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COMPLETENESS OF SETS OF TRANSLATED COSINES

R. P. BOAS, JR.

1. Introduction, Conditions for the completeness on (0,77) of sets {cos λnx\

are well known. Here we shall consider sets {cos ( λnx + qn)\. Such sets seem

first to have been considered by Ditkin [3] , who proved that {cos (nx + 7̂ ^) ô°

is L-complete in (0,77) if 0 < qn < 77/2.

Ditkin's very simple proof uses Fourier series and does not seem capable of

extension to the more general sets considered here. Our principal object is to

show how the problem may be attacked by complex-variable methods; we shall

not attempt an exhaustive discussion.

As a specimen we quote the following case. If Xn > 0 and | Xn ~ n | <

δ < 1/2, then the sets {cos ( λnx -f ^^)jo° a n ( l {s^n (^nx ~*~ 9rc)iΓ a r e £"

complete in (0, π) if 77δ/2 < qn < π(l - δ)/2. (The statement "{ fn(x) } is

//-complete" means that the only functions of Lp which are orthogonal to all

fn(x) are almost everywhere zero.) A further result, not covered by the present

paper, has been given by Bitsadze [ l ] , who showed that every function satisfy-

ing a Holder condition admits a uniformly convergent expansion in terms of the

set {cos {nx + 77/4)5; n e indicates an application of this result to the Tricomi

partial differential equation.

We remark that although Ditkin's set {cos (nx + qn) 5^ remains complete when

all qn — 77/2, it may fail to be complete if some but not all qn — 77/2. In fact,

the set {l, sin x, cos 2xf cos 3%, 5 is orthogonal to cos χ However, we shall

show that not only is the set {sin (nx + qn)}™ complete if ;0 < qn < 77/2, but

even the set {sin (nx + q^)X\ is complete.

By applying the completeness theorem of Paley and Wiener [5 ,p . lθθ] to the

equivalent set {cos nx + an sin nx 5, 0 < an\ < 1, we can show at once that

{cos (nx + qn)}™ i s Incomplete if either 0 < \qn\ < δ < τr/4 for all nor

else 77/4 < δ < \qn\ < 77/2 for all n . The problem of necessary and sufficient

conditions for the completeness of {cos (nx + qn)} remains open.

2. A general theorem. We shall obtain our resul t s on {cos ( \nx + ^71)5 a s
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322 R. p. BOAS, JR.

corollaries of a theorem on a related set of more artificial appearance.

THEOREM. Let \^n\™ be an increasing unbounded sequence of nonnegative

numbers; let /V r̂) and /V2(r) denote respectively the number of λ 2 7 l and of

not exceeding r. If both

(2.1) fi

rt~1N1(t)dt > - r ~ y log r - constant,

and

(2.2) 5^t'xN2(t)dt > - r-\Ύ + - j l o g r -constant,

where γ = 1/(2p ' ) if 1 < p < o° , p ' = p/(p - 1 ) , αnrf 7 < 1/2 if p = 00

ίAe seί

(2.3) cos λ 2 n t -f α 2 n sin λ 2 π t ,

"" α2n + i c o s ^2π + i ί + sin λ 2 π + 1 t

is IP-complete on ( ~~Ή/2, 77/2) i/ ίAe αΛ are reo/ numbers all of the same sign.

COROLLARY 1. The set (2.3),with the an all of the same sign, is ]J-complete

on ( -77/2, τr/2) if 0 < \ n < n + 1 + 1/p' , 1 < p < 0°; it is L°°-complete if

0 < λn < n + S , δ < 2 .

C O R O L L A R Y 2. // λ n > 0 am/

. , 1 π δ 77(1 - s)

then the set { c o s ( X n % + qn)}™ is L-complete on (O,ττ).

For δ — 0, Corollary 2 reduces to Ditkin's theorem; for δ ^ 0, the range of

qn is more restricted. If the \ n are confined to one side of n, a sharper result

is true.

C O R O L L A R Y 3. If n < \ n < n + h, 0 < S <1, and 0 < qn < Ml - δ)/2,

Λ > 0; or if n - 8 < λ n < n /or n > 0, 0 < δ < 1, and π(l - δ ) / 2 <qn < 0,

{cos ( X^# + #72)50° is L-complete in (0,77).

The following result on sets of sines includes the fact that {sin (nx + <]n)n
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is L-complete on (O,ττ) if 0 < qn < ττ/2.

C O R O L L A R Y 4. // | n + 1 - \ n \ < δ < 1/2 and ττδ/2 < qn < π ( l - S)/2,

then the set { s in (Xnx + qn)]™ is L-complete on (0,77).

By demanding only //-completeness instead of L-completeness, we can allow

the \ n to be larger than in Corollary 2 .

C O R O L L A R Y 5. If I < p < co and n + 2 - δ < λn < n + 2 - 1 / p , 1/p <

δ < 1, ί/iew ί/te seί {cos (X^Λ; + g n ) }̂ ° is LP-complete on (O,τr) if πS/2 <

qn <7T/2.

3 Proof of the general theorem. We now prove the theorem stated above. We

must show that if f(x) £ Lp and if

J* 77/2 / .

K ό t l ) -π/2 ^ c o s A2«* +α2« sin λ2nt)f(t)dt-π/2

fπ/2

)dt

= ° (" = 0,1,2, ••• ) ,

where all α n satisfy α n > 0 or else all α n satisfy an < 0, then /U) = 0 almost

everywhere.

Write

(3.2) F ( 2 ) = £ £ / ( 0 cos zt dt, G(z) =1^1 f(t) sin zt dt

then (3.1) i s

(3.3) F(λ2n) + α 2 f l G ( λ 2 n ) = 0 ,

+ G ( λ 2 n + 1 ) = 0 .

Let//(z) = F(z)G(z); then ^(0) = 0; if λ 0 = 0, then #'(0) = #"(0) = 0; and

//( λ2n)H( λ2n + ι) < 0. Note that H(z) is an odd function. Let N(t) = Nι(t) +

/V2(ί), and let Λ(ί) denote the number of zeros of H(z) in 0 < \ z\ < t.

We prove first that

(3.4) Λ(r) >2Λf(r) + 1 .
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To begin with, if λ 0 = 0, we have, for 0 < r < λ t , the relations Λ'(ί) — 1,

Λ(r) > 3; if λ 0 > 0, we have Nit) = 0 for 0 < r < λ 0 , Λ(r) = 1. We proceed by

induction. Suppose that (3.4) is true for r < λ^ . Then it remains true for r < λ^ + 1,

since /V(r) does not change in λ^ < r < λ / ^ . If //( λ/^)//( λ £ + 1 ) ¥~ 0, then

H(\k) and H(\k + ι) have opposite signs and so Λ(λ/C + 1 ) > Λ(λ^) + 2 >

2Λ/(λA;) + 3 = 2IV(λHi) + 1, so that (3.4) is true f or r = λΛ + 1 . If ff(λΛ+1) =

0, then (3.4) is true for r = λ^.+t since Λ(r) increases by 2 at r — λ^ + t while

/V(r) increases by 1. Finally, suppose //(λfc) = 0,H(λk + ι) ^ 0. If //(λy) = 0

for y = 0,1,2, ,λ, then Δ(λ Λ + 1 ) > Δ(λ Λ ) > 2A; + 3 = 2iV(λ/, + 1 ) + 1,

and (3.4) is verified for r — λfc + γ. Otherwise there is a largest j < k for which

//(λy) φ 0, and Δ(λy) > 2/V(λy) + 1; there are at least & - / z e r o s of H{z) in

λy <x < λ^ + j ; but the number of zeros in this interval is even if k ~~ j + 1 is

even [since f/( λ̂ . + 1 ) and fl( λy) then have the same sign] , odd if A; — / + 1 is

odd; so the number of zeros cannot be k ~~j and hence must be at least k ~j + 1.

This completes the proof of (3.4).

By combining (3.4) with (2.1) and (2.2), we see that

(3.5) fr t~ι A.(t)dt > 2 r - 4y log r - constant,

where 4 γ = 2/p' if 1 < p < °° , 4 y < 2 if p = oo .

We now appeal to a modification of a result of Levinson [4, pp. 7-9] to show

that H(z) = 0. This is as follows.

LEMMA. Let [χn\^(Ά be a sequence of real numbers arranged in nondecreasing

order9 and let H(z) be an entire function which is known to vanish at all xn; if

H(z) is known to have a multiple zero at some xn> that xn is to be repeated, ac-

cording to its multiplicity, in the sequence* Let v(r) denote the number of xn such

that xn\ < r and suppose that

f Γ t ' ιv{t)dt > 2 r - α l o g r - c o n s t a n t .

Suppose finally that

where h{t) > 0, hit) C L p (0,π/2) , 1 < p < oo . Then H{z) = 0 if α < 2/p',

p ' = p/(p - 1 ) . // p = oo, then H{z) = 0 if α < 2.
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The proof of the lemrna is parallel to that given by Boas and Pollard [2] for a

similar result, and we omit it.

Since H(z) = 0, we have either F(z) = 0 or G(z) = 0. If F(z) = 0,(3.3) shows

t h a t G ( λ 2 n + ι ) = 0; if G(*) = 0, (3.3) shows that F(λ2n) = 0 .

We first consider the case when F(z) = 0. Then, in particular, we have

and

fZ/lf^ C 0 S λ2n+lt dt = 0

f_l/2f(t) s in λ 2 n + 1 ί Λ = 0_l/2

(n = 0 , 1 , 2, •

(n = 0 , 1 , 2,

) ,

) ;

hence

(3.6)

where

(3.7)

e< μ»* d t = 0 = 0,±l,±2, — ) ,

μ o = O , μn = X 2 n _! (n > 0) , / i n = - λ - 2 n _ ! (n < 0) .

A result of Levinson [ 4 , p . 6 ] , reduced to the interval ( —ττ/2,77/2), is that

e "

(3.8)

is Lp-complete if Λί(ί), the number of | μn \ < t, satisfies

J Γ Γ 1 M(t)dt > r - (l/p') log r -constant,

1 < p < °° his proof also shows that L°°-completeness follows from (3.8) if

l/p' is replaced by any number less than 1. Since M{t) = 2/V2W + 1, (3.8) is

true in virtue of (2.2). Thus (2.2) implies f(t) — 0 almost everywhere if F(z) = 0.

Now suppose that G(z) = 0. In the same way we have

p τr/2 . f v iμnt

y / ( o e dt o

where now

(3.9) μn = λ2n = - λ_ 2 n _ 2 (n < 0)
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In this case M(t) = 2Nί{t) and (3.8) follows from (2.1). The rest of the argument

is as before.

4. Proof of Corollary 1. To prove Corollary 1 we have to show that (2.1) and

(2.2) follow from 0 < λn < n + S (n = 0,1,2, ), where δ = 1 + 1/p',

1 < p < co . ] n the interval 2k+h<u<2k+h+ 2,whereA; = 0,1,2, ,

we have N^u) > k + 1. Let x > 1 and define n by In + δ < % < In + δ + 2.

Then

2 + δ
~ du

+ S - 2

> Σ H
k = l

> Σ

2k + δ - 2 + δ - 2

1 +
2 - δ

2fe

1 . 1= n + | 1 - - δ - - J l o g n + 0(1)

^-γ- log x + 0(1) = J * - ^ 7 logx +0(1)= -x

O n t h e o t h e r h a n d , in t h e i n t e r v a l 2k + 1 + 8 < u < 2k + 3 + δ(k = 0,1, 2 , ),

we h a v e N2(u) > k + 1. T h u s

> Σ 2fe - 1 + δ

_ 1/ 2_
2\2fe - 1
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> Σ 2k + 1

- — + 0.(1) .
2 p ' 2 v '

5. Proof of Corollaries 2-5. In proving Corollaries 2—5, it is convenient to

write ~~an instead of an9 and t — x ~~ 77/2, so that (2.3) becomes

cos ( Xnx ~ Xnττ/2) ~ αΛ sin ( λ Λ # — Xnτr/2) (n even)

αirι(cos λπx — λnπ/2) + sin ( Xnx — λnπ/2) (n odd) .

Put αΛ(l + α ^ ) " 1 / 2 = sin 6 Λ , (1 + α ^ ) " 1 / 2 = cos 6 n , 0 < bn<π/2oτ ~u/2<

bn £ 0> according as α n > 0 or an < 0. Then the completeness of (2.3) is

equivalent to that of

cos (Xnx — λn77/2) cos bn — sin (Xnx ~~ Xnττ/2) sin 6^ (π even)

sin (λnΛ — λn77/2) cos 6^ -h cos (Xnx — Xnπ/2) sin bn (n odd)

that is, to the completeness of

cos (Xnx - λnπ/2 + bn) (n e V e n )

sin ( Xnx - Xnπ/2 + bn) (n odd) .

Now let Xn = m —2en/Ή, where m is an integer of the same parity as n. Then the

completeness of (2.3) is equivalent to that of

(5.1) cos (Xnx + en + 6Π) (n = 0,1,2, •••) .

Thus a set

(5.2) c o s ( λ n * + gn)

is equivalent to a set of the form (2.3) if for all n either

( 5 < 3 ) e n < qn < ττ/2 + en
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or

( 5 4 ) - V 2 + e n < q n < e n .

We may satisfy (5.3) or (5.4) in various ways. For example, (5.3) is certain-

ly true if \n ~ λ j < δ (n = 0 , l , 2 , •), with o < 1/2 and ττh/2 < qn<

77(1 — δ)/2; this establishes Corollary 2, since the condition of Corollary 1 is

certainly satisfied in this case. Corollary 1 requires only that \ n < n + 1 if

p = 1 if we restrict \ n to lie always on one side of n we can therefore obtain

a stronger result than Corollary 2. In fact, if n < Xn < n + 1 we have 6n < 0,

and (5.3) is satisfied if 0 < qn < Ή/2 + 6n, hence certainly if n < λ n <

n + δ, δ < 1, and 0 < ^ n < ττ(l - δ )/2. On the other hand, if n - 1 < λΛ < Λ

(^ > 0), we have en > 0 and (5.4) is satisfied if n ~ δ < λΓi\< ^ (τι > 0),

δ < 1, and-77(1 - δ ) / 2 < ^n < 0.

If we let Xn = m —2βn/π, where m has opposite parity to n , (2.3) reduces to

£sin (λnx + eΛ + i Λ ) | ; by taking m = n + 1 we obtain Corollary 4. Finally,

Corollary 5 is obtained by taking m = n + 2. Further theorems of the same

character are readily written down.

REFERENCES

1. A. V. Bitsadze, Ob odnoi sisteme funktsiϊ [On a system of functions] , Uspehi
Matem. Nauk (N.S.) 5, no. 4 (38) (1950), 154-155β

2. R. P. Boas, Jr., and ίl. Pollard, Complete sets of Bessel and Legendre functions,
Ann. of Math. (2) 48 (1947), 366-384.

3. V. A. Uitkin, O polnote odnoϊ sistemi trigonometricheskih funktsii [On the com-
pleteness of a system of trigonometric functions.], Uspehi Matem. Nauk (N.S.) 5, no. 2
(36) (1950), 196-197.

4. N. Levinson, Gap and density theorems, Amer. Math. Soc. Colloquium Publications,
vol. 26; American Mathematical Society, New York, 1940.

5. R. E. A. C. Paley and N. Wiener, Fourier transforms in the complex domain, Amer.
Math. Soc. Colloquium Publications, vol. 19; American Mathematical Society, New York,
1934.

NORTHWESTERN UNIVERSITY



MATRICES OF QUATERNIONS

J. L. BRENNER

1. Introduction, In this note, some theorems which concern matrices of complex

numbers are generalized to matrices over real quaternions. First it is proved that

every matrix of quaternions has a characteristic root. Next, there exist n ~~ 1

mutually orthogonal unit ^-vectors all orthogonal to a given vector. It is shown

that Schur's lemma holds for matrices of quarternions: every matrix can be trans-

formed into triangular form by a unitary matrix. For individual quaternions, it is

known that two quaternions are similar if they have the same trace and the same

norm—thus every quaternion has a conjugate a + bj(b > 0). This fact is proved

again.

The quaternion λ. is called a characteristic root of a (square) matrix A pro-

vided a non-zero vector x exists such that Ax — x λ.. Similar matrices have the

same characteristic roots; if y — Tx, where T has an inverse, then TAT~ly

— T Ax — Tx λ = y λ . Another interesting fact is that if λ is a characteristic

root, then so is p~~ι\p; for from Ax ~ x λ follows A(x p) = (x p) p~ιλ p; thus if

the vector corresponding to the characteristic root λ is χ9 then xp is the vector

corresponding to the characteristic root p~~ιkp.

2. Lemma. We shall need the following result.

LEMMA 1. If A — (θj ί) is a matrix of elements from any field or fields, then

a triangular matrix T exists such that T~ι AT — C — (cij)i where C{; — 0 when-

ever i > ~f 1. The elements of T are rational functions of the elements of A,

Proof. The proof consists in transforming A in steps so that an additional

zero appears at each step. First A is transformed so that all the elements in the

first column (except the first two) become zero; the transformed matrix is further

transformed so that all the elements in the second column (except the first three)

become zero, and so on. The formal proof is inductive; it will be sufficient to give

the idea of the proof. In the first column of A9 either αy ! — 0 for all / > 1, or else

Received December 1, 1950.
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330 J. L. BRENNER

aj}ι ψ 0 for some j > 1. In the former case, proceed directly to the second column.

In the other case , assume without loss of generality that a2tχ T 0 (otherwise

transform by a permutation matrix). Let / stand for the identity matrix, and let

em n be the matrix with 1 in the (m,n)th. place and 0 elsewhere. Let w3t2 be an

element of the field. The transform B — (6j,/) of A by the matrix / "f w3f2 e3t2

sat is f ies the conditions

£>2,i - α 2 , i , 63 >i = α 3 t i + w3t2 α 2 , i .

It is evident that if 1^3,2 i s suitably chosen, then the condition b3pί — 0 will be

satisf ied. Further transformations by

1 + ̂ , 2 ^ , 2 0 = 4, •• , n)

will successively replace the elements in the first column of A (except the first

two) by zeros. The second and later columns are handled in order by the same

method.

The above lemma and proof follow the lines of Lemma 4.4 of [ l ] ; in that

reference, the elements of the matrix A are residue classes mod pΓ, a prime power.

3 The existence of characteristic roots. We shall show that every matrix A

of quaternions has a characteristic root.

Since any characteristic root of C is also a characteristic root of A, it is

enough to prove that C has a characteristic root. The proof is by induction on n.

There are two cases. First, suppose that Cj + i,/ — 0 for some j with j < n. Let

C(, ) be the principal /-rowed minor of C; a non-zero vector %(,•) and a characteristic

root λ exist such that C(j)X(j) — xn)λ. Then λ is a characteristic root of C: the

corresponding vector is obtained from the vector %φ by appending n — j zeros.

In the second case, it is true for each j that Cj + ι$j ψ 0. There is a character-

istic vector (xl9 x2> , xn) with xn — 1; it is found by solving a polynomial

equation of degree n with just one term of highest degree. The fact that every

such equation has a solution is proved in [ 5 ] . The equation in question comes

by eliminating xn-2, xn-3i ' ' * > x\ m t u r n ^ Γ o r n t n e s e t Cχ ~ x λ- This set is

indeed the following:

(1) cn,n-lxn-l + Cn,n = λ ,

(2) Cn-l.n-2^-2 + Cn-1, n- 1 *n-l + ^π-l.π = xn-l ^ t
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[n ~ l ) C 2 , i X\ + C2t2

 X2 + β * + C 2 , rc- l ^ n - 1 + C 2 , n = * 2 ^

( Λ ) C l f l Λ 1 + C l f 2 Λ 2 + + C l f Π - . 1 X n _ ! + CUn = *χ λ .

First, λ must be eliminated from (2), (3), (n), using (1). Call the resulting

set ( 2 ' ) , (3 ' ), , (n' ). Then (2' ) must be solved for xn_2 > t n e resulting ex-

pression is substituted into ( 3 ' ) . Next the equation so obtained is solved for
χn—3 ' t n e resulting expression is substituted into ( 4 ' ) , and so on. Since c/ + i,y

ψ 0 for each j9 these steps are meaningful. At the last stage, {n ' ) becomes an

equation of degree n in the one unknown Λ ^ - I The single term of highest degree

is not zero. After xn_ι is determined, the values oί xn_2, , * i are determined

from (2 ') (n* ) , and the value of λ is determined from (1). These values

satisfy all requirements. This proves the following result.

THEOREM 1. Every matrix of quaternions has a characteristic root.

F o r a n a p p l i c a t i o n , w e n o t e t h a t t h e 2 X 2 m a t r i x ( α ^ y ) h a s c h a r a c t e r i s t i c r o o t

α l f l c o r r e s p o n d i n g t o t h e v e c t o r ( 1 , 0 ) if α 2 f l — 0 . If a2fι ψ 0 , a c h a r a c t e r i s t i c

v e c t o r i s {xί9\)9 a n d t h e c o r r e s p o n d i n g c h a r a c t e r i s t i c r o o t i s λ. — α 2 / i x ι ~^~ a2,i >

Vv^here x ι i s a s o l u t i o n of xι a2 i % i - α l f l xι ~~ X\ α 2 , 2 ~ ^ α ι , 2

4 . G e n e r a l i z a t i o n o f S c h u r ' s l e m m a . T o c o n t i n u e t h e d i s c u s s i o n , w e n e e d :

LEMMA 2. There exists a unitary1 matrix V of quaternion elements which has

a preassigned unit1 vector u± ~ (&ι,i> uι,2> * * # * uι,n) ^n ί n e βr^t row.

Proof, Since the space of rc-tuples over quaternions has the same dimension

independent of the choice of basis [6, pp. 18-19] , there is a set of n vectors
u\> &2> * ' * > bn which are linearly independent and span the space. From these

an orthonormal set ui9 * , un can be constructed by Schmidt's process of or-

thogonalization. The matrix which has these vectors for rows is unitary. The

process is exhibited in [3, p . l θ ] , where, however, the first displayed equation

should be changed to read b^ bm — (bjς am — b^ am) || c jj"1 = 0; otherwise

the reference [3, p 21, line 2] to this equation would be inappropriate.

THEOREM 2. (Generalization of Schur's lemma.) Every matrix of real qua-

ternions can be transformed into triangular form by a unitary matrix.

1 A m a t r i x U i s c a l l e d u n i t a r y if L U — 1 . A v e c t o r (u) i s c a l l e d a u n i t v e c t o r if uu*— 1 .
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Proof. This theorem is a direct consequence of Theorem 1 and Lemma 2. The

proof, given in [9, pp. 25-26] , applies with equal force when the elements of the

matrices are quaternions.

5 Transformations of matrices. We shall establish several lemmas.

LEMMA 3. Let q be a quaternion. There exists another quaternion s such

that I s I = 1, s~ι qs = A + Bj, where A + Bj is a complex number with B > 0.

Lemma 3 is a consequence of Lemmas 4, 5, 6, 7. It is proved also in [4] ,

which refers to [2] . Another proof is given here because this proof is so direct,

and because Lemma 5 appears to be new.

L E MMA 4 . Let q = A + Bj + Ck + Djk, s = E + Fj + Gk + Πjk, \s\ = 1.

The four components of s" qs are respectively

A,

B[E2 + F2 - G2 - H2] + 2C[FG + EH] + 2D[FH - EG] ,

2B[FG - EH] + C[E2 + G2 - F2 ~ H2] + 2D[EF + GH] ,

2B[EG + FH] + 2C[GH - EF] + £ > [ £ 2 + H2 - F2 - G2] .

LEMMA 5. If q = A + Bj + C/c + D/λ;, then s = E + Fj exists such that | s

— 1, s"~ qrs Λαs fourth component zero.

Proof. If D = 0, take s = 1. If D φ 0, set s = t/\ t \ , where

ί = C - ( C 2 + D 2 ) ι / 2 + Z > ; .

LEMMA 6. If q = A + Bj + Ck, then s exists such that s\ — 1; s~ι qs has

third and fourth components both zero.

Proof. If C = 0, take s = 1. If C φ 0, set / = β/C, and take 5 = t/\ t \ , where

L E M M A 7. If q = A + Bj, then s exists such that \s\ = 1; s~ ι ^s = /I — 5/.

Proof. Take s = (7 + jk)/y/T.

COROLLARY. Every quaternion is similar to its conjugate.

The referee outlined another proof for the fact that two quaternions with equal
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norms and traces can be transformed one into the other. Let the quaternions be

r = α 0 + axj + a2k + a3jk, q = 60 + b\j -f 62fe -f b3jk .

Consider then the equation xr — qx, where x — x0 + xxj + # 2 ^ + #3/&• The four

linear homogeneous equations for x0, xγ , x2, x3 which are equivalent with this

have as determinant an expression which under the assumption a0 — b0 reduces

to

( α ^ + α l + α l - ό f - f c l - ό a 2 ) 2 ,

which is equal to 0 under the assumptions made.

6 On characteristic roots. It has already been proved that any quaternion

matrix A can be transformed into triangular form T by some unitary matrix. It

follows further from Lemma 3 that A can be transformed by a unitary matrix into

triangular form in such a way that the diagonal elements are all of the form A H~ Bj9

B > 0. Indeed this transformation can be brought about by transforming T by an

appropriate unitary diagonal matrix.

The diagonal elements A + Bj(B > 0) which appear in this last transform of

A are unique; that is, any other transform of A which is in triangular form and

which has numbers A + Bj{B > 0) on the main diagonal will have the same num-

bers, although not necessarily in the same order.

The above fact is a consequence of general theorems concerning characteristic

roots of a matrix.

THEQREM 10. Jf λ is a characteristic raot of A, then so is pλ.p~~ι (see page

329).

THEOREM 11. If A is in triangular form, then every diagonal element is a

characteristic root.

Proof. L e t A — {aΓfS) be g iven: aΓfS — 0 when s < r. It i s t r i v i a l t h a t α M i s a

c h a r a c t e r i s t i c root . S u p p o s e it h a s b e e n proved t h a t a ί t l , # 2 , 2 * * * * > at,t a r e

c h a r a c t e r i s t i c r o o t s . If o ί + 1 > ί + 1 i s s i m i l a r to any one of t h e s e , t h e n at + ί t t + ι i s

a c h a r a c t e r i s t i c root in v i r tue of t h a t fact a l o n e . If β£ + i ,£ + ι i s s imi lar to none of

t h e p r e c e d i n g d i a g o n a l e l e m e n t s , then the v e c t o r (%1 , %2> * * * > %t—l > %t> l > 0 > 0 ,

• , 0) i s a c h a r a c t e r i s t i c v e c t o r c o r r e s p o n d i n g to the c h a r a c t e r i s t i c root

provided a l l the fol lowing e q u a t i o n s are s a t i s f i e d :
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atyt
xt + at,t + l —

at—ιft—ιχt—ι ~^~ at—i,tχt + α ί ~ i , ί + i =

Equations of the above type have been considered in [7] . It is shown there

that if a9 b9 c are quaternions, and if a is not similar to c, then ax -f b ~ xc has a

solution. Hence the above equations can be solved in serial order.

THEOREM 12. Let a matrix of quaternions be in triangular form. Then the only

characteristic roots are the diagonal elements (and the numbers similar to them).

Proof. If for some λ , we have Ax = x λ , x a non-zero vector, and iί A is

triangular, then

an,n xn xn "- >

an-l,n-lxn-l + an-l,n xn ~ xn-l^- ,

If xn ψ 0, then λ. is similar to an n . If

*n = Xn-l = = Xt + i = 0 , %χ φ 0 ,

then λ is similar to atft.

THEOREM 13. Similar matrices have the same characteristic roots (see page

329).

The determinant-like function V of the matrix A, defined by Study in [lO] , is

the product of the norms of the characteristic roots of A.

COROLLARY. The product of the norms of the characteristic roots of a matrix

of quaternions is a rational integral function of the elements and their conjugates.

After this article was submitted for publication, the author learned of an article

by H.C.Lee [s] which contains many of our results. The methods of proof there

are different from ours.
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THE ASYMPTOTIC SOLUTIONS OF AN ORDINARY
DIFFERENTIAL EQUATION IN WHICH THE

COEFFICIENT OF THE PARAMETER
IS SINGULAR

E. D. CASHWELL

1. Introduction. In this paper we are concerned with the solutions, for large

values of the complex parameter λ, of the ordinary differential equation,

(1) w"(s) -[λ2σ(s) +r(λ,s)]w{s) = 0 .

The variable s ranges over a region in the complex plane in which σ (s)pos-

sesses a factor (s ~~ s o )~ 2 , where s 0 is some fixed point of the region. The

asymptotic representations of the solutions of an equation formally identical with

(1), but in which cr(s) contains a factor (s ~~ so)^9 V > ~"2, have been con-

sidered by Langer [3]

If equation (1) is considered over a region of the complex s-plane in which

σ(s) and τ ( λ , s) are bounded, with σ(s) bounded from zero, then it is possible

to find a pair of asymptotic forms made up of elementary functions, each of these

forms representing a solution over the entire region. If, however, σ(s) becomes

zero in the region under consideration, the asymptotic representations are compli-

cated by the appearance of the Stokes' phenomenon. This necessitates abrupt but

determinate changes in the asymptotic forms, if only elementary functions are

used, as certain boundaries are crossed in the s- and λ-planes. The asymptotic

representations of the solutions of (1) in this case have been considered by

Langer [ l ] among others, and he has shown the Stokes' phenomenon to be quanti-

tatively dependent upon the order of the zero of σ~(s). In a later paper [3] > the

theory was extended to include the cases where σ~(s) contains a factor (s ~~ s 0 ) v ,

V > —2, and τ ( λ , s) has a pole of first or second order at s 0 . He showed that

the Stokes' phenomenon is engendered by and depends upon an infinity in either

of the two coefficients in (1).

Received December 21, 1950; presented to the American Mathematical Society April 30,
1949. The author wishes to thank Professor R. E. Langer for suggesting this problem and
for his help in the preparation of this paper.
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It is proposed to consider in this paper solutions of equation (1) in a region

which contains as the only singularity of σ{s) a pole of second order at a point

s0 , and in which σ{s) is bounded from zero while r ( λ , s) has a pole of first or

second order at s 0 . Among the functions satisfying an equation of this type we may

cite the Bessel functions and certain of the confluent hypergeometric functions.

Although the theory developed by Langer is not applicable to the case present-

ly considered, it is nevertheless found that the broad outlines of the general

methods used in the papers mentioned still apply. A differential equation is found

which possesses all the essential qualities of (1), and which can be solved ex-

plicitly. The solutions of this equation are shown to give asymptotic represen-

tations of the solutions of the given equation over definable subregions of the

domain in which the coefficients in (1) have the properties assumed above.

In order to arrive at the asymptotic solutions of the given equation, it is found

necessary to subdivide the region of large values of λ into a finite number of

subregions. For λ in each of these subregions, and for all admitted values of s ,

two independent asymptotic solutions are derived. Although asymptotic forms of

similar structure are derivable for all subregions, the solutions which maintain

these forms in the different regions are in general different functions.

2. Hypotheses and normal form of the differential equation. The equation (1)

is here considered with the parameter λ ranging over any region of the complex

plane in which | λ | is unbounded. The variable s also is complex, and ranges

over a bounded, simply connected domain Rs containing a point s0 at which σ(s)

has a pole of second order. Then in some neighborhood of s 0 , cr{s) is of the form

( \σ(s) =

where ψ(s) is a single-valued, analytic function bounded from zero. The constants

in the product λ2 i//(s), which appears in the first coefficient of (1), are adjusted

so that φ(s0) = 1. Expanding ψ(s) about the point s 0 , we have

φ(s) = 1 + a1(s - s 0 ) + α 2 (s - s 0 ) 2

We assume the conditions a), b), and c) which follow in this section to be

satisfied collectively by the coefficients of the differential equation, the domain

Rs , and the range of values of the parameter λ. The first two of these conditions

are :
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a) φ(s) is a single-valued, analytic function bounded from zero.

b) The coefficient τ ( λ , s) has the form

4 R
τ(λ,s) = —j + — + d(λ, s) ,

[s — so) s — s0

where Aγ and Bγ are constants, and C^λ, 5) is an analytic function of s , uni-

formly bounded with respect to λ . (This condition is precisely the same imposed

on r (λ, s) by Langer in [33.)

