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THEOREMS ON GENERALIZED DEDEKIND SUMS

T. M. AposTOL

1. Introduction. Generalized Dedekind sums sp (4, k), defined by

kot (k) Flta hp  [hp
1 hk) = —B (—)= —B ———[—],
@ w(hB = 3 T8 (3 Z 7B (3 %

=1 Mm=1
were introduced by the author [1]. The integers % and % are assumed relatively
prime, Bp (%) is the p-th Bernoulli function, By (x) the p-th Bernoulli polynomial
(for definitions see [1;(2.11), (2.12)]), and [x] is the greatest integer < x. For
even values of the integer p the sums (1) are trivial (see [1;(4.13)]) and we
assume in what follows that p is odd. These sums enjoy a reciprocity law, name-
ly;

(p + 1) (REP s, (hK) + ERP s, (K,R))
(2)

1

p+ p+1
s =0

The B’s being Bernoulli numbers*. An arithmetic proof of (2) is given in [1] by a
method closely related to a general summation technique recently developed by
Mordell [5]. When p =1, the sums

k-1 w[hp hu 1
® sa(bB= 2 7;(7' %] 5)

p=1
are known as Dedekind sums and are usually denoted by s (4, k). Aside from be-
ing of interest from an arithmetical standpoint, these sums also occur in the
asymptotic theory of partitions and have been studied in a large number of papers,
for example [11, (31, (5], [6], [7], (8], [9], [10], and [11].

In this paper we establish a connection between the sums (1) and certain

finite sums involving Hurwitz zeta functions which makes it possible to give a

short analytic proof of (2).

* When p > 1, the factor (=1)° may be suppressed in the summand in (2) because the
terms corresponding to odd values of s vanish.
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2 T. M. APOSTOL

2. The Hurwitz zeta function and Dedekind sums. The Hurwitz zeta function
¢(s,a) is defined for R(s)>1 and a £ 0, -1, -2, « -+ , by the series

l(s,a)= T (n+a)
n=90

and its relation to sp (h, k) is given in the following theorem.
THEOREM 1. For odd p > 1 we have

) oy B mhp n

@) () =i pl @i P % et TE ¢ (p, —),

p=1 k

while for p =1 we have the two equivalent expressions

k-1
1 k
(5) S(h,k) = Z._/: Z- cot TR cot E]_cﬁ
p=1
and
k“l rd
-1 mhuy T/ (un/k)
hk) = f—
(©) sthk) = o0 X Ot h

p=1

Formula (5) is due to Rademacher [8], who derived it from the Fourier series
expansion of (3). We will give here a purely arithmetic proof of (5) based on
finite rather than infinite Fourier series. Secondly, we establish the equivalence
of (5) and (6) and then prove (4). Finally, we indicate how (5) and (6) can be
thought of as limiting cases of (4).

Proof of (5): The function El (x) is given by

B_l (x) = [x ~ [x] - 1/2 if x # integer,

0 otherwise.
Therefore, by formula (2.,5) of [10] we may write

) s(hk)y= Y By(u/k) By(hu/k).
p mod &

From Eisenstein’s finite Fourier series expansion [4; p.318] we have
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2rhvp TV
cot — .
k k

. 1 k-1
B __ .
(8) 1 (Ru/k) Y Vgl sin

Using (8) in each factor of the summand in (7), we obtain

k-1 k-1
A 2mpu (A~ vh)
9) s(hk) = > cot —~ cot —— > cos bV
8k2 =1 wv=) k k w mod k k
211;1.()\+Vh))
_cos—-—k——

because of the identity 2 sin x sin y = cos(x — y) — cos(x + y). Since we have

2apu(Atvh) [k ifAtx vh = 0 (mod k),
cos_—k__=

pmod k 0 otherwise,

for each fixed v only one value of A gives a nonzero contribution to each sum in
the second member of (9), namely X = vh (mod k) in the first sum and A = - vA

(mod k) in the second. Therefore we have

k-1 k-1
1 h 1 -wh
s(h,k) = a‘ Z cot zk—li cot ”kv - a— z cot%cot ”k Y

v=1 v =1

?

and this is the same as (5).

Proof that (5) and (6) are equivalent: The relation [2; p. 163]

I (u/k) low b - T cop TH
——— =-y-lo - — cot —
T (u/ky 77 BT

(10)

’ 2mn
+ z cos e log [2 -2 cos 2mn ,
n< k/2 k k

where y is Euler’s constant and the prime indicates that when £ is even the last
term is to be multiplied by 1/2, is due to Gauss. Multiplying both sides of (10)
by cot (zhyu/k) and summing on y shows the equivalence of (5) and (6) upon

observing that we have
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k-1
(11) 2 ftw=0

p=1

whenever f is an odd function of y which is also periodic mod k.

Proof of (4): Formula (4.11) of [1] gives a representation of Sp (h, k) as an

infinite series which, with some simplification, can be written in the form

o¢]

k
sp(hk) =i p! @ri)® 3 1P cot —

n=1
n Zo (mod k)

Writing n = gk + p, with ¢ =0,1,2, +»» ,® and p=1,2, - -
obtain
k-1 @ ah
sp(hk) =i pl @ad)P ¥ X (gk+p)P cot
p=t g=0
k-1 mhy
=1 p' (2nik)—p Z cot A C(P’ﬂ/k)’
=1

, k-1, we

7

where we must assume p > 1 in order to insure that the series involved should

be absolutely convergent and the rearrangements valid. This proves (4). We can-

not hope for a proof of (4) along the lines of our proof of (5) because of the non-

elementary nature of £ (s,a).

If in (4) we replace p ! by I'(p + 1) and let p be a complex variable which

tends to 1, then we can show that the two expressions for s (%,%) in (5) and (6)

occur naturally as limiting cases of the right member of (4). We first observe

that, although the function {(s,a) has a pole at s =1, the sum

k-1 ﬂhﬂ
(12) 2 cot 7 f_: (s,y_/k)
©=1

is regular at s = 1. This is easily seen by using the expansion

1 '(a)
S(si@) = —— =y + 06 =D

(as s — 1)

obtained from Whittaker and Watson [12; p. 271], substituting in (12) and using

(11) to obtain
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k-1 3 k-1 ’ L
lim Z cot ug’(s,ﬂ/k)=— Z cot”—;:#- %//k))’

m

k
s—1 L=1 p=1

which shows that the right member of (4) tends to the right member of (6) as

p—1.

The connection between (5) and (4) can be obtained by using Hurwitz’s

functional equation in the form given by Rademacher [6; (1.24)], namely:

k s 2wy
(s,p/k) = 2T (1 - s) @ak)*™ Y |cos Y sin

A=1 k
2aA A
+sin”2—scos T;“) é(l—s,-;c—),

this being valid fors = 1,1 < p < k. Multiplying by cot (#h u/k), summing on
p and using (11) leads to

k-1

h
Z cot oK < (s,ul/k)
p=1 k
(13)
k-1
h 27A
=200 - s)@Qnk)s 1 cos"—; > cot —F sin ﬂku @ - s,\/k).

A p =1

Since { (0,@) = 1/2 — a, when s tends to 1 the right member of (13) approaches
the value

1 k-1 k-1

h A
oL Z Z cot "kli sin 2”k £ (i - i)

2k 22, LS, 2k

-1 ko am k-1 . 2mAp

= — Z cot

2k? m=1 A=

because of (11). Noticing that the last sum on X is the imaginary part of the sum

k-1 J

. ; k k
Z A e2miMu/k k/(e2min/k _ 1) =- 'é—lCOt (mu/k) “—2—’
A=1
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we see that the right member of (4) also tends to the right member of (5) when

p—o1.

