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1. Introduction, In a previous paper [3], the author obtained inequalities
comparing the capacity of a lens with various geometric quantities of a lens. A
lens may be described simply as a solid of revolution determined by the inter-
section of two spheres. More precisely, if ¢ > 0, the solid of revolution generated
by revolving about the imaginary axis the area in the complex z-plane defined by

the inequalities

zZ —cC

< G,

6 < ar
b= gz+c

is called a lens. We may suppose 0 < A, < &, < 2m. It is, however, more con-
venient to characterize a lens in terms of its exterior angles. Accordingly we
denote by ¢ and 5 the exterior angles which the two portions of the boundary of
the generating area make with the real axis. It is easily seen that 5= 0, a =
27 — £,. We shall assurme, as we may without loss of generality, that ¢. < 5. The
sum of these angles, ¢ + 5, is called the dielectric angle of the lens. Clearly we
have o + 8 < 27, and hence we need consider only values of & not exceeding
77. Sometimes it is convenient to introduce the radii ¢ and b of the intersecting

spheres; these are given by

¢ =a sin a:b|sinﬁ

It is clear that when @ + 5 = 77 the lens becomes a sphere; and when o + 5> 7,
5 < 1, the lens is convex, When 5 # 0 and . — 0, with a fixed, the lens be-
comes a sphere of radius a. When &, 5 — 0 in such a manner that 5 = £, and
a is kept fixed, the lens becomes two tangent spheres of radii ¢ and ¢/%. When

&, 8 — 7, with ¢ fixed, the lens becomes a circular disk of radius c.
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370 JOHN G. HERRIOT

In the present paper we consider the polarization of a lens, obtaining inequali-
ties comparing the average polarization with the capacity and volume of the lens.
This investigation is one phase of a general studyof relationships between various
physical and geometric quantities which has been carried on at Stanford University
during the past four years under the direction of Professors Pdlya and Szegs [5].

We now explain the concept of polarization as it has been defined by Schiffer
and Szegs [6]. (Cf. also Pdlya and Szegé [5].) Consider an infinite electric
field whose direction is determined by the unit vector h. When a conducting solid
is placed in this field, the uniform field will be disturbed; the disturbance is
equivalent to superimposing another field on the original one. If the electric po-
tential of the superimposed field is denoted by y, then its energy is given, apart

from trivial factors, by

P = J‘J‘ﬂ grad |2 dT,

the integral being extended over the whole space exterior to the solid.
We note that the function y is harmonic and behaves like a dipole at infinity.

Also ) satisfies on the surface of the given solid the boundary condition
Y =h *r 4+ constant ,

where r is the radius vector. (The additive constant must be chosen properly.)
We call the quantity P the polarization in the h-direction. It is easily verified

that P is a quadratic form in the components of h:

3

P= Y Piphihg.
1,k=1

The coefficients of this form depend naturally on the coordinate system used;
however, the invariants of this form are independent of the coordinate system. The
simplest of these invariants, and the one with which we shall be concerned in this

paper, is the average polarization P, , defined by
(1) Piy+Py 0+ P3 =3P, .

The study of P is facilitated by introducing the expansion of the potential
at infinity, where, as has already been observed, it behaves like a dipole. The
strength component of this dipole in the direction h can be represented in terms

of the leading coefficient (that of r™?) of the potential; it is a quadratic form
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in h; , say

3

E= Z 3L,kh1hk .
1, k=1

We call it the dipole form associated with the polarization. By use of Green’s

formula, it is easy to establish the elegant relation
P =47E -V,

where V' is the volume of the solid. It has been found that £ shows a more regular
behavior than . We shall frequently find it convenient to consider P, + V in the
present paper.

It is known that for a sphere we have P = P, = 2V. It is conjectured that
P, > 2V for other solids. Now for arbitrary solids it is well known that the ca-
pacity C is not less than the radius of a sphere having the same volume as the
given solid. (See e.g. Pdlya and Szego [4].) Thus we have V < (477/3) C3. lience
the inequality P, > (87/3)C3 is stronger than P, > 2V. An even stronger ine-
quality is

(2) B, +V >4nC?,

Since, as has already been pointed out, // shows a more regular behavior than
P, it is not surprising that this last inequality (2) is the easiest to investigate. It
can be studied readily in the case of a lens by means of explicit expressions
which Schiffer and Szegd' [6] have given for e, €y, € (ey,15€2,25€3,3), where
the z-axis is in the direction of the axis of the lens. From these we can write at
once the expressions for ., Py, P, the polarizations in the x-, y-, and z-
directions. These formulas with others are collected together for convenience in
$2. We then prove in §3 the strongest inequality (2) for the case of the spherical
bowl (lens with & + 5= 277). The same inequality is proven in 94 for the so-
called Kelvin case (lens with oo + 5 = 77/2), in S5 for the case of two tangent
spheres, and in $6 for the symmetric lens. More detailed information concerning

the behavior of the corresponding ratio is obtained for some of these cases.

2. Basic formulas. In this section we collect for convenience several formulas
which will be useful in the later sections. Those for the polarization of the lens
in the general case and in the several special cases are obtained from the paper

of Schiffer and Szegs [6]. Those for the capacity are taken from a paper by Szegé
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[7], which also gives references to the original literature; they are also collected
together in the author’s previous paper [3], and in the paper of Schiffer and
Szegd [6].