The equation (1) can always be put in a more convenient form by simple

changes of the dependent and independent variables.

Letting (cf. [3; p. 399])

z 1/2

4

we obtain the equation (1) in the form

where

P = 2λ A=4A + -
4 '

z) =Bι + — d ( λ , s) ,

φ ( ) 1 + + 1 ( z ) #
4 16

The equation (3) is called the normal form of (1), and is the one we shall consider

in the following discussion. It is to be observed that if the constants ax and j3t ,

appearing in the expressions for φ(s) and τ ( λ , s ) respectively, vanish, then

equation (l) can be put in normal form (3) by simply translating the origin and

changing notation.

Since φ{s) does not vanish in the domain Rs , φ2(z) = t//(z2/4 + s0) does

not vanish in the corresponding domain Rz in the z-plane. Consider the domain Rs
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lying on a two-sheeted Riemann surface with branch point at s 0 . Then the trans-

formation 5 — s0 — z2/4 is one-to-one between the bounded, simply-connected

domain Rs and the corresponding domain Rz. Denoting by φ{z) the square root of

φ2(z) which takes the value one when z = 0, we obtain

Φ(z) =
> 2 ^

(4) Φ(z)=l+z2φ1(z) ,

where φ x (z) is an analytic function of z in Rz. We are now ready to make the

third of our hypotheses :

c) The function ze ι ' is schlicht, where

Since the function ze ι^z' has a nonvanishing derivative at z — 0, it is schlir.fit

in some neighborhood of this point. The hypothesis c) in effect restricts the

z-domain under consideration (and hence Rs) to be one in which this property main-

tains.

3. The "related" differential equation. Throughout the considerations which

follow, the quantities (p2 + 1/4 + A)ί/2 and [φ(z)]i/2 enter frequently.lt serves

for notational simplification to denote the former of these by μ , that determi-

nation of the root being chosen for which — π/2 < arg μ < π/2 when p = O.We

determine [φ(z)]ι/2 by the condition [φ(Q)]ι/* = 1.

In the case where equation (1) is considered over a region in which o~(s) is

bounded from zero, the asymptotic forms of a pair of solutions can be found, the

leading terms of which are (cf. [2] , p.55θ] ).

This suggests that, in order to find an approximating equation to equation (3), we

consider the functions

(5) y ( z )

where, because of the relative complexity of our equation, it is found necessary
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to the following developments to replace the parameter p by μ . A direct calcu-

lation shows that

< 6> /<*) - P J y{z)=ω{z) y{z) ,

w here

.1
+

V " " v " 4z 2 4z 2 2 z φ ( 2 ) 2 φ ( z ) ' 4

the quantity Φ(z) in the last term being defined by the relation φ2(z) = 1 +

The differential equation (6) appears at first glance to have the same form as

equation (3). However, since the denominator of each of the first three terms in

the expression for ω(z) vanishes at the origin, it is necessary to consider this

coefficient further. Grouping the first two terms and replacing φ2(z) by its ex-

pression immediately above, and substituting in the third term from (4) for φ(z),

we can write (7) in the form

(8) Π *2Φ(z) , z(2φ1(z) + zφ'^z)) lφ"(z) 3 | > ω l 2

W) ω(z) = — + — — + - . , + AΦ(Z).

4z2 2zφ(z) 2 φ(z) ^lΦ(z) J v '
Since φ{0) ψ- 0, it follows from (8) that if co{0) is defined appropriately, then

co(z) is analytic throughout Rz .

In virtue of the analyticity of co{z) over Rz , the differential equation (6) pos-

sesses all of the essential qualities of (3). Following Langer's terminology, we

refer to the equation (6) as the "related" equation. The formulas (5) give ex-

plicitly a pair of independent solutions of this equation.

4. Solutions of the related equation. For convenience, let us define ξ by the

formula

(9) ξ = μ [ l o g z + Φ ^ z ) ] .

With this, the functions (5) which solve the related equation (6) may be written

do) yi(0 = 7Γ-
1/2 V2

The related equation (6) has a regular singular point at z — 0, with exponents
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1/2 ± μ . For a fixed value of the parameter μ, it is seen that, in a neighborhood

of the origin, the formulas (10) are of the form

(11) y,(z) = z ^ ^ O ( l ) , y2{z) = z ^ O d ) ,

where 0(1) stands as usual for a bounded function of z .

From the formulas (11) it is seen that, if R(/x) > 0, then γχ(z) approaches

zero as z approaches zero. The function jγ{z) is in fact singled out as that so-

lution of equation (6) which vanishes at z = 0 to a higher order than any other.

At z = 0, y2(z) on the other hand vanishes or becomes infinite according as

K. (μ)is less than or greater than 1/2.

If R(μ ) < 0, the behaviors of y^z) and 72(2) in t n is respect are reversed.

5. The transformation ξ — μ [ log z + $i(z)] . Consider the transformation

(12) ζ = zeφi<z> .

Since the function on the right of the equality sign is schlicht by hypothesis, the

domain Rz is mapped conformally onto a corresponding domain which contains the

origin in the ζ -plane.

Further, let w be defined by the relation

(13) w = log ζ .

If the ζ-dbmain is cut along the axis of negative real numbers, it is mapped in a

one-to-one manner by the transformation (13) onto a semi-infinite strip of width

2π( —ΊT < &(w) < 77") parallel to the real axis in the u -plane.

Omitting the intermediate transformation (13), we see that the relation

<1 4) w = log z + Φ i ( z )

may be applied directly to the domain Rz . In order that (14) be a one-to-one trans-

formation, the choice above of the strip in the w -plane imposes upon Rz a cut,

the image of the upper edge of the strip, from z = 0 to a point on the boundary.

Let rw denote the following subregion of the region in the u -plane : the semi-

infinite, rectangular strip bounded on the right by the line H(w) = K, subject of

course to the restriction that the right boundary of rw lie in the fundamental region

in the tc-plane. The image in the z-plane of rw is denoted by r 2 .

The transformation (9) maps the region rw conformally onto a region r^ in the

^-plane. It is evident that the region r^ is obtained from rw by a magnification

with the factor | μ \ coupled with a rotation about the origin through an angle
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arg μ.

6. Gamma curves. In the region rw, denote the lower right corner by wί and

the upper right corner by w2 . In order to avoid unnecessary duplications, let us

for the moment denote either of these points by Wj . Through every point W of rw

there passes a broken line consisting of that part of the horizontal line, &{w) —

cSl(lF), contained in rw, together with that portion of the bounding segment,

R(M;) = K , connecting this line to the point Wj . The images in rz of this set of

curves in rw are referred to as the F-curves corresponding to w; . Thus two sets

of curves, corresponding to the two values of / ( / = 1,2), are defined in rz .

In rz , the Γ -curves of either set are uniformly bounded in length. For by direct

calculation we have

From (14) it follows that

dz = — — dw .
φ{z)

Ow-Φι(z)

and hence that

\dz\ < M \ew\ ' \dv\ ,

where U is the least upper bound of

i n « z .

As the variable point w traces out a horizontal line in rw, &(w) is constant,

and with rj = R (w) we have

\dz\ < Meη\dη\ .

Also, along the portion of the line R(ιc) ~ K bounding rw on the right, let &{w) —

K. Then we have

\dz\ < MeK\dκ\ .

From the way in which the Γ-curves were defined, it follows that, if Γ denotes
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any one of these curves of either set, then

/ \dz\ $ M L l eVdV+MeKfπ <iκ = M e K { l + 2 τ τ ) .
Γ

Since the term on the extreme right is independent of the particular Γ-curve

chosen, the Γ-curves are uniformly bounded in length.

7 Solutions of the original equation. We have exhibited the related equation

(5) which possesses all of the essential features of the equation (3), and which

admits the independent solutions y\(z), y2(z) given by (10). This, as we now pro-

ceed to show, enables us to write two formal solutions of (3). The latter equation

can obviously be written in the form

as) u(z) = h(p , z) u(z) ,

where

< 1 6 > HP,*) = X(p,z)-ω(z),

a function bounded uniformly with respect to p and analytic in z over the region

rz . Regarding (15) as an inhomogeneous differential equation, we see that the re-

duced equation coincides with (6). Thus, using a standard procedure in differ-

ential equations, we can describe a pair of independent solutions of (15) by the

relations

(17) uj{z) = yj{z)-^fz[yί

(j = 1 . 2 ) .

Here W is the Wronskian of yι{z) and y2(z), direct calculation yielding W = ~~2μ,

while z0 is any fixed point in rz . To each solution of the equation (6), (17) re-

lates a solution of the equation (3).

With the definitions1

(18) yj(*)=z-1/2e~+tyj(z), Uj (z) = z'^e^u} (z) ,

1 It is convenient to use the double sign to indicate the combination of two formulas
into one. The upper sign is to be associated with j = 1, and the lower sign with j = 2.
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a n d wi th C d e n o t i n g t h e p a t h of i n t e g r a t i o n in r z , t h e e q u a t i o n (17) t a k e s t h e form

(19) UJ(Z)=YJ(Z)+J- {κ}(p,z,zι)UJ(z1)dz1 ,

w h e r e the k e r n e l of t h i s i n t e g r a l e q u a t i o n , d e n o t e d h e r e by Kj(p, z , 2 L ) , h a s

t h e fo l lowing de f in i t ion :

(20) Kjip.z.zJ

ξ i is defined as the image of Zγ under the transformation (9).

Carrying out the process of iteration on (19), we arrive at the formal ex-

pression

(21) Uj(z) =Yj(z) + Σ Y}n)(z),
n = l

with

(22) j , ( n + i ) ( 2 ) = _ L ^ Kj(p,z,z1)Yfn)(*i)dz1 ,

We shall now show that for arg μ in a suitably restricted range, it is possible

to choose z0 for j — 1,2 so that when \μ\ is sufficiently large, the series (21)

converges uniformly and hence represents an actual solution of equation (3). In

accordance with this, the μ-plane will be subdivided into its four quadrants, and

the asymptotic forms of the solutions derived in each quadrant. This particular

choice of the subdivision of the μ-plane is in part due to the configuration of rz ,

and in part due to the reversal of the behaviors of yι(z) and y2(z) as the imaginary

axis in the μ -plane is crossed.

Case 1, 0 < arg μ < π/2. First Solution. In (17) let us choose as the path

of integration a curve belonging to the set of F -curves corresponding to Wγ , with

zQ — 0. It is to be noted that upon any curve of this set, the quantity R (ξ) in-

creases monotonically with the arc length.

Referring to the equations (10), we observe that

(23) | r j ( * ) | < M .
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where ill is a suitable large constant. This results from the fact that φ(z) is analy-

tic in rz and bounded from zero.

Consider the relation

fyjn+l

(24) \Y[n)(z)\ < " j^p ( n = 0 , 1 , 2 , •••)•

This, in view of (23), is evidently satisfied for n — 0. It can be shown in the

following manner that the validity of this relation for any n implies it for n + 1,

so that by induction the relation is established for all n.

According to (22), with F denoting the Γ-curve which forms the path of inte-

gration, we have

Mn+1

(25> U ί n + I ) ω ι / i ί o i
Now let us consider the kernel Kχ(p, z 9 z ί) , which is defined by the formula

(20). From (16), the function δ (p, z) is analytic over rz and hence bounded.

The relations (2o) guarantee the boundedness of y\ and Y2 . Furthermore, since

R(ξ — cfi) > 0 on the path of integration, the exponential term is bounded. It

follows that the integral on the right of (25) is bounded, and we have

(26) | r i ( B + 1 ) ( * ) l <

In this it is clear that A is independent of n Hence if we choose M at least as

large as /V , then we have

(27)
+ 1

This completes the induction.

In virtue of the relations (24), it is clear that the infinite series on the right

of equation (21) converges uniformly for values of μ satisfying the inequality

2 μ I > M . Furthermore, from (21) it follows that

for large values of μ . Substituting for }\(z) and Vγ(z) from (18), we can write
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this equation in the form

Replacing y{{z) by its expression as given in (10), we have

1/2
(28) ] U ( z ) J L1 2μ J '
where \μ is sufficiently large.

Case 1, 0 < arg μ < TJ/2 . Second Solution. To obtain a second solution of

(3) for this range of μ9 we choose as the curves of integration in (17) the same

set of Γ-curves used in obtaining the first solution, but we now take z 0 — zγ ,

the point on the boundary of rz which maps into w± under the transformation (lΊ ).

On any one of these Γ-curves, the quantity H(ξ) is monotone decreasing with

respect to the arc length.

Consider the relation

(29) \Y<n)(z)\< T

λvhere M is a suitably large constant. According to the equations (23), this re-

lation is satisfied for n — 0. We proceed to show by induction that it is true for

all n Assume the relation to be valid for n From (22), it follows that

The kernel A2(yθ, z , z ι) is given by the formula (20). Arguments entirely simi-

lar to those employed in showing the boundedness of Kχ(p, z , z x ) in the relation

(25) may be used here to establish the boundedness of K2(p9 z9 Zγ) in (30). In

fact, the only significant difference in this latter kernel is in the exponential

term, which is bounded since we have H(ξ — ξγ) < 0 along the path of inte-

gration, it follows that

vhere .Ύ is a constant independent of n ί3y choosing M at least as large as Λ;, we
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can write (31) in the form

(32)
n+1

The induction is complete.

As in the previous solution, the infinite series appearing on the right of (21)

converges iniformly for sufficiently large values of | μ \ . This enables us to re-

write (21), for such values of μ, in the form

U2(z)Y2(z)+

If Y2(z) and U2(z) are replaced by their equivalent expressions given in (17), we

obtain

2 ( ) y 2 ( z ) + z e .
2μ

Substituting from (10) for y2(z), we can write this equation as follows

for I μ I sufficiently large*

The equation (3), as was pointed out for the related differential equation, has

a regular singular point at z = 0, with exponents 1/2 ± μ. For large values of

μ satisfying the condition 0 < arg μ < ττ/2, the relations (28) and (33) give the

asymptotic forms of a pair of independent solutions of (3). It is easily seen from

(28) and (33), for a constant value of μ in this range, that in the neighborhood of

the origin we have

(34) ul(z)=0(zV2+'t)

Since R(μ) > 0, uj^z) is determined uniquely as that solution of the equation (3)

which vanishes at z — 0 to a higher order than any other. The solution u2(z)

either vanishes or becomes infinite at z = 0, according as R(μ) is less than or

greater than 1/2. It is evident that this behavior of u2{z) is assumed by any so-

lution independent of Uι(z).

Case 2, 77-/2 < arg μ < π. First Solution. For this range of arg μ, let us
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choose as the curves of integration in (17) the F-curves corresponding to w2, with
z o ~ Z2 ? t n e point on the boundary of rz which is the image of u>2 under the trans-

formation (14). Upon any one of these curves, the quantity H(ξ) increases mono-

tonically with the arc length.

Carrying out an induction argument exactly like that used in obtaining the first

solution of Case 1, we can establish the relation

(35) <
M,n + l

for all nonnegative integral values of n . Here M is a suitably determined constant.

The uniform convergence, for sufficiently large values of μ, of the series on the

right of (21) follows immediately, yielding the formula

U (z)=γ L) i ° ( 1 )

Just as in the previous case, this can be rewritten in the form

(36) U j ( z ) =

for I μ sufficiently large.

1/2

1 +
0(1)

2μ

Case 2, Tϊ/2 < arg μ < 77. Second Solution. In order to find the asymptotic

form of a solution independent of uχ(z)9 we choose as the curves of integration in

(17) the Γ-curves corresponding to w2 9 with z0 — 0. Along any one of these

curves, H(ζ) is monotone decreasing with respect to the arc length.

in a manner which is formally identical with the argument used to establish

(29), we arrive at the analogous relation

for all values of n , where M is a suitably chosen constant.

The formula (21), the right hand side of which converges uniformly for large

values of μ in virtue of the preceding relation, yields the expression

U2{z) = Y2(z)
2μ
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By making the appropriate subst i tutions from (18) and (10), we obtain

(37) u2
(z) =

φ ( z )

1/2

,-ξ

27

for I μ I sufficiently large.

Since for values of μ in the second quadrant we have H(μ) < 0, the behavior

of uΛ(z) and ιι2(z) is quite different from the behavior of the solution having the

same asymptotic form in the first quadrant of μ values. In fact, uΊ{z) is now

singled out as the solution of (3) which vanishes at z — 0 to a higher order than

any other, whereas Uγ{z) either vanishes or becomes infinite according as R ( μ ) is

greater than or less than —1/2 . It is to be observed that although the asymptotic

forms oί the two independent solutions in the second quadrant are the same as

those found in the first quadrant, the solutions themselves are in general different.

Case 3, 77 < arg μ < 3ττ/2 • For arg μ in this range, the curves of integration

in the formula (17) are chosen as the Γ-curves corresponding to u^ .To find the

asymptotic expression for uχ{z) we take z0 = zι , whereas to find the asymptotic

form of u2(z) we choose z0 — 0. Omitting the calculations, which are by now fa-

miliar, we arrive at the forms:

(38) ux(z) =

(-r\ —

Γ

r-

2

6 ( z )

2

! > ( z )

1/2

1/2
_ ξ •

6

2μ

1 +
2μ

for I μ sufficiently large.

The behaviors of the two independent solutions in this quadrant of the μ -plane

are clearly similar to the behaviors of the corresponding solutions described in

Case 2. It will be observed from the choice of z0 that the solution u2(z) is the

same in the second and third quadrants, while u,γ(z) is in general quite different

in these two regions.

Case 4, 3 77/2 < arg μ < 277. For values of μ in this quadrant, the F-curves

corresponding to w2 are chosen as the curves of integration in the formula (17).

We take z 0 = 0 in deriving the expression for uγ{z), and z 0 = z2 in deriving the

expression for u2{z). Omitting the calculations, we arrive at the usual asymptotic
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forms

:(') = U(2)

OJ

1/2
0(1)

2μ

for \μ j sufficiently large.

The pair of solutions in the fourth quadrant of the μ-plane described by these

forms have the same characteristics as the corresponding pair found in Case 1,

and hence we omit the discussion of their behavior. It is to be noted in comparing

Cases 1 and 4 that the solution u^iz) is the same, whereas u2{z) in general is

different in the two quadrants considered.

We may now summarize the results of this investigation as follows:

THEOREM. For values of μ — [ p2 + 1/4 + A]ι/2 in a given quadrant of

the complex plane, (/ ~~ 1 ) ττ/2 < arg μ < j 77/2, / — 1,2,3,4, and for all z in

rz> the differential equation (3) admits of a pair of solutions Uj{z) , j — 1,2,

having the forms

1/2

1/2

1 +
0(1)
2μ J

1 +
oω
2μ J

= μ[log z
'"' LΦ(z)J

/or values of \μ sufficiently large.

The solution with the exponent 1/2 ~H μ. relative to the origin, denoted above

by uχ{z), is the same in the first and fourth quadrants of admissable μ values.

The solution, designated by u2iz), with the exponent 1/2 ~ μ relative to the

origin is the same in the second and third quadrants of the μ-plane. In each of

these cases, the second solution is in general different in the two regions men-

tioned.
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AN EXTENSION OF TIETZE S THEOREM

J. DUGUNDJI

1. Introduction. Let X be an arbitrary metric space, A a closed subset of X,

and En the Euclidean /z-space. Tietze's theorem asserts that any (continuous)

/ : A —> E1 can be extended to a (continuous) F : X —* E1* This theorem trivi-

ally implies that any / : A —> En and any / : A —> (Hubert cube) can be ex-

tended; we merely decompose f into its coordinate mappings and observe that, in

these cases, the continuity of each of the coordinate mappings is equivalent to

that of the resultant map.

Where this equivalence is not true, for example mapping into the Hubert space,

the theorem has been neglected. We are going to prove that, in fact, Tietze's theo-

rem is valid for continuous mappings of A into any locally convex linear space

(4.1), (4.3). Two proofs of this result will be given; the second proof (4.3), al-

though essentially the same as the first, is more direct; but it hides the geometri-

cal motivation.

There are several immediate consequences of the above result. First we obtain

a theorem on the simultaneous extension of continuous real-valued functions on a

closed subset of a metric space (5.1). Secondly, we characterize completely those

normed linear (not necessarily complete) spaces in which the Brouwer fixed-point

theorem is true for their unit spheres (6.3). Finally, we can generalize the whole

theory of locally connected spaces to arbitrary metric spaces. By way of illus-

tration, we prove a theorem about absolute neighborhood retracts that is apparently

new even in the separable metric case (7.5).

The idea of the proof of the main theorem is simple. Given A and X, we show

how to replace X — A by an infinite polytope; we extend / continuously first on

the vertices of the polytope, and then over the entire polytope by linearity. For

this we need several preliminary remarks on coverings and on polytopes.

2. On coverings and polytopes. If X is any space, a covering of X by an arbi-

trary collection { JJ ] of open sets is called a locally finite covering if, given any

Received March 3, 1951.
Pacific J. Math. 1 (1951), 353-367.
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x £ Xi there ex i s t s a nbd of x meeting only a finite number of the s e t s of {ll}. If

1^5* \V\ a r e a n y t w o coverings of X by open s e t s , \ V} is a refinement of {U} if

for each F G \V\ there is a (J £ {ί/} containing it. A. H. Stone has proved

[ l 2 ] that every covering of an arbitrary metric space has a locally finite refine-

ment.

2.1 LEMMA. Let X be an arbitrary metric space, and A a closed subset of X;

then there exists a covering \U 5 of X ~~ A such that:

2.11 the covering \U] is locally finite;

2.12 any n b d of a £ (A — interior A) contains infinitely many sets of {u};

2.13 given any nbd W of a £ A, there exists a nbd W', a £ W C W, such

that U Π W' ψ 0 implies U C W.

Proof, Around each point x £ (λ ~~ A), draw a nbd Sx such that diameter

Sx < (l/2)o? (Λ;, A), where d is the metric in Z. This is a covering of Z — A, since

Z — ̂ 4 is open. By A. H. Stone's theorem, we can construct a locally finite refine-

ment \U\. It is then evident that \u] satisfies 2.11-2.13.

A covering of X — A satisfying the conditions 2.11—2.13 will be called a

canonical covering of X — A

2.2 A polytope P is a point set composed of an arbitrary collection of closed

Euclidean cells (higher dimensional analogs of a tetrahedron) satisfying (a) every

face of a cell of the collection is itself a cell of the collection, and (b) the inter-

section of any two closed cells of P is a face of both of them. A CW polytope is a

polytope with the CW topology of Whitehead [l4] : a subset U of P is open if and

only if the intersection U Π ex of U with every closed cell σ is open in the Eu-

clidean topology of σ. It is easy to verify:

2.21 a CW polytope is a Hausdorff space;

2.22 in a CW polytope, the star of any cell σ {the collection of all open cells

having σ as a face) is an open set;

2.23 if Y is an arbitrary space, then f: P —> Y is continuous if and only if

f is continuous on each cell.

2.3 As a final preliminary, we need the "nerve" of a covering. Let A be a

space, and { U ] a covering of X by open sets. Consider an abstract nontopologized
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real linear vector space R spanned by linearly independent vectors Jpfy 5 is a

fixed one-to-one correspondence with the collection {ϋ}', the elements of R will

be called points. The n + 1 points p^ , , pun determine an rc-cell in the usual

way if and only if the corresponding sets satisfy fj\ Π * Π Un ψ 0. The poly-

tope determined in this way, with the CW topology, will be called the nerve of the

covering \U}9 and denoted by N(U).

2.31 T H E O R E M . // [U] is a locally finite covering of a metric space X, and

N(U) the nerve of \U}, then there exists a continuous K: X —» Λ(f/) such that

K ~ι ( s t a r pv) C V for every U £ {ϋ}.

Proof. (Cf. ϋowker [4] , where N(U) is taken as a metric polytope.) Define for

each V £ \U],

k(j(x) = - ^ -— (x £ X, d the metric in X) .

U

It is first necessary to investigate the nature of these functions. First we notice

that Σy d(x,X — U) is always a finite sum, since d(x, X — U) T 0 if and only if

x £ U, and since the covering being locally finite means x lies in a finite number

of ί/'s. Further, since { V 5 is a covering, we have Σyd(x,X ~~~ U) ψ 0 for every

x £ X, and so kv(x) is well-defined for each x £ X. Now each ky(x) is con-

tinuous; in fact, for any x £ X there is a nbd meeting only a finite number of the

sets of {Li}; in this nbd, ky(x) is explicitly determined in terms of a finite num-

ber of continuous functions, so λ^ is continuous at each x £ λ7. Finally, it is

evident that Σykyix) ~ 1 for each x £ X and that only a finite number are not

zero in some nbd of any point x £ Λ\

The mapping K : X —> N(U) is defined by setting

κ(χ) = Σ M*)Pί,.
u

Now krj (x) Φ 0 if and only if % £ U hence if % £ V ± Π # Π Vn and %£only

these sets, then because Σyky (x) — 1 for every x, K(x) is the point in the in-

terior of the cell spanned by ( p ^ , * * ' iPun)
 w ^ t n barycentric coordinates [ky.ix)]*

It follows readily that K~l(star p y) C U for every U . Finally, K is continuous:

for, given x £ /Y, let Λ; £ Uγ Π Π Un and Λ; £ only these sets; then K(x) is
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in the interior of σ — (pt/^ ,pu ) . Let V be any open set containing K{x)

then V Π σ is open in the Euclidean topology of σ, and so the continuity of each

λ v shows the existence of an open W Z> x with K(W) C V fi σ C F. This

proves the assertion. (See also 7.4 in this connection.)

3 The replacement by polytopes. After the above preliminaries, we are ready

to perform the "replacement" mentioned in the introduction.

3.1 THEOREM. Let X be a metric space and Aa closed subset ofX; then there

exists a space Y {not necessarily metrizable) and a continuous μ: X —> Y with

the properties :

3.11 μ\A is a homeomorphism and μ(A) is closed in Y

3.12 Y — μ(A) is an infinite polytope, and μ(X — A) C [Y — μ(A)~\;

3.13 each nbd of a £[μ(A)-interior μ{A)\ contains infinitely many cells of

Y -

Proof. Let {U} be a canonical covering of X — A, and N(U) the nerve of this

covering.The set Y consists of the set A and a set of points in a one-to-one corre-

spondence with the points of N(U); to avoid extreme symbolism we denote this set

Y by A U N(U) . The topology in A U N(U) is determined as follows:

a. N(U) is taken with the CW topology.

b. A subbasis for nbds of a G A in A U N(U) is determined by selecting a

nbd W of a in X and taking in A U N(U) the set of points W Π A together with the

star of every vertex of N(U) corresponding to a set of the covering { U] contained

in W. This nbd is denoted by W.

It is not hard to verify that A U N(U) with this topology is a Hausdorff space,

and that both A and N(U)9 as subspaces, preserve their original topologies. We

now define

(* G A) ,

[*€ (X-A)].

Because of 2.31 and the preceding remarks, the continuity of μ(x) will be proved
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as soon as we show it continuous at points of A Π (X ~ A). Let a £ A 0 X ~~ A,

and let iί be a subbasic nbd of μ{a) in A U N(U); this is determined by a nbd W of

a in X. Now (2.13) we can determine a nbd W' , a £W C IF, such that U Γ) W' ^

0 implies U C W, since \ V } is canonical, and clearly {(j\U C ίF' Π (X -A)}

is not vacuous. We now prove μ(W) C W In fact, if x £ W' Γ) (X ~~ A) let

* £ ί/i Π Π Vn and x £ only these; then K(x) is in the interior of the cell

spanned by py , * # ,Pun9
 a n (^ therefore K(x) is in the star of, say, p^.But since

UinWt Φ 0, we have b\ C ^ , and so K(x) € W. This shows

K[W Π(X ~ A)] = μ[W Π (X -A)] C R

Finally, since W C IF we have μ{W Γ\ A) C. W' (λ A d W, and so μ(W') C

ft7. This proves that μ is continuous. The properties 3.11—3.13 now follow at once.

4. Extension of Tietze's theorem. Let X, Y be arbitrary spaces, and A C X,

Let /: A —* 1 be continuous. A continuous F: X —> Y is called an extension

of / if F(a) = /(α) for every α C /I. We now prove:

4.1 THEOREM. Let X be an arbitrary metric space, A a closed subset of X,

L a locally convex linear space [ lθ,p.72j, and f: A —> L a continuous map.

Then there exists an extension F : X —* L of /; furthermore, F{X) d [convex

hull off(A)].

Proof. Let us form the space A U N(U) of Theorem 3.1. It is sufficient to

prove that every continuous /: A —> L extends to a continuous F : A U N{U) —*

L. In fact, to handle the general case we first define, on A C A \JN(U), the map

f(a) — f[_ μ~ι (o)] extending / to F we can write F(x) — F [ μ(x)~\ it is evident

that F is the desired extension of /.

Let then N(U)0 denote the collection of all vertices of NW) we first define

an extension of f to an fo' A U N(ίl)Q —> L as follows: in each set of \ U \ se-

lect a point xυ then choose anoy £ A such that d(xy9 ay) < 2d(xy, A) if

p ̂  is the vertex of NW) corresponding to U , set

fo(Pu) = /(at/)

/o(a) = / ( a ) (a £ A ) .

We now prove f0 continuous. It is clearly so on NW)> since the vertices of NW)

are an isolated set (the star of any one vertex excludes all the others). Thus

continuity of f0 need only be checked at A,
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Select any nbd F of /o(α) — f(a) since f is continuous on A, there is a § > 0

such that d(a,a') < 8 implies f(a') £ F. Let W be any nbd of a in X of radius

< 8/3. If U € {U} and U C W, then clearly d(xv, a) < S/3, and so d(aϋf a) <

d{aU9xu) + d(xϋ9a) < 2d(xv,A) + δ/3 < 2 δ/3 + δ/3 = 8. Thus all verti-

ces of N(U)0 in the nbd W satisfy fo(pv) = f(aυ) C F. Hence for all x £ W Π

[y4 U /V(ί/)0] we have fo(x) £L F and continuity is proved.

We now extend linearly over each cell of N(U) the mapping already given on

the vertices, and thus obtain an F mapping A U N(U) into L . This map we now

prove continuous; on the basis of 2.23 we need prove F continuous only at points

of A.

Let V be a convex nbd of f(a) = F(a). Since f0 is continuous at α, there is a

nbd W with f0 \W Π U U 7V(£/)0] ? C F. Construct now a nbd W' C W of α in Z

such that U Π IF' φ 0 implies f/ C IF. It follows that all vertices corresponding

to sets in the nbd W' have images lying in the convex set V. If py is any vertex

in the closure of the star of a vertex py' with U' C IF ; , we observe that U Π

W ' φ 0 and so p^ C W. Thus the vertices of any cell belonging to the closure

of the star of any vertex pu' are sent into the convex set V (Z L and therefore

the linear extensions over these cells have images lying in V; this shows

F(Ψ') C F. Since L is locally convex, this result implies that F is continuous.

It is evident, finally, from the construction, that F(X) C [convex hull of/C4)j,

and that F is an extension of /. The theorem is proved.

If Y is a space with the property that, given any metric space X and any closed

A C X, every continuous /: A —* Y extends to a continuous F: X * Y, we

call Y an absolute retract. Thus Theorem 4.1 asserts that any locally convex

linear space is an absolute retract. The conclusions of the theorem give a slight

extension.

