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1. Introduction. We are concerned in this paper with integrals of the form
1.1) 1(z,0) = J f[%2(x), 20 (0] dx,

where

(i=1,-- -, Ny a=1,+0, ),

f (x,z,p) is continuous in its arguments, and D is a bounded domain.

The object of the ;Saper is to discuss necessary and sufficient conditions on
the function f for the integral / to be lower semicontinuous with respect to vari-
ous types of convergence of the vector functions z. Because of the success of
the ‘“direct methods’’ in the Calculus of Variations, many writers have shown
that certain integrals are lower semicontinuous. However, the writer knows of
no paper in which a necessary condition for lower semicontinuity was discussed,
although such a condition is very easy to obtain (see Theorem 2.1).

In §2, a general condition called ‘“‘quasi-convexity’’ (see Definition 2.2) on
the behavior of f as a function of p is obtained which is both necessary and
sufficient for the lower semicontinuity of / with respect to the type of conver-
gence given in Definition 2.1. This condition is that any linear function furnish
the absolute minimum to /(z,D) among all Lipschitzian (see below) functions
which coincide with it on D*, D being any bounded domain and D* its boundary;
here, of course, we consider f to be a function of p only. Section 3 discusses
cases involving more general types of convergence and gives an existence
theorem. In $4, it is shown that if f(p) is continuous and quasi-convex, then
it satisfies a certain generalized Weierstrass condition which reduces to the
ordinary one (for the case at hand) when f is of class C’; this is, in turn, seen
to be equivalent to the Legendre-Hadamard condition (see (4.8)) (quasi-regu-
larity in its general form) when f is of class C . In §5, a general sufficient
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condition for quasi-convexity is proved and the necessary condition of $§4 is
seen to be sufficient when f is either a quadratic form in the p, or is the inte-
grand of a parametric problem with N = v + 1. The view of Terpstra’s negative
result [S] that even the strong Legendre-Hadamard condition (> Q) does not
necessarily imply the existence of an alternating form C‘l?'jB pi pg (Cg"L: - C{'}B,
and so on) such that

(1.2) f(p) + C;.’].ﬁ pL p]ﬁ = (ali‘;ﬁ+ C?f)p; p%

is positive definite when v > 2, it would seem that there is still a wide gap in
the general case between the necessary and sufficient conditions for quasi-
convexity which the writer has obtained. In fact, after a great deal of experimen-
tation, the writer is inclined to think that there is no condition of the type dis-
cussed, which involves f and only a finite number of its derivatives, and which
is both necessary and sufficient for quasi-convexity in the general case.

In (1.2), we have used the usual tensor summation convention, and will con-
tinue to use it throughout the paper; unless otherwise specified, the Greek letters
will run from 1 to v and the Latin letters from 1 to N.

We shall denote the sum and difference of vectors of the various sorts (x,z,

p, and so on) in the usual way. We shall define
|| = (x*2%)V?, |z]| = (zi zi>1/2, Ip| = (P; pi)x/z .

If {(x) is a vector function with derivatives, 7 (x) will denote the vector function

m, (%) = { o (%); similar notations involving other letters will be introduced as

the occasion demands.
All integrals are Lebesgue integrals, frequently of vector functions. It is

sometimes desirable to consider the behavior of a function z (x) with respect

to a particular variable x® or to the v — 1 variables (x!, ..., x®71 xo*1,

««+, x¥). In such a case, we write x* for (x!, ..., 2271, x2*1
a

x
""xv)’

(7, x*)for x and so on. It is also convenient to write the boundary integrals

Lo Ao (0) dug,

where each 4, (x) may be a vector A: (x) and the boundary D* of the domain is
sufficiently regular; such an integral is to be regarded as a Lebesgue-Stieltjes
integral with respect to the set function %/ (€) on D* chosen so that Green’s
theorem

S, = [

D D
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holds. The closure of a set E will be denoted by L.
Ordinary functions of class L5, %, 8% and so on, s > 1, have been dis-

cussed at length in the papers [1] and [2]; the extension to vector functions is

trivial. We define the integrals ljs (z,G) and D (z,G) by

By (,6) = J |2 do + Ly (2,6), D5 (2,6) = [ [, (021, ()] 2.

Each function z of class § is equivalent to a function z defined uniquely almost

everywhere as that number such that the Lebesgue derivative of the set function
L 12(2) = 2(%)|° da

is zero at xy; z is supposed to be defined at every point x, where such a number
exists; z is of class i (see [1] and [2]) and is also of class P in any co-
ordinate system related to the original by a regular Lipschitzian transformation
(cf. [2], Theorem 6.3; the z there used has a slightly different definition from
the present one but the present theorem has been proved for vectors z with
values in a Riemannian manifold in [4], Lemma 2.3 and Theorem 2.5).

A function z is said to satisfy a (uniform) Lipschitz condition with coef-

ficient M on a set S if and only if
[z (%) = z(x,)] < Mix,~ x|, x, €S, x, €S.

A function is Lipschitzian if it satisfies a Lipschitz condition.
If g(y), y=(y' - -+, y"), is summable on a domain D, we define the A-

average function g; by
- h
g = @™ L70 g(n) dn, B> 05

if g is summable then g, is continuous where defined; if g is continuous on D
then g, is of class C”and g tends uniformly to g on each bounded closed set
interior to D; if g is of class B5 on D then g, tends strongly in ;s to g on each
domain G with G C U (see [1], Lemma 5.1).

A form

ags***, a i i .
Cil.. i/‘l’ Tral .--na'u' (#iVy].S_(XyﬁV, lil')’ 5N,‘y=1’o..,’1.),
| V) 1 “w = = = =

is called alternating if and only if the C’s satisfy the obvious symmetry require-

ments and also the antisymmetry condition that
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.o

s Ay
il'.'.’i#

C'Bl’“"ﬁ“ s

By eer iy

according as (B, »+-, By) is an even or odd permutation of the indices

(Gyp +++ 5 a,); if £ (%) is a vector function, then

Qpy *** 5y ay a(éllv DR élu)

.

Uis ®*¢ 4 A 7 i

WG T ey et (9= C .
1r°' © a/_}, ll . l

’ * Yl a(xal, -..’xau)

the fractions on the right denoting Jacobians.

2. A necessary and sufficient condition for lower-semicontinuity. We begin

with some definitions.