For the polarization of the lens, we have
(5) P1,1=P2'2:Px :Py :47T€x "‘", P3,3:Pz :47T€Z -V

?

where

shq ch (6.— B)q + sh (4 + 8 — m)q

4 =ey =20 [ (¢ +% dg ,
( ) €x €y c .[_00 (q 4) sh ((A +/b)q Ch77q q
© h h - + sh —a—p
(3) e, =4c® [ g shmg ch (« = f)q + sh (7 A dq
- sh (w + B)g chmg
© h (o — £ 2
4¢3 |:f q th mq s_i_b)gdq}
_ -® sh (O(+/B)q
foo sh7g ch (w— B)g + sh (« +/5—-7T)qd
A q

® sh (u + B)q chmg

For the electrostatic capacity of the lens, we have

6) C:Cfoo sh 7q ch(C(—,B)q-Fsh(C{-F,B"—W)q
-® sh (¢ + B)g chmg

For the case of the spherical bowl, in which & + 5= 27, these formulas yield

(7) ex = ey =z [f(a) +£"(m) + f(0)],
(8) eg =c{f"(a) = () = [ (/D)3
and

(9) C=cf(a),

where

(10) fla) = [:[M}quzi(l +77~“).
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We note that f* (7)) = (@3m)~ L.

For the case of the lens with & + 5= 7/2 (Kelvin case), we have

(1) ex = ey =5 [k(w) +k(B) =k(0) + k" () +&"(6) —k"(0)],

(12) e, = k" () +£"(B) +£"(0) = [k (o) = £"(5)]%/[k(a) +k(B) =k (0)]} ,

and
(13) C=clk(a) + k(B) —k(0)]=a+b—c,
where
o ch 20
(14) k(o) = f chg dg = sec U .
~® chwrg

[See formula (A-1) in Appendix A,

For the limiting case of two tangent spheres of radii a and b, we have

[w" ) —¢"(;-j—b) —w({—gﬂ ,

ab \? a
(16) e; = (— ) —2y" (1) ~¢”( ) =y

ab

a+tb

(15) ex :ey”—‘%(

and

(17) SRLLIN FY B Y L P
~a+b ¢a+b ¢,a+b E

where Y (u) = ™ W)/T (W), T () being Fuler’s gamma function, and where 7y is

tluler’s constant.

Finally, for the case of the symmetric lens we obtain
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(18) ex =ey =2¢> [ (g2 +1)(1 — thmg thag)dg,
(19) e, =4c8 [:: ¢*(th7q cthug — 1) dgq ,
and
N @ —_— ,
(20) C=c _/:m (1 —th7q thag)dg .

An elementary calculation shows that the volume of the lens is given by

7Tc3 o8

*%
(21) 4 =_6— (2 — cos @) coté‘ csc? '2— + (2 = cos B) cot §CSC2 §

3. Spherical bowl, & + 8= 277. The volume V of the spherical bowl is clearly
zero, so that the inequality (2) becomes P, > 47 C3. In this section we consider

the ratio P, /47 C3.
From (1), (3), (7), (8), and (9) we obtain

(22) Po 21" ()f (@) + [F(0)]* = [f"(«)]?
4mC? 3[f ()] '

[f we make use of equation (10), which gives f() explicitly, and substitute & for
77 — O, we easily obtain
Py 772

(23) = 62 + 45 sind — & sin28
47C*  3(5 + sin &) [3 s s

—15in? 28 —2 sind sin28].

We differentiate (23) with respect to & and find

d [ B m2(1 + cos §)?

— = ——— — H(2%),
@y dé (477(:3) 3(6 + sind)s 28)
where
(25) H(8) =562 + 8 sin & —4(1 — cos 8) .

We now proceed to show that }/(8) > 0 for 0 < & < 27, Clearly / (0) = 0. Also,
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H (3) =28 +8 cos & —3 sin$
H"(8) =2 sin 8(tangy 8§ — L1 8).

If 0 < § <, then sin$ > 0 and tan (§/2) > §/2, so that /() > 0. But if
7 < 8 < 27, then siné < 0 and tan (§/2) < 0, so that again #'(8) > 0. Thus
11'(8) increases monotonely as & increases from 0 to 277. But /7'(0) = 0. Thus
H'(8) > 0. Since H(0) = 0, it follows that /(8) > 0 for 0 < 8 < 277. From (24) it
follows that P,, /47 C3 decreases monotonely as § increases from 0 to 7. But
from (23) we easily find that P,,/47 C® has the value 72/9 for & = 0 and the
value 1 for & = 7. It follows that P, /47 C? increases monotonely from 1 to
72/9 2 1,097 as ¢ increases from 0 (sphere) to 77 (circular disk). Thus for the

spherical bowl the inequality 7, > 477 C ®is proven.

4. Kelvin case, o« + 8= 7/2. We now consider the case of a lens of dielectric
angle 77/2 formed by the intersection of orthogonal spheres. The polarization and
capacity can again be expressed in terms of elementary functions, so that the
study of the ratio (P,, + V)/47C? is not difficult. For this case we use equations

(1), (3), (11), (12), and (13) to obtain

(26) o TV _2[k" (o) + k"(B)][k(w) +k(5) = £(0)]
47rC3 3[k(c) +k(B) —k(0)]*
o Le(e) + k() = k(0)]? = [k’ () = k'(B)]"
3[k(a) + k(B) — k(0)]* ’

where k(%) is given by (14), and, as throughout this section, 8= 7/2 — o.. We
note that k(o) + £(83) — %k (0) becomes infinite when ¢/ tends to zero or 77/2; in
order to obtain a fraction whose numerator and denominator remain finite, it is
convenient to multiply the numerator and denominator in (26) by sin*a costo. If

we subtract 1 from both sides of (26), we obtain

P+ V k* ()

47 C? 3 sin* o cos* o [k(a) + k(B) —k(0)]*

where
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(28)  k*(«) = sin® o cos* o {2[k" (o) + k"(B) ][k () + k(B) —k(0)]
+ [k(c) +k(8) —k(0)] = [k () = k" (B) P
—3[k(a) + k(5) —k(0)]*1.