4.2 COROLLARY. Let C be a convex set in a locally convex linear space L.

Then C is an absolute retract.

Proof. This is immediate from the construction of Theorem 4.1, since the ex-

tension has an image lying in the convex hull of f{A), and so in C.

Note that C is not required to be closed in L .

4.3 It is possible to give an elementary direct proof of Theorem 4.1 not ex-

plicitly involving the space A U Mi/), by merely explicitly exhibiting the resulting

extension that was constructed in 4.2. It has the advantage of exhibiting a certain
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kind of "linearity" in the constructed extension, which is sometimes more amena-

ble to applications. In fact, using the notations of Theorem 2.31 and Theorem 4.1,

we find it is simple to verify directly that

F(X) = Σ M*)/M [* c (x-A)],
υ

= /(*) (*CA)

is the extension of f which we have constructed. The proof of the continuity is es-

sentially a repetition of the last part of 4.1, and is as follows: By the consider-

ations of 2.31, the continuity of F need be proved only at points of A Select any

convex nbd F of F(a) = /(α); we are to find a nbd W" Z> a with F(W") C F.

Since /is continuous on A, there exists a δ > 0 such that d(a9a') < δ implies

f(a') £ F. Now let W be a nbd of a in X of radius < δ/3 since \ Jj}'is canonical,

we can find a nbd W' , a £ W' C W, such that whenever U Π W' ^ 0, then

U £ W. It follows that for any χυ £ W we have f/ C tF and so d(xU9 a) < δ/3;

this shows that d{aζj9a) < d(au9xy) + d(xu9a) < δ and therefore we conclude:

(*) Whenever Xu £ IF' , ί/ιeτι Ft^ί,) = /(α^) £ F.

Construct, finally, a nbd IF" such that a £ tF" C W and such that whenever

U Π ίί7" 7̂  0, then U C IF ; . We are going to show that F{W") C F.

In fact, if Λ £ W" Π (X - A), let % £ ί/t Π Π Un and % £ only these

sets; since Σu\y{x) = 1 for every # £ {X ~~ /I) and XJ/IΛ;) ψ 0 only if £/ = £/;,

i — 1, ,n, it follows that F(x) belongs to the (perhaps degenerate) cell in L

spanned by /(α^),* ,f(aτjn); and since UiΓϊW" ψ 0 for i = 1, ,rc, we see

from (*) that f(ay.) C F, Ϊ = 1, ,/ι. This means that the vertices of the cell

spanned by fidy.),* ,f{o>jj ) are all in the convex set V, so the linear extension

lies in V also, and therefore F(x) £ V. Since x is arbitrary, we see that

F[W" Π (X ~

But also, since we have diameter W" < δ , it follows that F(W" Π A) =

f(W" Π A) C F, and so FdF") C F, as stated. Since L is locally convex, this

proves F continuous at points of A , and, as remarked, continuous on X. (See also

Kuratowski [9] ).

We note that to prove Theorem 4.1 our method requires essentially three
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things: (l) the existence of a canonical covering of X -~ A9 (2) the possibility of

mapping X — A into the nerve of a canonical covering, and (3) the possibility

retracting the set J#£/5 into A; for (3) allows an extension over the vertices

of Mi/), and then with a linear extension over the cells the theorem follows at

once from (1) and (2). The metric enters in obtaining (1) and (3), while the para-

compactness comes into play only in establishing (2) (Dowker [4] Stone [12]).

It should be remarked that, after Theorem 4.1 was communicated to R. Arens, he

was able to demonstrate that the method used here applies in the case where X is

paracompact (but not metric), provided L is a Banach space. Arens' result coin-

cides with one by Dowker (oral communication).

5 Application to the simultaneous extension of continuous functions* The ex-

plicit form of the extension given in 4.3 immediately permits us to answer a

question of Borsuk [2J. Let Z be a metric space; denote by C{Z) the Banach space

of all bounded real-valued continuous functions on Z . We prove, as a first appli-

cation:

5.1 THEOREM. Let A be a closed subset of a metric space X then there

exists a linear operation φ which makes correspond to each f £ C(A) an ex-

tension φ(f) £ C(X).

Proof. With the notations of Theorem 4.1, having selected the points ay once

for all, define for every / C C(A),

Φ{f) = Σ λt/OO/M

u

Then φ(f) is clearly an extension of / for every / (see 4.3). We have evidently

φ(f + g ) =Φ(f) + Φ ( g ) ,

\\Φ(f)\\ = 11/11,
and so φis additive and continuous, hence a linear operation.

The restriction of Borsuk [2] that A be separable is thus not necessary. This

result extends, naturally, to Banach space valued functions.

6. Application to normed linear spaces. To give another application, we charac-

terize those normed linear spaces for which Brouwer's fixed-point theorem holds



AN EXTENSION OF TIETZE'S THEOREM 361

in their unit spheres.

6.1 LEMMA. Let L be a normed linear space, and C d L the set

Ul 11*11 = i i .

Let an be any n-cell, and β"crn its boundary. If C is not compact, then any

f:βσn —* C can be extended to an F : σ n —> C,

Proof, By a known theorem [l,p.502J it is enough to show that fiβσn) can

be contracted to a point over C, Now, since βcrn is compact and C is not, it

follows that fiβcrn) cannot cover all of C, so that there exists at least one

point x0 C [C — fiβσn)~\ , Select its antipode — x0 and define

Then φ is continuous in x and t, since the denominator cannot vanish for any x be-

cause — χ0 and f{χ) are never antipodal. Since φix , 0) = fix), φiβσn, 1) =

— x0 , and llφGt, ί) | | = 1 always, φ exhibits the desired contraction.

6.2 THEOREM. Let L be a normed linear space, and C = \x \ x \ — 1} . //

C is not compact, then C is an absolute retract.

Proof, With the notations of Theorem 4.1, let us take the space A U NiU) and

the mapping f: A —> C, By the construction of Theorem 4.1, we extend f to

F : A Ό NW) —> L and notice that F [A U N(U)] C C = \x \ \\x !| < 1} . Let

C = [x I || Λ; ί| < 1/21 then C - C is an open set and F'\C - C') is an

open set containing A* Let us consider the totality of all closed cells contained

in F"ιiC ~~ C ) ; this is a closed subpolytope Q of NiU), and because {U} is

canonical it is easily verified that no point of A can be a limit point of NiU) ~" Q',

furthermore, A U Q is a closed subset of A U NiU).

Let r(Z) = ^/IIHI > then taking rF iA U ̂ ) we observe that this is an ex-

tension of /: A —> C over the closed set A U Q, with values in C, We shall now

extend rF \ iA U Q) over NiU) ~" Q with values in C; this is the desired extension

of/.

Define

Φo(p) = rF{p) (p a vertex of N(u) - Q) ,

= rF(x) {x C A U Q) .
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Then φ0 is an extension of rF\(A U Q) over the vertices of N(U) ~ ^ with

values in C; the continuity is evident since we have rF(p) = F(p)for all vertices,

and since F is continuous.

We proceed by induction. Let φn be an extension of φ r ι _ 1 over all A U 0 U

[n-cells of N(U) ~~ Q]9 with values in C. We construct φn+\ as follows: for any

U + l ) - c e l l of NW) - Q, we have φn(βσn + ί) C C; applying Lemma 6.1, we

obtain an extension φn + γ'. cfn*1 —> C; extending over every rc+1-cell, with

values in C, we obtain φ^ + i Now, φn + ι is continuous, in virtue of 2.23 and be-

cause no point of A is a limit point of N(U) ~ Q . Defining

φ{x) = limφn(x)
n

for each x C A U N(U), we observe that φ is continuous; further, φ is an ex-

tension with values in C of rF \ (Λ U Q), and hence of / : A — * C. This proves

the assertion.

6.3 T H E O R E M . Let L be a normed linear space> and S — \x\\\xf\ < ]]. A

necessary and sufficient condition that every continuous f: S — > .S have a fixed

point is that S be compact.

Proof. US is compact, the result comes from Tychonoffs Theorem I_X 3 J If S

is not compact, it follows readily that C: [x | |x| | = 1} is not compact either.

Let F : S —> C be an extension of the identity map / : C —> C (6.2 Theorem).

Setting φ(x) — ~ F(x), we see that φhas no fixed point.

In particular (Banach, [2, p. 84] )this proves that the Brouwer fixed-point theorem

for the unit sphere of any infinite dimensional Banach space is not true. This is

a partial answer to a question of Kakutani [ό] who showed that in the Hubert

space a fixed-point free map of the unit sphere in itself can in fact be selected to

to be a homeomorphism.

6.4 COROLLARY. Let L be a normed linear space with noncompact

C: U | | | * | | = i | .

Then C is contractible on itself to a point.

Proof. Form the metric space C X /, / the unit interval, and map C X 0 by the

identity, C X 1 by a constant map. Since C is an absolute retract, the map on

C X 0 U C X 1 C C X / extends to a φ: C X / —-> C, and this φ gives the re-

quired deformation.
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7. Application to a generalization of the theory of locally connected spaces.

For our final application, we show that the entire theory of locally connected

spaces can be extended to arbitrary metric spaces. In this development, as in that

for the separable metric spaces (Fox [ 5 ] ) , the role of the ϊiilbert cube in the

classical theory is taken over by a whole class of ''universal" spaces. Kuratowski

[β]has shown that any metric space Z can be embedded in the Banach space C(Z)

of all bounded continuous real-valued functions on Z. Subsequently, Wojdyslawski

Ll5] has pointed out that, in the Kuratowski embedding of Z —> C(Z), Z is a

closed subset of its convex hull //(Z). The "universal" spaces in our develop-

ment are the convex sets in ίίanach spaces. We shall illustrate the technique by

proving a theorem (7.5) about '"factorization" of mappings into absolute nbd

retracts.

If A is a subset of Λ, A is called a retract of X if there exists a continuous

r: X —> A such that r{a) — a for each a £ A if A i s a llausdorff space, it

follows that a retract of X is closed in A. Now we prove the following result.

7.1 T H E O R E M . The following two properties of a metric space Y are equiva-

lent :

7.11 In every metric space Z Z) Y in which Y is closed, there is a nbd

V Z) } of which Y is a retract.

7.1 2 If X is any metric space, A a closed subset of Λ, and f: A —> };, there

exists a nbd lί Z> A and an extension F : IF —> Y of f.

Proof. We need only prove that 7.11 implies 7.12, the converse implication be-

ing trivial. Let Y be embedded in H(Y) as a closed subset. By Corollary 4.2, we

get an extension of / : A — > }' to F: X — * H(Y). Let V be a nbd of Y in I/{Y)

which retracts onto } , and r the retracting function. Then F" (V) — W is open in

A and contains A, and r F : \\ * Y is an extension of /.

Λ metric space Y with the properties 7.11, 7.12 is called an absolute nbd

retract, abbreviated ΛNR. They are thus characterized as nbd retracts of the set

//(}') in CAY).

7.2 L E M M A . Let Y be an ANR. Then given any covering \u] of Y, there

exists a refinement \W] with the property: If X is any metric space and f0>

fι'. A — > Y are such that fo(x), f \{x) lie in a common set of \W \ for each

x £ A , then fϋ is homotopic to fϊ9 and the homotopy φ{x9t), 0 < t < 1, can

be selected so that φ(x,I) C some U for each x £ A , where I denotes the
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unit interval.

Proof. We consider Y embedded in H(Y) C C(Y). Since Y is closed in H(Y),

and Y is an ANR, there is retraction r of a nbd V Z) Y in #(Y) onto Y. To simpli-

fy the terminology, we let a spherical nbd of y C H(Y) be the intersection of a

spherical nbd of y in C(Y) with H{y). For each y £ Y, select a spherical nbd

S(y) in H{y) such that S(y) C V and S(y) Π Y C some {/. Finally, for each y,

select a spherical nbd T{y) C S(y) in #(Y) such that r[T(y)] C % ) . The de-

sired covering is { T(y) Π Y\; it clearly refines {u}. If / 0 , f\ : L̂ —> Y and

fo(x)i f\M a r e * n a common Γ(y) Π Y for each Λ; , they can be joined by a line seg-

ment that lies in T(y) and therefore lies in V. Letting φ(x,t) be the point tfo(x) +

(1 ~~ t) fχ(x), we see that rφ(x9t), 0 < t < 1, gives the required homotopy.

It is not known whether this property implies that Y is an ANR. It does follow

readily, however, from 7.2, that an ANR is locally contractible. The theorem also

holds for LCn metric spaces, provided dim X < n; the property is in fact equiva-

lent to LCn It should be noted that Lemma 7.2 holds also if X is any CW poly-

tope, since then φ is still continuous (Whitehead [l4]).

Our second lemma requires the following definition (Lefschetz [ l l ] ) : Let Y be

a space, and {u} a covering of Y. Let P be a CW polytope, and Q a subpolytope

of P containing all the vertices of P. An / : Q —> Y is called a partial realization

of P relative to \v\ if, for every cell σ C P, we have f(Q Π σ) CI some {/.

7.3 LEMMA. Let Y be an ANR. Then given any covering \V\ of Y, there

exists a refinement \V\ with the property that any partial realization of any CW

polytope P relative to \V\ extends to a full realization of P relative to \Ό\.

The proof given by Lefschetz [ l l , 10.2,p. 89] can easily be applied to yield

this result, after a preliminary embedding of Y in H(Y). This property is in fact

equivalent to ANR; when we restrict P so that dim P < n + 1, this property

characterizes the LCn spaces.

The final lemma required is a covering lemma.

7.4 LEMMA. Let Y be a metric spacef and \U\ a covering of Y. There exists

a refinement \ V} of {u} with the property that whenever Πoc Va φ 0 ,then U α Va CI

some U. The covering \ V \ is called a barycentric refinement of \ U \ (cf. a lso

D o w k e r [ 4 ] ) .

Proof. L e t \U'} be a l o c a l l y f ini te r e f i n e m e n t of \u}9 a n d N(U') t h e n e r v e
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of {U'}9 K the barycentric mapping (2.31) K : Y —» NW') Let /V' be the bary-

centric subdivision of the polytope NW') and {p'] its vertices. We take stars in

N' (the CW topology of /V is a subdivision invariant); then the open sets V — K"1

(star p ') form the required covering.

We now prove the "factorization" theorem:

7.5 THEOREM. Let Y be an ΛNR; then there exists a polytope P and a

continuous g: P —> Y with the property that, if X is any metric space, and

f: X —> Y, there exists a μ: X —» P such that gμ is homotopiq to /.

Proof, Let us take the covering of Y by Y alone, and obtain a refinement \W\

satisfying Lemma 7.2. Let J F ' j be a refinement of \W \ satisfying Lemma 7.3

relative to {W}, and \V \ a locally finite refinement of a barycentric refinement

of { F $ . We now construct a mapping g: N(V) —* Y, as follows: if pv is the

vertex of N(V) corresponding to V £ [ F J , se lect yv £ V and set g(pv) = yv.

This is clearly a partial realization of N(V). If (pv , ,pv)isa cell of N(V),

then Vx Π Π Vn φ 0 so that U?=i Vi C: some V ' thus all vertices are sent

into a set of F ' . Hence (7.3), the mapping g extends to a g: N{V) —> Y. This

map g and polytope TV(Ϊ̂ ) are those required.

Now, for any metric space X and f: X —> Y, construct the covering \f"l(V)\

of X, and let |f/| be a barycentric nbd-finite refinement of \f'ι{V)\. We take

K:X —* NW) and define g' : NW) ~> Y a s follows: if P £ / is a vertex of NW),

select XJJ C ί/ and set g'(pτj) — f(xjj) .

Again, as before, g' extends to a mapping of M60 into Y.

We shall first show that f is homotopic to g' K by showing that for each x9f(x)

and g1 K{x) are in a common W (7.2). If x £ Uι Π
 # Π Un and x Q only these

sets, then K(x) £ ( p ^ , * SPί/n); s i n c e g'(pί/£) = /Uί/f) C /(t/t ) we have

U/=i g'(pϋi) C ULi /(ί/i) C ί7, so that g'K(x) is in some IF =) F. On the other

hand, f(χ) £ /(t/ iΠ Πί/Λ) C U ^ i /(ί/i) C F also; this shows that g ' K(x)

and /(%) are in a common set W for each x, and hence are homotopic.

Next, we map NW) into N(V) simplicially as follows: if pu is a vertex of

NW), select some V with ϋ <Z / Ή F ) and set π(prj) = p F . It is easy to verify

that π is simplicial. Extending linearly, we have 77: /V(/7)—> /V(F). Again it is

simple to verify that gτr{x) and g 'U) are in a common set IF for every x £ /V(ί/),

and hence are homotopic.

Thus we see that f is homotopic to gTίK, so that, with ΉK = μ, the theorem

is proved.
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The property is not known to be equivalent with ANR. The theorem also holds

for LCn spaces, if dimA^ < n the polytope P can be chosen so that dim P < n in

this case. We have the trivial consequence:

7.6 COROLLARY. If Y is an ANR, and P is the polytope of the theorem, then

the continuous homology groups of Y are direct summands of the corresponding

groups ofP,

Proof. By taking X — Y and i: Y —> Y the identity map, we have i homotopic

to g/JL', hence, for each n, the homorphism Hn(Y) —> Hn{Y) induced by gμ is the

identity automorphism. The result now follows from the trivial group theoretic

result:

7.7 T H E O R E M . If A, B are two abelian groups and μ: A —> B, g: B —> A

homomorphisms such that gμ{a) = a for each a £ A, then A is isomorphic to a

direct summand of B.

Proof. Since gμ(a) = a for every a £ A, it'follows at once that μA —> B

is an isomorphism into. Furthermore, μ(A) is a retract of B. In fact, defining

r — μg we see that r: B —> μ(A); further, for each b — μ(a), we have r(b) =

μgμ(a) — μ(a) — b. Since μ(A) is a retract of B, it is a direct summand of B ,

and β = μ(A) θ Kernel μg.

In the case that Y is a compactum, all coverings involved can be chosen finite,

and 7.6 yields known results (Lefschetz [ l l p.109]). If the Y is a separable

metric ANK, the coverings can be so chosen (Kaplan [7]) so that, the polytope P

is a locally finite one.

It should further be remarked that the method of proof used in Theorem 6.2 is a

completely general procedure to prove that an ANR which is connected in all di-

mensions is in fact an absolute retract.
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THE POLARIZATION OF A LENS

JOHN G. HERRIOT

1. Introduction. In a previous paper [ 3 ] , the author obtained inequalities

comparing the capacity of a lens with various geometric quantities of a lens. A

lens may be described simply as a solid of revolution determined by the inter-

section of two spheres. More precisely, if c > 0, the solid of revolution generated

by revolving about the imaginary axis the area in the complex 2-plane defined by

the inequalities

θι < arg < θ2

z + c

is called a lens. We may suppose 0 < θx < θ2 < 2τr. It is, however, more con-

venient to characterize a lens in terms of its exterior angles. Accordingly we

denote by Cί and β the exterior angles which the two portions of the boundary of

the generating area make with the real axis. It is easily seen that β — θlf Ci —

2 77 — ί?2 ^ e shall assume, as we may without loss of generality, that Gί < β. The

sum of these angles, GC + β9 is called the dielectric angle of the lens. Clearly we

have GC + β < 277, and hence we need consider only values of Gί not exceeding

77. Sometimes it is convenient to introduce the radii a and b of the intersecting

spheres; these are given by

c = a sin Gί = 6 | s in β\ .

It is clear that when α + β — π the lens becomes a sphere; and when Cί -f β > 77,

β < 77, the lens is convex. When β ψ 0 and 0C —> 0, with a fixed, the lens be-

comes a sphere of radius α. When GC, β —> 0 in such a manner that β ~ λ-Cί, and

a is kept fixed, the lens becomes two tangent spheres of radii a and a/k. When

0C, β —> 77, with c fixed, the lens becomes a circular disk of radius c.
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tember 7, 1948 and October 28, 1950. The results presented in this paper were obtained in
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In the present paper we consider the polarization of a lens, obtaining inequali-

ties comparing the average polarization with the capacity and volume of the lens.

This investigation is one phase of a general studyof relationships between various

physical and geometric quantities which has been carried on at Stanford University

during the past four years under the direction of Professors Pόlya and Szego [ 5 ] .

We now explain the concept of polarization as it has been defined by Schiffer

and Szego [ 6 ] . (Cf. also Pόlya and Szego [5].) Consider an infinite electric

field whose direction is determined by the unit vector h. When a conducting solid

is placed in this field, the uniform field will be disturbed; the disturbance is

equivalent to superimposing another field on the original one. If the electric po-

tential of the superimposed field is denoted by ψ9 then its energy is given, apart

from trivial factors, by

the integral being extended over the whole space exterior to the solid.

We note that the function \jj is harmonic and behaves like a dipole at infinity.

Also \jj satisfies on the surface of the given solid the boundary condition

φ = h r -f constant ,

where r is the radius vector. (The additive constant must be chosen properly.)

We call the quantity P the polarization in the h-direction. It is easily verified

that P is a quadratic form in the components of h :

3

P = Σ Pi.khihk
i,k = i

The coefficients of this form depend naturally on the coordinate system used;

however, the invariants of this form are independent of the coordinate system. The

simplest of these invariants, and the one with which we shall be concerned in this

paper, is the average polarization Pm, defined by

(1) Pl.
2,

The study of P is facilitated by introducing the expansion of the potential \p

at infinity, where, as has already been observed, it behaves like a dipole. The

strength component of this dipole in the direction h can be represented in terms

of the leading coefficient (that of r~2) of the potential; it is a quadratic form
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in hi , say

3
E = Σ eι,khιhk .

ι,/e = l

We call it the dipole form associated with the polarization. By use of Green's

formula, it is easy to establish the elegant relation

P = 4ττ£ ~ V ,

where V is the volume of the solid. It has been found that E shows a more regular

behavior than P. We shall frequently find it convenient to consider Pm + V in the

present paper.

It is known that for a sphere we have P — Pm — 2 V. It is conjectured that

Pm > 2 V for other solids. Now for arbitrary solids it is well known that the ca-

pacity C is not less than the radius of a sphere having the same volume as the

given solid. (See e.g. Pόlya and Szego [4] .) Thus we have V < (477/3) C 3 . Ilence

the inequality Pm > (8 77/3) C 3 is stronger than Pm > 2 V. An even stronger ine-

quality is

(2) Pm + V > 4τ7C3 .

Since, as has already been pointed out, E shows a more regular behavior than

P, it is not surprising that this last inequality (2) is the easiest to investigate. It

can be studied readily in the case of a lens by means of explicit expressions

which Schiffer and Szegό' [6] have given for ex, βy, ez (e ι # 1 , e2,2> e3,3 )» where

the z-axis is in the direction of the axis of the lens. From these we can write at

once the expressions for Px , Py 9 Pz , the polarizations in the χ-9 y-9 and z-

directions. These formulas with others are collected together for convenience in

§2. We then prove in §3 the strongest inequality (2) for the case of the spherical

bowl (lens with Cί + β — 277). The same inequality is proven in §4 for the so-

called Kelvin case (lens with Cί -f β = 77/2), in §5 for the case of two tangent

spheres, and in §6 for the symmetric lens. More detailed information concerning

the behavior of the corresponding ratio is obtained for some of these cases.

2. Basic formulas. In this section we collect for convenience several formulas

which will be useful in the later sections. Those for the polarization of the lens

in the general case and in the several special cases are obtained from the paper

of Schiffer and Szego [6] . Those for the capacity are taken from a paper by Szego
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[?] , which also gives references to the original literature; they are also collected

together in the author's previous paper [ 3 ] , and in the paper of Schiffer and

Szegό' [6] .

For the polarization of the lens, we have

(3) Pi.i=P2,2=P» =Py =4πex - ϊ , P 3 , 3 = Pz = 4 τ τ e z - V ,

where

roo 2 N sh πq ch (θί - /3)g + sh (α + /3 - 77) qr

(4) e* = e y = 2c J (g + J )
00 sh (α + y Ĵg ch7τg

,_. « /.oo 9 sh TΓq ch (u -~ /3)q + sh (JT — 0̂  — /3)q
vo) e z = 4 c J / q : do

J'°° sh (α +/3)g chπg

3 Γ Γoo sh ( α — β)q
4 c I g t h 77g —

L °° sh (α + β)q
ΛCO sh 77g ch (u — β)q -f sh (α + β — ττ)g

•/-co s h ( α . . ^ ^

F or the electrostatic capacity of the lens, we have

(ίΛ ^ Cω shirq ch (α - β)q + sh (α + β ~~ Ή)q
VΌ) C = c J r dq .

sh (α +β)q chπq

For the case of the spherical bowl, in which CC + β — 277, these formulas yield

(7) ex =ey = | c 3 [ / " ( a ) +f"(rr) + /(α)] ,

(8) β2 - c3|/"(α) -/» - [ 2

and

(9) C = c/(α) ,

where

ch (77 — α ) g ] 2 l / 77 —

4 d = l+(10) /(α = jΓ^ 4 d q l +
00 L chτ7g J 77 1 s i n αJ 9 π\
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We note t h a t / " (π) = ( 3 π Γ ι .

For the case of the lens with 0. -f β — 77/2 (Kelvin case), we have

(U) ex =ey = §-c3[fe(a) + k(β) -fe(0) + k" (a) + k" (β) ~ k"

(12) ez =c3{k"(a)+k"(β)+k"(0) - [fe'(α)- k'(β)]2/[k(a)+k(β)~k(0)]l

and

(13)

where

(14)

[See formula (A-l) in Appendix A.] .

For the limiting case of two tangent spheres of radii a and b9 we have

= c[k(u) +k(β) -k{0)]=a +b -c ,

ra> ch2αg
k (α) = / — dq = sec α .

(lc
ab \

α + 6 ι α + 6j \a + b

(16)
α6

[a + b
-ψ"

a + 6

α + b

α -h 6

α + 6

and

(17) s~i
ab

a + b α 1 6 a + 6

μ
α + b

- 2 y

- 2 y

where I/;(M) — F (α)/Γ(w), Γ(z/) being Euler's gamma function, and where y is

Euler's constant.

Finally, for the case of the symmetric lens we obtain
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(18)

(19)

and

(20)

JOHN G. HERRIOT

ex ~ ey - 2c 3 £ (q2 + £•) ( l — th πq th OLq) dq ,

ez = 4c 3 f q2 (th T7ςr cth (λq — l) dq ,

C - c f ( l — th 77 g th dq) dq .

An elementary calculation shows that the volume of the lens is given by

7τc3 [ α α β β
(21) V = (2 - cos a) cot- esc

2
 - + (2 - cos/3) cot - esc

2
 -

6 2 2 2 2

3 Spherical bowl, α + β — 277. The volume V of the spherical bowl is clearly

zero, so that the inequality (2) becomes Pm > 477C3. In this section we consider

the ratio Pm/4πC3.

From (1), (3), (7), (8), and (9) we obtain

(22) f (oQ/(α)+[/(cO]2 ~
3[/(α)]4

If we make use of equation (10), which gives /(Cί) explicitly, and substitute δ for

77 — Cί,we easily obtain

(23)
77

477C3 3(8 + sin δ) 4
[3δ2 +4δ sinδ - δ sin2δ

- ^ sin2 2δ - 2 sinδ sin2δ] .

?\'e differentiate (23) with respect to δ and find

(24)
d

477

77 2(1

3(8 + sinδ)5

where

(25) H(δ) = δ 2 + S s in δ - 4(1 - cos 8) .

We now proceed to show that //(δ) > 0 for 0 < δ < 2τr. Clearly // (0) = 0. A\1SO,
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//'(δ)' = 2S + S cos S - 3 sinS ,

#"(δ) = 2 sin S(tani-8 - £ δ) .

If 0 < δ < π , then sin δ > 0 and tan (δ/2) > δ/2, so that //"(δ ) > 0. But if

π < δ < 277, then sin δ < 0 and tan (δ/2) < 0, so that again //"(δ) > 0. Thus

// (δ) increases monotonely as δ increases from 0 to 277. But // (0) = 0. Thus

7/'(δ) > 0. Since 77(0) = 0, it follows that H (S) > 0 for 0 < δ < 2τ7. From (24) it

follows that P m / 4 77C3 decreases monotonely as δ increases from 0 to 77 . But

from (23) we easily find that Pm/477C 3 has the value 77 2/9 for δ = 0 and the

value 1 for δ — 77. It follows that Pm/4<7T C 3 increases monotonely from 1 to

772/9 = 1.097 as Cί increases from 0 (sphere) to 77 (circular disk). Thus for the

spherical bowl the inequality Pm > 4τ7C 3 is proven.

4 Kelvin case, Cί + β = 77/2. We now consider the case of a lens of dielectric

angle 77/2 formed by the intersection of orthogonal spheres. The polarization and

capacity can again be expressed in terms of elementary functions, so that the

study of the ratio (Pm + ί/)/4τ7u3 is not difficult. For this case we use equations

(1), (3), (11), (12), and (13) to obtain

(26) P» +v _Λk"^) ^k"(β)][k(a) +feQS)-fe(O)]
4πC3

t [k(a) + k(β) - k(Q)Y - [k> (*) ~ k>(β)Y

3[fe(α) +k(β)-k(0)γ

where k{d) is given by (14), and, as throughout this section, β = π/2 ~~ Cί. We

note that A (α) + h{β) — k (0) becomes infinite when Gί tends to zero orτ7/2; in

order to obtain a fraction whose numerator and denominator remain finite, it is

convenient to multiply the numerator and denominator in (26) by sin4Cί cos4Cί. If

we subtract 1 from both sides of (26), we obtain

(27) p* +V

 1 =

in C3 3 sin4 a cos4 a [fe(α) + k(β) - k(θ)]4

vhere
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(28) k*(a) =s in 4 α cos4 α {2 [k"(α) + k"(β)][k(a) + k(β) - k(θ)]

+ [jfe(α) +k(β) - k(0)}2 - [fe'(α) -k'{β)f

-3[fe(α) +fe(/ί)-fe(0)]4}.

We note that &*(&) is always finite. In order to prove the inequality (2), it suffices

to prove that λ;*((X) > 0 for 0 < (X < 77/4 since, as was pointed out earlier, we can

always suppose Cί < β . We make use of (14) to obtain the following necessary

expressions:

(29) s in GO cos<x[fe(α) + k(β) - k(θ)] = s in Cί + cosCί(l - sin α) ,

(30) s in 2 α cos2Cί[>'(cί) - k'(β)] = s in 3 α - cos3 Cλ ,

(31) s in 3 α cos3α[/2 / /(α) + k"(β)] = s in 3 (λ + sin 5 α + cos3 α (2 - s i n 2 α) .

If we substitute (29), (30), and (31) in (28) we obtain, after some simplification,

A:*(α) = 2 sin Cί cos α(l ~ cos α ) 2 ( l — sin O,)2 [cosα(4 ~ sinα) + 2(1 + 2 sinCί)].

It is clear that each factor in this product is nonnegative, and hence k (Cί) > 0

for f.) < a < 77/4 and indeed for 0 < Cί < 77/2. As previously noted, this is suf-

ficient to prove the inequality (2) for this case.

5 Two tangent spheres. We now consider two tangent spheres of radii a and

b, (We assurπe without loss of generality that b < a.) We write b/(a + b) — z

(z should not be confused with the z-coordinate), and make use of (1), (3), (15),

(16), and (17), obtaining

Pm +V 2[~φ"(z) -ι//"(l - z)][-ψ(z) -ψ(l - 2) - 2y]
(32)

477C3 3[~ψ(z) ~~Φ(l ~~ z) — 2y]

Recall ing that

1 °° /1 1

Φ(z)=-Ύ — + Σ [ - - ~
z π , , \n n +

+ z{
n - 1 \

we obtain
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(33) - -z)-2γ = + Σ
In + 1

n2 + n + z(l - z)

We note that this expression is a function of z ( l ~~ z), and make the substitution

z (1 ~~ z) ~ y. It is clear that z lies between 0 and 1/2, and hence γ lies between

0 and 1/4. For such values of y, 2 is a single-valued function of y given by 2z

= 1 - (1 - 4y) y \ We have also

(34)
dy_

dz
= 1 - 2z = (1 - 4y)*

It follows that both 0 '(z) - \p' (1 - z) and - \jj" (z) - ψ" (1 - z) are single-valued

functions of y for 0 < y < 1/4. Thus, by (32), the same is true of (Pm + F)/47τC3.

