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1. Introduction. In this paper we discuss properties of the spaces A(¢,p),
which were defined for the special case ¢ (x) = «x%~1, 0 < &« < 1,in our previous
paper [8]. A function f(x), measurable on the interval (0,1), [ < +® belongs to
the class A(¢,p) provided the norm |\, defined by

D 7 = {f 6 () £ ez}

is finite. Here ¢ (x) is a given nonnegative integrable function on (0,7), not identi-
cally 0, and [ *(x) is the decreasing rearrangement of |f(x)]|, that is, the decreas-
ing function on (0,!), equimeasurable with |.f(x)] . (For the properties of decreasing
rearrangements see |5, 12, 7, and 8] .) We write also A(u, p) instead of A(¢, p)
with ¢ (x) = ax®t, and A(¢) instead of A(¢,1). We shall also consider spaces
A(¢,p) for the infinite interval (0,+w<). In $2 we give some simple properties of
the spaces A, and show in particular that A(¢,p) has the triangle property if and
only if ¢(x) is decreasing. In $3 we discuss the conjugate spaces A*(¢,p), and
show that the spaces A (¢, p) are reflexive. In $4 we give a generalization of the
spaces N\ (¢,p), and characterize the conjugate spaces in case p = 1. In $5 we
give applications; we prove that the Hardy-Littlewood majorants &(x, f) of a func-
tion f € A(¢,p) or f € A*(¢,p) also belong to the same class. We give suf-
ficient conditions for an integral transformation to be a linear operation from one

of these spaces into itself, and apply them to solve the moment problem for the

spaces A(¢,p) and A*(, p).
2. Properties of spaces A(¢,p). We shall establish the following result.

TuroreM 1. The norm ||f| defined by (1.1) has the triangle property if and
only if ¢(x) is equivalent to a decreasing function; in this case f,g € A(P,p)

Received April 11, 1951.
A large part of this investigation was carried out while the author held a fellowship
at the Summer Institute of the Canadian Mathematical Congress in 1950.

Pacific J. Math. 1 (1951), 411-429.
411
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implies { + g € A(¢,p).

Proof. (a) Suppose that [[f| has the triangle property. Let & > 0, £ >0, a > 0,
and @ + 2k < [, Set

1+6 on (O,a“f‘h) 1 on (O,h)
flx) = 1 on (a+h,a+2h) g(x): 1+ 8 on (hya +2h)
0 on (a+2h 1), 0 on (a+2h1l);
then
. 2+ 28 on (0, a)
(f+g) x) =12 +8 on (ag,a +2h)
0 on {a+2r1).

We have [f]l = |g|; hence the inequality [f + gl < {fl + lg| is equivalent to

{(2 +28)P £% b(x) dx + (2 4 S)Pfa‘””’ H(x) dx }l/p
{(1 +8)pfa+h ¢( )d i fa+2h¢( )d }I/P

or to

at2h

(2 +8) £+ px)dx < (2 +28) [P p(x) dx + 27 [77 0 (x) dx,

and thus to

(1+8)P—(1+18)P
(1 +39)7

(2.1) fa+h ¢{x)dx > fa+2h x) dx .

If ®(x) is the integral of & over (0,x), we obtain from (2.1), making 5 — 0,
(g +h) 22 1%a) + a + 2h)];
that is, ®(x) is concave, and thus ¢ (x) is equivalent to a decreasing function.

(b) Suppose that ¢ is decreasing. Instead of (2.1) we can now write

@2 Il =spp { 4" @rlsir an },
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the supremum being taken over all possible rearrangements ¢, of ¢. It follows

from (2.2) that f,g € A(¢,p) implies f + ¢ € Ab,p) and |[f + g|l < |if] + |lg]l.

It is now easy to see that, for ¢(x) decreasing, A(¢,p) is a Banach space;
the completeness may be proved by usual methods (compare [8]). In general,
M, p) is not uniformly convex. Suppose, for instance, that there is a sequence
8, — 0 such that

(2.3) 8(25,)/8(5,) — 1.

