bj + Ck + Djk, s = E + Fj+ Gk + Ilj, |s| = L

The four components of s™* qs are respectively

A

B[E? + F* — G* — H®*] + 2C[FG + EH] + 2D[FH — EG],
2B[FG — EH] + C[E* + G* — F* — H*] + 2D[EF + GH],

2B[EG + FH] + 2C[GH — EF] + D[E® + H®> — F* — G*].

LEMMA 5. If g = A + Bj + Ck + Djk, then s = E + Fj exists such that |s |

=1, s~'¢s has fourth component zero.

Proof. It D = 0, take s = 1. If D # 0, set s =1/|t|, where
t=C—(C*+DHV*+ Dj.

LEMMA 6. If g = A + Bj + Ck, then s exists such that |s| = 1; s™" ¢s has

third and fourth components both zero.

Proof. If C=0, take s =1.If C #0, set /| = B/C, and take s =L/|t], where
t==1+[J+U2+DV2]j+k+ [J -2+ DY ]k

LEMMA 7. If ¢ = A + Bj, then s exists such that |s| =1;s7 gs =4 — 3]
Proof. Take s = (j + jk)/\N2 .
COROLLARY. Every quaternion is similar to its conjugate.

The referee outlined another proof for the fact that two quaternions with equal
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norms and traces can be transformed one into the other. Let the quaternions be
r=ay +a;j +tak +azjk, q=bo +byj + bk + bzjk.

Consider then the equation xr = gx, where x = x, + x;j + %,k + x5 jk. The four
linear homogeneous equations for x, x;, x,, x3 which are equivalent with this
have as determinant an expression which under the assumption a, = b, reduces

to
(af + ai +ad — b —bF —b3)?,
which is equal to O under the assumptions made.

6. On characteristic roots. It has already been proved that any quaternion
matrix A can be transformed into triangular form T by some unitary matrix. It
follows further from L.emma 3 that 4 can be transformed by a unitary matrix into
triangular form in such a way that the diagonal elements are all of the form 4 + Bj,
B > 0. Indeed this transformation can be brought about by transforming T by an
appropriate unitary diagonal matrix.

The diagonal elements 4 + Bj(B > 0) which appear in this last transform of
A are unique; that is, any other transform of 4 which is in triangular form and
which has numbers A + Bj(B > 0) on the main diagonal will have the same num-
bers, although not necessarily in the same order.

The above fact is a consequence of general theorems concerning characteristic

roots of a matrix.

THEQREM 10. If X\ is a characteristic raot of A, then so is ph p~" (see page
329).

THEOREM 11. If A is in triangular form, then every diagonal element is a

characteristic root.

Proof. Let A = (a; ) be given: a, ¢ = 0 when s <r. It is trivial that a;,; is a
characteristic root. Suppose it has been proved that ay ,, a,,,, **, a;,; are
characteristic roots. If a;4+, 4, is similar to any one of these, then a;4; ;+; is
a characteristic root in virtue of that fact alone. If a;+;,;+,; is similar to none of
the preceding diagonal elements, then the vector (x,, x5, ***, %y, %, 1,0,0,
+++,0) is a characteristic vector corresponding to the characteristic root a;+y,s+;

provided all the following equations are satisfied:
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Qppxe T Gy pvy = XpGpsy g4y s

@yt Xpy T Gpy 0%t b Gp g t41 T Xp1 Qpiy g4

ay, %, T e T Xy Oy, b4y -

Equations of the above type have been considered in [7]. It is shown there
that if @, b, ¢ are quaternions, and if a is not similar to ¢, then ax + b = xc has a

solution. Hence the above equations can be solved in serial order.

THEOREM 12. Let a matrix of quaternions be in triangular form. Then the only

characteristic roots are the diagonal elements (and the numbers similar to them).

Proof. If for some A, we have Ax = x A\, x a non-zero vector, and if 4 is

triangular, then
Qn,n Xn = xp N,

Qp-1,n-1%n-1 T QnoynXp = 2p-1 A,

If x, # 0, then \ is similar to T

xn—xn—l_".:xt‘*’lzoy Xt#o,
then A is similar to a; ;.

THEOREM 13. Similar matrices have the same characteristic roots (see page

329).

The determinant-like function V of the matrix 4, defined by Study in [10], is

the product of the norms of the characteristic roots of 4.

CorOLLARY. The product of the norms of the characteristic roots of a matrix

of quaternions is a rational integral function of the elements and their conjugates.

After this article was submitted for publication,the author learned of an article
by H.C.Lee [8] which contains many of ouf results. The methods of proof there

are different from ours.
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THE ASYMPTOTIC SOLUTIONS OF AN ORDINARY
DIFFERENTIAL EQUATION IN WHICH THE
COEFFICIENT OF THE PARAMETER

IS SINGULAR

E. D. CASHWELL

1. Introduction. In this paper we are concerned with the solutions, for large

values of the complex parameter A, of the ordinary differential equation,

(1 w'(s) =[N o(s) +7(\,s)]w(s) =0.

The variable s ranges over a region in the complex plane in which o (s)pos-
sesses a factor (s — s,)"%, where s, is some fixed point of the region. The
asymptotic representations of the solutions of an equation formally identical with
(1), but in which o (s) contains a factor (s — s4)¥, v > —2, have been con-
sidered by Langer [3].

If equation (1) is considered over a region of the complex s-plane in which
o (s) and 7(A, s) are bounded, with o-(s) bounded from zero, then it is possible
to find a pair of asymptotic forms made up of elementary functions, each of these
forms representing a solution over the entire region. If, however, o (s) becomes
zero in the region under consideration, the asymptotic representations are compli-
cated by the appearance of the Stokes’ phenomenon. This necessitates abrupt but
determinate changes in the asymptotic forms, if only elementary functions are
used, as certain boundaries are crossed in the s- and A-planes. The asymptotic
representations of the solutions of (1) in this case have been considered by
Langer [1] among others, and he has shown the Stokes’ phenomenon to be quanti-
tatively dependent upon the order of the zero of o (s). In a later paper [3], the
theory was extended to include the cases where o (s) contains a factor (s — s)%
v > —2, and 7(A, s) has a pole of first or second order at s,. He showed that
the Stokes’ phenomenon is engendered by and depends upon an infinity in either

of the two coefficients in (1).

Received December 21, 1950; presented to the American Mathematical Society April 30,
1949. The author wishes to thank Professor R. E. Langer for suggesting this problem and
for his help in the preparation of this paper.
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It is proposed to consider in this paper solutions of equation (1) in a region
which contains as the only singularity of o (s) a pole of second order at a point
so» and in which o (s) is bounded from zero while 7 (A, s) has a pole of first or
second order at s,. Among the functions satisfying an equation of this type we may
cite the Bessel functions and certain of the confluent hypergeometric functions.

Although the theory developed by Langer is not applicable to the case present-
ly considered, it is nevertheless found that the broad outlines of the general
methods used in the papers mentioned still apply. A differential equation is found
which possesses all the essential qualities of (1), and which can be solved ex-
plicitly. The solutions of this equation are shown to give asymptotic represen-
tations of the solutions of the given equation over definable subregions of the
domain in which the coefficients in (1) have the properties assumed above.

In order to armrive at the asymptotic solutions of the given equation, it is found
necessary to subdivide the region of large values of A into a finite number of
subregions., For A in each of these subregions, and for all admitted values of s,
two independent asymptotic solutions are derived. Although asymptotic forms of
similar structure are derivable for all subregions, the solutions which maintain

these forms in the different regions are in general different functions.

2. Hypotheses and normal form of the differential equation. The equation (1)
is here considered with the parameter A ranging over any region of the complex
plane in which |\ | is unbounded. The variable s also is complex, and ranges
over a bounded, simply connected domain Rg containing a point s, at which o (s)

has a pole of second order. Then in some neighborhood of sy, o (s) is of the form

(2) __\/_}_(s_)__

T =T

where | (s) is a single-valued, analytic function bounded from zero. The constants
in the product A2 y/(s), which appears in the first coefficient of (1), are adjusted
so that Y (sy) = 1. Expanding y/(s) about the point sy, we have

Y(s) =1 +ay(s —so) +az(s —so)2+ *°-.

We assume the conditions a), b), and ¢) which follow in this section to be
satisfied collectively by the coefficients of the differential equation, the domain
Rg, and the range of values of the parameter A. The first two of these conditions

are :
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a) Y (s) is a single-valued, analytic function bounded from zero.

b)  The coefficient 7 (A, s) has the form

A B
T7(\,s) = ! + ! + Ci(\, s),
(s = s9)? s —sg

where A; and B; are constants, and C;(\, s) is an analytic function of s, uni-
formly bounded with respect to A. (This condition is precisely the same imposed
on 7 (A, s) by Langer in [3].)

The equation (1) can always be put in a more convenient form by simple
changes of the dependent and independent variables.

Letting (cf. [3;p.399])

2

z 12

s—so=—", w=z'"u,
4

we obtain the equation (1) in the form

(3) u”(z) —[ﬂﬁ—(—zj—-}-i + X(p,z)] u(z) = 0,

z

where

)

2
x(p,z) =B, +ZT ci(h,s),

?(z2) =l-l-g4fiz2 +(11—§-Z4 toeee=1+4220(2) .

The equation (3) is called the normal form of (1), and is the one we shall consider
in the following discussion. It is to be observed that if the constants a; and B,
appearing in the expressions for Y(s) and 7 (A, s) respectively, vanish, then
equation (1) can be put in normal form (3) by simply translating the origin and
changing notation.

Since Y (s) does not vanish in the domain Rg, ¢%*(z) = Y (z2%4 + s,) does

not vanish in the corresponding domain R, in the z-plane. Consider the domain R
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lying on a two-sheeted Riemann surface with branch point at s,. Then the trans-
formation s — s, = z%4 is one-to-one between the bounded, simply-connected
domain R and the corresponding domain R, . Denoting by ¢(z) the square root of

¢%(z) which takes the value one when z = 0, we obtain

¢(Z)=1+blz2+b224+ coe

or

(4) P(z) =1+ 22¢(2) ,

where ¢,(z) is an analytic function of z in R,. We are now ready to make the

third of our hypotheses:

@1(2)

¢) The function ze is schlicht, where

Oy(z) = [ L () d .

Since the function ze®1?) has a nonvanishing derivative at z = 0, itis schlicht
in some neighborhood of this point. The hypothesis c) in effect restricts the
z-domain under consideration(and hence R) to be one in whichthis property main-

tains.

3, The “related” differential equation. Throughout the considerations which
follow, the quantities (p? + 1/4 + A)'/? and [#(2)]"? enter frequently.It serves
for notational simplification to denote the former of these by u, that determi-
nation of the root being chosen for which —7/2 < arg u < 77/2 when p = 0.We
determine [¢(z)]'2 by the condition [¢(0)]VZ = 1.

In the case where equation (1) is considered over a region in which o (s) is
bounded from zero, the asymptotic forms of a pair of solutions can be found, the
leading terms of which are (cf. [2], p.550]).

R et NS [octy]V2 dt
[o(s)]¥
This suggests that, in order to find an approximating equation to equation (3), we

consider the functions

., V2
(5) y(z) =[¢(l)] etrllog 2401 (z) |

where, because of the relative complexity of our equation, it is found necessary
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to the following developments to replace the parameter o by © . A direct calcu-

lation shows that

© i) - EEE )y
where
_Pe) 1 ) ') 3i¢() |2
@ @)= 422 422 2:4(z)  2¢(z) +4|:¢(z)] TA),

the quantity ®(z) in the last term being defined by the relation ¢?(z) = 1 +
220(2).

The differential equation (6) appears at first glance to have the same form as
equation (3). However, since the denominator of each of the first three terms in
the expression for w(z) vanishes at the origin, it is necessary to consider this
coefficient further. Grouping the first two terms and replacing ¢?(z) by its ex-
pression immediately above, and substituting in the third term from (4) for ¢(2),

we can write (7) in the form
_22(z) | 2(2¢n(z) +294(2)) 1 ¢(z) g[g’@]z
TRt T ) 2 3 Tal ) | TA):

Since ¢(0) # 0, it follows from (8) that if w(0) is defined appropriately, then
w(z) is analytic throughout R ,.

® w()

In virtue of the analyticity of w(z) over R, the differential equation (6) pos-

sesses all of the essential qualities of (3). Following Langer’s terminology, we

[

refer to the equation (6) as the “related” equation. The formulas (5) give ex-

plicitly a pair of independent solutions of this equation.

4. Solutions of the related equation. For convenience, let us define £ by the

formula

9) & =pullog z + $,(2)].

With this, the functions (5) which solve the related equation (6) may be written

7 1/2 2 V2
(10) y1(z) Z[%] e,  yi(z) =[¢(Z)] e”¢

The related equation (6) has a regular singular point at z = 0, with exponents
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1/2 £ u . For a fixed value of the parameter u, it is seen that, in a neighborhood

of the origin, the formulas (10) are of the form
(11) y1(z) = 22%0(1),  y.(z) = 2V**0(1) ,

where O(1) stands as usual for a bounded function of z.

From the formulas (11) it is seen that, if R () > 0, then y;(z) approaches
zero as z approaches zero. The function y,(z) is in fact singled out as that so-
lution of equation (6) which vanishes at z = 0 to a higher order than any other.
At z = 0, y,(z) on the other hand vanishes or becomes infinite according as
R (u)is less than or greater than 1/2.

If R(/L) < 0, the behaviors of y,(z) and y,(z) in this respect are reversed.

S. The transformation & = u[ log z + ®(z)]. Consider the transformation
(12) { = 2212,

Since the function on the right of the equality sign is schlicht by hypothesis, the
domain R, is mapped conformally onto a corresponding domain which contains the
origin in the { -plane.

Further, let w be defined by the relation

(13) w = log { .

If the {-domain is cut along the axis of negative real numbers, it is mapped in a
one-to-one manner by the transformation (13) onto a semi-infinite strip of width
2m( =7 < dw) < ) parallel to the real axis in the w-plane.

Omitting the intermediate transformation (13), we see that the relation

(14) w = log z + &,(z)

may be applied directly to the domain R, . In order that (14) be a one-to-one trans-
formation, the choice above of the strip in the w-plane imposes upon R, a cut,
the image of the upper edge of the strip, from z = 0 to a point on the boundary.

Let ry, denote the following subregion of the region in the w-plane: the semi-
infinite, rectangular strip bounded on the right by the line R(w) = K, subject of
course to the restrictionthat the right boundary of r,, lie in the fundamental region
in the w-plane. The image in the z-plane of r,, is denoted by r;.

The transformation (9) maps the region r,, conformally onto a region re in the
&-plane. It is evident that the region re is obtained from r,, by a magnification

with the factor |w| coupled with a rotation about the origin through an angle
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arg (L.

6. Gamma curves. In the region r,,, denote the lower right corner by w;k and
the upper right corner by w: . In order to avoid unnecessary duplications, let us
for the moment denote either of these points by w; . Through every point W of ry,
there passes a broken line consisting of that part of the horizontal line, d(w) =
(W), contained in ry, together with that portion of the bounding segment,
R(w)= K, connecting this line to the point w}k . The images in r, of this set of
curves in r,, are referred to as the [" -curves corresponding to w}k . Thus two sets

of curves, corresponding to the two values of j(j = 1,2), are defined in 7.

Inr,, the ["-curves of either set are uniformly bounded in length. For by direct

calculation we have

From (14) it follows that
2] = e |
and hence that
ldz| < M+ [e¥]| « |dw] ,

where M is the least upper bound of
1
¢ (z)

~® @

e

inR,.
As the variable point w traces out a horizontal line in r,,, d(w) is constant,

and with 7 = R (w) we have
ldz| < MeT|dn] .

Also, along the portion of the line R(w) = K bounding r,, on the right, let d(w) =
k. Then we have

ldz| < Me¥|d k]| .

From the way in which the ["-curves were defined, it follows that, if " denotes
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any one of these curves of either set, then

Solaz)l <mft eMdn +Me* [T dk = MeK(1 + 2m).
r

Since the term on the extreme right is independent of the particular ["-curve

chosen, the ["-curves are uniformly bounded in length.

7. Solutions of the original equation. We have exhibited the related equation
(5) which possesses all of the essential features of the equation (3), and which
admits the independent solutions ¥4(z), y,(z) given by (10). This, as we now pro-
ceed to show, enables us to write two formal solutions of (3). The latter equation

can obviously be written in the form

(15) u"(z) —[Iﬁiz—z)if + w(z)il u(z) = 8(p,2) ulz),
where

(16) 8(p,2) = X(p,2) —alz),

a function bounded uniformly with respect to p and analytic in z over the region
r, . Regarding (15) as an inhomogeneous differential equation, we see that the re-
duced equation coincides with (6). Thus, using a standard procedure in differ-
ential equations, we can describe a pair of independent solutions of (15) by the

relations

D 46)=y; ()= 5 D) 1a(e) = va(e) 11 (c)18(p, 21) s (1) ey

(j=1,2).

Here W is the Wronskian of y,(z) and y,(z), direct calculation yielding W = —2u,
while z, is any fixed point in r,. To each solution of the equation (6), (17) re-
lates a solution of the equation (3).

With the definitions?
(18) Yi(2) = 272e¥y; (), Uj(2) = 2 V2e™u;(2)

)

1]t is convenient to use the double sign to indicate the combination of two formulas
into one. The upper sign is to be associated with j = 1, and the lower sign with j = 2,
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and with C denoting the path of integration in r,, the equation (17) takes the form
L
(19) Uj(z) =Y;(z) +‘2‘; CKj(p:Z:zl)Uj(zl)dll )

where the kernel of this integral equation, denoted here by K;(p, z, z,), has
the following definition:

(20) Kj(p,l,ll)
=izl5(p, zl)[Yj(Z)YEl—] (Zl) ""Y3—j(z)Y]‘(Z1)e;2(§—§1)] ;

£, is defined as the image of z, under the transformation (9).

Carrying out the process of iteration on (19), we arrive at the formal ex-

pression
@
(21) Uj(z) =Yi(z) + X Y™ (2),
n=1
with
(22) Y Q) = 2 L Koz, 20) Y () da
j 2# C ] ’ » 41 J 1 1

We shall now show that for arg  in a suitably restricted range, it is possible
to choose z, for j = 1,2 so that when |u| is sufficiently large, the series (21)
converges uniformly and hence represents an actual solution of equation (3). In
accordance with this, the p-plane will be subdivided into its four quadrants, and
the asymptotic forms of the solutions derived in each quadrant. This particular
choice of the subdivision of the p-plane is in part due to the configuration of r,,
and in part due to the reversal of the behaviors of y,(z) and y,(z) as the imaginary

axis in the p-plane is crossed.

Case 1,0 < arg u < 7/2. First Solution. In (17) let us choose as the path
of integration a curve belonging to the set of ["-curves corresponding to w;k , with
zo = 0. It is to be noted that upon any curve of this set, the quantity i (£) in-
creases monotonically with the arc length.

Referring to the equations (10), we observe that

(23) lYj(z)| <M,
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where 1/ is a suitable large constant. This results from the fact that ¢(z) is analy-
tic in r, and bounded from zero.

Consider the relation

Iwrl‘f'l

(24*) IY(ln)(Z)' < ‘_n (nzo,l,z’---)'
|2 1|

This, in view of (23), is evidently satisfied for n = 0. It can be shown in the

following manner that the validity of this relation for any n implies it forn + 1,
so that by induction the relation is established for all n.
According to (22), with " denoting the ["-curve which forms the path of inte-

gration, we have

Mn+l
(25) [ Y{m ) (2)] < Toal S k(o z,21)| » |dzy] -
r
Now let us consider the kernel K,(p, z, z;), which is defined by the formula
(20). From (16), the function 8 (p, z) is analytic over r, and hence bounded.
The relations (23) guarantee the boundedness of Y| and ¥, . Furthermore, since
R(& = 21 > 0 on the path of integration, the exponential term is bounded. It
follows that the integral on the right of (25) is bounded, and we have

Mn+2

(26) 'Yl(n+l)(z)l < |2,u|"+1

In this it is clear that N is independent of n. Hence if we choose J at least as

large as V, then we have
mn*2

(27) [y{(ntD) (z)] < RaF

This completes the induction.

In virtue of the relations (24), it is clear that the infinite series on the right
of equation (21) converges uniformly for values of u satisfying the inequality
2| | > M. Furthermore, from (21) it follows that

0(1)

Ui(z) = Yyi(2) +‘57:

for large values of u . Substituting for ¥;(z) and U;(z) from (18), we can write
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this equation in the form

uy(z) =y,(z) + V2 S QLQ- .
2

Replacing y,(z) by its expression as given in (10), we have

where || is sufficiently large.

Case 1, 0 < arg u < 71/2. Second Solution. To obtain a second solution of
(3) for this range of 1, we choose as the curves of integration in (17) the same
set of ["-curves used in obtaining the first solution, but we now take z, = zf ,
the point on the boundary of r, which maps into wf under the transformation (1:4).
On any one of these ["-curves, the quantity R(f) is monotone decreasing with
respect to the arc length.

Consider the relation

s +1

’

(29) v{m ()| <

" 24T
where }/ is a suitably large constant. According to the equations (23), this re-
lation is satisfied for n = 0. We proceed to show by induction that it is true for
all n. Assume the relation to be valid for n. From (22), it follows that

m+1
(30) ;yg“”)(z)!<i~2—m—i;+—l Sk, (p,z,2,)0 - dz,].
H r
The kernel K5( p, z, z1) is given by the formula (20). Arguments entirely simi-
lar to those employed in showing the boundedness of X,( 0, z, z) in the relation
(25) may be used here to establish the boundedness of K,(p, z, z;) in (30). In
fact, the only significant difference in this latter kernel is in the exponential
term, which is bounded since we have R(& — &;) < 0 along the path of inte-
gration, [t follows that

) +
[Tk

. +
(31) !Y(2” l)(z)! < W—l

’

where \ is a constant independent of n. By choosing }f at least as large as .V, we
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can write (31) in the form

Mn+2
a e )] <

I2,LL|"+1

The induction is complete.
As in the previous solution, the infinite series appearing on the right of (21)

. This enables us to re-

converges wiformly for sufficiently large values of |u

write (21), for such values of ., in the form

Uy(2) =Y,(2) +2(}l .
2u

If Y,(z) and U,(z) are replaced by their equivalent expressions given in (17), we

obtain
0(1
uz(z) = ya(z) + 2'2e¢ —(-Z .
2u
Substituting from (10) for y,(z), we can write this equation as follows:

(33) u,y(z) 2{;&)] v e'f[l +92(—1#—] ,

for |,u,| sufficiently large.

The equation (3), as was pointed out for the related differential equation, has
a regular singular point at z = 0, with exponents 1/2 + . For large values of
u satisfying the condition 0 < arg u < 77/2, the relations (28) and (33) give the
asymptotic forms of a pair of independent solutions of (3). It is easily seen from
(28) and (33), for a constant value of u in this range, that in the neighborhood of
the origin we have

(34) uplz) =0(V2 )

uy(z) =0("27H) .

Since R(u) > 0, u,(z) is determined uniquely as that solution of the equation (3)
which vanishes at z = 0 to a higher order than any other. The solution u,(z)
either vanishes or becomes infinite at z = 0, according as R(u) is less than or
greater than 1/2. It is evident that this behavior of u,(z) is assumed by any so-
lution independent of u,(z).

Case 2, m/2 < arg pu < 7. First Solution. For this range of arg ., let us
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choose as the curves of integration in (17) the ["-curves corresponding to w:, with
zg = zj , the point on the boundary of r, which is the image of w: under the trans-
formation (14). Upon any one of these curves, the quantity R(£) increases mono-
tonically with the arc length.

Carrying out an induction argument exactly like that used in obtaining the first

solution of Case 1, we can establish the relation

nt1
(35) [ ()] <
|244]"
for all nonnegative integral values of n. lere } is a suitably determined constant.
The uniform convergence, for sufficiently large values of 1, of the series on the
right of (21) follows immediately, yielding the formula
o(1)

Up(z) = Yy(2) + ‘Ez .

Just as in the previous case, this can be rewritten in the form

[ 1/2
O(1
(36) ul(z):’ : s 1 +—(—)—
Lp(2) 2 p
for || sufficiently large.

Case 2, m/2 < arg pu < 7. Second Solution. In order to find the asymptotic
form of a solution independent of u;(z), we choose as the curves of integration in
(17) the I'-curves corresponding to uv;, with z, = 0. Along any one of these
curves, (&) is monotone decreasing with respect to the arc length.

[n a manner which is formally identical with the argument used to establish

(29), we arrive at the analogous relation

n+
Mn 1

ty(n)
M) <
for all values of n, where M is a suitably chosen constant.

The formula (21), the right hand side of which converges uniformly for large

values of y in virtue of the preceding relation, yields the expression

UQ(Z

~
i
~
N
—~~
[
N~—
+

1

|
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By making the appropriate substitutions from (18) and (10), we obtain

(37) 4y () :[ ¢Z(Z)] Y [ - 12“;)]

for |u| sufficiently large.

Since for values of u in the second quadrant we have K(u) < 0, the behavior
of u,(z) and u,(z) is quite different from the behavior of the solution having the
same asymptotic form in the first quadrant of u values. In fact, u,(z) is now
singled out as the solution of (3) which vanishes at z = ¢ to a higher order than
any other, whereas u,(z) either vanishes or becomes infinite according as H(u) is
greater than or less than —1/2. It is to be observed that although the asymptotic
forms of the two independent solutions in the second quadrant are the same as

those found in the first quadrant, the solutions themselves are in general different.

Case 3, m < arg p < 37/2. kFor arg 1 in this range, the curves of integration
in the formula (17) are chosen as the ["-curves corresponding to w: .'I'o find the
asymptotic expression for u,(z) we take z, = ZT , whereas to find the asymptotic
form of u,(z) we choose z, = 0. Onitting the calculations, which are by now fa-

miliar, we arrive at the forms:

1 +—,
2

(38) u (z) = [\_ = [” € [ o)

l: . % +g@
¢ (z) 2k

for || sufficiently large.

The behaviors of the two independent solutions in this quadrant of the p-plane
are clearly similar to the behaviors of the corresponding solutions described in
Case 2. It will be observed from the choice of z, that the solution u,(z) is the
same in the second and third quadrants, while u;(z) is in general quite different

in these two regions.

Case 4, 3m/2 < arg u < 27. For values of u in this quadrant, the ["-curves

. * . . . -
corresponding to w, are chosen as the curves of integration in the formula (17).
We take zy = 0 in deriving the expression for u,(z), and zy = z, in deriving the

expression for u,(z). Omitting the calculations, we arrive at the usual asyniptotic
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2 1/2 O(I)J
uilz) =1 - e —_—
&) Lﬁ(Z)J [1 T
ls) = 2 1/2 _ 9&)}
ale) [45(2)} ’ [] TR

for || sufficiently large.

forms

The pair of solutions in the fourth quadrant of the p-plane described by these
forms have the same characteristics as the corresponding pair found in Case 1,
and hence we omit the discussion of their behavior. It is to be noted in comparing
Cases 1 and 1 that the solution u;(z) is the same, whereas u,(z) in general is
different in the two quadrants considered.

We may now summarize the results of this investigation as follows:

THEOREM. for values of w = [p? + 1/4 + AIY? in a given quadrant of
the complex plane, (=172 < arg u < jm/2,j = 1,2,3,4, and for allz in
rz, the differential equation (3) admits of a pair of solutions uj(z), j = 1,2,

having the forms

2 1/2 O(l)]
u(z) = et — |,
(=) [ ¢(Z)} [1 Y

2 1/2
us(z) 2[47(2):' 6—5[14’(‘)2(%)], E=ullog z + & (z)],

for values of l,ul sufficiently large.

The solution with the exponent 1/2 + u relative to the origin, denoted above
by u,(z), is the same in the first and fourth quadrants of admissable p values.
The solution, designated by u,(z), with the exponent 1/2 — u relative to the
origin is the same in the second and third quadrants of the p-plane. In each of

these cases, the second solution is in general different in the two regions men-

tioned,
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AN EXTENSION OF TIETZE'S THEOREM

J. Ducunp I

1. Introduction. I.et X be an arbitrary metric space, A a closed subset of X,
and E" the Kuclidean n-space. Tietze’s theorem asserts that any (continuous)
fi A — E' can be extended to a (continuous) F: X —> E!., This theorem trivi-
ally implies that any f: 4 — E" and any f: A — (Hilbert cube) can be ex-
tended; we merely decompose { into its coordinate mappings and observe that, in
these cases, the continuity of each of the coordinate mappings is equivalent to
that of the resultant map.