We note that £™(x) is always finite. In order to prove the inequality (2), it suffices
to prove that £*(ct) > 0 for 0 < o < 77/4 since, as was pointed out earlier, we can
always suppose &0 < 5. We make use of (14) to obtain the following necessary

expressions:

(29)  sin« cosc[k(a) + k(B) —k(0)] = sinw + cosa(l — sin &),

(30) sin® & cos? o[k’ (o) — k'(B)] = sin® « — cos® «,

(31) sin® o cos®afk”(0) + k"(B)] = sin® a + sin® & + cos® « (2 — sin? &),

If we substitute (29), (30), and (31) in (28) we obtain, after some simplification,
E¥o1= 2 sino cos ol — cos 00)2(1 — sin )? [cos t(d — sin®) + 2(1 + 2 sin&)].
It is clear that each factor in this product is nonnegative, and hence (o) > 0
for 0 < o < 77/4 and indeed for 0 < o < 77/2. As previously noted, this is suf-

ficient to prove the inequality (2) for this case.

5. Two tangent spheres. We now consider two tangent spheres of radii ¢ and
h. (We assume without loss of generality that b < a.) Ve write b/(a + b) =
(z should not be confused with the z-coordinate), and make use of (1), (3), (15),
(16), and (17), obtaining

Po +V 209" () =" = 2)][=¥(2) ¢ (1~ 2) —27]
4mC? 3[=v(z) =1 —2) —2v]*
I K €O Bt i i 0
3[-y(z) =yl —2) —2y]*

(32)

Recalling that

we obtain
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1
(l—z

> 2n +
+z n+1 ____2_

n n2+n+z(1“‘z) n

(33) ¥ (2) =yl —z)—2y =

We note that this expression is a function of z(1 — z), and make the substitution
z(1 — z) = y. It is clear that z lies between 0 and 1/2, and hence y lies between
0 and 1/4. For such values of y, z is a single-valued function of y given by 2z

=1—(1— 4y)". We have also

(34) —==1=2z= (1 —4y)*.

dz
[t follows that both '(z) — ' (1 — z) and — " (2) = Y" (1 — z) are single-valued
functions of y for 0 < y < 1/4. Thus, by (32), the same is true of (P, + V)/47 C3
We denote this function by ¢ (y). We shall show that ¢(y) increases as y increases.

We therefore consider ¢'(y). A simple calculation gives

M

(35) O S TG — v —z) =2y

where

M=aip'(z) =" (1 = 2)3f2[=y" (z) =y (1 = 2) J[=¢ (z) =y (1 = 2) —27]
= [ (2) =y = 2)]%
= 2{"(2) =" = 2} (e) —y (1 —2) — 2y 2

If we make the substitution z(1 = z) = y in (33), and let 1/[n(n+ D= a,, we
obtain

yV=y()—yQ—2z)=2y]=1+y Z[—?ﬁj—l)—— _Z]_

n=1 1 +ayy n
But

(2n + 1)an 2

=—a,— 2n+1)aly + (2n + l)aﬁ y?
1 +a,y n

~ eee + (=1)" 1 (2n + 1)a® y™ 1 4 oo
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It is easily verified that
o] ©
(36) Y an, 2 2n+1)an=1.
n=1 =
For convenience we let
@
(37) Z (2n + 1)a (m=23,4, *=+).

By (36), we have b, = 1. It follows that

38)  y[-¥(E)—yQ-z)—2y)=1-y—-y'+ Z )" b "
Now
hd 1
39 _— 1 m = cee)
(39) b % (2n+l n(n +1)_<_2bm—1 ( 3v4‘15s )

Repeated application of this inequality shows that

(40) bn < = = gn-2

Thus the series in equation (38) cértainly converges uniformly and absolutely for
0<y<1l/4

If we divide equation (38) by y, differentiate with respect to z, and make use
of (34), we obtain

(41) yIy'(z) —y' (1 —2)]

=(1—4y)*|1+y*+ X (=1)"(n—1)bn y"

m=3

Similarly we find that



THE POLARIZATION OF A LENS 379

42 [y () =" (1 = 2)]

=211 -3y + § (~—1)’”“(m—2)-[m;1 b + (2m“5)bm_1]y’"l,

=3
and

(43) Yy (2) =" = 2)] = 6(1 - 4y)*Q,
where

(m=2)(m —3)
3

0=1-2y+ ¥ (1)

m=4

m—1
) [ 9 by + (2m—‘5)bm_1] y"

By means of (40) it is easily seen that the series in (41), (42), and (43) are uni-
formly and absolutely convergent for 0 < y < 1/4. Moreover, the terms of these
series as well as those of the series in (38) alternate in sign after the first few
terms. If we make use of (39) and (40), we easily verify that the terms in each of
these series decrease in absolute value for 0 < y < 1/4. Consequently, each
of these series may be conveniently estimated by taking a finite number of its
terms. In order to simplify the estimates we need a better estimate for b,, than is
given by (40). We easily find that
3 1 1

3
R ) (n=345,-).

(44)

The following estimates are then obtained:
@5 y[=y(E) v —z) —2y]<sl—y—y* + by’ —bay* +15°,
@6)  y[=¥ () =y —2z)—-2v]

>1—y =y +bsy’ —bay' +55¥ — 5y,
U Yy () =y (1 - 2)]

S (I —dy)i[L +y2— 2b3y° +3bay* =3 y° +35°],
“8) 32y (z) =y’ —2)]

> (1= 4y) [1 +y? —2bay* + 3bay* — 5 ¥°1,
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(49) Y =y"(z)—y¢"(1 = 2)]

>2[1 =3y + (bs + 1)y® —3(bs + 2b3)y* + 3y° — 455 ],
G0y y*[yY"(z) = "1 —2)]

<6(1 = 4y) [l — 2y + (bs +2b3)y* —2y° + 4y°].