This condition is satisfied, for example, if ¢(x) = x™" |log x| 7P, p > 1. We take
fnx) = hy on (0,28,),f,(x) =0 on (26,,10); we take g (x) = h, on(0,5,), g n(x)
=—hy on(8,,25,), and g, (x) = 0 on (28,,1); and we choose %, so that

I 1P = llgall” = hf 2(28,) = 1.
Then we have
h, on (0: Sn) )
0 elsewhere ,

%{fn (x) +gn(x)§ :l

and (1/2)(fp — gn)*(x) is the same function. Therefore

p
=hh ®(5,) — 1,

fn +én i

2

fn — 8n

and so A(¢, p) is not uniformly convex. In case of the spaces A(«,p), the problem

remains open.

The remarks made above apply also to the spaces A(¢,p) in case of the infinite
interval (0, +®). We assume in this case that f(qu(x) dx < +®© for any [ < +®;
the additional hypothesis on f € A(¢,p) is that the rearrangement f*(x) exists,
which is the case if and only if any set [lf(x)| > €], € >0, has finite measure.
The completeness of A(¢,p)in this case follows from the fact that the set of such
f is a closed linear subset of the Banach space of all f for which (2.2) is finite. If

(2.4) f;+w¢(x) dx = +©,

this subspace coincides with the whole space. Condition (2.4) is in particular
satisfied if ¢ (x) = gx%—1,
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3. Reflexivity of the spaces A(¢,p). We shall first give some definitions and
lemmas which will be usefulin the sequel.If g(x), g,(x) are two positive functions
defined on (0,1), 0 < < +®, we write g < gy, if for all finite 0 < x <[ we have

fox g(t)dt < jo'xgl(t) dt.

Integration by parts readily yields:

LemMA 1. If g < gy, and f is positive and decreasing on (0,1), then
l l
(3.1) [efdx < [ eifdx.

LEmMMA 2. If g < gy, and g, g, are positive and decreasing, then also Y (g)
< Y (g,) for any convex increasing positive function, in particular for y(u) = uP,
p 21

For the proof, let f(x) = {y(g,(x)) — Y(g&) 1/{g.(x) — g(x)} if gx) # g,(x),
and let f(x) be equal to one of the derivates of Y (u) at u = g(x) if g(x) = g,(x).
Then f{(x) is the slope of the chord of the curve v = ' (u) on the interval (u, 1),
u = glx), u; = g,(x). The slope decreases as both u, u, decrease. Therefore f(x)

is decreasing and positive. Applying LLemma 1, we obtain
l
[ f(x)le(x) — g1(x)]dx <0,

which proves our assertion.

THEOREM 2. Suppose that f(x), g(x) are positive and decreasing on (0,1), and
f € Me,p), p > 1. Then

l - l Yq 1 1
(3.2 f fedx < lfly jnt [ floprax |, Slel,

where infimum is taken for all decreasing positive D (x) for which ¢D > g. More-
over, this infimum is equal to the supremum of fol fg dx for all positive decreasing
fwith ||f|| <1, if there is a function D with $D > g and [ ¢D? dx < +®, and is
to +© if there is no such D.

This theorem is due to I. Halperin. For the proofs, see a paper of Halperin ap-

pearing in the Canadian Journal of Mathematics and, for a simpler proof, [10].
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Inequality (3.2) is a combination of (3.1) and the usual Hélder inequality. For
if g1 = ¢D >g, then

(3.3) [ feds < ['ferde = [lo¥rf¢VaDdx

< A orax }0.