3. Proof of the reciprocity law. We can now give a proof of the reciprocity
law (2) using complex integration. This proof is of additional interest in that
we use properties of { (s, a) for fixed s and variable a. We will need the follow-

ing facts about £ (s, a):
(14) {(s,a) ={(s,a+1) +a”,

(15) C(s,a+1) =L(s) =s {(s+1)a+0(a?) as a—0,

(16) for O < R (a) < M, (M fixed), ¢ (s,a) tends uniformly to 0 as S (a)—
+ ©, (The uniformity is with respect to & (a)).

Equation (14) follows at once from the definition of { (s,a) and (15) is merely
the beginning of the Taylor series for {(s,a + 1) near a = 0. Here £ (s) =
¢ (s,1) is Riemann’s zeta function. Relation (16) can be readily obtained, for
example, by applying the Riemann-Lebesgue theorem to the integral representa-
tion [2; p. 266]:

(ST et R (a)

[ (s) {(s,a) = [ eit S(a) gy,

1-et
valid for ® (s) > 1 and R (a) > 0. This gives (16) for 0 < R (a) < M and (14)
proves it for 0 < & (a) < M.

Because of (4), the reciprocity formula (2) can now be put into the following

form:

THEOREM 2. Forodd p > 1 we have

. D! k-1 I3 h-1 k
ip+ D1 hY cotﬂkué(P,u/k) +k Y COtWhVC(P’V/h)
Qni)P K= vI
a7
P*1 /b 4+ 1
=pBpss + Z( s )BS By4y-s h* RPTITE.

s =0
Proof. We apply Cauchy’s residue theorem to the function

f(z) = cot wz cot (whz/k) ¢ (p,2/k),
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Integrating in the positive sense around a contour C consisting of a rectangle
whose vertices are the points + iT, &k + iT, with small semi-circular detours
C, and Cj around the points z = 0, z = k, traversed along the arcs z = € et?
and z = k + € €9, respectively, where #/2 < 0 < 37/2, and 0 < € < 1/h.
Ultimately, € will tend to 0 and T > 1/2 will tend to ©. The integrand f(z)
has first order poles at the points z = 1, 2, « » + , &k — 1 due to the factor cot 7z,
and at the points 2z = k/h, 2k/h, ... , (h=1) k/k  because of the factor

cot (whz/k). By (14) we have

C(pyz/k) = {(pyz/k + 1) + (k/2)P,

so that the point z = 0 is a pole of order p + 2 for f(z). Using the power series
expansion

. o (27i)" B,
(18) wz cot wz = Z —_— "

1
n=0 n:

in the neighborhood of z = 0 (with the understanding that B, should be replaced
by 0), and (15) with a = z/k we find that Cauchy’s theorem gives us

L[ fe)dze X & Ll /k
5.7 Jo z z-: ygl col Z ¢ (p,ul/k)
(19) B
k —1 k
$— Z cot"V§(p,v/h)—LC(P+1)+Ro,
”h v=1l h 1T2h
where

. Ry = Res cot nz cot (mhz/k) (k/z)P.
z=0
We now observe that by periodicity of the cotangent and by (14), the contribu-

tion to the integral from the part of C consisting of vertical line segments is

€

(‘i/;ie + [;-iT) cot wz cot (nhz/k) (k/z)P dz,

and this vanishes since the integrand is an odd function of z. Next, the integrals
along the horizontal segments tend to zero as T'— ® since, for 0 < x < k we
have cot #(x +iy)— ¥ i and, by (16), ¢ (p,(x + iy)/k) tends to O uniformly
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in x as ¥y = + ©. Finally, combining the integrals over Cy and Cj by means of
(14) and letting T — ® we obtain

lim f f(z) dz = f cot 7z cot (mhz/k) (k/z)P dz.
T c Co

— 00

When € — 0 we find

llIl'l fC = Tri RO

€ -0 0

so that equation (19) leads to the result

1 k-1 ahu h-1 aky
- Y cot C(pyu/k) +;7—h_ Y cot ¢ (p,v/ k)
M =1 v =1
(20)
p

1
{(p+1) - = Ro'
a2k 2

From (18) we easily calculate that

2 @mi)» Pr' [p+1
Ry = ——m8m8 —— B. B . B EPt1l-s
T ah(p+1)! ) s s Tpric-s ’

s =0
and, since we have

Q@rd)P*! By
2(p+1)!

C(P + 1) == ’
equation (20) yields (17) and the proof is complete.

In [8], Rademacher gives a proof for the case p = 1 using (5) instead of (4).
Apparently unaware of [8], K. Iseki [3] has given a proof very much like
Rademacher’s analytic proof for the case p=1 in a recent paper.
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ADDENDUM TO ‘ON THE LERCH ZETA FUNCTION’

T. M. ArosToOL

Professor L. Carlitz has been kind enough to point out that the functions
Bn (a, &) which were used in [1] to evaluate the Lerch zeta function ¢ (x,a,s)
for negative integer values of s have occurred elsewhere in the literature in
other connections, for example in [2] and [3]. As Carlitz points out, formula (3.3)
of [1] leads to the result

m-1
a™ Bn(m,o() ~ Bn(0, ) =n z a®l oo
a=0

which, for integer values of the variable a, makes apparent the relation of the
functions 8, (a, &) with the Mirimanoff polynomials discussed by Vandiver in[3].

There is a misprint in the next to last equation on p.164 of {1]. The coef-
ficient of a2 /2 in the expression for ¢(x,a, —~2) should read i cot wx + 1 instead
of i cot wx + 1/4.
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EXTENSION OF FUNCTIONS ON FULLY NORMAL SPACES

RicHARD ARENS

1. Introduction. Starting from the recent discovery of A. H. Stone that metric
spaces are “paracompact” [12] (paracompactness means that every open cover-
ing has a refinement only a finite number of whose members meet a suitable
neighborhood of each point [5]), J. Dugundji has been able to extend to metric
spaces certain techniques in the theory of retracts which were hitherto appli-
cable at most to separable metric spaces [6]. The cornerstone of his method is a
theorem (see 2.4, below) according to which a continuous function on a closed
set A of a metric space X with values in a convex (= “locally convex’’) topo-
logical linear space L may be extended to the whole space X, indeed without
enlarging the convex hull of the image. Essentially, the possibility of doing
this for a locally separable metric space X is implicitly given by a procedure for
the real valued case in [10].

One of the problems to which we address ourselves in this paper is that of
determining whether the assumption that X is metric can be reduced to X is
merely paracompact. The answer (see 6, below) is no. However, we have fairly
general results which imply that if L is metric and complete (and X is para-
compact) then the extension is possible (4.1, below). Our proof utilizes a process
of extending a pseudo-metric on 4 to all of X, which is ultimately based on a
theorem of Hausdorff. We generalize Hausdorff’s theorem (3.2 and 3.4) and inci-
dentally show how Dugundji’s result enables one to construct a short proof of
Hausdorff’s theorem.

None of these extension theorems can properly be regarded as a true gener-
alization of Tietze’s extension theorem, which deals with mappings on normal
spaces with values on the line or in the Hilbert cube, since there exist normal,
not fully normal spaces. In order to provide a generalization of Tietze’s theorem,
we have shown by way of application that the Hilbert cube may be replaced by
any compact convex subset of a normed linear space (4.3).

S. Kakutani [10] has introduced the notion of *“‘simultaneous extension re-
garded as a linear positive operation,” in his case of real valued functions on
a locally separable metric space X: this means that it is possible so to extend

Received March 10, 1951.