All of these estimates are valid for 0 <y < 1/4.
Before substituting these estimates in (35), we find it convenient to estimate

certain combinations which appear there. I'rom (49), (46), and (47) we obtain
51 y*2[=y" @)=y (1=2) ][~y ()= —2) =2y ]=[¥' () =¥ "1 =2) "}

>3 —12y+ 6y2 +12(bs + 2)y> — (22b4+ 56b5 + 5)y*

+ (48b4 + 24bs + 51)y° + (6b4 + 12b5 — 82)y°

+ (2064 — 4bzbs — 8bF + 22)y” + (42 b3 —24b3by + 363 + 52)y°

= (%2 bs + by —36b7 — 1)y’ + (3L ba — Fbs + 1)y

— (- —6ba )y + 5y E Y

>3 — 12y + 6y% +12(bs +2)y® — (22by + 56b; +5)y* +24y° — 28y°.
In passing to the last inequality we have made use of the inequalities (44) to

estimate the coefficients of y* and y6 and to prove that the sum of the last seven

terms is nonnegative for 0 < y < 1/4. From (45) we find in a similar way that
(52) Y =) —p(Q —z) =2y ]
<1—=2y —y2 +2(bs +1)y> — (264 +265 —1)y* +1 y°.
We proceed in a similar manner using (48) and (51) to obtain
(53) 4y°{y’ (2) ="' (1=2)}{2[=v"(2) —¢¥" (1 =2)][=¢() =¥ (1—2) — 2]
= [ (z) =y (1 —2)]%
> (1 —4y)%[12 — 48y + 36y + 24(bs + 2)y®

— (52b4 + 128b3 — 4)y* + 150y° — 344y°] .
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The last combination which we shall need is obtained from (50) and (52); it is
(54) 2y°["(2) = "1 = 2)][=¥(z) =¥ —2z) = 2¥]?
< (1—4y)*[12 — 48y + 36y2 + 24(bs + 2)y°

—12(bs + 4b; + 3)y* — 42y° + 95y°].

If we substitute from (53) and (54) into (35), and use the result that

i 11 1
by +2b5 =2 (@n+1)(af +2a3) =2 |5 -~ | =1,
ot Zn (n +1)
we obtain
- 192 — 439
(55) t' (y) ? 7

2 3y EvG) 4=z -2y F

Now for 0 < y < 1/4 it is clear from (38) that y [— yi(z) — (1 — z) — 27] is finite
and positive. Hence by (55) we see that ¢t'(y) > 0 for 0 < y < 1/4. It is easily
verified from (35) that £'(0) = 0. Thus t(y) increases monotonely as y increases
from 0 to 1/4. This means that the ratio (P,, + ¥ )/47 C* increases monotonely as
b increases from 0 to a, where a and b are the radii of the tangent spheres.

Now we see that b — 0 implies z — 0 and hence y -— 0. If we multiply
the numerator and denominator of (32) by y* and make use of (38), (41), and (42),
we find that b — 0 implies

P, +V 2(2)(1) -1
_) —_—
47C3 3

Also we see that z = 1/2 when a = b, and hence in this case (32) yields

Pa ¥V —ay"() =yt 7L()
47Cd 3[=2y(k) =2y P 48 log®2 24 log®?2

=1.053,

where [(z) denotes the Riemann zeta-function. (To obtain the values of " (1/2)
and  (1/2) see, for example, Copson [2, p.229].)

Thus as b increases from 0 (one sphere) to a (equal spheresiwe see that the
ratio (£, + V')/47 C? increases monotonely from 1 to 7((3)/(24 log®2) = 1.053.

Thus we have proved the inequality (2) {or the case of tangent spheres.
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Of course the weaker inequalities P, > (87 /3)C® and P, > 2V follow im-
mediately from (2). However, it is instructive to consider the behavior of the
corresponding ratios for this case of tangent spheres. This behavior can be de-
duced from the results just obtained if we first study the behavior of 47 C3/3V.
It has already been pointed out that this ratio is never less than unity [4].

The volume may be obtained from (21) by setting 5 = (a/b)¢. and letting ¢.—0,

or more simply by direct calculation. It is found to be

(56) v:‘t_g_w(a3 +b3)=4—: (a +b)(a® = ab + b?)
4 3ab 4
=27 +P 1 - —F— | = — +6)P (1 -3
= ( >(1 (a+by) = (@ 6P (1= 3y),

sincey =z(1 —z), z =b/(a + b).

If we now make use of (17) and (56) we find that

4 CC\®_ylp() = —2) —27]
3V (1~3y)1/?3

(57)

This is a function of y and we could differentiate it with respect to y and prove
the derivative nonnegative by a method similar to that used in treating ¢ ‘(y) above.

But the following method seems to be more elegant. We have

© JedeTe ees .(gm_z
(58) (1=3yy¥ =1+ % ) "

m!

m=1
If we substitute (58) and (38) into (57), we obtain

477C3 % feo]
——| =1+ X haym,

3V n=3
where

N :1.4_.7. e .(3”1__2)‘1.4.7. oo '(3m—5)_‘1'4'7' e '(3m-8)
" m! (m—1)! (m—2)!
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by + (=1)"1t b,

"l 1447+ «++ +(3m—3p —2)
et (m — w)!

by + (=1)"" by .

The first term in this last expression for A, is positive, and the rest of the terms
are alternately positive and negative and decrease in absolute value. It follows
that A, > 0. Thus (47C3/3V)Y® increases as y increases. The same is therefore
true of 477 C3/3V. Now (57) shows that when b — 0, that is, when y — 0,
this ratio tends to one. When b = @, we have y = 1/4, and (57) shows that the
ratio 477 C%/3V is 4 log®2 = 1.332. Thus as b increases from 0 to a we see that
the ratio 477 C3/3 1 increases monotonely from 1 to 4 log3 2.

Combining with our previous result we conclude that the ratio (P, + V)/3V
increases monotonely from 1 to (7/6)((3) = 1.402 as b increases from 0 to a.
Now since

P, 3P, +V 1

2V 2 3V 2

)

it is clear that £, /21 increases monotonely from 1 to (7/4)7(3) — 1/2 = 1.604

as b increases from 0 to a. Finally since

Pn 3P, +V 1 3V

(87m/3)C® 2 4mC3 2 47mC3

we see that 7, /[(87/3)C®] increases monotonely from one to the quantity

[72(3) — 2]/(16 log® 2) = 1.204 as b increases from zero to a.