Here and in the next section, the following theorem will be useful:

THEOREM 3. Suppose that X is a normed linear space of measurable functions
f(x) on (0,1), 0 <1 <+, with the properties: (i) X contains all constants; (ii) if
fi is measurable and |fi(x)| < |f)|, f € X, then {1 € X and ||fi || < |l
(iii) if f € X and fe denotes the characteristic function of the set e, then ||f fe ||
—0 ags meas e — 0,

Let Y consist of all measurable functions g for which fol fg dx exists for all
f € X. Then

(3.4) F(f) ‘/0‘ fegdx, g €V,

is the general form of a linear functional on X, and its norm is equal to

lel = sup [’ rgdx <+o.
1<

Proof. (a)Let g € Y; then fl flg' dx exists for all f € X, and Hg” =
sup fl flg| dx, where f runs through all positive f € X with ||f| < 1. If |g

= 40, there is a sequence f, > 0, |[fn]| < 1 such that [f,|g| dx >n3 Then
f=Zn"%f, € X, and therefore fol flg| dx must exist. However [f|g| dx >
n~% [f.lg| dx > n, which is a contradiction. Hence [g| < +® for g € Y. We
see now that for g € Y, [ fg dx is a linear functional with norm |g]|.

(b) Suppose that F(f) is a given linear functional on X. By (i) and (ii), any
characteristic function f.(x) belongs to X. Define G (e) = F(f,); since |G(e) <
IF) Ifel — 0 as meas e — 0, there is an integrable g (x) with G (e) = je gdx.
This means that (3.4) holds for f = f., and therefore also for all step-functions f
(which are linear combinations of the fg). For a bounded f, there is a sequence
falxx) — f(x) uniformly. As ||f, — f]| — 0, this establishes (3.4) for all bounded
f. Now suppose f € X is such that fg = |f] |g]|. Let fz(x) = f(x) if |f(x)| <n,
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fu(x) = 0 otherwise; then :f—'fni‘ — 0 by (iii), and hence j;)lfngtlx = F(f)) has
a finite limit. This shows that [|f] |gldx < + o therefore g € V. Repeating

the last part of this argument for an arbitrary f € .1, we obtain (3.4).

Rrmarks. (A) Let X have the additional property: (iv) f,(x) — f(x) almost
everywhere, f, € X, and |fn] <M imply f € X. Then the existence of | fg dx
for all g € Y implies f € X.

For taking the subsequence f,(x) — f(x) of (b), we see that £,(g) = S fng dx
is a sequence of linear functionals convergent toward [fg dx for any ¢ € V.
Then the norms |F,| = |if,| are uniformly bounded, and using (iv) we obtain

[ E X

(I3) Since Y is the conjugate space to X, Y is a Banach space, and ¥ clearly
satisfies (ii). Suppose now that X satisfies (i)—(iv) and that ¥ satisfies (i) and
(iii). Then Remark A and Theorem 3 together imply that X is the conjugate space
of ¥, in other words that any linear functional £ (g) in Y is of the form F'(g) =
[feds f € Xand [£] = [fl.

(C) The above results hold for the interval (0, +®) if the conditions (i)—

(iii) [and eventually (iv)] are true for functions vanishing outside of a finite
interval, and also (v) for any f € X, |If — fl | — 0 as [ — ©, where fl is de-
fined by f(x) = f(x) on (0,0) and f1(x) = 0 on (I, +®).

Applying these general results to the space A(¢,p) in case of a finite interval,

we see that (i) and (ii) are satisfied. Condition (iii) follows from

e flo < £mease¢f,*p dx — 0, meas e — 0,

[heo(x) is the function f(x) fo(x)], and (iv) from (2.2) and Fatou’s theorem. We
obtain the result that the space A*(¢,p) conjugate to M ,p) consists of all

measurable functions g such that there is a decreasing positive D with ¢D > g*

and fol ¢D?dx < +©; further,

(3.5) el = int { [ opax |77,
dD>g*

For it follows from Theorem 2 that

jo‘[fgdx

< [t dx < Ul lelye
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and that ”8”3* is the supremum of the integral [ fg dx for all ||f < 1.

Now if g(x) = C > 0 is a constant, we take an [; > 0 with ¢(/,) >0 and C, =
ClLypU)I™ . Then [HC () dx > Cls and if D(x) = €y on (0,0,), D(x) =0
on (I1,0), then ¢ > g. Therefore \* satisfies (i). Also (iii) holds, for if ho(x) =
g ) felx), g € A%, g* < @D, then hf < ¢, where D(x) = D (x) on (0, meas e),

¢ (x) =0 on (meas e,!), and
. l §
”heHCII\* < _I(; G1d dx = folmeaSSCﬁl)q ax — 0, meas e — 0.