Pacific J. Math. 2 (1952), 11-22
11



12 RICHARD ARENS

all continuous functions such that A\ f + g)¢ = Af®+ g€ and f®> 0 whenever
f > 0, where the superscribed e indicates the extension. We show that this is
possible in the more general case in which X is metric and L convex, the order
preserving feature of Kakutani’s formulation being naturally reformulated as a
nonenlargement of the convex hull of the image (2.6). What is perhaps more sur-
prising is that the “simultaneous extension,”” while possible in more general
cases (4.2), is not possible under as general conditions as those under which
the individual extension (as in 4.1) is possible. As a matter of fact, we tie up
the notion of simultaneous linear and order relation preserving extension with

”” a measure from X onto 4, and thus show that it is not always

that of ““sweeping
possible even for compact Hausdorff spaces X (6.1).

The question arises whether among the simultaneous extensions which pre-
serve linear and order relations, there are not some which preserve quadratic
polynomial relations as well. It has already been shown by Yoshizawa just when
this is possible: at least when X is compact, 4 must be a retract of X.

We have inserted a section (5) showing that the ‘‘simultaneous extension’

“individual” extension of a

for real valued functions can be derived from the
suitable continuous function with values in an infinite dimensional space, as
well as from the fundamental Lemma (2.1) directly.

In formulating our results, we shall always speak of “fully normal” [13]
rather than ‘“‘paracompact” spaces, although it is known that these two proper-
ties coincide [12]. We do this because we use the full normality as such, using

Stone’s result only for the metric case.

2. Extension of functions on metric space. One of the main geometric ideas
underlying the process of extension involved here is contained in the following
construction (cf. [6, 4.3]).

2.1. LEMMA. Let X be a metric space, and A a closed subset of X. Then
there exists a family g,, of continuous real-valued functions defined on X, and a

similarly indexed family of points a,, of A such that

2.2. each g, vanishes on A, all but a finite number of the g, vanish in some
neighborhood of each point of X, the sum Z gy ®) =1 for all x in X~ A and

each g,, (x) is nonnegative;

2.3. for each a in A and each V, if g, (x) > O then d(a, a},) < 3 d(a, %) (dis
the metric in X) and d(a, x) < d(a, aV) + 2d(x, A).

Proof. To eachx in X — 4, assign the open sphere of radius d(x, 4)/4. Since
X — A is metric it is paracompact [12], so that this covering of X — 4 has a
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refinement R which is “neighborhood finite” (see [12]). For each V in R there is
a point x such that V' is contained in the open sphere about x of radius d(x,4)/4;
select such a point and call it x,. Also select a;, in 4 such that d(a, x,,)
< (5/4) d(xV, A). Let fy (x) = d(x, X = V) for every x in X. Since R is neighbor-
hood finite, each x in X has a neighborhood on which all but finitely many f,,
vanish, and so s (x) = Z v € R fy (x) is both finite and continuous. Since s (x)
is never 0, the functions g, = f,/s are continuous. It is easy to see that they
provide the kind of “Dieudonné partition” required by 2.2.

Ve now turn to 2.3. Suppose gV(x) > 0. Then x belongs to the open set V.

From what has been said about V, Xy and a,, follows
d(a,, %) < dlay, x,) + dlx,, %) < (5/4) dlx,, 4) + (1/4) d(x,, 4).
Of course
d(x,,4) < d(x,, a)
<dlxy, x) + d(x, a) <(1/4) d(x),, 4) + d(x, a),

and so (3/4) d(xV, A) < d(x, a). Thus d(av, x) < (6/4) d(xV, A) < 2d(x, a).
Thus finally we have half of 2.3, since

d(a, a;,) < dla, %) + d(x, a,) < dla, x) + 2d(x, a) = 3d(a, x).

For the second half of 2.3, we note first that d (x, 4) > 3/4d(xV, A). On the
other hand,

day, x) < dlay, %)) + d(x,, x) < (6/4) d(x,,4),
which is thus less than 2 d(x, 4). Finally,

d(a, %) < dla, a)) + dlay, x) < dla, a)) + 2 d(x, 4).

Thus the proof of 2.3 is complete.

Geometrically, the lemma given above says that X — 4 can be so mapped into
the finite dimensional faces of the “formal simplex” with vertices equal to the
points of A, in such a way that as x tends to a point a, of 4, the vertices of the
carrier of the image of x all tend to ay, in the topology of A. With this picture
in mind, it is easy to imagine how functions on 4 with values in a convex set
E, can be extended to all of X. The next result [6, 4.1] makes this precise.
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2.4. THEOREM. Let K be a convex subset of a convex topological linear
space L (cf. [14]). Let A be a closed subset of a metric space X. Let f be con-
tinuous on A with values in K. Then f may be extended continuously toa function

f¢ defined on X with values in K.

Proof. Using the result and notation of 2.1, we define f®at once by setting
félx) = ZV gy &) flay), for x in X -4, and f®(a) = f(a) for a in A. There
remains only the proof of continuity. Now the topology of L (and thus K) can be
based on neighborhoods of 0 defined by relations || £|| < 1 where ||++.]| is one
of the pseudo-norms of L, according to von Neumann’s idea (cf. [14]). Select
any point a of A. There is a positive r such that d{a, b) < r implies || f(a)
~f(8)|] < 1 for b in 4. Now suppose d (a, x) < r/3. For those finitely many V/
for which gy (x) is not 0, we have d (a, aV) < r, so that

1fe@ -f@ll < X g, @Ilfla) - f@]] <1.

This shows the continuity of f¢ at any point of 4. At points x of X ~ A we can
find a neighborhood in which only finitely many g,, do not vanish, so that [ is
continuous there also. The rest of 2.4 is obvious. The second half of 2.3 is not

needed for this proof.

The fact that a single formula, so to speak, can be chosen to perform the
extension can be expressed in several ways. Suppose K; and K, are convex
subsets of two convex topological linear spaces, and let there be an affine
mapping m of K; into K,. Suppose f;, f, are functions as in 2.4 with values in
K;, K, respectively, but satisfying the condition m(f; (a)) = f, (a) for all a in
A. If we use the same system gy ayp in extending f, as in extending f; then we
surely obtain m(fle (x)) = f:(x) for all x in X. We shall abbreviate this by saying
that the process of extension when applied to all possible f is consistent, and
note the result:

2.5. THEOREM. Each f satisfying the hypothesis of 2.4 with K variable but

A and X constant may be so extended that the entire process is consistent.
Another kind of consistency or simultaneity is expressed as follows.

2.6. THEOREM. Let K be a (linear or possibly merely convex) subset of a
convex topological linear space, and let A be a closed subset of the metric
space X. Let F be the class of continuous functions on A with values in K. Then
each { may be extended by an f®(using 2.4) in such a way that, for f , «++, fpin

F and ¢y, «++, c, real numbers (nonnegative with sum 1 when K is merely
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convex), we have
ey fi + =+s + cy ) = e ff + oo + Cnfrf'

This result is a generalization of Kakutani’s theorem [10] on “simultaneous
extension of continuous functions considered as a positive linear operation”.
The only real advance of 2.6 over Kakutani’s theorem is the removal of separa-

bility, although Kakutani limits F to the space of bounded real valued continuous

functions C (4).
An addendum to 2.4 and 2.6 is of interest:

2.7. Under the conditions of 2.4 or 2.6, if there is an f and a point a of A
such that f is constant on a neighborhood (relative to A) of a, then f€ is con-

stant on a neighborhood (relative to X) of a.

In fact, suppose f(a’) is constant for d(a, a”) < 3 e and a” in 4. Then f%(x)

is constant for d(a, x) < e, since then d(a, a)) < 3 e.