6. Symmetric lens. In this section we prove the inequality (2) for the case of
the symmetric lens. If we make use of (1), (3), (18), (19), and (20) we find that
2 thn
j-ooq q d
~® sh 2uq

3[]_‘2 (1 = thwg th cgq) a’q]3

m ,
bty L, (1 = thmg thag)dg + 8 g

4WL3

(59)
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We denote this ratio by S(u). We note that S(0) = 7 {(3)/(24 log®2) = 1.053 (two
equal tangent spheres), S(77/2) = 1 (sphere), and S(7) = 72/9 = 1.097 (circular
disk). We wish to prove that S(ct) > 1 for 0 < & < 7, We write

w?g(a) + G(a)

(60) S(w) = 36 (@)

where
61)  gw) =« [ (1 =thmg thag)dg = [ (1 —thmg/a thq)dg

and

® q? thﬁqd _ © g% th 7mq/u

(62) G(a) = 8a3
(@) ‘/:°° sh 20q 9 “®  sh2g

We note that g{(o) in (61) is the same function g(¢) that was used in [3]. Next

we let

(63) d(a) = a?g(a) + G(a),

so that

(60 S(w) — 1 = d(“)gj E’f;(“)
g

Since g(a) > 0 for 0 < o < 77, it suffices to prove d{c) — 3g3(o() > 0 in order
to establish the inequality (2).
We note that d(%) — 3g°(ct) has the value zero when o0 = 77/2, because

S(77/2) = 1. Its value when & = 77/4 or 7 can also be calculated as we shall see.
In proving the desired inequality we shall find it convenient to estimate d(0.) and
g(ct) by means of Taylor’s series expansions of these functions in the neighbor-
hoods of the points « = 77/4, 77/2 and 77. We shall therefore need to compute some
of the derivatives of g(& ), G(&), and d(a), and to study their behavior.

From [3] we find that

(65) g'(o.)=77£ —dq ,
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2

" @ q
66) ) = ——— dq ,
( )] g ( ) 4/'—(1) Ch2 Wq Ch“ C/\.q 9
» o q° shog
(67) &) =—27 - aq .
VO« g ( ) [m Ch2 7Tq Ch‘l C/\-q q

It is clear that g'(ct) > 0, g"(¢) > 0 and g"(a) < 0, so that g(«) and g'(ct) are
monotone increasing functions and g”(c) is a monotone decreasing function.

Turning to the consideration of the derivatives of G (&), we have

2 3
. q @ 9
68)G' () = —8mu % [© ———— g = =870 —dg,
@ 7 f'“’ sh2q ch? mq/u 1 ["” ch? 77¢ sh 2ug i
(696" (@) = 271" (0) + 16ma? 7 P2
G (K) = 20U x \& TE e — ,
’ 0 chZ g sh? 2aq
3 4
; ch2a
(70) G"(n) = =167 fm -7 dg + 6471 foo"jg“——*j—q‘—dq
~® ch? 7 sh 20q ~® ch® g sh” 2uq

5 2
2 + sh* 2¢
32702 [* 14 (2 + sh” 2aq)
~® ¢h? 77q sh® 2uq

For the derivatives of d(& ), we have

(71) d' (@) =a?g’ (&) +20gl) +6' (w),
(72) d' (o) =a?g” () +4ug (o) +2g() +6" (),
(73) d"(e) = «?g"(¢) + 6ug" (o) +og' (w) +6"(w) .

We first consider the interval 7/2 < & <77, If we let 6=« — 7/2, we have

52
(T glo) <glm/2) +6g' (m/2) t g"(m2), m/2<us<w,
and

82
75) d(a) >d(m/2) +8d' (7/2) +? d"(m/2), 7m/2 <a<m,

since g"(%) <0 by (67), and d" () > 0 for 7/2 < & < 77, as we now shall show.
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From (73) we find at once that
(76) d"(a) > o g"(a) +6ag"(m) +6g" 7/2) +G" (), 7/2<a<7,

We must now find estimates for g” () and G"(ct). From (67) we see that, for
/2 < o <77, we have
sh 71q 1

3
0 <—g"(a) <27 . . d
<=g") L. ch2 7q chmg  ch?mg/2 "

3 sh? 77g(ch -1
= 3277 j_': i :3(; 4 ) dg
s q

=17

mq3 Sh77q/2d fooq (Chqu"‘l)d

-0

sh?7q sh? 7rq i
H we make use of formulas (A-16), (A-32), and (A-31) in Appendix A to evaluate
these integrals, we find that

(77) 0>g"(a) >=1/m +3—77/8, 7/2<a<m.

Equation (70) shows that G”(x) is the sum of three integrals each of which may
be estimated by methods similar to that used above in the estimation of g”(at);
it is convenient to observe that the function ¢/sh ¢ decreases monotonely for

g > 0 and is an even function of g. The necessary formulas from Appendix A are

(A-16), (A-18), (A-20), (A-26), and (A-30). We find that
(78) ¢" (&) > [7/(20)] (12 — 447 — 2572 + 1273)
+ 347 /45 — 16/(37) + ma(25 —87w), w/2 < a < 7.

The values of g”(77) and g'(77/2) are given in equations (B3-3) and (B-5) of Ap-
pendix B. If we substitute these values as well as values from (77) and (78) into
(76), we find that, for 7/2 < o < 7, ad"”(&%) is not less than a certain polynomial
of third degree in c. It is easily verified that this polynomial has three real zeros,
none of which lies between 7/2 and 77, and that it is positive for ot = 77/2 and
o = 77. Consequently, it is positive for 7/2 < ¢t < 7. It follows that d"(at) > 0
in the same interval.