DEFINITION 2.1. For the purposes of this section, we say that the vector
functions z, tend to the vector function z on the domain D if and only if the z,
and z all satisfy a uniform Lipschitz condition on D, independent of n, and the
z, tend uniformly to z on D. We shall write z,— z to denote this type of con-

vergence.

DEFINITION 2.2. A function f( pi) is said to be quasi-convex if and only if

Sy flp + 7 (01 dx > f(p)-m (D), 7y (%) = {Lal2),

for each constant p, each domain D, and each vector function { which satisfies

a uniforn, Lipschitz condition on D and vanishes on D*.

We shall show in this section that the integral /(z,D) is lower semicontinu-
ous with respect to the type of convergence specified in Definition 2.1 on each

bounded domain D if and only if f(x,z,p) is quasi-convex in p for each fixed

(x,2).

THEOREM 2.1. Suppose I(z,D) is lower semicontinuous with respect to the
type of convergence indicated on every region D. Then f is quasi-convex in p

for each fixed (x, z).

Proof. Let x, be any point, R be the cell x, < x* < xb + h, Q be the cell
0< x' <1, and ¢ be any function of class €’ and periodic in each x’ with

period 1. Let zy be any function of class C” on R.

For each n, define { (x) on R by
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E(x)=n" R P [rhTY (x - xg)].
Then

La (@)= &y ek (%~ x0)]
and

I(zg + {5 R) = j}; f{x,z(i) (x) + g; (x), pf)?’ (%) + n; [nA™ (x — xo)]}dx

= T (w0 G B, ()l T (- 0]

— {rar 2 (rad Pl () + mh Do (5~ %0)1))dx
+ 3 TR [ {zas 2 (xadh ph, (xa) + nk ()] de,

where

U= (Oyyeeey 0y)y Ro= R jovn g n 1 (ag=1) < xP < ntag,

xa:<x§1:"’, av)’xtﬁll;"',ay = ! (0"/3"1)’ B=1e00, v

As n— ®, we see, since f is uniformly continuous on any bounded part of space,

¢, (x) tends uniformly to zero, and the 7! are bounded, that

lin 1(zo + & 8) = o [y 1122 (2 po (0) + 7 ()] dE] d.

n-— oo

From the lower semicontinuity of /, we must have

S A ez o po (0 4 m ()1 dé fde 2, flxz0 (2), po (2)] d.
Now, let x4, z5, and p, be any constant vectors. By letting
2o (%) = 2o + Poa (x* -~ xg‘),
dividing by A¥ and letting A — 0, we obtain

‘/Q flxgs20,p0 + m (£)] dfi f(%0520,P0) -
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By approximations,we can extend this to all { which satisfy a uniform Lipschitz
condition over the whole space and are periodic of period 1 in each x“.

Now, let D be a bounded domain and suppose ¢ satisfies a uniform Lipschitz
condition on D and vanishes on D*. Let R be a hypercube of edge %, with edges
parallel to the axes which contains D. Extend ¢ to the whole space by first de-
fining it to be zero on R-D and then extending it to be periodic of period & in
each variable. Then a simple change of function and variable reduces R to ¢/ and

establishes the result.

LEMMA 2.1. Suppose R is a cell with edges (2h'), -« ., (2hY) and center
xo. Let h be the smallest h®. Suppose also that 0 < k < h, that (* satisfies

a uniform Lipschitz condition with coefficient M > 1 on R*, and suppose
|{*(%)] <k, x € R,

Then there is a function ¢ on R which satisfies a Lipschitz condition with

coefficient M on R, coincides with ¢* on R*, and is zero except on a set of

measure al most

m(R) - [1 -Q-~TE)].

Proof. Let R; be the cell with center at %, and edges 2(A% - k), o = 1,

-, v. Then, since & = min A%, we have
m(Ry) > m(R) - (1 - h71E)¥.
Define ¢, = 0 on R, and equal to {* on R*. Then
[, (%) = &, (%)| £ |2y ~ 25 if x; € R, x,E R*.

Thus ¢, satisfies a uniform Lipschitz condition with coefficient ¥ on R, U R*
By a well known theorem, there exists an extension of 41 to R (the whole space

in fact) which satisfies the same Lipschitz condition.

LEMMA 2.2. Suppose the vectors {, — 0 (in our sense) on R and suppose

f is quasi-convex in p. Then if p, is a constant vector we have
m(R) f(pe) < lim inf 4 flpo + m, (x)] dx.
n - o0

Proof. For all sufficiently large n, we have &, < &, and %, — 0, k, being
the maximum of |, (x)] for x € R*. For each n for which k, < &, let 7, be the
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function of the preceding lemma which coincides on R* with {,» and let o,
= ¢, — 1, Then if each {, satisfies a uniform Lipschitz condition with coef-
ficient ¥ > 1 on R, then each 5, and w, satisfies one with coefficient ¥ and
2M, respectively. Moreover, each derivative 5! . is uniformly bounded and
M5, ,o—> 0 almost everywhere. Since f is uniformly continuous on any bounded

portion of p-space, we see that

lim .4; If(p(i)a + nixa'*' wixa> - f<P:;a+ wixa)l dx = 0.

n— oo

But the result then follows, since, for each n, we have
J (Pt oh) dx 2 m(R) f(po),
because of the quasi-convexity of the function f.

THEOREM 2.,2. Suppose f is continuous in (x,z,p) for all (x,z,p) and is
quasi-convex in p for each (x,z). Suppose also that z, — z, on the bounded

domain D. Then

1(z4,D) < lim inf I(z,,D).
- n —» oo
Proof. Let ¢ be any positive number. For each positive integer £, let Dy
consist of all the hypercubes of edge 27% whose faces lie along hyperplanes
x%= 27% i (each i* an integer) which lie in D. Since all the points [x,z, (x),
Po ()] and [, z, (%), pp (x)] for x€ D lie in a bounded portion of (x, z, p)

space, we may choose £, so large that

(2.1) j lf(x’znypn)l dx < €/5, ./

D’Dkl D'Dkl ‘f(x’zogpo)l dx < /5

for all n.