We denote this function by t(y). We shall show that t(y) increases as γ increases.

We therefore consider t'(y). A simple calculation gives

(35)

where

M = 4 ί

M

3 ( 1 - - z) - 2γ]5 '

- z)\{2[-ψu{z)-ψtt(l - z)][- - z) -

- 2{ψ'"(z)-ψ'"(l - z\{-ψ(z)-ψ(l - z) - 2γ \2 .

If we make the substitution z (1 — z) = y in (33), and let l/[n(rι+ 1)]— αΛ, we

obtain

y[-ψ(z)~Ψ(l -*) ~2γ] = 1
n = l

(2n + l ) α π 2

But

(2n
- - = - α n - (2π + l)a2

n y + (2π + l)α 3

π y
n

any n

- 93 y 2
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It is easily verified that

(36) Σ « n = Σ (2n

For convenience we let

00

(37) bm = Σ (2n

By (36), we have b2 = 1. It follows that

(38) γ[-Φ(z)

( « = 2 , 3 , 4 , • • • )

Now

( 3 9 ) 6 , =
1

(w = 3 , 4 , 5 , •••)

Repeated application of this inequality shows that

(40) <
1 1

6 2 = .

Thus the series in equation (38) certainly converges uniformly and absolutely for

0 < y < 1/4.

If we divide equation (38) by y9 differentiate with respect to z, and make use

of (34), we obtain

(41)

= (1 - iy)* i +y2 + Σ (-

Similarly we find that
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(42)

= 2 -l - 3 y

and

(43) y4l>"'<

where

00

< ? = l - 2 y + Σ ("]

= 6 ( 1 -

(m - 2 ) ( « - 3 ) m - 1
bm + ( 2 m - 5)6 m _ x

By means of (40) it is easily seen that the series in (41), (42), and (43) are uni-

formly and absolutely convergent for 0 < y < 1/4. Moreover, the terms of these

series as well as those of the series in (38) alternate in sign after the first few

terms. If we make use of (39) and (40), we easily verify that the terms in each of

these series decrease in absolute value for 0 < y < 1/4. Consequently, each

of these series may be conveniently estimated by taking a finite number of its

terms. In order to simplify the estimates we need a better estimate for bm than is

given by (40). We easily find that

(44)
1 3 1

(m = 3 , 4 , 5 , ••' ) .

The following estimates are then obtained:

(45) y[-ψ(z)~Ψ(l - 2 ) - 2 7 ] < 1 - y - y 2 + 6 3 y 3 - 6 4 y 4 + | y 5 ,

(46) y[-ψ(z)-ψ(l-z) -2γ]

> 1 - y - y2 + b3y
3 - 6 4 / + h V* ~ h y\

(47) / [ ^ ' ( 2 ) - ψ ' ( i - , ) ]

< (1 - 4yf [1+y2- 263y
3 + 364y

4 - i y5 + ̂  y 5 ] ,

(48) y*[ψ'(z)-φ (l-z)]

> (1 - 4 y f [ 1 + y 2 - 26 3y 3 + 36 4y 4 - | y5 ] ,
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(49) y3ί-ψ"(z)-φ"(l-z)]

> 2 [ l - 3y + (63 + l ) y 3 ~ 3(64 + 263)y4 + 3y5 - 4y f i ] ,

(50) y*[ψ'"(z)~ φ'"(l-z)]

[ l - 2 y + (64 + 2 63)y4 - 2y5 + 4y6] .

All of these estimates are valid for 0 < γ < 1/4.

Before substituting these estimates in (35), we find it convenient to estimate

certain combinations which appear there. From (49), (46), and (47) we obtain

( 5 1 ) y ' { 2 [ ( (

> 3 - 12y+ 6y2 + 12(63 + 2)y3 - (2264 + 5663 + 5)y4

+ (4864 + 2463 + ̂ ) y 5 + (664 + 1263 - ψ)y6

+ (2064 - 4 6 3 6 4 -86 3

2 + ̂ ) y 7 + ( ^ 6 3 - 2 4 6 3 6 4 + 364

2 + ψ)

f 63^ 6 3 - 366| - J)y9 + ( ^ 6 4 - f 63 + i i )

> 3 - 12y + 6 y 2 + 1 2 ( 6 3 + 2 ) y 3 - ( 2 2 ό 4 + 5663+5)y4 + 2 4 y 5 - 28y6.

In passing to the last inequality we have made use of the inequalities (44) to

estimate the coefficients of y5 and y 6 and to prove that the sum of the last seven

terms is nonnegative for 0 < y < 1/4. From (45) we find in a similar way that

(52) y2ί-φ(z)-φ(l-z)-2Ύ]2

< 1 - 2y - y 2 + 2(6 3 + l ) y 3 - (264 + 26 3 - l ) y 4 + §• yβ .

We proceed in a similar manner using (48) and (51) to obtain

(53) 4y6\φ'(z)-φ'(l-z)}{2[-φ"(z)-φ"(l-z)][~φ(z)-φ(l-z)-2Ύ]

l2 - 48y + 36y2 + 24(63 + 2)y3

- (5264 + 12863 - 4)y4 + 150y5 - 344y6] .
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The last combination which we shall need is obtained from (50) and (52); it is

(54) 2yβ[φ'"(z) - ψ'"(l - z)][-ψ(z) — ^(l - z) - 2 y ] 2

< (1 "" *yf [12 - 48y + 36y2 + 24(δ3 + 2)y3

- 12(64 + 463 + 3)y4 - 42y5 + 95y^] .

If we substitute from (53) and (54) into (35), and use the result that

26 3 = l ) ( α *
n = l

1 1

192 - 439y

we obtain

(55)

Now for 0 < y < 1/4 it is clear from (38) that y [— ψ(z) - ψ(l - z) - 2γ] is finite

and positive. Hence by (55) we see that t'(y) > 0 for 0 < y < 1/4. It is easily

verified from (35) that t'(0) = 0. Thus t(y) increases monotonely as γ increases

from 0 to 1/4. This means that the ratio {Pm + V )/4>ττ C3 increases monotonely as

b increases from 0 t o o , where a and b are the radii of the tangent spheres.

Now we see that b —> 0 implies z —> 0 and hence y —> 0. If we multiply

the numerator and denominator of (32) by y 4 and make use of (38), (41), and (42),

we find that b —> 0 implies

P 4- V

4T7C3
— 1

Also we see that z ~ 1/2 when a — b , and hence in this case (32) yields

Pm +V -40" (I) ~Ψ"(k) 7 ζ ( 3 )
3[-2ι//(§-) - 2 y ] 3

log 3 2 24 log 3 2
= 1.053 ,

where ζ(z) denotes the Hiemann zeta-function. (To obtain the values of ι//'(1/2)

and ψ (1/2) see, for example, Copson [2, p. 229] .)

Thus as b increases from 0 (one sphere) to a (equal spheres) we see that the

ratio (Pm + V)/4>πC3 increases monotonely from 1 to 7ζ(3)/(24 Iog32) = 1.053.

Thus we have proved the inequality (2) for the case of tangent spheres.
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Of course the weaker inequalities Pm > (8ττ/3)C 3 and Pm > 2 V follow im-

mediately from (2). However, it is instructive to consider the behavior of the

corresponding ratios for this case of tangent spheres. This behavior can be de-

duced from the results just obtained if we first study the behavior of 4τ7C 3 /3F.

It has already been pointed out that this ratio is never less than unity [4J .

The volume may be obtained from (21) by setting β = (α/δ)(X and letting Cί—>0,

or more simply by direct calculation. It is found to be

(56) V = —
ό

l -
3α6

i (α + 6 ) 2

since y — z (1 — z), z — b/{a + b).

If we now make use of (17) and (56) we find that

= ~ (a - 3 y ) ,

y[-φ(z)-φ(l-z)-2Ύ]
(57)

This is a function of y and we could differentiate it with respect to y and prove

the derivative nonnegative by a method similar to that used in treating t '(y) above.

F3ut the following method seems to be more elegant. We have

(58) = 1 +
l 4 - 7 ' (3 m - 2 )

If we substitute (58) and (38) into (57), we obtain

3 V

L/3

where

1 4 7 I . 4 . 7 . .« • ( 3 m - 5 ) 1 4 7 '(3m - 8 )

(m - 2) !
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Σ ( _ i r . 1 4 7 - ( 3 . - 3 ^ - 2 ) ,
^=3 {m-μ)\

1 4 7 ( 3 m - 8 ) ( 5 ) ( m - 2 ) ( m -

+

The first term in this last expression for Λm is positive, and the rest of the terms

are alternately positive and negative and decrease in absolute value. It follows

that hm > 0. Thus (4 77 C 3 /3 F) 1 / / 3 increases as y increases. The same is therefore

true of 4τ7C 3 /3F. Now (57) shows that when b —> 0, that is, when y —> 0,

this ratio tends to one. When b — α, we have y = 1/4, and (57) shows that the

ratio 4τ7C 3 /3F is 4 Iog32 = 1.332. Thus as b increases from 0 to a we see that

the ratio 4 77C3/3 V increases monotonely from 1 to 4 log3 2.

Combining with our previous result we conclude that the ratio (Pm ~h V)/3V

increases monotonely from 1 to (7/6) ζ(3) == 1.402 as b increases from 0 to a.

Now since

p Q p _j_ y ]

2 V ~ 2 3 V 2 '

it is clear that Pm /2 V increases monotonely from 1 to (7/4) ζ (3) - 1/2 = 1.604

as b increases from 0 to a . Final ly s ince

Pm 3 Pm + V 13V

(8τ7/3)C 3 2 477C3 2 477C3 '

we see that Pm /[(8 77 /3) C 3 ] increases monotonely from one to the quantity

[7ζ(3) — 2] /(16 log 3 2) ~ 1.204 as b increases from zero to a.

6. Symmetric lens In this section we prove the inequality (2) for the case of

the symmetric lens. If we make use of (1), (3), (18), (19), and (20) we find that

/• 00 , v /i co q2 t h Tin

π _L ,, £ „ ( ! ~ t h 7 T ( ί t h α q ) d g + 8 / ^ d q
(59) P " K

 =

 s h 2 α < ?
47TC3
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We denote this ratio by S(θί). We note that S (0) = 7 ζ(3)/(24 log3 2) = 1.053 (two

equal tangent spheres), S(π/2) — 1 (sphere), and S(jτ) = ΊJ2/9 = 1.097 (circular

disk). We wish to prove that S (α) > 1 for 0 < Cί < 77. We write

(60. S (a) - « 8 y ( α ) ,

where

(61) g(α) = α j [ " ( l — thTTg th Oiq) dq = jΓ°° ( l — thπςf/α th g) dq

and

, N o /.oo σ 2 t h 77σ /.oo o 2 t h 77Gf/α
(62) G(α) = 8 α 3 / 1 dq = 8 f ^ - d g .

^ ^ ^ sh2αq J-» sh2q

We note that g(Cί) in (61) is the same function g(Cί) that was used in [3] . xNext

we let

(63) d(a) = α 2 g ( c t ) + G ( α ) ,

so that

) - 3 g

3 ( α )
(64) 5(α) - 1 =

3g3 (α)

Since g ( α ) > 0 for 0 < α < 77, it suffices to prove rf(α) — 3 g 3 (α) > 0 in order

to establish the inequality (2).

We note that d(d) ~~ 3g 3 (Cί) has the value zero when (X = 77/2, because

S(τ7/2) = 1. Its value when α = 77/4 or 77 can also be calculated as we shall see.

In proving the desired inequality we shall find it convenient to estimate d(d) and

g(oc) by means of Taylor's series expansions of these functions in the neighbor-

hoods of the points α = 77/4, 77/2 and 77. We shall therefore need to compute some

of the derivatives of g(&)9 G((λ), a nd t/(a), and to study their behavior.

From [3] vve find that

(65) g . ( α ) = π L 2 _ l ( ί , ,
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en 77g ch Gig

/•oo <7" S Π Gί Q

^ ch 77g ch Gvg

it is clear that g'(θί) > 0, g" (<A) > 0 and g"'(Cί) < 0, so thatg(ίX) a n d g ' ( c θ are

monotone increasing functions and g" (d) is a monotone decreasing function.

Turning to the consideration of the derivatives of G((λ)9 we have

oo g3 oo g 3

(68)G'((x) = - 8 77GΓ2 /°° dq = -877 O? f dq ,
-°° sh 2g ch2 πg/a ~°° ch2 77g sh 2(λg

(69) a" (a) - 2 a " 1 G' (a) + 16τ7Cί2 Γ°° 9 — — - ^^ f ^ ĝ ,00 ch 2 7ίg sh 2 2αg

3

/ v / x /»oo a /»oo σ c n z u g
(70) G/y/(a) - -16τ7 / dq + 64 77 a J_ — ^ 7-^— dq

""°° ch2 πg sh 2Glg °° ch' 77q sh' 2ag

„ 2 Γ c o g 5 ( 2 -f sh22Gίg) ^
- 3 2 T 7 G / J dq.

-0 0 ch2 77g sh3 2ag

For the derivatives of d{d), we have

(71) d' (a) = α 2 g ' (α) + 2 αg(α) + (," (&) ,

(72) cΓ(α) = α 2 g " (α) + 4 α g ' (&;) + 2g(α) +(J"(ot) ,

(73) d'"(α) = 0? g '"(0:) + 6α έ," (α) + 6g' (α) + G'"(α) .

We first consider the interval 77/2 < (X < 77. If we let δ = Ct ~ 77/2, we have

8 2

(74) g(α) < g(π/2) + δg' (77/2) + — g"(ττ/2) , π/2 < a < n ,

and

δ 2

(75) d(o.) > d(ττ/2) + hd' (77/2) -f — d"(π/2), τr/2 <a<π,

since g'"(θ>) < 0 by (67), and d'"(<X) > 0 for 77/2 < 01 < 77, as we now shall show.
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From (73) we find at once that

(76) d'"(α) > α2 g'"(α) + 6α g"{τi) + 6g' (π/2) + G"'(α) , π/2 < α < π.

We must now find estimates for g'" (&) and G'"(a). From (67) we see that, for

ττ/2 < α < 77, we have

0 <-gl##(α) <2ττ- f —v — dq
"" J-°° h 2 77 h 77 h 2 τ τ / 2c h 2 77g ch 77g ch 2 ττg/2

sh2 πq{c\vΉq - l)
r

sh3277-q

ΓCD q sh πq{c\vΉq l )
= 6Zπ J r dq

J-» h3277- H

ro3 q3 shπq/2 r ω q3(chπq — l)
= 77 / dq — 77 / do .

^ sh 2 77g H -7-00 sh377g ^

If we make use of formulas (A-16), (A-32), and (A-31) in Appendix A to evaluate

these integrals, we find that

(77) 0 > g;//(α) > -1/77 + 3 - 7 77/8, 77/2 < α < 77.

Equation (70) shows that G'"(a) is the sum of three integrals each of which may

be estimated by methods similar to that used above in the estimation of g'"((X);

it is convenient to observe that the function q/sh q decreases monotonely for

q > 0 and is an even function of q . The necessary formulas from Appendix A are

(A-16), (A-18), (A-20), (A-26), and (A-30). We find that

(78) G"#(α) > [τ7/(2α)](l2 - 4 4 τ 7 - 2 5 τ 7 2 + 12τ73)

+ 3477/45 - 16/(377) + 77oc(25 - 877) , 77/2 < α < 77 .

The values of g" (TΓ) and g'(π/2) are given in equations (B-3) and (B-5) of Ap-

pendix B. If we substitute these values as well as values from (77) and (78) into

(76), we find that, for 7ί/2 < (X < 77, Cid"'(ci) is not less than a certain polynomial

of third degree in 0C. It is easily verified that this polynomial has three real zeros,

none of which lies between 77/2 and 77, and that it is positive for Cί = 77/2 and

Cί = 77. Consequently, it is positive for 77/2 < Cί < 77. It follows that d'"(d) > 0

in the same interval.

If we substitute into (74) and (75) the necessary values from Appendix B, we

find that, for 77/2 < Cί < 77, δ ~ 2 [d(<x) — 3g3((X)] is not less than a certain

fourth degree polynomial in 8 which is readily shown to decrease monotonely as
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S increases from 0. Moreover, this polynomial is positive for b = 4/3. It follows

that

(79) d(a) - 3 g 3 ( α ) > 0 , τr/2 < a < π/2 + |- .

Since the desired inequality has not yet been proven for 0C > ττ/2 + 4/3, we

consider further the interval 77/2 < U, < n and let e = 77 — Cί. V\e first recall that

g"{a) decreases monotonely. Also it has been shown that d'"(Cί) > 0 for ττ/2 <

(X < 77; it follows that d" {(λ) increases monotonely in this interval. We thus obtain

(80) g (α) < g(77) - eg' (77) + γ g " (77/2) , π/2 < α < 77,

and

e2

(81) rf(α) > d(π) - eα!7 (77) -h — d" (77/2) , π/2 <a<π.

If we substitute into (80) and (81) the necessary values from Appendix B, we

find that, for 77/2 < CC < 77, d(θi) — 3g3((X) is not less than a certain sixth degree

polynomial in e which is readily shown to be positive for 0 < e < 1/2. It follows

that

(82) d(a) - 3g3 (α) > 0 , 77 - \ < a < π .

If we combine (79) and (82) the desired inequality is proven for the interval 77/2<

a < 77.

Next we turn our attention to the interval 77/4 < Gί < ττ/2. We first need to

obtain estimates for g"'(Ci) and d'"(θ'.) in this interval. If we make use of (67) and

employ (A-16) and (Λ-28) in Appendix A to evaluate the integrals which arise, we

find that

(83) 0 > g

/ # /(α) > ~ I + 7 77/I6 , 0 < α < 77/2 .

Before we can estimate d'"(θί) we need to estimate G'"(θC). We proceed as we did

for the interval τr/2 < 0C ^77, and we find that two of the integrals that have to

be evaluated are the same as before although the inequalities are reversed. How-

ever, the third integral is different; it may be estimated by making use of (A-8),

(A-10), and (A-17). We find that
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(84) G'"(α) < [V(2Cί)](l2 - 44τ7- 2 5 π 2 + 12ττ3) + 51277

+ I76π(2f - 171 π 2 (2f + 77θi(25 - 877) , 77/4 < CC < 77/2 .

If we recall that g'(Cί) is an increasing function, g"(c() a decreasing function,

and g'"(cθ a nonpositive function, we find from (73) that

cT(α) < 0 + 6 ocg"(θ) + 6 g' (π/2) + G'"(α), 77/4 < α < 77/2 .

If we insert the values of g"(0) and g'{τr/2) from Appendix B, and make use of

(84), we obtain

(85) d'"(a) < [V(2cί)](l2 - 44τ7 - 25τ72 + 12τ73) + 6 + 1021τr/2

+ 17677 (2)* - 17l772(2)* + α(l + 25τ7 - 8τ72)

< 18 + 46777 + 176π(2)1/4 - 25τ72/2

- Ulπ2(2YΛ + 8τ73 , τr/4 < α < 77/2 .

In passing to the last inequality we have replaced CC by ττ/2 because the first

parenthesis is negative and the last one is positive. We also point out that the

last member of (85) is positive.

If we now let ζ = 77/2 ~~ (X, we find from the Taylor's series expansions of

g(α) and cZ(oc), on using (83) and (85), that

(86) g(α)<g(77/2)-ζg / (τ7/2) + y g " ( τ 7 / 2 )

+ ί3 (ϊ ~ 777/96) , 77/4 < α < 77/2

and

ζ 2 ζ 3

(87) d(α) >d(ττ/2) ~ζd' (π/2) + — d " ( π / 2 ) - — dx , 7 7 / 4 < α < π / 2 ,
2 6

where dγ denotes the last member of (85).

If we substitute into (86) and (87) the necessary values from Appendix B, we

find that, for 77/4 < Cί < ττ/2, ζ ~ 2 [d(a) ~ 3g3(Cί)] is not less than a certain

seventh degree polynomial in ζ which is easily shown to be positive for 0 < ζ

< 1/2. It follows that

(88) d(α) - 3g3 (α) > 0 , 77/2 - \ < a < Ή/2 .
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Since the desired inequality has not yet been proven for α < τr/2 ~ 1/2, we

consider further the interval 77/4 < Cί < ττ/2 and let 77 = Cί — ττ/4. We need another

estimate for d"'(a), but of the opposite sense to that given by (85). This in turn

requires a new estimate for G'"{a), The necessary integrals may be evaluated by

using (Λ-17), (A-23), and (A-24). We find that

(89) G'"(α) > - 8 / ( 3 α ) + 3 2 π - 10ττ2 - 14α/15 , 0 < α < ττ/2 .

From (73) we find at once that

d'"{a) > α2g'"(α) + 6 α g " (ττ/2) + 6 g ' (ττ/4) + G'"(α), ττ/4 < α < τr/2 .

If we insert the necessary values from Appendix 13, and make use of (83) and (89),

we obtain

(90) cΓ(α) > - } - 8 / 3 + [12(2)H - 6 + 377(2)* + 49τ//2 - 10ττ2]α

+ (136/15 - 3ττ)(x2 + (777/16 - 3/2)a3] , ττ/4 < α <ττ/2 .

But it is easily shown that the polynomial in the braces increases monotonely

when Gt increases from 0 to 77/2. Moreover, it is negative if OC = 77/4. Hence we

may replace (X by 77/4 in the right-hand member of (90). If we denote the resulting

value by d2, we see that d'"{θ^) > d2 for 77/4 < Cί < 77/2. Using this fact and

recalling that g'"(cθ < 0, we have

v2

(91) g(α) < g(τ7/4) + Tvg1 (77/4) + — g" (π/4), 77/4 < α < ττ/2 ,

and

T7 2 77 3

(92) d(α) > rf(π/4) + Ύ]d' (77/4) -f — d" (77/4) -h — d 2 , 77/4 < α < 77/2 .
2 6

If we substitute into (91) and (92) the necessary values from Appendix 13, we

find that, for 77/4 < (X < 77/2, d{(λ) ~ 3g3 (Cί) is not less than a certain sixth

degree polynomial in 77 which is easily shown to be positive for 0 < Ύ] < 0.4. It

follows that

(93) d(a) - 3g3(cx) > 0 , 77/4 < α < 77/4 + 0.4 .
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If we combine (88) and (93), the desired inequality is proven for the interval 77/4

< α < 77/2.

Finally we consider the interval 0 < Cί < 77/4. We first need to obtain estimates

for ί/"(α) and G" (a) in this interval. If we make use of (68) and (69), and employ

(Λ-22), (A-23), (A-24), and (A-30) to evaluate the integrals which arise, we find

that

(94) G"(α) > - 4 / 3 + 121τ72/60 - 5τ73/8 , 0 < α < τr/4 .

From (72) we find at once that

d"(α) > 2g(0) + G"(α) , 0 < α < 77/4 ,

since g" (&) and g'(Cί) are both nonnegative. If we take the value of £ (0) from

Appendix 13, and make use of (94), we find that

(95) d" (α) > 4 log 2 - 4/3 + 121τ72/ό0 - 5τ73/8 , 0 < α < 77/4 .

If we now let K — 77/4 ~~ Oί, recall that g"(Cί) decreases monotonely when

Cί increases, and make use of (95), we find that

(96) g(α) < g(τ7/4) - «&' (π/4) + — gu (0) , 0 < a < 77/4 ,

and

κ2

(97) d(a) > d(π/i) - Kά' (77/4) + — d3 , 0 < Cί < 77/4 ,

where d3 denotes the right-hand member of (95).

If we substitute into (96) and (97) the necessary values from Appendix H, we

find that, for 0 < Cί < 77/4, c/(Cί) — 3g3(Cί) is not less than a certain sixth degree

polynomial in K which is positive for 0 < K < 77/4. It follows that

(98) d(α) - 3 g

3(o:) > 0 , 0 < α < 77/4 .

Combining this with our previous results, we see that the desired inequality

has now been established for the whole interval 0 < Cί < 77. As previously ob-

served, this proves the inequality (2) for the symmetric lens.

7. Appendix A. In this appendix we give a table of integrals which includes
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all the integrals needed in the proof in §6 and in the calculations in Appendix B.

Some of these integrals can be deduced easily from formulas given in the integral

tables of Bierens de Haan L1 ] When this is the case the formula is followed by

two numbers in parenthesis giving first the table number and second the formula

number of the necessary formula in the tables of Bierens de Haan.

Since not all of our formulas can be deduced from these tables we indicate

alternative methods of proof. Formulas (A-l) to (A-6) can be derived by standard

methods of contour integration. In connection with (A-5), we mention that it is

necessary to integrate both z sh OLz/sh2 τrz and chαz/sh 277z around an indented

rectangular contour; and in (A-6) it is necessary to integrate z2 shCί z/sh377z ,

z chcίz/sh TΪZ , and shθίz/sh377z around the same contour. Formulas (A-7) to

(A-20) can be derived by differentiation of the formulas (A-l) to (A-6) Finally,

formulas (A-21) to (A-32) are all special or limiting cases of formulas (A-7) to

(A-20). It may be noted that (A-32) may be derived most easily by using an inte-

gration by parts and (A-29).

,.00 ch CCα α
(A-l) J dq = sec - , -77 < α < 77 (27, 4)

~°° ch πq 2

r oo chaq CC (λ
— dq = — e s c —
c h 77q 77 2

Xco chασ CC (λ

— r dq = ~ esc - , -277 < α < 277 (27, 18)
00 _ L. Λ - „ _. ^T- O

/ . o o c h c ί q OC , _ o λ CC
(A-3) J — — — dq = ( 4 τ 7 2 - o r ) c s c - , - 4 7 7 < CC < 477 (27, 18)

~°° c h πq 6 τ 7 3 2

/•GO s h CCg CC
(A-4) / αfg = tan - , -π < a < π (27, 10)

-°° sh77g 2

/.oo q sh αg 1 / „ GC CC\
(A-5) / — i — - dq = — α csc 2 - - 2 cot - I , ~2τ7 < α < 2τ7

00 sh2τ7g 2τ7 \ 2 2/

/.oo g2 sh ocg 1 Γ cc n α
(A-6) J : 1 dq = : 4 tan - + 4 α sec 2 -

- 0 0 sh 3 77g 4 77 L 2 2

+ ( α 2 -77 2 ) sec 2 - tan - , -3τ7 < a < 3τ7
Z Z J
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/•co Q2 ch (λg . Cί / „ α \
(A-7) J dq = I sec - 1 + 2 tan2 - I , -77 < α < 77 (84, 17)

~°° chπq 2 \ 2/

/ 4 x Γ 0 0 9 4 c h α 9 1 (λ / o α A OΛ

(A-8) J dq = — sec - 5 + 28 tan- - + 24 tan4 - ) ,
-0 0 chπq 16 2 \ 2 2/

— 77 < a < 77 (82, 16)

/ * x / oo q 2 c h α q 1 Cw Γ U
(A-9) J : ί — - dq = — esc — - 4 cot -

-°° Ch277q 477 2 I 2

+ α ί l + 2 cot2 - jj , -2τ7< α < 2τ7

, A Λ 1 /*co q4 ch αg 1 α Γ α / o oc\
(A-10) J ^-— - d ς = csc - - 8 c o t - 5 + 6 c o t 2 -

-°° Ch2 77q 1677 2 ί 2 \ 2 /

+ αίδ + 28 cot 2 - + 24 cot 4 - Π , -2τ7 < α < 2τ7

/•oo σ c h QLq 1 OC Γ , Cί
(A-ll) J ^ — - — ^ d q = csc - ~ 2 4 α + 4 ( 3 α 2 - 4 τ 7 2 cot -

~°° ch 4τ7q 24τ73 2 L 2

-f o:(4τ72 - α 2 ) ί l + 2 c o t 2 - J , - 4 τ 7 < α < 4τ7

(A-12) J H—~ i dq esc - 192 cot - - 144cι 1 + 2 c o t 2 - }
J-°° ch4τ7q 96773 2 L 2 \ 2/

8 ( 3 α 2 - 4τ72) cot ~ (s -h 6 c o t 2 -

-h α(4τ7 2 — ex2) ί5 -f 28 c o t 2 -

+ 24 c o t 4 - j , - 4 77 < α < 477t 4 - j , -

oo q c h α g α
d = I 2

/ \ i o \ poo q c h α g α
(A-13) J_ dq = I sec 2 - , - π < GC < 77 (84, 16)

00 s h π q 2
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/ * N /»oc g 3 ch α g Λ 0 α / o α \
(A-14) Γ αfg = -* sec 2 ~ 1 + 3 tan 2 - | , ~77 < α < π (82, 15)

J-°° sh 77 g 2 \ 2/

/ * T -N z oo g 2 ch ocg 1 o α / α \
(Λ-l o) / dσ = — e s c 2 - [ 2 - α cot - , - 2?7 < α < 2 π

J'm sh2 πq 2ττ 2 \ 2 /

M - i^ z oo g 3 sh α g 1 0 a Γ α
v V-lυJ I dq — — csc^ ~ -*6 c o t —

J-ω s h 2 τ 7 g 477 2 L 2

+ α ί l + 3 c o t 2 - ) , -2τ7 < α < 2τ7

/ * T-M /.oo g 4 c h α g 1 _ α Γ / α\
(A-17) / i— - d q = — e s c 2 - 2(1 + 3 cot 2 - )

J-" sh2τ7g H 2π 2 L \ 2/

: ~ 12 + 3 cot 2 - ] ] , -Σ
2\ 2 / j ;

1 o oc Γ α / o α \
„., = — e s c 2 - - 1 0 c o t - 2 + 3 c o t 2 -

S h 2 7 7 g 477 2 I 2 \ 2/

(2 + 15 cot2 - + 15 cot4 -\] ,
\ 2 2 / J

- a cot - 1 2 + 3 c o t 2 - ) , -27r < a < 2π
2\ /j;

/- ̂  i Λ\ /.co a 5 sh a σ 1

(Λ-18) / ^ d
J

+ a(2 + 15 cot 2 - + 15 cot 4 - ) , -2τ7< a < 2τ7

/J
»oo g 3 ch a g 1 _ cc Γ a

^ - - ^ , / q = s e c 2 - 1 2 + 1 2 a tan ~

sh3τ7g H 8 π 2 2 I 2

- 3τ7 < α+ (α 2 - 7 7 2 ) / l + 3 tan 2 ~ J | ,

/ \ Λ/^\ /»oo σ c h o^g 1 0̂  Γ / α\

(Λ-20) / ?—^ Idq = ~ s e c 2 - 20 1 + 3 tan2 - )
J-«> sh3πq 8ττ2 2 I V 2 /

+ 2 0 α t a n - 2 + 3 t a n 2 - )
2 I 2/

+ (α2 - ττ2)(2 + 15 tan 2 - + 15 tan4 - ) ] , -3τr < α < 3ττ
\ 2 2/J
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(A-26)

(A-32)

dq=\ (84, 3)
chrrq

(A-22) jΓ -2— dq=^~ (84, 7)
00 ch7Tςr 16

2

(A-23) j£-j ^ < ? = ~ (86,2)
φ ch 7τςr 6 π

/•co <74 7
(A-24) / —z dq = (86, 2)

</-°° Ch277q ^ 1207T

/.co q2 1 2
(A-25) / — i dg =

'-"> h 4 ^ 9-"> Ch 4 77 q ^ 977 377 3

""°° ch πq 18077 3τ7J

(A-27) Γ° dq = %• (84, I

(A-28) J — cίq = ^ (84, 5)
"•°° sh77g

Γoo q2 1
(A-29) / dq = — (8G, 5)

" °° sh277q 377

,.00 Q 4 1

(A-30) sh2ττg * 15ττ

3 o
Q

8. Appendix B In the proof given in §6 we had to use the values of g(d) and

d((λ) for certain values of C(. The necessary values are listed in this appendix;
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the method of calculation of each is also indicated. Following is the list of values

used:

,3) g ( τ r ) = 2 , g » = l A , g"(τ7) = 1 / 9 - 2 / ( 3 τ τ 2 )

(B-4,5,6) g (τr/2) = ττ/2 , g' (τr/2) = 1 - τr/4 , g" (jτ/2) = 5/3 - ττ/2

(B-7) g (V4) = 77(2 f/2 - 77/4

(B-8) g ' (77/4) = - 1 + 2(2)* - 5-77/4 + 77(2)V2

(B-9) g"(π/4) = 34/3 + 4(2)* + π - 977 (2 )V2

(B-10,11) g(0) =2 log 2, g"(0) = 1 / 6

(B-12,13) d(τ7) = 8 τ 7 2 / 3 , d' (π) = 6π - 773/8

(B-14,15) d(ττ/2) = 3π 3 /8 , d' (ττ/2) = 9ττ2/4 - 9τ73/16

(β-16) d"(π/2) = 9 77 + 23ττ2/12 - llτ73/8

(B-17) d(τr/4) = 7 τ 7 3 ( 2 ) 7 3 2 - 773/64

(B-18) d'(π/4) = -3τr2/16 + 21τ72(2)'V8 - 133τ73/64 + 23τ73(2)V32

(B-19) ί/"(τ7/4) = -3-77/2 + 21 π(2 )* + 371τ72/24 + 69τ72(2)''74

+ 773/16 - 351773 (2)^/32

Formulas (B-4), (B-5), (B-6), (B-10), and (B-ll) will be found in [ 3 ] ; (B-l)

and (B-2) can be proven by starting with (61) and (65) and using (Λ-2), an inte-

gration by parts being first needed in the case of (B-2). (B-3) follows at once from

(66) and (A-25). In order to prove (B-7) we observe that

. . 77 -00 ch3τ7g/4 π r<n 2 chπq/2 — 1
g(77/4) = — I dq = — I da ,

4 °° chπq chπg/4 4 °° ch πq

and the result follows from (A-l). For (B-8) we have

// /A\ - Γ 0 0 ^ s h 7 7 g / 4 , _ Γ 0 0 ^ ( c h τ 7 g - 4 - 1 — 2 chπq/2) ,
g (TT/4J - 77 J ^ — - - d q - 77 J • • dq

chi πq ch77g/4 chi π q shπq
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1 2(shπq - sh 3τ7q/2 - shπq/2)
+ aq

sh 2τ7q s i r 2τ7q

and the result follows from (A-27) and (A-5). For (B-9) we start with (66) and have

g"(τ7/4) - 4 J β α ) l 2

ch2 πq sir 77 q/2

Γoo q2(ch77q/2 - l)(ch77q -f l )- iβπ j ^
sh22τ7q

f °° q 2 ( c h 3 7 7 < ? / 4 - 2 chπq/2 + 3 c h τ τ q / 4 - 2 )
~ π ^-oo U 2 ^ '

sh 77 q

and the result follows from (A-15) and (A-29).