If we substitute into (74) and (75) the necessary values from Appendix B, we
find that, for 7/2 < o < 7, §~2[d(«) — 3g°(a)] is not less than a certain

fourth degree polynomial in 8 which is readily shown to decrease monotonely as
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o increases from 0. Moreover, this polynomial is positive for o = 4/3. It follows
that

(79) dla) =3g3(@) >0, /2 <a<mn/2+%.

Since the desired inequality has not yet been proven for o0 > 7/2 + 4/3, we
consider further the interval 77/2 < ¢ < 77 and let € = 77 — .. We first recall that
2" () decreases monotonely. Also it has been shown that d"(c) > 0 for 77/2 <

o < 77; it follows that d” (1) increases monotonely in this interval. We thus obtain
= y

€2

(80) glo) < glm) —eg' () 1y “(m/2), m/2<asm,
and

2
(81) d(a) >d(m) —ed'(m) + o d"(m/2), w2 <a<m.

If we substitute into (80) and (81) the necessary values from Appendix 3, we
find that, for 77/2 < ¢ <7, d(¢.) — 3g3(a) is not less than a certain sixth degree
polynomial in € which is readily shown to be positive for 0 < € < 1/2. It follows
that

(82) dlw) = 3g3(a) >0, m—5F<a<m,

If we conbine (79) and (82) the desired inequality is proven for the interval 77/2 <
u < 7.

Next we turn our attention to the interval 77/4 < & < 77/2. We first need to
obtain estimates for g”(¢) and 4"(0) in this interval. If we make use of (67) and
eniploy (A-16) and (A-28) in Appendix A to evaluate the integrals which arise, we
find that

(83) 0>g"(a) >—2+77/16, 0<a<m/2.

Before we can estimate d” () we need to estimate 6" (o). We proceed as we did
for the interval 7/2 < o < 77, and we find that two of the integrals that have to
be evaluated are the same as before although the inequalities are reversed. lfow-
ever, the third integral is different; it may be estimated by making use of (A-8),
(A-10), and (A-17). We find that
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84) G"(w) < [7/(2u)](12 — 447 — 2572 + 1273) + 5127
+ 176 m(2)% — 17172 (2)% + 7o (25 — 87), mw/A<a<m/2.

If we recall that g'(%) is an increasing function, g”(ct) a decreasing function,

and g”(c.) a nonpositive function, we find from (73) that
d"(«) <0 +6ag”(0) +6g'(1/2) +G" (), 7/4 <o <7/2.

If we insert the values of g”(0) and g'(77/2) from Appendix B, and make use of
(84), we obtain

(85)  d"(w) < [7/@Qu)](12 — 447 — 257 % + 1277%) + 6 + 102177/2
+ 1767 (2)* — 17172(2)* + a(1 + 257 — 87?)
<18 + 4677 + 1767(2)% —2572/2
—-17172(2)* + 873, w/A<a<7m/2.

In passing to the last inequality we have replaced ¢ by 7/2 because the first
parenthesis is negative and the last one is positive. We also point out that the
last member of (85) is positive.

If we now let { = 77/2 — «, we find from the Taylor’s series expansions of
g(a) and d (o), on using (83) and (85), that

2
(86) glo) <glm/2) — Lg' (m/2) + % g" (m/2)

+ 3G —-771/9), m/4<a<m/2
and

2 3
@7 d{w) >d@/2) —td' (n/2) + %— d"(m/2) — % d, , m/d<a<m/2,
where d; denotes the last member of (85).

If we substitute into (86) and (87) the necessary values from Appendix B, we
find that, for 7/4 < o < 7/2, {72 [d () — 3g3(a)] is not less than a certain
seventh degree polynomial in { which is easily shown to be positive for 0 <
< 1/2. It follows that

(88) dla) = 3g%°@) >0, m/2—=%Lt<a<n/2.
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Since the desired inequality has not yet been proven for o0 < 77/2 —1/2, we
consider further the interval 7/4 < & < 77/2 and let 7» = & — 77/4. We need another
estimate for d"{u ), but of the opposite sense to that given by (85). This in turn
m

requires a new estimate for G (). The necessary integrals may be evaluated by

using (A-17), (A-23), and (A-24). We find that
(89) G"(a) >—8/(3w) + 327 —107? —14w/15, 0 <a< /2.
From (73) we find at once that

d"(o) > a’g" () +6ag"@/2) +6g' (m/4) + G (), n/4 <a<m/2.

If we insert the necessary values from Appendix 13, and make use of (83) and (89),
we obtain
1

(90) d"(x) >=1{—8/3 + [12(2)* — 6 + 37(2)* + 4977/2 — 1072]u
G

+ (136/15 — 3m)a? + (T7/16 — 3/2)ad}, 7w/4 <a<7/2.

But it is easily shown that the polynomial in the braces increases monotonely
when . increases from 0 to 7/2. Moreover, it is negative if & = 77/4. lence we
may replace O by 77/4 in the right-hand member of (90). If we denote the resulting
value by d,, we see that d"(0.) > d, for 7/4 < o < 77/2. Using this fact and
recalling that g (%) < 0, we have

2
OO g(@) gb/4) ¥’ (m4) + g /), TS w02,

and
2 3

92y  d{a) > d(m/4) + nd' (m/4) + % d"(m/4) + % dy, /4 <a<T/2,

If we substitute into (91) and (92) the necessary values from Appendix B, we
find that, for 7/4 < & < 7/2, d(&) — 3g3(a) is not less than a certain sixth
degree polynomial in 7) which is easily shown to be positive for 0 < 7 < 0.4. It
follows that

(93) d(a) = 3g3(x) >0, 7/A<a<m/d+0.4.



390 JOHN G. HERRIOT

If we combine (88) and (93), the desired inequality is proven for the interval 77/4
<o <m7/3.

Finally we consider the interval 0 <¢ < 77/4. We first need to obtain estimates
for d” () and G“ (o) in this interval. If we make use of (68) and (69), and employ
(A-22), (A-23), (A-24), and (A-30) to evaluate the integrals which arise, we find
that

(94) G"(0) >—4/3 +12172/60 — 573/8, 0 <o < 7/4.