3. Extension of pseudo-metrics. l.et X be a topological space. l.et s be a

real-valued function of two variables defined in X such that

sly,x) = s(x,9) 2 0, sx, 2) < slx,y) + sy, 2);3

and such that the set of x such that s(x, y) < e is open for each e > 0 andy.
Then s is a pseudo-metric. It falls short of being a metric in that s(x,, y) — 0
[s (x, y) = 0] does not necessarily imply x, — y (x = y). Our first result is in
the direction of an extension of a pseudo-metric from a closed set to the whole

space.

3.1. LEmMA. Let X be a fully normal [13] topological space, and let q be a
pseudo-metric defined on a closed subset A of X. Then there is a pseudo-metric
s defined in all of X such that for x, y in A and k = 4, 5, +++, if s(x,y) < 27F
then q(x, y) < 27k,

Proof. Select a positive integer n. Construct an open covering U consisting
of those open sets V which intersect A in a set of g-diameter less than 27",
Using the terminology, notation, and results of [13] we obtain U 3 U, 3 v, 3...
[13, V-7.4], and a pseudo-metric r, such that [13, V-7.5, correcting € to ¢ ]
x ¢ S(y, Up) implies ro(x, y) > 27(p*2) g4 p=1,2,.-.. We may also assume
rn(x, y) < 1. We can thus form r(x, y) =Zn 27" r,(x, y). This is clearly a
pseudo-metric. Suppose r(x, y) < 27%, for k > 4andx,y in 4. Thenr, _ (%, y) <
273, Hence x € S(y, U,), this covering being the one obtained for n = k - 3.
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(We have omitted an index showing dependence on n.) Since U, 2 U we obtain
—k+3

glx, y) < 2

the proof of 3.1.

. Setting s = 273 r gives the required pseudo-metric, completing

We remind the reader that compact Hausdorff spaces and metric spaces are
fully normal [13, V-8.14, VI-4.5].

This lemma is actually all we need in order to extend the results of $2 as
we shall do later. However, by an application of a theorem of Hausdorff, we can
improve 3.1 aesthetically by obtaining a pseudo-metric s which is an extension
to X of the original q. In fact, rather than refer to Hausdorff’s theorem, we first
give a new proof since it is an interesting application of 2.1, is much shorter
than Hausdorff’s, and shows in passing how a metric space may be isometrically
imbedded in its own space of bounded continuous functions (cf. [4, p.187]).
The present proof resembles that in [11] more than that in [9]. However,
Kuratowski’s proof, besides requiring separability, generally does not provide an

isometric, but merely topological imbedding (see below, and also [9, p.47]).

3.2. THEOREM. [Hausdorff]. Let A be a closed subset of a metric space X,
and let { be a continuous mapping of A into another metric space B. Then B can
be isometrically imbedded in a metric space Y such that { can be continuously
extended to X with values in Y, such that [ is a homeomorphism of X — A with
Y — B, and such that B is closed in Y.

Proof: For any space S let C (S) denote the Banach space of real-valued con-
tinuous bounded functions g on S, with |[ g|| = sup, ¢ g [g®)|.

To begin the proof, obtain for X a bounded metric d. The metric r in B we
must not alter, of course. For b in B, let r, denote the function with values
rb(b') = r(b, b”). This function is not necessarily bounded, but r, —r, is
bounded (cf. [4, p.187]) and ||r, -, || = r(b, ¢), where b, ¢ are points of B.
Select a point o in 4, to be held constant. The function ¢ defined for a in 4 by
¢ (@) = Tf(a) ™ Tf (o) evidently maps 4 into C(4). Indeed, since

6@ =@l = llry@y=ryanll = rif@, [,

the map ¢ is continuous. It may therefore by extended to all of X by 2.4, and we
denote the extension also be . Now form L = C(B) x R x C(X), where

1y j» BV = max ([[&]]5 171511 &[]

and R is the real number system. For x, y in X dgfine dy(y) = d(x, y) as earlier,
and let d(x) = d(x, A). For x in X, define F (x) = [¢ (x), d(x), d(x) dy] in L.
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This F is obviously continuous. Define B; = F(4) and ¥ = F(X), both subsets
of L. Clearly B, is closed relative to Y. Now for each a in A we obtain f(a) on

one hand and F (a) on the other. We now show that it sets up an isometry between

B and B,. In fact,
HF (@) = Fa) ]| = ||p@ — p(a? ]| = Hrf(a) - rf(a')H = r[f(a), f(a")],

as mentioned earlier. If we identify B with B, then F becomes an extension of
f, continuous on all of X. Suppose F (x)} = F(y), where y belongs to X — 4. Then
d(x) = d{y) > 0; hence d, = dy, which means x = y. Thus F has an inverse on
Y — B,. We shall show that it is an homeomorphism. Let y € X — 4 and suppose
F(x)—> F(y). Thend(x)—d(y) > 0, and d (x) d,—> d (y) dy. From this we con-
clude dy—dy or d(x, y) = ||dy = dy||— 0. Thus 3.2, Hausdorff's theorem, is
proved. It is to be borne in mind that it was not known in 1938 that metric spaces

were paracornipact.
We go on to establish a refinement of 3.2 also due to Hausdorff.

3.3. THEOREM. [f the f in 3.2 is a homeomorphism of A with B then it can

be arranged that F also is a homeomorphism.

To establish 3.3, Hausdorff [9, p.46] modifies the construction of F. It is
an interesting fact that the F we construct automatically satisfies 3.3. The only
nontrivial part of the proof of 3.3 is that if F{(x)—F(a) forx inX — 4 and ¢ in
A, then x — ain X. Therefore, suppose F (x) — F (a). Let

h=g@ ~gl@ =2 gy @ Iy )~ 7yl
where the g, and a, are described in 2.1. Now | A (f(a))}| < || A ||-—0. But

Rlf@] = X g, @ rlf(ay), f(@]

is not less than the least of those r[f(aV), f(a)] which appear in this sum, that
is, for which g, (x) is not 0. Denote the ay, in question by ap, where of course
W depends on x. Since r(f(ay), f(a)] tends to 0 and f is a homeomorphism on 4,
we see that aj,—a. From 2.3 we obtain d(a, %) < d(a, ag) + 2 d (x), and so
x— a, as desired.

These two results have the following consequence.

3.4. COROLLARY. Let A be a closed subset of a metric space X. Let r be
a pseudo-metric defined on A. Then this pseudo-metric may be extended to all

of X in such a way that
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3.41 in X ~ 4 it is equivalent to the metric d of X;
3.42 in x € X — A then for some positive e, r(x, y) < e implies y € X ~ 4;

3.43 ifris a metric equivalent to d on A, the extension is equivalent to d on

all of X.

Proof. In A, form the equivalence classes for the relation r(x, y) = 0, and
metrize in the obvious way using r. Call the resulting space B. The natural
mapping of 4 onto B satisfies the hypothesis of 3.2. Let m be the metric in Y.
Then m{F (%), F(y)] gives the desired extension of r(x, y).

We can now provide the finishing touch to 3.1.

3.5. THEOREM. Let X be a fully normal topological space, and let g be a
pseudo-metric defined on a closed subset of X. Then q can be extended to be a

pseudo-metric on X.

The proof is based on 3.1 and 3.4 as follows. Using the s of 3.1, partition X
into a set X* of equivalence classes according to the relation s (x, y) = 0, de-
noting the class containing x by x*, and so on. Define s* (x*, v*) = s(x, y); this
is a valid definition, which makes X* a metric space, and the natural mapping of
X onto X* is continuous. Let 4™ be the closure in X* of the image of 4. The
conclusion of 3.1 shows that g may be carried over in unique fashion to 4%, to
form a pseudo-metric ¢*. An appeal to 3.4 extends ¢* to X*, and g(x, y) = ¢*(x*,
y*) provides the desired extension.