Formulas (β-12) to (K-19) follow immediately from (63), (71), and (72) if we

show how to calculate the following:

(B-20, 21) G(π) = 2τ72/3 , G'(π) = π - 773/8

(U-22,23) G(τ7/2) =773/4 , G#(π/2) - 3τ/3/2 - 774/2

(13-24) G"(π/2) = 6π + 2 π 2 - 5τ73/4

(B-25) G(π/%) = 3τ73(2)1/?/16

(B-26) G1 (77/4) = 9τ7 2(2)V4 - 2τ73 + l lτ7 3 (2) 1 Vl6

(B-27) G"(τ7/4) = I877(2)H + I6772 + 33τ72 (2)^/2 -

Formula (1J-20) follows easily from (62) and(A-23), (B-22) from (62) and (A-21),

(β-23) from (68) and (A-16), (13-24) from (69) and (A-17), and (B-25) from (62) and

(A-7). For (B-21) we use (68) and find that

(ch 277q — l )
dq,G τ 7 ) 8 7 7 J ^ q 1 6 7 7 /

-°° ch277q sh277q J-°° s h 3 2 77q

whence the result follows from (A-32) and (A-31). For (ϋ-26) we obtain, from (68),
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and the result follows from (A-16). Finally for (B-27) we obtain, from (69),

397

= (8/ττ)G'(π/4) + 7 7 3 j Π -

= (8/7τ)G'(ττ/4) + 2TT 3 X°

= (8/τ7)G'(τ7/4)

+ 2 τ τ 3 Γ g4 chττg/2

7iq sh τrq/ 2

ch 7τq(ch7τq — 1)

1_

2 sh2 7?g/2 ch rrq ch2 •/

and the result follows from (Λ-17), (A-8), and (Λ-lϋ).

1 1
tig ,
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THE BOREL PROPERTY OF SUMMABILITY METHODS

J. D. H I L L

1. Introduction. Let T denote the method of summability corresponding to the

real matrix (an fc), for the moment arbitrary, by means of which a sequence {s^ \ is

said to be summable-Γ to s if each of the ser ies in

(1.1) tn = Σ an,ksk (n = 1 , 2 , 3 , • • • ) ,

is convergent and if tn —> s.

We shall be concerned here exclusively with the class 3£ of all sequences x =

\ Cί/f j where the (X^ are 0 or 1 with infinitely many l ' s . A biunique mapping of the

class X into the real interval Tj = (0 < y < 1) is obtained by defining y as the

dyadic fraction 0 .α 1 Cί2 CC3 corresponding to x — ( α 1 ? Cί2, Gί3, •), and con-

versely. This enables us to employ the phrase, ''almost all sequences of 0's and

l ' s , " by which is meant a subset of 3t for which the corresponding subset of 2) has

Lebesgue measure one.

A classical result of Borel [2] may be interpreted as asserting that almost

all sequences of 0's and l ' s are summable-(C, 1), Cesaro of order one, to the

value 1/2. If the corresponding statement is true for the method T defined by (1.1)

we shall say that T has the Borel property, or more briefly, that T £ (BP).

A study of the Borel property for regular methods T was undertaken recently

by the author [5] . In the present paper we dispense with the assumption of regu-

larity, and in §2 we investigate the consequences of assuming merely that T £

(BP). Two independent necessary conditions, (2.2) and (2.5), are obtained.

In v3 it is shown by means of an example due essentially to Erdos that these

conditions are not sufficient in order that T £ (BP) even if condition (2.10) is

added. By virtue of a lemma of Khintchine we are able to state in Theorem (3.5) a

new sufficient condition considerably weaker than that given in Theorem (2.14) of

[5] .For comparison the latter result is repeated here in Theorem(3.3). In Theorem

Received February 17, 1951.
Pacific J. Math. 1 (1951), 399-409.
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(3.11) we deal with a conjecture of Erdos and prove incidentally that in general

the Borel property does not depend on the rate at which Σ^ = 1 α/̂ fc approaches

zero.

At the present time it appears unlikely that the Borel property can be charac-

terized in any reasonably simple manner, at least if no restrictions are imposed on

the matrix (αΛ ί^) at the outset. This aspect of the problem remains to be con-

sidered.

2. Necessary conditions. We shall establish the following result.

(2.1) THEOREM. In order that TζliBP) the following conditions are necessary:

(2.2) 2L an,k converges for each n and tends to 1 as n

.3) An = Σ alik < oo for each n

(2.4) lim an>k — 0 for each k
oo

°°

n->oo

(2.5) lim An = 0 .
rι-> oo

Proof. If T C (BP), there exists a subset §* of g = (0 < y < 1) of measure

one such that

00

4. ( \ — "V ( \
tn{y) = 2, αn,/z^fevyJ

is defined for each n and each y = 0.α t Cί2 α 3 C ?) * and such that tn(y)

—> 1/2. Since D * is of measure one it contains a subset ξ)** of measure one

such that if y ζ^ |f) * then also 1 ~~ y d U**. Choosing any such y we may

write y = O.αt α 2 Cί3 and 1 — y — O.βi β2 β3 * * * > where Oί̂  + /5^ — 1 for all

k. Then (2.2) follows from the fact that

Σ an,k&k + Σ an>kβk ~ Σ αn,/e
fe=l fc=l fe=l

To verify (2.3) we introduce the Rademacher functions R^ (y) defined for each
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k and each y = O.Cί ι <X2 Cί 3 * * * £ | ) as 1 - 2(X/C(y). Then

(2.6) t n = Σ α n^
1 ^ Ί ^

must exist almost everywhere in ?} for each 77. In view of (2.2) the necess i ty of

(2.3) follows from a well-known result of Kolmogoroff [6, p . 126] .

To establish (2.4) let k be fixed and denote by 2)* and ϊ)2

 t n e subsets of Tj

(defined above) of measure 2 which l ie, respectively, in the intervals 0 < γ

< 2~h and 2 ~ A
< y < 22~ / c + 1 . It is evident that there exist subsets S)f * of

and ^ 2 of ?;2 9 °^ measure 2 , such that if y £ )̂ L then y ~h 2 £ §)2

For such a value of y we have y = 0.00 OCί/^ Cί^+2 (A; + 1 zeros ) and y

+ 2 " / t = 0.00 0l0C£ + 1 CC&+2 * * U zeros). Consequently, ί π ( y + 2~k ) — tn(y)

= Unyk —> 0 a s « —> °°.

Ihe proof of the necess i ty of (2.5) is more involved. Since (2.3) implies the

convergence almost everywhere in T) of the ser ies Σ^°=1 α^^/x^ (y) for each n9 it

follows from Egoroff's theorem that there exists for each n a subset In of ^ of

measure In\ > ] — 2~n~ι

9 and an index φ^in), increasing to infinity with n9

such that

00

(2.7) Σ anιί
< — for all m > Φi(n) and all y £ In

n

Setting / —

S), we have

and using δ £ to denote the complement of E with respect to

lε/| < Σ
1

< -

Consequently we have / | > 1/2, and (2.7) holds in /. We need also the fact that

(2.3) insures for each n the existence of an index φ(n) > φ\ (n) for which

(2.8) 2 l

an,k < -
k>φ(n)

Now it follows from (2.2), (2.3), and (2.6) that T will have the lΐorel property if

and only if τn{y) = Σ/C = 1 α π k'^k^j} approaches zero almost everywhere in ψ, a s
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n —> °°. Writing τn (y) in the form

Φ(n)

Σ «ntkRk{y) + Σ «n,k

and using (2.7), we see that T C (BP) implies the approach to zero almost every-

where in / of

φ(n)
σn(y) Ξ Σ an,kRk{y)

Let E be a subset of / with \E\ > 0 on which σn(y) approaches zero uniformly,

and let

φ(n)
σn,m(y) Ξ Σ an,kRk(y)

k-m

We can now follow an argument due to Kolmogoroff (for the details see [6, pp.127-

128] or [4]) and arrive at the inequality

i φ(n)

(2.9) ϊE<Mdy >~\E\ Σ <k,
λ

for a certain fixed μ and all n sufficiently large. From (2.4) it follows that

μ-l

^n>μ(y) ^Vniy) - Σ an,kRk(y)
k = l

tends to zero uniformly in E together with crn(y). Then (2.9) yields

φ(n)

Σ *U =0(1)

k=μ

as n —> °°. Finally from (2.4) and (2.8) we conclude that

μ-l φ(n)

^n = Σ an,k + Σ α r U + Σ an,k = θ ( l )
k = l k=μ k>φ(n)
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as n oc . This completes the proof of Theorem (2.1).

It will be noticed incidentally that conditions (2.2) and (2.4) are among the

familiar Silverman-Toeplitz conditions for the regularity of Γ. The remaining con-

dition for regularity, namely,

(2.10)

00

Σ
* = 1

=o(ι) in

is not necessary in order that T have the Borel property. This is shown by the

example of the following matrix which appears in [ l ] :

1

1

2

1

3

1 1

n n

1

2

1

2

1

3

1

3

1

3

1

3

•
i (-1)"
n n + 1

1

4

1

4

1

4

n +

1
5

1

5

1

5

n + l

2

This matrix violates condition (2.10) but satisfies the sufficient conditions of

Theorem (3.3) below. It has been proved in [ l ] , however, that T is necessarily

regular if it evaluates to 1/2 all sequences of 0's and l ' s which are summable-

(C, 1) to 1/2.

3. Sufficient conditions. We first raise the obvious question of whether the

conditions (2.2) and (2.5), which imply (2.3) and (2.4), are sufficient in order that

T C (BP). Before showing that the answer is in the negative, even with the

addition of (2.10), we make a few preliminary remarks. Using the notations of §2,

and appealing to the Riesz-Fisher theorem, we are led at once to the Parseval

relation /</ τ£ (y)dy — An. The condition An —> 0 is therefore equivalent to the

convergence of \τn\ to zero in the space L 2 , and this assures the existence of
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a sequence of indices {πi} such that τn(y) —> 0 almost everywhere in g). In

other words, if (2.2) and (2.5) are satisfied, the matrix ( α ^ ) contains a row-

submatrix ( α ^ ά ) defining a method Γ* (not weaker than T) having the Bore 1

property; this fact was obtained in [5] with the aid of (2.10). We proceed now to

the construction of an example which shows that in the absence of further con-

ditions nothing more can be said.

We need the following result due to Borel [3, pp.37-47] . The form stated here

is less general than the original, in that the groups of consecutive Cί's are not

permitted to overlap, but it is sufficient for our purposes.

(3.1) LEMMA (Borel). Let \\n\ be a sequence of positive integers, and let

the positive integers {nj} be such that nj > 7iy_ ι + Xy __ t (7 — 2,3,4, ' •)• Then

in order that almost all dyadic fractions y — O d 1(^2^-3 have the property

that for infinitely many j, QLn. is followed by λy zeros, and for infinitely many j,

by \j ones, it is necessary and sufficient that ΣR = ι 2 n — °°.

We can now construct the example of Erdos which was outlined in a letter to

the author. The details have been modified to render the matrix triangular but the

idea otherwise remains essentially as communicated. We use the notation a(n,k)

as alternative to α n ^ , and define a matrix as follows, wherein, as usual, [log m]

means the greatest integer in log m. Let

a\(m2 + ι - l ) , (m-ί2 +j - 2 ) } = [log m]" 1

for j = i + 1 , i + 2, •••, ί + [log m]; i = 1,2, •• , 2 m + 1; m. = 3,4,5, ••

and let an ^ = 0 otherwise. This matrix of nonnegative terms is evidently tri-

angular, regular, and such that (2.5) is satisfied. On the other hand we have

[log .]
( 3 2 ) tn2 + 2jy) = [logm]-1 2 a

m2+v(y) (» = 3,4,5, •••).

and since Σ 2 ° = °° it follows from Lemma (3.1) that for almost all y =

O.CXi 0C2 Cί3 there are infinitely many values of m for which Cί^2 ^ s followed

by [log m] zeros, and also infinitely many m for which α ^ 2 is followed by

[log m] ones. Hence we see from (3.2) that for almost all γ the sequence \tn(y)}

contains both infinitely many zeros and infinitely many ones. Consequently the

matrix (an /,-) fails to have the Borel property.

The search for conditions which are necessary as well as sufficient has so
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far yielded no results. However, the sufficient conditions set forth in the following

theorems appear to be of interest.

(3.3) THEOREM. In order that T C (BP), the conditions (2.2) and

00

(3.4) £ Al < o° (for some q > O) ,

are sufficient [5] .

Proof. The proof of this theorem given in [5] remains valid under the present

weaker conditions. A new criterion involving, as we show later, a condition con-

siderably weaker than (3.4) is contained in the following theorem.

(3.5) THEOREM. In order that T C (BP) the conditions (2.2) and

00

(3.6) Σ exp(-S2/2Aj < ™ (for each 5 > θ) ,

are sufficient.

For the proof it is convenient to have the following lemma.1

(3.7) LEMMA. In order that a sequence ιfn(yn of measurable functions on §

converge to zero almost everywhere it is necessary and sufficient that given

δ > 0 and e > 0 there should exist an index v — v (e, S) such that

(3.8)

υhereEn(8) =E{\fn(y)\ <

Π M > 1 -

Proof of Lemma (3.7). Inasmuch as we make no use of the necessity we give

only the proof of the sufficiency. Let λ (γ) = lim^oo | / Λ ( y ) | > and set H = E{λ(y)

> O]. For m= 1,2,3, , we set Hm = £ {λ(y) > l/m] so that

7 7 1 = 1

1 Added in proof: see P. R. Halmos, Measure Theory, Van Nostrand, New York, 1950,
p. 91, Theorem A.
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If \H \ > 0, contrary to the statement of the lemma, then there is an index μ such

that \Hμ\ > 0. For δ - l/μ and e = (1/2) \Hμ\ the condition (3.8) becomes

for an index v — v{μ). Consequently

2 lHμl

For any point

y o C Hμ

we have λ(y0) > l//x since γ 0 C ^ μ . On the other hand, since

we have | / n (y 0 ) | £ 1/M ^OΓ a ^ n >. vi a n d this yields λ(y0) < l/μ. With this

contradiction the proof is complete

Proof of (3.5). Proceeding as we did in proving the necessity of (2.5), we

first determine an index φ(n), approaching infinity with n, and a set / of positive

measure such that

(3.9) Σ
k>φ(n)

~ for al l y CI and n = 1, 2, 3,
n

If we set

φ(n)

B n = Σ
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then it follows from (3.6) that

(3.10) exp(~S 2 /2£ n ) < (f o r each S > θ) ,

n~\

since Bn < Λn. Now

φ(n)
rn(y) = Σ <>n,

where pn{y) —> 0 for all y £ /, by (3.9). Let /* Z) / denote the entire subset

of fj on which pn(y) —> 0, so that | / * | > 0. If O.Ct t (X2 Cίn is any

point of / , it is clear from the definition of pn(y) that every point of the form

0φι /32 βp Cίp + ! ^n+2 * * * i s likewise in / . Hence / is a homogeneous set

of positive measure, and therefore of measure one (see [9] and [4]). Since pn(y)

—> 0 almost everywhere, we complete the proof by showing that (3.10) implies

that crn(γ) —> 0 almost everywhere. For this purpose let En(S) = E- {|crn(y)|

< δ] for δ > 0. By a lemma of Khintchine [7] we have

I <££„(§) I <U eχV(-S2/2Bn)

for n — 1,2,3, , where M is an absolute constant. Let δ > 0 and e > 0 be

given. Then from (3.10) there exists an index v — v{e, δ) such that

00

M Σ exp(-b2/2Bn) < e .

Consequently

Π > i - Σ

It now follows from Lemma (3.7) that σn(γ) —> 0 almost everywhere.

As a partial consequence of Theorem (3.5) we are able to decide a conjecture

of Erdos(made in a letter to the author) to the effect that (2.2) and An log n — o( l)

are necessary and sufficient in order that T £ {BP)

(3.11) THEOREM. In order that Γ have the Borel property, the conditions (2.2)
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and

(3.12) An log n = o ( l ) (n —* co) ,

are sufficient; but neither (3.12) rcor (3.6) is necessary.

Proof To prove the sufficiency it is enough to show that (3.12) implies (3.6).

For this purpose, let δ > 0 be given and fix € > 0 so that S2/2e > 1. By (3.12)

there exists an index n0 such that An < e/(log n) for all n > n0 . Then

for n > n0 with S2/2e > 1, and (3.6) follows.

To complete the proof we show somewhat more, namely, that no condition of

the form Anφ(n) = o( l) , with φ{n) —> °°, is necessary. Consequently the Borel

property can not be characterized in terms of the rate at which An approaches

zero. For let 0 < θ(n) < 1, θ(n) —> 0, with θ(n) arbitrary otherwise. Let xn

= [1 - θ(n)]/[l + θ(n)] , so that θ(n) = (1 - xn)/(l + xn), 0 < xn < 1, and

xn —> 1. Since the Abel method has the Borel property [5] , the same is true of

the "discrete" Abel method defined by the matrix

an,k = (1 -xn)*^1 (k,n= 1,2,3, •••) .

For this matrix we find that

00

^n = Σ a2n,k = θ{n) ,

where θ(n) may tend to zero in any preassigned manner. Thus, for example, if

log log(n + 2)
θ(n) =

log(n + 2)

we have A n log n —> °°. Finally, if we take θ(n) as I/log log (n + p), for p

sufficiently large, the series in (3.6) diverges for every 8 > 0.

We now wish to show, as mentioned earlier, that condition (3.4) of Theorem

(3.3) implies condition (3.6) of Theorem (3.5), but not conversely. If (3.4) holds

for some q > 0, we have

0 <zn Ξ 2Λn/δ 2 —> 0
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for each δ > 0. Since

e x p ( - l / z π ) = o(z%) or exp(-5 2 /2Λ n ) = 0(/l9)

as n —> oc, it follows that (3.6) is satisfied. On the other hand, for the loga-

rithmic method of regular Riesz means defined by

a-n,k = 1Λ lofe(n + l ) for k = 1,2, ••• , n; n = 1,2,3,

we have

An = 772/6 log 2 n .

Hence for every q > 0 the series in (3.4) diverges, but An log n — o( l ) , so that

(3.6) holds by the proof of Theorem (3.11).

As a simple application of Theorem (3.11), we call attention to the existence

of a regular method having the Borel property and which is weaker than (C, Gί) for

every 0C > 0. It suffices to consider the harmonic method ί\n of regular Norlund

means defined by

o-n.k = l / ( n -fc + 1) log(n + l ) for k = 1,2, , n; n = 1, 2, 3,

It is known [β] that Nh C (C, Ct) for all Cί > 0, and we have here again

An = π2/β log 2 n .
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ON THE THEORY OF SPACES Λ

G. G. L O R E N T Z

l Introduction. In this paper we discuss properties of the spaces A(φ,p),

which were defined for the special case φ(x) — QLxa~ι, 0 < & < 1, in our previous

paper [δ] . A function f(x), measurable on the interval (0,/), I < + 0 0 belongs to

the class A(φ,p) provided the norm jι/jί , defined by

α.i) ii/ii =

is finite. Here φ(x) is a given nonnegative integrable function on (0,/), not identi-

cally 0, and / *(χ) is the decreasing rearrangement of \f(x) | , that is, the decreas-

ing function on (0,1), equimeasurable with | /Gc)| . (For the properties of decreasing

rearrangements see 1.5, 12, 7, and 8] .) We write also Λ((X,p) instead of A(φ, p)

with φ{x) = (Xx(x~ι, and A(φ) instead of Λ ( φ , l ) . We shall also consider spaces

A(φ,p) for the infinite interval ( 0 , + u 0 ) . In §2 we give some simple properties of

the spaces Λ, and show in particular that A(φ,p) has the triangle property if and

only if φ(x) is decreasing. In §3 we discuss the conjugate spaces Λ*(ψ,p), and

show that the spaces A(φ,p) are reflexive. In §4 we give a generalization of the

spaces A(φ,p), and characterize the conjugate spaces in case p = 1. In §5 we

give applications; we prove that the Ilardy-Littlewood majorants θ{x9 f) of a func-

tion f £ A(φ,p) o r / C Λ (φ,p) also belong to the same class. We give suf-

ficient conditions for an integral transformation to be a linear operation from one

of these spaces into itself, and apply them to solve the moment problem for the

spaces A{φ9p) and Λ ( φ , p ) .

2. Properties of spaces A(φ,p). We shall establish the following result.

THEOREM 1. The norm \\f\\ defined by (1.1) has the triangle property if and

only if φ{x) is equivalent to a decreasing function; in this case f9g £ A(φ,p)
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at the Summer Institute of the Canadian Mathematical Congress in 1950.
Pacific J. Math. 1 (1951), 411-429.
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implies f + g £ A (<£, p).

G. G. LORENTZ

Proof, (a) Suppose that (|/|j has the triangle property. Let S > 0, A > 0, a > 0,

and a + 2Λ < I. Set

/(*) =

1 + S on (0, a + h)

1 on (α + h,a + 2h) g{χ) =

0 on (a +2h, l) ,

1 on (Offt)

1 + 8 on (/ι,α + 2 h )

0 on (o + 2h, 1)

then

2 + 2 S on (0, α)

2 + S on (a, a +2h)

0 on (a +2h, l) .

We have |j/|j = \\g\\; hence the inequality If + gl < Iff + |g:|| s equivalent to

((2 φ(x) dx + (2 + S)Pfa

a+2h φ(x) dx

or to

a+2h a+h
(2 + S)P far2n φ(x) dx < (2 + 2h)P Γ φ{*) dx

and thus to

If Φ(x) is the integral of <i over (0,#), we obtain from (2J), making δ —> 0,

Φ(α +/ι) > | LΦ(α) +Φ(α + 2/ι)];

that is, Φ(Λ) is concave, and thus φ U ) is equivalent to a decreasing function,

(b) Suppose that φ is decreasing. Instead of (2.1) we can now write

(2.2) ll/i
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the supremum being taken over all possible rearrangements φr of φ. It follows

from (2.2) that f,g CMΦ,p) implies/ + g CMΦ,p) and ||/ + g| | < ||/|| + \\g\\.

It is now easy to see that, for φ(x) decreasing, Λ(φ,p) is a Banach space;

the completeness may be proved by usual methods (compare [β] ). In general,

Λ(φ,p) is not uniformly convex. Suppose, for instance, that there is a sequence

8« —> 0 such that

(2.3) Φ(2δJ/Φ(δJ 1 .

This condition is satisfied, for example, if φ(x) = x ι | log x\ ?, p > 1. We take

/nW = hn on (0, 28Λ),/„(*) = 0 on (2δΛ,Z); we take g n(χ) = hn on (0,δn),gn(x)

= —hn on (hn, 2§7 l), and gn(x) = 0on (2δ7 l,/); and we choose hn so that

Then we have

+gn(x)l =
hn on (0, δ j ,

0 elsewhere ,

and (1/2) (fn ~~ gn) (x) is the same function. Therefore

fn +

2

gn
P

fn —

2

gn

and so A.(φ9p) is not uniformly convex. In case of the spaces Λ(θί,p), the problem

remains open.

The remarks made above apply also to the spaces K(φ 9p) in case of the infinite

interval (0, + °°). We assume in this case that J o φ(x)dχ < -f °° for any I < +°°;

the additional hypothesis on / C h.(φ9p) is that the rearrangement f*{x) exists,

which is the case if and only if any set [ |/Gc)| > e] , e > 0, has finite measure.

The completeness of Λ(φ,p)in this case follows from the fact that the set of such

f is a closed linear subset of the Banach space of all f for which (2.2) is finite. If

(2.4) n φ{x)dx =

this subspace coincides with the whole space. Condition (2.4) is in particular

satisfied \{φ(x) = axa~~ι .
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3. Reflexivity of the spaces Λ(φ,p). We shall first give some definitions and

lemmas which will be useful in the sequel. If gix), gι(x) are two positive functions

defined on (0, I), 0 < I < -f00, we write g < gi , if for all finite 0 < x < I we have

fo

xg(t)dt <fo

x

gl(t)dt.

Integration by parts readily yields:

L E M M A 1. If g < gι, and f is positive and decreasing on (0,1), then

(3-D jC' f1

LEMMA 2. If g < g\$ and g, g{ are positive and decreasing, then also φig)

< φ(gι) for any convex increasing positive function, in particular for φ(u) = u?,

p > 1.

For the proof, let f{χ) = {φigM) ~ φ(g(x))]/{gιk) ~ g(x)\ if gix) ί giW,
and let f{x) be equal to one of the derivates of \p (u) at u — g(x) if g(x) = gι(x)

Then f(x) is the slope of the chord of the curve v = ψ(u) on the interval (u, u t ) ,

u = g(x), uι — g\{x) The slope decreases as both u, ux decrease. Therefore/(#)

is decreasing and positive. Applying Lemma 1, we obtain

Γf(x)[g(x)-gι(x)}dx <

which proves our assertion.

THEOREM 2. Suppose that fix), gix) are positive and decreasing on (0,Z), and

f C MΦ,p),p > 1 . Then

(3.2) fQ

l fgdx < ||/||Λ inf { flφD* dX Y\ - + - = 1 ,
υ φD> g ι υ J p q

where infimum is taken for all decreasing positive D ix) for which φD > g. More-

over, this infimum is equal to the supremum of J Q fg dx for all positive decreasing

f with 11/11 < 1, if there is a function D with φD > g and JφDqdx<+™, and is

to -f°° if there is no such D.

This theorem is due to I. Halperin. For the proofs, see a paper of Halperin ap-

pearing in the Canadian Journal of Mathematics and, for a simpler proof, [lO] .
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Inequality (3.2) is a combination of (3.1) and the usual Holder inequality. For

if gι = φD > g , then

(3.3) fo

lfgdx< £ fgidx = I1

<\\ή\lι

Here and in the next section, the following theorem will be useful:

THEOREM 3. Suppose that Xis a normed linear space of measurable functions

f(x) on (0,Z), 0 < I < +°o, with the properties: (i) X contains all constants; (ii) if

fγ is measurable and | / Ί ( * ) | < | / U ) | , f C X, then fx G X and \\fx || < | |/| |;

(iii) if f G X and fe denotes the characteristic function of the set e9 then | ) / / e | |

—>0 as mease —> 0.

Let Y consist of all measurable functions g for which JQ fg dx exists for all

f G X. Then

(3.4) F(f) =fQ

L fgdx, g CY,

is the general form of a linear functional on X, and its norm is equal to

| | | | fl fgdx <+oo.||g|| p^

Proof, (a) Let g C Y; then J^ f | g \ dx exists for all / G X, and | |g | | =
s u P J o ί\&\ dx9 where f runs through all positive f £ X with | |/ | | < 1. If | |g| |

= +oo, there is a sequence fn > 0, | | / n | | < 1 such that ffn\g\ dx > n3. Then

/ = Σ n~~2 fn C X, and therefore J j f\g\ dx must exist. However J / | g | dx >
n~~2 Iίn \&\ dx > n9 which is a contradiction. Hence \g\ < -h°° for g ζL Y. We

see now that for g ζ_ Y9 J fg dx is a linear functional with norm | |g| | .

(b) Suppose that F (/) is a given linear functional on X. By (i) and (ii), any

characteristic function fe(x) belongs to X. Define G (e) = F (fe); since \G(e) <

lip]] \\fe\\ —>0 as meas e —> 0, there is an integrable g(x) with G(e) = Je g dx.

This means that (3.4) holds for / = fe, and therefore also for all step-functions/

(which are linear combinations of the f e ) . For a bounded /, there is a sequence

Jn(x) —>f(x) uniformly. As \\Jn - /| | —> 0, this establishes (3.4) for all bounded

/. Now suppose / G X is such that fg- \f\ \ g \. Let fn(x) = f{x) if \f(x) \ < n,
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fn{x) = 0 otherwise; then j | / — fn\\ —> ϋ by (iii), and hence JJfngdx = F(f7Ί) has

a finite limit. This shows that J\f\ g \ dx < + oo therefore g £ Y. Repeating

the last part of this argument for an arbitrary / £ A9 we obtain (3.4).

REMARKS. (A) Let A have the additional property: (iv) fn(x)—> fix) almost

everywhere, fn £ A, and | |/Λ | ! < ;]/ imply f £ A7. Then the existence of J f g dx

for all g £ Y implies f £ A.