Where this equivalence is not true, for example mapping into the Hilbert space,
the theorem has been neglected. We are going to prove that, in fact, Tietze’s theo-
rem is valid for continuous mappings of A into any locally convex linear space
(4.1), (4.3). Two proofs of this result will be given; the second proof (4.3), al-
though essentially the same as the first, is more direct; but it hides the geometri-
cal motivation.

There are several immediate consequences of the above result. F'irst we obtain
a theorem on the simultaneous extension of continuous real-valued functions on a
closed subset of a metric space (5.1). Secondly, we characterize completely those
normed linear (not necessarily complete) spaces in which the Brouwer fixed-point
theorem is true for their unit spheres (6.3). Finally, we can generalize the whole
theory of locally connected spaces to arbitrary metric spaces. By way of illus-
tration, we prove a theorem about absolute neighborhood retracts that is apparently
new even in the separable metric case (7.5).

The idea of the proof of the main theorem is simple. Given 4 and X, we show
how to replace X — A by an infinite polytope; we extend f continuously first on
the vertices of the polytope, and then over the entire polytope by linearity. For

this we need several preliminary remarks on coverings and on polytopes.

2. On coverings and polytopes. If X is any space, a covering of X by an arbi-

trary collection {U} of open sets is called a locally finite covering if, given any

Received March 3, 1951.
Pacific J. Math. 1 (1951), 353-367.
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x € X, there exists a nbd of x meeting only a finite number of the sets of fUt. It
$Ul, {1} are any two coverings of X by open sets, {Vilisa refinement of fUtif
for each V € {V} there is a U € {U} containing it. A.H.Stone has proved
[12] that every covering of an arbitrary metric space has a locally finite refine-

ment.

2.1 LEMMA. Let X be an arbitrary metric space, and A a closed subset of X;
then there exists a covering {U} of X — A such that:

2.11 the covering {U} is locally finite;
2.12 any nbd of a € (4 — interior A) contains infinitely many sets of {U};

2.13 given any nbd W of a € A, there exists anbd W', a € W' C W, such
that U N W' #0 implies U C W.

Proof. Around each point x € (X — A), draw a nbd S, such that diameter
Sx <(1/2)d (x,4), where d is the metric in X. This is a covering of X — 4, since
X — A is open. By A.H.Stone’s theorem, we can construct a locally finite refine-
ment {U}. It is then evident that {U} satisfies 2.11-2.13.

A covering of X — A satisfying the conditions 2.11-2.13 will be called a

canonical covering of X — A.

2.2 A polytope P is a point set composed of an arbitrary collection of closed
Euclidean cells (higher dimensional analogs of a tetrahedron) satisfying (a) every
face of a cell of the collection is itself a cell of the collection, and (b) the inter-
section of any two closed cells of P is a face of both of them. A CW polytope is a
polytope with the CW topology of Whitehead [14]: a subset U of P is open if and
only if the intersection U N & of U with every closed cell & is open in the Eu-

clidean topology of &. It is easy to verify:
2.21 a CW polytope is a Hausdorff space;

2.22 in a CW polytope, the star of any cell o (the collection of all open cells

having o as a face) is an open set;

2.23 if Y is an arbitrary space, then f: P — Y is continuous if and only if

[ is continuous on each cell.

2.3 As a final preliminary, we need the “nerve” of a covering. J.et X be a

space, and {U}a covering of X by open sets. Consider an abstract nontopologized
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real linear vector space R spanned by linearly independent vectors {p;,} is a
fixed one-to-one correspondence with the collection {{/}; the elements of R will
be called points. The n + 1 points py,, * * *, py, determine an n-cell in the usual
way if and only if the corresponding sets satisfy U/, 1 *++ N U, # 0. The poly-
tope determined in this way, with the CW topology, will be called the nerve of the
covering { U3, and denoted by N(U).

2.31 THEOREM. If {U} is a locally finite covering of a metric space X, and
N(U) the nerve of {U3}, then there exists a continuous K: X — N(U) such that
K ™Y (star py) C U for every U € {U3.

Proof. (Cf. Dowker [4], where N(U) is taken as a metric polytope.) Define for
each U € {U},

Ay(x) = d(x, X ~U) (x € X, dthe metric inX).

Y dlx, X —U)
U

It is first necessary to investigate the nature of these functions. First we notice
that 2 d(x,X — U) is always a finite sum, since d{x,X — U)# 0 if and only if
x € U, and since the covering being locally finite means x lies in a finite number
of U’s. Further, since {U} is a covering, we have 2 d(x,X — U) # 0 for every
x € X, and so Ay(x) is well-defined for each x € X. Now each Ay (x) is con-
tinuous; in fact, for any x € X there is a nbd meeting only a finite number of the
sets of {U}; in this nbd, Ay (x) is explicitly determined in terms of a finite num-
ber of continuous functions, so Ay is continuous at each x € X. Finally, it is
evident that 2y Ay (x) = 1 for each x € X and that only a finite number are not
zero in some nbd of any point x € X.

The mapping K: X —> N(U) is defined by setting

K(x) = 2 Au(x) pu -
U
Now Ay (x) # 0 if and only if x € Uj; henceifx € U1 <+ NI, and xE only
these sets, then because ZyAp (x) = 1 for every x, K(x) is the point in the in-
terior of the cell spanned by (py,,* * *,py,) with barycentric coordinates f}\Ui(x)E.
It follows readily that K~'(star py) C U for every U. Finally, K is continuous:
for, given x € X, let x € U;N*++NU, and x € only these sets; then K(x) is
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in the interior of & = (pUl,' . ',pUn). Let V be any open set containing K(x);
then ¥V N & is open in the Kuclidean topology of &, and so the continuity of each
Ay shows the existence of an open W D x with K(W) C V N & C V. This

proves the assertion. (See also 7.4 in this connection.)

3. The replacement by polytopes. After the above preliminaries, we are ready
to perform the “replacement” mentioned in the introduction.

3.1 THEOREM. Let X be a metric space and Aa closed subsetof X;then there

exists a space Y (not necessarily metrizable) and a continuous p: X — Y with
the properties :

3.11 w|A4 is a homeomorphism and p(A) is closed in Y ;
3.12 Y — u(A4) is an infinite polytope, and u(X — A) C [y — u(4)];

3.13 each nbd of a € [ i (A)-interior u(A)] contains infinitely many cells of
Y — u(4).

Proof. Let §U3 be a canonical covering of X — A, and N(U) the nerve of this
covering.The set ¥ consists of the set 4 and a set of points in a one-to-one corre-

spondence with the points of N(U); to avoid extreme symbolism we denote this set

Y by A U N(U) . The topology in 4 U N(U) is determined as follows:
a. N(U) is taken with the CW topology.

b. A subbasis for nbds of @ € 4 in 4 U N(U) is determined by selecting a
nbd W of a in X and taking in 4 U N(U) the set of points ¥ N A together with the
star of every vertex of N(U) corresponding to a set of the covering {U} contained

in W. This nbd is denoted by .

It is not hard to verify that 4 U N(U) with this topology is a Hausdorff space,
and that both A and N(U), as subspaces, preserve their original topologies. We

now define

(x € 4),

6 =1 € (X-4)].

Because of 2.31 and the preceding remarks, the continuity of u(x) will be proved
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as soon as we show it continuous at points of 4 N (X —A). Leta € 4N )?—_A,
and let i be a subbasic nbd of wula) in 4 U N(U); this is determined by a nbd W of
a in X. Now (2.13) we can determine anbd V', a € W' C W,suchthatU N W' #
0 implies U C W, since {U} is canonical, and clearly {UJ UCW N(X —A}
is not vacuous. We now prove (') C W. In fact, if x € W' N (X — A) let
x € UyN+++NU, and x € only these; then K(x) is in the interior of the cell
spanned by PU "t *5PU,» and therefore K(x) is in the star of, say, pul.Butsince
u,ny’ # 0, we have U, C W, and so K(x) € V. This shows

K n(x -] = ulw' nx —4] c .

Finally, since #' C W we have (W' NA) C W' N A C W, and so u(W') C

W. This proves that y is continuous. The properties 3.11-3.13 now follow at once.

4. Extension of Tietze’s theorem, L.et X,Y be arbitrary spaces, and 4 C X.
Let f: 4 — Y be continuous. A continuous F': X — Y is called an extension

of f if F(a) = f(a) for every a € A. We now prove:

4.1 THEOREM. Let X be an arbitrary metric space, A a closed subset of X,
L a locally convex linear space [10,p.72], and f: A — L a continuous map.
Then there exists an extension F: X — L of f; furthermore, F(X) C [convex

hull of £(4)].

Proof. Let us form the space 4 U N(U) of Theorem 3.1. It is sufficient to
prove that every continuous f: 4 —> L extends to a continuous F: 4 U N(U) —
L. In fact, to handle the general case we first define, on 4 C A UN(U), the map
fl@) = fl "' (a)]; extending f to F we can write F(x) = F[ w(x)]; it is evident
that /' is the desired extension of f.

Let then N(U), denote the collection of all vertices of N(U); we first define
an extension of f to an fo: A U N(l), — L as follows: in each set of {U} se-
lect a point x; then choose an ay € A such that d(xy, ay) < 2d(xy, 4); if
py is the vertex of N(U) corresponding to U, set

fo(PU) = f(aU)
fo(a) = f(a) (@ € 4).
We now prove f; continuous. It is clearly so on N(U), since the vertices of N(U)

are an isolated set (the star of any one vertex excludes all the others), Thus

continuity of f; need only be checked at A4.
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Select any nbd V of fy(a) = f(a); since f is continuous on 4, there isa & > 0
such that d(a,a’) < § implies f(a’) € V. Let W be any nbd of a in X of radius
< §/3.UU € {Uland U C W, then clearly d(xy, a) < $/3, and so dlag,a) <
dlay,xy) + dlxy,a) < 2d(xy,A) + §/3< 28/3 + §/3 = 5. Thus all verti-
ces of N(U), in the nbd v satisfy fo(py) = f(ay) € V. Hence for all x € ¥n
AU N(U)o] we have fo(%) € V and continuity is proved.

We now extend linearly over each cell of N(U) the mapping already given on
the vertices, and thus obtain an F mapping 4 U N(U) into L . This map we now
prove continuous; on the basis of 2.23 we need prove F continuous only at points
of 4.

Let V be a convex nbd of f(a) = F(a). Since f; is continuous at g, there is a
nbd W with f,{¥ N [4 U N(0)s]} C V. Construct now a nbd W' C W of a in X
such that UN W' # 0 implies U C W. It follows that all vertices corresponding
to sets in the nbd W' have images lying in the convex set V. If py is any vertex
in the closure of the star of a vertex py’ with U' C W', we observe that U N
W' # 0andsopy C W. Thus the vertices of any cell belonging to the closure
of the star of any vertex py’ are sent into the convex set ¥ C L andtherefore
the linear extensions over these cells have images lying in V; this shows
F(W') C V. Since L is locally convex, this result implies that F is continuous.
It is evident, finally, from the construction, that F(X) C [convex hull off(A)],
and that F is an extension of f. The theorem is proved.

If Y is a space with the property that, given any metric space X and any closed
A C X, every continuous f: 4 — Y extends to a continuous F: X — Y, we
call Y an absolute retract. Thus Theorem 4.1 asserts that any locally convex
linear space is an absolute retract. The conclusions of the theorem give a slight

extension.

4.2 COROLLARY. Let C be a convex set in a locally convex linear space L.

Then C is an absolute retract.

Proof. This is immediate from the construction of Theorem 4.1, since the ex-
tension has an image lying in the convex hull of f(4), and so in C.

Note that C is not required to be closed in L.

4.3 It is possible to give an elementary direct proof of Theorem 4.1 not ex-
plicitly involving the space 4 U N(U), by merely explicitly exhibiting theresulting

extension that was constructed in 4.2. It has the advantage of exhibiting a certain
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kind of “linearity” in the constructed extension, which is sometimes more amena-
ble to applications. In fact, using the notations of Theorem 2.31 and Theorem 4.1,
we find it is simple to verify directly that

F(x) = 2 hu(x)f(av) [x € @-4)],

= f(x) (x €4)

is the extension of f which we have constructed. The proof of the continuity is es-
sentially a repetition of the last part of 4.1, and is as follows: By the consider-
ations of 2.31, the continuity of F need be proved only at points of A. Select any
convex nbd V of F(a) = f(a); we are to find a nbd W" DO o with FW") C V.

Since f is continuous on A, there exists a § > 0 such that d(a,a’) < & implies
f(a’) € V. Now let W be a nbd of @ in X of radius < 8/3; since {U}is canonical,
we can find a nbd W', a € W' C W, such that whenever U N W' # 0, then
U € W. It follows that for any xy € W' we have U C W and so d(xy,a)<8/3;
this shows that d(ay,a) < dlay,xy) + dxy,a) < § and therefore we conclude:

(%) Whenever xy € W', then F(xy) = f(ay) € V.

Construct, finally, a nbd W" such that a € W"” C W' and such that whenever
UNW" # 0, then U C W'. We are going to show that F(W") C V.

In fact, if x € W' N (X — A), let x € U;N-++NU, and x € only these
sets; since Jyhy(x) = 1 for every x € (X — A) and A\y(x) # 0 only if U = U,
i = 1,*¢*,n, it follows that F(x) belongs to the (perhaps degenerate) cell in L
spanned by flay,),* * *,f(ay,); and since U; N W" # 0fori =1, +,n, we see
from () that f(aui) C V,i =1,***,n. This means that the vertices of the cell
spanned by f(aUl),' ) ,f(aUn) are all in the convex set V/, so the linear extension

lies in V also, and therefore F(x) € V. Since x is arbitrary, we see that
Flw"nx —4)] c .

But also, since we have diameter W" < &, it follows that F(W" N 4) =
f(W" NA) C V, and so F(W") C V, as stated. Since L is locally convex, this
proves F' continuous at points of 4, and, as remarked, continuous on X. (See also
Kuratowski [9]).

We note that to prove Theorem 4.1 our method requires essentially three
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things: (1) the existence of a canonical covering of X — 4, (2) the possibility of
mapping X — A into the nerve of a canonical covering, and (3) the possibility
retracting the set ixUE into 4; for (3) allows an extension over the vertices
of N(U), and then with a linear extension over the cells the theorem follows at
once from (1) and (2). The metric enters in obtaining (1) and (3), while the para-
compactness comes into play only in establishing (2) (Dowker [4]; Stone [12]).
It should be remarked that, after Theorem 4.1 was communicated to R. Arens, he
was able to demonstrate that the method used here applies in the case where X is
paracompact (but not metric), provided L is a Banach space. Arens’ result coin-

cides with one by Dowker (oral communication).

5. Application to the simultaneous extension of continuous functions, The ex-
plicit form of the extension given in 4.3 immediately permits us to answera
question of Borsuk [2]. Let Z be a metric space; denote by C(Z) the Banach space
of all bounded real-valued continuous functions on Z . We prove, as a first appli-

cation:

5.1 THEOREM. Let A be a closed subset of a metric space X; then there

exists a linear operation ¢ which makes correspond to each f € C(4) an ex-

tension ¢(f) € CX).

Proof. With the notations of Theorem 4.1, having selected the points ay once
for all, define for every f € C(4),

Then ¢ (f) is clearly an extension of f for every f (see 4.3). We have evidently

¢(f + &) = o(f) + #(e),
k(A= 111,

and so ¢ is additive and continuous, hence a linear operation.
The restriction of Borsuk [2] that 4 be separable is thus not necessary. This

result extends, naturally, to Banach space valued functions.

6. Application to normed linear spaces. To give another application, we charac-

terize those normed linear spaces for which Brouwer’s fixed-point theorem holds
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in their unit spheres.
6.1 LEMMA. Let L be a normed linear space, and C C L the set
el =]l = 11.

Let &" be any n-cell, and ST " its boundary. If C is not compact, then any
f: Bo™ — C can be extended to an F: 5" — C.

Proof. By a known theorem [1,p.502] it is enough to show that f[(85 ") can
be contracted to a point over C. Now, since So " is compact and C is not, it
follows that f(85") cannot cover all of C, so that there exists at least one
point x, € [C = f(Bo™)]. Select its antipode —x, and define

t({— + (1 —t
bl ) = T FUZOf) e g,
It (=x0) + (1 = ¢)f (=)
Then ¢ is continuous in x and ¢, since the denominator cannot vanish for any x be-
cause —x, and f(x) are never antipodal. Since ¢(x,0) = f(x), ¢(B8&", 1) =
—x, and | ¢ (x, L)H = 1 always, ¢ exhibitsthe desired contraction.

6.2 THEOREM. Let L be a normed linear space, and C = {x|||x| = 13}.1If

C is not compact, then C is an absolute retract.

Proof. With the notations of Theorem 4.1, let us take the space 4 U N(U) and
the mapping f: A — C. By the construction of Theorem 4.1, we extend [ to
F:AUNU) — L and notice that F[4 UN(I)] € € = {x|]x] < 1}. Let
C' = {x||x| < 1/2}; then C - C' is an open set and F-Y(C — C')is an
open set containing A. Let us consider the totality of all closed cells contained
in F’I(E — C'); this is a closed subpolytope ¢ of N(U), and because fUlis
canonical it is easily verified that no point of 4 can be a limit point of N(U) — Q;
furthermore, 4 U Q is a closed subset of 4 U N(U).

Let r(1) = 1/|/1]|; then taking rF|(4 U Q) we observe that this is an ex-
tension of f: 4 — C over the closed set 4 U Q, with values in C. We shall now
extend r F' | (4 U Q) over N(U) — Q with values in C; this is the desired extension
of f.

Define

$o(p) = rF(p) (p avertex of N(U) —Q),
=rF(x) x€AUQ).
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Then ¢, is an extension of rF|(4 U () over the vertices of N(I) — ¢) with
values in C; the continuity is evident since we have r F(p) = F(p)for all vertices,
and since F' is continuous.

We proceed by induction. Let ¢, be an extension of ¢, _; over all 4 U U

[n—cells of N(U) — ’J], with values in C. We construct ¢, +; as follows: for any
(n+1)-cell of N(U) — {), we have ¢p(B5"*") C C; applying Lemma 6.1, we
obtain an extension ¢bp4,: 5 "'} — C; extending over every n+ l-cell, with

values in C, we obtain ¢, +,. Now, ¢, +; is continuous, in virtue of 2.23 and be-

cause no point of 4 is a limit point of N(U) — (). Defining

Px) = lriLmqbn(x)

for each x € 4 U N(U), we observe that ¢ is continuous; further, ¢ is an ex-
tension with values in C of r#| (.4 U (), and hence of f: 4 —> C. This proves

the assertion.

. . d = [N
6.3 THEOREM. Let L be ¢ normed linear space, and S = §x| !jx;, < 1}.4
necessary and sufficient condition that every continuous f: S —> S have a fixed

point is that S be compact.

Proof. If S is compact, the result comes from Tychonoff’s Theorem [13]. IS
is not compact, it follows readily that C: {xi I‘xl' = 1{is not compact either,
[.et F: S — ( be an extension of the identity map [: C — C (6.2 Theorem).
Setting ¢(x) = — F(x), we see that ¢ has no fixed point.

In particular (Banach, [2, p. 84] )this proves that the Brouwerfixed=point theorem
for the unit sphere of any infinite dimensional 3anach space is not true. This is
a partial answer to a question of Kakutani [6] who showed that in the Hilbert
space a fixed-point free map of the unit sphere in itself can in fact be selected to

to be a homeomorphism.
6.4 COROLLARY. Let L be a normed linear space with noncompact
C: fxlfix]l = 11.
Then C is contractible on itself to a point.

Proof. Form the metric space C X [, [ the unit interval, and map € X U by the
identity, C X 1 by a constant map. Since C is an absolute retract, the map on
CX0UCX1C C X1extends to a ¢: C X[ — C, and this ¢pgives the re-
quired deformation.
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7. Application to a generalization of the theory of locally connected spaces.
For our final application, we show that the entire theory of locally connected
spaces can be extended to arbitrary metric spaces. In this development, as in that
for the separable metric spaces (Fox [5]), the role of the Ililbert cube in the
classical theory is taken over by a whole class of “universal” spaces. Kuratowski
[8] has shown that any metric space Z can be embedded in the 3anach space C(Z)
of all bounded continuous real-valued functions on Z. Subsequently, Wojdyslawski
[15] has pointed out that, in the Kuratowski embedding of Z — C(Z), Z is a
closed subset of its convex hull //(Z). The “universal” spaces in our develop-
ment are the convex sets in iJanach spaces. We shall illustrate the technique by

proving a theorem (7.5) about “factorization”

of mappings into absolute nbd
retracts.

If 4 is a subset of X, 4 is called a retract of X if there exists a continuous
r: X — 4 such that r{a) = a for each a € 4; if X is a llausdorff space, it

follows that a retract of X is closed in X. Now we prove the following result.

7.1 THEOREM. The following two properties of a metric space Y are equiva-

lent:

7.11 In every metric space Z D Y in which Y is closed, there is a nbd
I D Y of which Y is a retract.

7.2 If X is any metric space, A a closed subset of X, and f: A — Y, there

exists a nbd W D A and an extension F: W — Y of f.

Proof. We need only prove that 7.11 implies 7.12, the converse implication be-
ing trivial. T.et } be embedded in H(Y) as a closed subset. 3y Corollary 4.2, we
get an extension of f: 4 — Y to F: X — [H(Y). Let V/ be a nbd of ¥ in //(})
which retracts onto Y, and r the retracting function. Then F ~'(J') = § is open in
X and contains 4, and r 7 : i — Y is an extension of f,

A metric space ¥ with the properties 7.11, 7.12 is called an absolute nbd

retract, abbreviated ANR. They are thus characterized as nbd retracts of the set

HY) in C(Y).

7.2LEMvA. Let Y be an ANR. Then given any covering {UY of Y, there
exists a refinement W} with the property: If X is any metric space and f,,
f1: X — Y are such that folx), fi(x) lie in a common set of R for each
x € X, then f, is homotopic to f,, and the homotopy ¢lx,t), 0 <t <1, can
be selected so that $(x,!/) C some U for each x € X, where [ denotes the
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unit interval.

Proof. We consider Y embedded in H(Y) C C(Y). Since Y is closed in H(Y),
and Y is an ANR, there is retraction r of anbd ¥ D ¥ in H(Y) onto Y. To simpli-
fy the terminology, we let a spherical nbd of y € H(Y) be the intersection of a
spherical nbd of y in C(Y) with H(y). For each y € Y, select a spherical nbd
S{y) in H(y) such that S(y) C V and S(y) N ¥ C some U. Finally, for each y,
select a spherical nbd T(y) C S(y) in H(Y) such that r[T(y)] C S(y). The de-
sired covering is {T(y) N Y}; it clearly refines {U}. If fo, fi: X — Y and
folx), fi(x) are in a common T(y) N Y for each x, they can be joined bya line seg-
ment that lies in T(y) and therefore lies in V. Letting ¢ (x, t) be the point tfy(x) +
(1 —¢) fi{x), we see that r¢p(x,t), 0 < ¢t < 1, gives the required homotopy.

It is not known whether this property implies that ¥ is an ANR. It does follow
readily, however, from 7.2, that an ANR is locally contractible. The theorem also
holds for LC" metric spaces, provided dim X < n; the property is in fact equiva-
lent to LC". It should be noted that Lemma 7.2 holds also if X is any CW poly-
tope, since then ¢ is still continuous (Whitehead [14]).

Our second lemma requires the following definition (Lefschetz [11]): Let Y be
a space, and {U{ a covering of Y. Let P be a CW polytope, and Q a subpolytope
of P containing all the vertices of P.An f: ) — Y is called a partial realization
of P relative to {U} if, for every cell o C P, we have f(Q N &) C some U.

7.3 LEMMA. Let Y be an ANR. Then given any covering {U} of Y, there
exists a refinement {V} with the property that any partial realization of any CW
polytope P relative to §V3 extends to a full realization of P relative to fut.

The proof given by Lefschetz [11, 10.2,p.89] can easily be applied to yield
this result, after a preliminary embedding of ¥ in H(Y). This property is in fact
equivalent to ANR; when we restrict P so that dimP < n + 1, this property

characterizes the LC" spaces.
The final lemma required is a covering lemma,

7.4 LEMMA. Let Y be a metric space, and (U} a covering of Y. There exists
a refinement §V3 of §U3 with the property that whenever Mg Vo # 0 ,then Uy Vy C
some U. The covering $V13 is called a barycentric refinement of §U} (cf. also

Dowker [4]).

Proof. Let {U’'} be a locally finite refinement of {U/}, and N(U') the nerve
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of {U'}, K the barycentric mapping (2.31) K: ¥ — N(U'). Let N’ be the bary-
centric subdivision of the polytope N(U') and {p’{ its vertices. We take stars in
N' (the CW topology of N is a subdivision invariant); then the open sets V = K*!

(star p') form the required covering,
We now prove the “factorization” theorem:

7.5 THEOREM. Let Y be an ANR; then there exists a polytope P and a
continuous g: P — Y with the property that, if X is any metric space, and

f: X — Y, there exists a u: X —> P such that g pu is homotopid to f.

Proof. Let us take the covering of Y by Y alone, and obtain a refinement {W}
satisfying Lemma 7.2. Let {V/'} be a refinement of {} satisfying Lemma 7.3
relative to {W}, and {¥} a locally finite refinement of a barycentric refinement
of {V'}. We now construct a mapping g: N(¥) — Y, as follows: if p, is the
vertex of N(V) corresponding to V € {V}, select y, € V and set g(py) = y,.
This is clearly a partial realization of N(V). If (pv1 ,e ',pvn) is a cell of N(V),
then VNNV, # 0 so that U?=1 V; C some V'; thus all vertices are sent
into a set of V'. Hence (7.3), the mapping g extends to a g: N(V) — Y. This
map g and polytope N(V) are those required.

Now, for any metric space X and f: X — Y, construct the covering {f’l(V)E
of X, and let §U} be a barycentric nbd-finite refinement of §f-1 V)3, We take
K:X — N(U) and define g’ : N(U) — Y as follows: if py is a vertex of N(U),
select xy € U and set g'(py) = flxy).

Again, as before, g’ extends to a mapping of N(U) into Y.

We shall first show that f is homotopic to g’ K by showing that for each x,f(x)
and g'K(x) are in a common W (7.2). If x € U;N++*N U, and x € only these
sets, then K(x) € (py,,***,py,); since g'(py) = flay) € f(U;) we have
U’;‘L=1 g'(pui) C U’Z=1 f(U) < V, sothat g’ K(x) is in some W D V. On the other
hand, f(x) € f(U N+ *NU,) C U, f(U;) C V also; this shows that g'K(x)
and f(x) are in a common set ¥ for each x, and hence are homotopic.

Next, we map N(U) into N(V) simplicially as follows: if py is a vertex of
N(U), select some V with U C f’l(V) and set 7 (py) = pyp. It is easy to verify
that 77 is simplicial. Extending linearly, we have 77: N(U)— N(V). Again it is
simple to verify that g77(x) and g'(x) are in a common set W for every x € N,
and hence are homotopic.

Thus we see that f is homotopic to g 7K, so that, with K = u, the theorem

is proved.
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The property is not known to be equivalent with ANR. The theorem also holds
for LC" spaces, if dimX < n; the polytope P can be chosen so that dim 7 < n in

this case. We have the trivial consequence:

7.6 COROLLARY. If Y is an ANR, and P is the polytope of the theorem, then
the continuous homology groups of Y are direct summands of the corresponding

groups of P.

Proof. By taking X = Yand i: ¥ — Y the identity map, we have i homotopic
to gu; hence, for each n, the homorphism #,(Y) — H,(Y) induced by gu is the
identity automorphism. The result now follows from the trivial group theoretic

result:

7.7 THEOREM. If A, B are two abelian groups and u: 4 — B, g: B — 4
homomorphisms such that gula) = a for each a € A, then A is isomorphic to a

direct summand of B.

Proof. Since gula) = a for every a € A, it follows at once that u4 — B
is an isomorphism into. Furthermore, wn(A) is a retract of B. In fact, defining
r = ug we see that r: 3 —> u(A); further, for each b = p(a), we have r(b) =
pepla) = wla) = b. Since wu(4) is a retract of B, it is a direct summand of 5,
and 8 = u(4) @ Kernel ug.

In the case that Y is a compactum, all coverings involved can be chosen finite,
and 7.6 yields known results (Lefschetz [11;p.109]). If the Y is a separable
metric ANR, the coverings can be so chosen (Kaplan [7]) so that the polytope P
is a locally finite one.