Let the hypercubes of Dg, be Ry, ..., Ry. For each &k > k;, let Ry,
i=1,++-,N. gvik —kl), be all the hypercubes of side 2% described above
which lie in Dkl' For each such &, define x} (%), 27 (x), p; () on Dk1 by

() = [m(Re)]™ fxdx, 2 (x) = Im(Re1™ 20 () d,
22)  pf () = [m(RNI L po (0) dx

(97

ne (1) = {15 (0) = 2124 25 (0 = 20 (D25 L py ()= po (W[} V2,
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where x € Ry; . Let £, (%) = z, (%) — 20 (%), m, (%) = pp (%) — po (x). Then, on
Dy,
1

{1220 (%), pn (0] = [ 1220 (x), po (0]
= { 1% 20 (), o (D] = [[% 2, (2), pu (2]}
@3)  +{f 1% 20 (%), po (2) + m, (2] = f [}, (%), 25 (%), py (%) + m, ()]}
~{f 12,20 (x), po (2] = flx; (x), 2 (2), pp ()]}

+ {5 (0, 2 (2, P (%) + m, (0] = [ (%), pj (), pf (D]}

Now, all the arguments of f occurring in (2.3) for x€Dk1 lie in a bounded

closed cell in (x,z,p)-space over which f is uniformly continuous. Let

E(P)=max lf(x',Z'aP')—f(x",Z",P")ls pio

for all (x% z% p’) and (x”, z”, p”) in this cell with

27— 2”2 27— 27|12+ [pT= p*I2 < o7

then € (p) is continuous for p > 0 with € (0) = 0. Then, for each n and each
k > k,, we have

1% 2 (), pr (0] = {220 (2 pu (D] < (|22 (%) = 20 (D)),
|f1x, 20 (%), po (%) + 7 (2)] = [z} (%), 2 (%), pp, (%) + m, (]| < eln ()],
|f 12,20 (), po (2)] = fLxp (%), z; (%), pp (%)]] < €ln, (9)].

Now, the r, (x) are uniformly bounded on Dy, and tend to zero almost every-

where on Di,. Hence we may choose a k > k| so large that

S5

Dk lf[x’zo(x)a Po(x) + Wn(x)] - f[x]’:(x)’ z]:(x), P]:(x) + ﬂn(x)]‘ dx < 6/5’

1
(2.4)

S 1 L5 20(3), po(=)] = [Lx(2), 2502 p(0)]] dx < €5,
1

for all n. Since z, converges uniformly to z,, there is an n; such that

2.5) S

Dk if[x,zn(x)a pn(x)] - f[x’zo(x)v pn(x)” dx < 6/5, n > ny.

1
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. . % . .
Finally, since x; (x), and so on, are constant on each Rg;, and f is quasi-convex,

we conclude from the previous lemma that

Lim inf ka [FI5 @), 22, () + 7y (D] ~ [ (2 (@), P ()] Jax 2 0.
n - 0o 1

Using (2.3)-(2.5) and the above inequality, we see that
lim inf I(zp,D) > I(z4, D) - €.

n— oo
Since € is any positive number, the result follows.

3. Lower semicontinuity and weak convergence in P (s > 1). In this
section, we discuss additional conditions which with the quasi-convexity of
fin p are sufficient to guarantee the lower semicontinuity of I (z,D) with respect

to weak convergence in P on D.

DEFINITION 3.1. Suppose ( is of class ng on the bounded domain D and
suppose R is a cell with R C D. Then ¢ is said to be strongly of class B on
R* if and only if £ is of class B, in x; on each face x* = const. of R* and there

is a sequence { of class C”on R such that
D (¢, - ¢ R)—0, Ds(¢, - ¢ RY) — 0.

LEMMA 3.1. Suppose { is of class B (s > 1) on the bounded domain D.
For each &, 1 < o < v, let (a%, b*) be the open interval projection of D on
the x®axis. Then there exist sets Z%of measure zero such that if R:c®< x* < d%

(ot =1,++,v) is any closed cell in D with
c* € (a% b%) — 2%, d* € (a% %) - 2¢ (=1y00+,v),
then ¢ is strongly of class $_on R*.

Proof. Let R’ be any rational cell in D (that is, R =[C, D] with C% D®
rational). In [1], Lemma 5.1, we have seen that if { is of class §Bs on D, then

(3.1) lim D5 (¢, - ¢, R) = 0.
h—o
For each o, define

Ry = L6 -0 [ T 14, - Tol?]o ant
B=1
B#a
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Since ¢ is obviously of class ﬁﬁs' in x; for almost all x* on [C%, D%, ¢7 (2% R")

is defined for almost all x* and
. Da ’ a
hll_I’I:) ‘/C“’“ | (2% R*)| dx* = 0.

By arranging the rational cells R in some order and choosing successive
subsequences, we may choose (on account of (3.1)) a final sequence h, — 0

such that ¢ (x% R’)— 0 and £ is of class § in x7 on [CJ, D] for each

® not in a set Z*R’) of measure zero (0 = 1,-+-,v). Now let

X
Z® = UZ*(R*);
then
m(Z%) = 0 (a0 =1,c00,v).

Now suppose R is one of the cells described in the lemma. Then it lies in some

rational cell R’-and we may take { = {; .

LEMMA 3.2, Suppose R is a cell with edges (2h'), - -+, (2h¥) and center

%y. Let

h= min k% K= h"l(h%R9)V2,

1<a<y

Suppose also that 0 < k < h, that {* is of class B on an open domain con-
taining R in its interior, and that (* is strongly of class B, on R* with
oo 1715 dS < B, Do(¢* RY < 0 (s > 1).

Then there is a function { of class P on R which coincides with (¥ on

R*, is zero except on a set of measure

m(R) - 1 -Q - A" BT,

and satisfies
23/2 (S
Ds ({,R) £ Ts ATHEQL + Ksus) Ts = 9s ~1

A

2),
(s —Z_ 2).

Proof. For each x € R, x # %9, let x*(x) be the intersection of the ray ;O_x)
with R*, and for each x € R define
0 (x = x0)7
r(x) =

|a*(x) — 2|71« |2~ %4 (x # x4).

Let Hmi be the pyramid in R with vertex x, and base the face F;“: where
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x® = x% + h*.
On the pyramid [I”, introduce coordinates &', « - -, £¥7%, r by
xV=axl+rhY, xY = x) +rEY (0 r<1, y=1,---,v-1).
Then, if r and £ 7 are considered as functions of x, we have
r(x) =1 2% (x) = [EN(x) + 5}, oo, EV7 (%) + YT, AV 4+ 2]

.. . +
Similar coordinate systems may be set up on each of the other II; .