We have proved the theorem:

THEOREM 4. The space M¢,p), p > 1, is reflexive. Its conjugate is defined
by (3.5).

We now consider the case of an infinite interval and assume _f'omgi) dx = +©,
Then f € Alg,p) implies f*(x)— 0 for x — ®. If a > 0 is fixed and [ suf-
ficiently large, then the function ‘fl(x)| of (v) will take values > f*(a) only on a
set of arbitrarily small measure. In view of (iii), condition (v) will follow for
M, p), if we can show that the norm of the function f*(a + x), 0 < x < +®, tends
to 0 as a — ®, or even if this is true for some sequence a — @. This norm does

not exceed

w(x + 1/p
(L7 (a + o) dx |’ = [f()%(x)f*(x)f‘[%i)—)]p dx! — 0,

as the integrand has the majorant ¢ f*P, and f*(x + a)/f*(x) — 0 fora — ©,

To prove (v) for A*(Cb,p), we need a result going beyond Lemma 1, namely that
if g and ) are decreasing and positive, and ¢)) > g, then there is another such
function D for which ¢D > ¢, > g, and that except for certain open intervals
[ where D is constant, L"qﬁ[)odt = foxg dt. (This fact is proved in the paper of
Halperin, mentioned at the beginning of this section and in [10]).As before, we
have to prove that if g € A*(¢,p) is positive and decreasing, then the norm of
the function A(x) = glx + a), x > 0, tendsto0 asa ~—— ® for certain values of
a. There is a D with D > g and J2 b9 dx <+ ©;and, by Lemma 2, Jo° ¢D§ dx
<+ o, As [P pdx = + ®, we deduce that Do(x) — 0 for x —> . Therefore

jo‘x ¢Dy dx = o|®(x)] .
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On intervals |, f(fcbl)o dt is of the form C® (x) + C;, where ¢ (x) = foxqi dt. If an
I extends to + @, we have C = 0, that is f:q‘)})o dt = C for all large x. and Dy (x)
is necessarily C for all such x. In this case also g(x) = 0 for all large x, and our
assertion is trivial. If, on the other hand, there are arbitrarily large values a which

do not belong to any /, then we have for these a,

foaqbljodt = jo“gdt.

It tollows that j;)quDo dt > _féxg dt, x > a, or ¢{x + a)Dy(x + a) >g(x + a), and
this implies ¢ (x) Do (x + a) > g(x + a). Therefore,

Do(x + a)

q
il < 7 () Do (x + a)? ax = f()%(x)no(x)‘l[ e ] dx — 0

for @ — @, We obtain in this way:

THEOREM 5. The space MN¢,p), p > 1, [ = © is reflexive; its conjugate is
given by (3.5).

4. A generalization. There is an obvious generalization of the spaces A(¢, p).
Consider a class C of functions ¢(x) > O integrable over (0,/), and let X(C, p)

consist of all those functions f(x) for which
oo p
(4.1 £l = sup {L @ 151Pax )< +e.
¢eC

A special type of these spaces is obtained if C is chosen to consist of all inte-

grable positive functions ¢ (x) whose integrals ¢, (e) satisfy the condition
(4.2) ¢1le) < dle),

where ¢ (e) is a given positive finite set function of measurable sets e C (0,1).

We may then assume that

(4.3) ®(e) = sup P1(e) .

¢
(A full characterization of set functions $(e) which may be represented in form
(4.3) by means of a class of positive additive ¢»; will be given by the author else-
where [9].) In particular, let ¢,(x) be a fixed decreasing positive function, and
let ®(e) = fom‘"as €0 dx ; then condition (4.2) is equivalent to the condition
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¢ (x) < b0 (x) .