For taking the subsequence fn(x) —> /(#) of (b), we see that Fn{g) — Jfng dx

is a sequence of linear functionals convergent toward Jfg dx for any g £ Y.

Then the norms jjZ^|j = |j/Vz!ί a r e uniformly bounded, and using (iv) we obtain

f ex.

(13) Since I7 is the conjugate space to A, Y is a Banach space, and Y clearly

satisfies (ii). Suppose now that A satisfies (i)—(iv) and that Y satisfies (i) and

(iii). Then Remark A and Theorem 3 together imply that A is the conjugate space

of 1, in other words that any linear functional Fig) in }7 is of the form Fig) —

ffgdx, f £ A and j | F | | = | |/ | | .

(C) The above results hold for the interval (ϋ, +o°) if the conditions (i)~

(iii) [and eventually (iv)] are true for functions vanishing outside of a finite

interval, and also (v) for any f £ A, ||jf — / j —> 0 as I —> °°, where f is de-

fined by flix) = fix) on (0,Z) and fl (x) = 0 on (Z,

Applying these general results to the space Λ(φ,p) in case of a finite interval,

we see that (i) and (ii) are satisfied. Condition (iii) follows from

heW** < fQ Φf*P dx —-> 0 , rneas e —> 0 ,

[heix) is the function f{x)feix)], and (iv) from (2.2) and Fatou's theorem. We

obtain the result that the space Λ (φ,p) conjugate to Λ(φ,p) consists of all

measurable functions g such that there is a decreasing positive D with φD > g*

and f^φDq dx < +00; further,

(3.5) | |g | |Λ = iπf
φD>-g*

For it follows from Theorem 2 that

< j 0 / * g * ^ <
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a n d t h a t | jg | | ^* i s t h e s u p r e m u m of t h e i n t e g r a l J fg dx for a l l jj/jj < 1.

Now if g (x) = C > 0 i s a c o n s t a n t , we t a k e a n I1 > 0 wi th φ ( Z L ) > 0 a n d Cγ —

Cί[ίιφ(li)]'-1 . T h e n J^C^(x)dx > Cl; and if D (x) = Cι on ( 0 , / ^ , D (x) = 0

on (I ι,l), then φD > g. Therefore Λ satisfies (i). Also (iii) holds, for if he(x) —

g(x)fe(x),g C Λ*, g* < φD, then A* < φϋϊ9 where Ux(x) = D(x) on (0,meas e),

/^Gc) = 0 on (meas e,Z), and

0 , meas e —» 0.

We have proved the theorem:

THEOREM 4. The space Λ(φ,p), p > 1, is reflexive. Its conjugate is defined

by (3.5).

We now consider the case of an infinite interval and assume J^φ dx ~ -f-°°.

Then / C Λ(φ,p) implies f*(x)—> 0 for x—> oo. If a > 0 is fixed and/ suf-

ficiently large, then the function \f (x) | of (v) will take values > /*(α) only on a

set of arbitrarily small measure. In view of (iii), condition (v) will follow for

A(φ ,p), if we can show that the norm of the function /*(α + x), 0 < x < -f00, tends

to 0 as a —>oo, or even if this is true for some sequence a—> °°. This norm does

not exceed

Γφ{χ)f*{xY 0 ,

as the integrand has the majorant φf*p, and f*(x + a)/f*(x) —> 0 for a —>o°.

To prove (v) for Λ (φ,p), we need a result going beyond Lemma 1, namely that

if g and D are decreasing and positive, and φD >- g, then there is another such

function Do for which φD >- φ/i 0 > g, and that except for certain open intervals

/ where DQ is constant, j^φD^dt — Jo

xg dt. (This fact is proved in the paper of

Halperin, mentioned at the beginning of this section and in [ lθ]) .As before, we

have to prove that if g C Λ (φ,p) is positive and decreasing, then the norm of

the function h{x) = g(x + a), x > 0, tends to 0 as a —> oo for certain values of

a. There is a D with φD > g and Jo°° φDq dx < + ™; and, by Lemma 2, Jo°° φDq

0 dx

< + oo . As J^φdx = + oo, we deduce that D 0U) —> 0 for Λ —> °°. Therefore
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On intervals /, J*φD0 dt is of the form CΦ(x) + Ci9 where Φ(x) = J*φ dt. If an

/ extends to -f oo, w e have C = 0, that is J*φD0 dt = Ct for all large x. and D0(x)

is necessarily 0 for all such x. In this case also g(x) — 0 for all large x, and our

assertion is trivial. If, on the other hand, there are arbitrarily large values a which

do not belong to any /, then we have for these a ,

It follows that j*φD0 dt > J* g dt, x > α, or φ(x + a)DQ(x + a) > g(x + a), and

this implies φ(x)DQ(x + a) > g{x + a). Therefore,

D0(x + α) q

for a —> oo. We obtain in this way:

THEOREM 5. The space K(φ,p), p > 1, / — oo is reflexive; its conjugate is

given by (3.5).

4 A generalization* There is an obvious generalization of the spaces Λ(φ,p).

Consider a class C of functions φ(x) > 0 integrable over (0,1), and let X (C9p)

consist of all those functions f(x) for which

(4.1) 11/11 = sup
φeC

A special type of these spaces is obtained if C is chosen to consist of all inte-

grable positive functions φ(x) whose integrals φι (e) satisfy the condition

(4.2) Φi(e) < Φ(e) ,

where Φ(e) is a given positive finite set function of measurable sets e d (0,Z).

We may then assume that

(4.3) Φ(e) = sup φ i ( e ) .
Φi

(A full characterization of set functions Φ(e) which may be represented in form

(4.3) by means of a class of positive additive φί will be given by the author else-

where [9] .) In particular, let φQ(x) be a fixed decreasing positive function, and

let Φ(e) = J^^ eφo dx; then condition (4.2) is equivalent to the condition
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Φ*(χ) <Φo(χ).

Therefore, in this case the norm (4.1) is equal to (1.1), and so X(Φ, p) — Λ(φ o,p).

For the space X(Φ ,p), the condition | |/| | = 0 is equivalent to f(x) — 0 almost

everywhere if and only if Φ(e) > 0 for any set e of positive measure. Suppose now

that Φ(e), defined by (4.3), vanishes on certain sets e with meas e > 0. There is

then [2, p. 80, Theorem 15] a least measurable set e 0 which contains any such

set e up to a null set; and e 0 is a union of a properly chosen denumerable set of

these sets e. Hence φι(e0) — 0, and Φ(e 0) — 0. It is easy to see that in this case

11/11 = 0 is equivalent to f(x) = 0 almost everywhere on (0,1) ~ e 0 , and that the

values of f(χ) on e 0 have no significance whatsoever for | | / | | . Omitting e 0 from

(0,/), we do not change the space X{φ,p), and we obtain a Φ(e) satisfying the

above condition. In the sequel, φ is assumed to have this property.

The spaces X(Φ,p) are normed linear spaces. Their completeness maybe

proved by usual methods, if for instance F (e) has the property that meas e —> 0

implies Φ(e) —> 0 and if / < +00.

The spaces X(C,p) satisfy the conditions (i), (ii), and (iv) of 3 [(iv) follows

easily by Fatou's theorem] . Condition (iii) is not fulfilled in general. We can

however enforce (iii) by defining the spaces Δ(C,p) and Λ(Φ,p) to consist of all

those functions / £ X(C,p) or / £ Z(Φ,p), respectively, for which | | // e | | —> 0

with meas e —> 0 in X. Then the conjugate space A*(C,p) and all linear function-

als in Δ(C,p) are given by Theorem 3. We conclude this section by describing the

spaces Λ (Φ, 1) more precisely:

T H E O R E M 6. /// G Λ(Φ,1), then

)φ(e)>0 Ψ

and the left integral exists provided the right side is finite; moreover, the supre-

mum M (g) in the right side is equal to the supremum of JQ fg dx for all f £ Λ(Φ, 1)

with 11/11 < 1.

Proof. Consider the function φo(x) = M (g)~~ι \g(x)\ then

j Γ ' l / l \g\dx = M ( g ) j Γ / φ 0 | / | ^ < M ( g ) | | / | i Λ )
jΓ

since
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j fφoW dx =M{gYι feg(x) dx < Φ(e) , e C ( 0 , l ) .

This proves (4.4). On the other hand, if e is an arbitrary subset of (0,/) with

Φ(e) > 0, then the function f(χ) = Φ(e)""1 fe(x) s igngU) has norm 1 in Λ(φ, l) ,

and

Therefore the integral / /g dx takes values arbitrarily close to M(g).

From Theorems 3 and 6 we deduce that the space M(Φ,1) = Λ*(Φ, 1) consists

of all g (x) for which

(4.5) llgH

In particular, the space M(φ), conjugate to Λ(φ), is given by

(4.6) h\\mφ) ^ s u p j φ i ί e ) - 1 ^ | g | d * } .

It is easy to see that the expression (4.6) is the limit, for p —> 1, of the norm of

g in the space Λ (φ,p), p > 1.

5 Applications. We shall make three applications.

5.1. Hardy-Littlewood majorants. We take in this section I = 1. We write

(5.1) θ(x,f) = sup — — fy \f(t)\dt,
o<y<i J "" x

and denote by θί{xff) and Θ2(x,f) the supremum of the same expression for

0 < y < x or x < y < 1, respectively. Then

(5.2) θ(x,f) <max {Θ1(x, f), Θ2{χ,f)\ .

On the other hand, it is well known [5, p.29l] that

(5.3) θΐ(χ,f)<θ(x,f*)=l- fo

xf*(t)dt,

and this is also true with θ2 in place of θi. From (5.2) we derive, for any p > 1,
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θP(x,f) <θP{x,f) +θP(χ,f)._

It follows that

Θ*(X,J)P < (Θ? + θξf < (#)* + (θξ)* =Θ?P +θ;p<2θ(x,f*y;

that is,

(5.4) &*{x,f)P< 2θ(x,f*Y .

We shall make repeated use of the inequality of Hardy [ l2, p. 72] :

.5)
p — s

where p > 1,5 < p — 1, 0 < Z < + o ° , and F (x) is the integral of the positive

function f(x).

In our present situation it follows from (5.3) and (5.5), if p > 1, that

and, by Lemma 1,

(5.6) ^ ψ

This is case (i) of the following theorem:

T H E O R E M 7. (i)// / C A(φ,p) and p > 1, then also θ(xj) C K{φ%p);

(ii) if f*{x) log (]/x) C Λ(φ), then θ{x,f) C Λ(φ); (iii) if f G Λ(φ), α ώ φ U )

is decreasing with respect to x for some S > 0, ίAê z θ(x9f) £1 Λ(φ).

To prove (ii) we observe that (5.4; with p — 1 and Lemma 1 imply

= 2fo

1f*(t)dtft

1 (tγdx<2fΰ

1φ{t)f*(t) log j d t <+oo.

Finally, if the hypothesis of (iii) holds, that is if φ(x) = Λ~ D{X) with a decreas-

ing positive D, then the preceeding inequality gives
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\\θ\\<2 I1 f*(t)D(t) f^x-'-

THEOREM 8. (i) If f*(x) log (1/*) G Λ*(φ,p), p > 1, ίΛen 0(x,/) G Λ * ( φ , P ) ;

(ϋ) i/f G Λ*(α,p), p > l, ίAen 6>(/) G Λ*(α,p).

Proof, (i) Let p > 1 [the case p = 1, Λ*(ς6,p) = U(φ) is simpler] . By (5.4),

and since θ(x,f*) decreases, we have

I|0(/)II'<2Ί|0(/ )||9 =2« inf Γφix)D(x)idx.ΐ
φD>θ(f*)

But by (5.3), we have

f0

Xθ(u,f*) da = f0

Xf*(t)dt j ; ^ < fo

Xf*(t) log i dt,

which means that θ(χ,f*) < /*U) log (l/x) = A U); hence

<2* inf flφD*dx =
φ h °

(ii) Let / C Λ*(Cί,p); because of (5.4) we may assume that / = /*, that is,

that / is positive and decreasing. Suppose / < φD and J^ φD** dx < + 0 0 with

φ(x) = OLxa-1. Then by (5.3) we have

θ(χj)=~ £f(t)dt <- 4xt«-*D(t)dt

say. The function DI(Λ ) is positive and decreasing, as

Di{x) = - α χ - α - 1 j J x t α - 1 D d t + x~ιD{χ)

<-aχ-°-ιD{x) f0

Xta-ιdt +χ-1D(x)=0.

Therefore, by Hardy's inequality, we have

\\θ(f)\\q ^αjf^^D'd* =
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<CJQ x"-CL>v-l)+«x-1><!D(x)« dx = C JΓ xa~ιD* dx

with some constant C. Thus θ(f) £ A*, which proves (ii).

It should be remarked that /* log (l/x) behaves very much like /* log+/* :

(a) // /* log (l/x) belongs to A*(ςό,p), p > 1, then f log+ | / | belongs to

A (φ,p). For if p > 1 [the case p = 1 is similar but simpler] , there is a D (x)

with /* log (l/x) < φD and J*φϋ dx < + oo. Then also /*(δ) log (l/x) < φD on

(0, δ); in particular,

1

/*(δ) J log "" dx < J φD dx < 1
0 ηr 0

if δ is small. Therefore /*(δ) < δ""1 for all small 8, which shows that

I/I C Λ*(φ, P ) .

(b) Now suppose φ(x) is such that, for some δ > 0, we have J* φ (x)x ~ dx <

+ oo. ///log f I/I belongs to Λ (φ,p), p > 1, ίΛerc /* log (1/%) α/so f/oes. In fact,

by Young's inequality [5, p. I l l ; or 11, p. 64] , for the pair of inverse functions

φ(u) — log u, \p(v) = e y , we obtain ab < a log + α + e (α, ̂  > 0) and therefore

/* log - < δ" 1 /* io g

+ (δ-1/*) + ^-δ < δ" 1 /* io g

+ 7 + δ" 1 /* i o g

+ /* + *"δ

% δ

< Af* log+ /* + b + x~δ

for some constants /I, 5.

It follows from these remarks, that Theorem 7 (ii) may be regarded as a gener-

alization of the theorem of Hardy-Littlewood [ 12, p. 245] that /log | / | £! L

implies θ(f) £ L .

Theorems 7 and 8 have many applications which may be derived in the same

way as the corresponding results for the spaces Lp (see [12, p,246]). As an

example, we give the following result. Let k > 0, and let σ^Hx9f) denote the

Cesaro sum of order k of the Fourier series of a function f(x). If θ(x9f) is taken

for the interval (0,4ττ), we have: if f(x) satisfies one of the hypotheses of Theo-

rems 7 or 8, then \σ^ (x9 f)\ < Cfίθ(x9f), n — 0,1, . We may give another

formulation of this result. In the spaces A(φ,p) and Λ (φ,p) we introduce a
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partial ordering, writing/! < f2 if f\(x) < /2M almost everywhere. With this order-

ing, Λ and Λ become Banach lattices for which the order convergence fn —> f is

identical with the convergence fn{x) —> f{x) almost everywhere and the existence

of a function h{x) of the lattice such that j fn(x) \ < h(x)almost everywhere. This

is an immediate consequence of the fact that the lattices Λ, Λ satisfy the condi-

tion (ii) of Theorem 3 (see [6, pp. 154-156] ). Then the above result implies that

&n —> / in order in the corresponding space. Theorems of this section may also

be used to obtain analogues of theorems of Hardy [3] and Bellman [ l ] for spaces

Λ and Λ*; see Petersen [ l l ] .

5.2. Integral transformations. Let K(x, t) be measurable on the square 0 < x < 1,

0 < t < 1, and let

(5.7) F(x) = £lK(x,t)f(t)dt.

THEOREM 9. Suppose that there is a constant M such that

(i) J \K(x, t)\ dt < M almost everywhere;

(ii) for any rearrangement φr{x) of φ{x), the function hr{t) = J^φrMK (x, t)dx

belongs to Vί(φ) and has a norm not exceeding M. Then (5.7) is a linear operator of

norm < M mapping Λ(φ,p) into itself. Condition (ii) may also be replaced by

(iϋ) f \K(x, t)\ dx <M almost everywhere .

Proof. Condition (ii) is equivalent to

(5.8) h*(t) < Mφ(t) .

Assuming/ £ A(φ,p), p > 1, we have

ΦΛX) \F(x)\>>dx ϊ tfφrdxtfW \f(t)\ dt\P

<*"" fo

l\fM\P dt tfφΛx) \K(x,t)\ dx

Ch*r{t)f*{t)Pdt;
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by (5.8) and Lemma 1, this is

which proves the first part of the theorem. Suppose now that (i) and (iii) hold. Let

δ > 0, e an arbitrary set of measure 8, and eι a set of measure δ such that φr(x)

> φ(S) on ei and φr (x) < φ (δ) on the complement C e ι of e ι . Then we have

f e \ h r ( t ) \ d t < I d t jei\φr(x)\ \K\dx+ JΓ /c e i

l A V j Γ j Φ r M I dx + φ ( δ ) Jf d t l l \ K ( x , t ) \ dx

<MΦ(S) +MSφ(δ) < 2MΦ(δ) .

This shows that the norm of hΓ{t) in M{φ) does not exceed 2/1/, and proves (ii).

REMARK. If the conditions of Theorem 9 are satisfied, then

(5.9) G ( ί ) = I1 K(x, t)g(x) dx

is a linear operator of norm < 2M mapping Λ (φ,p) into itself.

We have in fact, for g £ Λ (φ,p) and / £ Λ(φ,p),

Jo

lG{t)f(t) dt = Jo

1g(x)dxfo

1K{x,t)f{t)dt = fo

1g(x)F(x)dx

(the integrals evidently exist), and this shows that G C Λ* and that \\G \\ < M | |g | | .

Theorem 9 is akin to the "convexity theorem" of M. Riesz [ 12, p. 198] . We

mention for completeness that there is a generalization of this theorem, in which

the different spaces Lp involved are replaced by the spaces A(φ,p) with the same

φ. The proof, which follows closely the proof of M. Riesz's theorem in [12] , is

omitted.

5.3. Moment problems. We give an application of Theorem 9 to moment problems

of the form

(5.10) μn = fo

lχnf{x)dx, n = 0, l ,2, •••.
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We shall write

μnv = (^)Δ"-Vv = f0

1f(x)pnΛx) dx ,

Pnv = ί - | * v ( l ~ x)n~v , v = 0, l. . n ,

and μnV for the decreasing rearrangement of the \μnv | , v = 0,1, * , n. More-

over, we set

/ x / V V + 1
(5.11) /„(*) = (n + l)/iBv for — — - < x < ~ ~ ,

n Ί- 1 n T 1

and obtain

(5.12) /nU) = j C ^ n U O / C O d t ,

n + 1 rι + 1

For the special case φ(x) = CX%a-1 and p = 1, the following theorem (with an-

other proof) has been given in [δ] .

THEOREM 10. The sequence of real numbers μn is a moment sequence of a

function of the space Λ(φ, p) or of Λ (φ,p) [for the case Λ(0,1), we assume φ(x)

—> °°/or Λ;—> 0 ] if and only if the norms of the functions (5.11) are uniformly

bounded in this space.

For the space A(φ,p)9 the condition is

(5.13) £ Φnvμ*nζ <M(n + l)~P ,

and for A (φ,p), p > 1,

n

(5.14) μ*v < ΦnI,Z)nv , Σ §nvDq

nv <Mq,
v=0
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with some positive decreasing Dnv> v — 0 ,1, , n.

Proof. If / C Λ(φ,p), then condition (5.13) is satisfied by Theorem 9, because

the kernel (5.12) satisfies (i) and (iii) with M = 1.

Conversely, let | | / Λ | | ^ < M. Since

fe\fn(x)\ dx < meas e =

it follows in case p = 1 that the integrals J e \fn\ dx are uniformly absolutely

continuous and uniformly bounded. In case p > 1, this follows by Holder's ine-

quality. We deduce that for a certain subsequence fnk(x), the integrals Jefn^χ) dx

converge for any e = (0, x] with x rational; hence they converge for any measurable

set e C (0,1). We then have

(5.15) lim Jefnk(x)dx = fef(x)dx,

with some / £ L. Then also

(5.16)

for any bounded \p, For any such \p we have, by (3.2),

hence this must be true for any \p in Λ . Thus by §3, it follows that f £ Λ(φ,p).

We remark also that it follows easily from (5.16) that we have

(5-17) Sa

lfnhΦkdx^>fQ

lfφdxt

if the sequence ip^ix) is uniformly convergent towards a bounded function ψ(x).

Now let P be the vector space of all polynomials

ψ(x) = a0 + aix + ••• + amxm

with usual addition and scalar multiplication. On P we define an additive and

homogeneous functional F by
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F(φ) = aoμo

 J" a i μ i + ••• + aMμn .

L e t

n I \

P Φ ( \ ^"* / I 1 ^ \

be t h e B e r n s t e i n p o l y n o m i a l of order n of ψ(x); t h e n it i s k n o w n [ l O ] t h a t

and that α / ^ — > aι for TZ —> oo. Hence F (B^) —> F(ψ). In particular, let

Λ;m. We have

(5.18) () H )
n I v \m n I v \m

^) = Σ H F(Pnv) = Σ - ) ' nv

where ψn(x) is equal to {v/n)m in the interval ίV/(rc + l), (v + l)/(n +1)]. As ψn{x)

—»</;(%) uniformly, we deduce from (5.18) and (5.17) that

J o

l f { x ) x n d x = l i m F(Bn) = f { φ ) = μ Λ , « = 0,l, .

Since / C Λ(φ,p), this proves that the condition is sufficient in case of the

space Λ. The proof for the space Λ*(ςέ,p), which is similar, is omitted.
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ON A CERTAIN NONLINEAR INTEGRAL EQUATION

OF THE VOLTERRA TYPE

J. H. R O B E R T S AND W. II. MANN

1. Introduction. In an earlier paper by Γvjann and Wolf [ l ] , the following

problem of heat transfer between a gas at constant unit temperature and the semi-

infinite solid was considered:

GAS
Temperature 1 o

SOLID
Temperature U (x,t)

U (x, 0) = 0 for x > 0

(1.1) Ut(x,t)=UXιX(x,t),

(1.2) t / ( * , 0 ) = 0 ,

(1.3) \i{x,t)\ <M , x > 0, t > 0 ,

)] =-G[U(0,t)].U Ux(Q,t)
K

It will be noted that, in boundary condition (1.4), Newton's Law of Cooling

has been replaced by the weaker, more realistic hypothesis that the net rate of

heat exchange from the gas to the solid, ~~KUx(0,t), is some function, KG ίϋ(0,t)] ,

of the surface temperature. In every heat transfer problem of physical significance,

the following conditions must be satisfied by G [U] :

(1.5) G [ϋ] is continuous,

(1.6) Gil] = 0 ,

(1.7) G [U] is strictly decreasing.

Received December 4, 1950. Presented to the American Mathematical Society under a
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By DuhameΓs Principle, the solution U(x, t) of the above boundary value prob-

lem is easily constructed once we know the surface temperature, U(Q,t), which it

can be shown must satisfy the nonlinear integral equation,

Equation (1.8) λvas shown in [ l ] to have at least one solution for all G satisfying

(1.5), (1.6), and (1.7). Under the additional ad hoc assumption that G satisfy a

Lipschitz condition on the unit interval, the solution of (1.8) was proved to be

unique and nondecreasing.

It is the purpose of the present paper to show that conditions (1.5), (1.6), and

(1.7) alone are sufficient to imply that U(Q,t) is not only unique but also strictly

increasing. Besides being a stronger result than that previously obtained, it has

the advantage of requiring only those conditions imposed upon G by the most ele-

mentary physical consideration.

2. The theorems. More general results are obtained without increasing the

complexity of the proofs if instead of the function [ττ(t~~τ)J~~l/2 we write Kit ~ T ) ,

or K{z) where t — T— z, subject to specified conditions, namely:

(2.1) K (z) is positive, continuous, and strictly decreasing for z > 0;

(2.2) f K(z)dz is finite for each t > 0;

(2.3) K(z + 0ί)/K(z) is strictly increasing in z for each fixed Cί greater than zero;

(2.4) f* K(z)dz oc.

It is easily verified, for example, that [π [t — r)] ~~p satisfies the above con-

ditions for 0 < p < 1.

THEOREM 1. The equation

(2.5) y(t)= j [ ( C [ y ( τ ) ] ί ( ί -τ)dτ

can have at most one bounded solution, given that G [y] satisfies (1.5), (1.6), and

(1.7), and that K(z) satisfies (2.1) and (2.2).
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THEOREM 2. In addition to the hypotheses of Theorem 1, assume that K

satisfies (2.3). If y(t)is a bounded solution of (2.5), then γ (t) is strictly increasing

in t. If, in addition, K satisfies (2.4), then γ (t) —> 1 as t —> °c .

3 On Theorem 1. In this section we arrive at a proof of Theorem 1.

LEMMA 3.1. Suppose that f(τ) is continuous for a < r < b, and that J£f(r)dτ

is positive for some t on [α, b] . Let tΛ be the smallest value of t on [α,6] for

which Jα/('7")^'7~ is a maximum. Then either /(ί^) = 0 or tι — b. Suppose that K{τ)

is positive and strictly increasing on a < r < tx , and that }a K{τ)dτ exists.

Then Jalf(r) K(r)dr > 0.

Proof. Set Ja

ι f(r) dr — M > 0. Divide / into its positive and negative parts

by writing f^r) = max [/(τ),θ] and / 2 ( r) = - min [/(r),θ] , so that f(τ) = fx(r)

— ^ ( T ) . Let c0 = α, and define c{ to be the smallest number c (c > c 0) such that

Ja fι(τ)dτ — /!•/. Then cL < ί1# In general, choose c^ + 1 as the smallest number

greater than cn for which

S i n c e J c

1

1 / ι ( r ) α 7 r = J C Q 1 / ^ 7 " ) ^ 7 " * ^ fo l lows t n a t f ° Γ e a c h n w e h a v e c ^ < tx. L e t

c be the number to w h i c h the s e q u e n c e c 0 , c 1 ? c 2 , c o n v e r g e s . T h e n c < tx

and

fCf(τ)dτ= pfΛr)dr+ Σ \Γn + 1fΛr)dr- / c" /2 (r) rfr] = M ,

since each summand of the infinite series is zero. Thus c — tί .

We have

(3.3) Vιf{τ)κ(τ)dr

n -1

\ fC"+1 l\(r)K(r) dτ - fc» f2(r)K(r) dr].
L c ι cn-l J
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Now for n > 1 we have

Γ" + 1 /i (τ)A (r) dτ > K(cn) / C " + 1 /i (r) άr,

since K(τ) is strictly increasing; and

Γ <K(cn) fn f2(r) dr.
cn-\ cn—\

Thus, by (3.2), each summand in the expansion (3.3) is positive or zero, and the

first one is positive. Hence Ja

ι f(τ) K{τ)dτ > 0.

The first assertion of the lemma, namely that either f{tγ) — 0 or ti = 6, is

obvious.

LEMMA 3.4. Assume that f(r) is continuous on 0 < r < T and that K(z)

satisfies (2.1) and (2.2). Suppose furthermore that F(t)f(l) < 0 for 0 < t < T,

where F (t) = Jξf(r)K(t - τ)dτ. Then f(r) = 0 for 0 < r < T.1

Proof Assume the lemma to be false. Then for some t we have Jof(τ)dr ψ 0.

There is no loss of generality in assuming Jof(τ)dr > 0, since replacing /by

— / results in replacing F by — F, so that the inequality F(t) f(t) < 0 persists.

Clearly f{τ) must change signs, so there exists a number ό, 0 < b < T, such that

f{b) — 0 and, for some t < b, jof(τ)dτ > 0. Let t{ be the smallest value of t

(0 < t < b) for which JQ f(τ)dτ is a maximum and apply Lemma 3.1 using K (tι — r)

in place of K (r). We have

-r)dτ>0.

Then we have F (t) > 0 over the segment (t { — δ, ί t ) for some δ > 0; and since

Jt -8 f(τ)dr > 0 there is some t between tι — δ and tx for which f{t) > 0. But for

this t we have F(t) f(t) > 0, violating our hypothesis. Thus f(t) is identically zero

on [0, T] . This completes the proof of Lemma 3.4 and we are now ready to prove

the uniqueness theorem.

Proof of Theorem 1. Suppose yγ(t) and γ2 (t) are bounded solutions of (2.5).

Obviously both are continuous. Letting F (t) — yι(t) — y2^t), and f(τ) — G [ y ^ r ) ]

- C [γ2(r)] , we have Fit) = ^f(τ) K(t - τ)dr. If fir) < 0 then, since G is

1 In place of assuming continuity we may assume that / ( r ) has a Lebesgue integral
over [O, Tj and that the condition F{t)f{t) < 0 holds except for a set of measure zero.
Then we may conclude that f(τ) ~ 0 over [θ, 7 J except at points of a set of measure zero.
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strictly decreasing, we have y2(τ) < yi(τ), whence F (r) > 0 and F (r) f(τ) < 0.

Similarly, if f(r) > 0 it follows that F(τ)f(τ) < 0. Thus the hypotheses of Lemma

3.4 are satisfied and we can infer that f{t), and hence F (t), is identically zero

for t > 0. This means that yι (ί) = 72^)

4. The function K(z). In preparation for the proof of Theorem 2, we give the

following lemma concerning K (z).

LEMMA 4.1. If K(z) satisfies (2.1) and (2.3), then:

(4.1) For α > 0 and z > 0, we have

[K(z + cλ) - K(z + 2α)]/[tf(z) - K(z + α)] < tf(z -f α)//f(z)

(4.2) £(z) ~ Â (z + α) is strictly decreasing in z for all fixed (X > 0

(4.3) /v (z) is a convex function;

(4.4) For each interval [θ,b], there exists a number R > 0 such that

K(z)~K(z + a)> Ra forO< z < z+ a < b.

Proof. By (2.3) we know that K (z + <λ)/X(z) < K(z + 2θί)/K(z + α ) . Sub-

tracting 1 from both sides of this inequality and performing a simple rearrangement

of terms, we easily arrive at conclusion (4.1) above.

To prove (4.2) we observe that, by (2.3), [K(z + Ci)/K{z)] - 1 is strictly

increasing, so that [K(z) — K(z + Cί)] /K(z) is strictly decreasing. But by (2.1),

both the numerator and the denominator are positive and the denominator is de-

creasing. Hence, the numerator must also be decreasing.

That K(z) is convex follows readily from (4.2), in view of the hypotheses that

K(z) is positive, decreasing, and continuous.

From (4.2) and (4.3) it follows that K(z) has a right-hand derivative at each

z > 0, and this derivative is negative and strictly increasing. The R of (4.4) can

be taken as the negative of this derivative at z — b,

5 The function γ(t) Sections 5 through 10 are devoted to the proof of Theorem

2. Throughout, y(t) will denote the bounded solution of (2.5), where K(z) satisfies

(2.1), (2.2), and (2.3). In §10 we assume in addition that K(z) satisfies (2.4).

LEMMA 5.1. // y(t) < 1 for 0 < t < T, then y(t) is nondecreasing on [0, T].

Proof. A s s u m e the lemma i s f a l s e . T h e n for s o m e s u b i n t e r v a l , [θ,b] , y(t)
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attains its maximum M at an interior point, α, and we set y(a) ~~ y(b) — 3β > 0.

We shall assume that a is the smallest number (0 < a < b) such thaty(α) = M.

Choose hι > 0 so small that

(5.2) 5i fbK{b -τ)άτ< e .

Set G [y {a)] — c and choose pi (0 < p L < α) so near to a that (see Fig. 1)

(5.3) G [ y ( t ) ] < c -h δj for pi < ί < α

c+δ

Pi P2 P α

Fig.l

6 t

Next, choose p 2 ( p t < p 2 < a) so close to α that

(5.4) (c + S X ) ΓaK(a -τ)dτ

and
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(5.5) (c f*K(b -τ)dτ <e .