Define

©<r<1-kk),

(=4 .
i RETU(r — 1 + kA7) Q- kAT < r < 1),

Choose a sequence ( satisfying the conditions of Definition 3.1; and for each

n, define

£ () = (0] - & [+ ()],

Then each £ (x) is of class D’ on R.
We now compute the derivatives of £, on each pyramid Ha taking I} as an

example. Then

ny =71 ¢(r)é:§7 (1__<:y é v —-1),

Coxw = BT (DGE = (B r g () £7¢7 o (y summed from 1 to v~ 1).

Then, since r™' ¢(r) < 1and ¢°(r) = k" hforl — hE™' <7 <1,

| m G2 £ (Goly Goby) + UGN+ 22 EN (8 00

n n

A

2[k'2 Icn*I’z + K2<¢:;y C:;y)] (n not summed).

Using the inequality

1 (s £2)

(a2 + 832 < o5 (|a|® + |B]%), o
= 2(3-2)/2 (s

v

2),
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we obtain

Dy (2 ) < T S e L e

;
r e )]
< T hTUR [k—s fF: |¢x | ds + KS Dy (£F, F;)].
Also

Sy 16l d= S

[ T jF; | &x|s dS

<k fF+ |£*|® dS.
14

Adding these results for all the Hi, we obtain the result for each =n; and also
Dy ({,» R) is uniformly bounded. Thus, we may extract a subsequence which
tends weakly in P5 to some function ¢ of class $s on R. Since each ¢, = {*
on R*, ¢y tends strongly in Lg to é—'* on R*, we see from [2], Theorem 8.5, that
(= E* on R*. From the lower semicontinuity of D (see [2], Theorem 8.2), the
result follows.

LEMMA 3.3. Suppose f is quasi-convex and of class C’ for all p, and suppose
for all p that

z(fi)ngzﬂpP“+1V (s21).

lya a

If po is any constant vector, D is any bounded domain, and ¢ is of class L on

D and vanishes on D*, then f [p, + n(x)] is summable over D and
‘/L; flpo + a(x)] dx > m(D) - f(po) -

Proof. There exists a sequence of functions { , each of class C” on D and
vanishing on and near D*, such that D; (£, = ¢, D)— 0 (see [2], Definition
9.1). For each n and almost all x on D, we have

lf[Po + ()] = flpy + 7(%)] | =

| Lmho(®) = wh ()] L' Do + (L= 0) (%) + tma ()] dt|

a
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S lm@ = a@] Ko L1 {10 = 0p + () +tp + ma(x)) -+1}de

(3.2)
K 7 () = 1] [ hslpo + 7 I 4 by Ipo 4 ma(@)*7 4 1],

A

where
st 1<s< 2
hg = - =
s"l 25‘2 (S ; 2).

Using the Hélder inequality, and so on, and the strong convergence in L5, we

see that

lim ‘11; flpo + mn(x)] dx = j; flpy + n(x)] dx.

n —oo
Since f is quasi-convex, the result follows.

LEMMA 3.4. Suppose that f satisfies the hypotheses of Lemma 3.3. Suppose
also that each {, is of class Bs on a domain D and is strongly of class s on

R*, R c D, with
nlgnoo ‘/R:* ‘gn‘s ds = 0’ DS (é"’ R*) é MS’ DS (C,,, R) ; Ms (n = 1’2' ce )'
Then for each py, f[po + mn (x)] is summable for all sufficiently large n, and

lim inf J f[po + mn (x)] dx 2 m(R) - f(po), (%) = ¢! a(x).

n —oo

Proof. For each n, let
ko = U Lu1g, 15 dSTVS,

and let K and & be the quantities of Lemma 3.2 for R. Since k;, — 0, we have
kn < h for all n > some n;. For each such n, let », be the function of Lemma
3.2 which coincides on R* with {,» and let

- - i _ 1 i _
Xn_cn Mo Kna—nnxa’ Wpo = X, 0"

nx

Then, since x, = 0 on R¥, we have

S flmy + 0, (0)] dx 2 m(R) f(po) -
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As in (3.2), we see that, for each n, and almost all x on D,

[flpo + @, (%) + &, (£)] = flpy + @, (x)]]
<K -k, (0] (hs|Po + @ () + ke (05714 ks [Py + @, (0)|S71+ 1)

K.

A

Kn(x)l . [(1 + Shs) hs lpo + 7, (x)ls—l + Shz lKn(x)‘s-l + 1] .
Using the Holder inequality, and so on, we see that

lim '/n: [ flpo + m (%)) = flpo + w,(x)]] dx = 0,

7 —r 00
from which the result follows.

THEOREM 3.1. Suppose [ is of class C’ in (x,z,p) and quasi-convex in p.
Suppose also that there are numbers k and K, K > 0, such that

@) f(x’z9p);k9 (iii) fxa ];a hs K* ([pl° + D?
@ fi fo 2 KPP+ DY (v) f, £, < K (Ip® +1)%.

for all (x,z,p).

Suppose also that z, — zq weakly in Bs on the bounded domain D and that
either

(a) each z, and zy are continuous on D and z, converges uniformly to zy on
each closed set interior to D, or

(b) the set functions Dg (zn, €) are uniformly absolutely continuous on each

closed set interior to D.

Then

1(z4,D) < lim inf 7 (2,,D).

n-—oo
REMARK. If s=1, weak convergence in $; implies the hypothesis (b).

Proof. We note first that hypothesis (ii) implies

3.3) [ (zp) = (2,0 = Iy [1 £ (w2,0p;) de
Shple [T Ui fo (oztpp)1V? de

a
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Slpbe [URET PP o) de < K(sTH IS + [p]).
Also, hypotheses (iii) and (iv) similarly imply

(3.4) If(x,z,O)—f(0,0,0)];K(lxl+Iz[).

Thus, for all (x,z,p), we have

@5)  |f(xzp] 210,000 + K([x] + [z] + s7* [p]® + [p]).

Therefore /(zy,D) and the I(z,,D) are uniformly bounded.

For each & (1 < & < p), let (a% %) be the open interval projection of D
on the %% axis and let Z"‘ and Z be the sets of Lemma 3.1 for z, and z,. Also
for each o, n, k, let E:,k be the set of x* in (a%, b%) — Z2, where

D (z, Do) < K,

Dxa. being the set of x such that (x%, x® € D. Suppose that l—)-s (z,,D) =< M,

some uniform bound existing because of the weak convergence. Let
Z8 = (a% b9) - EZ .
Then
m(Znk) < ME™Y, m(En k) > (b%= a%) - ME™!,

For each «, let

E* = k‘ij N U EZ4 28 = (a®, b9 - E* v Z§ v

1 N=1 n=N n

3

ze .