Therefore, in this case the norm (4.1) is equal to (1.1), and so X (®,p) = Alpg,p)-

For the space X(%,p), the condition |f|| = 0 is equivalent to f(x) = 0 almost
everywhere if and only if ®(e) > 0 for any set e of positive measure. Suppose now
that ¢(e), defined by (4.3), vanishes on certain sets e with meas e > 0. There is
then [2, p.80, Theorem 15] a least measurable set e, which contains any such
set e up to a null set; and e, is a union of a properly chosen denumerable set of
these sets e. Hence ¢;(ey) = 0, and P (e,) = 0. It is easy to see that in this case
[fl = 0 is equivalent to f(x) = 0 almost everywhere on (0,1) — ey, and that the
values of f(x) on e, have no significance whatsoever for ||f|. Omitting e, from
(0,1), we do not change the space X(¢,p), and we obtain a ®(e) satisfying the
above condition. In the sequel, ¢ is assumed to have this property.

The spaces X(&,p) are normed linear spaces. Their completeness may be
proved by usual methods, if for instance F(e) has the property that meas e — 0
implies $(e) — 0 and if ] <+,

The spaces X (C,p) satisfy the conditions (i), (ii), and (iv) of 3 [(iv) follows
easily by Fatou’s theorem]. Condition (iii) is not fulfilled in general. We can
however enforce (iii) by defining the spaces A(C, p) and A(®,p) to consist of all
those functions f € X(C,p) or f € X(&,p), respectively, for which |ffef — 0
with meas e — 0 in X. Then the conjugate space A*(C,p) and all linear function-
als in A(C, p) are given by Theorem 3. We conclude this section by describing the
spaces A*(®, 1) more precisely:

TuEOREM 6. If f € A, 1), then

(4.4) ! dx| < S
|4 reas| <l e s

L leldx,

and the left integral exists provided the right side is finite; moreover, the supre-
mum M(g) in the right side is equal to the supremum of folfg dx for all {f € A(®,1)
with ||f]| < 1.

Proof. Consider the function ¢, (x) = M (g)™ | g(x)| ; then

LU 151 leldx =nile) [ ol 5] dx <me) Il

since
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Ldo(x)dx =)™ [e(x)dx < 2(e),  ec(0,1).
This proves (4.4). On the other hand, if e is an arbitrary subset of (0,/) with

®(e) > 0, then the function f(x) = ®(e)™ f (x) sign g(x) has norm 1 in A(¢p, 1),

and

[ redn=2(e)" [ lelax .

Therefore the integral folfg dx takes values arbitrarily close to M (g).
From Theorems 3 and 6 we deduce that the space M(®,1) = A*(®,1) consists
of all g (x) for which

(4.5) lel = sup {2(e) [ lg(x) | dx} <+,

In particular, the space M{(¢ ), conjugate to A(¢), is given by
(4.6) lelhy) = sup {¢1(e)“ r dx} .

It is easy to see that the expression (4.6) is the limit, for p — 1, of the norm of
g in the space A*(¢,p), p>1.

5. Applications. We shall make three applications.

5.1. Hardy-Littlewood majorants. We take in this section/ = 1. We write

(5.1) 0 (x, f) = sup .

0<yS1y — %

L7 1f(e) | dt,

and denote by 6, (x,f) and O,(x,f) the supremum of the same expression for

0 <y <x orx <y < 1, respectively. Then
(5.2) 6(x, 1) < max {6:(x, f), O2(x, F)3.

On the other hand, it is well known [5, p.291] that

=2 fEr (0 dt,

x

(5.3) 61 (x, f) <6(x1*)

and this is also true with 6, in place of 6,. From (5.2) we derive, for any p > 1,
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98(x, f) < 64(x, 1) + O5(x, 1) .

It follows that

6" (x, )P < (6f + 68)" < (6F)" + (60 =6;F + 657 < 26(x, +)F ;

that is,
(5.4) 6" (x, 1) < 20(x5*)" .
We shall make repeated use of the inequality of Hardy [12, p.72]:
b
(5.5) S o PR () s(p—_’:—_-f) Sleor @) ax,

where p > 1, s < p — 1, 0 < [ < +©, and F'(x) is the integral of the positive
function f(x).