Note that we have no use for 3.41 - 3.43 in 3.5 because the s was not given

to us in advance.

4. Extension of functions on fully normal spaces. In the next result, the
metric for X in 2.4 is shifted to K.

4.1. THEOREM. Let A be a closed subset of a fully normal space X. Let f
be continuous on A with values in a complete convex metric subset K of a con-
vex topological linear space L. Then f can be continuously extended to X with

all values still in K.

Proof. In A define the pseudo-metric ¢ (a, a”) = m[f(a), f(a”)], where m is
the metric, and extend q to X by 3.5. Let Ay be the set of x such that q(x, 4)
= 0. Given e > 0 and x in 4, let S, be the set of a in A such that ¢ (x, a) < e.
The f(S¢) form a nested system in K, and their diameters shrink to 0. Hence

there is just one point, which we call f(x), common to all. This provides an



EXTENSION OF FUNCTIONS ON FULLY NORMAL SPACES 19

extension of f to A,. Now partition X into a set X* of equivalence classes under
the relation ¢ (x, y) = 0, denoting the class containing x by x*, and so on. Define
g* (x*, v*) = g(x, y); this makes X* into a metric space and the continuous
natural image of X. In this natural mapping, 4, passes onto a closed subset 4*
of X*. The function f* (a*) = f(a), @ in 4, is continuous (indeed isometric) on
A*. It can be extended to all of X%, by 2.4. Going back and defining f(x) =
f* (x*), we get an extension of f with the desired properties.

We shall show in 6 that a “simultaneous extension” of the type of 2.6 cannot
always be obtained if the hypothesis is merely that of 4.1 for each of the func-
tions involved. However, using the procedure of 4.1 and the result of 2.6, the

reader may prove the following:

4.2. THEOREM. Let A be a closed subset of a fully normal space X. Let F
be a linear (convex) set of functions each defined on A and with values in a com-
plete metric linear (convex) subset K of a convex topological linear space L.
Furthermore let there be defined on A a pseudo-metric q such that for each f in
F and for each positive r there is a positive s such that q(a, a”) < s implies
m{f(a), f(a”)] < r, where m is the metric in K. Then a simultaneous extension

(in the sense of 2.6) can be made for all the f in F.

Nore of the preceeding results can properly be claimed to be a generalization
of Tietze’s extension theorem, since we always require more than normality of X.
We do not know whether the following is true: if 4 is a closed subset of a normal
space X, and f maps A continuously into a bounded closed convex subset K of a
Banach space L, then f can be continuously extended to X with values in K. Of
course, in the finite dimensional case of L, this result is an easy consequence of
the original theorem. In this case, we can replace “bounded’’ by “compact”, and

in this form the theorem does admit generalization.

4.3. THEOREM. Let A be a closed subset of a normal space X. Let K be a
compact convex subset of a normed linear space L. Let f be a continuous func-
tion on A with values in K. Then f can be continuously extended to X with values

in K (see note added in proof).

Proof: Since K is separable, we can find a countable family vy, v,, +++ of
bounded linear functionals on L such that if u, u* belong to K and u (v,) = u’(v,)
for all n, thenu = u’ (cf. [2, p.484, “Note”]). We now imbed K in the space (s)
of [4]. For u in K, define U(u), = vy (u). This mapping is continuous and one-to-
one, and hence a homeomorphism. We may therefore forget about the original L
and regard K as a compact convex subset of (s). By 2.4, since (s) is metrizable,

we can obtain a retraction of (s) on K, that is, a continuous r such that r(u) € K
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for u in(s), and r(u) = u for u in K. Let f, (a) = f(a)y, the n-th coordinate of f(a)
in (s). By Tietze’s original theorem, this f,, may be extended continuously to all
of X. Defining f,(x) = [f; (x), f,(x), -+ ) in (s) we obtain a mapping of X into
(s). Setting f~ (x) = r[ fo (x)] gives the desired extension.

5. Simultaneous extension of real-valued functions. This section merely
shows that special cases of 2.6 and 4.2 in which the linear space is the real
number system R (or any finite dimensional linear space) can be reduced to 2.4
or 4.1, respectively, without further inquiry into the method of extension. In other
words the possibility of “simultaneous extension” of real-valued functions is a
direct consequence of the possibility of a single extension of a function with
values in a suitable infinite dimensional space. This sounds quite plausible, but
it is perhaps surprising that we must consider conjugate spaces.

Consider first a closed subset A4 of a metric space X, and the spaces C(4)
and C (X) of continuous real-valued functions on them. Let L be C(4)", the con-
jugate space, with the weak topology (see [14], for example). Let K be the set of
¢ in L with norm not exceeding 1 and with & > O (that is, £(f) > Oforf > 0).
For a in A, define F(a) in K by F(a) (f) = f(a). This F is continuous since we
are using the weak topology, and K is convex. By 2.4 this F can be extended to
X. For f in C(A), define f® by f®(x) = F(x) (f). We leave to the reader the com-
pletion of the proof of the following:

5.1. THEOREM. The operation f—>f€ is a linear, isometric, nonnegative
trans formation of C(A) into C(X), and ¢ is an extension of f.

In the next section we shall show that 5.1 cannot be generalized for nonmetric

X even if X is compact. However, the following is true.

5.2. THEOREM. Let A be a closed subset of a fully normal space X. Let S
be a separable (in the norm topology) closed linear subspace of C(4). Then there
is a linear isometric nonnegative transformation f— ¢ of S into C(X) such that

f¢ is an extension of f.

The proof is just like that of 5.1, except that we appeal to 4.1. To do this we
must observe that since S is separable, K in S~ with the weak topology is

metrizable (as is well known), for example with the metric

m&p) = 22" [(E~n (D],

where the f, are dense in the unit ball of S; and that K is compact (Alaoglu-
Bouwrbaki [1]) and thus complete.
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6. Applications to measure in topological spaces. Let X be a topological
space with a measure, and let 4 be a subset such that every function of a fixed
linear set F of real-valued functions on A can be extended to a summable func-
tion on X by a positive linear operation P. By defining J (f) =fP () () m (dx)
for f in F, we obtain a functional which may sometimes be represented by an
integral (cf. [2, 3] or any of the references given there). When this is true, one
obtains a measure m” on A which is generally not the mere restriction [m’(E)

= m(E) forE € Al of m to A.

Unfortunately we have not been able to apply this process to any situation
to obtain measures in 4 of a class not more easily obtainable by other methods.
This is because of the requirement of the existence of a pseudo-metric in 4.2
with the stated properties, or of the separability of S in 5.2. The interest of
the present section lies mainly in the fact that it is shown that one cannot
avoid limitations of this sort. For this purpose we present only one of a variety

of theorems, and then show why it cannot be generalized.

6.1. THEOREM. Let X be a fully normal Hausdorff space and let m be a
finite Baire measure [8] such that m(V) = 0 for an open V only if V is void.
Let A be a compact subset of X. Let S be a separable subset of C(A4). Then
there exists a strongly regular measure m” in A such that all functions in S are

measurable and if f € S and f > 0, f # O then
‘!4‘ fla) m*(da) > 0.

Proof. Let Q be the normed linear algebra generated by S and 1. By [3, 4.4]

we can obtain a measure as described such that
.£ f(a) m’(da) = ,/;{ fé(x) m (dx).

The point to observe is that if f > 0, f # 0, then the same thing is true for f€,
and thus the right integral is positive.