1

Then m(Zg) = 0. For each ¢, each natural number n, and each integer i, define
Z,C:’i as the set of all x* such that x* —~ i . 27" € Zg' , and define

Then m(Z%) =

Now, choose a point x, such that xg‘ is not in Z% (X =1,+++, v). For
each natural number £, let (}, be the totality of hypercubes of side 27% bounded
by hyperplanes of the form x* = x2 + i . 27, None of the numbers X+ 27k
is in Z% and, moreover, z, and each z, is strongly of class §Bs on R* with
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Ds (zp, R) uniformly bounded for infinitely many values of n, R being any hy-
percube of any C’k' Since the totality of these hypercubes is countable, we may
choose a subsequence, still called z,, such that /(z,,D) tends to the former
lim inf, Z,— Z, almost everywhere on D, and Dg (z,,R*) is uniformly bounded

for R of any Qk in D. Since z, — z in B, we also have

lim ‘I};*lzn—zolsds=0

n —oo
for each such R.

Now, we first consider the alternative (a). Let € be any positive number.
For each %, let Dy be the union of all the cells of Qk which are interior to D.

Since f is bounded below and /(z,, D) is finite, we first choose k; so large that

1(zn,l)-l)kl)>—— €/5 (n=1,2,+++).

(3.6)
I(ZO,Dkx ) > [ (z9,D) — €/5.

For this ky, let Ry, - -, R4 be the cells of Dk1 and for each k& > ky, let

Rii (i =1y, 9 - 2V(k'kl))

be the cells of Q’k in Dkx For each %, define x;(x), z;:(x), and p]:(x) on Dkl by
(2.9). Then, from (ii), (iii), and (iv), it follows that

[fLx,20 (%), po(®)] = [l%(x), zj(x), pp(2)]]
(3.7) < K(lpe®)|* + 1)+ (|2 = x(2)| + |20(%) = z,(2)])

+ K(hs |po(0) |57 + ks [pr(x)[*71 + 1)+ [po(x) = pp(2)],
where
s 1<s<2),
sTH. 2872 (s > 2);
the method of proof is similar to that of (3.3). If we let
{y =2n ~ %05 M, = Pn = Po>

we see similarly that
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[ {2 20(x), po (%) + my ()] = fl23(%), Z5(x), PR(%) + 7, (x)]]
(3.8) < K(pa(®|® +1) (Ix=2(®)] + [20(%) = 7 (%)])
+ K(hs |pa(®) 57" + ks [pp(®) + m () [S70 + 1) + | po (%) = pp(x)];
(3.9 |f[%,20(x), pa()] = fl%20(x), pa(x)]]

< K(Ipa (0] + 1) + [za(x) = 20(2)] -
Now, by the Holder inequality on each Rj;s we see that

(3.10) VARLAOINCS 5, [Po(0]* da.

1

By applying the Minkowski inequality, we see that the integrals
*
(3.11) kal |7 (0)]° da, kal I (%) + 7 (%)]° dx

are uniformly bounded. Finally,

—o0 D

(3.12) klim jk |po(%) = pp(%)|® dx = 0.
1
Hence, using (3.7)-(3.12), we may choose a £ so large that

(3.13) 4k |f (% 20(%), Po(%)] = fLx}(x), z;(x), pp(x)]] dx < €/5,
1

(3.14) ‘4k | f[x,20(%), pr(x)] - f[x;:(x), z;(x) p}:(x) + 7, (%)]| dx < €/5
* 1
(”=192"")7

and then choose n, so large that

3.15) S [f[%2z(2), pa(®)] = flx,20(x), pn(2)]] dx < €/5, n>ny.

Dkl
Since x;:(x), z;;(x), pZ(x) are constant on each Ryj;, it follows from Lemma 3.4

that

(3.16) liminf [ 7050, 2 (0, pp(x) + 7 (1)) dx
n — oo 1
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> [ l(a) z(0), p()] dx.
= ke |

Using (3.6) and (3.13)-(3.16), we see that

lim inf 1 (23,D) > L(zy,D) - €.

n-—soo
The result follows in this case.

We now consider the alternative (b). For each natural number ¢, we define

fq (x,ZyP) = [1 - aq(x,z-)] f(x,Z’P) + k- aq(x,z)y
0 (0L RZ<gq),
ag(x,2) = {1 3(R-q) ~2(R-¢)* (¢ <R <q+1),

1 (R>qg+1), R=(x|?+]z]")V2.

Remembering (3.3)-(3.5), we see that each f; satisfies hypotheses (i)-(iv) with
the same k£ and some K;. Moreover f; is independent of (x,z) for R > ¢ + 1,

and also
fq(x,Z,P) i_ fq+ 1 (%,2,p), qli_.moo fq(x,Z,P) = f(x,2,p).

Thus it is sufficient to prove the lower semicontinuity for each gq.
For a fixed ¢, we note that we may replace |z,(x) - z;:(x)I by ¢, (x)in
(3.7) and (3.8) and |z, (x) — zo(x)| by ¢, (x) in (3.9), where

&by (%) = min (| z(%) - z;(x)l » 29 + 2),
U, (%) = min (] z5(x) - zo(x)|, 29 + 2) .

From the uniform boundedness of the ¢ and ¢, (¢ fixed), the uniform absolute

continuity of the set function Dg(z,,e), and the facts that

klim (%) =0, lim ¢ (x)=0

n —oo

almost everywhere, it follows that the argument can be carried through as before

for each fixed q.

THEOREM 3.2. Suppose s > v and suppose [ satisfies the hypotheses of
Theorem 3.1 with (i) replaced by
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(i) f(x,z,p);m[p|s+k (m > 0).

If z* is any function of class ng on the bounded domain D, then there is a
function z, of class $_ which coincides with z* on D* and minimizes 1(z,D)

among all such functions.

Proof. Let z, be a minimizing sequence. It follows from (i?) that Dg (z,,D)
is uniformly bounded. From [2], Theorem 9.4, it follows that Dg (z,,D) is uni-
formly bounded. But then a subsequence, still called { z;}, converges weakly in
EBS to some function z, of class §Bs which coincides with z* on D* by [2], Theo-
rem 9.2. But, from [3], Chapter II, Theorem 2.1, it follows that the equivalent
functions %, and z, are equicontinuous on closed sets interior to D. Hence z,
converges uniformly to z, on each closed set interior to D. Hence, from the pre-
ceding theorem, z, is a desired solution.