In our present situation it follows from (5.3) and (5.5), if p > 1, that

p
LrO(nFe) de < (,,_iz) INNOLETS

and, by Lemma 1,

p
(5.6) ‘/{;lq/(ﬁ@*(x, ]‘)p dx < 2(;) i 1) ‘]O‘lqﬁ(x)f*(x)p dx .

This is case (i) of the following theorem:

TuroreMm 7. ()If f € Me,p) and p > 1, then also B(x,f) € Alp,p);
(i1) if f*(x) log (1/x) € A(), then Olx, f) € Ald); (iib) if [ € AlP), and ¢P(x)

is decreusing with respect to x? for some & > 0, then O(x, {) € N).

To prove (ii) we observe that (5.4) with p = 1 and [.emma 1 imply

N i
lag = o @0 ) ax < 2f o(x) —dxf7*(e) at

2f () de [ g(:—)dx <2f e (e)r=(¢) log %dt < o,

Finally, if the hypothesis of (iii) holds, that is if ¢ (x) = x—SD(x) with a decreas-

ing positive [, then the preceeding inequality gives
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l6l <2 f7 £ (e)D(e) £l dx <287 f1 b (2) f*(¢) dt .

THEOREMS8. (i) If f*(x) log (1/x) € A*(¢,p), p > 1, then O(x, f) € A*(¢p,p);
(i) if f € A*(a,p), p > 1, then O(f) € A*(ci,p).

Proof. (i) Letp > 1 [the case p = 1, A*(d>,p) = M(¢) is simpler]. By (5.4),

and since O(x, f*) decreases, we have
le()lie < 296(£9) 19 =29 int [ P (x)D(x) dx .
dD>6(f*)
But by (5.3), we have
x " YT P x du x 1
S Olufr)du= fR7(e)de f7 =< fTF2(2) log = dt,
which means that O(x, f*) < f*(x) log (1/x) = & (x); hence

l6(HIe < 29 inf [ @DIdx =29|nlj9 <+,
dD>h 0
(if) Let f € A*(Ot,p); because of (5.4) we may assume that f = f*, that is,
that f is positive and decreasing. Suppose f < D and foquDq dx < +© with
¢ (x) = ax*1. Then by (5.3) we have
[0

O(x, f) :;1; fo"f(t)dt < fo"t“-‘D(t)dt

R

1
— -1 x L o-1 —
= O0x o j(; t*p(t)dt = ¢(x)Dy(x),
say. The function D, (x) is positive and decreasing, as

D/(x) = —M—Ot-ljo"t“-ln dt + xp(x)

<—ax" % 1D (x) jo"t“-l dt +x'D(x) =0.
Therefore, by Hardy’s inequality, we have

1 q
1 o~ - 1 _a-o0g-n |2 *,0-
(AN < o f' =D dx = a [ x‘“qllx Lot 1DGM} dx
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SCfolx(l_oc)(q-1)+(oc—1)qD(x)q dx :Cjo‘lxoc—qu dx

with some constant C. Thus &(f) € A*, which proves (ii).
It should be remarked that f* log (1/x) behaves very much like f* log* f*:

(a) If f* log (1/x) belongs to A*(¢,p), p > 1, then [ log* |f| belongs to
A¥(¢,p). For if p > 1 [the case p = 1 is similar but simpler], there is a D (x)
with f* log (1/x) < ¢D and j()l(ﬁl) dx < + @, Then also f*(8) log (1/x) < ¢D on

(0, 0); in particular,

1
S)f log — dx<f PDdx <1

if 3 is small. Therefore f*(8) < 5! for all small 8, which shows that

flog" [f| € A™(¢,p).

(b} Now suppose ¢(x) is such that, for some & > 0, we have f dlx)x™ Sdx <
+o, If flog"|f| belongs to A" (¢,p)y p > 1, then * log (1/x) also does. In fact,
by Young’s inequality [S, p.111; or 11, p.64]), for the pair of inverse functions
Slu) = ]og+ u, Y(v) = e¥, we obtain ab < a log+a + eb(a, b > 0) and therefore

1

1
f* log =< 87 f* logh (87'f*) + 2% < 87'f* log* S logt fr 4
X

< Af* log* f*+B + 17

for some constants 4, 5.