Why can we not ignore the separability of S in 6.1? Let 4, by any uncount-
able discrete set. By adding a “point at infinity” we obtain a compact space 4.
This space 4 can be imbedded in a cartesian product X of unit intervals. The
obvious product measure [8, p.158 (2)] has the properties needed for 6.1. Let S
= C(A), and, forgetting that S is not separable, apply 6.1. The resulting measure
would make every one of the points 4, have nonzero measure, and so 4 itself
would not be measurable. This shows why the separability of S in 6.1 cannot
be ignored; and it also shows that one cannot ignore the pseudo-metric ¢ in 4.2

or the separability of S in 5.2.
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Added in proof: We have recently found, and shall soon publish, a stronger

form of 4.3, namely in which “compact” is replaced by “separable”.
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A SHORT PROOF OF PILLAI'S THEOREM ON NORMAL NUMBERS

JorN E. MAXFIELD

1. Introduction. The object of this paper is to give a short proof of the Pillai

theorem [2] on normal numbers using the Niven-Zuckerman result [1] as a tool.

DEFINITION 1. A number o is simply normal to the base r if, in the ex-
pansion to the base r of the fractional part of o, we have lim, 5 o n./n = 1/r
for all ¢, where n, is the number of occurrences of the digit ¢ in the first n

digits of o.

DEFINITION 2. A number ¢ is normal to the base r if o, ro, r?0, - »» are

each simply normal to all the bases r, 72, r3, «»» |

THEOREM (Pillai). A necessary and sufficient condition that a number

o be normal to the base r is that it be simply normal to the bases r, r2, r3, ...

2. Proof. The necessity of the condition follows from the definition of normal-
ity.

To prove sufficiency, assume that o is simply normal to the bases r,r?, . ..
Let A = (a,ay - -+ a,) be any fixed sequence of digits (to base r), where
v=~hr—-s,h>0,0<s <r; and consider the occurrence of 4 in ¢. Count
the number of occurrences of 4 in the collection of sequences of length hr. There
are s digits free after v of the hr digits are fixed. Thus there are (s + 1)r° differ~
ent occurrences of 4 in these sequences.

For any positive integer n,define f,(4) to be the frequency of the occurrences
of 4 in o except in places where 4 will straddle the middle of sequences of
length 242"~ 'r starting in places congruent to 1 (mod 2h2" " r), or where 4 will
straddle the middle of sequences of length 442"~ *r starting in places congruent
to 1 (mod 4A2"" '), or «++, or where A will straddle the middle of sequences of
length 2°h27 " 'r starting in places congruent to 1 (mod 252"~ 'r), and so on.

Certainly lim, , o fp (4), if it exists, will be equal to f(4), the frequency of
A in o.

We have
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h’, and ¢ is

since there are hr digits of o to base r in each digit of o to base r
simply normal to the base r*7. The number of occurrences of 4 straddling the
middle of blocks of length 2Ar is (v — 1)r2hr +s_ The frequency of these in o,

where the sequence of length 2Ar starts in a place congruent to 1 (mod 24r), is

(v_l)rzhr+s v—1

Ohr r2hr ohrV 1

since there are 2hr digits of o to base r to each digit of o to base r2hr

Thus

f.(4) 1 v-1 v-1
= — - + .
2 v hrv+1 2hrv+1
Similarly,
. -1 1 v-1 v-1 1 1
fa(4) = fo(4) + S S S + [—+——]
4k * 1 v RVt pvtr L2 4
and
1 -1 v-1 "t ;
fald) = — - —— 4 Y 1/
rY RVt RVt =2

It follows that

lim f,(4) =1/,

n->oQ
Accordingly, by the Niven-Zuckerman result [1], stating that a necessary and
sufficient condition in order that a number o be normal is that every fixed se-
quence of v digits occur in the expansion of o with the frequency 1/r¥, we see

that ¢ is normal to the scale r.
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QUASI-CONVEXITY AND THE LOWER SEMICONTINUITY
OF MULTIPLE INTEGRALS

CHARLES B. MORREY, Jr.

1. Introduction. We are concerned in this paper with integrals of the form
1.1) 1(z,0) = J f[%2(x), 20 (0] dx,

where

(i=1,-- -, Ny a=1,+0, ),

f (x,z,p) is continuous in its arguments, and D is a bounded domain.

The object of the ;Saper is to discuss necessary and sufficient conditions on
the function f for the integral / to be lower semicontinuous with respect to vari-
ous types of convergence of the vector functions z. Because of the success of
the ‘“direct methods’’ in the Calculus of Variations, many writers have shown
that certain integrals are lower semicontinuous. However, the writer knows of
no paper in which a necessary condition for lower semicontinuity was discussed,
although such a condition is very easy to obtain (see Theorem 2.1).

In §2, a general condition called ‘“‘quasi-convexity’’ (see Definition 2.2) on
the behavior of f as a function of p is obtained which is both necessary and
sufficient for the lower semicontinuity of / with respect to the type of conver-
gence given in Definition 2.1. This condition is that any linear function furnish
the absolute minimum to /(z,D) among all Lipschitzian (see below) functions
which coincide with it on D*, D being any bounded domain and D* its boundary;
here, of course, we consider f to be a function of p only. Section 3 discusses
cases involving more general types of convergence and gives an existence
theorem. In $4, it is shown that if f(p) is continuous and quasi-convex, then
it satisfies a certain generalized Weierstrass condition which reduces to the
ordinary one (for the case at hand) when f is of class C’; this is, in turn, seen
to be equivalent to the Legendre-Hadamard condition (see (4.8)) (quasi-regu-
larity in its general form) when f is of class C . In §5, a general sufficient

presented to the American Mathematical Society at the Summer meeting of 1949 in
Boulder, Colorado, under the title “‘Quasi-convexity and the lower semicontinuity of
double integrals®’.
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condition for quasi-convexity is proved and the necessary condition of $§4 is
seen to be sufficient when f is either a quadratic form in the p, or is the inte-
grand of a parametric problem with N = v + 1. The view of Terpstra’s negative
result [S] that even the strong Legendre-Hadamard condition (> Q) does not
necessarily imply the existence of an alternating form C‘l?'jB pi pg (Cg"L: - C{'}B,
and so on) such that

(1.2) f(p) + C;.’].ﬁ pL p]ﬁ = (ali‘;ﬁ+ C?f)p; p%

is positive definite when v > 2, it would seem that there is still a wide gap in
the general case between the necessary and sufficient conditions for quasi-
convexity which the writer has obtained. In fact, after a great deal of experimen-
tation, the writer is inclined to think that there is no condition of the type dis-
cussed, which involves f and only a finite number of its derivatives, and which
is both necessary and sufficient for quasi-convexity in the general case.

In (1.2), we have used the usual tensor summation convention, and will con-
tinue to use it throughout the paper; unless otherwise specified, the Greek letters
will run from 1 to v and the Latin letters from 1 to N.

We shall denote the sum and difference of vectors of the various sorts (x,z,

p, and so on) in the usual way. We shall define
|| = (x*2%)V?, |z]| = (zi zi>1/2, Ip| = (P; pi)x/z .