More general theorems involving variable boundary values, similar to those
in [3], Chapter III, $5, with s > v, can be proved.

4. Necessary conditions for quasi-convexity. In the two preceding sections,
we have established the connection between quasi-convexity and lower semi-
continuity. In this section, we shall establish some necessary conditions for
quasi-convexity. In the next section, we establish some sufficient conditions
which are also necessary when f has certain interesting special forms. Unfortu-
nately, the writer is unable to establish conditions which are both necessary and

sufficient in the general case.

LeEmMA 4.1. Suppose f is continuous,  is the cell
‘xa‘;l (@ =1,~++,v), § >0,

and suppose

4.1) £ flp+ w01 dx 2 f(p) - m(Q)

for every function { which satisfies a Lipschitz condition with coefficient < §
on Q and vanishes on Q*. Then (4.1) also holds with Q replaced by any bounded

domain D.

Proof. Suppose ¢ satisfies the conditions on the bounded domain D). Let
R be a hypercube of side h which contains D, and extend ¢ to R:

xd < x :xo+h
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by defining ¢ = 0 on R — D. Then { satisfies the conditions on R, and

£*(x) = h7H L(xg + ha)

satisfies the conditions on Q, and
*i 13
x) = %y + hx).
éxa( ) é—xa( 0 )

DEFINITION 4.1. The function [ is said to be weakly quasi-convex if with
each p is associated a & >0 such that (4.1) holds for all D and all { satisfying

a Lipschitz condition with coefficient < 8p and vanishing on D*.

In other words, f is weakly quasi-convex if and only if each linear function
furnishes a weak relative minimum among all Lipschitzian functions coinciding
with it on the boundary, whereas f is quasi-convex if and only if any linear
function furnishes the absolute minimum among all such functions. Thus we have
the following result.

THEOREM 4.1. If [ is continuous and quasi-convex, it is weakly quasi-

convex.

We shall see that if f is weakly quasi-convex and continuous, then f satis-
fies a uniform Lipschitz condition on any bounded set in p-space and satisfies
a generalized Weierstrass condition (see Theorem 4,3) which reduces to the
ordinary Weierstrass condition if f is of class C’ (see (4.7)) and is equivalent
to the Legendre-Hadamard condition (see (4.8)) if f is of class C”.

LEMMA 4.2. Suppose ¢ is continuous, and suppose corresponding to any

point X in E, there is a & > 0 such that for any unit vector u we have

kp (Ao — hp) + hp(hg + Ekp) > (A + k) ¢(Xg) (0<h<5,0<k<$).
Then ¢ is convex in \.

Proof. let A, be any point, and ; any point with | x| = 1. We shall show that

Y(t) = (Ao + )

is convex in t. From the hypothesis, it follows that for each ¢, there is a
8(ty) > 0 such that

4.2) ky(to—h) + hp(to+ k) 2 (h+ k) ¢(8) OLh <8, 02 k<8
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Now, suppose £; < t,. Let

t -t

x (8) = ¢ (2) - ¢ (4) - Ly (&) — ¢ ()],

2 1

Then 1y (%) satisfies (4.2) and x(#;) = x(2;) = 0. Suppose M = max ¥ (t)
(t; < ¢ <t ), and suppose M > 0. Let ¢, be the smallest value of ¢ such that
x(t)_= M, and let the number §(¢,) be chosen as above. Clearly ¢; < ¢, < ¢,.
Choose t; and ¢, with

[ts = to] <8, [ta= ]| <8 (4 S t3 < t5 < tg < 4).
Then yx (23) < M, x () < M, so that
(tg — t9) x [t — (8o = t3)] + (25— 83) x[to + (t4 = %) < (24 — t3) X (24),
which contradicts the hypothesis. Thus y (¢) <0, so that

t -t

(1) b ¥ (L) + Ly () - v (2],

2= b
Since ¢, and t, were arbitrary with ¢, < ¢,, the function ¢/ is convex in ¢. Thus

¢ is convex in A.

THEOREM 4.2. If f is weakly quasi-convex, then f(pi + A &%) is convex in
X\ for each fixed p and &.

Proof. Let pi, {—'i and Aoabe fixed and let i, be any unit vector, and sup-
pose b > 0, £ > 0. Choose 8(p;, fi, Aon) > Obutso small that, for any bounded

domain G,
4.3) L UL+ 2y &+ Zla(0)]de 2 m(6) f (P + Xy €9)

for all { satisfying a Lipschitz condition of constant < & on G and vanishing on
G*. Let (gy5+++, p,) be a normal orthogonal set of unit vectors. If £ = 0, the
result is obvious. If £ £ 0, choose hand k with0 < & |£] < 8, 0 < k [£] < &,
and let p be any number > | £|/ 6. Let H = (1/p) k, K = (1/p) h, and let R be
the rectangular parallelepiped

—pHSy' S oK 1YL Lo (B=200,v)
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where

y'B = X, I»L’B .

Let F] be the face y! = — p H, F; be the face y! = p K, F/g be the face
yB = - p, F/BT be the face y# = p, and 1et1]; and Hgbe the pyramids witﬁ vertex
at the origin and base F[; and ['E, respectively. Let ¢ be defined on R to be

with £(0) = &. Then

continuous on R, zero on R*, linear on each H,B and 11,

ﬁ’
(o)™t uy, & =k & , onII7

_ = (K)o, €5 =~ by € on DI
(4.4) ¢ 1
. a

x -1

i -—
Pl pgy € , on Il

i

-p7! Mg gi , on IIE
Also

m(I7) = 7t 277 p¥ H, m(I1}) = » 71 2¥71 p¥ K, m(R) = 2¥7! p¥ (H + K)
4.5)

m(I7) = m(1I3) = v7* 272 p¥ (H + K) (B=2,+++,v).

Then, by applying (4.3), (4.4), and (4.5), we obtain

1 2k . .
—[ Up, + (Ngy— hpy ) €0 +

i i
2w L h+k f[Pa+(A0a+k#1a)‘f]

h+k

+

Z (10 O sk £ 11t 0 07 1)

18Y%

FpE+ A, &9).
Letting p—> ©, we obtain
EfUpE+ (Mgq= Ay o) EX1+ AfIph+ (Ng v by ) €51 > (R k) f(ph+ Xy, €F)

From the preceding lemma, it follows that f(pi + A, £') is convex in A for each

£ and p.
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THEOREM 4.3. Suppose f is continuous and convex in N for p and £.
Then f satisfies a uniform Lipschitz condition on each bounded closed set,

and for each fixed p there exists a set of constants A" such that

(4.6) fQph+ A E5) > f(p) + AF A &

for all ) and & If fis of class C*, (4.6) holds if and only if A} = fp,-, that is,
a

4.7 fOPE+ A, ED) > f(p)+ foi (P) A €5

If fis of class C*, (4.7) holds for all p, A, £ if and only if

. igj
(4.8 fp;pé(p) Agrg&H &l >0

for all A, &, p.