It should further be remarked that the method of proof used in Theorem 6.2 is a
completely general procedure to prove that an ANR which is connected in all di-

mensions is in fact an absolute retract.
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THE POLARIZATION OF A LENS

Joun G. HERRIOT

1. Introduction. In a previous paper [3], the author obtained inequalities
comparing the capacity of a lens with various geometric quantities of a lens. A
lens may be described simply as a solid of revolution determined by the inter
section of two spheres. More precisely, if ¢ > 0, the solid of revolution generated
by revolving about the imaginary axis the area in the complex z-plane defined by

the inequalities

z —cC

< 6,

G; < ar
b= gz+c

is called a lens. We may suppose 0 < 8, < 6, < 27. It is, however, more con-
venient to characterize a lens in terms of its exterior angles. Accordingly we
denote by ¢ and 5 the exterior angles which the two portions of the boundary of
the generating area make with the real axis. It is easily seen that 5= 0, a =
27 — €. We shall assure, as we may without loss of generality, that ¢. < £. The
sum of these angles, «. + 5, is called the dielectric angle of the lens. Clearly we
have o + 8 < 27, and hence we need consider only values of & not exceeding
77. Sometimes it is convenient to introduce the radii @ and b of the intersecting

spheres; these are given by

¢ =a sin a=b |sin B

.

It is clear that when ¢« + 5 = 77 the lens becomes a sphere; and when o0 + 5> 7,
5 < 7, the lens is convex, When 5 # 0 and 0. — 0, with a fixed, the lens be-
comes a sphere of radius a. When ¢, 5 — 0 in such a manner that 5 = %k, and
a is kept fixed, the lens becomes two tangent spheres of radii ¢ and ¢/k. When

&, 8 —> 7, with ¢ fixed, the lens becomes a circular disk of radius c.

Received November 15, 1950. Presented to the American Mathematical Society, Sep-
tember 7, 1948 and October 28, 1950. The results presented in this paper were obtained in
the course of research conducted under the sponsorship of the Office of Naval Research.
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In the present paper we consider the polarization of a lens, obtaining inequali-
ties comparing the average polarization with the capacity and volume of the lens.
This investigation is one phase of a general study of relationships between various
physical and geometric quantities which has been carried on at Stanford University
during the past four years under the direction of Professors ’dlya and Szego [5].

We now explain the concept of polarization as it has been defined by Schiffer
and Szego [6]. (Cf. also P4lya and Szegsé [5].) Consider an infinite electric
field whose direction is determined by the unit vector h. When a conducting solid
is placed in this field, the uniform field will be disturbed; the disturbance is
equivalent to superimposing another field on the original one. If the electric po-
tential of the superimposed field is denoted by i/, then its energy is given, apart

from trivial factors, by

P = J‘J‘ﬂ grad [2d7‘,

the integral being extended over the whole space exterior to the solid.
We note that the function i is harmonic and behaves like a dipole at infinity.

Also ) satisfies on the surface of the given solid the boundary condition
Y =h *r + constant ,

where r is the radius vector. (The additive constant must be chosen properly.)
We call the quantity P the polarization in the h-direction. It is easily verified

that P is a quadratic form in the components of h:

3
P= Y Pirhih.

1,k=1

The coefficients of this form depend naturally on the coordinate system used;
however, the invariants of this form are independent of the coordinate system. The
simplest of these invariants, and the one with which we shall be concerned in this

paper, is the average polarization P, , defined by
(1 P11+ Pyt P3a=3P,.

The study of P is facilitated by introducing the expansion of the potential
at infinity, where, as has already been observed, it behaves like a dipole. The
strength component of this dipole in the direction h can be represented in terms

of the leading coefficient (that of r %) of the potential; it is a quadratic form
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in h; , say

3

E= Z el,khthk .
1, k=1

We call it the dipole form associated with the polarization. By use of Green’s

formula, it is easy to establish the elegant relation
P =4AmE -V,

where V is the volume of the solid. It has been found that £ shows a more regular
behavior than /. We shall frequently find it convenient to consider P, + V in the
present paper.

It is known that for a sphere we have P = P, = 2V. It is conjectured that
P > 2V for other solids. Now for arbitrary solids it is well known that the ca-
pacity C is not less than the radius of a sphere having the same volume as the
given solid. (See e.g. Pdlya and Szego [4].) Thus we have V < (477/3) C3. lience
the inequality I}, > (87/3)C? is stronger than , > 2V. An even stronger ine-

quality is
(2) B, +V >4mC?,

Since, as has already been pointed out, £ shows a more regular behavior than
P, it is not surprising that this last inequality (2) is the easiest to investigate. It
can be studied readily in the case of a lens by means of explicit expressions
which Schiffer and Szegs' [6] have given for ey, €y, €z (ey,15€5,25€3,3), where
the z-axis is in the direction of the axis of the lens. From these we can write at
once the expressions for ;, Py, P, the polarizations in the x-, y-, and z-
directions. These formulas with others are collected together for convenience in
$2. We then prove in §3 the strongest inequality (2) for the case of the spherical
bowl (lens with &« + = 27). The same inequality is proven in &4 for the so-
called Kelvin case (lens with « + 8 = 77/2), in §5 for the case of two tangent
spheres, and in 96 for the symmetric lens. More detailed information concerning

the behavior of the corresponding ratio is obtained for some of these cases.

2. Basic formulas. In this section we collect for convenience several formulas
which will be useful in the later sections. Those for the polarization of the lens
in the general case and in the several special cases are obtained from the paper

of Schiffer and Szegs [5]. Those for the capacity are taken from a paper by Szegd
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[7], which also gives references to the original literature; they are also collected
together in the author’s previous paper [3], and in the paper of Schiffer and
Szegd [6].

For the polarization of the lens, we have
(3) P1,1:P2,2:Px:Py:4'7Tex—": P33 =P, = 47e, =V,
where

shq ch (cc— B)q + sh (4 + 8 — m)q

(/L) = =2 3 ® 2 +L d ,
e = & ¢ '}:m (q 4) sh (& + ,b)q chrg 7
- h h (« — +sh(m—a—p
(3) e, =dcd [Oq2 L (6 = B)q + sh (7 )a dg
® sh (w + B)q chmg
® sh (0(_/3)(1 :
4¢3 thmg ————d
o Lo sh (o + £)q J
fm sh7g ch (w—B)g + sh (a + B—)q J )

@ sh (u + B)q chmg

For the electrostatic capacity of the lens, we have

C=e foo sh 7q ch ((X—ﬁ)q + sh (a + 8 —)q

(6)
-® sh (& + B)g chmg

dq

For the case of the spherical bowl, in which o + 8= 27, these formulas yield

(7) ex = ey =5 [f"(a) +£"(m) + f()],
®) eg = {f"(0) = f"(m) = [f" (@) P/F(@)},
and

(9) C=cf(a),

where

(10) flo) = [:[M]qu=7l—7(l +W_“).

chmg
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We note that f* (7) = (3m)~1L,

For the case of the lens with & + 8= 77/2 (Kelvin case), we have

(1) ex =ey =53 [k(w) +k(B) —k(0) + k" (o) +k"(B) —k"(0)],

(12) e, = {k"(w) +E"(B) +k"(0) = [k'(a) = £'(B8)]*/[k(x) +k(5) =k (0)]} ,

and
(13) C=clk(a) +k(B) —k(0)]=a+b—c,
where
o ch2
(14) k(o) = f g dg = sec G .
~® chmg

[See formula (A-1) in Appendix A,

For the limiting case of two tangent spheres of radii @ and b, we have

ab \3 Y ] @ o b
(a+b) [2¢(1) e a+b) L/J(a-%b)}’

NI

(15) ex = ey =

) )
) l) -
and
(17) C= e [—-sb( = )—w ° )—2’y],
atb a+b a+tb

where 4 (w) = "' (w)/T" (&), I'(u) being Fuler’s gamma function, and where 7 is
iiuler’s constant.

Finally, for the case of the symmetric lens we obtain
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(18) ex = ey =2¢° [: (g2 +£)(1 — thmg thag)dg,
(19) e, =4c3 _[Z q*(th7q cthog — 1)dq,
and
N @ — ,
(20) C=c ‘/-.oo (1 —th7q thag)dg .

An elementary calculation shows that the volume of the lens is given by

7Tc3 (o8

*
(21) v =—6—— (2 — cos &) cot‘2— csc? 5 + (2 = cos B) cot -:Z/Cjcsc2 §

3. Spherical bowl, o + 5= 27. The volume V of the spherical bowl is clearly
zero, so that the inequality (2) becomes P, > 47 C3. In this section we consider

the ratio P, /47 C3.
From (1), (3), (7), (8), and (9) we obtain

(22) Po _ 2f"()f () + [f(W)]* =[5 () ?
AmC3 3[ ()] '

[f we make use of equation (10), which gives f(®) explicitly, and substitute & for
77 — G, we easily obtain
Py, 772

23 = 62 +48 sind — & sin28
2 nC® 30+ ey o o

— 1 sin? 28 —2 sind sin28].

We differentiate (23) with respect to & and find

(20) d [ P _ m?(1 + cos 8)? HE@S)
dé \amC3 3(6 + sin8)’ ’

where

(25) H(8) =8% 4+ 8 sin 8 —4(1 — cos §) .

We now proceed to show that }/(8) > 0 for 0 < 8§ < 27, Clearly / (0) = 0. Also,
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H (8) =28 +8 cos & — 3 siné
H"(8) = 2 sin 8(tany & —%8).

If 0 < &<, then sin$ > 0 and tan (5/2) > /2, so that [/"(8) > 0. But if
7m< 6 < 27, then sind < 0 and tan (§/2) < 0, so that again H"(8) > 0. Thus
11'(8) increases monotonely as § increases from 0 to 277. But 7/'(0) = 0. Thus
H'(8) > 0. Since H(0) = 0, it follows that //(8) > 0 for 0 < § < 277. From (24) it
follows that P,, /477 C3 decreases monotonely as & increases from 0 to 77. But
from (23) we easily find that P,,/47 C® has the value 72/9 for & = 0 and the
value 1 for & = 7. It follows that P, /47 C?> increases monotonely from 1 to
7%/9 2 1,097 as ¢ increases from 0 (sphere) to 77 (circular disk). Thus for the
spherical bowl the inequality 7, > 477 C ®is proven.

4. Kelvin case, « + 8=7/2. We now consider the case of a lens of dielectric
angle 77/2 formed by the intersection of orthogonal spheres. The polarization and
capacity can again be expressed in terms of elementary functions, so that the
study of the ratio (P, + V)/47C? is not difficult. For this case we use equations

(1), (3), (11), (12), and (13) to obtain

(26) Pn TV _2[k"(e) + E"(B)][k(c) + k() = k(0)]
477C3 3[k () + k(B) —k(0)]*
L Le(o) + k(B) = k(0)]? = [k’ (a) = k'(A)]"
3[k(a) + k(B) — k(0)]* ’

where k() is given by (14), and, as throughout this section, 8= 7/2 — o.. We
note that k(o) + £(S3) — k£ (0) becomes infinite when ¢/ tends to zero or 7/2; in
order to obtain a fraction whose numerator and denominator remain finite, it is
convenient to multiply the numerator and denominator in (26) by sin*® costa. If

we subtract 1 from both sides of (26), we obtain

27) Po +V 1= k* (o)

47C3 3 sin? o cos® o [k(a) + k(B) —k(0)]* ’

where
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(28)  k*(«) = sin® o cos* o {2[k" (o) + k"(B) ][k () + k(B) —k(0)]
+ [k(e) + k(5 = k(0)]* = [k () = k" (B)]
—3[k(e) +k(B) —k(0)]*} .

We note that £*(x) is always finite. In order to prove the inequality (2), it suffices
to prove that £*(ct) > 0 for 0 < o < 77/4 since, as was pointed out earlier, we can
always suppose o0 < 5. We make use of (14) to obtain the following necessary

expressions:

(29)  sin« coscl[k(a) + k(B) —k(0)] = sina + cosa(l — sin ),

(30) sin? o cos? afk' (&) —k'(B)] = sin® « = cos’ .,

(31) sin®a cosPulk”(0) + k"(B)] = sin® a + sin® & + cos® « (2 — sin? &),

1f we substitute (29), (30), and (31) in (28) we obtain, after some simplification,
Yoo = 2sino cos ol — cos a)2(1 — sin )2 [cos ct(d — sin«) + 2(1 + 2 sin &)].
It is clear that each factor in this product is nonnegative, and hence £*(ct) > 0
for 0 < o < 77/4 and indeed for 0 < o < 77/2. As previously noted, this is suf-

ficient to prove the inequality (2) for this case.

5. Two tangent spheres. We now consider two tangent spheres of radii ¢ and
h. (We assume without loss of generality that b < a.) We write b/(a + b) =
(z should not be confused with the z-coordinate), and make use of (1), (3), (15),
(16), and (17), obtaining

Pa bV _ 269" () —y' (= )] 9() —p(1— 2) — 2]
4mC? 3[—¢<z>— (1=2) = 27"

e = —2)P
3[=y (z)—w(l—z)—wﬁ'

(32)

Recalling that

v -=r-te 2 (L),

n=1 n+z

we obtain
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(33) —yY(z) =yl —z)—2y =

We note that this expression is a function of z(1 — z), and make the substitution
z(1 — z) = y. It is clear that z lies between 0 and 1/2, and hence y lies between
0 and 1/4. For such values of y, z is a single-valued function of y given by 2z
=1-(1— 4y)". We have also

dy
(34) ——=1—2z=(1—4y)%.

dz
[t follows that both '(z) — ' (1 — z) and — " (2) = " (1 — z) are single-valued
functions of y for 0 < y < 1/4. Thus, by (32), the same is true of (P,, + V)/47 C3.
We denote this function by ¢ (y). We shall show that ¢ (y) increases as y increases.

We therefore consider ¢'(y). A simple calculation gives

M
3(L—ay)i[=¥(z) =y =2) =2y ]~

(35) t'(y) =

where
M=a4{p'(z) =" (1 —2)32[=¢" () =y" (1 = 2) J[=¢(z) =y (1 = 2) — 2]
= [y () =y 0 ~2)]*%

=

—2{p"(2) =" = 23 (e) =Y (A = 2) =2y}

If we make the substitution z(1 — z) = y in (33), and let1/[n(n+ D= a,, we

obtain

1l +apy n

yV—vGE)—yQ—z)—2y]=1+y Z["@E'Ll)—— _3].

But

(2n+ 1)an 2

=—a,~ 2n+1)aly + 2n + 1)ad y?
1 +a,y n

—~ oo+ (=)™ (2n + 1)a® ym’1 + oo
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It is easily verified that

[ee] s}
(36) > an, Z (2n+1)ad=1.
n=1 =1
For convenience we let
(37) bn= 2 (2n+1)al (n=2,3,4, ).

I
—_

n

By (36), we have b, = 1. It follows that

(38)  y[yE) -yl —z)=2y]=1—y=y"+ X (=1)""b, y"

m=3

Now

1

L < ip, =3,4,5,°°°).
n(n+l)_2 not (m )

(39) b, Z(2n+1

Repeated application of this inequality shows that

(40) bm S 2m—2 b2 = 2m—2

Thus the series in equation (38) cértainly converges uniformly and absolutely for
0<y<1/4

If we divide equation (38) by y, differentiate with respect to z, and make use
of (34), we obtain

(41) y L' (z) —y'Q —2)]

=1 —d4y)* |l +y* + ; (=1)"(m = 1)bn y"

Similarly we find that
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2) y3[=y"(z) =" {1 = 2)]

=211—-3y + E (—1)’”“(m—2)-[m_2—1 by + (2m—5)bm_1]y"‘],

n=3
and

(43) yHw"(2) =" = 2)] = 6(1 - 4y)*Q,
where

\ (n=2)(n = 3)
3

[ee]
Q:1—2y+z (_1) '[m216m+(2m_5)bm—1] y"
m=4
By means of (40) it is easily seen that the series in (41), (42), and (43) are uni-
formly and absolutely convergent for 0 < y < 1/4. Moreover, the terms of these
series as well as those of the series in (38) alternate in sign after the first few
terms. If we make use of (39) and (40), we easily verify that the terms in each of
these series decrease in absolute value for 0 < y < 1/4. Consequently, each
of these series may be conveniently estimated by taking a finite number of its
terms. In order to simplify the estimates we need a better estimate for b,, than is
given by (40). We easily find that

3 1 1

3
gt Son SRSt onT S

(44) (m=3,4,5, «++ ).

The following estimates are then obtained:
45)  y[=v(E) —vQ —z) —2y] <1 —y—y? +byy’ —bay* +15°,
46)  y[=(z) =¥ —2) —2v]

>1—y =y +bsy’ —bay' +55¥° — &y,
UD Yy (z) —¥' (1 - 2)]

< (L —dy)i[1 +y2— 263y° +3bay* =5 ¥° +35°1,
“8)  y2[y'(z) =y (1 = 2)]

> (1= 4y)*[1 + 52 — 2b3y" + 3bay* =1 5°],
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(49) Y3 [=v"(z) =" = 2)]

>2[1 =3y + (bs +1)y® —3(bs + 2b3)y* + 3y°> —4y°],
(50)  y*[Y"(z) = v"(1 = 2)]

<6(1—4y) 1 —2y + (bs +2b3)y* —2y° + 4y°].

All of these estimates are valid for 0 <y < 1/4.
Before substituting these estimates in (35), we find it convenient to estimate

certain combinations which appear there. I'rom (49), (46), and (47) we obtain
651 y*2[-y" ()= y" U =2) ][~ (z)—y¥(1—z) =2y ]-[¥' (z) —¢ ' —2) ]}
>3 —12y+ 6y2 +12(bs + 2)y> — (22b4+ 56b; + 5)y*
+ (48b4 + 24b; + 31)y® + (6bs + 12b3 — 82)y°
+ (2064 —4b3bs —8b5 +32)y" + (42 b3—24bsbs + 367 +52)y°
= (%2bs + 565 — 3667 —F)y° + (S ba — F by + 1)y
— (A —6by )y + &y F P

>3 — 12y + 6y2+12(bs +2)y3 —(22b4 + 56b3 +5)y* +24y° — 2855,

In passing to the last inequality we have made use of the inequalities (44) to
estimate the coefficients of y* and y6 and to prove that the sum of the last seven

terms is nonnegative for 0 < y < 1/4. From (45) we find in a similar way that
(52) Y= (z)—y(Q —z) =2y ]
<1—=2y —y2 +2(bs + 1)y — (264 + 265 —1)y* +3 5°.
We proceed in a similar manner using (48) and (51) to obtain
(53) 4y°{y’ () —y' (1—2)}{2[=y"(2) = ¢¥" (1 =2)][-¥() =y (1—z) — 2]
= [y' () =y (1 —2))%
> (1—4y)*[12 — 48y + 36y% + 24(bs + 2)y?

— (52b4 + 128b; — 4)y* + 150y° — 344y°].
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The last combination which we shall need is obtained from (50) and (52); it is
(54) 2y°[yY"(z) = v"(1 = 2)][=y(z) —¢(1 —2) —27]?
< (1—4y)t[12 — 48y + 36y% + 24(bs + 2)y°

—12(by + 4b; + 3)y* — 42y + 95y°] .

If we substitute from (53) and (54) into (35), and use the result that

© @
1 1
by +2b5 =2 (@2n+1)(ap+2a3) =2 |5 - | =1,
n=1 n=1 n (n +1)
we obtain
e 192 — 439
(55) t' (y) 2 !

Z 3y ()~ —2) —2y T

Now for 0 < y < 1/4 it is clear from (38) that y [— yi(z) — (1 — z) — 27] is finite
and positive. Hence by (55) we see that ¢'(y) > 0 for 0 < y <1/4. It is easily
verified from (35) that ¢'(0) = 0. Thus ¢(y) increases monotonely as y increases
from 0 to 1/4. This means that the ratio (P,, + ¥ )/477 C? increases monotonely as
b increuses from U to @, where ¢ and b are the radii of the tangent spheres.

Now we see that 56 —> 0 implies z —> 0 and hence y —— 0. If we multiply
the numerator and denominator of (32) by y* and make use of (38), (41), and (42),
we find that 5 — 0 implies

P, +V _ 2(2)(1) -1

=1,
477C3 3

Also we see that z = 1/2 when @ = b, and hence in this case (32) yields

BtV =ay"G) =Y _ TE@)
4mC’ 3[=24(E) —2v P 48 log®2 24 log®?2

=1.053,

where (z) denotes the Riemann zeta-function. (To obtain the values of " (1/2)
and v (1/2) see, for example, Copson [2, p.229].)

Thus as b increases from O (one sphere) to a {equal spheres}) we see that the
ratio (P, + V')/47 C? increases monotonely from 1 to 77(3)/(24 log®2) = 1.053.

Thus we have proved the inequality (2) for the case of tangent spheres.
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Of course the weaker inequalities £, > (877 /3)C® and P, > 2V follow im-
mediately from (2). However, it is instructive to consider the behavior of the
corresponding ratios for this case of tangent spheres. This behavior can be de-
duced from the results just obtained if we first study the behavior of 477 C3/3 V.
It has already been pointed out that this ratio is never less than unity [4].

The volume may be obtained from (21) by setting 5= (a/b)¢. and letting ¢.—0,

or more simply by direct calculation. It is found to be

(56) Vv =4—377 (a® + b3) =4—: (a +b)(a® — ab + b2)
4 3ab 4
= — b )3 - ] = = 6)3 —

sincey =z(1 —z), z=5b/(a + b).

If we now make use of (17) and (56) we find that

) (mﬁ)% ) v =) ~29]

3V (1-3y)1/3

This is a function of y and we could differentiate it with respect to ¥ and prove
the derivative nonnegative by a method similar to that used in treating ¢ ‘(y) above.

But the following method seems to be more elegant. We have

P 1e4eTe eoe o {(3m—2
(58) (1-3yy¥ =1+ 3 (Bm=2) y™ .
m=1

m!

If we substitute (58) and (38) into (57), we obtain

477(;3 %! ©
e R

3v m=3
where

N :1.4.7. N ’(3m—'2)—_l'4‘7' e ’(3m*‘5)_1'4'7' ces '(3"1"'8)
" m! (mn—1)! (mn—2)!
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m-1 1°4°7+ ==+ ‘(3m—3,u—2)
=3 (n—w)!

by + (=1)"1 b,

194+7+ =+ ~@Bn—8)5)(n—2)(m —1)

m!

124+7+ »++ +(3m—3p —2)
(m = w)!

m-1
+ ¥y (=1 b + (—1)" by

H=3
The first term in this last expression for A,, is positive, and the rest of the terms
are alternately positive and negative and decrease in absolute value. It follows
that 4, > 0. Thus (47C3/3V)Y3 increases as y increases. The same is therefore
true of 477 C3/3V. Now (57) shows that when b — 0, that is, wheny — 0,
this ratio tends to one. When b = a, we have y = 1/4, and (57) shows that the
ratio 47 C3/3V is 4 log®2 = 1.332. Thus as b increases from 0 to a we see that
the ratio 477 C3/3 ) increases monotonely from 1 to 4 log3 2.

Combining with our previous result we conclude that the ratio (P, + V)/3V

increases monotonely from 1 to (7/6) {(3) = 1.402 as b increases from 0 to a.
Now since

Py 3P, +V 1

2V 2 3V 2

)

it is clear that 2, /21 increases monotonely from 1 to (7/4)7(3) — 1/2 = 1.604
as b increases from 0 to a. Finally since

Pn 3P, +V 1 3V

(87/3)c® 2 4nC? 2 47mC?

we see that P, /[(87/3)C3] increases monotonely from one to the quantity

[72(3) = 2)/(06 log® 2) = 1.204 as b increases from zero to a.

6. Symmetric lens. In this section we prove the inequality (2) for the case of
the symmetric lens. If we make use of (1), (3), (18), (19), and (20) we find that
2 th g

@ o g
(1 = thmg thoug)dg + 8 e
L. q q) L. oh20g Y

;2[[:: (1 = th7g th o.q)a’qr

P, +V
4Tr03 -

(59)
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We denote this ratio by S(ct). We note that S(0) = 7 {(3)/(24 log32) = 1.053 (two
equal tangent spheres), S(77/2) = 1 (sphere), and S(77) = 72/9 = 1,097 (circular
disk). We wish to prove that S(ct) > 1 for 0 < o0 < 77. We write

w?g(a) + G(a)

(60) S(a) = 36 (@)

where

61) gla)=u [

_(L=thmq thag)dg = [_ (1 = thmq/a thgq)dg

and

wqg? thm 2 th g/
(62) o) = god [2I T o ng o g thTe/A

~® sh2ugq “®  sh2gqg
We note that g(ot) in (61) is the same function g(ct) that was used in [3]. Next
we let
(63) d(a) = a?g(o) + G(a),
so that

d(a) = 3g% («

(64) S(oc)—1=() g_ (%)

3g° (o)

Since g(a) > 0 for 0 < o < 77, it suffices to prove d(¢) — 3g3(0{) >0 in order
to establish the inequality (2).

We note that d(ct) — 3g°(«) has the value zero when o = 77/2, because
S(m/2) = 1. Its value when & = 77/4 or 77 can also be calculated as we shall see.
In proving the desired inequality we shall find it convenient to estimate d (o) and
g () by means of Taylor’s series expansions of these functions in the neighbor-
hoods of the points « = 71/4, 77/2 and 77. We shall therefore need to compute some
of the derivatives of g(& ), G(), and (&), and to study their behavior.

From [3] we find that

o q thaog

(65) OREN -

q,
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2

H R q :
66) ) = —— dgq ,
(6 é() mehzﬂq ch” tg d
© 7 sho
(67) g///(C/\) — 277 ‘[—'m q g dq .

ch? g ch® ugq

It is clear that g'(ct) > 0, g"(6) > 0 and g" (&) < 0, so that g(«) and g'(¢t) are
monotone increasing functions and g”(%) is a monotone decreasing function.

Turning to the consideration of the derivatives of G (&), we have

. q @ q°
68)G' (o) = —87mu ¢ 4= —g87 02 —dg,
@) ” j:m sh2q ch? mq/u 1 [_00 ch? 77q sh 2uq 1
4
q" ch2uq
69 " (o) = 20-1G' (@) + 1672 [ ——————dq,
(@) ©) Lo 5 7q sh? 20q 0
; 3 * ch2u
(70) G"(o) = =167 [© ————dg + 64w [ Ly
~® ch? 77q sh 20q ~® ch® g sh” 2uq
5(2 + sh? 2¢
—327¢? fmq ( > . a) d
~® ch? 77q sh® 2uq
For the derivatives of (&), we have
(71) d'(a) =a?g" (w) +2cag() +6" (@),
(72) d' (o) =g (o) +4ug (&) +2gw) +6"(w),
(73) d"(c) = ¢?g"(¢) +6ae"(w) +og' (w) +G"(a) .

We first consider the interval 77/2 < « < 77. If we let 6 = « — 77/2, we have

52
71 glo) < g(m/2) + 8¢ (m/2) P (m/2), w/2<u<m,
and
2
75) d(e) > d(@/2) +8d' (m/2) + Y d"(m/2), m/2 <a<m,

since g" (%) < 0 by (67), and d"(ct) > 0 for 7/2 < ¢. < 77, as we now shall show.
g > y ’ > =7,
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From (73) we find at once that
(76) d"(a) > o? g" (o) +6ag"(m) +6g' (m/2) +G"(w), m/2 <a<7m.

We must now find estimates for g”(«) and G"(&). From (67) we see that, for
/2 < o <77, we have
v q° sh 77q 1

0 <—g"() <27 . . d
s-eg'wsem [ ch? mq  chmgq  ch?mg/2 ¢

_ w g sh? mq(ch 7q — 1)
= s j—'m sh? 2711q

dq

3 shwq/2 3(chmg — 1
_ . =1 shmg/ dq—vrf_ZQ(C 91

~0

sh® mq E

sh? g
If we make use of formulas (A-16), (A-32), and (A-31) in Appendix A to evaluate
these integrals, we find that

(77) 0>g"(et) 2=1/m +3—=717/8, m/2<a<m.

Equation (70) shows that G"(x) is the sum of three integrals each of which may
be estimated by methods similar to that used above in the estimation of g"(x);
it is convenient to observe that the function g/sh g decreases monotonely for

g > 0 and is an even function of g. The necessary formulas from Appendix A are

(A-16), (A-18), (A-20), (A-26), and (A-30). We find that
(78) ¢"(a) > [7/(20)] (12 — 447 — 2572 + 1273)
+ 347/45 — 16/ (37) + 7o (25 —87), w/2 < a < 7.