Define δ so that 0 < δ < δL and c + δ < G [y (t)] for 0 < t < p 2 . Let p be the

largest value of t such that G[y(t)] > c + δ for ί < p. Then p 2 < p < α. Define

(5.6)
if t > p .

Now since y attains its maximum on [θ,i>] at t — α, and G is strictly decreasing,

we have

G-G for α < t < b .

We shall show (Lemma 7.1) that J Q G * [ T ] /^(ί ~" τ)dτ is strictly increasing as £

increases from α to ό, and therefore }'(6) > I7 (α), where we use the following

definition:

(5.7) K ( t ) =

By (5.4) we have

(5.8) \y{a) - Y(a) | = | ζ \G[y(τ)] - G* [r] }K(a - r) dr

< §! /α/f(α - τ ) d τ < e.

Similarly, we obtain

(5.9) y(b)-Y(b)= fp

a{G[y(τ)]-G*[τ]}K(b-τ)dτ

+ fa

b\G[y(r)]-G*[r]}K(b-r)dr

= α + say

By (5.5), we have | α | < € . As for /3, the integrand for any r is either posit ive

or numerically less than δK(b — r ) . Hence, by (5.2), it follows that β>—e.

From (5.8) and (5.9) we therefore have y{a) < Y(a) + e and y(b) > Y(b) — 2 ε .
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Subtracting, we get y (6) - y (α) > Y (b) - Y (a) - 3 6 > - 3 6, since Y (b) - Y (a)

> 0 by Lemma 7.1. This contradicts the definition of e, and thus the proof will be

complete when Lemma 7.1 has been established.

6. The function Y (t) for t < α. We shall establish the following result.

LEMMA 6 . 1 . With the notation of § 5 , there exist numbers r and s ( p < r <

s <a) such that Y (s) > Y ( r ) .

Proof. D e f i n e / ( r ) t o be G*(r) ~G[y(r)].

Case 1: for some q(p < q < α), we have f,; f{τ)dτ > 0. In this case, set

r — p and let s be the smallest value of q on \_pf a] such that Jp f(τ)dτ is a maxi-

mum. Using K (s — T ) in place of K(τ), and p and s, respectively, in place of a

and t if we see from Lemma 3.1 that Jp f(τ) K(s — τ)dτ > 0. This implies that

(6.2) fp

SG*[r]K(s-r)dτ> jT G[y(r)]K(s ~r) dr.

Now if s < a then f(s) — 0, by Lemma 3.1. That is, G[y(s)] = c + δ, so that

y(s) = y(p). lί s — a, then obviously y(s) > y(ρ) Since G* [ r ] = G [y(τ)] for

r<p, we get immediately from (6.2) the result that

-τ)dτ> f0

SG[y(r)]K(s-r)dr

that is,

Y(s) > Y(p) .

Case 2: for every q (p < ^ < α), we have Jp f(τ)dr< 0. Now / ( r ) is not

identically zero on [p, a] since /(α) = S Let r be the smallest number q on

[p, α] such that Jp f{τ)dτ is a minimum.

Then Jpf(τ)dτ = U < 0 and J r f(τ)dτ > 0 (r < £ < α) by the minimum property

for r. Let s be the smallest value of t (r < t < a) such that §f f(τ)dτ is a maxi-

mum. We now apply Lemma 3.1 to the interval [p, r] , using K(r ~~ T ) ~~ /((s — T)

as the function K(r) [note that this function is increasing in r by (4.2)]. We
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also use ~f{τ) in place of f(τ) This gives

(6.3) jΓ [- f(r)][K (r - r) - K(s - τ)]dτ >0 .

Similarly, applying Lemma 3.1 to the interval [r, s] and using K(s — T ) as the

function K(τ), we get

(6.4) fS f{τ)K(s - τ ) d τ > 0 .

We are now in a position to show that Y (s) ~ Y (r) > 0. For we have

Y(s) -Y(r) = f0

PG*[r][K(s - r) - K(r ~ r)] dr

+ frG*[τ][K(s-τ) -K(r ~τ)]dτ

+ fr

SG*[r]K(s-r)dr.

Similarly, we have

y(s) ~y(r) = f0

PG[y(r)][K(s - r) - K(r -τ)]dτ

+ fp

rG[y(τ)][K(s-τ)-K(r-τ)]dτ

+ fr

SG[y(τ)]K(s-τ)dτ.

We therefore get

[Y(s)-Y(r)]-[y(s)-y(r)]

= ζf(r)[K(s -r) -K(r - r)] dr + fj f {r) K{s - r) dr

= jΓΓ[-/(τ)][Λ(r - r ) -K(s ~r)]dr + fr

Sf(r)K(s - r) dr > 0 ,

by (6.3) and (6.4). But /(/•) = ϋ, so that y(r) = yip). Also either f(s) = 0 or s = a.

In either case we have y(s) > y(p). Thus y(s) ~ y(r) > 0 and Y(s) > Y(r).
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7 The function Y (t) for t > α. For £ > a we have the following stronger result.

LEMMA 7.1. The function Y (t) is strictly increasing for t > a.

Proof. Suppose that e > p, 0. > 0, and Y (e + a ) > y(e). We prove first that

y (e -h 2 α) > y (e + α ) . Replacing c + S by A:, we may write

e + UG*(τ)K(e+a~τ)dτ- jT+αG *(τ) K(e - r)

+U-τ)dτ - JJ kK(e - τ) dτ\

- r ) -λ-(e + U-τ)]d

say

0 ((We have used the fact that 0 ( T ) — k = 0 for T > e.) Similarly, we have

y(β + 2 α ) - y ( e +α) = { jΓ e + 2 α kK(e + 2 α - τ ) ( i τ - j j e + ^ ( β + α - r ) d r )

Now Ax — β i > 0 by hypothesis, and we wish to show that Λ2 ~~ S2 ̂  0.

By simple changes of variable we get

fjK(e-r)dr= fj K(z) dz, jΓβ+αK(e + α - r ) dr = f™ K(z)dz,

and

Then we have the following:

i = fo

e[G*(e-z) -k][K(z) -K(z + α ) ] d z ,
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B2 = fo

e[G*(e ~ z) -k][K(z + α) ~K(z + 2a)]dz.

Another change of variable gives

A2 = k fe aK(z + α) dz .

Now over the interval e < z < e -h 0. we have, by (2.3),

K(z +α) =/f(z)[/ί(z + O)/K(z)] >K(z)[K(e +

Furthermore, the strict inequality holds except for z — e. It follows that /ί2 >

[A'(e + U)/K{e)] Aι .

To obtain an inequality for B2/Bγ, we note first that G (e ~~ z) — h is positive

or zero for 0 < z < e. Over this range for z, we have

[K(z + α) ~K(z +2α)]/[«(z) -Λ(z + oc)]

</ί(z + a)A(z) <K(e + a)/K(e) ,

by (4.1) and (2.3). Thus it follows that B2 < [K(e + α)/X(β)] B ι# Then

- B j > 0 .

Thus we have seen that if e > p, U > 0, and Y (e + α) > Y (e) then Y (e + 2 α)

> Y(e + α ) . Hut then it follows that Y (e + 3 a ) > Y(e + 2 α ) ; Y(e + 4 α ) >

Y(e + 3 α ) , and so on. Now if e = r, and α = s — r, we have Y (e + α) > Y (e) by

Lemma 6.1. Divide the interval [r,s] into n equal subintervals by the points

x0 — r, xu x2, * , xn — 5. It follows that for some i we have Y(%i + 1) > Y(x{).

But %; + ! = %ι + Un~ι , so that Y(xι + 0,n~ι) > Y (xι). Thus we see that Y (t) is

strictly increasing over the points of an arbitrarily fine mesh. Hence, by conti-

nuity, it is always increasing for t > 5, therefore a fortiori for t > a. This com-

pletes the proof of Lemma 7.1, and thereby establishes Lemma 5.1.

8. A stronger result concerning y(t) We now prove:

LEMMA 8.1. Under the hypothesis of Lemma 5.1, y(t) is strictly increasing

on the interval [ 0 , 7 ] .
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Proof. If the lemma is false then there exist points p and a (0 < p < a) such

thaty(τ) <y(p) if τ < p , andy(τ) = y( p) if p < r < α. Define G*(τ) = G[y(τ)]

for T < p, and G *(τ) = G [y (p)] for τ> p. Then we have the situation of §7, and

y (ί) is strictly increasing for t > p. But over [p, α] , we have y(ί) = y{t).

9 Another result concerning y(ί) Our last lemma is the following:

LEMMA 9.1. For every t {t > 0), we have y(ί) < 1.

Proof. Assume the lemma is false, and let b be the smallest number such that

y(b) = 1. Then by (1.5), (1.6), and (1.7) it follows that G ίy(t)] strictly decreases

from 1 to 0 as t increases from 0 to b. (See Fig. 2.)

G[y{t)]

Fig. 2

By (4.4), there exists an R > 0 such that for every δ (0 < δ < 6/2) we have

(9.1) K[(b/2) - δ] -K(b/2)

Set c = G ίγ(b/2)] and d — G[γ(b — δ)] . Then c is fixed and d is a function of

δ such that d —> 0 as δ —> 0. Also K (b) > 0 and K is continuous. Therefore

it is clear that we can fix δ so that

(9.2) (6/2 )(c -d)R > 2dK{b) ,

(9.3) K(b - S) < 2K{b) .

We shall show that for this choice of 8 we have y(b) < y(b ~~ δ), which is a
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contradiction. Now

b/2-S -τ)dτ + fo

b/2(G[y(τ)]-d)K(b-S-τ)dr

= α + β + y , say .

Similarly, we have

y{b) <d fo

bK(b-τ)dτ + f b h (G [y(r)] - d)K(b - τ) dr

+ / 6/ 2" 8 (G[y(r)] -d)K{b-τ)dτ = λ+μ+v, say,

where the inequality arises from replacing G[y(r)] by the greater quantity d9 for

b ~ δ < T < b. Then

(9.4) y(b) - y(b - δ) < (λ - α) - (yS - /x) + (v - 7 ) .

By (2.1) we have

(9.5) v - y < 0.

Furthermore,

= d fSK(b-τ)dr,

since

fbK(b-r)dr= f*K(b-τ)dτ+ fbK(b~τ)dτ,
0 0 o

and since replacing r by z + δ gives JQ K(b — δ — z)c/z for the second integral.

But by (2.1) it follows that

f*K(b -r)dr < S[K{b - δ)] ,

so that

(9.6) λ - α < dS[K(b - δ ) ] < 2dSK(b) .
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Similarly, by (4.2),

β-μ= JΓ6/2 (G[y(τ)] - d)[K(b - S - r ) - K(b -τ)]dτ

> (c-d) fo

b/2[K(b-h-τ)-K(b-τ)]dr

> (c -d)[K(b/2 - S ) -K(b/2)](b/2) .

Thus using (9.1) and (9.3) we have

(9.7) β-μ> (c -d)Rδ (6/2) .

In view of (9.2), (9.6), and (9.7), it is clear that β - μ > λ - α. Hence, from

(9.4) and (9.5) we have γ (b) — γ (b — δ) < 0, a contradiction.

10. Proof of Theorem 2. To complete the proof of Theorem 2, we now assume

in addition that K(z) satisfies (2.4).

We know that y{t) is a strictly increasing function of t, y(0) = 0, and y{t) < 1

for all t. We must show that y(t) —> 1 as ί —> oo. Assume on the contrary that

y(t) —> k as t —> oo, where 0 < k < 1. Then G[y(t)] > G (k) > 0 for all t. By

(2.5) we have

y ( 0 = fo

tG[y(r)]K(t-r)dr> jf« G[k]K(t - r) dr

= G(k) f*K{t-τ)dτ=G{k) fo

tK(z)dz;

but, by (2.4), the last integral increases indefinitely as t —> °°, so that we have

a contradiction.

11. Conclusion. In conclusion it will be shown that if hypothesis (2.3) on

K (z) is replaced by the stipulation that K(z) be convex, then y{t) is not neces-

sarily monotonic increasing.

Let G(y) = 1 - γ and Kv{z) = 1 - z (0 < z < 1). Then if y(t) denotes the

bounded solution of the equation
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it is readily shown that y (ί) is actually decreasing over a small segment, 1 — 8

< t < 1.

To get a similar example where JQ K(z)dz —> °° as t —> co 9 we select a

fixed c, 1 - 8 < c < 1, and write K(z) = K^z) for z < c, K(z) = dz~V2 for z > c,

where d is chosen so that the functions 1 — z and dz~ι/2 have the same value at

z — c that is, d = c1/2(l "~ c).

R E F E R E N C E

l W. R. Mann and F. Wolf, Heat transfer between solids and gasses under nonlinear
boundary conditions, to appear soon in Quart. Appl. Math.
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A NOTE ON UNRESTRICTED REGULAR TRANSFORMATIONS

W. R. U T Z

1. Introduction. Let W be the c lass of real continuous functions defined on the

nonnegative reals and such that for each g(t) £ W the following conditions hold:

(a) g (0) = 0 and g (t) > 0 when t > 0,

(b) for each triple tχ9 t2, ^ 3 7 > 0 , the inequality tx + t2 > h implies g(tχ) +

g(h)> gU 3 )

Let M be a metric space wherein [p,q] denotes the distance between p, q £ M

A transformation T(M) — /V is called unrestricted regular by W.A.Wilson [2] if

there exisfs a g(t) G $ such that for each pair p,q £ M we have [T(p),T(q)]

— glp,q] Ξ g(lp, q]) The function g (not always unique) is called a scale

function for Γ.

It is easily seen that every member of the class W is monotone increasing and

that each unrestricted regular transformation is continuous and one-to-one. Thus

an unrestricted regular transformation on a compact metric space is a homeomor-

phism. Wilson shows [2,p.65] that if M is dense and metric and T is unrestricted

regular, then T is a homeomorphism.

In §2 of this note we examine the graphs of scale functions and show how the

graph of the scale function of an unrestricted regular transformation determines

the behavior of points under the transformation. Section 3 is devoted to a question

involving a class of transformations investigated by E J Mickle [ l ]

2. The graphs of scale functions. We shall establish the following result.

THEOREM 1. // M is a metric space and T (M) — M is unrestricted regular with

scale function git), then for each n — 1, 2, 3, , the transformation Tn(M) — M

is unrestricted regular with scale function gn(t) {that is, g iterated n times).

Proof. Obviously gn{t) is real and continuous, gn(0) — 0, and gn{t) > 0 when

t > 0. Suppose Tn~~ι {M) — M is unrestricted regular with scale function grι~~ι (t).

Received October 23, 1950.
Pacific J. Math. 1 (1951), 447-453.
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Let tx + t2 > t3, where tχ9 t2$ t3 > 0. Then

g f l - 1 ( t l ) + g n - 1 ( t 2 ) > g ' l - 1 ( t 3 ) ,

and hence

g"(*l ) + g " ( t 2 ) = gtg"" 1 ( t l ) ] + gtg"" 1 (* 2 ) ] > g t g " " 1 ^ ) ] = g"( ί3)

Thus gn (t) C ΪF. Also we have

[Tn(p), T"(q)] = [T\Tn-ι(p)],

for each pair p9q ζi M. Thus, since T is unrestricted regular with scale function

g(t), we have proved by induction that Tn(M) ~ M is an unrestricted regular trans-

formation with scale function gn{t).

If M is a metric space of at least two points, p £ M, and Γ (Λί) = M is unre-

stricted regular, then we shall call the set Σ ^ = o T
n(p) C M the orbit of p under T.

Let g (ί) be a scale function for 7\ We distinguish three cases.

CASE I. // g(t) < t for all t > 0, then each pair of points of M will determine

asymptotic orbits. That is, given p,q C M and 6 > 0, there exists an integer N

such that [Tn(p), Tn{q)] < 6 for all n > N.

Proof. Let p and g be points of M. Since g(ί) < t, we see that [Tn (p), Γ"

— g " Lp, ̂ J decreases monotonically as z increases. Suppose that the monotone

decreasing sequence of real numbers [p, q], g [p, ^ ] , g 2 [p, ί/] 7 , has w f Oas

limit point. Choose δ such that 0 < δ < u, and let s be the greatest lower bound

of ί — g(t) on the interval M — δ < ί < α + δ . Since ^ is the limit point of the

sequence, there exists an integer n for which gnίp9q] ~~ u < min (s, 8). Since

g^ [p,ς] is in the interval u ~ δ < ί < w + δ , i t follows that gΛ [p,ςr] - gn + 1 [p, q]

> s and u — gn + i[p,q] ^ 0. Thus for all i > n9 the elements gι[p,q] of the

sequence are smaller than u this contradicts the assumption that u ψ 0 is the

limit point of the sequence.

In Case I, T has equicontinuous powers.

C A S E II. // git) > t for all t > 0, then T is unstable. That is, there exists

a δ > 0 (in this case any positive number will serve) such that if p, <y £ M9 then

there is an integer /V for which n > N implies [Tn(p)9 Tn(q)] > δ.
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C A S E III. (1) If g(t) = t9 then all orbits are parallel. That is, T is an isometry.

If g(t) ψ t, there are these poss ibi l i t ies :

(2a) When g [p, q] — [p, q] , the orbits of p and q are parallel (as in Case III).

(2b) If g [p, q] > [p, q] , and if there is a zero of g(t) ~~ t greater than [p9 q],

then the orbits of p and q approach a distance apart equal to the first zero of

g(t) — t that is greater than [p,q] . If no zero of g{t) — t is greater than [p9q]9

the orbits of p and q separate a s in Case II.

(2c) If g[p9q] < [p9q], and if no positive zero of git) ~ t is smaller than

[ p , q ] , then p and g have asymptotic orbits as in Case I. If g it) ~~ t has a positive

zero smaller than [p9q], then the orbits of p and q approach a dis tance apart

equal to the first zero of g(t) — t l e s s than [p9 q].

The proofs of these cases are similar to the proof of Case I.

THEOREM 2. // M is a bounded metric space, then Case I and Case II are

not possible.

Proof. That Case II cannot occur is obvious.

Suppose g (t) < ί (Case I ) . Let δ be the least upper bound of [p9q] for all

P><? £ ^ Let σ > 0 be the greatest lower bound for t — g(t) on the interval

δ/2 < t < δ. Select p9q C M such that [p9q] > max (δ — σ, δ/2). Since

Γ ' Ή p ) , T~ι(q) are elements of /If, and since

it follows that

Thus,

[p.q] = gCΓ-^p), T-'Cq)] < [Γ-'Cp), Γ-Hq)] ~σ < δ - σ

this contradicts [p,q] > S ~ σ and completes the proof of the theorem.

LEMMA 1. // g(t) £ W9 then there exists a real number s such that9 on 0<t

< s9 either (i) g(t) = t9 or (ii) g{t) > t9 or (iii) g(t) < t.

Proof. Suppose that g (t) φ t on every interval 0 < t < s. If ί — 0 is not a limit

point of the positive zeros of g(t) — t, then obviously on some interval 0 < t < s

we have g(t) < t or g{t) > t. Suppose that t — 0 is a limit point of the zeros of
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g(t) — t and suppose that in every interval 0 < t <s there are values of t for

which g(t) < t and g(t) > t. Select ux and u2 such that g(ιiι) — uγ and g(u2) ~ u2y

and such that g(t) > t on the interval uγ < t < u2. Select u3 > 0 such that g{u3)

< u3 and u3 < u2 — Uγ. Define u4 — Uγ + u3. Since ^ L < u4 < u2, we have g(u4)

> u4. Since uγ + zz3 > w4, we must have g ί ^ ) + g ^ ) > g("4) This is not the

case since giu^) + #(^3) ~ Uγ + #(^3) < wL + α3 — u4 < g(u4). Thus on some

interval 0 < t < s, either g(ί) < t or g(ί) > ί.

We must now eliminate the possibility of the equalities. Suppose g{t) < t on

0 < t < 5 but there is no subinterval 0 < t < s± on which g(ί) < ί or g(ί) = ί.

Let u < 5 be such that g(u) — u. Select v < u such that g(v) < v. Now, f +

(u — v) — u but

g ( v ) + β(u ~ v) < g(v) + (u — v) < ^ 4- u — 1; = u = g(u) ,

and property (b) oϊ g(t) is violated. Thus g(t) < t.

If g ( ί ) > ί on 0 < ί < s, but there is no subinterval 0 < t < s t on which g{t)

> t or g(t) = t, then choose 0 < ux < s and 0 < u2 < s such that g(w t) = ux and

g(u2)
 = u2, and such that on the i-interval 0 < ^ a 1 < i < ^ u 2 ~ < s w e n a v e §(ί) ^ ί

Select 0 < u3 < u2 — uγ such that g(w3) — u3 and define w 4 = u3 + ^ t . Then

g(«3) + g ( " i ) = "3 + ux =u4 < g(u 4 ) ,

since &! < u 4 < u 2 . Thus g(t) fails to have property (b). We conclude that g (t) > t.

This proves the lemma.

LEMMA 2. // (i) of Lemma 1 occurs, then either g(t) = t for all t > 0 or

exists an r > 0 s&cA ίAαί g(t)= t for 0 < t < r and g(t) < t for all t > r. // (iii) 0/

Lemma 1 occurs, then g(t) < t for all t > 0.

Proof. Suppose that (i) of Lemma 1 occurs. Let r be the largest value of s for

which g(t) = t on 0 < t < s (if r does not exist, then g(t) — t for all t > 0). Let t

be any real number greater than r. Suppose g(t) > U Then t — mr + </, where rais

a positive integer and 0 < q < r. Since g(r) — r, we have g(mr) < m,g(r) = mr

and since 0 < g < r, we have g(^) = </. Hence

g(mr) + g(q) < mr -h g = t < g ( t ) ,

in violation of property (6) of g(ί). Thus g(ί) < ί for all ί > 0. Suppose ί > r and

g (t) — ί. Then there exists a nonnegative integer m, and real numbers u and q

such that mr + q + u = t, and such that g(u) < u. However,
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g(mr) + g(q) + g(u) < mr + q + g ( u ) < mr + g + u = ί = g ( 0 »

and condition (6) of g(ί) is violated. Thus g(t) <t for t > r, and the first part of

the lemma is proved.

Suppose that (iii) of Lemma 1 occurs. To show that g(t) < t for all real values

of t, we shall show that for no t > 0 is g(t) — ί. If g(t) = t for some £ > 0, then

there exists a smallest value α of ί such that g(u) — u. Now, g(u/2) < u/2 since

u is the smallest value of t for which g{t) — t. Hence g(u/2) + g(u/2) < u, con-

trary to property (b) of g(t). This completes the proof of the lemma.

THEOREM 3. If M is a bounded metric space and T(M) = M is unrestricted

regular and has equicontinuous powers, then T is an isometry.

Proof, Since T has equicontinuous powers, given € > 0 there exists δ > 0

such that when [p, q] < δ we have [Tn(p), Tn{q)] < 6 for n = 1,2,3,

From this it follows that (ii) of Lemma 1 cannot occur. For if 6 is taken as s/2

in Lemma 1, then regardless of the size of [p, q] , we have [Tn(p),Tn(q)] > s/2

for n sufficiently large (cf. 2b of Case III).

Further, (iii) of Lemma 1 cannot occur since by Lemma 2 this implies Case I,

which is impossible since M is bounded.

Since (i) of Lemma 1 must occur, either g{t) = t for t > 0, or there exists

an r >0 such that g (t) = t for all 0 < t < r and g{t) < t for all t > r. If g (t) jέ t,

then we can show by the argument of Theorem 2 that distances in M are bounded

by r. Hence we always have [Γ(p), T (q)] — g[p9q] for each pair p, q £ \ί9 and

T is an isometry.

REMARK. Suppose that (ii) of Lemma 1 occurs and suppose that g(t) ~~ t has

a positive zero. We can show easily that either there exist arbitrarily large zeros

of g{t) — t or there exists a real number w > 0 such that t > w implies g(t) < ί.

If r is the smallest positive zero of g{t) — t, and N is the length of any interval

of the ί-axis on which g (t) > ί, then N < r.

The following theorem relates periodicity to unrestricted regularity. Other

theorems of this nature are possible.

THEOREM 4. Let M be a metric space. If T (M) — M is pointwise periodic and

unrestricted regular then T is an isometry.

Proof. Let p and q be arbitrary points of M. Since p and q are individually
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periodic (possibly having different periods), there exists an integer n (in particu-

lar, the products of the periods of p and q will serve) such that Tn (p) — p and

Tn(q) — q. Thus p and q are fixed under Tn. If g{t) is the scale function of Γ,

then gn(t) is the scale function of Tn Since p and q are fixed under Tn, we have

g"[T"(p), T"(g)] = [Γ"(p), Γn(q)] = [p,q] .

Thus we have g " [p, ςr] = [p, ςr] . This implies that g [p, qr] = [p, qr] and since g

is the scale function for T, we have [T(p), T (q)] = g[p,q] — [p, q] , and the

theorem is proved.

3 A c lass of transformations. Given a metric space M9 Mickle [ l ] defines

the associated c lass P (M) of real continuous functions on the nonnegative reals

as those functions g(t) satisfying these conditions:

(a) g (0) = 0 and g(t)> 0 when t > 0,

(b) for any m + 1 points p 0 , pl9 p 2 , , pm in M the real quadratic form

is positive definite.

For example, let M be any set with metric [pfq] = 1 for p 7̂  ςr, [p, r̂] — 0

for p ~ q. Let g(ί) be any real continuous function that satisfies condition (α). If

Po> Pι> # * * 9 Pm a r e a n y s e t of 7?z + 1 distinct points of M, then g ίpi,pj ] = g( l)

— α > 0 for i ψ j . The elements of the matrix || αj , || of the quadratic form of

condition (b) are 2α 2 if i — 7 and α 2 if i 7̂  /. From this, and from well-known

theorems concerning quadratic forms, it follows that condition {b) is always

satisfied. Hence, in this case, P {M) consists of all real continuous functions

for which {a) holds.

Let T {M) — N be a continuous transformation. Then T is said by Mickle to

satisfy the condition C (g), g{t) C P {M), if for each pair p, q £ M we have

ίT(p),T(q)l < g[p,q].

A transformation may satisfy the condition C (g) for some g(t) £ P (M), yet

not be unrestricted regular. Let M be the interval 0 < x < 1 with the metric

described in the second paragraph of this section. Let /V be the same interval
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with the Euclidean metric. Let T {M) — N be the identity on the point set. That is,
if p £ M has coordinate x, then T (p) £ N has coordinate x. If g(t) G P (M) and
g(l) > 1, then for each distinct pair p, q £ M, we have [T(p)9 T (q)] < 1 <
glp,q], and T satisfies C(g). However, T is not unrestricted regular.

QUESTION. Suppose that T(M) — N is an unrestricted regular transformation.
When does there exist an element g(t) £ P {M) such that T satisfies the condition
Cig)?
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REMARKS ON THE SPACE Hp

S T A N L E Y S. W A L T E R S

1. Introduction. The space Hp is the collection of all single-valued complex

functions f which are regular on the interior of the unit circle in the complex plane,

and for which

< c o .

In [6] it was shown that Hp, 0 < p < 1, is a linear topological space in which

the metric is || f — g \\p, where we define

1 / p

It was moreover shown that (Hp)* , the conjugate of Hp, has sufficiently many ele-

ments (linear functionals on Hp) so as to distinguish elements in Hp, in the sense

that if / f 0 is in Hp, then there is a > £ (ffP)* such that γ(f) f 0 .

In the present paper it will be shown that if y is in (Hp)* , 0 < p < 1, then

there exists a unique function G which is regular in the open unit circle, contin-

uous on the closed circle,1 and such that

γ(f) = lim - f0

2η

r=i 2π \ p

for every f in Hp. It is further shown that the following is true of G :
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(a) if 0 < p < \/n9 n = 2,3, , then Id11"1 G(z)] /dzn~ι is continuous on

the closure of the unit circle;

(b) if 0 < p < l/2n, n — 1,2, , then G(eι ) has a continuous nth deriva-

tive with respect to t; and

(c) if 0 < p < 1/2, ίAe/z ίλe power series for G converges absolutely on the

boundary of the unit circle.

It is moreover shown that if G is regular on the open unit circle and is such

that

lim — fon f(peiθ)G(-e-iθ)dθ ,
r = l 277 \p I

< P < 1 ,

exists for every f in Hp, then the functional so defined is in (Hp)*. Thus (Hp)* is

equivalent to a subspace of the functions which are regular on the open unit circle

and continuous on the closed unit circle when 0 < p < 1 and indeed, as p tends

toward zero, the spaces (H?)* are equivalent to subspaces of spaces whose mem-

bers have far stronger properties than merely the property of being continuous on

the closure of the unit circle.

A generalization of a theorem by Khintchine and Ostrowski [ 1, p. 157] , which

is a sort of generalization of Vitali's theorem, will also be presented; namely, it

will be shown that a bounded sequence in Hp, 0 < p < oo 9whose boundary values

converge on a set of positive measure, converges uniformly on all compact subsets

of the unit circle. Khintchine and Ostrowski proved this theorem in the case that

the sequence consists of uniformly bounded elements.

It is worth remarking that under the present "norm" || || , Hp, 0 < p < 1, is

definitely not a normed linear space, this being due to the complete failure of

Minkowski's inequality for index smaller than unity. As a result, it is conjectured

by the author that Hp , 0 < p < 1, is not a normed linear space at all (and hence

contains no bounded convex neighborhood). If this conjecture is true, then Hp, 0 <

p < 1, offers an interesting example of a linear topological space which is not lo-

cally convex (since Hp is clearly locally bounded) and whose conjugate space has

sufficiently many members so as to distinguish the elements in Hp*

2. Representation of linear functionals on Hp, 0 < p < 1. In this section we

shall suppose always that 0 < p < 1. We let Δ be the set of all z such that

I z I < 1, and 21 the class of all single-valued complex functions which are regular
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on Δ. We shall first make some definitions and prove several lemmas before proving

the representation theorem.

For many of the topoiogical terms used in the ensuing, see [3J By a complete

linear topoiogical space, we shall mean a space in which fn ~ fm —* 0 implies

limn-(X) fn exists in the space. Locally bounded linear topoiogical space and

normed linear space will be abbreviated LBLTS and NLS respectively. By F*,

where F is a linear topoiogical space, we shall mean the conjugate of F, that is,

the space of linear functionals on F.

If F is a LBLTS, it is easy to show that F* is a complete NLS (Banach space)

in which

II7II = sup | y ( / ) | ,
feϋ

where y ζ_ F*, and U is a fixed bounded neighborhood of the origin. Moreover, the

topology so introduced into F* is independent of U. With respect to Hp, we let JJ

be the unit sphere, so that

II7II = S U P lr(/) l

It is then simple to prove the following theorem, merely by modeling the proof

exactly after that given in the theory of NLS's.

LEMMA 1. If F is a complete LBLTS, and Γ is a subset of F* having the prop-

erty that9 for each fixed f in F, y(f) is bounded as y varies over Γ, then Γ is a

bounded set.

We remind ourselves that Hp is locally bounded, and is moreover complete by

[ 6 ] . We make the following definitions, where f and g are any elements in 21:

(i) Ύn(f)=f{nHθ)/N I , n=0, 1. . . . ,

(»> Twf: Twf{z) = f{wz) , »CA, zCΔ ,

(iϋ) un : un(z) ~ z" , z (Γ Δ , n = 0, 1, ,

CD

(iv) B(/, g ; z ) = Σ Ύu(f) Ύn(g) z" , z C Δ .

It is easily verified that
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Bif.g z) = ~ Jo f{zιe

iθ)g{z2e-iθ)dθ ,
Z7T

where zx z2

 = z9 and zx and z2 are in Δ. The proof is made by expansion of the

integrand above in a Taylor series about the origin and then term-by-term integration.