Proof. Suppose, first, that f is of class C’ Let p and ¢ be fixed. Then
(4.7) follows from the convexity in A. Moreover, since each unit vector ei in

the p-space is of the form A &%, we see from the convexity in A that
@) F =1 (p=ed) < fps @) < 1(p+d)= 1R

for all p. Thus the derivatives of f are uniformly bounded by these differences
in the values of f on any bounded part of space. Moreover, in this case, if

constants Alfl satisfy (4.6), we must have
Af = fp; (p).

Now, if f is of class C”, equation (4.8) with p replaced by p:; + A, £lis
equivalent to the condition that f is convex in A for each fixed p and £.

Finally, if f is continuous and has this stated convexity property, it is clear
that the k-average function also does, and f, is of class C’ By letting A —0,
we see that [ satisfies a uniform Lipschitz condition on any bounded closed
set. Now, choose k; = n~! and choose p fixed. From (4.9) and the uniform con-
vergence of f; to f on any bounded part of space, we conclude that the de-
rivatives fhnpé (p) are uniformly bounded. We may therefore choose a subse-
quence, still called #,, such that

Jim fh e () = 47
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Since (4.7) holds for all A and & for each n, (4.6) holds in the limit.

5. Sufficient conditions for quasi-convexity. In this section we prove one
general sufficient condition and then give conditions which are necessary and

sufficient when f has certain interesting special forms.

LEMMA 5.1. Suppose ( satisfies a uniform Lipschitz condition on the closure
D of the bounded domain D and suppose ¢ = 0 on D*. If

SN, 1< o <y <oene <o <o,

3L, ..., e
f (¢ ¢ )dx=0.

a a
a(xl,‘..’xy.)

Proof. Choose a large cell R containing D in its interior, and extend ¢ by
defining it to be zero outside D. Then the second h-average function Cyp is of
class C*’ on R and vanishes on and near R*. Since any integral of the above
type formed for {, tends to that for { as £— 0, we need prove the theorem
only for functions ¢ of class C* on cells R.

As an example, take iﬁ= Og= By, B=1,-++, u, D=R. Then

1

N
fa(é’ ) fRi(—l)#*aé:anx

Roaat, vnn, x#) o=

it

I
IS Y D R

a=1.

”w
NC LN W

a=1 ox*

!

Q dx,

where

a( 1,...’4'0.‘1’ aa"” M-l)
0.2 ¢ &y

a(xl,...,xa—l’ xa‘+1,...,x/-‘)

the last equality holding by Green’s theorem. But the boundary integral vanishes
since ¢ = 0 on R*, and the integrand in the second integral vanishes on R (see
[3], Chapter II, Lemma 1.1, for instance).
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THEOREM 5.1. 4 sufficient condition that f be quasi-convex is that for

each p there exist alternating forms

a I a.,B Apy *ttyay iy iy
¢ . o . oo cee T
Ag al, AZE wlaly, oo, ATN T Y g

such that for all w we have

flp+ m)

v

i iy oy ay
Proof. This is an immediate consequence of the preceding lemma.

THEOREM 5.2. If the a?’].ﬁ are constants and

(5.1) f(p) = aff pl ph,

a necessary and sufficient condition that f be quasi-convex is that

(5.2) aff A rg £1 8 20
for all X and €.

Proof. If ¢ = 0 on D¥*, we see from Lemma 5.1 that

L1l + a@lde = f(p) m (D) + [ a2 wi(2) ) () dc,

f(p)+Aia77‘;l+. R et L O S T L

But Van Hove [6] has shown that the condition (5.2) is necessary (this also

follows from Theorem 4.3) and sufficient for the second integral to be >0 for
all ¢ of class D’ on D which vanish on D* (hence this is true also for all ¢ of

class §, on D and vanishing on D*).

LEMMA 5.2. Suppose

1l
o

X oy
=1

for all x and y for which

I
o

n . .
2 bijxy

i,j=1

Then there is a constant K such that
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ai]'=Kbl‘j (i, j=1,++-, n).
Proof. We may introduce new variables £ and n by

x=c§9 y=d7)9

¢ and d being n x n nonsingular matrices. Let a and b be the matrices of the

original forms and 4 and B those of the transformed forms. Then

A=c’ad, B=c"bd (ci']. = c].i).

We shall show that there is a scalar K such that A = KB. We may assume that

Biji=1 (i=1,-+,7r); Bij = 0 otherwise, r <om,

unless B = 0 in which case 4 = 0 also and the theorem holds. By taking #° = 1,

=0 (j# s, s=1,-++, n) in turn we see that

Ais=0(i 1., n,s>r); Ais=0 (i7é39s=19"‘9r’i=19"'3n)-

Then, by choosing 1 < s < ¢ < rand setting 7° = =1, =0,j#s,j#t

we have
(A + Ai) €8 =0 for all & with &5 + &¢ = 0.
Thus there exists a constant K (s,t) such that
Ass + Ast = K (s,0), Ais + Ag = K (s,0).
Hence
Ay = Agg == 4Ap = K,

so that A = KB.

THEOREM 5.3. Suppose that N = v + 1 and
(5.3) fp)=F(Xy,eer, Xpsy),
where F is positively homogeneous of the first degree in the X; and

Xl-:—detMl (i=l,"', V), 1¥y+l=detMV+l,
i=1 vl i+l

MV‘H = Hpal7 "'1P:H9Mi = HP;_r"‘9Pa » Py Py 1"’!p:H

(i =1,%0c,v).
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Then f is quasi-convex in p if and only if F is convex in the X;.

Proof. If F is convex in the X;, it follows from Theorem 5.1 that f is quasi-
convex in p.

Hence suppose f is given by (5.3) and is quasi-convex in p. If
8X, = X (b + A, €7) = X, (1),
then
(5.4) DXy = Xypi A, £

Also, since

we have

(5.5) p’[g Xy pi = — 85

a X .