The values of g”(77) and g'(77/2) are given in equations (B-3) and (B-5) of Ap-
pendix B. If we substitute these values as well as values from (77) and (78) into
(76), we find that, for 7/2 < o < 7, cd” (o) is not less than a certain polynomial
of third degree in ®. It is easily verified that this polynomial has three real zeros,
none of which lies between 7/2 and 77, and that it is positive for ot = 77/2 and
o = 7. Consequently, it is positive for 7/2 < ¢t < 7. It follows that 4" () > 0
in the same interval.

If we substitute into (74) and (75) the necessary values from Appendix B, we
find that, for 7/2 < o < 7, 6§~ 2[d(«) — 3¢° (at)] is not less than a certain

fourth degree polynomial in 3 which is readily shown to decrease monotonely as
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o increases from 0. Moreover, this polynomial is positive for 6 = 4/3. It follows
that

(79) do) =3g%() >0, 7/2 <a<m/2+

(FS

Since the desired inequality has not yet been proven for o0 > 77/2 + 4/3, we
consider further the interval 77/2 < & < 77 and let € = 77 — &%. We first recall that
2" (%) decreases monotonely. Also it has been shown that d"“(ct) > 0 for 77/2 <

o < 773 it follows that 4" (&) increases monotonely in this interval, We thus obtain

-2
€“

(80) g(o) < glm) — <" () ey g"(m/2), m/2 <as<m,
and

€2
(81) d(C() zd('ﬁ) _Edl('ﬂ) +—’2—d”(77/2) , 77—//‘2 S O»ﬁ?‘f.

[f we substitute into (80) and (81) the necessary values from Appendix 3, we
find that, for 7/2 < ¢ <77, (&) — 3g3(C/.) is not less than a certain sixth degree
polynomial in € which is readily shown to be positive for 0 < € < 1/2. It follows
that

(82) dla) = 3g3(a) >0, m—5r<a<w,

If we conbine (79) and (82) the desired inequality is proven for the interval 77/2 <
u < 7.

Next we turn our attention to the interval 77/4 < & < 77/2. We first need to
obtain estimates for ¢ (¢ ) and " (0.) in this interval. If we make use of (67) and
eniploy (A-16) and (A-28) in Appendix A to evaluate the integrals which arise, we
find that

(83) 0>e¢g"(a) >—2+7m/16, 0<a<m/2.

" ~ 1

Before we can estimate d"(%) we need to estimate G (). We proceed as we did
for the interval 77/2 < o < 77, and we find that two of the integrals that have to
be evaluated are the same as before although the inequalities are reversed. l{ow-
ever, the third integral is different; it may be estimated by making use of (A-8),

(A-10), and (A-17). We find that
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(84) G"(a) < [7/(2a)](12 — 44n — 2572 + 1273) + 5127
+1767(2)% — 17172 (2)% + ma(25 —87), m/A <a<m/2.

[f we recall that g'(¢) is an increasing function, g”(a) a decreasing function,

and g”(ct) a nonpositive function, we find from (73) that
d"(a) <0 +6ag"(0) +6¢' (7/2) +G"(w), 7/4 <a<m/2.

If we insert the values of g”(0) and g'(77/2) from Appendix BB, and make use of
(84), we obtain

(85)  d"(@) < [m/Qu)](12 — 447 — 257% + 1273) + 6 + 102177/2
+ 1767 (2)* —17172(2)* + «(1 + 257 — 872)
<18 + 4677 + 176m(2)* — 257%/2
—1717%(2)* + 87%, 7/4 <w < 7/2.

In passing to the last inequality we have replaced ¢ by 77/2 because the first
parenthesis is negative and the last one is positive. We also point out that the
last member of (85) is positive.

If we now let { = 77/2 — «, we find from the Taylor’s series expansions of
g(a) and d (), on using (83) and (85), that

2
@ ) Sel2) - s’ (/2) + = 6" /2)

+ 8 (i—-— 777/96) , m/A<a<m/2

and

2 3
@7 do) >d(m/2) —d' (7/2) +% d"(m/2) ——i— d, , m/A<a<m/2,

where d; denotes the last member of (85).

If we substitute into (86) and (87) the necessary values from Appendix B, we
find that, for 7/4 < o < 7/2, {72[d(x) — 3g3(a)] is not less than a certain
seventh degree polynomial in { which is easily shown to be positive for 0 <
< 1/2. It follows that

(88) d{a) = 3g%@) >0, 7/2—L<a<n/2.



THE POLARIZATION OF A LENS 389

Since the desired inequality has not yet been proven for o0 < 77/2 —1/2, we
consider further the interval 77/4 < o < 77/2 and let » = & — 77/4. We need another
estimate for d"(&), but of the opposite sense to that given by (85). This in turn
requires a new estimate for G (% ). The necessary integrals may be evaluated by

using (A-17), (A-23), and (A-24). We find that
(89) G"(o) >—8/(3x) + 327 —10m? — 14w/15, 0 <a<7/2.
From (73) we find at once that

d"(o) > a?g"(0) +6ag"(m/2) + 65’ (m/4) +G"(w), 7/4<a<m/2.

If we insert the necessary values from Appendix B, and make use of (83) and (89),

we obtain

(90) d"(a) 2—1—§~8/3 + [12(2)% — 6 + 37(2)% + 497/2 — 10772 ]«

9!

+ (136/15 = 3m)a® + (T7/16 — 3/2)a?}, 7/4 <o <7/2.

But it is easily shown that the polynomial in the braces increases monotonely
when « increases from 0 to 77/2. Moreover, it is negative if & = 77/4. l{ence we
may replace 0. by 77/4 in the right-hand member of (90). If we denote the resulting
value by d,, we see that d“(®t) > d, for 7/4 < o < 77/2. Using this fact and
recalling that ¢g”(c) < 0, we have

2
OO g(@) gbr/a) +me (/a) + 6" /4), mASasm/,

and

2 3

7 d" (m/4) +%d2, /4 < a<T/2 .,

92)  d(«) > d(m/4) +nd' (m/4) + -

If we substitute into (91) and (92) the necessary values from Appendix i3, we
find that, for 7/4 < a0 < 7/2, d(0) — 3g3 (&) is not less than a certain sixth
degree polynomial in 77 which is easily shown to be positive for 0 < 7 < 0.4. It
follows that

(93) d(o) — 3g%(x) >0, 7/4<a<m/4+0.4.
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If we combine (88) and (93), the desired inequality is proven for the interval 77/4
<u <7/2

Finally we consider the interval 0 <« < 77/4. We first need to obtain estimates
for d” () and " () in this interval. If we make use of (68) and (69), and employ
(A-22), (A-23), (A-24), and (A-30) to evaluate the integrals which arise, we find
that

(94) G"(0) >—4/3 +12172/60 — 573/8, 0 < o< 7/4.

From (72) we find at once that

d"(c) > 2¢(0) + G"(«), 0<a<mn/4,

since g"(%) and g'(ct) are both nonnegative. If we take the value of g(0) from
Appendix B3, and make use of (94), we find that

(95) d"(0) >4 log2 —4/3 + 12072/60 — 573/8, 0 <« < 7/4,

If we now let k = 77/4 — &, recall that g” (%) decreases monotonely when

¢ increases, and make use of (95), we find that

2

(96) g(0) < gln/1) — <y’ (/4) + 52— g"(0), O<u< /4,
and

K2
(97) d(«) > d(n/4) — «d' (m/4) +—2—d3 , 0<a<m/a,

where d; denotes the right-hand member of (95).

If we substitute into (96) and (97) the necessary values from Appendix 3, we
find that, for 0 < o < 77/4, d () — 3g° (%) is not less than a certain sixth degree
polynomial in « which is positive for 0 < x < 77/4. It follows that

(98) d(aw) —3g%(@) >0, 0<a<m/4.

Combining this with our previous results, we see that the desired inequality
has now been established for the whole interval 0 < & < 7. As previously ob-

served, this proves the inequality (2) for the symmetric lens.

7. Appendix A. In this appendix we give a table of integrals which includes
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all the integrals needed in the proof in $6 and in the calculations in Appendix B.
Some of these integrals can be deduced easily from formulas given in the integral
tables of ilierens de Haan _1]. When this is the case the formula is followed by
two numbers in parenthesis giving first the table number and second the formula

number of the necessary formula in the tables of Bierens de Haan.

Since not all of our formulas can be deduced from these tables we indicate
alternative methods of proof. Formulas (A-1) to (A-6) can be derived by standard
methods of contour integration. In connection with (A-5), we mention that it is
necessary to intesrate both z shclz/sh?7z and ch «z/sh? 77z around an indented
rectangular contour; and in (A-6) it is necessary to integrate z2 shaz/shdnz,
z chiuz/sh® 7z, and shu z/sh®7z around the same contour. Formulas (A-7) to
(A-20) can be derived by differentiation of the formulas (A-1) to (A-6). Finally,
formulas (A-21) to (A-32) are all special or limiting cases of formulas (A-7) to
(A-20). It may be noted that (A-32) may be derived most easily by using an inte-
gration by parts and (A-29).

o ch xg o
(A-1) f dg=sec -, —m<a<m (27, 4)
~® ch 7q 2
o chog * G
(A-2) [ —5——dg=Zcsc—, —27 <a<2m (27, 18)
~® ch® g 7

ho G . o
(A-3) [0 L g = — (47?7 — u?) esc S, Cwm<a<ar @)

® ch* 77¢q 673
[e9) th{q o8
-4 [ dg =tan —, —-m<a<m (27, 10)
~® shmq 2
ho 1 o8 o
(A-5) fwg__s;___qdq =— (a csc? = =2 cot —), =217 < <27
~® sh®mgq 21 2 2

2 shu 1 o , O
(A-6) foo q—s‘——q-dq =— [4 tan — + 4o sec? —
~©  sh3 7q 472 2 2

V8 (08
+ (2 -72) sec? -2‘ tan 5] , —3n<u<3m



392 JOHN G. HERRIOT

h o o4 o
(A-7) fmq et q=%;sec—(1+2 tanz—), —r< o<t (84, 17)
~® chmyg 2 2
*cha 1 ol
(A-8) fz ‘q—Cl——qdq = — sec — (5 + 28 tan? — + 24 tan® -‘),
- chmq 16 2 2 2

-7 <o <7 (82, 16)

h o 1 G o8
(A-9) qu—z“'—qdq =— csc— [“—4 cot =
ch® g 41 2 2

L
+Q(l+200t25)], —2m<a<27

4

ch o 1 o8 o 0

(A-10) fm q——‘—gdq =— csc — [—'8 cot — (5 + 6 cot? "\/‘:)
~® ch? 71q 167 2 2 2

* *%
+ O((S + 28 cot? "2“+ 24 cot? 5)] , 2 <a<2m

2 cha 1 % ¢
(A-11) j_'_: g‘—f—‘qdq =_— csc = [“24& +4(3a% —472) cot —
ch® g 24m 2 2

o
+ a(gm? — aQ)(l + 2 cot? 5)] , —4m<a<dm

* chu 1 o o o
(A-12) J:: q—‘4——q dg = ycsc T~ [192 cot —— l44u (l+ 2 cot? *‘>
ch® mq 96 2 2 2

*
+8(Bu? — 472) cot 5(5 + 6 cot? 2)

o8
+ o (472 —oﬂ)(S + 28 cot? 3
o8
+24cot45)], —47m <o<d4m
h o o8
(A-13) fmq—c-———q-dq——;«secz—, —r<a<T (84, 16)
“® shmgq 2



(A-14)

(A-153)

(\-10)

(A-17)

(A-18)

(A-109)

(A-20)

G

-0

L
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3 chu G o
q—‘udq:;ii sec? —(l + 3 tan? ‘-), =7 <o <7 (82 15)
sh 7q 2 2
2 chu 1 o o
q—udq:—cscz"‘(2"“0’~cot_), —2m<a<2m
sh? 77q 27 2 2
¥ sha 1 R
fwwd = — csc ["“6cot—'
“® sh?mg 4
G
+ &(1 + 3 cot? —)] =27 < G < 27
q* chag 1 )
dg = csc? — [2 (1 + 3 cot —')
sh? 77q 277
= & cot 5(2 + 3 cot? —)], =27 < ¢ < 27
5 sh« 1 G s o
.22 q=—csc2&[~10 Cot'—(2 + 3 cot? —“)
sh? 77q 477 2 2 2

~
8 8

C &
+O((2 + 15 cot? §+ 15 cot? 5‘)], —2m< <27

q® chug 1 , a
—dq = — sec” — |12 + 12« tan =
87 2 2

shd 7q

o
+ (u? —772)(1 + 3 tan? 5)], —37<u< 37

5

h o 1 o G

q‘—udq =— sec? = [20(1 + 3 tan? "‘)
sh? 74 87 2 2

o “
+ 20¢ tan —(2 + 3 tan? —)
2 2

o3 (o8
+ (a2 “772)(2 + 15 tan? 5 + 15 tan? 5‘)] , —3m<a<3m
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(A-21)

(A-22)

(A-23)

(A-24)

(A-25)

(4\.‘26)

(A-27)

(A-28)

(A-29)

(A-30)

(A-31)

(A-32)

3
chw 1
fa0 o dg
- Q00

JOHN G. HERRIOT

q
chmq a=3 (8 9
4
q 5
dq = — (84, 7)
chrg ¥ 16 ’
: d ——l— (86, 2)
ch? 7q 7 67 ’
4
q 7
> = (86, 2)
ch® 7mq 120
2 12
ch* 7q 97 373
o T 1
ch* 7q 18077 373
q
sh7q dg =3 (84, 2)
g
hra dg =% (84, 5)
2
q
= — (86, 5
sh? g 1 37 >0
4
z dqg = — (86, )
sh®mq ™
3
9 =2 _1
sh37q om? ®

sh37q 27?2

8. Appendix B. In the proof given in $6 we had to use the values of g () and

d(a) for certain values of &. The necessary values are listed in this appendix;



THE POLARIZATION OF A LENS 395

the method of calculation of each is also indicated. Following is the list of values

used:
(B-1,2,3) g(m) =2, g'@@)=1n, g"(n)=19~-2/@n?

(B-4,5,6) g(m/2) =n/2, g'(m/2)=1-7n/4, g"(@/2)=25/3—="7/2

(13-7) g(m/a) = 7(2)%/2 —m/4
(B-8) g' (m/a) = =1 +2(2)% —5m/4 + 7 (2)%/2
(B-9) g"(m/4) =34/3 + 42) + 71— 97 (2)%/2

(B-10,11) g(0) =2 log2, g"(0) =1/6
(B-12,13) d(m) =87%/3, d' (m) =6m —7%/8

(B-14,15)  d(7/2) =37%/8, d'(n/2) = 97%/4 — 97316

(B-16) d"(m/2) =97+ 237m%/12 — 117°/8

(B-17) d(m/4) =1m3(2)%/32 — 73 /64

(B-18) d'(m/4) = —=3n%16 + 2172(2)%/8 — 1337%64 + 2373(2)%/32
(B-19) d"(m/4) = —=37/2 + 217(2)"* + 3717%/24 + 6972(2)"* /4

+ 73/16 — 35173 (2)%/32

Formulas (B-4), (B-3), (B-6), (13-10), and (B-11) will be found in (31; (B-1
and (B-2) can be proven by starting with (61) and (65) and using (A-2), an inte-
gration by parts being first needed in the case of (13-2). (B-3) follows at once from
(66) and (A-25). In order to prove (13-7) we observe that

h3 4 2 chmg/2 —1
77/4) foo [¢ 77q/ dq fco cnTmq/ J
~® chmg chmg/4 4 @

q,
ch g

and the result follows from (A-1). For (13-8) we have

© q Eh77q/4

, » q(chmg +1 =2 chmg/2
g (/4) = [ ~ag = [ LTS i),
® ch? mq chmgq/4 ch? 1q shmq
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o [ g | Ly 2(shma = sh 3ma/2 = shma/2)

ksl aq ?
= 9| shamg sh? 27q

and the result follows from (A-27) and (A-5). For (3-9) we start with (66) and have

o q* sh? mq/4

g"(m/4) = 4m [

-0

d
ch? mq sh? mq/2 1

w q2(ch7q/2 — 1) (chmq + 1
—lem [ 4 (ch7q/ : )(ch g )dq
- sh® 2mq

. fw q%(ch 37rq/4 — 2 chmq/2 + 3 chmq/4 —2)

dq ,
sh? 77¢

and the result follows from (A-15) and (A-29).
Formulas (3-12) to (8-19) follow immediately from (63), (71), and (72) if we

show how to calculate the following:
(B-20,21) G(7)=27%/3, G'(n)=n—78

(3-22,23)  G@/2) =7n3/4, G'@w/2) =313/2 — 74 )2

(13-24) G"(@m/2) =67 + 2% —573/4

(B-25) Gr/a) =3732)%/16

(B-26) G (m/4) = 97m2(2)%/4 — 273 + 1173(2)%/16

(3-27) G"(n/a) = 187(2)* + 1672 + 3372 (2)%/2 — 1717%(2)%/16

Formula (13-20} follows easily from (62) and (A-23), (B-22) from (62) and (A-21),
(13-23) from (68) and (A-16), (13-24) from (69) and (A-17), and (B-25) from (62) and
(A-7). For (B-21) we use (68) and find that

ch2mqg — 1) 4

3 3

q . o q°(

G') =—end [ — g =—1673 ,
) j"““’ ch®7q sh2mq 9 j:‘” sh®27q 9

whence the result follows from (A-32) and (A-31). For (i3-26) we obtain, from (68),

3 chmg/2 o g (sh3mq/2 + shmq/2
q° chmg/ dq:_2W3£mq(s 7q/2 + shmq/2)

' «©
@) == 7 275

d
ch?mq shmq b
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and the result follows from (A-16). Finally for (B-27) we obtain, from (69},

Il

4 gl
®/mG" (m/4) +773j_:m q_chma/2

® ch? 71¢q sh? 7q/2

G"(m/4)

q* chmg/2

I

(8/ma’ (r/4) +27° [ dg

ch? 7q(chmg — 1)

= (8//77)G, (77//4)

1 1 Y
2 shi7g/2 chmg chimg) 1’

. o]
+ 27T°j:00 g* chmgq/2
and the result follows from (A-17), (A-8), and (A-10).
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THE BOREL PROPERTY OF SUMMABILITY METHODS

J. D, oo

1. Introduction. Lt T denote the method of summability corresponding to the
real matrix (ay,, k), for the moment arbitrary, by means of which a sequence {sitis

said to be summable-T to s if each of the series in

1.1) th = 2 an, k Sk (n=123, *=+),
k=1

is convergent and if ¢, — s.

We shall be concerned here exclusively with the class X of all sequences x =
{ oz} where the o are 0 or 1 with infinitely many 1’s. A biunique mapping of the
class X into the real interval ¥} = (0 < y < 1) is obtained by defining y as the
dyadic fraction 0.0t G, Gz * * * corresponding to x = (O, %y, A3, * * ), and con-
versely. This enables us to employ the phrase, “almost all sequences of 0’s and
1’s,” by which is meant a subset of X for which the corresponding subset of ) has
[.ebesgue measure one.

A classical result of Borel [2] may be interpreted as asserting that almost
all sequences of 0’s and 1’s are summable=(C,1), Cesaro of order one, to the
value 1/2. If the corresponding statement is true for the method 7' defined by (1.1)
we shall say that T has the Borel property, or more briefly, that T € (BP).

A study of the Borel property for regular methods T was undertaken recently
by the author [5]. In the present paper we dispense with the assumption of regu-
larity, and in 92 we investigate the consequences of assuming merely that T €
{BP). Two independent necessary conditions, (2.2) and (2.5), are obtained.

In $3 it is shown by means of an cxample due essentially to Erdis that these
conditions are not sufficient in order that T € (B8P) even if condition (2.10) is
added. By virtue of a lemma of Khintchine we are able to state in Theorem (3.5) a
new sufficient condition considerably weaker than that given in Theorem (2.14) of

[5].For comparison the latter result is repeated here in Theorem(3.3). In Theorem

Received February 17, 1951.
Pacific J. Math. 1 (1951), 399-409.
399
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(3.11) we deal with a conjecture of Erdos and prove incidentally that in general
the Borel property does not depend on the rate at which 2f= a3 ) approaches
zero.

At the present time it appears unlikely that the Borel property can be charac-
terized in any reasonably simple manner, at least if no restrictions are imposed on
the matrix (a, ) at the outset. This aspect of the problem remains to be con-

sidered.
2. Necessary conditions. e shall establish the following result.

(2.1) THEOREM. In order that T€ (BP) the following conditions are necessary:

(o)
(2.2) z ap,; converges for each n and tends tol as n — ©;
2.3) A = Y ask < © for each n;
k=1
(2.4) lim apk = 0 for each k;
n->o
(2.5) lim A, =0,
n->o

Proof. f T € (BP), there exists a subset 9™ of ¥ =(0 < < 1) of measure
& Y Y

one such that

[¢9)

Z Qn, k(ﬂk(y

is defined for each n and each y = 0.0ty %3+ + € ¥ and such that¢,(y)
— 1/2. Since 9 is of measure one it contains a subset $** of measure one
such that if y € 9™ then also 1 — y € 9**. Choosing any such y we may
write y = 0.0l Gy Oty * ** and 1 —y = 0.5, 5,85 * * *, where oy + 55 =1 for all
k. Then (2.2) follows from the fact that

x©

Q
Z k+zank/3k—zan,k~

k=1 k=1

To verify (2.3) we introduce the Rademacher functions Ry, (y) defined for each
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fr and each y = 0.0t Gy tly e v ¥ as 1 — 20, (y). Then
(2.6) tn (¥) Z an b Gk ( = 2 ank — o 2 ankRely),
k= 2 k=1 2 k=1

must exist almost everywhere in ¥} for each n. In view of (2.2) the necessity of
(2.3) follows from a well-known result of Kolmogoroff {6, p. 126].

To establish (2.4) let & be fixed and denote by @T and 2‘2* the subsets of @*
(defined above) of measure 2% which lie, respectively, in the intervals 0 <y
< Z"k and 2k < y < 275*1 It is evident that there exist subsets D% of 9
'Tind 25% of £, of measure 27%, such that if y € 91" then y + -k €
Ior such a value of y we have y = 0.00 * + « 004, 0p4,° * (k+1 zeros)and y
+27F =000+ 20104, Up+y * +* (k zeros). Consequently, ¢, (y + 27F) — £,(y)
Zap — Dasn —

The proof of the necessity of (2.5) is more involved. Since (2.3) implies the
convergence almost everywhere in ¥ of the series Z;?:lan’k[{k(y) for each n, it

follows from Igoroff’s theorem that there exists for each n a subset [, of ¥ of

measure |[,| > 1 — 27""1, and an index ¢,(n), increasing to infinity with n,
such that
- 1
(2.7 Z an b Be(y) | <= forall m >¢y(n) and all y € I,
k=m+1 n

Setting | = 19,1, and using € to denote the complement of £ with respect to

g) , we have

1
eI < Z |G1, | <5

n=1

Consequently we have || > 1/2, and (2.7) holds in /. We need also the fact that

(2.3) insures for each n the existence of an index ¢ (n) > ¢, (n) for which
. 1
(2.8) 2 by <—.
k>¢(n) "

Now it follows from (2.2), (2.3), and (2.6) that 7" will have the 3orel property if

and only if 7,(y) = Zi= a,,; Rk (y) approaches zero almost everywhere in ¥ as
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n —> ®, Writing 7, (y) in the form

@(n)
z an, k Rk(y) + Z an,k Ry (y>
k=1 k>p(n)

and using (2.7), we see that T € (BP) implies the approach to zero almost every-
where in ] of

dn)

Un(y) = Z an,kRk(y)°

k=1

Let £ be a subset of ] with |E| > 0 on which o, (y) approaches zero uniformly,
and let

d(n)

%n,m (y) = z an,kRk(y) .

k=m

We can now follow an argument due to Kolmogoroff (for the details see [6, pp.127-
128] or [4]) and arrive at the inequality

1 <i>(n)
(2.9) fE o u(y)dy > Y El Y ank,
k=u

for a certain fixed i and all n sufficiently large. From (2.4) it follows that
m—1
On,u(y) =on(y) = 2 ankRe(y)
k=1

tends to zero uniformly in £ together with oy, (y). Then (2.9) yields

@)
> arr =o(1)

k=p

asn — ©, Finally from (2.4) and (2.8) we conclude that

=1 P(n)

A=Y alr + Y aie + XY anp =o(l)
k=1 k=n k>p(n)



THE BOREL PROPERTY OF SUMMABILITY METHODS 403

asn —> ®©, This completes the proof of Theorem (2.1).

It will be noticed incidentally that conditions (2.2) and (2.4) are among the
familiar Silverman-Toeplitz conditions for the regularity of T. The remaining con-

dition for regularity, namely,

[vo)

(2.10) Y ane| =0(1) (n — ),
k=1

is not necessary in order that T have the Borel property. This is shown by the

example of the following matrix which appears in [1]:

11 11
T2 3 45
1 L
2 2 3 4 s
1 11 1 1
3 33 4 5
11 1 (1) (-1)""t
nn o onontl nt2

This matrix violates condition (2.10) but satisfies the sufficient conditions of
Theorem (3.3) below. It has been proved in [1], however, that T is necessarily

regular if it evaluates to 1/2 all sequences of 0’s and 1’s which are summable-

(C, 1) to 1/2.

3. Sufficient conditions, We first raise the obvious question of whether the
conditions (2.2) and (2.5), which imply (2.3) and (2.4), are sufficient in order that
T € (BP). Before showing that the answer is in the negative, even with the
addition of (2.10), we make a few preliminary remarks. Using the notations of §2,
and appealing to the Riesz-Fisher theorem, we are led at once to the Parseval
relation [! 72 (y)dy = A,. The condition 4, — 0 is therefore equivalent to the

convergence of {¢n§ to zero in the space L2, and this assures the existence of
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a sequence of indices {n;} such that Tny) — O almost everywhere in ). In
other words, if (2.2) and (2.5) are satisfied, the matrix (an,k) contains a row-
submatrix (ani’k) defining a method T* (not weaker than T) having the Borel
property; this fact was obtained in [5] with the aid of (2.10). We proceed now to
the construction of an example which shows that in the absence of further con-
ditions nothing more can be said.

We need the following result due to Borel [3, pp.37-47]. The form stated here
is less general than the original, in that the groups of consecutive ¢’s are not

permitted to overlap, but it is sufficient for our purposes.

(3.1) LEvMMA (Borel). Let {h,} be a sequence of positive integers, and let
the positive integers {njg be such that nj2nj_y + >\]~_1(j =2,3,4,+ ). Then
in order that almost all dyadic fractions y = 0.0 G, U, * * ¢ have the property
that for infinitely many j, Ohn ; S followed by A; zeros, and for infinitely many j,

by >\]~ ones, it is necessary and sufficient that Zy=, 27 = w,

We can now construct the example of Erdos which was outlined in a letter to
the author. The details have been modified to render the matrix triangular but the
idea otherwise remains essentially as communicated. We use the notation a(n, k)
as alternative to a, i, and define a matrix as follows, wherein, as usual, [log m]

means the greatest integer in log m. Let
afm® +i—1), (m—1* +; —2)} = [log m]™*
for j = 1+1, i +2,+-, ¢ + [log m]; 1=1,2,¢°*, 2m+1; m=3,4,5,°°*;

and let a, ; = 0 otherwise. This matrix of nonnegative terms is evidently tri-

angular, regular, and such that (2.5) is satisfied. On the other hand we have

[log m]
(3.2) tn2eon ) = [log mn]™ 3w, (y) (n=3,4,5, *++),

V=1

and since 2 2—[105 m] — @ it follows from Lemma (3.1) that for almostall y =
0.0ty &y O3+ * there are infinitely many values of m for which « , is followed
by [logm] zeros, and also infinitely many m for which a , is followed by
[log m] ones. Hence we see from (3.2) that for almost all y the sequence .00}
contains both infinitely many zeros and infinitely many ones. Consequently the

matrix (a, ;) fails to have the Borel property.

The search for conditions which are necessary as well as sufficient has so
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far yielded no results. However, the sufficient conditions set forth in the following

theorems appear to be of interest.

(3.3) THEOREM. In order that T € (BP), the conditions (2.2) and
28]
(3.4) Y oAl <@ (for some q¢ >0),
n=1

are sufficient [5].

Proof. The proof of this theorem given in [5] remains valid under the present
weaker conditions. A new criterion involving, as we show later, a condition con-

siderably weaker than (3.4) is contained in the following theorem.