In particular,

Bif. g r) =
ΔΉ

r < p < 1 .

LEMMA 2. /// is in Hp

9 then Twf is in Hp

9 and moreover

00

Twf = Σ Ύn(f)v" un.

Proof. Let g = Σ™=0 yn{f)wn un . We first show that this series converges.

Note that | | u J | = 1 , and

pn

The last inequality appears in [6, Theorem 6] . Thus

Ύn(f)wnun < Σ
n=l

whence Σ^_o γn (/) wn un converges, by the completeness of Hp. Then, noting

[6, Theorem 8] , which tells us that a convergent sequence in Hp converges point-

wise to its limit, we have

βOO = Σ Ύn(f)vnun(z) = Σ Ύn{f)Mn

n = 0

But Twf(z ) = Σ%=oγn{f )i^z )U This completes the proof.

We note that it was obvious that Tw{ was in Hp in the first place, merely from

the definition of Hp; but the form for Twf, which was obtained above,will be
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needed later.

THEOREM 1. If G Q W such that l im Γ = 1 B(f, G; r) =γ{f)(that is, we as-

sume that this limit exists) for all f in Hp, then y is in (//p)*. Conversely, if y

is in (Hp)*, then there exists a unique G in 21 such that y(f) — l im r = ι B{f, G r)

for all f in Hp.

Proof. To prove the first part of our theorem, let yr(f) = B(f, G; r). Clearly

yr{f) is distributive in /. Suppose \\f\\ = 1 and r < p < 1. Then

pn

Thus, yr(f) is bounded in / for ]|/|| = 1, r being fixed. It is then clear that yr is in

(flp)*. Since l im r = 1 yr(f) exists, it follows that yr(f) is continuous on 0 < r < 1

for each fixed / in Hp. Thus \yr(f)} is bounded for 0 < r < 1. As a result of

Lemma 1, we may conclude that \ \\yr\\ } is bounded for 0 < r < 1 that is, there

exists an M such that | |yΓ | | < M for 0 < r < l .Let | |/| | = 1. Then | yr(f) | < M,

whence \y(f) \ < M. Thus y is necessarily in (Hp)* since it is bounded on the

unit sphere in Hp.

We now prove the second part of Theorem 1. We note that if l im Γ = 1 5(/ , G r) —

y(f) for some G and all /, then

y{un) = lim B{un , G; r) = lim yn{c) rn = yn{G)
r = l r = l

that is, yn(G) = γ(wΛ) for all n, or merely G(z) = Σ ^ = o y{un) zn. We note that

Σ^=o yU Λ ) zn converges, for \y{un) \ < \\y\\ \\un \\ = | |y | | . Let us now verify

that G, as defined, has the desired property. We see that

B(f, G r) = X γn{f) y{un) rn = γ Σ Ύn(f)rnun

B u t \\Trf-. 0; see [5] for this result; note that
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where f(eιθ) is the boundary function for f(z). Thus γ(Trf) —> γ(f), or B(f,G; r)

—> y(/) Our proof is thus complete.

THEOREM 2. ΓΛe function G in Theorem 1 is continuous on the closure o/Δ.

Proof. We first verify that ft(z) = (1 - zeιt)~ι is in Hp for every real t. It

suffices to show that f0 is inHp. We see that

| 1 - r β i ^ | - 2 = [ ( 1 _ reiθ)(l - r e " ^ ) ] " ^ ( l - 2r cos θ + r 2 ) " 1 ,

whence

I 1 - r e ^ | - p = (1 - 2r cos θ + r2)~P/2 .

From the character of (1 ~~ 2r cos 0-1- r 2 ) , we see that it suffices to show that

Ĵ  (l "" 2r cos 77 + r 2 ) " " ^ 2 dθ is bounded in r , where 8 is any positive number.

We note that the following is true for 0 < θ < 8 (where S is some sufficiently

small positive number) and for all r such that 1/2 < r < 1 :

/ θ2 θ4 \ I θ2

θ + r 2 > 1 - 2 r ί l + — ) + r 2 = ( l - 2 r + r 2 ) + r θ 2 ί l -

Thus, (1 - 2r cos (9 + r 2 )"P / 2 < 4P/2 Θ'P. Since 5"P is integrable on [θ, §] ,

our statement is proved.

We remind ourselves that we are trying to show that G is continuous on the as-

sumption that

Ύ{f) = lim ~ ϊ0

2π f{Pe
ίθ)G{-e-iθ)dθ , r < p < 1 ,

r = i 2 π p

exists for each / in Hp Let yτ be defined as in the proof of Theorem 1. Then
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yΛft) = i !r T Φ ^ ' G{- e'iθ)dθ

_ J _ Γ2τr \ P

2ττ J o 1 -

_ J _ Γ277 \P

= G{reU) , r<p< 1.

Ί'he last equality is true by virtue of Cauchy's integral formula. We then have

shown that G{reι ) — 7V(/ί) Consequently, since limΓ_1 yr{ft) exists byhypothe-

sis, lirn r = 1 G(reι ) exists for all t, and in fact

Ύ(ft) = G(eιt) ,

where we define G{eιt) to be the boundary function lim r = 1 G{reιt).

We now show t h a t l i m ^ ^ ft ~ ft in the topology of H?» Now, for any g in H?,

letting g(eι )be its boundary function, we know that

It is easily verified tfiat (see, for example, [4, Theorem 7, p. 29])

lim f2" | g ( e ι ( θ + t ) ) - B(e^θ+to))\P # = 0 .

Clearly (t{eίθ) = (1 - ei{θn)T\ whence ^(e^) = fo(ei{P+t)). Thus limt=tjt =

/t„ , in the topology of //**.
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Now, by Theorem 1, y is continuous, whence lim t = toy(ft) ~ y(/ί0 ) 5 Λ e n c e

lim ί = ί ( ) G{eιt) = G{eιt°). We have now shown that G(eιt) is continuous.

We remember that, in the course of proving Theorem 1, we showed that \yr\ is

bounded in r as a subset of (Hp)*. Obviously \ft\ is a bounded subset of Hp, all

of the elements having the same norm. Thus yr{ft) is bounded in both r and t.

In other words, G(reιt) is bounded in r and t, or equivalently G is uniformly bound-

ed on Δ. We then know that

G ( r e i*) =1- S^ G(eif) Pr(θ-t)d0,
2τr

where Pr(θ) is the Poisson kernel. But, since G(e^)i8 continuous, the right side

above is necessarily a continuous function on the closed unit circle. Our proof is

now complete.

It will now be shown that even more can be said of G when 0 < p < 1/2.

THEOREM 3. 7/0 < p < 1/2, then G{eιt) satisfies the Lipschitz condition

of order one.

Proof. It suffices to show that

ll/t+Λ - / t i l = Wfh - /oi l < A I 1 - e i h I

for some fixed constant A . We have

- eHθ+h) - eiθ

- eih

( 2 7 7 ) ^

The proof will then be complete after we have shown that

dθ

l/P)

dθ

is bounded for all sufficiently small h. It is evident that

= 4 ( l - c o s e ) [ l - c o s ( 0
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and hence

\(l-eιθ)(l-ei{θ+h)\P =

We now must show that

f0

2π (1 - cos Θ)'P/2 (1 - cos (θ +h))-P"dθ

is bounded in h for all sufficiently small h. We note that the following is true for

all sufficiently small θ and h :

θ2

1 - cos (θ + h ) >

Thus we have

( 1 - cos

for all sufficiently small θ and h .Since Θ~2P is integrable on the interval [0,277"] ,

it is then rather easy to show that

J Γ (1 ~ cos b)-P/2 [1 - cos(θ + h )]~P/2 dθ

is bounded in h for all sufficiently small h.

We now have the rather interesting result:

C O R O L L A R Y . IfO < p < 1/2, then Σ ^ = ϋ j γn(G) \ < ™ .

Proof. Since G(eιt) is of bounded variation, it follows that G(z) is a power

series of bounded variation according to [7, § 7 . 5 ] . Hence the conclusion is

obtained by [?, (i),p. 158] .

We shall now show that even more may be said of G when 0 < p < 1/2.

THEOREM 4. If 0 < p < 1/2, then (d/dz)G(z) is continuous on the closure of
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Δ, and moreover (d/dt)G(eιt) is continuous on [θ,2π] .

Proof. By Cauchy's integral formulas (where (d/dz)G(z) = G'{z)):

= Γ"/."[/«' (P'iβ) P«"] GI-.-'AJΘ, r <p < 1.
zπr \ p I

Thus G'(reιt) = (l/r)γΓ(ft

2 ut). We note that since 0 < p < 1/2, we have

/ί2 d ^ j whence /? uj C //^, since u t is bounded. Thus we show exactly as

in Theorem 2 that

G' (eιt) is continuous in ί,

G ' {z ) is uniformly bounded on Δ ,

G' {reU)= — $*ΉG'{eiθ)Pτ [θ -t)dθ,

where we define G'(eιt) to be the boundary value of G'(z). Let us now consider

- l e " i e 4 G ( e i θ ) \ P r ( θ - t ) d θ .
Γ277

Jo

We note that G( eι ) is absolutely continuous by virtue of Theorem 2, whence

(d/dθ)G(eι ) is integrable. We also note that

Gire") =± f0

2vG(eiθ)Pr(θ-t)dθ= £ Cn m e™* ,
n=0
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where

Cn = — f27TG(eiθ)e-ιnθ

277 -Ό

Moreover, it is not at all difficult to verify that the real and imaginary parts of

~~ ieι (d/dθ)G(eι )are conjugate, whence

n = 0

where

Integration

that is,

by

4.

parts

2π

readily

C2π
- l (

yields

dn = (n

d

~dθ

+ 1) Cn

F(reιt) =

and hence F(z) — G ' (z), i hus, we necessarily have

d_

dθ

iθ^almost everywhere. Since G '(e1^ ) is continuous, it follows that G(eι ) neces-

rative, and in fact

G(eιθ) = ι e ι θ G'(eiθ) .

sarily has a continuous derivative, and in fact

d

dθ

This completes the proof of the theorem.
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We sum up by presenting the following theorem, which is readily proved by in-

duction, the proof being modeled after that given for Theorem 4.

THEOREM 5. 7/0 < p < \/n9n = 2,3, , then (dn~ι/dzn'1) G(z) is contin-

uous on the closure o/Δ. Moreover, if 0 < p < l/2n, n — 1, 2, , then G(eι )

has a continuous nth derivative with respect to t.

3. Geaeralization of Vitali's Theorem. In this section we assume merely that

p is any positive real number. We here need the following:

LEMMA 3. If \fn\ is a bounded sequence in Hp, and i/limn = 00 fn(z) exists on

a set having at least one limit point in Δ, then lim^oo /^(z) exists uniformly on

all compact subsets o/Δ.

Proof. The proof is a simple consequence of the following inequalities:

I f \ z ) I *Si '/ j x y t when 0 < p < 1 ,

and

I fVl I ^ ! - | 2 | when 1 < p < « .

The first of the above inequalities appears in [6, Theorem 2] The second is easi-

ly obtained as follows. By Cauchy's integral formula,

r

2π pe

ιθ -

and hence, by Holder's inequality,

P - 1*1
whence

-U
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Λ/(r) =

0 < p < 1

1 < p < ω

it is then clear that \fn(z)\ < /V(r) ,]/ when \z\ < r < 1, where \\fn\\ < M

for all ft.We choose r so large that the set \ z \ < r includes a set having

a limit point in z | < r and such that lim^ = Oo /^(z) exists on this set. Then, by

V kali 's theorem, lim ^-oo fn{z) exists uniformly on all compact subsets of ] z | < r,

and hence on all compact subsets of Δ . This completes the proof.

THEOREM 6. Suppose \fn\ is a bounded sequence in I/P. Further, suppose

lim / 1 = c o fn{eι ) exists on a set of positive measure in the interval [ϋ, 2ττ\ . Then

l im n = oo fn(z) exists uniformly on all compact subsets o/Δ.

Proof. It suffices, by the preceding lemma, to show that lim n = oo fn(
z) exis ts

on some neighborhood of the origin. Thus, we shall show that this is the case

whenever \ z \ < 1/9. Let | zQ < 1/9, and suppose lim n-ω fn(zQ) does not exist.

Then we may find a positive number (X and subsequences Ifn^ 5 a n c^ Ifm^ I °̂  ifni

which have the property that |/r i/c(zo) ~ fm^zo^\ ^ & ^ 0 Γ a ^ ^ ^ e t n e n

^k ~ fnk ~ ^mk ' ^ ^ s c ^ e a r t n a t I*!k I i s a bounded sequence in Hp We then write
r!h ~ gk ' hk > by virtue of F. Riesz's decomposition theorem [5] , where g^ and

hk are such that

(i)

(ϋ)

(iϋ)

gk G lίp and g,c(z) ψ 0

Λz) < 1 onΔ and

for all z in Δ ,

= 1 almost everywhere,

Iffλ-ϋ —

We note that l^z) = Lg/ c(z)F / 2 is in i ϊ 2 , and in fact \lk\ is a bounded sequence

in //2. Since lim/czioo ίfn^1 ) ~" fm^elθ)^ ~ 0 on a set of positive measure, it

follows that liiϋ£ = oo lk(eiθ) — 0 on a set E of measure μ > 0. We next shal l show

that lim/c =oo Z&(z0) — 0, which will in turn imply that lim/c = Oo gk(zo) = 0> a n ( ^

hence imply lim ̂  = 00 %(z Q) — 0, a contradiction to qp^z 0 ) > (X for all A;.
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Let A > 0, and define

o n E

- 277)

where CE is the set [θ,2ττ] — E. There is no loss in supposing that μ < 77.

Define

uo{reiθ) =£f0

2" φ(t) Pr(θ - t) dt ,

where Pr(#) is the Poisson kernel. Then a0 is harmonic in Δ and limΓ = 1 uo(re ) =

φ(θ) a.e., by virtue of Fatou's theorem; see [7, § 3.442] . Let

u ( r β

i < ? ) = U o ( r β

i β ) - u o ( z o ) .

We note that

uo(reiθ) = — + V rn(an cos nθ + bn sin nθ) ,

where ioΛ> ^Λ I are the Fourier coefficients of φ(θ). Since uo(O) — 0, this being

due to the fact that J2π φ(t) dt — 0 and P0(θ — t) — 1, we then have αo equal to

zero, or

00

uo{reiθ) = 2 rn{an cos nθ + bn sin nθ) .

We note that | an \ < 2A/π as well as | bn \ < 2A/π, whence

i / , Λ x i 4i4 _» 4Λ r A A

U ( ι 9 ) | < Σ " < <77 77 1 - r 2τ7 ~ 2(2τ7-/x)

provided 0 < r < 1/9.

Let v(z) be the harmonic conjugate of u(z) which vanishes at z0 , and define

g(z) = e t t ( z ) + ί t ; ( z ) . Then g G ?I, and g U 0 ) = 1. Moreover, since \g(z)\ =

e u ( z ) , we have l im Γ = 1 |g(rel>61) | = e ^ ^ ^ ^ o ^ o ) . By Cauchy's integral formula
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we have

lk(zo) = — So"7 h(peiθ) g(peiθ) — g dθ , \ zo\ < p < 1 .
ίτϊ pe — z0

This is true since Z&(z0) = lk(z0) g(z0). We note that u(z) is bounded in Δ, and

hence so is g(z) Since

l i m fQ

27τ \ h ( p e i θ ) - l k ( e i θ ) \ 2 d θ = 0 ,
p=i

and since g(z) is bounded on Δ , it is then evident that

lim/0

27T I lk(peiθ) g(peίθ)\dθ =/ 0 * r | lk(eίθ) g(eiθ) | dθ .

Hence

277 1 — I Z0

Consequently

dθ .

2τ7 \ 1 — | z o |

\ ) f\lk{eiθ)\dθ .
α - μ0

Since

1 1 ' Ί ^ V 2

τr~ y i ̂ ( e l ) °^ — τr~ J 2 7 T I ^ ( e l ) I dθ <
2π CE 277 o

and s ince \lkl is a bounded subset of H2

9 we see that

f / \lk{eiθ)\ dθ
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is bounded with respect to k . Moreover

μ - 277 J ^ μ~ 277 /X — 277 77

z 0 I

μ— 2π 2(2τ7 — μ ) 2 ( μ -

By virtue of Schwarz's inequality, where ^ is an arbitrary measurable subset of

[θ,2ττ] , we have

f \ h ( e i θ ) \ d θ < [ m ( ξ ) } ^ [ f \ l k ( e i β ) \ d ή .

Hence, by a convergence theorem of Lebesque (see [2,p.l9θ] , we have

lim f \ l k { e i θ ) \ d θ = 0 ,

since

that

lk(elθ) ~ 0 on E. Now, for arbitrary € > 0, we choose A so large

and hence we obtain, from the foregoing,

1 —

Having so chosen A, choose K so large that k > K implies

<e/2

f\lk(eiθ)\dθ < 6/2.

Hence, k > K implies) l^{z0) | < e/2 + 6/2 = e . This completes the proof of

the theorem.
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TWO THEOREMS ON METRIC SPACES

H S I E N - C H U N G WANG

1. Introduction, Let £ be a metric space with distance function d. The space

E is called two-point homogeneous if given any four points a, a1, b, b' with

d(a9a') = d(b,b'), there exists an isometry of E carrying a, α' to b, b' , re-

spectively. In a recent paper [7] , the author has determined all the compact and

connected two-point homogeneous spaces. It is the aim of the present note to

discuss the noncompact case, and prove a conjecture of Busemann which can be

regarded also as a sharpening of a theorem of Birkhoff [ l ] . The results con-

cerning the noncompact two-point homogeneous spaces are not as satisfactory as

the results for the compact case; we have to assume certain conditions on the

metric.

By a segment in a metric space E, we shall mean an isometric image of a

closed interval with the usual metric. A metric space will be said to have the

property (L) if given a point p, there exists a neighborhood IF of p so that each

point x (y^p) of W can be joined to p by at most one segment in E. The following

theorems will be proved:

THEOREM 1. Let E be a finite-dimensional, finitely compact, convex metric

space with property (L). // E is two-point homogeneous, then E is homeomorphic

with a manifold.

THEOREM 2. Let E be a metric space with all the properties mentioned in

Theorem 1. //, moreover, dim E is odd, then E is congruent either to the euclidean

space, the hyperbolic space, the elliptic space, or the spherical space.

Our Theorem 2 justifies the conjecture of Busemann [2, p. 233] that a two-

point homogeneous three dimensional S.L. space [2, p. 78] is either elliptic,

hyperbolic, or euclidean. It is to be noted that Theorem 2 no longer holds if dim E

is even and greater than two. The complex elliptic spaces [7] and the hyperbolic

Hermitian spaces 1 [2, p. 192] serve as counter examples.

Received May 25, 1951.
1 These spaces were first introduced by H. Poincare, and then discussed by G.Fubini

and E. Study. Following E.Cartan, we call these spaces the hyperbolic Hermitian spaces.
Pacific J. Math. 1 (1951),473-480.
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2 Preliminary results* Throughout this note, by a Busemann space [2, p. 11 ] ,

we shall mean a finitely compact, convex metric space such that at each point

p, there exists a neighborhood W with the following property: given any two points

x9 y of W and any e > 0, we can find a positive number δ < e for which a unique

point z exists so that

d(x,y) +d(y,z) =d(x,z), d(y, z) = S .

It can easily be verified that the class of all two-point homogeneous, finitely

compact, convex metric space with the property (L) coincides with the class of all

two-point homogeneous Busemann spaces. In the statements of our Theorems, we

use the property (L) instead of Busemann's axioms merely because it is, geo-

metrically, easier to visualize.

Let E be a Busemann space. We shall first see that each (/-sphere1 of suf-

ficiently small radius is locally connected. In fact, let p be a point of E. We

choose e > 0 so small that each point x with 0 < d(p, x) < e can be joined to p

by one and only one segment. Let K{p, β) be the cί-sphere with center p and radius

€, and R the totality of points y with 0 < d(p, y) < e. Then evidently R is an open

set of E. Since E is convex, E must be locally connected. It follows then that R

is locally connected.

For each point y of K(p9 e), we denote by Py (s) (0 < s < e) the isometric repre-

sentation of the segment joining p to y. Let / be the open interval 0 < s < e.

By our choice of 6, the mapping h: K(p, e) X / —> R defined by h{y9s) — Py (s)

is a one-to-one mapping of the topological product K{p, β) X / onto R. Moreover,

from Busemann's results [2, I., §3] concerning the convergence of geodesies,

we see immediately that h is bicontinuous. This tells us that K(p, β) X / and R

are homeomorphic. Since R is locally connected, K(p, β) X /, and hence K (p, β),

is locally connected.

3. Proof of Theorem l Let £ be a metric space with all the properties men-

tioned in Theorem 1. From the above discussions, we know that for any point p of

E, the J-sphere Kip, β) with sufficiently small radius e is locally connected. Let

Γ be the group of all isometries of E, and Γ̂  the totality of all those isometries

which leave p invariant. In Γ, we introduce the topology as defined by van Dantzig

and van der Waerden [4] (in fact, this is exactly the g-topology of R. Arens).

1 By a d-sphere we mean the totality of points equidistant from a fixed point with re-
spect to the metric d. This should be distinguished from the (n — l)-sphere which stands
for the {n — l)-dimensional topological sphere.
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Then Γ̂  forms a compact topological group [4] . Evidently, Γ̂  is a transformation

group of K (p, e) in the sense of Montgomery and Zippin. From the two-point homo-

geneity, Γ̂  is transitive on K (p, e). Taking account of the finite dimensionality

and local connectedness of K (p, e) and the compactness of Γ̂  , we can conclude

[5] that Vp is a Lie group, and hence K(p,β) is locally euclidean (here as well

as in what follows, locally euclidean is always used in the topological sense).

The set /ί, being homeomorphic with the topological product of K{p, e) and the

open interval /, must be locally euclidean as well. Hence our space E is locally

euclidean at each point of R, and hence locally euclidean at all its points. More-

over, E is obviously separable and connected. It follows then that E is homeo-

morphic with a manifold.

4. The structure of c/-spheres Before proving Theorem 2, we find it convenient

to establish some more properties of the c/-spheres.

LEMMA. Let E be a metric space satisfying all the conditions in Theorem 2.

Then each d-sphere with sufficient small radius is homeomorphic with the {n ~~ 1)-

dimensional topological sphere where dim E — n.

Proof. If dim E is equal to one, this is trivial. Now we shall assume that

n > 1. Let p be a point of E9 and e so small that each point x with 0 < d(p9x) < e

can be joined to p by one and only one segment. Set K (p, e) to be the cZ-sphere

with center p and radius €, and

U = { x \ d(P, x ) < e } .

We shall show first that U is contractible to a point. Given each point γ of K(p,β),

let us denote by Py (s) the isometric representation of the segment joining p to y.

Then the pair (7,5), where y C K{p, e) and 0 < 5 < £, can be regarded as polar

coordinates of points in U. For any real number t with 0 < t < 1, we define

φ[t,Py(s)] = Py(ts).

We see immediately that φ is a well-defined mapping of the product /X (/, and

Φ[l,Py(s)]=Py(S), φ(t,p)=p, Φ[0,Py(s)]=p,

where / denotes the closed interval \t \ 0 < t < 1 j . The continuity of φ can easily

be verified. Thus φ gives a contraction of (J into the point p, and thus the homo-

topy group 7Ti(U) vanishes for each ΐ.

Now let us consider the set R = U ~~ p. Since U is an ̂ -dimensional open
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manifold and n > 1, the set R is connected and has the same homotopy group 77; as

U for all dimensions i less than n — 1. Thus ττι(R) — 0, i — 1, 2, ' , n — 2. On

the other hand, we have shown in §1 that R is homeomorphic with the topological

product K(p, e) X /, where / denotes an open interval. It follows then that K (p, 6)

is connected and

( 1 ) n ί K i p . e ) ] = 0 , i = 1 , 2 , •••, n - 2 .

From the proof of Theorem 1, we know that K(p,e) is a homogeneous space of a

compact Lie group. Its connectedness and its simply-connectedness imply that it

is an orientable manifold.

Since both K(p, e) and / are manifolds, we have

dim K(p, e) + dim J = dim R = dim E = n ,

and hence dim K (p, e) = n — 1. It follows immediately from (l) that/£ (p, β) is a

simply-connected homology sphere of even dimension n ~ 1. Therefore [6] X(p, 6)

is a topological sphere. The lemma is proved.

5. Proof of Theorem 2. Suppose E to be a metric space with all the properties

mentioned in Theorem 2. If E is compact, then our Theorem 2 follows as a direct

consequence of [7, Theorem VI] . Thus we can assume from now on that E is

not compact. We shall first show that E is an open S. L. space in the sense of

Busemann [2, p. 78] . To show this, it suffices [3, p.173] to establish that each

geodesic is congruent to a euclidean line; for this, it suffices to demonstrate that

given any two distinct points x, y and any k > 0, there exists a point z so that

d(x,y) +d(y,z)=d(x,z), d(y, z) = k .

In fact, since E is finitely compact and noncompact, E cannot be bounded. There

exists then a sequence of points p 0 , pi , P2, # * * with d(po,pi) tending to infinity.

Thus we can choose i so large that d(po,pι) > d(x,y) + k. Let r be a segment

joining p 0 to pi. Evidently there exist three points x', γ', z ' in r such that

d ( x ' , y 1 ) + d { y \ z 1 ) = d { χ , z ) , d ( x ' , y ' ) = d ( x , y ) , d ( y ' , z ' ) = k .

From the two-point homogeneity of E, there is an isometry f of E carrying x ', γ1 to

x9y respectively. Then we can see immediately that the point z = f{z') has all

the required properties. Thus E is an open S. L. space .

Let K(p, e) be the (/-sphere with center p and radius e , and Γ̂  the group of all
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isornetries of E which leave the point p invariant. From the above lemma, we know

that K (p, e) is an (n ~ l)-sphere and Γ̂  a compact and transitive transformation

group of K ip, β). Moreover, it can easily be seen that TL is effective on Kip, β).

In our further discussions, we shall rule out the trivial case where dim E — n

— 1. Thus Kip, β) is connected, and the identity component C,0 of Γl forms a

connected, compact, transitive, and effective transformation group of K(p,ε)

Since n — 1 is even, it follows [6] that Γ̂ ° is either isomorphic with the ro-

tation group Rn—ι or Cartan's exceptional group G2> We shall discuss these two

cases separately.

Case Λ. Suppose Γ̂ ° to be isomorphic with the group Rn-X of all rotations of

the in — l)-sphere. Let us represent Kip,β) by the unit sphere in a certains-

dimensional euclidean space, and consider Rn_γ not only as a topological group

but also as a transformation group of K ip, β) in the usual sense. It is well known

that Γ̂ ° and Rn_ι have the same topological type, that is, there exists a homeo-

morphism φ of K ip, e) onto itself so that

*„_! = φTfφ-* = WΦ-1 | / c r p ° | .

Since n is odd, given any point q of K(p, β), there exists a rotation of period two

which leaves fixed only q and its diametrically opposite point. It follows then that

for each point q of K (p, e), we can find a transformation f in C,0 such that (a) f is

of period two, (b) / leaves q fixed, and (c) f has only two fixed points on K (p, e) .

Now let g be any geodesic through p in E. It intersects K(p, β) at two points, say

q and q' . We consider the transformation / in C,0 having the above three properties

(a), (b), and (c). Since / is an isometry leaving fixed p and q, it leaves the geo-

desic g pointwise invariant. Moreover, this isometry f cannot have any other fixed

point, for otherwise / would have some other fixed points on Kip, β) besides q and

q'. Thus / is a reflection of E about g. Since p is an arbitrary point and g an

arbitrary geodesic through p, there exists a reflection of E about each geodesic.

From Schur's Theorem [ 2 , p . l 8 l ] , it follows that E is either hyperbolic or eu-

clidean.

Case B. Suppose Γ̂ ° to be isomorphic with the exceptional group G2 To dis-

cuss this case, we have to digress into a few properties of Cayley numbers. Let

1, eι ii — 1,2, , 7) be the units of Cayley algebra./The multiplication rule is

given by
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e2 — e 3 , e 4 - e 5
eβ - e7

together with the equalities obtained by cyclic permutation of the indices. Let

7 7

number, (*i )2 ~

be the totality of all the Cayley numbers with vanishing real part and with norm

equal to unity. Evidently, 0 forms a 6-sphere, and each automorphism of the

Cayley algebra carries 0 into itself. We can regard therefore the group H of all

automorphisms of Cayley algebra as a transformation group of 0 (the topology over

// is defined in the usual manner). Now // acts effectively and transitively on 0.

Moreover, it is known that H is isomorphic with the exceptional group G2 .

For each x — Σι = ίxι βj in 0, we shall denote the Cayley number xx — Σι=2

χiei

by x*9 and call it the symmetric image of x with respect to e t . It is evident that

(1) (*•)* =x, x*
= x, if x = +e

φ x, otherwise.
C θ

Moreover, by a direct calculation, we can show that given any two Cayley numbers

y, z in 0, there exists an automorphism / in // such that

/ ( β i ) = e i , f{y)=y*, fU) = z*.

It is to be noted that this / depends on y and z. There is no automorphism of

Cayley algebra which carries each x in 0 into its symmetric image x*.

Now we can proceed to the proof of Theorem 2. Since Γ̂ ° is isomorphic with

the exceptional group G29 K(p,β) must be six-dimensional [ 6 ] . It is known that

each transitive transformation group of the 6-sphere which is isomorphic with the

exceptional group G2 has the same topological type as H.1 Thus we can identify

0 and K(p,β) in such a manner that Γ̂ ° and H coincide. Let x be a point of K{p,e)

It determines a ray px, that is, the totality of points u of E for which either d(xf u)

+ d(u9p) = d(x9p) or d{u9x) + d(x9p) = d(u9p) [2, p. 76] . For each nonnegative

number s, we denote by Px (s) the point u on the ray px with the property that

1 Γ F h i s f o l l o w s a s a d i r e c t c o n s e q u e n c e of L 6 , L e m m a 6 j .



TWO THEOREMS ON METRIC SPACES 4 7 9

d (p, u) — 5. Since E is an open S. L. space, each point of E other than p can be

represented in a unique way as Px (s), where x £ X(p, β) and 5 > 0. Let y, z be

any two points of K (p, β ) , and let y * , z * be, respectively, their symmetric images

with respect to eί [note that we have identified θ with K(p, e ) ] . Then there

exists a transformation / in Γ °̂ such that / ( e ^ = el9 f{γ) — y * , /(z) = z * . Since/

is an isometry of E and leaves p fixed, we have, for any s, s ' > 0, the relations

f[Py(s)]=Py.(s), f[Pz(s'n=Pt.(s ) .

This tells us that

(2) d[Py(s), Pz(s')] =d[Py.(s), Pz.(s')] (s,s'>0).

Now let us consider the mapping h : E —> E defined by h [Px (s)] — Px* (s),

where x C Kip, β) and 5 > 0. Equality (2) tells us that this mapping h is an

isometry of £ . Moreover, from (l) we can see that h is of period two and that h has

only two fixed points e t and ""βj on K (p, β). It follows then that A is a reflection

of E about the geodesic joining p and elm However, our space E is two-point homo-

geneous so that there exists a reflection about every geodesic of E. From Schur's

Theorem, we can conclude that E is either hyperbolic or eaclidean. Theorem 2

is hereby proved.

6. Remarks, In all the arguments, we use only the weaker two-point homo-

geneity; that is, there exists a number 8 > 0 such that, for any four points x, x1,

y, y' with d{x, x' ) — d (y, y' ) < δ. there exists an isometry of E carrying χ9 x1

to y, y' respectively.

The author wishes to express his thanks to Professor H. Busemann for his

helpful suggestions concerning the proof of Theorem 2.
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