Now, choose a set of X; not all zero and choose any p such that
Xi (p) = Xi .
Since f is quasi-convex and hence weakly so, there are constants A; such that
f(Pa‘; + A fi) > f(p) + A2 X, &'
Since f depends only on the X, we must have

(5.6) AF A, € <0 forall A, fwitthpé)\agi =0 (k=1,ce0, v+1).

Obviously, then, the equality must hold in (5.6). Using (5.4) and (5.5), we see
that

(5.7) pEAX, = - (X &) (B=1,-v, v).

Hence, we must have

(5.8) A X &8 =0
for all A, & for which
(5.9) X, £'=0and D} A, &5 =0, DF = X X, ;.

a
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Now, since not all the X; are zero, assume X, # 0. Then

(5.10) > (X, -4 x)A £ =0
i £k

for all A, & for which

(5.11) Y (pgx, - Dgx) A € =o0.
i 2k

From the preceding lemma, it follows that there is a constant K such that

(5.12) A2 X, - 42 X, = K(D* X, - D X,).
Hence
(5.13) A% = KD# 4 L* X, L* = X' (48 - KDg).

From (5.7) and (5.13) it follows that
(5.14) A% A &1 = KDF A &'+ LoN X, € = CF AX,, C* = (KX, - L* pF)
Finally, if we are given any values of the AX,, the quantities
by =pFAX, G=1,000, v) andh , = X, AX,

are determined and the AX, are also uniquely determined by the 4. Using (5.7),
we may determine the A in terms of the A (i =1,+++, v), and substitute them

into
by = Xy A, = D A, £,
and we merely have to choose the ¢! to satisfy the equation
(D¢ by + hyyy X)) € =0 with X, & £ 0;

this is always possible unless all the DA = 0. Thus, unless these linear
ys P i a

relations in the AXi hold, we have
(5.15) F(X + AX) = f(pl+ A, &) > f(p) + AZ N &0 = F(X) + C* AX,.

The result follows in this case by continuity.
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Finally, since F is homogeneous of the first degree, we see by taking
AX = kX, b > -1,

that

FI+hX]=(Q+hF(X)> F(X)+hC*X,,
or
R[F(X) - C*x, ] > 0, b > - 1.

Hence F(X) = Cka. Then by setting X = X, X, # 0, choosing the C* for
this X, and then letting h—30, we see that (5.15) holds for some C* even if
X = 0.

REFERENCES

1. J. W. Calkin, Functions of several variables and absolute continuity, I, Duke
Math. J. 6(1940), 170~ 186.

2. C. B. Morrey, Jr., Functions of several variables and absolute continuity, II, Duke
Math. J. 6 (1940), 187-215.

3. —_, Multiple integral problems in the calculus of variations and related
topics, Univ. California Publ. Math., new series, 1,no. 1 (1943), 1-130.

4, — ., The problem of Plateau on a Riemannian manifold, Ann. of Math. 49
(1948), 807-851.

5. F. J. Terpstra, Die Darstellung biquadratischer Formen als Summen von Quadraten
mit Anwendung auf die Variationsrechnung, Math. Ann, 116 (1938), 166 - 180.

6. L. Van Hove, Surl’extension de la condition de Legendre du Calcul des Variations
aux integrals multiples a plusieurs fonctions inconnues, Nederl. Akad. Wetensch. 50,
no. 1 (1947), 18-23.

UNIVERSITY OF CALIFORNIA, BERKELEY






EDITORS

HERBERT BUSEMANN R. M. RoBINSON
University of Southern California University of California
Los Angeles 7, California Berkeley 4, California

E. F. BECKENBACH, Managing Editor
University of California
Los Angeles 24, California

ASSOCIATE EDITORS

R. P. DILWORTH P. R. HALMOS BORGE J’ESSEN J. J. STOKER
HERBERT FEDERER HEINZ HOPF PAUL LEVY’ E. G. STRAUS
MARSHALL HALL R. D. JAMES GEORGE POLYA KOSAKU YOSIDA
SPONSORS
UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA, BERKELEY WASHINGTON STATE COLLEGE
UNIVERSITY OF CALIFORNIA, DAVIS UNIVERSITY OF WASHINGTON
UNIVERSITY OF CALIFORNIA, LOS ANGELES . . .
UNIVERSITY OF CALIFORNIA, SANTA BARBARA AMERICAN MATHEMATICAL SOCIETY
OREGON STATE COLLEGE NATIONAL BUREAU OF STANDARDS,
UNIVERSITY OF OREGON INSTITUTE FOR NUMERICAL ANALYSIS

Vari-Type Composition by
Elaine Barth
Delores Gilbertson

With the cooperation of
E.F. Beckenbach
E. G. Straus

Printed in the United States of America by
Edwards Brothers, Inc., Ann Arbor, Michigan

UNIVERSITY OF CALIFORNIA PRESS » BERKELEY AND LOS ANGELES
COPYRIGHT 1952 BY PACIFIC JOURNAL OF MATHEMATICS



Pacific Journal of Mathematics

Vol. 2, No. 1 January, 1952

Tom M. (Mike) Apostol, Theorems on generalized Dedekind sums . . . ...... 1
Tom M. (Mike) Apostol, Addendum to ‘On the Lerch zeta function’ . ... .... 10
Richard Arens, Extension of functions on fully normal spaces ............. 11
John E. Maxfield, A short proof of Pillai’s theorem on normal numbers. . . .. 23
Charles B. Morrey, Quasi-convexity and the lower semicontinuity of

multiple integrals. ......... ... . . i 25
P. M. Pu, Some inequalities in certain nonorientable Riemannian

MARIFOLAS . . . . ..o 55
Paul V. Reichelderfer, On the barycentric homomorphism in a singular

COMPLEX . . . oo 73

A. H. Stone, Incidence relations in multicoherent spaces. Il .............. 99



http://dx.doi.org/10.2140/pjm.1952.2.1
http://dx.doi.org/10.2140/pjm.1952.2.10
http://dx.doi.org/10.2140/pjm.1952.2.11
http://dx.doi.org/10.2140/pjm.1952.2.23
http://dx.doi.org/10.2140/pjm.1952.2.55
http://dx.doi.org/10.2140/pjm.1952.2.55
http://dx.doi.org/10.2140/pjm.1952.2.73
http://dx.doi.org/10.2140/pjm.1952.2.73
http://dx.doi.org/10.2140/pjm.1952.2.99

	
	
	