(3.5) THEOREM. In order that T € (BP) the conditions (2.2) and

e8]

3.6) Y exp(—8%24,) < (for each § >0),

n=1
are sufficient.
For the proof it is convenient to have the following lemma.!

(3.7) LEMMA. In order that a sequence {f,(y)} of measurable functions on ¥
converge to zero almost everywhere it is necessary and sufficient that given

6> 0and € > 0 there should exist an index v = v (e, 8) such that

@

I1 Ea(5)

n=v

(3.8) >1—€,

where I, (8) EEan(yH < 8%-

Proof of Lemma (3.7). Inasmuch as we make no use of the necessity we give
only the proof of the sufficiency. Let A (y) = lim, ,« .|, and set i = E{X (y)
> 08 Form=1,2,3,+++, wesetli, =& i)\(y) > 1/m?t so that

H= Y Hy.

m=1

1 Added in proof: see P. R. Halmos, \easure Theory, Van Nostrand, New York, 1950,
p. 91, Theorem A.



406 J.D. HILL

It |H]| >0, contrary to the statement of the lemma, then there is an index u such

that ]H#I > 0.For§ =1/u and € = (1/2)|H#| the condition (3.8) becomes

@ 1 1
E.l=||>1—= |H,]
H (M 2 "

for an index v = v(u). Consequently

1
>—= |H, >0,
= bl

® 1
n=v ,U(

For any point

1
o

yOEH,u' HEn()

we have Alyy) > 1/u since v, € H,. On the other hand, since
e 1 &l
Yo nl —|»
n=v /J/

we have |f,(yo)| < 1/u for all n > v, and this yields A(y,) < 1/u. With this

contradiction the proof is complete

Proof of (3.5). Proceeding as we did in proving the necessity of (2.5), we
first determine an index ¢ (n), approaching infinity with n, and a set [ of positive

measure such that

1
(3.9) Z an,kRk(y) <—for all y€ I andn=1,2,3, *--.
k> (n) n

If we set

@(n)
— 2
B, = Z an k ,
k=1
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then it follows from (3.6) that

oo}

(3.10) Z exp(—52/2B,,) <@ (for each & >0),

n=1

since B, < A4,. Now

dn)
Tn(y) = Z an,kRk(y) + z an,kRk(y) Eon(y) +/On(y) ’
k=1 k>p(n)

where p,(y) — 0 for all y € I, by (3.9). Let [* D | denote the entire subset
of ¥ on which p,{y) — 0, so that ]l*\ >0, If 0.ty tpye o+ isany
point of ¥, it is clear from the definition of o, (y) that every point of the form
0.81 By =+ + Bp Upay Upag * + * is likewise in I*. Hence [* is a homogeneous set
of positive measure, and therefore of measure one (see [9] and [4]). Since p, (y)
— 0 almost everywhere, we complete the proof by showing that (3.10) implies
that 0,(y) — 0 almost everywhere. For this purpose let £,(5) = E {|oy, (y)|
< 8t for § > 0. By a lemma of Khintchine [7] we have

| €L, (8) | <M exp(—562/2B,)
for n = 1,2,3, « + +, where ¥ is an absolute constant. l.et § > 0 and € > 0 be
given. Then from (3.10) there exists an index v = v (¢, 8) such that

®
MY exp(—08%2B,) <ce.
n=v

Consequently

8

>1= 2 [67,()] >1—e.

n=v

It now follows from Lemma (3.7) that o,(y) — 0 almost everywhere.

As a partial consequence of Theorem (3.5) we are able to decide a conjecture
of Erdos (made in a letter to the author)to the effect that (2.2) and 4, logn = o(1)

are necessary and sufficient in order that T € (BP).

(3.11) THEOREM. [n order that T have the Borel property, the conditions (2.2)
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and

(3.12) Ap log n = o(l) (n — oo)

are sufficient; but neither (3.12) nor (3.6) is necessary.

Proof. To prove the sufficiency it is enough to show that (3.12) implies (3.6).
For this purpose, let § > 0 be given and fix € > 0 so that §%/2¢ > 1. By (3.12)
there exists an index n, such that 4, < ¢/(logn) for all n > ny. Then

exp(—8%24,) < n~8%2¢

for n > no with 82/2¢ > 1, and (3.6) follows.

To complete the proof we show somewhat more, namely, that no condition of
the form Apy(n) = 0(1), with Y (n) — ®, is necessary. Consequently the Borel
property can not be characterized in terms of the rate at which A, approaches
zero. For let 0 < 8(n) < 1, O(n) — 0, with O(n) arbitrary otherwise. Let x,,
= [1 - 8(w)]/[1 + 6()], so that B(n) = 1 — x,)/(1 + x,), 0 <x, <1, and
x, — 1. Since the Abel method has the Borel property [5], the same is true of
the “discrete” Abel method defined by the matrix

an,k =(l—xn)x§-l (k,n=1,2,3, ...)‘

For this matrix we find that
oo}
Ay = Z agx,k :(9(") ’
k=1

where &(n) may tend to zero in any preassigned manner. Thus, for example, if

_log log(n +2)

o) log(n + 2)

’

we have A, logn — ®, Finally, if we take &(n) as 1/loglog(n + p), forp

sufficiently large, the series in (3.6) diverges for every & > 0.

We now wish to show, as mentioned earlier, that condition (3.4) of Theorem
(3.3) implies condition (3.6) of Theorem (3.5), but not conversely. If (3.4) holds

for some g > 0, we have

0<zp=24,/62 >0
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for each & > 0. Since

exp(—=1/z,) = o(z9) or exp(—5%24,) = O(A?l)

as n ~—> €, it follows that (3.6) is satisfied. On the other hand, for the loga-

rithmic method of regular Riesz means defined by
ank = 1/k log(n +1) for k =1,2, «*+,n; n=1,2,3, +++,
we have
A, = 7%/6 log?n.

Hence for every g > 0 the series in (3.4) diverges, but 4, logn = o(1), so that
(3.6) holds by the proof of Theorem (3.11).

As a simple application of Theorem (3.11), we call attention to the existence
of a regular method having the Borel property and which is weaker than (€, &) for
every o > 0. It suffices to consider the harmonic method /'y of regular Norlund

means defined by
ank = 1/(n—k+1) log(n + 1) for k=1,2, *++,n;n=1,2,3, -,
It is known [8] that N C (C,«) for all ¢t > 0, and we have here again

A, = 7%/6 log®n .
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ON THE THEORY OF SPACES A

G. G. LORENTZ

1. Introduction. In this paper we discuss properties of the spaces A(¢,p),
which were defined for the special case ¢ (x) = «x%~', 0 < & < 1,in our previous
paper [8]. A function f(x), measurable on the interval (0,1), [ < +® belongs to
the class A(¢,p) provided the norm |if!, defined by

(L) It = { £ e) 5 GIpax]

is finite. Here ¢ (x) is a given nonnegative integrable function on (0,1), not identi-
cally 0, and f*(x) is the decreasing rearrangement of lf(x) | , that is, the decreas-
ing function on (0,!), equimeasurable with !.f(x)l . (For the properties of decreasing
rearrangements see |5, 12, 7, and 8].) We write also A (&, p) instead of A(¢, p)
with ¢ (x) = ax®™', and A(¢) instead of A (¢, 1). We shall also consider spaces
A(¢p,p) for the infinite interval (0,+w). In $2 we give some simple properties of
the spaces A, and show in particular that A(¢,p) has the triangle property if and
only if ¢(x) is decreasing. In $3 we discuss the conjugate spaces A*(¢,p), and
show that the spaces A (¢, p) are reflexive. In 4 we give a generalization of the
spaces N\(¢,p), and characterize the conjugate spaces in case p = 1. In $5 we
give applications; we prove that the Hardy-Littlewood majorants &(x, f) of a func-
tion f € A(&,p) or f € A*(gt,p) also belong to the same class. We give suf-
ficient conditions for an integral transformation to be a linear operation from one

of these spaces into itself, and apply them to solve the moment problem for the

spaces A(¢,p) and A*(¢,p).
2. Properties of spaces A(¢,p). We shall establish the following result.

THEOREM 1. The norm |/f| defined by (1.1) has the triangle property if and
only if ¢(x) is equivalent to a decreasing function; in this case f,g € A{(¢,p)
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implies { + g € A(¢,p).

Proof. (a) Suppose that “f(l' has the triangle property. Let § > 0, 2 > 0,a > 0,
and a + 2k < [, Set

1+8on (0,a +h) 1 on (0,h)
fx) = 1 on (a+hat2h) g(x) =41+ 6 on (h,a +2h)
0 on (a+2h1), 0 on (a+2h1);
then
. 2428 on (0, a)
(f+6) (x) ={2+5 on (aa +2h)
0 on (a+2h1).
We have [f] = |g|l; hence the inequality [[f + gll < [[f| + lg] is equivalent to

{(2 +28)P f* () dx + (2 4 S)Pja“”h H(x) dx }1/"

< 2{(1 + 5)pj0°*" H(x) dx + fajzz%(x) dx}l/”,
or to
at2h ath at2h
(2 + s)Pfa P px)dx < (2 +28)Pja &(x) dx + 2Pfa+h é(x)dx,

and thus to

(1+8)P— (1 +58)F
(1L+38)7 -1

(2.1 L7 b de 2 0 o (x) dx

If ®(x) is the integral of @ over (0,x), we obtain from (2.1), making § — 0,
a +h) >21%a) + a + 2h)];
that is, ®(x) is concave, and thus ¢ (x) is equivalent to a decreasing function.

(b) Suppose that ¢ is decreasing. Instead of (2.1) we can now write

b

2.2 I = sup { " el dx
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the supremum being taken over all possible rearrangements ¢, of ¢. It follows

from (2.2) that f,g € A(¢,p) implies f + ¢ € AMb,p) and |f + g| < |If] + lg]l.

It is now easy to see that, for ¢(x) decreasing, A(¢,p) is a Banach space;
the completeness may be proved by usual methods (compare [8]). In general,
M, p) is not uniformly convex. Suppose, for instance, that there is a sequence
6, — 0 such that

(2.3) 3(25,)/8(5,) — 1.

This condition is satisfied, for example, if ¢ (x) = x™" |log x| P, p > 1. We take
fn(x) = hy on (0,28,),f,(x) =0 on (26,,1); we take g (x) = h, on(0,5,), g n(x)
= —hy, on(8,,25,), and g, (x) = 0 on (28,,1); and we choose %, so that

Ifa P = llgnll” =} @(28,) = 1.
Then we have

h, on (0,8,),
31 (x) +gn(x)} =| )

0 elsewhere ,

and (1/2)(fp — gn)* (x) is the same function. Therefore

p
=hh®(5,) —1,

fn +Sn i

2

_ fn ~&n

and so A(¢, p) is not uniformly convex. In case of the spaces A(«,p), the problem

remains open.

The remarks made above apply also to the spaces A(¢,p) in case of the infinite
interval (0, +®). We assume in this case that Jéqb(x) dx < +® for any [ < +®;
the additional hypothesis on f € A(¢,p) is that the rearrangement f*(x) exists,
which is the case if and only if any set [lf(x)' > €], € >0, has finite measure.
The completeness of A(¢,p)in this case follows from the fact that the set of such
f is a closed linear subset of the Banach space of all f for which (2.2) is finite. If

(2.4) SO #(x) dx =+,

this subspace coincides with the whole space. Condition (2.4) is in particular
satisfied if ¢ (x) = ga%—1,
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3. Reflexivity of the spaces A(¢,p). We shall first give some definitions and
lemmas which will be usefulin the sequel.If g(x), g,(x) are two positive functions
defined on (0,1), 0 < < +®, we write g < g,, if for all finite 0 < x <[ we have

fo‘x g(t)dt < j(;xgl(t) dt.

Integration by parts readily yields:

LemMA 1. If g < gy, and f is positive and decreasing on (0,1), then
l l
(3.1) [ efdx < fo gifdx.

LEmMA 2. If g < gy, and g, g, are positive and decreasing, then also Y(g)
< Y (g,) for any convex increasing positive function, in particular for y(u) = uP,
p 21

For the proof, let f(x) = {y(g,(x)) — Y(g@)}/{g.x) — g} if g(x) # g,(x),
and let f(x) be equal to one of the derivates of Y (u) at u = g(x) if g(x) = g, (x).
Then f(x) is the slope of the chord of the curve v = (u) on the interval (u,u,),
u = g(x), u; = gy(x). The slope decreases as both u, u,; decrease. Therefore f(x)

is decreasing and positive. Applying Lemma 1, we obtain
1
L f(@)e(x) —er(x)]dx <0,

which proves our assertion.

THEOREM 2. Suppose that f(x), g(x) are positive and decreasing on (0,1), and
f € Mé,p), p > 1. Then

b

}l/q

! . ! 1_
(3.2) fo fedx <|lflls qslbrlfg {foqude +;— 1,

1
P
where infimum is taken for all decreasing positive D (x) for which ¢D > g. More-
over, this infimum is equal to the supremum of fol fg dx for all positive decreasing
fwith ||f|| <1, if there is a function D with $D > g and [ $D? dx < +®, and is
to + if there is no such D.

This theorem is due to I. Halperin. For the proofs, see a paper of Halperin ap-

pearing in the Canadian Journal of Mathematics and, for a simpler proof, (10].
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Inequality (3.2) is a combination of (3.1) and the usual Hélder inequality. For
if g = ¢D >g, then

(3.3) [ reds < [ ferde = [1oVrf¢VeDax

< At ope e}

Here and in the next section, the following theorem will be useful:

THEOREM 3. Suppose that X is a normed linear space of measurable functions
f(x) on (0,1), 0 <1 <+, with the properties: (i) X contains all constants; (ii) if
fi is measurable and |fi(x)| < |f(x}|, f € X, then f1 € X and ||fi] < |f];
(iii) if f € X and f. denotes the characteristic function of the set e, then |f fe||
—0 as meas e — 0.

Let Y consist of all measurable functions g for which fol fg dx exists for all
f € X. Then

(3. F(f) =f' fedx, g €1,

is the general form of a linear functional on X, and its norm is equal to

lgll = sulp f fegdx <+,

Proof. (a)Let g € Y; then fl f.g[ dx exists for all f € X, and “gl] =
sup fl flg| dx, where f runs through all positive f € X with |[f|] < 1. If |g]

= 40, there is a sequence f, > 0, |[fn] < 1 such that [f,|g| dx >n3 Then
f=2Zn"%f, € X, and therefore fol flg| dx must exist. However [f|g| dx >
n~% [ fulg| dx > n, which is a contradiction. Hence |g| < +® for g € Y. We
see now that for g € Y, [ fg dx is a linear functional with norm |g]|.

(b) Suppose that F(f) is a given linear functional on X. By (i) and (ii), any
characteristic function fe(x) belongs to X. Define G (e) = F(fe); since IG(e) <
IF) Ifell — 0 as meas ¢ — 0, there is an integrable g (x) with G (e) = I g dx.
This means that (3.4) holds for f = f,, and therefore also for all step-functlonsf
(which are linear combinations of the fg). For a bounded f, there is a sequence
falx) — f(x) uniformly. As ||f, — f]| — 0, this establishes (3.4) for all bounded
f. Now suppose f € X is such that fg = |f]| |g]. Let falx) = f(x) if |f(x)| <n,
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fu(x) = O otherwise; then ]f—'fni‘ — 0 by (iii), and hence Jf(;lfngdx = F(f,) has
a finite limit. This shows that [ I ff [g |dx < + @; therefore g € Y. Repeating

the last part of this argument for an arbitrary f € .1, we obtain (3.4).

Remarks. (A) Let X have the additional property: (iv) f,(x) — f(x) almost
everywhere, f, € X, and {fn! <M imply f € X. Then the existence of [ fg dx
forall g € Y implies f € X.

For taking the subsequence f,(x) — f(x) of (b), we see that /', (g) = S fng dx
is a sequence of linear functionals convergent toward [fg dx for any ¢ € Y.
Then the norms [F,| = |if,| are uniformly bounded, and using (iv) we obtain

[ € X

(3) Since Y is the conjugate space to X, Y is a Banach space, and 1 clearly
satisfies (ii). Suppose now that X satisfies (i)—(iv) and that ¥ satisfies (i) and
(iii). Then Remark A and Theorem 3 together imply that X is the conjugate space
of ¥, in other words that any linear functional /' (g) in ¥ is of the form F(g) =

Jfgdx, f € Xand [F| = [f].

(C) The above results hold for the interval (0, +©) if the conditions (i)—
(ii1) [and eventually (iv)] are true for functions vanishing outside of a finite
interval, and also (v) for any f € X, |f = ft] — 0 as [ — ®, where flis de-
fined by fl(x) = f(x) on (0,!) and fl(x) =0on {{, +).

Applying these general results to the space A{¢,p) in case of a finite interval,

we see that (i) and (ii) are satisfied. Condition (iii) follows from

flhe fIF < _/O‘measegtf*p dx — 0, meas e — 0,

[he(x) is the function fx) fex)], and (iv) from (2.2) and Fatou’s theorem. We
obtain the result that the space A*(¢,p) conjugate to M ,p) consists of all

measurable functions g such that there is a decreasing positive D with D > g*

and folquq dx < +®; further,

l
0

{3.5) “é“A = inf { ®DY dx }

PD>g*
For it follows from Theorem 2 that

! i!g“@ ’

~

< [Preran <l
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and that HgllA* is the supremum of the integral [ fg dx for all |[fi < 1.

Now if g(x) = C > 0 is a constant, we take an [, > 0 with ¢(/;) >0 and C, =
Cl[l1¢(ll)]_l . Then follclqﬁ(x) dx >Cl;and if U(x) = C{ on (0,1,), D(x)=0
on ({,!), then 1 > g. Therefore A* satisfies (i). Also (iii) holds, for if A (x) =
g ) felx), g € A%, g* < @D, then h¢ < Py, where D,(x) = D (x) on (0, meas e),
i71(x) =0 on (meas e,[), and

Hhe“% < £1¢lif dx = jo'measeqﬁﬂq dx — 0, meas e — 0.

We have proved the theorem:

THEOREM 4. The space M,p), p > 1, is reflexive. Its conjugate is defined
by (3.5).

We now consider the case of an infinite interval and assume fomqb dx = +©,
Then f € Alg,p) implies f¥(x)— 0 for x — @, If a > 0 is fixed and [ suf-
ficiently large, then the function !fl(x) f of (v) will take values > f*(a) only on a
set of arbitrarily small measure. In view of (iii), condition (v) will follow for
A, p), if we can show that the norm of the function f*(a + x), 0 < x < +®, tends
to 0 as a —> @, or even if this is true for some sequence ¢ —> @, This norm does

not exceed

“(x + a 1/p
(L7 (a + o) dx |’ = [fo%(x)f*(x)f’[%(:)—)]p dx} — 0,

as the integrand has the majorant ¢ f*P, and f*(x + a)/f*(x) — 0 for @ — ©,

To prove (v) for A*(qb,p), we need a result going beyond Lemma 1, namely that
if g and O are decreasing and positive, and ¢ > g, then there is another such
function Dy for which ¢) > U, > g, and that except for certain open intervals
[ where D, is constant, fo"qS[)Odt = j;)xg dt. (This fact is proved in the paper of
Halperin, mentioned at the beginning of this section and in [10]).As before, we
have to prove that if g € A*(¢,p) is positive and decreasing, then the norm of
the function Ax) = glx + a), x > 0, tends to 0 as « —> @ for certain values of
a. There is a D with ¢D > g and " ¢D%dx <+ ©;and, by Lemma 2, J& #bd dx
<+ @, As [[°¢dx = + ®, we deduce that Uy(x) — 0 forx —> @ Therefore

LT #Dy dx = o[ (x)].
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On intervals |, f(f(ﬁl)o dt is of the form C® (x) + C,, where ¢ (x) = f0x¢ dt. If an
I extends to +®©, we have C = 0, that is f:qﬁ})o dt = C, for all large x. and D (x)
is necessarily C for all such x. In this case also g(x) = 0 for all large x, and our
assertion is trivial. If, on the other hand, there are arbitrarily large values a which

do not belong to any /, then we have for these a,

‘/O'aqbljo dt = jo'“gdt )
It tollows that j;)quDo dt > _fé)xg dt, x > a, or ¢p(x + a)Dylx + a) > g(x + a), and
this implies ¢ (x) Do (x + a) > g(x + a). Therefore,

N L)
fihjld < £m¢(x)ﬂo(x +a)ldx = ff;m¢(x)Do(x)q|’l‘)%)(:§(-:’)gl] dx — 0

for @ — ®. We obtain in this way:

THEOREM 5. The space A¢,p)y, p > 1, [ = ®© is reflexive; its conjugate is
given by (3.5).

4. A generalization. There is an obvious generalization of the spaces A(¢, p).
Consider a class C of functions ¢(x) > O integrable over (0,1), and let X (C,p)

consist of all those functions f(x) for which

. /
(4.1) Il = sup {L @ 151Pax]} <+,
PeC

A special type of these spaces is obtained if C is chosen to consist of all inte-

grable positive functions ¢ (x) whose integrals ¢, (e) satisfy the condition
(4.2) bile) < ble),

where ®(e) is a given positive finite set function of measurable sets e C (0,0).

We may then assume that

(4.3) ¢(e) = sup @i1le).
#1

(A full characterization of set functions ®(e) which may be represented in form
(4.3) by means of a class of positive additive ¢», will be given by the author else-

where [9].) In particular, let ¢;(x) be a fixed decreasing positive function, and
let $(e) = fomeas € @o dx ; then condition (4.2) is equivalent to the condition
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¢*(x) < &0 (x) .

Therefore, in this case the norm (4.1) is equal to (1.1), and so X(&,p) = Algpg,p).

For the space X (¢,p), the condition |f|| = 0 is equivalent to f(x) = 0 almost
everywhere if and only if ®(e) > 0 for any set e of positive measure. Suppose now
that ¢(e), defined by (4.3), vanishes on certain sets e with meas e > 0. There is
then [2, p.80, Theorem 15] a least measurable set e, which contains any such
set e up to a null set; and e, is a union of a properly chosen denumerable set of
these sets e. Hence ¢;(ey) = 0, and ®(ey) = 0. It is easy to see that in this case
[fl = 0 is equivalent to f(x) = 0 almost everywhere on (0,I) — eg, and that the
values of f(x) on e, have no significance whatsoever for ||f||. Omitting e, from
(0,1), we do not change the space X(¢,p), and we obtain a ®(e) satisfying the
above condition. In the sequel, ¢ is assumed to have this property.

The spaces X(&,p) are normed linear spaces. Their completeness may be
proved by usual methods, if for instance F(e) has the property that meas e — 0
implies ®(e) — 0 and if ] <+,

The spaces X (C,p) satisfy the conditions (i), (ii), and (iv) of 3 [(iv) follows
easily by Fatou’s theorem]. Condition (iii) is not fulfilled in general. We can
however enforce (iii) by defining the spaces A(C, p) and A(®,p) to consist of all
those functions f € X(C,p) or f € X(&,p), respectively, for which ||ffe[| — 0
with meas e —> 0 in X. Then the conjugate space A*(C, p) and all linear function-
als in A(C, p) are given by Theorem 3. We conclude this section by describing the

spaces A*(®,1) more precisely:

THEOREM 6. If f € A(®,1), then

(4.4)

f' redx| < Ul s gos [ lalax,

B@©>0

and the left integral exists provided the right side is finite; moreover, the supre-
mum M (g) in the right side is equal to the supremum of folfg dx for all f € N(®,1)
with |f[ < 1.

Proof. Consider the function ¢, (x) = M (g)™" | g(x)| ; then

SUIf1 el dx =nile) f' ol f| dx < me) Il

since
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Lbo(x)dx =M(g)™ [e(x)dx < 2(e),  ec(0,1).

This proves (4.4). On the other hand, if e is an arbitrary subset of (0,/) with
®(e) > 0, then the function f(x) = ®(e)™ fo(x) sign g(x) has norm 1 in A(p,1),

and

[ fedx=2()" [ gl dx .

Therefore the integral folfg dx takes values arbitrarily close to M (g).
From Theorems 3 and 6 we deduce that the space M(®,1) = A*(®,1) consists
of all g(x) for which

(4.5) lell = sup {@(e)™ [ lg(x) | dx} <+,

In particular, the space M(¢), conjugate to A(¢), is given by
(4.6) ||8“M(¢) = S‘-:P {¢1 (e)—l J; |gl dx} .

It is easy to see that the expression (4.6) is the limit, for p — 1, of the norm of
g in the space A*(¢,p), p>1.

5. Applications. We shall make three applications.

5.1. Hardy-Littlewood majorants. We take in this section [ = 1. We write

1
(5.1) O(x,f) = sup ——— [7If(t)]dt,

0<y<1y — x

and denote by 6, (x,f) and O,(x,f) the supremum of the same expression for

0 <y <x orx <y < 1, respectively. Then
(5.2) O(x, ) < max {61(x, f), Oax, £)}.

On the other hand, it is well known [5, p.291] that
1

(5.3) 61(x, f) <O6(xf*) == f7f*(¢)de,
x

and this is also true with &, in place of &,. From (5.2) we derive, for any p > 1,
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8¥(x, f) < 65(x, 1) + 65(x, f) .
It follows that
6 (x, /)" < (6F + 65)" < (60)" + (&) =6rF + 637 < 26(x, %) ;
that is,
(5.4) 6* (%, )7 < 20(x, 1 *)" .
We shall make repeated use of the inequality of Hardy [12, p.72]:

[l
__r flxsf(x)pdx ’
._.s—l 0

(3.3) j:l xs_p[“(x)p dx < (
v P

where p > 1, s < p — 1, 0 < [ <+, and F (x) is the integral of the positive

function f(x).

In our present situation it follows from (5.3) and (5.5), if p > 1, that

Jro(ug) e < (p—i—;)pf;‘f*w

and, by Lemma 1,

P
(5.6) ‘]{;1 ¢ (x)6™(x, f)p dx < ?( ) j(;lqﬁ-(x)f*(x)‘“ dx .

p—1
This is case (i) of the following theorem:

TuroreMm 7. ()If f € AMe,p) and p > 1, then also B(x,f) € A,p)
(i1) if f*(x) log (1/x) € AlD), then Olx, f) € Me); (1iD) if [ € AlP), and dlx)
is decreusing with respect to X for some & > 0, then O(x, {) € N).

To prove (ii) we observe that (5.4) with p = 1 and L.emma 1 imply

N X
H‘QHA(@ = f ¢ 5 (X dx < 2‘1(;1@(37) ;‘dxj(; f*(t) dt

Il

2fj(t dtflq)(x  x 2j¢ ) 1*(¢t) log—i‘a’t<+00.

Finally, if the hypothesis of (iii) holds, that is if ¢ (x) = x %D (x) with a decreas-

ing positive ), then the preceeding inequality gives
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lel <2 f1 £ (e)D(e) £l 2 tdx <287 [T (2) f*(¢) d

THEOREM 8. (i) If f*(x) log (1/2) € A*(¢,p), p > 1, then O(x, f) € A¥*(¢p,p);
(ii) if f € A*(at,p)y p > 1, then O(F) € A, p).

Proof. (i) Letp > 1 [the case p = 1, A*(¢,p) = M(¢) is simpler]. By (5.4),

and since O(x, f*) decreases, we have

le(r)le <22l6(F) e =29  inf 7 (x)D(x)7 dx .
$D>6(f*)

But by (5.3), we have

je(u,f ff(t dtf ig<ff(t log‘l‘dt

which means that O(x, f*) < f*(x) log (1/x) = h (x); hence

l6(N9 < 29 inf ['éDIdx = 29|n|7 <+,
$D>h

(ii) Let f € A*(a,p); because of (5.4) we may assume that f = f*, that is,
that f is positive and decreasing. Suppose f < ¢D and folqﬁl)q dx < +© with
¢ (x) = ax*1. Then by (5.3) we have

8(x, f) =i— L71(¢) dt 5% L7 D(¢e) dt

1
— -1 _= X _o-1 — A
= x5 fo t*I1p(t) dt = ¢(x)Ds(x),
say. The function D,{(x) is positive and decreasing, as
D/(x) = "O(x'o“_ljc;xta"lD dt + x1D(x)
<—ax"*1D(x f t%1dt +x7'D(x) = 0.