If {(x) is a vector function with derivatives, 7 (x) will denote the vector function

m, (%) = { o (%); similar notations involving other letters will be introduced as

the occasion demands.
All integrals are Lebesgue integrals, frequently of vector functions. It is

sometimes desirable to consider the behavior of a function z (x) with respect

to a particular variable x® or to the v — 1 variables (x!, ..., x®71 xo*1,

««+, x¥). In such a case, we write x* for (x!, ..., 2271, x2*1
a

x
""xv)’

(7, x*)for x and so on. It is also convenient to write the boundary integrals

Lo Ao (0) dug,

where each 4, (x) may be a vector A: (x) and the boundary D* of the domain is
sufficiently regular; such an integral is to be regarded as a Lebesgue-Stieltjes
integral with respect to the set function %/ (€) on D* chosen so that Green’s
theorem

S, = [

D D
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holds. The closure of a set E will be denoted by L.
Ordinary functions of class L5, %, 8% and so on, s > 1, have been dis-

cussed at length in the papers [1] and [2]; the extension to vector functions is

trivial. We define the integrals ljs (z,G) and D (z,G) by

By (,6) = J |2 do + Ly (2,6), D5 (2,6) = [ [, (021, ()] 2.

Each function z of class § is equivalent to a function z defined uniquely almost

everywhere as that number such that the Lebesgue derivative of the set function
L 12(2) = 2(%)|° da

is zero at xy; z is supposed to be defined at every point x, where such a number
exists; z is of class i (see [1] and [2]) and is also of class P in any co-
ordinate system related to the original by a regular Lipschitzian transformation
(cf. [2], Theorem 6.3; the z there used has a slightly different definition from
the present one but the present theorem has been proved for vectors z with
values in a Riemannian manifold in [4], Lemma 2.3 and Theorem 2.5).

A function z is said to satisfy a (uniform) Lipschitz condition with coef-

ficient M on a set S if and only if
[z (%) = z(x,)] < Mix,~ x|, x, €S, x, €S.

A function is Lipschitzian if it satisfies a Lipschitz condition.
If g(y), y=(y' - -+, y"), is summable on a domain D, we define the A-

average function g; by
- h
g = @™ L70 g(n) dn, B> 05

if g is summable then g, is continuous where defined; if g is continuous on D
then g, is of class C”and g tends uniformly to g on each bounded closed set
interior to D; if g is of class B5 on D then g, tends strongly in ;s to g on each
domain G with G C U (see [1], Lemma 5.1).

A form

ags***, a i i .
Cil.. i/‘l’ Tral .--na'u' (#iVy].S_(XyﬁV, lil')’ 5N,‘y=1’o..,’1.),
| V) 1 “w = = = =

is called alternating if and only if the C’s satisfy the obvious symmetry require-

ments and also the antisymmetry condition that
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.o

s Ay
il'.'.’i#

C'Bl’“"ﬁ“ s

By eer iy

according as (B, »+-, By) is an even or odd permutation of the indices

(Gyp +++ 5 a,); if £ (%) is a vector function, then

Qpy *** 5y ay a(éllv DR élu)

.

Uis ®*¢ 4 A 7 i

WG T ey et (9= C .
1r°' © a/_}, ll . l

’ * Yl a(xal, -..’xau)

the fractions on the right denoting Jacobians.

2. A necessary and sufficient condition for lower-semicontinuity. We begin

with some definitions.

DEFINITION 2.1. For the purposes of this section, we say that the vector
functions z, tend to the vector function z on the domain D if and only if the z,
and z all satisfy a uniform Lipschitz condition on D, independent of n, and the
z, tend uniformly to z on D. We shall write z,— z to denote this type of con-

vergence.

DEFINITION 2.2. A function f( pi) is said to be quasi-convex if and only if

Sy flp + 7 (01 dx > f(p)-m (D), 7y (%) = {Lal2),

for each constant p, each domain D, and each vector function { which satisfies

a uniforn, Lipschitz condition on D and vanishes on D*.

We shall show in this section that the integral /(z,D) is lower semicontinu-
ous with respect to the type of convergence specified in Definition 2.1 on each

bounded domain D if and only if f(x,z,p) is quasi-convex in p for each fixed

(x,2).

THEOREM 2.1. Suppose I(z,D) is lower semicontinuous with respect to the
type of convergence indicated on every region D. Then f is quasi-convex in p

for each fixed (x, z).

Proof. Let x, be any point, R be the cell x, < x* < xb + h, Q be the cell
0< x' <1, and ¢ be any function of class €’ and periodic in each x’ with

period 1. Let zy be any function of class C” on R.

For each n, define { (x) on R by
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E(x)=n" R P [rhTY (x - xg)].
Then

La (@)= &y ek (%~ x0)]
and

I(zg + {5 R) = j}; f{x,z(i) (x) + g; (x), pf)?’ (%) + n; [nA™ (x — xo)]}dx

= T (w0 G B, ()l T (- 0]

— {rar 2 (rad Pl () + mh Do (5~ %0)1))dx
+ 3 TR [ {zas 2 (xadh ph, (xa) + nk ()] de,

where

U= (Oyyeeey 0y)y Ro= R jovn g n 1 (ag=1) < xP < ntag,

xa:<x§1:"’, av)’xtﬁll;"',ay = ! (0"/3"1)’ B=1e00, v

As n— ®, we see, since f is uniformly continuous on any bounded part of space,

¢, (x) tends uniformly to zero, and the 7! are bounded, that

lin 1(zo + & 8) = o [y 1122 (2 po (0) + 7 ()] dE] d.

n-— oo

From the lower semicontinuity of /, we must have

S A ez o po (0 4 m ()1 dé fde 2, flxz0 (2), po (2)] d.
Now, let x4, z5, and p, be any constant vectors. By letting
2o (%) = 2o + Poa (x* -~ xg‘),
dividing by A¥ and letting A — 0, we obtain

‘/Q flxgs20,p0 + m (£)] dfi f(%0520,P0) -
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By approximations,we can extend this to all { which satisfy a uniform Lipschitz
condition over the whole space and are periodic of period 1 in each x“.

Now, let D be a bounded domain and suppose ¢ satisfies a uniform Lipschitz
condition on D and vanishes on D*. Let R be a hypercube of edge %, with edges
parallel to the axes which contains D. Extend ¢ to the whole space by first de-
fining it to be zero on R-D and then extending it to be periodic of period & in
each variable. Then a simple change of function and variable reduces R to ¢/ and

establishes the result.

LEMMA 2.1. Suppose R is a cell with edges (2h'), -« ., (2hY) and center
xo. Let h be the smallest h®. Suppose also that 0 < k < h, that (* satisfies

a uniform Lipschitz condition with coefficient M > 1 on R*, and suppose
|{*(%)] <k, x € R,

Then there is a function ¢ on R which satisfies a Lipschitz condition with

coefficient M on R, coincides with ¢* on R*, and is zero except on a set of

measure al most

m(R) - [1 -Q-~TE)].

Proof. Let R; be the cell with center at %, and edges 2(A% - k), o = 1,

-, v. Then, since & = min A%, we have
m(Ry) > m(R) - (1 - h71E)¥.
Define ¢, = 0 on R, and equal to {* on R*. Then
[, (%) = &, (%)| £ |2y ~ 25 if x; € R, x,E R*.

Thus ¢, satisfies a uniform Lipschitz condition with coefficient ¥ on R, U R*
By a well known theorem, there exists an extension of 41 to R (the whole space

in fact) which satisfies the same Lipschitz condition.

LEMMA 2.2. Suppose the vectors {, — 0 (in our sense) on R and suppose

f is quasi-convex in p. Then if p, is a constant vector we have
m(R) f(pe) < lim inf 4 flpo + m, (x)] dx.
n - o0

Proof. For all sufficiently large n, we have &, < &, and %, — 0, k, being
the maximum of |, (x)] for x € R*. For each n for which k, < &, let 7, be the
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function of the preceding lemma which coincides on R* with {,» and let o,
= ¢, — 1, Then if each {, satisfies a uniform Lipschitz condition with coef-
ficient ¥ > 1 on R, then each 5, and w, satisfies one with coefficient ¥ and
2M, respectively. Moreover, each derivative 5! . is uniformly bounded and
M5, ,o—> 0 almost everywhere. Since f is uniformly continuous on any bounded

portion of p-space, we see that

lim .4; If(p(i)a + nixa'*' wixa> - f<P:;a+ wixa)l dx = 0.

n— oo

But the result then follows, since, for each n, we have
J (Pt oh) dx 2 m(R) f(po),
because of the quasi-convexity of the function f.