I'rom (72) we find at once that

d"(c) > 2¢(0) + G"(«), 0<u<mn/4,

since g"(%) and g'(cl) are both nonnegative. If we take the value of g(0) from
Appendix B, and make use of (94), we find that

(95) d" (o) >4 log2 —4/3 + 12172/60 — 57%/8, 0 <« < 7/4 .

If we now let k = 77/4 — &, recall that g” (%) decreases monotonely when

¢ increases, and make use of (95), we find that

2

K
(96) glo) <g(/4) —<g'(m/4) + 58 0), Osus w4,
and

K2
(97) d(a) > d(m/4) — «d' (m/4) + o d3, 0<u<m/4,

where d; denotes the right-hand member of (95).

If we substitute into (96) and (97) the necessary values from Appendix 13, we
find that, for 0 < o < 77/4, d(0) — 3g3 (ct) is not less than a certain sixth degree
polynomial in « which is positive for 0 < x < 77/4. It follows that

(98) d(o) = 3g%(e) >0, 0<a<m/d,

Combining this with our previous results, we see that the desired inequality
has now been established for the whole interval 0 < & < 77. As previously ob-

served, this proves the inequality (2) for the symmetric lens.

7. Appendix A, In this appendix we give a table of integrals which includes
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all the integrals needed in the proof in $6 and in the calculations in Appendix B.
Some of these integrals can be deduced easily from formulas given in the integral
tables of lierens de Haan [1]. When this is the case the formula is followed by
two numbers in parenthesis giving first the table number and second the formula

namber of the necessary formula in the tables of Bierens de Haan.

Since not all of our formulas can be deduced from these tables we indicate
alternative methods of proof. Formulas (A-1) to (A-6) can be derived by standard
methods of contour integration. In connection with (A-5), we mention that it is
necessary to inteorate both z shiiz/sh?7z and ch«z/sh? 7z around an indented
rectangular contour; and in (A-6) it is necessary to integrate z2 shaz/sh37z,
z chuz/sh® 7z, and sh z/sh®7z around the same contour. Formulas (A-7) to
(A-20) can be derived Ly differentiation of the formulas (A-1) to (A-6). Finally,
formulas (A-21) to (A-32) are all special or limiting cases of formulas (A-7) to
(A-20). It may be noted that (A-32) may be derived most easily by using an inte-
gration by parts and (A-29).

o ch Aq o
A1 J o dg =sec =, —m<a<nm (27, 4)
o chogq o o
(A-2) [m *h"’ dg=—csc —, —27 < a<27 (27, 18)
ch® 7q T
« chog o ” o
(A-3) j_‘m oh* g dg :(:; (472 — a?) csc —2' , —4dn<oa<A4m (27, 18)
o shog o
(A-4) f dq = tan — —nm<a<7 (27, 10)
“® shq 2’
ha 1 o %
(A-5) fmg‘—s“—qdq =— (O&csc2 ——2 cot*‘), =21 <a<2m
@ sh?mgq 27 2 2
o g2 sh ug 1 ol , G
A-6 ——dg =—— |4 tan — + 4% sec” —
(A-6) j:‘” sh® 7q E 473 o 2 2

v A
+ (u? —-72) sec? ‘2‘ tan 5] y T3T< A< 37
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2 cha o o
(A-7) fm EE qqui—seC“(l + 2 tan? —), —r< o<t (84, 17)
“® chmyg 2 2
4 ch 1 G o o
(A-8) fm 'q—L‘q‘dq =— sec — (5 + 28 tan® — + 24 tan’ ~),
~® chwg 16 2 2 2

-7 < o <7 (82, 16)
2 ch« 1 C o
(A-9) fw q—c“*gdq = — csc— ['—4- cot —
~® ch?7q 4 2 2

(

c
+c<(l + 2 cot? 5)]’ —or< o< 27

* ch« 1 o o "'
(A-10) L: 1 27 (2: g dg = — csc — ['—8 cot — (5 + 6 cot? i)
ch?® mq 167 2 2 2

, & s G
+ a5 + 28 cot "2“+24cot 5 , —2n<a<2m
2
q° ch aq 1 o8 o
(-1 [° —dq = —— csc — [—-24& +4(3a? —47?) cot —
L. cht g 0 oamd €52 ( ) cot 2
2 2 2 “
+ a{dm? =« )(1 + 2 cot 5\)] , —dm<a<d4rm
* chu 1 o o o
(A-12) fm 1 p 9 dq = csc — [192 cot —— l44a (l-i- 2 cot? —‘>
“® ch*7q 9677 3 2 2 2
o &
+8(3Bu? — 47?) cot — (5 + 6 cot? —)
2 2
o
+ o (4772 —a2)(5 + 28 cot? 3
+ 24 cott —;f)] . 47 << 47
h ¢ o
A-13) [PLTE jo =1 o2 2, —n<a<a (84, 16)
“® shmg 2
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o q3 ch o (A o8
T e (1 + 3 tan? —), —m <o <7 (82 15)
~® sh 7gq 2 2
. 2 cha 1 a o
(A-13) fmq—:—qdq:—cscz"‘(Q"“u Cot_), —2r<a<2m
~® sh?gq 27 2 2

o g% sha 1 , o
(\-10) f g _sh%4q dq = — c¢csc” — [_‘6 cot —
~©  gh? 7q 47 2 2

+ a(l + 3 cot?