Therefore, by Hardy’s inequality, we have

—

q
1 - — o [ . a-00g-D]L ¥ o-
le(HlT < o f1227DFdx = o f x4 1[ i\ to‘lDdt] dx

xR
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SC‘/(;1x(l.oc)(q-1)+(oa—1)qD(x)q dx ZC‘/O‘lxa—qu dx

with some constant C. Thus O(f) € A*, which proves (ii).
It should be remarked that f* log (1/x) behaves very much like f* log* f*:

(@) If f* log (1/x) belongs to A*(¢,p), p > 1, then f log* |f| belongs to
[\*(d),p). For if p > 1 [the case p = 1 is similar but simpler], there is a D (x)
with f* log (1/x) < ¢D and jolqu dx < + ®, Then also f*(8) log (1/x) < ¢D on

(0, 0); in particular,
f*(8> fs 1 --l dx < fs ¢l)d <1
o og x> o x>

if § is small. Therefore f*(8) < §~! for all small §, which shows that

flog" [f| € N(¢,p).

(b) Now suppose ¢(x) is such that, for some & > 0, we have fold)(x)x_sdx <
+oo., If flog"|f| belongs to z’\*(qb,p), p > 1, then f* log (1/x) also does. In fact,
by Young’s inequality [5, p.111; or 11, p.64], for the pair of inverse functions
¢ (u) =log u, Y(v) = e¥, we obtain ab < alog¥a + e®(a, b > 0) and therefore

1
£* log =< 87'f* log" (87'f*) +x7° < 87'f* log* '81‘+ 57Uf* log* f* + 27
X

<Af* log* f*+ B+ 17

for some constants 4, B.

It follows from these remarks, that Theorem 7 (ii) may be regarded as a gener-
alization of the theorem of Hardy-Littlewood [12, p.245] that flog*|f| € L
implies &(f) € L.

Theorems 7 and 8 have many applications which may be derived in the same
way as the corresponding results for the spaces LP (see [12, p.246]). As an
example, we give the following result. Let £ > 0, and let U,(,k)(x, f) denote the
Cesaro sum of order % of the Fourier series of a function f(x). If O(x, f) is taken
for the interval (0,477), we have: if f(x) satisfies one of the hypotheses of Theo-
rems 7 or 8, then 'U,sk)(x,f)( < CpO(x,f)y n =0,1,++. We may give another
formulation of this result. In the spaces A(®,p) and [\*(QZS,p) we introduce a
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partial ordering, writing f; < f, if f;(x) < f,(x) almost everywhere. With this order-
ing, A and A* become Banach lattices for which the order convergence f, — [ is
identical with the convergence f,(x) — f(x) almost everywhere and the existence
of a function A (x) of the lattice such that |f,(x)}| < A(x)almost everywhere. This
is an immediate consequence of the fact that the lattices A, A* satisfy the condi-

tion (ii) of Theorem 3 (see [6, pp.154-156]). Then the above result implies that

o*,(Lk)—)f in order in the corresponding space. Theorems of this section may also

be used to obtain analogues of theorems of Hardy [3] and Bellman [1] for spaces
A and A*; see Petersen [11].

5.2. Integral transformations. Let K (x, t) be measurable on the square 0 <x <1,
0 <t<1, and let

(5.7) F(x) = fO‘K(x, t) £(t) dt.

THEOREM 9. Suppose that there is a constant M such that

. 1

(i) ./(; IK(x, t)dt < M almost everywhere ;

(ii) for any rearrangement ¢, (x) of ¢ (x), the function h,(¢) = fol &r ()K (x, t) dx
belongs to M(¢) and has a norm not exceeding M. Then (5.7) is a linear operator of
norm < M mapping N ,p) into itself. Condition (ii) may also be replaced by

(iii) /(;1 |K(x,t)] dx <M almost everywhere.

Proof. Condition (ii) is equivalent to
(5.8) RE(t) <Mp(t).

Assuming f € A(¢,p), p > 1, we have
[ eG) FG)IP dx < L1 érdx [ LUK 1£(0)] dt]”
< [t dx [IK 1P de] [ K] ae )
<P/ fH(e)[P de [ b (x) [K(x, )] dx

0

SHP/9 LIRE(e) f(0)P dt;
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by (5.8) and Lemma 1, this is
U 1 (e)fH(e)P de =uF| P,

which proves the first part of the theorem. Suppose now that (i) and (iii) hold. Let
8 > 0, e an arbitrary set of measure 5, and e, a set of measure & such that ¢, (x)

> ¢ () on e, and ¢, (x) < P (8) on the complement C e, of ;. Then we have

[l de < [ ar [ o) Kl ax+ [ f

<M j;llgbr(x)' de + ¢(8) [ at [ IK(x, t)] dx

<MEP(8) +MSp(8) <2M2(8).
This shows that the norm of 4, (¢) in M (¢) does not exceed 2}/, and proves (ii).

REMARK. If the conditions of Theorem 9 are satisfied, then

(5.9) G(t) = j(;lK(x, t)g(x) dx

is a linear operator of norm < 2} mapping A*(¢,p) into itself.
We have in fact, for g € A*(¢,p) and f € Algp,p),

Lr6(6)f(2) de = fe(x) dxfO‘K(x,t)f(t) dt = fo‘g(x)F(x) dx

< gl IR, < #Ufly lelax

(the integrals evidently exist), and this shows that G € A™ and that |G || <M |g].

Theorem 9 is akin to the “convexity theorem” of M. Riesz [12, p.198]. We
mention for completeness that there is a generalization of this theorem, in which
the different spaces LF involved are replaced by the spaces Al¢,p) with the same
¢ . The proof, which follows closely the proof of M. Riesz’s theorem in [12], is
omitted.

5.3. Moment problems. We give an application of Theorem 9 to moment problems
of the form

(5.10) an = [ 2" f(x) dx, n=0,12-".
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We shall write

o = (2) 87, = 1 F () i,

Pnv = (E) xy(]- - x)n-—v ’
1%

and s, for the decreasing rearrangement of the |u,, |, v =0,1, <+,
over, we set

v v+1
(5.11) falg) =+ Vpn  for —— <z <,
and obtain

1

(5.12) fn(x) = ‘/(; Kn(x; t)f(t) dt

v v+1

Kn(x,t):(n'*'l)an(t): n+l£x<n+l’

For the special case ¢p(x) = ox*~!

other proof) has been given in [8].

v=0,1,°,n

n. More-

and p = 1, the following theorem (with an-

THEOREM 10. The sequence of real numbers (i, is a moment sequence of a

function of the space A(¢,p) or of A¥ (g, p) [ for the case A, 1), we assume ¢p(x)

— ®for x—> 0] if and only if the norms of the functions (5.11) are uniformly

bounded in this space.
For the space A(¢,p), the condition is

n

(5.13) S Pyl <M(n +1)7P

and for A*(¢,p), p>1,

n

(5.14) /-L;:u < énanv ’ Z nanu _Mq

?
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with some positive decreasing D, v= 0,1, « + +, n.

Proof. If f € A(¢,p), then condition (5.13) is satisfied by Theorem 9, because
the kernel (5.12) satisfies (i) and (iii) with M = 1.
Conversely, let |f, ”A < M. Since

[line) dx < 6(6) L2 ¢ () Ifn(2)] dx <HB()H,  meas e =3,

it follows in case p = 1 that the integrals [, |f,| dx are uniformly absolutely
continuous and uniformly bounded. In case p > 1, this follows by Hélder’s ine-
quality. We deduce that for a certain subsequence fy, (x), the integrals Je fnilx) dx
converge for any e = (0, x) with x rational; hence they converge for any measurable
sete C (0,1). We then have

(5.15) lim Lfnk (x) dx = Lf(x) dx,

k>

with some f € L. Then also

(5.16) folfnk¢ dx—-)j(;lft// dx

for any bounded . For any such ¢ we have, by (3.2),

lfolfnpdx( < lim I,f(;lfnk\lldx <Myl ;

hence this must be true for any y in A*. Thus by §3, it follows that f € A(¢,p).
We remark also that it follows easily from (5.16) that we have

(5.17) [ fptbedz — [ fpdx,

if the sequence 1 (x) is uniformly convergent towards a bounded function y (x).

Now let P be the vector space of all polynomials
Y(x) = ag +arx + o0+ apa”

with usual addition and scalar multiplication. On P we define an additive and

homogeneous functional F by
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F(P) = agpo = aypqg + 00+ apity .

Let

BY (x) = éo ‘/)(V>Pnu (x)

n
be the Bernstein polynomial of order n of i (x); then it is known [10] that

Y - (n) e n_ m
bn(x) a, +a1x+ toa, x",

and that ai(n) — a; for n — @, Hence # (Bf) — F (). In particular, let Y (x) =

x™. We have

(5.18) F(BY) = i (f) F(pny) = i (V)muny

where , (x) is equal to (v/n)™ in the interval (1/(n+1), (v + 1)/(n + D]. As 1, (%)
— ) (x) uniformly, we deduce from (5.18) and (5.17) that

folf(x)x”‘ dx = lim F(By) = F(Y) = wn, n=0,1,°.

Since f € A(¢,p), this proves that the condition is sufficient in case of the
space A. The proof for the space A*(¢,p), which is similar, is omitted.
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ON A CERTAIN NONLINEAR INTEGRAL EQUATION
OF THE VOLTERRA TYPE

J. H. RoBERTS anD W. . MANN

1. Introduction. In an earlier paper by iann and Wolf [1], the following
problem of heat transfer between a gas at constant unit temperature and the semi-

infinite solid was considered:

GAS SOLID
Temperature 1° Temperature U (x,¢)

U(x,0) =0 forx >0

] —> X
(1.1 U (x, t) = Uy y (2, t),
(1.2) U(x,0) =0,
(1.3) U(x,t)]| <M, x>0, t>0,
G u, = X 07 < 6,01

It will be noted that, in boundary condition (1.4), Newton’s Law of Cooling
has been replaced by the weaker, more realistic hypothesis that the net rate of
heat exchange from the gas to the solid, =K U, (0,t), is some function, KG [U(0,t)],
of the surface temperature. In every heat transfer problem of physical significance,

the following conditions must be satisfied by ¢ [U]:

(1.5) & [U] is continuous,
(1.6) 1] =0,
1.7 - [U] is strictly decreasing.

Received December 4, 1950. Presented to the American Mathematical Society under a
different title on April 22, 1950. (Abstract 285, Bulletin of the American Mathematical
Society, vol.56 (1950), p.327.)

Pacific J. Math. 1 (1951), 431-445.
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By Buhamel’s Principle, the solution U(x, t) of the above boundary value prob-
lem is easily constructed once we know the surface temperature, U(0,¢), which it

can be shown must satisfy the nonlinear integral equation,

Glu(0,7)]
T2 (¢ = )

(1.8) U0, t) = fot

Equation (1.8) was shown in [1] to have at least one solution for all & satisfying
(1.5), (1.6), and (1.7). Under the additional ad hoc assumption that G satisfy a
Lipschitz condition on the unit interval, the solution of (1.8) was proved to be
unique and nondecreasing.

It is the purpose of the present paper to show that conditions (1.5), (1.6), and
(1.7) alone are sufficient to imply that {/(0,¢) is not only unique but also strictly
increasing. Besides being a stronger result than that previously obtained, it has
the advantage of requiring only those conditions imposed upon G by the most ele-

mentary physical consideration.

2. The theorems. More general results are obtained without increasing the
complexity of the proofs if instead of the function [77(¢—7)]=" we write K(¢ — 7),

or K(z) where t — 7= z, subject to specified conditions, namely:

(2.1) K (z) is positive, continuous, and strictly decreasing for z > 0;
(2.2) fut K(z)dz is finite for each t > 0}
(2.3) K(z + a)/K(z) is strictly increasing in z for each fixed o greater than zero;

(2.4) J(;zz’((z)dz —> © ast — «©,

It is easily verified, for example, that [77(t — 7)] 7P satisfies the above con-
ditions for 0 < p < 1.

THEOREM 1. The equation

(2.5) y(t) = [1 6Ly (MIK(t = 7)dr

can have at most one bounded solution, given that G [y] satisfies (1.5), (1.6), and

(1.7), and that K(z) satisfies (2.1) and (2.2).
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THEOREM 2. [n addition to the hypotheses of Theorem 1, assume that K
satisfies (2.3). If y(¢) is a bounded solution of (2.5), then y (1) is strictly increasing
in t. If, in addition, K satisfies (2.4), then y(¢t) — last — «,

3. On Theorem 1. In this section we arrive at a proof of Theorem 1.

Livya 3.1, Suppose that f(1) is continuous for a < T < b, and that JEr(rydr
is positive for some t on la,b]. Let t, be the smallest value of t on [a,b] for
which [Ef(T)dT is a maximum. Then either f(t,) =0 or ¢, = b. Suppose that X (T)
is positive and strictly increasing on a < 7 < t{, and that f;IK(’r)dT exists.

Then [of(r) K (7)dT > 0.

Proof. Set f;lf(T)dT =l > 0. Divide f into its positive and negative parts
by writing f,(7) = max [f(7),0] and f,(7) = — min [f(7),0], so that f(7) = f{{(T)
— f,(7). Let ¢ = @, and define ¢; to be the smallest number ¢(c > ¢y) such that
jacfl(’r)a”r = 1. Then ¢, < t,;. In general, choose c,4+; as the smallest number

greater than ¢, for which

(3.2) fc"” fi(7)dT = fcn f2(7)ar.

Cn

¢ 't oo X
Since fcllfl (r)dT = jcol fo{m)dr, it follows that for each n we have ¢, <t,. Let
¢ be the number to which the sequence ¢,, ¢, ¢,, * **+ converges. Then ¢ < ¢,

and

cn

[liyar= [Ofi)dr+ T[T Al e = [ fa () ar] =i,

since each summand of the infinite series is zero. Thus ¢ = ¢,.

We have
(3.3) fc‘otl F()K(T) dT

LT 0) = 2 (K ) ar

= fclfl (T)

<o

g [fcnﬂ (T)K(T) a7 — jc‘c”

n-1

f2)K(7) ar ).
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Now for n > 1 we have

[ 1 (K () dT 2 K(ew) [ 1) ar,

n Cn

since K (7) is strictly increasing; and

L7 K@) dr <K(ea) [ f2(7)ar.

Thus, by (3.2), each summand in the expansion (3.3) is positive or zero, and the
first one is positive. llence f‘;‘f(’r) K(T)dT > 0.
The first assertion of the lemma, namely that either f(¢,) = 0 or ¢, = b, is

obvious.

LEMMA 3.4. Assume that f(7)is continuous on 0 < 7 < T and that K(z)
satisfies (2.1) and (2.2). Suppose furthermore that F(¢) f(:) < 0 for 0 < ¢ < T,
where F (¢) = [{f(T) K(t = 7)dT. Then f(T) =0 for 0 <7 < T.*

Proof. Assume the lemma to be false. Then for some ¢t we have f(ff(T)dT # 0.
There is no loss of generality in assuming [{f(7)dT > 0, since replacing f by
—f results in replacing F by —F, so that the inequality F(¢) f(¢) < O persists.
Clearly f(7) must change signs, so there exists a number b, 0 < b < T, such that
f(b) = 0 and, for some ¢ < b, [{f(7)dT > 0. Let t, be the smallest value of ¢
(0 <t < b) for which [l f(7)dT is a maximum and apply Lemma3.1 using K (¢; — 7)
in place of K (7). We have

K1) = L5 )K= 1) dr > 0.

Then we have £ (t) > 0 over the segment (¢, — &, ;) for some & > 0; and since
f:ll_g f(r)dT > 0 there is some ¢ between t, — & and ¢, for which f(¢) > 0. But for
this ¢ we have F(z) f(t) > 0, violating our hypothesis. Thus f(¢) is identically zero
on [0,T]. This completes the proof of LLemma 3.4 and we are now ready to prove

the uniqueness theorem,

Proof of Theoremn 1. Suppose y,(t) and y, (¢) are bounded solutions of (2.5).
Obviously both are continuous. Letting £ (¢) = y,(t) — y,(t), and f(7) = G [y, (7)]
— G lyy(7)], we have i#(t) = [{f(r) K& — 7)d7. If f(7) < O then, since G is

1In place of assuming continuity we may assume that f(7) has a Lebesgue integral
over [0, T] and that the condition £ (¢) f(¢) € 0 holds except for a set of measure zero.
Then we may conclude that f{7) = 0 over [O, T] except at points of a set of measure zero.
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strictly decreasing, we have y,(7) < y,(7), whence F(7) > 0 and F (1) f(7) <0.
Similarly, if f(7) > 0 it follows that F(7) f(7) < 0. Thus the hypotheses of L.emma
3.4 are satisfied and we can infer that f(¢), and hence F (), is identically zero
for ¢ > 0. This means that y, (£) = y,(¢).

4. The function K(z). In preparation for the proof of Theorem 2, we give the

following lemma concerning K (z).

LemMma 4.1, If K(z) satisfies (2.1) and (2.3), then:
(4.1) For « > 0 and z > 0, we have

[K(z + &) —K(z + 20)]/[K(2) —K(z + «)] <K(z + a)/K(z) ;
(4.2) K(z) — K(z + «) is strictly decreasing in z for all fixed 0. > 0
(4.3) K(z) is a convex function;
(4.4) For each interval 10,b], there exists a number R > 0 such that

K(z) —K(z+ &)>R4 for0<z<z+ u <b,

Proof. By (2.3) we know that K(z + a)}/K(z) < K(z + 20)}/K(z + «). Sub-
tracting 1 from both sides of this inequality and performing a simple rearrangement
of terms, we easily arrive at conclusion (4.1) above.

To prove (4.2) we observe that, by (2.3), [K(z + «)/K(z)] — 1 is strictly
increasing, so that [K(z) — K(z + «)] /K (z) is strictly decreasing. But by (2.1),
both the numerator and the denominator are positive and the denominator is de-
creasing. Hence, the numerator must also be decreasing.

That K (z) is convex follows readily from (4.2), in view of the hypotheses that
K(z) is positive, decreasing, and continuous.

From (4.2) and (4.3) it follows that K(z) has a right-hand derivative at each
z > 0, and this derivative is negative and strictly increasing. The R of (4.4) can

be taken as the negative of this derivative at z = b,

5. The function y (¢). Sections 5 through 10 are devoted to the proof of Theorem
2. Throughout, y(¢) will denote the bounded solution of (2.5), where K (z) satisfies
(2.1), (2.2), and (2.3). In $10 we assume in addition that K (z) satisfies (2.4).

LeEmMA 5.1. If y(¢) <1 for 0 <t < T, then y(t) is nondecreasing on [0,T].

Proof. Assume the lemma is false. Then for some subinterval, (0,61, y()
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attains its maximum J at an interior point, a, and we set y(a) — y(b) = 3¢ > 0.
We shall assume that ¢ is the smallest number (0 < a < b) such that y(a) = i.
Choose 8, > 0 so small that

(5.2) 5y [K(b —7)aT < €.

Set G [y(a)] = ¢ and choose p; (0 <p, <a) so near to a that (see Fig.1)

(5.3) Gly(t)] < ¢ + 6, for p; <t <a.
1
cly(¥)]
ct+d
G[y(a)]=c

: l ;
1 | I
ylaf =" "——7""7"~——~ == :
3e : : )
]| U - R .
: ! .
! | :
y( t) | | ]
I ‘ |
o
| | |

] I
0 ——k l :

Py p2 P a b t
Fig.1

Next, choose p, (p; < p, < a) so close to a that
(5.4) (c +51)‘/:K(a—7)d'r<e,
2

and
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(5.5) (c +8;) fpr(b—r)d~r<e.

Define & so that 0 < 8 < §, and ¢ + 8§ <G [y(t)] for 0 <t <p,. Letp be the
largest value of ¢ such that G [y(t)] >c+ & fort <p. Thenp, < p < a. Define

GLy(t)] if t<p,

(5.6) G*[t] =
c +39 if t >p,

Now since y attains its maximum on [0,b] at ¢ = a, and G is strictly decreasing,

we have
G—-G*>-% fora<t<b.,

We shall show (Lemma 7.1) that fOtG* (1K@ — 7)dT is strictly increasing as ¢
increases from a to b, and therefore } (b) > Y (a), where we use the following
definition:

(5.7) Y(t) = ‘/O‘t G*[7]K(t —7)dT.

By (5.4) we have

I

6o ly(a) =¥(@)|=| [*H6Ly()] = 6" [Tk (a = 7) d7

IN

8, ‘/};GK(a —7)dT < €.
Similarly, we obtain

(5.9)  y(b) =¥(b) = fTHGLy(N)] =C" [T —7)d7

b [Pl — 6" KB — ) dr

o+ B, say.

By (5.5), we have |«| < €. As for 3, the integrand for any 7 is either positive
or numerically less than §K(b6 — 7). Hence, by (5.2), it follows that 5> —¢.
From (5.8) and (5.9) we therefore have y(a) < Y(a) + € and y(b) > Y (b) — 2¢.
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Subtracting, we get y(b) — y(a) > Y (b) — Y(a) — 3€ > —3 €, since Y (b) — Y(a)
> 0 by Lemma 7.1. This contradicts the definition of €, and thus the proof will be

complete when Lemma 7.1 has been established.
6. The function Y (¢t) for ¢t < a. We shall establish the following result.

LEMMA 6.1. With the notation of §5, there exist numbers r and s (p <r<
s < a) such that Y(s) > Y (r).

Proof. Define f(7) to be G *(7) = G [y(7)].

Case 1: for some q(p < q < a), we have _J:,?f(’T)dT > 0. In this case, set
r = p and let s be the smallest value of g on [p,a] such that f;]f('r)d'r isa maxi-
mum. Using K(s — 7) in place of K(7), and p and s, respectively, in place of a
and t,, we see from Lemma 3.1 that f; f(r) K(s = 7)d7 > 0. This implies that

(6.2) fpsG* [T]K(s = 7)dT > fps Gly(T)]K(s —=T)dT.

Now if s < a then f(s) = 0, by Lemma 3.1. That is, G[y(s)] =c¢ + §, so that
y(s) = y(p). If s = a, then obviously y(s) > y(p). Since G*[7] = G [y(7)] for
7 < p, we get immediately from (6.2) the result that

LG [TIK(s =) dT > [T GLy(7)]K(s = 7)dT
=y(s) 2y(p)
= [PG*[r]K(p —7)dT;
that is,
Y(s) > Y(p) .

Case 2: for every ¢ (p < g < a), we have I[?f(T)dTS 0. Now f(7) is not
identically zero on [p,a] since f(a) = 5. Let r be the smallest number g on
[p,a] such that fg f(7)dT is a minimum.

Then f;f(T) dr =M <0 and [ff(1)dT >0 (r <t < a) by the minimum property
for r. Let s be the smallest value of ¢t (r < ¢t < a) such that f,tf(’/")dT is a maxi-
rmum. We now apply Lemma 3.1 to the interval [p,r] ,using K(r — 7) = K(s — 7)

as the function A (7) [note that this function is increasing in 7 by (4.2)]. We
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also use —f(7) in place of f(7). This gives
(6.3) j [—f()]K(r —7) —K(s —7)]dT >0.

Similarly, applying Lemma 3.1 to the interval [r,s] and using K(s — 7) as the

function K (7), we get
S
(6.4) ‘/r‘ f(r)K(s =7)dT >0.
We are now in a position to show that ¥ (s) — Y (r) > 0. For we have

Y(s) =Y(r) = [PG*[T][K(s =7) =K(r = 7)]d7
+ pr [7)[K(s =7) =K(r = 7)]dT

S * _
+ jr' G*[T]K(s = 7)dT
Similarly, we have

y(s) —y(r) = ‘/O’PG[y(T)][K(S —7) —K(r —7)]dT
* ‘/;rc[y(T)][K(s —7) —K(r —7)]dT

+ [T Gly()1K(s = 7)dT.
We therefore get
[Y(s) =Y(r)] = [y(s) —y(r)]
= [T () [K(s =7) =K(r =7)]dT + _/r‘sf(T)K(s —-7)dT

P
= [ EfOIK G =) =K(s =) ]d7 + [Tf()K(s =7)d7 >0,

by (6.3) and (6.4). But f(r) = 0, so that y(r) = y(p). Also either f(s) =0 or s = a.
In either case we have y(s) > y(p). Thus y(s) —y(r) > 0 and Y (s) > Y (r).
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7. The function Y (¢) for £ > a. For ¢ > a we have the following stronger result.
LeMma 7.1. The function Y (t) is strictly increasing for t > a.

Proof. Suppose that e > p, « > 0, and Y (e + &) > Y (e). We prove first that
Y(e +2u)>Y(e + «). Replacing ¢ + 3 by k, we may write

‘/o'emG*(T)K(e +o—=T)dT — foemG*(T)K(e - 7)dT

Y(ie +u) —Y(e)
= {7k (e + w—7)dr = [ kK(e —7)dT}

= { L0 L6™ () = kI[K(e =7) = K(e + o=7)]d7}
—Al —B] , Say.
(We have used the fact that G *(7) — & = 0 for 7 > e.) Similarly, we have

eto

V(e +20) =¥(e +a)= { [ kK(e + 20— 7)d7 = [T%K(e + u—7)dr}

= L6 () = kK (e +a=7) —K(e + 20— 7)]dr}

—A.2 '—'BQ, say .

Now 4, — B > 0 by hypothesis, and we wish to show that 4, — B, > 0.

By simple changes of variable we get
+ +
j(;eK(e —7)d7T = j(;eK(z) dz, foe OLK(e +u—T)dT = j(;e OLK(z) dz,
and

fo‘eﬂuk(e +20—="T)dT = fe”&K(z) dz .

0

Then we have the following:

Ay =k [TUK(2) dz,

B = j(;e[G*(e —2z) —kJ[K(z) —K(z + a)] dz,



A NONLINEAR INTEGRAL EQUATION OF VOLTERRA TYPE 441

Ay =k f;e+2al{(z)dz ,

+o
By= [OlG"(e = 2) —k][K(z + ®) —K(z + 20)]dz.
Another change of variable gives

Ay =k [TK(z + @) dz .

Now over the interval e <z <e + ¢ we have, by (2.3),
K(z +a) =K(z)[K(z + a)/K(2)] > K(z)[K(e + o)/K(e)].

Furthermore, the strict inequality holds except for z = e, It follows that A, >
[K(e + w)/K(e)] 4,.
To obtain an inequality for B,/B,, we note first that e —z)—k is positive

or zero for 0 < z < e. Over this range for z, we have
(K(z + ) —K(z +2a)]/[K(z) —K(z +a)]
<K(z + )/K(z) <K(e + &) /K(e),
by (4.1) and (2.3). Thus it follows that B, < [K(e + &)/K(e)] B,. Then
A, =By > [K(e + &)/K(e)][A; —B;]>0.

Thus we have seen that if e > p, «. >0, and Y(e + ¢.)> Y (e) then Y (e + 26)
> Y(e + «). But then it follows that Y(e + 3&) > Y(e + 2ct); Y(e +4 ) >
Y(e + 3w), and so on. Now if e =r, and ¢t =s —r, we have Y(e + o) > Y(e) by
Lemma 6.1. Divide the interval [r,s] into n equal subintervals by the points
X =Ty, X1y gy * ** 5 xp, = 5. It follows that for some i we have ¥ (x;4;) > Y (x;).
But x;4; = x; + «n™', so that Y(x; + an™?) > Y (x;). Thus we see that Y (¢) is
strictly increasing over the points of an arbitrarily fine mesh. Hence, by conti-
nuity, it is always increasing for ¢ > s, therefore a fortiori for ¢ > a. This com-

pletes the proof of Lemma 7.1, and thereby establishes L.emma 5.1.
8. A stronger result concerning y (¢)s We now prove:

LEMMA 8.1. Under the hypothesis of Lemma 5.1, y(t) is strictly increasing
on the interval [0,T].
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Proof. If the lemma is false then there exist points p and a (0 < p <a) such
that y(7) < y(p) if 7 <p, and y(7) = y(p) if p < 7 < a. Define GC*r)=¢ [y(7)]
for 7 < p, and G*(7) = G [y (p)] for 7> p. Then we have the situation of §7, and
Y (¢) is strictly increasing for ¢ > p. But over [p,a], we have Y () = y(¢).

9. Another result concerning y (t). Our last lemma is the following:
LeEmMA 9.1. For every t (t > 0), we have y(¢) < 1.

Proof. Assume the lemma is false, and let b be the smallest number such that
y (b) = 1. Then by (1.5), (1.6), and (1.7) it follows that G [y(¢)] strictly decreases

from 1 to 0 as ¢ increases from 0 to b. (See Fig. 2.)

cly(»)]

Fig.2

By (4.4), there exists an R > 0 such that for every § (0 < § < b/2) we have
(9.1) K[(b/2) — 8] —K(b/2) > RS .