It follows from these remarks, that Theorem 7 (ii) may be regarded as a gener-
alization of the theorem of Hardy-Littlewood [12, p.245] that flog*|f| € L
implies O(f) € L.

Theorems 7 and 8 have many applications which may be derived in the same
way as the corresponding results for the spaces LP (see [12, p.246]). As an
example, we give the following result. Let £ > 0, and let O’nk)(x, f) denote the
Cesaro sum of order % of the Fourier series of a function f(x). If O(x, f) is taken
for the interval (0,4 77), we have: if f(x) satisfies one of the hypotheses of Theo-
rems 7 or 8, then |oy ) (o, | <Crlxf)yn=0,1,++-. We may give another
formulation of this result. In the spaces A(¢,p) and A*(¢,p) we introduce a
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partial ordering, writing f; < f, if f;(x) < f,(x) almost everywhere. With this order-
ing, A and A* become Banach lattices for which the order convergence f, — f is
identical with the convergence f,(x) — f(x) almost everywhere and the existence
of a function A (x) of the lattice such that |f,(x)| < A(x)almost everywhere. This
is an immediate consequence of the fact that the lattices A, A* satisfy the condi-

tion (ii) of Theorem 3 (see [6, pp.154-156]). Then the above result implies that

o*,(lk)~—)f in order in the corresponding space. Theorems of this section may also

be used to obtain analogues of theorems of Hardy [3] and Bellman [1] for spaces
A and A*; see Petersen [11].

5.2. Integral transformations. Let K (x, t) be measurable on the square 0 <x <1,
0 <t<1, and let

(5.7) F(x) = fO‘K(x, t) £(t) dt.

THEOREM 9. Suppose that there is a constant M such that

. 1

(i) _/0‘ |K(x, t)|dt < M almost everywhere ;

(ii) for any rearrangement ¢,(x) of ¢ (x), the function h,(t) = fol &r (%) K (x, t)dx
belongs to M(¢) and has a norm not exceeding M. Then (5.7) is a linear operator of
norm < M mapping A(p,p) into itself. Condition (ii) may also be replaced by

(iii) ./0'1 |K(x,t)| dx <M almost everywhere.

Proof. Condition (ii) is equivalent to
(5.8) RE(t) <MP(t).

Assuming f € A(p,p), p > 1, we have

L) FEIP dx < f1érde{ L] 1£(2)] dt)’
< [l dx [ FIPde] 1K) ae )
<uP/a fHf()P de [T (x) [K(x, t)] dx

<SHE/E IR () £*(2)P dt;
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by (5.8) and Lemma 1, this is
<UUPE [ (e)fr(e)P de =uF|fIP

which proves the first part of the theorem. Suppose now that (i) and (iii) hold. Let
8 > 0, e an arbitrary set of measure 6, and e; a set of measure & such that ¢,(x)

> &(8) on e; and @, (x) < ¢ (8) on the complement C e, of e;. Then we have

[ ae < [ar f oGl Kl dx+ [,

</l/f]g25r ) dx + ¢ (8 fdtj(;l (x,t)] dx

<SMP(8) +M8p(8) <2MP(3) .
This shows that the norm of 4, (¢) in M (¢b) does not exceed 2}/, and proves (ii).

REMARK. If the conditions of Theorem 9 are satisfied, then
(5.9) G(t) = jo‘lK(x, t)g(x) dx

is a linear operator of norm < 2} mapping A*(¢, p) into itself.
We have in fact, for g € A*(Qbyp) and f € Ao, p),

L16()f(e) dt = [e(x) dx [ K(z 6)f(t) dt = [ g(x)F(x) dx

< el IF1y <@ 0flL lellax,

(the integrals evidently exist), and this shows that G € A* and that |G || < M|g].