N e

)], —2m <@ <27

* cha 1 o o
(A1) oL g = et S [2 (1 +3 cot? —)
@ sh?mgq 277 2 2

“Cicot:‘(2+3cot :)], =27 < ¢ <27
2 2

5

o sh o 1 G o8
(A-18) j:: 1 z] g dg = — csc? = [ 10 cot — (2 + 3 cot? *‘)
sh® mq 477 2 2 2

G &
+ OL(2 + 15 cot? §+ 15 cot* —2‘)], —2m < o <27

3
. - ch & 1
(;\-;7()) j::: 9—_.(_;. dq =— sec

o
[12 +12% tan —
shd 7q 87 2

NJ[C

o
+ (a? —~772)(1 + 3 tan? 5)], —3r<a<3m
5
. h o 1 o o
(A-20)  [o L TR = ez = [20(1 + 3 tan? ~)
~® sh’ g g7’ 2 2

U
+ 200 tan ——(2 + 3 tan? -)
2 2

o o
+ (a2 ~772)(2 + 15 tan? —2—+ 15 tan? E)] , —3m< o< 37T



394

(A-21)

(A-22)

(A-23)

(A-24)

(A-25)

( .“\.' 26)

(A-27)

(A-28)

(A-29)

(A-30)

(A-31)

(A-32)

L

JOHN G. HERRIOT

=1 (84, 3)

q* 7 1

dg =
ch*mg 1 180m 3

dg =1 (84, 2)
sh 7q 172
¢
dg =% (84, 5)
shgq q 4 ’
2
q
= — (86, 5)
sh? g 1 37 ’
4
Z dqg = — (86, 3)
sh® g ™
q° _ 3,
- E)

d
sh37q 1790

3
chm 1
q q dq

sh37gq 27?2

8. Appendix B. In the proof given in 56 we had to use the values of g () and

d(a) for certain values of c. The necessary values are listed in this appendix;
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the method of calculation of each is also indicated. Following is the list of values

used:
(B-1,2,3) g(m) =2, g'@)=1n, g"(n)=19-2/37n?

(B-4,5,6) g(/2) =m/2, g'(n/2) =1=7n/4, ¢"(m/2)=5/3—=1/2

(B-7) g(m/a) = 7(2)%/2 — /4
(B-8) g (m/a) = =1 +2(2)% = 57/4 + 7 (2)/2
(B-9) g"(m/4) =34/3 + 4(2)% + m— 97 (2)*/2

(B-10,11) g(0) =2 log2, g"(0) =1/6
(B-12,13) d(7) =872%/3, d'(m) =67 —73/8

(B-14,15)  d(m/2) =37%/8,  d'(7/2)=97°/4 —97%16

(B-16) d"(m/2) =97+ 237m%/12 — 117°/8

(B-17) d(m/4) =7m3(2)"*/32 — 73 /64

(B-18) d'(m/a4) = =3n%16 + 2172(2)%/8 — 1337%64 + 237%(2)%/32
(B-19) d"(m/4) = =37/2 + 217(2)* + 37172/24 + 697 %(2)" /4

+ 73/16 — 35173 (2)"*/32

Formulas (3-4), (B-5), (B-6), (3-10), and (B-11) will be found in [31; (B-1)
and (B3-2) can be proven by starting with (61) and (65) and using (A-2), an inte-
gration by parts being first needed in the case of (3-2). (B-3) follows at once from
(66) and (A-25). In order to prove (13-7) we observe that

W Ch377 4 002Ch 2_1
gln/a) == [ i d— S 2ehmaz 71,

4 7® chrq chmg/d o hmg 00

and the result follows from (A-1). For (i3-8) we have

[« q %h’ﬂq/il

: fed] h +l_2 h 2
g (m/4) =7 [ — ~gq = [2 0TS SUkTE)
® ch® mq chmg/4 ch? mq sh7q
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o f_m L . 2(sh7q — sh 3mq/2 — shmq/2)

aq ,
= 9| sh 2mrg sh® 277g 1

and the result follows from (A-27) and (A<5). For (3-9) we start with (66) and have

o q* sh? 7mq/4

g"(n/4) =4m [

d
~® ch? 77q sh® 7q/2 1

o q%(ch 2 —1)(ch +1
N A A (LI R

sh2277q E

) \
© q?(ch37q/4 —2 chmq/2 + 3 chmq/4 — 2
Wj:oo q/ )dq,

sh? ¢

and the result follows from (\-15) and (A-29).
Formulas (3-12) to (3-19) follow immediately from (63), (71), and (72) if we

show how to calculate the following:
(B-20,21) Gm) =27%3, G'(7n)=m—7°8

(3-22,23)  G@/2) =7n%/4, G'(@/2) =371%/2 —n4 /2

(13-24) G"(m/2) =67 + 2% — 57 3/4

(B-25) G{m/a) =371°2)"/16

(B-26) G (m/4) = 9m2(2)%/4 — 273 + 117%(2)%/16

(B-27) G"(n/4) = 187(2)* + 1672 + 3372 (2)%/2 —17173(2)"/16

Formula (13-20) follows easily from (62) and (A-23), (B-22) from (62) and (A-21),
(13-23) from (68) and (A-16), (13-24) from (69) and (A-17), and (B-25) from (62) and
(A-7). For (B-21) we use (68) and find that

ch2mq — 1)

© q3 Y q3(
G' () =—8n? f ——————q = —1673 f P
® sh” 2mq

dq,
~® ch®77q sh2mq 7

whence the result follows from (A-32) and (A-31). For (i3-26) we obtain, from (68),

» g’ ch7q/2 o q*(sh37mq/2 + shmq/2
G'(77/4) :_W3Lm__q____m_%_dq :__2773]:00q (S g/ shmq/ )

d
sh? 277q q

b

ch? 77q sh7rq
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and the result follows from (A-16). Finally for (B-27) we obtain, from (69),

Y chma/2
6/ )G (/) + 72 f© 9 <h7a/

® ch? 71q sh? 7q/2

G"(7/4)

* chmrq/2
(8/mi’ (m/a) + 2m® [0 — A2y
“© ch?mg(chmg —1)

l

Il

(8/m)G" (m1/4)

] 1 Y
2 s 7mg/2 chmg chimg) 1

" oo}
+ 277°.[_‘OO q* chmg/2
and the result follows from (A-17), (A-8), and (A-10).
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