Set ¢ = G [y(6/2)] and d = G[y(b — §)]. Then c is fixed and d is a function of
§ such that  — 0 as 8 — 0. Also K(b) > 0 and K is continuous. Therefore

it is clear that we can fix § so that
(9.2) (6/2)(c = d)R > 2dK (b) ,
(9.3) K(b —8) <2K(b) .

We shall show that for this choice of § we have y(b) < y(b — &), which is a
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contradiction. Now

yb—=38)=d [Tk =8 =7)ar + [2Gly(1)] = d)K(b ~ 8 —7)dr

¥ bi;S(G[y(T)] —d)K(b— 5 —7)dT

=+ L+7y, say.

Similarly, we have

y(b) <d fObK(b —7)d7T + fob/2 Gly(r)]—d)K@® —7)dr

b Gl M) ~ Kb~ dr = A, say,

where the inequality arises from replacing G [y(7)] by the greater quantity d, for
b—06<7 <b. Then

(9.4) y(b) —y(b —8) < (A=) = (B—n) + (v —v).

By (2.1) we have

(9.5) v—7y<0.

Furthermore,

N—a=d [L0Kb =r)dr = [Tk =5 —7)dT|=d SPK(b =) dr,
since

LK@ =7)dr = [PK(b=7)dT + [ K(b—7)dT,

and since replacing 7 by z + 8 gives fob_SK(b — & — z)dz for the second integral.
But by (2.1) it follows that

LPKG —7)dT <S[K(b —8)],

so that

(9.6) N— o< dS[K(b —8)] < 2d8K(b) .



444 J. H. ROBERTS AND W. R. MANN

Similarly, by (4.2),
Bop= [ CLy)] ~d) Kb =5 ~7) =K(b = 7)]dT
> (¢ —d) fob/2 [K(b—=8—=7) ~K(b—7)]dT

> (c —d)[K(b/2 —8) —K(b/2)](b/2) .
Thus using (9.1) and (9.3) we have
9.7) B=p>(c —d)RS (b/2).

In view of (9.2), (9.6), and (9.7), it is clear that 5 — « > A — «. Hence, from
(9.4) and (9.5) we have y(b) — y(b ~ §) <0, a contradiction.

10. Proof of Theorem 2. To complete the proof of Theorem 2, we now assume
in addition that K (z) satisfies (2.4).

We know that y(¢) is a strictly increasing function of ¢, y(0) = 0, and y(¢) <1
for all ¢. We must show that y(¢) — 1 as¢ —> ®©. Assume on the contrary that
y(t) — kast — ®©, where 0 < %k < 1. Then G ly(¢)] > ¢ (k) > 0 for all ¢. By
(2.5) we have

y(t) = fT6Ly()IKk( =7)dr > [rGLEIK(t =7)dr

=G(k) LOK(t =7)dT =G(k) [ K(z)dz;
but, by (2.4), the last integral increases indefinitely as ¢ — ©, so that we have

a contradiction.

11. Conclusion, In conclusion it will be shown that if hypothesis (2.3) on
K (z) is replaced by the stipulation that K(z) be convex, then y(¢) is not neces-
sarily monotonic increasing.

Let G(y) =1 — y and K, (z2) =1 — z (0 <z <1). Then if y(¢) denotes the

bounded solution of the equation

y(&) = fL1GLy()]K: (¢ = 7)dT,
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it is readily shown that y(¢) is actually decreasing over a small segment, 1 — §
<t <1

To get a similar example where fOtK(z)dz — ® as ¢t — ®, we select a
fixed ¢, 1 — &6 < ¢ < 1, and write K(z) = K,(z) for z < ¢, K(z) = dz~" for z > ¢,
where d is chosen so that the functions 1 — z and dz~" have the same value at

z =c; thatis, d = ¢”(1 — ¢).
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A NOTE ON UNRESTRICTED REGULAR TRANSFORMATIONS

W.R. Utz

1. Introduction. Let |V be the class of real continuous functions defined on the

nonnegative reals and such that for each g(¢) € W the following conditions hold:
(a) g(O) = (0 and g(t) > 0 when ¢t > 0,

(b) for each triple ¢y, t,, t3, >0, the inequality ¢; + ¢, > ¢3 implies g(¢y) +
g(ty) > glts).

Let # be a metric space wherein [p,q] denotes the distance between p,q € .
A transformation T(¥) = N is called unrestricted regular by W.A.Wilson [2] if
there exists a g(¢t) € W such that for each pair p,q € M we have [T(p), T(g)]
= glp,q] = g([p,gl). The function g (not always unique) is called a scale
function for T.

It is easily seen that every member of the class I is monotone increasing and
that each unrestricted regular transformation is continuous and one-to-one. Thus
an unrestricted regular transformation on a compact metric space is a homeomor-
phism. Wilson shows [2,p.65] that if ¥ is dense and metric and T is unrestricted
regular, then T is a homeomorphism.

In $2 of this note we examine the graphs of scale functions and show how the
graph of the scale function of an unrestricted regular transformation determines
the behavior of points under the transformation. Section 3 is devoted to a question

involving a class of transformations investigated by E. J. Mickle [1].
2. The graphs of scale functions. We shall establish the following result.

THEOREM 1. If M is a metric space and T (M) = M is unrestricted regular with
scale function g(t), then for each n =1,2,3, « + +, the transformation T" (M) = M}

is unrestricted regular with scale function g"(t) (that is, g iterated n times).

Proof. Obviously g"(t) is real and continuous, g"(0) = 0, and g"(¢) > 0 when
t > 0. Suppose T"7'(}) = M is unrestricted regular with scale function g™t (b).
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Let tl + ty Z t3, where L1, Loy L3 2 0. Then

() + " (t) 2 g (ts)

and hence

g (t1) +g"(t2) = glg"™ (t1)] +gleg™ (t2)] > 8lg"  (t3)] = g"(ts) .
Thus gn (¢) € W. Also we have

[r"(p), T"(q)] = [T{T" 7 (p)3, TIT" " (q)}]

=glT" ' (p), T" (q)] =" Ip,q]) =¢"(p,q],

for each pair p,q € M. Thus, since T is unrestricted regular with scale function
g(t), we have proved by induction that 7" (}) = }M is an unrestricted regular trans-

formation with scale function g”(¢).

If ¥ is a metric space of at least two points, p € #, and T (M) = M is unre-
stricted regular, then we shall call the set 27, =, T"(p) < M the orbit of p under 7.

Let g(¢) be a scale function for 7. We distinguish three cases.

Case L. If g(t) <t forall t > 0, then each pair of points of M will determine
asymptotic orbits. That is, given p,g € M and € > 0, there exists an integer N
such that [T"(p), T"(q)] <€ forall n > N.

Proof. Let p and q be points of M. Since g(¢) < ¢, we see that [T" (p), T"(q)]
= g"[p,q] decreases monotonically as n increases. Suppose that the monotone
decreasing sequence of real numbers [p,q], glp,q], g*lp,ql, ***, hasu # 0as
limit point. Choose & such that 0 < § < u, and let s be the greatest lower bound
of t — g(¢t) on the interval u — & < ¢ <u+ &. Since u is the limit point of the
sequence, there exists an integer n for which g"[p,q] — u < min (s, 8). Since
g"[p,q] is in the interval u — § <t < u + §, it follows that g" [p,q] — g" ™" [p, q]
> s and u — g"*'[p,q] > 0. Thus for all i > n, the elements gilp,q] of the
sequence are smaller than u; this contradicts the assumption that u # 0 is the
limit point of the sequence.

In Case I, T has equicontinuous powers.

Case Il. If g(¢) > ¢ for all ¢ > 0, then T is unstable. That is, there exists
a 5 > 0 (in this case any positive number will serve) such that if p,q € M, then
there is an integer N for which n > N implies [T"(p), T"(¢)] > ¢&.
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Case 1. (1) If g(¢) = ¢, then all orbits are parallel. That is, T is an isometry.
If g () # ¢, there are these possibilities:

(2a) When g[p,q] = [p, q], the orbits of p and ¢ are parallel (as in Case III).

(2b) If glp,q] > [p,q], and if there is a zero of g(t) — ¢ greater than [p,q],
then the orbits of p and ¢ approach a distance apart equal to the first zero of
g(t) — ¢t that is greater than [p,q] . If no zero of g(t) — t is greater than [p,q],
the orbits of p and ¢ separate as in Case II.

(2¢) If glp,q] < [p,q], and if no positive zero of g(t) — ¢ is smaller than
(p,q], then p and g have asymptotic orbits as in Case L. If g(¢) = ¢ has a positive
zero smaller than [p,q¢], then the orbits of p and g approach a distance apart

equal to the first zero of g(¢) — ¢ less than [p, ¢].
The proofs of these cases are similar to the proof of Case I.

THEOREM 2. If M is « bounded metric space, then Case 1 and Case 1l are

not possible.

Proof. That Case Il cannot occur is obvious.

Suppose g(t) <t (CaseI). Let 8 be the least upper bound of [p,q] for all
p,q € li. Let o > 0 be the greatest lower bound for ¢ — g(¢) on the interval
8/2 < ¢t < §. Select p,q € M such that [p,q] > max (§ — o, 8/2). Since

T ~Yp), T "*(q) are elements of 1/, and since

[Tt (p), T7'(q)] > g[r74(p), T7(q)] = [p,q],
it follows that
(1/2)8 <17 (p), T7'(g)] < 5.
Thus,
[poql=elr™(p), TH@)I<[T(p), T7(q)] mo <8 ~0;
this contradicts [p,q] > &6 — o and completes the proof of the theorem.

Lemma 1. If g(¢) € W, then there exists a real number s such that, on 0 <t
< s, either (i) g(t) = t, or (ii) g(t) > ¢t, or (iii) g(t) <.

Proof. Suppose that g (¢) ?—é t on every interval 0 < ¢ <s. If £ = 0 is not a limit
point of the positive zeros of g(¢) — ¢, then obviously on some interval 0 <¢ <s

we have g(¢) < ¢ or g(¢t) > t. Suppose that ¢ = 0 is a limit point of the zeros of
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g(t) — t and suppose that in every interval 0 < ¢ < s there are values of ¢ for
which g(¢) <t and g(¢) > t. Select u; and u, such that g(u;) = u; and g(u,) = u,,
and such that g(z) > ¢ on the interval u; < ¢t < u,. Select u; > 0 such that g (u3)
< uz and u3 < uy = uy. Define uy, = u; + uz. Since u; < uy < u,, we have glu,)
> u,. Since uy; + ugy > uy, we must have g(u;) + g(us) > g(u,). This is not the
case since guy) + gluz) = uy + guz) < uy + u;3 = uy <g(uy). Thus on some
interval 0 <¢ < s, either g(t) < t or g(t) > t.

We must now eliminate the possibility of the equalities. Suppose g(t) < ¢ on
0 < ¢t < s but there is no subinterval 0 < ¢ < s; on which g(z) <t org(¢) =t
Let u < s be such that g(u) = u. Select v < u suchthat g(v) <v. Now, v +

(= v) = u; but
gv) +glu—v) <glv) + (u—v) <v+u—v=u=g),

and property (b) of g(¢) is violated. Thus g (¢) <.

If g(¢) > ¢t on 0 <t < s, but there is no subinterval 0 <t < s; on which g(¢)
>t or g(t) =¢, then choose 0 < u; < s and 0 < u, < s such that g(u,;) = u and
g (uy) = u,, and such that on the z-interval 0 < u; <t <u, < s we have g(¢) > ¢.
Select 0 < uz < u, — u, such that g(u;) = u; and define u ,= uy + u,. Then

glus) +g(uy) =us +uy; =us <glus),

since uy <u, <u,. Thus g(¢) fails to have property (). We conclude that g(¢) > ¢.

This proves the lemma.

LEMMA 2. If (i) of Lemma 1 occurs, then either g(t) =t for all t > 0 or there
exists an r>0 such that g(t)=1t for 0 < t < rand g(t) <t for all t > r. If (iii) of
Lemma 1 occurs, then g(t) <t forall t > 0.

Proof. Suppose that (i) of Lemma 1 occurs. Let r be the largest value of s for
which g(¢) =t on 0 < ¢ < s (if r does not exist, then g(¢) = ¢ for all £ > 0). Let ¢
be any real number greater than r. Suppose g(¢) > ¢t. Then ¢ = mr + g, where mis
a positive integer and 0 < ¢ < r. Since g(r) = r, we have g(mr) < mg(r) = mr;

and since 0 < g <r, we have g(q) = q. Hence
g(nr) +g(q) <mr+q=1<g(t),

in violation of property (b) of g(¢). Thus g(¢) < ¢ for all ¢ > 0. Suppose ¢ > r and
g () = t. Then there exists a nonnegative integer m, and real numbers u and ¢

such that mr + ¢ + u =¢, and such that g (u) < u. However,
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glnr) +g(q) +g(u) <mr+q +gu) <nr+g+u=t=g(),

and condition (b) of g(¢) is violated. Thus g(¢) <: for ¢t > r, and the first part of
the lemma is proved.

Suppose that (iii) of Lemma 1 occurs. To show that g(z) < ¢ for all real values
of ¢, we shall show that for no ¢t > 0 is g(¢) = ¢. If g(¢) = ¢ for some ¢ > 0, then
there exists a smallest value u of ¢ such that g(u) = u. Now, g(u/2) <u/2 since
u is the smallest value of ¢ for which g(¢) = ¢. Hence g(u/2) + g(u/2) < u, con-
trary to property (b) of g(¢). This completes the proof of the lemma.

THEOREM 3. If M is a bounded metric space and T(M) = M is unrestricted

regular and has equicontinuous powers, then T is an isometry.

Proof. Since T has equicontinuous powers, given € > 0 there exists & > 0
such that when [p,q) < & we have [T"(p), T"(¢)] < € for n=1,2,3,+ +*.
From this it follows that (ii) of Lemma 1 cannot occur. For if € is taken as s/2
in Lemma 1, then regardless of the size of [p, q], we have [T™(p),T™¢q)] > s/2
for n sufficiently large (cf. 2b of Case ITI).

Further, (iii) of Lemma 1 cannot occur since by Lemma 2 this implies Case I,
which is impossible since i/ is bounded.

Since (i) of LLemma 1 must occur, either g(¢) = ¢ for ¢t > 0, or there exists
anr>0 such that g{¢)=t for all 0 < ¢ < rand gt) <t forallt>r. If g(z) # 1,
then we can show by the argument of Theorem 2 that distances in M are bounded
by r. Hence we always have [T (p), T (¢)] = glp,q] for each pair p,q € ¥, and

T is an isometry.

REMARK. Suppose that (ii) of Lemma 1 occurs and suppose that g(t) — ¢ has
a positive zero. We can show easily that either there exist arbitrarily large zeros
of g(¢) — t or there exists a real number w > 0 such that ¢t > w implies g(¢) <t
If r is the smallest positive zero of g(t) — ¢, and N is the length of any interval
of the t-axis on which g(t) > ¢, then ¥ < r,

The following theorem relates periodicity to unrestricted regularity. Other

theorems of this nature are possible.

THEOREM 4. Let M be a metric space. If T (M) = M is pointwise periodic and

unrestricted regular then T is an isometry.

Proof. Let p and q be arbitrary points of M. Since p and ¢ are individually
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periodic (possibly having different periods), there exists an integer n (in particu-
lar, the products of the periods of p and ¢ will serve) such that T"(p) =p and
T"(q) = q. Thus p and ¢ are fixed under T". If g(¢) is the scale function of T,

then g"(¢) is the scale function of T'". Since p and ¢ are fixed under 7", we have
g"[T"™(p), T™(q)] =[T"(p), T™(q)] =L[p,q].

Thus we have g" [p,q] = [p,q] . This implies that g [p,q] = [p,q] ; and since g
is the scale function for T, we have [T (p), T(q)] = g[p,q] = [p,q] , and the

theorem is proved.

3. A class of transformations. Given a metric space }, Mickle [1] defines
the associated class P (M) of real continuous functions on the nonnegative reals

as those functions g(t) satisfying these conditions:
(a) g(0)=0and g(t) > 0 when ¢t >0,
(b) for any m + 1 points pg, pys Pas * * *» P in M the real quadratic form

m

Y {elpo,pil® + glpo.p,1? — glpi,p; 11 &8
1,j=1

is positive definite,

For example, let Y be any set with metric [p,q] =1 for p # qs [p,q] =0
for p = g. Let g(¢) be any real continuous function that satisfies condition (a). If
Pos P1s * * *» Pm are any set of m + 1 distinct points of ¥, then g [pi,pj] =gQ)
= a > 0 for i # j. The elements of the matrix Hai,jH of the quadratic form of
condition (b) are 2a* if i = j and a? if & # j. From this, and from well-known
theorems concerning quadratic forms, it follows that condition (b) is always

satisfied. lience, in this case, P (¥) consists of all real continuous functions

for which (a) holds.

Let T(M) = N be a continuous transformation. Then T is said by Mickle to
satisfy the condition C(g), g(t) € P (M), if for each pair p,q € M we have
(TP, T@) < glp,q].

A transformation may satisfy the condition C (g) for some g(¢) € P (M), yet
not be unrestricted regular. Let i/ be the interval 0 < x <1 with the metric

described in the second paragraph of this section. et N be the same interval
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with the Euclidean metric. Let T(M) = N be the identity on the point set. That is,
if p € M has coordinate x, then T'(p) € N has coordinate x. If g(¢) € P (M) and
g(1) > 1, then for each distinct pair p,q € M, we have [T(p), T(g)] < 1 <
glp,q], and T satisfies C(g). However, T is not unrestricted regular.

QUESTION. Suppose that T(¥) = N is an unrestricted regular transformation.
When does there exist an element g (t) € P (M) such that T satisfies the condition
Cg?
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REMARKS ON THE SPACE #H?

STANLEY S. WALTERS

1. Introduction. The space /fP is the collection of all single-valued complex
functions f which are regular on the interior of the unit circle inthe complex plane,

and for which

27 16 Pge < o
s 2 Lr(re)]

In [6] it was shown that P, 0 < p <1, is a linear topological space in which

the metric is ||f — g||P, where we define
1 (an . Ve
171 =" jsu, (57; J (f(re‘g)fpde) :

It was moreover shown that (//P)*, the conjugate of HP, has sufficiently many ele-
ments (linear functionals on /P) so as to distinguish elements in P, in the sense
that if f # 0 is in /P, then there is a ¥ € (HP)* such that y(f) #0.

In the present paper it will be shown that if yis in (HP)*, 0 <p <1, then
there exists a unique function G which is regular in the open unit circle, contin-

uous on the closed circle,! and such that
1 . r .
Yf) = lin — S f(pe19)6<—e"19)d6, P< o<1
r=1 27 P

for every f in HP. It is further shown that the following is true of G:
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the preparation of this paper.

1 The author wishes to acknowledge the fact that the referee suggested the plausibility
that G is continuous on the closed unit circle.
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(@ if 0 <p <1l/n,n = 2,3,+++,then [d" G(2)] /dz"" is continuous on
the closure of the unit circle;

(b) if 0 < p <1/Rn,n=1,2,++-,then G(e™ has a continuous nth deriva-
tive with respect to t; and

(e) if 0 < p < 1/2, then the power series for G converges absolutely on the

boundary of the unit circle.

It is moreover shown that if G is regular on the open unit circle and is such
that

1 . A
lim — f(;m f(pete)G(Le_le)de , r<p<1,
r=1 27 1%

exists for every f in HP, then the functional so defined is in (HP)*. Thus (HP)* is
equivalent to a subspace of the functions which are regular on the open unit circle
and continuous on the closed unit circle when 0 <p < 1; and indeed, as p tends
toward zero, the spaces (H#P)* are equivalent to subspaces of spaces whose mem-
bers have far stronger properties than merely the property of being continuous on
the closure of the unit circle.

A generalization of a theorem by Khintchine and Ostrowski [1, p.157], which
is a sort of generalization of Vitali’s theorem, will also be presented; namely, it
will be shown that a bounded sequence in HP , 0 <p < ® ,whose boundary values
converge on a set of positive measure, converges uniformly on all compact subsets
of the unit circle. Khintchine and Ostrowski proved this theorem in the case that

the sequence consists of uniformly bounded elements.

.

It is worth remarking that under the present “norm” ,HP,0 <p <1, is
definitely not a normed linear space, this being due to the complete failure of
Minkowski’s inequality for index smaller than unity. As a result, it is conjectured
by the author that #P,0 <p <1, is not a normed linear space at all (and hence
contains no bounded convex neighborhood). If this conjecture is true, then HP, 0 <
p < 1, offers an interesting example of a linear topological space which is not lo-
cally convex (since HP is clearly locally bounded) and whose conjugate space has

sufficiently many members so as to distinguish the elements in /7.

2. Representation of linear functionals on HP, 0 < p < 1. In this section we

shall suppose always that 0 < p < 1. We let A be the set of all z such that

lz] <1, and U the class of all single-valued complex functions which are regular



REMARKS ON THE SPACE H? 457

on A. We shall first make some definitions and prove several lemmasbefore proving
the representation theorem.

For many of the topological terms used in the ensuing, see [3]. By a complete
linear topological space, we shall mean a space in whichk f, — f,, = 0 implies
lim, < f, exists in the space. Locally bounded linear topological space and
normed linear space will be abbreviated LBLTS and NLS respectively. By F*,
where F' is a linear topological space, we shall mean the conjugate of F, that is,
the space of linear functionals on F.

If F is a LBLTS, it is easy to show that F* is a complete NL.S (Banach space)

in which
[yl = sup [¥(£)],
feUu

where -y € F*, and U is a fixed bounded neighborhood of the origin. Moreover, the
topology so introduced into F* is independent of U. With respect to /P, we let U
be the unit sphere, so that

Iyl =" sup|y(f)] .
I£]=

It is then simple to prove the following theorem, merely by modeling the proof

exactly after that given in the theory of NLS’s.

LemMA 1. If F is a complete LBLTS, and " is a subset of F* having the prop-
erty that, for each fixed f in F, -y(f) is bounded as “y varies over I, then " is a
bounded set.

We remind ourselves that /P is locally bounded, and is moreover complete by

[6]. We make the following definitions, where f and g are any elements in U:

(M y(f) = fOIN 1, n=0,1 -,

(ii) Twf @ Twf(z) = flwz) , wE A, zELH

(iii) un ¢ un(z) = 2, 2EDN, n=0,1, ¢,

(iv) B(f’ g5 Z) = z ’)/H(]L) ')/h(g) 2", €A
r=0

It is easily verified that
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1 on . .
B g2) = 5 S 5 alese )0,

where z, z, = z, and z; and z, are in A. The proof is made by expansion of the
integrand above ina Taylor series about the originand then term-by-term integration.

In particular,

1 (an | B
B(f, g r) = — o7 floetf) g(ie ”9) 4o, r<p <1.
2m Je)

LemMMA 2. If fis in HP, then T, f is in HP, and moreover

©

Tuf = Z ’)/n(f) w’ Up s

n=0

Proof. Let g = 22 v, (f)w" u, . We first show that this series converges.
Note that ||u,| = 1, and

pn +1

om0 < (F22) (m 1)

| f

.

pn
The last inequality appears in [6, Theorem 6] . Thus

P
m

< le?’n(f)w"unll”—ao as l,m— o,
n=1

z 7n(f)wn Un
n=1

whence 27 _, ¥, (f) w" up converges, by the completeness of HP. Then, noting
[6, Theorem 8], which tells us that a convergent sequence in HP converges point-

wise to its limit, we have
[s¢] [o4]
g(z) = Z yn(f)wnun(l) = z ’)’n(f)(wz)n
n=0 n=0
But Tpf () = 2% ¥n(f Mwz)". This completes the proof.

We note that it was obvious that T,,f was in #P in the first place, merely from
the definition of /P; but the form for T,,f, which was obtained above,will be
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needed later.

THEOREM 1. If G € U such that lim,=y B(f, G;r) =y(f)(that is, we as-
sume that this limit exists) for all fin HP, then 7y is in (HP)*. Conversely, if vy
is in (HP)*, then there exists a unique G in U such that Y(f) = lim,=, B(f, G;r)
for all f in HP.

Proof. To prove the first part of our theorem, let y{f) = B(f, G;r). Clearly
¥(f) is distributive in f. Suppose ||f|| = 1 andr <p < 1. Then

pn +1

7m0 < T I n@1 < 2 1n@ 1P ) (4 2000,

pn

Thus, ¥(f) is bounded in f for ||f| = 1, r being fixed. It is then clear that 7, is in
(#P)y*. Since lim,_; ¥:(f) exists, it follows that (f) is continuous on 0 < r < 1
for each fixed f in HP. Thus {y,(f)} is bounded for 0 < r < 1. As aresult of
Lemma 1, we may conclude that {|v;|/} is bounded for 0 < r < 1; that is, there
exists an M such that ||| < M for0 < r <1.Let |[f| = 1. Then | (/)| < M,
whence |y(f)| < M. Thus 7 is necessarily in (HP)* since it is bounded on the
unit sphere in /P,

We now prove the second part of Theorem 1. We note that if lim,_; B(f, G;r) =
¥(f) for some G and all f, then

)’(un) = lim1 B(un, G; r) = lim1 ’yn(G) rt o= ’yn(G) ;
r= r=

that is, ¥,(G) = y(up) for all n, or merely G(z) = 27 _, ¥(uy) z". We note that
2% _o Y(up) 2" converges, for |y(un) | < |vll*|lun] = [vl. Let us now verify
that G, as defined, has the desired property. We see that

E(f, G;r) = § Yn(f) Y r* = 7[ § 'yn(f)r"un! = ATrf) .

But | T,f —f|l — 0; see [5] for this result; note that

1/
Irf—fl = (51; L7 f(rei®) = f(ei?)|P do )p,
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where f(eie)' is the boundary function for f(z). Thus y(T,f) — y(f), or B(f,G; r)
—  y(f). Our proof is thus complete.

THEOREM 2. The function G in Theorem 1 is continuous on the closure of A.
Proof. We first verify that fy(z) = (I — ze'’)™! is in HP for every real ¢. It
suffices to show that f; is in //P. We see that
|1 — retf|"2 = [(1 = re®)(1 — re’9)]"'= (1 — 2r cos @ + r?)71,

whence

[1 — ret?|™P = (1 = 2r cos 6 + r2)P?
Fgom the character of (1 — 2r cos 8 + r?), we see that it suffices to show that
-fo (1 — 2r cos 7 + r?)~P/2 46 is bounded in r, where § is any positive number.

We note that the following is true for 0 < 6 < & (where & is some sufficiently
small positive number) and for all r such that 1/2 < r <1:

2 94 92
1= 2rcos B +r%> 1—'2r(1 "'—+—>+ r?=(1-2r+r% + r92<1—_)
2 24 12

52
=(1~-r)+ r(92(1 "‘—‘)
12
ré? 6?2
> s
- 2 4
Thus, (1 — 2r cos 6 + r2)YP/2 < 4P2 B°P, Since 6P is integrable on [0, §],
our statement is proved.

We remind ourselves that we are trying to show that G is continuous on the as-
sumption that

1 . r .
7()():1,_1_‘“‘5;]4‘)277 f(Pele)G(‘p‘e_le)dQ, r<p<l,

exists for each f in HP. Let 7, be defined as in the proof of Theorem 1. Then
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e ] (A
0 l—pel(6+t) G 0 e d@
G( r ei@ >
1 277 %
o fo 1—pei(t"9) 49
G <_r_ el@)i eLB
217 P 0
J 46
I i it
e’ — re
Ve,
= G(rett), r<p<l,

The last equality is true by virtue of Cauchy’s integral formula. We then have
shown that C(re't) = vfe). Consequently, since lim,_; ¥(f;) exists by hypothe-

sis, limy_, G(retl) exists for all ¢, and in fact
Are) = ale?),

where we define G(e?!) to be the boundary function lim,_, G(rett).
We now show thatlimy=y f; = ft, in the topology of #P. Now, for any g in HP,
letting g( e’g)be its boundary functlon we know that

p I e(ret)Pao = [77 [ g(etf) [Pt .

Ogr<1

It is easily verified that (see, for example, [4, Theorem 7, p.29])

Lin [ [g(e'0970) = y(e®t0) P a5 =

Clearly ft(eia) = (1 — ei(gﬂ))'l, whence ft(eiiq) = fo(ei(éﬂ)). Thus 1imz=zoft =
fty» in the topology of £/F,
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Now, by Theorem 1, 7y is continuous, whence lim ‘=‘07(ft) = ’)’(fto); hence
limt=t0 G(e**) = G(e'0). We have now shown that G(e*®) is continuous.