Theorem 9 is akin to the “convexity theorem” of M. Riesz [12, p.198]. We
mention for completeness that there is a generalization of this theorem, in which
the different spaces LP involved are replaced by the spaces A, p) with the same
¢. The proof, which follows closely the proof of M. Riesz’s theorem in [12], is
omitted.

5.3. Moment problems. We give an application of Theorem 9 to moment problems
of the form

(5.10) pn = f' 2" f(x) dx, n=0,1,2.
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We shall write

) v+1 14 x .
6, = ¢ Sy L o(x) = ,
i (n + 1) (n + 1) () = f7 ¢t

Hny = (%)A""”uu = [ f ()pnu() dx,

n -
an:(;)xy(l—x)nyl v=0,1,°*,n,

and u, for the decreasing rearrangement of the |, |, v=0,1,+««, n. More-

over, we set

+ : 1 <. < v+1
(5.11) fax) =(n + Dpum or ——Sx<——,
and obtain
(5.12) (%) = [ Kn(x, ) £(t) dt
v v+1
Kn(x,t):(n""l)PnV(t)y n+1§.x<n+11

For the special case ¢(x) = ax®*~! and p = 1, the following theorem (with an-
other proof) has been given in [8].

THEOREM 10. The sequence of real numbers (i, is a moment sequence of a
function of the space A(¢,p) or of A*(¢,p) [ for the case M, 1), we assume ¢ (x)
— ®for x—> 0] if and only if the norms of the functions (5.11) are uniformly

bounded in this space.
For the space A(¢,p), the condition is

n

(5.13) Y Snupnh <M(n +1)7P

and for A*(QS,P), p>1,

n

(5.14) ,U';:u < (I)nVDnV ’ Z nanu _Mq:
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with some positive decreasing D, v= 0,1, <+ +, n.

Proof. If f € M¢,p), then condition (5.13) is satisfied by Theorem 9, because
the kernel (5.12) satisfies (i) and (iii) with ¥ = 1.
Conversely, let ”f"“_/\ < M. Since

L) dx < 3 (8) L0 ¢ () fala)] dx <HS(8)™ meas e = 8,

it follows in case p = 1 that the integrals J, |f,| dx are uniformly absolutely
continuous and uniformly bounded. In case p > 1, this follows by Halder’s ine-
quality. We deduce that for a certain subsequence fy, (x), the integrals Je fa (%) dx
converge for any e = (0, x) with x rational; hence they converge for any measurable
sete C (0,1). We then have

(5.15) lim ff,,k x)dx = fef(x) dx,

k->®

with some f € L. Then also

(5.16) L fu dx — [ f dx

for any bounded Y. For any such Y we have, by (3.2),

£ 79 dx| < vim [ £ g dx| <MIlye

hence this must be true for any  in A*. Thus by §3, it follows that f € A(¢, p).
We remark also that it follows easily from (5.16) that we have

(5.17) L frdx — L1 dx,

if the sequence i, (x) is uniformly convergent towards a bounded function s (x).

Now let P be the vector space of all polynomials
Y(x)=a¢g +arx + o+ + gpx"

with usual addition and scalar multiplication. On P we define an additive and

homogeneous functional F by
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F(J) = agmo = aypy + 200+ apiiy .

Let

BY (x) = z (% )pun

n
be the Bernstein polynomial of order n of s (x); then it is known [10] that
B;f’(x) — a(gn) + al(n)x 4 oo 4 a,EIn)xm ,

and that ai(”) —a; for n — ©, Hence (Bf) — F (). In particular, let Y (x) =

x™. We have

(5.18) F(BY) = i (f) F(pny) = i (V)muny

where , (x) is equal to (v/n)™ in the interval (v/(n+1), (v + 1)/(n + D]. As (%)
—y (x) uniformly, we deduce from (5.18) and (5.17) that

folf(x)xm dx = lim F(B,) = #(y) = in, n=0,1,%".

Since f € A(¢,p), this proves that the condition is sufficient in case of the
space A. The proof for the space A*(¢,p), which is similar, is omitted.
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