We remember that, in the course of proving Theorem 1, we showed that $9:3 is
bounded in r as a subset of (HP)*. Obviously {f;} is a bounded subset of HP, all
of the elements having the same norm. Thus 7,(f,) is bounded in both r and :.
In other words, G(re't) is bounded in r and t, or equivalently G is uniformly bound-
ed on A. We then know that

Glreit) =2if0 eit) P(6—t)do,

where B (0) is the Poisson kernel. But, since G(e!?)is continuous, the right side
above is necessarily a continuous function on the closed unit circle. Our proof is
now complete.

It will now be shown that even more can be said of G when 0 <p <1/2.

THEOREM 3. If0 <p < 1/2, then G(e®) satisfies the Lipschitz condition
of order one.

Proof. It suffices to show that

[feen = fell = Ifn = fol < 1 — eth
for some fixed constant 4. We have
1 .o 1 1 P vp
I fr = foll =<2_7_1 fOT L= i(6+h) 7 e dg)
1/p,
ll‘elhl 277 ; (8+h) i6y |-
L= aom) -

The proof will then be complete after we have shown that

ST 11— e (1 - ¢i0) | P 4o
is bounded for all sufficiently small 4. It is evident that

(1 - e?)(1— t~:i(9+h))|2 = 4(1 —cos 8)[1l—cos (6 +h)],
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and hence

l(l"eie)(l—ei(6+h)lp = 4P’2 (1 = cos 9)’”2 (1= cos (6 +h)) P2

We now must show that

JI (1= cos 6)7P2 (1= cos (6 +h)) P2t

is bounded in % for all sufficiently small A. We note that the following is true for
all sufficiently small Oand 4 :

62 62 62
1 - @>~(1——)>-,
oS F =y 12/ = 4

6+ h)?
4

1— cos (Q-H’L) >

Thus we have

(1 = cos 6)P2[1 — cos (@ +h)]P? < 4PE7P (6 +h)7P

for all sufficiently small @ and 4. Since G-2P is integrable on the interval (o,27],
it is then rather easy to show that

j:)zw (1 = cos &)™P2[1 — cos(6 +h)) P2 46

is bounded in & for all sufficiently small 4.

We now have the rather interesting result:
COROLLARY. If 0 <p <1/2, then 27, | vu(G)]| < @
Proof. Since G(e'*) is of bounded variation, it follows that G(z) is a power

series of bounded variation according to [7, §7.5]. lence the conclusion is
obtained by 7, (i).p. 158].

We shall now show that even more may be said of G when 0 < p <1/2,

TrroreM4. M0 <p < 1/2, then (d/dz)G(z) is continuous on the clusure of
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A, and moreover (d/dt)G(eit) is continuous on [0,27].

Proof. By Cauchy’s integral formulas (where (d/dz) G(z) = G '(2)):
G(i 19) 216 G(L e—i@).ﬁeie
P _ 1 e _\p r

om Y (1 _pei(6+t))2 dc

. 1 2T
G' it —
(re*) 27 J(;

1 . . .
= 2——rf02ﬂ[ft’ (pet?) « petf] - G(%e"a)dﬁ, r<p<l.

Thus G'(re’*) = (1/r)y+(f? u,). We note that since 0 < p < 1/2, we have
f# € HP, whence f * u; € HP, since u, is bounded. Thus we show exactly as

in Theorem 2 that
y(ffuy) = G'(*),
G' () is continuous in ¢,

G'(z ) is uniformly boundedon A ,

. 1 .
G' (re't)= — 277G'(e'g)P, (6 —t)db,
277 Y0

where we define G '(e%?) to be the boundary value of G'(z). Let us now consider

1 pon o d ;
lt) = 2—77 foz [_ ie-]'e % G(ele )} Pr(@ - t) de .

We note that G(e’?) is absolutely continuous by virtue of Theorem 2, whence

(d/d6) G(e'?) is integrable. We also note that

©
Grett) = & [T G(0)P (6~ ) = T G eine
n=0
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where
C, = _1_ f277G(ei0)e—in<9 46
" 27 Yo )

Moreover, it is not at all difficult to verify that the real and imaginary parts of

—ie!%(d/d6) ;(e'?)are conjugate, whence
. ®
F(rett) = Z doretnt |
n=0

where

- 1 2m -6 d (10 -inf
dp = P fo {:—Le 5 G(e'?)] e do .

Integration by parts readily yields

that is,
0
. ] t
Fret) = X (n+1) Cpuy ret™t,
=0
and hence /'(z) = G'(z). Thus, we necessarily have

G'(el9 - — =16 G 10
) e 0 (e )

almost everywhere, Since  '(e'”) is continuous, it follows that G(e'€) neces-

sarily has a continuous derivative, and in fact

L G(eif) = 018 (1,00
D) = et ).

This completes the proof of the theorem.
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We sum up by presenting the following theorem, which is readily proved by in-
duction, the proof being modeled after that given for Theorem 4.

THEOREMS. If0 <p <1/n,n = 2,3,***, then (d™Ydz""1) G(z) is contin-
uous on the closure of . Moreover, if 0 < p < 1/2n,n = 1,2, * *, then G(e't)

has a continuous nth derivative with respect to t.

3, Generalization of Vitali’s Theorem. In this section we assume merely that
y

p is any positive real number. We here need the following:

LEMMA 3. If {fn} is a bounded sequence in HP, and if lim = fo(2) exists on
a set having at least one limit point in A\, then lim = o fn(2z) exists uniformly on
all compact subsets of A.

Proof. The proof is a simple consequence of the following inequalities:

£l
!f(z)lf (1_‘2‘)1/[, ) when 0<p§_ 11
and
i
|f(z)|§.1_‘:—,_;l‘_ when 1 < p < @© |

The first of the above inequalities appears in [6, Theorem 2] .The second is easi-
ly obtained as follows. By Cauchy’s integral formula,

df

16 6
£(z) = 2i fi’” f(,Oe ),De
m

IOLH 2

and hence, by Hélder’s inequality,

17 < —L o L2 f(pei®) | ap

p—lz| 27
P 1 , vp
P (5;7 5 lf(pe”’)lpde) :

whence

sl

lf(z)1 < -l
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Let

It is then clear that |f,(z)] < N(r) * M when |z| < r <1, where |[f,]| < ¥
for all n.We choose r so large that the set |z| < r includes a set having
a limit point in |z| < r and such that lim = fn(z) exists on this set. Then, by
Vitali’s theorem, lim , = f,(2) exists uniformly on all compact subsets of ] zl < 1,

and hence on all compact subsets of A, This completes the proof.

THEOREM 6. Suppose {f,} is a bounded sequence in I[P. Further, suppose
lim, =0 f,l(etg) exists on a set of positive measure in the interval [0,27]) . Then

lim p = fn(z) exists uniformly on all compact subsets of AA.

Proof. It suffices, by the preceding lemma, to show that lim ;=0 fh(z) exists
on some neighborhood of the origin. Thus, we shall show that this is the case
whenever [z | < 1/9. Let|z,] <1/9, and suppose lim ,,=¢ f,(z,) does not exist.
Then we may find a positive number & and subsequences {fnkf and {f,,,ki of {f,}
which have the property that \fnk(zo) - fmk(zo)‘ > o for all k. We then define
T, = f”k - fmk. It is clear that Eqki is a bounded sequence in /P. We then wriie

gk * hi, by virtue of . Riesz’s decomposition theorem [5], where gj and
hy are such that

Ty -

(1) gr € 1P and gi(z) # 0 forall z in A,
(ii) [helz)] < 1 onA and | Ay e?) | = lalmost everywhere,
(iii) el = layil
We note that [;(z) = [gi(2)¥/? is in [/2, and in fact {l;} is a bounded sequence
in (/2. Since lim 4 = [fnk(em) - fmk(ei@)] = ( on a set of positive measure, it

follows that lim 4= [,(e??) = Oon a set 2 of measure 1 > 0. We next shall show
that lim k=w l3(z,) = 0, which will in turn imply that limg=0 gilzo) = 0, and
hence imply lim =0 qy(zo) = 0, a contradiction to |qk(z0)| > ¢ for all .
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Let A > 0, and define

| A/ omE
A/(u— 27) on CE ,

6)

where CE is the set [0,277] — E. There is no loss in supposing that u© < .
Define

. 1
uy(ret?) = 2_77];’27, #(t) Pr(6 = t)dt,

where P,(0) is the Poisson kernel. Then u, is harmonic in A and lim ,=; uy(re’?) =

¢(6) a.e., by virtue of Fatou’s theorem; see [7, $3.442] . Let

u(reie) = uo(rew) - uo(Zo) .

We note that

. ao d
19) = — 4 Z r"(a,, cos n6 + b, sin nf)

n=1

uo(re

where {a@n, by} are the Fourier coefficients of @(0). Since uy(0) = 0, this being
dueto the fact that fozwqb(t) dt = 0 and Py(6 —¢t) = 1, we then have ao equal to
zero, or

[e]

uo(reie) = > r"(a, cosnf +b, sinnb).

n=1

We note that | a, | < 24/7 as well as |b,| < 24/7, whence

. 44 2 4A
lug(re®)| < = ¥ m = 2 L <A <—2
T o m 1—r 2 T 2(27m =)

provided 0 < r <1/9.

Let v(z) be the harmonic conjugate of u(z) which vanishes at z,, and define
glz) = et(@)*iv(z) - Tpen g € U, and g(z,) = 1. Moreover, since ’g(z)| =
eu(z)’ we have lim <, |g(rei9)| = ®(O-uplzo), By Cauchy’s integral formula
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we have

1 21 : : peiﬁ
lk(lo) = 2—7; fo lk(/oele) g(pele) ,Oeie— 2o dg, |Zo| <p<l.

This is true since [;(zo) = l4(z,) g(zo). We note that u(z) is bounded in A, and
hence so is g(z). Since

Lim 27 | 1k(0e®®) = L(e')P a8 = 0,
p=1

and since g(z) is bounded on A, it is then evident that

tin [T t(pe®) aloe®) a8 =L | 1(ei?) (e?)] a0

Hence

1

1
l <— - f27 i ?(6)~uglzg)
| k(lo)l_.277 l_llolj; llk(e )Ie do .

Consequently

1
l < Alp=up(zg) ___( )
| le(z0)| < e 27 \L = Ja]

S 1 1(ei9)

E

1
+ A/(/.L-27T)—u0(lo)(—)(—___~) 16 do
¢ 27T l—lol fllk(e )l

Since

f“(i9)|d9<—‘1—f2ﬂ|l(ie)ldﬁ<(—1—f277|l(i6)|2d9>1/2
21 CE kie T 2o kie - 277 o kA

and since §{l;} is a bounded subset of 2, we see that

1 .
— [ |tk(e??)] dO
27T (‘!‘;
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is bounded with respect to k. Moreover

A A A 4A z
~ uole0) b luoleo)| < | el
m— 2T S o= 27 m— 2m m\l~— Izol

A A A

+ =
p= 27 2027 — ) 2(u— 27)

By virtue of Schwarz’s inequality, where & is an arbitrary measurable subset of
[0,27], we have

1)@ < [a()] (gfm(eie)lde)”

Hence, by a convergence theorem of Lebesque (see (2,p. 190], we have

lim f|lk(ei€)| dé = 0,
k=w p

since limj=o lk(eie) =

that

0 on E. Now, for arbitrary € > 0, we choose 4 so large

1 .
witnesot ()] )10 < o2

2m/\L = 20|/ ¢k

and hence we obtain, from the foregoing,
eA/ lp-27] - uo(zo)(—l‘)<_1_) f | lk(eie)ldﬁ <e€/2
2m 1- IZO l CE

laving so chosen 4, choose K so large that £ > K implies

eA/,u‘uo(lo)(_l.)(———l——> 1 1(ei) | a6 < </,

2m/\L = |z] /] &

Hence, £ > K implies|l(zo)| < €/2 + €/2 = €. This completes the proof of
the theorem.
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TWO THEOREMS ON METRIC SPACES

Hsien-Counc WANG

1. Introduction. Let £ be a metric space with distance function d. The space
E is called two-point homogeneous if given any four points a, a’, b, b’ with
d{a,a’) = d(b,b'), there exists an isometry of E carrying a, a' to b, b’, re-
spectively. In a recent paper [7], the author has determined all the compact and
connected two-point homogeneous spaces. It is the aim of the present note to
discuss the noncompact case, and prove a conjecture of Busemann which can be
regarded also as a sharpening of a theorem of Birkhoff [1]. The results con-
cerning the noncompact two-point homogeneous spaces are not as satisfactory as
the results for the compact case; we have to assume certain conditions on the
metric.

By a segment in a metric space [, we shall mean an isometric image of a
closed interval with the usual metric. A metric space will be said to have the
property (L) if given a point p, there exists a neighborhood ' of p so that each
point x (#p) of W can be joined to p by at most one segment in £.The following

theorems will be proved:

THEOREM 1. Let E be a finite-dimensional, finitely compact, convex metric
space with property (L). If £ is two-point homogeneous, then E is homeomorphic

with a manifold.

THEOREM 2. Let E be a metric space with all the properties mentioned in
Theorem 1. If, moreover, dim £ is odd, then E is congruent either to the euclidean

space, the hyperbolic space, the elliptic space, or the spherical space.

Our Theorem 2 justifies the conjecture of Busemann [2, p.233] that a two-
point homogeneous three dimensional S.L. space {2, p. 78] is either elliptic,
hyperbolic, or euclidean. It is to be noted that Theorem 2 no longer holds if dim E
is even and greater than two. The complex elliptic spaces [7] and the hyperbolic

Hermitian spaces® [2, p.192] serve as counter examples.

Received May 25, 1951.

1These spaces were first introduced by H.Poincaré, and then discussed by G.Fubini
and E.Study. Following E. Cartan, we call these spaces the hyperbolic Hermitian spaces.

Pacific J. Math. 1(1951),473-480.
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2. Preliminary results, Throughout this note, by a Busemann space [2, p.11],
we shall mean a finitely compact, convex metric space such that at each point
p, there exists a neighborhood W with the following property: given any two points
%, v of  and any € > 0, we can find a positive number < ¢ for which a unique

point z exists so that
d(x,y) +d(y,2) =d(x,z), d(yz)=25.

It can easily be verified that the class of all two-point homogeneous, finitely
compact, convex metric space with the property (L) coincides with the class of all
two-point homogeneous Busemann spaces. In the statements of our Theorems, we
use the property (L) instead of Busemann’s axioms merely because it is, geo-
metrically, easier to visualize.

Let £ be a Busemann space. We shall first see that each d-sphere’ of suf-
ficiently small radius is locally connected. In fact, let p be a point of £. We
choose € > 0 so small that each point x with 0 < d(p,x) < € can be joined to p
by one and only one segment. Let K (p, €) be the d-sphere with center p and radius
€, and R the totality of points y with 0 < d(p,y) < €. Then evidently R is an open
set of E. Since E is convex, £ must be locally connected. It follows then that R
is locally connected.

For each point y of K(p, €), we denote by Py (s) (0 <s < €) the isometric repre-
sentation of the segment joining p to y. Let / be the open interval 0 <s < €.
By our choice of €, the mapping h: K(p, €) X J — R defined by A (y,s) = P, (s)
is a one-to-one mapping of the topological product K (p, €) X J onto R. Moreover,
from Busemann’s results [2, I., §3] concerning the convergence of geodesics,
we see immediately that & is bicontinuous. This tells us that K(p, ) X J and R
are homeomorphic. Since R is locally connected, K (p, €) X J, and hence K (p, €),

is locally connected.

3. Proof of Theorem 1. Let £ be a metric space with all the properties men-
tioned in Theorem 1. From the above discussions, we know that for any point p of
E, the d-sphere K (p, €) with sufficiently small radius € is locally connected. Let
" be the group of all isometries of £, and [, the totality of all those isometries
which leave p invariant. In [, we introduce the topology as defined by van Dantzig

and van der Waerden [4] (in fact, this is exactly the g-topology of R. Arens).

1By a d-sphere we mean the totality of points equidistant from a fixed point with re-
spect to the metric d. This should be distinguished from the (n — 1)-sphere which stands
for the (n — 1)-dimensional topological sphere.
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Then I_'p forms a compact topological group (4]. Evidently, T;) is a transformation
group of K (p, €) in the sense of Montgomery and Zippin. From the two-point homo-
geneity, [, is transitive on K (p, €). Taking account of the finite dimensionality
and local connectedness of K (p, €) and the compactness of l—[') , we can conclude
{s] that [, is a Lie group, and hence K(p, €) is locally euclidean (here as well
as in what follows, locally euclidean is always used in the topological sense).
The set R}, being homeomorphic with the topological product of K(p, €) and the
open interval [, must be locally euclidean as well. Hence our space E is locally
euclidean at each point of R, and hence locally euclidean at all its points. More-
over, £ is obviously separable and connected. [t follows then that £ is homeo-

morphic with a manifold.

4. The structure of d-spheres, Before proving Theorem 2, we find it convenient

to establish some more properties of the d-spheres.

LeMMA. Let E be a metric space satisfying all the conditions in Theorem 2.
Then each d-sphere with sufficient small radius is homeomorphic with the (n — 1)-

dimensional topological sphere where dim E = n.

Proof. If dim £ is equal to one, this is trivial. Now we shall assume that
n > 1. Let p be a point of £, and € so small that each point x with 0 < d(p,x) £ €
can be joined to p by one and only one segment. Set K{p, €) to be the d-sphere

with center p and radius €, and
U= {x|d(px) <e}.

We shall show first that U is contractible to a point. Given each point y of K (p,€),
let us denote by Py (s) the isometric representation of the segment joining p to y.
Then the pair (y,s), where y € K(p,€) and 0 < s < €, can be regarded as polar

coordinates of points in U/. For any real number ¢ with 0 < ¢ <1, we define
L, Py (s)] = Pyles).
We see immediately that ¢ is a well-defined mapping of the product [ X U, and
#[1,Py(s)] =P, (s), &(t,p) =p, ol0,P(s)]=p,

where [ denotes the closed interval $2|0 <t < 1}. The continuity of ¢ can easily
be verified. Thus ¢ gives a contraction of U into the point p, and thus the homo-
topy group 77;(U) vanishes for each i.

Now let us consider the set R = U — p. Since U is an n-dimensional open
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manifold and n > 1, the set R is connected and has the same homotopy group 77; as
U for all dimensions i less than n — 1. Thus 7;(R) =0,{=1,2,*+*,n — 2. On
the other hand, we have shown in §1 that R is homeomorphic with the topological
product K (p, €) X J, where J denotes an open interval. It follows then that K (p, €)

is connected and
(1) 7 [K(p, €)] = 0, i=1,2, ¢, n—2.

From the proof of Theorem 1, we know that K (p, €) is a homogeneous space of a
compact Lie group. Its connectedness and its simply-connectedness imply that it
is an orientable manifold.

Since both K (p, €) and J are manifolds, we have
dim K(p, €) + dim J = dim R = dim E = n ,

and hence dim K (p, €) = n — 1. It follows immediately from (1) that K (p, €) is a
simply-connected homology sphere of even dimension n — 1. Therefore [6] K (p, €)

is a topological sphere. The lemma is proved.

5. Proof of Theorem 2. Suppose E to be a metric space with all the properties
mentioned in Theorem 2. If £ is compact, then our Theorem 2 follows as a direct
consequence of [7, Theorem VI]. Thus we can assume from now on that £ is
not compact. We shall first show that E is an open S. L. space in the sense of
Busemann [2, p.78] . To show this, it suffices [3, p.173] to establish that each
geodesic is congruent to a euclidean line; for this, it suffices to demonstrate that

given any two distinct points x, y and any k& > 0, there exists a point z so that
d(z,y) +d(y,2z) = d(x2), dyz)=k.

In fact, since E is finitely compact and noncompact, £ cannot be bounded. There
exists then a sequence of points pg, py, p2s * * ¢ with d(py, p;) tending to infinity.
Thus we can choose i so large that d(p,y,p;) > d(x,y) + k. Let 7 be a segment

1

joining py to p; . Evidently there exist three points x', y', z' in 7 such that

d(x',y') +dly', 2') =d(x',2'), dx',y') =dlxy), dly,z')=k.

From the two-point homogeneity of £, there is an isometry f of £ carrying x‘, y' to
%,y respectively. Then we can see immediately that the point z = f(z') has all
the required properties. Thus £ is an open S. L. space.

Let K (p, €) be the d-sphere with center p and radius €, and [, the group of all
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isometries of £ which leave the point p invariant. From the above lemma, we know
that K(p, €) is an (n — 1)-sphere and Fp a compact and transitive transformation
group of K (p, €). Moreover, it can easily be seen that I-;, is effective on K (p, €).
In our further Jiscussions, we shall rule out the trivial case where dim k£ =n
= 1. Thus K(p, €) is connected, and the identity component I;)O of T;, forms a
connected, compact, transitive, and effective transformation group of K(p, €).
Since n — 1 is even, it follows [6] that I“po is either isomorphic with the ro-
tation group R,_; or Cartan’s exceptional group G,. We shall discuss these two

cases separately.

Case A. Suppose [ to be isomorphic with the group R,_; of all rotations of
the (n — 1)-sphere. Let us represent K (p, €) by the unit sphere in a certain n-
dimensional euclidean space, and consider R,_; not only as a topological group
but also as a transformation group of K (p, €) in the usual sense. It is well known
that [’ and R,_; have the same topological type, that is, there exists a homeo-

morphism ¢ of K (p, €) onto itself so that

Rooy = @l o7 = fofe™ | FE .

Since n is odd, given any point g of K(p, €), there exists a rotation of period two
which leaves fixed only ¢ and its diametrically opposite point. It follows then that
for each point g of K (p, €), we can find a transformation f in [} such that (a) f is
of period two, (b) f leaves ¢ fixed, and (c) f has only two fixed points on K (p, €).
Now let g be any geodesic through p in E. It intersects K(p, €) at two points, say
g and ¢'. We consider the transformation f in Fp° having the above three properties
(a), (b), and (c). Since f is an isometry leaving fixed p and ¢, it leaves the geo-
desic g pointwise invariant. Moreover, this isometry f cannot have any other fixed
point, for otherwise f would have some other fixed points on K (p, €) besides ¢q and
q'. Thus f is a reflection of E about g. Since p is an arbitrary point and g an
arbitrary geodesic through p, there exists a reflection of £ about each geodesic.
From Schur’s Theorem [2, p.181], it follows that E is either hyperbolic or eu-

clidean.

Case B. Suppose I} to be isomorphic with the exceptional group G,. To dis-
cuss this case, we have to digress into a few properties of Cayley numbers. Let
1, e; (i = 1,2, +++,7) be the units of Cayley algebra.The multiplication rule is
given by
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eje; = —1, eje; = Tejei, ee; T e3, eje; =e€s5, ee ey,
ezes = ey, €24 — —es5, eszeq = ey, ezes = esp,
together with the equalities obtained by cyclic permutation of the indices. Let

y 7
6= z x; e, | x, = real number, Z ()2 =1

1=1 1=1

be the totality of all the Cayley numbers with vanishing real part and with norm
equal to unity. Evidently, ©® forms a 6-sphere, and each automorphism of the
Cayley algebra carries € into itself. We can regard therefore the group # of all
automorphisms of Cayley algebra as a transformation group of ® (the topology over
Il is defined in the usual manner). Now // acts effectively and transitively on ©.
Moreover, it is known that / is isomorphic with the exceptional group G,.

For each x = ZZ:lxi e; in 0, we shall denote the Cayley number x, — 2Z=2xi e;

by x*, and call it the symmetric image of x with respect to e,. It is evident that

=zx, 1f x= te;,

(1) (x*)* =x, «x x €0

*
# x, otherwise.

Moreover, by a direct calculation, we can show that given any two Cayley numbers

y, z in 0, there exists an automorphism f in // such that

f(el):ely f(}’):}’*y f(l = z*,

It is to be noted that this f depends on y and z. There is no automorphism of
Cayley algebra which carries each x in © into its symmetric image x *,

Now we can proceed to the proof of Theorem 2. Since [ is isomorphic with
the exceptional group G,, K(p, €) must be six-dimensional [6]. It is known that
each transitive transformation group of the 6-sphere which is isomorphic with the
exceptional group G, has the same topological type as H.! Thus we can identify
® and K (p, €) in such a manner that [,° and # coincide. Let x be a point of K(p,e).
It determines a ray PXs that is, the totality of points u of E for which either d (x, u)
+ d(u,p) = d(x,p) or d(u,x) + d(x,p) = d(u,p) [2,p.76]. For each nonnegative
number s, we denote by P, (s) the point u on the ray px with the property that

1This follows as a direct consequence of [6, Lemma 6] .
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d(p,u) = s. Since £ is an open S. L. space, each point of £ other than p can be
represented in a unique way as Py (s), where x € K(p,€) and s > 0. Lety, z be
any two points of K (p, €), and let y *, z * be, respectively, their symmetric images
with respect to e; [note that we have identified ® with K(p, €)]. Then there
exists a transformation f in l_‘po such that f(e,) = e, f(y) =y*, f(z) = z*. Sincef

is an isometry of £ and leaves p fixed, we have, for any s, s’ > 0, the relations

flPy(s)] =Pys(s), fIP,(s")] =P (s").

This tells us that
@ alP, (s), Po(s")] = dlPye (s), P (5")] (s, ' 20).

Now let us consider the mapping h: E —> E defined by h[Py(s)] = Bex (s),
where x € K(p,e) and s > 0. Kquality (2) tells us that this mapping A is an
isometry of £. Moreover, from (1) we can see that 4 is of period two and that 4 has
only two fixed points e; and —e; on K (p, €). It follows then that 4 is a reflection
of £ about the geodesic joining p and e;. However, our space £ is two-point homo-
geneous so that there exists a reflection about every geodesic of £. From Schur’s
Theorem, we can conclude that £ is either hyperbolic or euclidean. Theorem 2

is hereby proved.

6. Remarks. In all the arguments, we use only the weaker two-point homo-
geneity; that is, there exists a number & > 0 such that, for any four points x, x',
y, y' with d(x,x') =d(y,y') < &. there exists an isometry of £ carrying x, x'
toy, y' respectively.

The author wishes to express his thanks to Professor H. Busemann for his

helpful suggestions concerning the proof of Theorem 2.

REFERENCES

1. G. Birkhoff, letric foundations of geometry I, Trans. Amer. Math. Soc. 55 (1944),
465-492.

2. H. Busemann, Metric methods in Finsler spaces and in the foundation of geometry,
Princeton, 1942.

3. ———, On spaces in which two points determine a geodesic, Trans. Amer. Math.
Soc. 54 (1943), 171-184.

4. D. van Dantzig und B.van der Waerden, Ueber metrisch homogene Raume, Abh.
Math. Sem. Hamburg 6 (1928), 291-296.



480 HSIEN-CHUNG WANG

5. D. Montgomery and L. Zippin, Topological transformation groups I, Ann. of Math. 41
(1940), 778-791.

6. H. C. Wang, A new characterisation of spheres of even dimension, Nederl. Akad.
Wetensch. Proc. 52 (1949), 838-845.

7. —————, Two-point homogeneous spaces, to appear in Ann. of Math.

LouisiANA STATE UNIVERSITY






Pacific Journal of Mathematics
Vol. 1, No. 3 BadMonth, 1951

R. P. Boas, Completeness of sets of translated cosines ....................
J. L. Brenner, Matrices of QUALETNIONS . .. ...,
Edmond Darrell Cashwell, The asymptotic solutions of an ordinary
differential equation in which the coefficient of the parameter is
SINGUIAT . . . . o
James Dugundji, An extension of Tietze’s theorem .. ......................
John G. Herriot, The polarization of alens ..............................
J. D. Hill, The Borel property of summability methods ....................
G. G. Lorentz, On the theory of spaces A ............ ...
J. H. Roberts and W. R. Mann, On a certain nonlinear integral equation of
the VOIterra type ... ... ..o
W. R. Utz, A note on unrestricted regular transformations ................
Stanley Simon Walters, Remarks on the space HP .......................
Hsien Chung Wang, Two theorems on metric spaces ......................




	 vol. 1, no. 3, 1951
	Masthead and Copyright
	R. P. Boas
	J. L. Brenner
	Edmond Darrell Cashwell
	James Dugundji
	John G. Herriot
	J. D. Hill
	G. G. Lorentz
	J. H. Roberts and W. R. Mann
	W. R. Utz
	Stanley Simon Walters
	Hsien Chung Wang
	Guidelines for Authors
	Table of Contents