THEOREM 2.,2. Suppose f is continuous in (x,z,p) for all (x,z,p) and is
quasi-convex in p for each (x,z). Suppose also that z, — z, on the bounded

domain D. Then

1(z4,D) < lim inf I(z,,D).
- n —» oo
Proof. Let ¢ be any positive number. For each positive integer £, let Dy
consist of all the hypercubes of edge 27% whose faces lie along hyperplanes
x%= 27% i (each i* an integer) which lie in D. Since all the points [x,z, (x),
Po ()] and [, z, (%), pp (x)] for x€ D lie in a bounded portion of (x, z, p)

space, we may choose £, so large that

(2.1) j lf(x’znypn)l dx < €/5, ./

D’Dkl D'Dkl ‘f(x’zogpo)l dx < /5

for all n.

Let the hypercubes of Dg, be Ry, ..., Ry. For each &k > k;, let Ry,
i=1,++-,N. gvik —kl), be all the hypercubes of side 2% described above
which lie in Dkl' For each such &, define x} (%), 27 (x), p; () on Dk1 by

() = [m(Re)]™ fxdx, 2 (x) = Im(Re1™ 20 () d,
22)  pf () = [m(RNI L po (0) dx

(97

ne (1) = {15 (0) = 2124 25 (0 = 20 (D25 L py ()= po (W[} V2,
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where x € Ry; . Let £, (%) = z, (%) — 20 (%), m, (%) = pp (%) — po (x). Then, on
Dy,
1

{1220 (%), pn (0] = [ 1220 (x), po (0]
= { 1% 20 (), o (D] = [[% 2, (2), pu (2]}
@3)  +{f 1% 20 (%), po (2) + m, (2] = f [}, (%), 25 (%), py (%) + m, ()]}
~{f 12,20 (x), po (2] = flx; (x), 2 (2), pp ()]}

+ {5 (0, 2 (2, P (%) + m, (0] = [ (%), pj (), pf (D]}

Now, all the arguments of f occurring in (2.3) for x€Dk1 lie in a bounded

closed cell in (x,z,p)-space over which f is uniformly continuous. Let

E(P)=max lf(x',Z'aP')—f(x",Z",P")ls pio

for all (x% z% p’) and (x”, z”, p”) in this cell with

27— 2”2 27— 27|12+ [pT= p*I2 < o7

then € (p) is continuous for p > 0 with € (0) = 0. Then, for each n and each
k > k,, we have

1% 2 (), pr (0] = {220 (2 pu (D] < (|22 (%) = 20 (D)),
|f1x, 20 (%), po (%) + 7 (2)] = [z} (%), 2 (%), pp, (%) + m, (]| < eln ()],
|f 12,20 (), po (2)] = fLxp (%), z; (%), pp (%)]] < €ln, (9)].

Now, the r, (x) are uniformly bounded on Dy, and tend to zero almost every-

where on Di,. Hence we may choose a k > k| so large that

S5

Dk lf[x’zo(x)a Po(x) + Wn(x)] - f[x]’:(x)’ z]:(x), P]:(x) + ﬂn(x)]‘ dx < 6/5’

1
(2.4)

S 1 L5 20(3), po(=)] = [Lx(2), 2502 p(0)]] dx < €5,
1

for all n. Since z, converges uniformly to z,, there is an n; such that

2.5) S

Dk if[x,zn(x)a pn(x)] - f[x’zo(x)v pn(x)” dx < 6/5, n > ny.

1
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. . % . .
Finally, since x; (x), and so on, are constant on each Rg;, and f is quasi-convex,

we conclude from the previous lemma that

Lim inf ka [FI5 @), 22, () + 7y (D] ~ [ (2 (@), P ()] Jax 2 0.
n - 0o 1

Using (2.3)-(2.5) and the above inequality, we see that
lim inf I(zp,D) > I(z4, D) - €.

n— oo
Since € is any positive number, the result follows.

3. Lower semicontinuity and weak convergence in P (s > 1). In this
section, we discuss additional conditions which with the quasi-convexity of
fin p are sufficient to guarantee the lower semicontinuity of I (z,D) with respect

to weak convergence in P on D.

DEFINITION 3.1. Suppose ( is of class ng on the bounded domain D and
suppose R is a cell with R C D. Then ¢ is said to be strongly of class B on
R* if and only if £ is of class B, in x; on each face x* = const. of R* and there

is a sequence { of class C”on R such that
D (¢, - ¢ R)—0, Ds(¢, - ¢ RY) — 0.

LEMMA 3.1. Suppose { is of class B (s > 1) on the bounded domain D.
For each &, 1 < o < v, let (a%, b*) be the open interval projection of D on
the x®axis. Then there exist sets Z%of measure zero such that if R:c®< x* < d%

(ot =1,++,v) is any closed cell in D with
c* € (a% b%) — 2%, d* € (a% %) - 2¢ (=1y00+,v),
then ¢ is strongly of class $_on R*.

Proof. Let R’ be any rational cell in D (that is, R =[C, D] with C% D®
rational). In [1], Lemma 5.1, we have seen that if { is of class §Bs on D, then

(3.1) lim D5 (¢, - ¢, R) = 0.
h—o
For each o, define

Ry = L6 -0 [ T 14, - Tol?]o ant
B=1
B#a
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Since ¢ is obviously of class ﬁﬁs' in x; for almost all x* on [C%, D%, ¢7 (2% R")

is defined for almost all x* and
. Da ’ a
hll_I’I:) ‘/C“’“ | (2% R*)| dx* = 0.

By arranging the rational cells R in some order and choosing successive
subsequences, we may choose (on account of (3.1)) a final sequence h, — 0

such that ¢ (x% R’)— 0 and £ is of class § in x7 on [CJ, D] for each

® not in a set Z*R’) of measure zero (0 = 1,-+-,v). Now let

X
Z® = UZ*(R*);
then
m(Z%) = 0 (a0 =1,c00,v).

Now suppose R is one of the cells described in the lemma. Then it lies in some

rational cell R’-and we may take { = {; .

LEMMA 3.2, Suppose R is a cell with edges (2h'), - -+, (2h¥) and center

%y. Let

h= min k% K= h"l(h%R9)V2,

1<a<y

Suppose also that 0 < k < h, that {* is of class B on an open domain con-
taining R in its interior, and that (* is strongly of class B, on R* with
oo 1715 dS < B, Do(¢* RY < 0 (s > 1).

Then there is a function { of class P on R which coincides with (¥ on

R*, is zero except on a set of measure

m(R) - 1 -Q - A" BT,

and satisfies
23/2 (S
Ds ({,R) £ Ts ATHEQL + Ksus) Ts = 9s ~1

A

2),
(s —Z_ 2).

Proof. For each x € R, x # %9, let x*(x) be the intersection of the ray ;O_x)
with R*, and for each x € R define
0 (x = x0)7
r(x) =

|a*(x) — 2|71« |2~ %4 (x # x4).

Let Hmi be the pyramid in R with vertex x, and base the face F;“: where
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x® = x% + h*.
On the pyramid [I”, introduce coordinates &', « - -, £¥7%, r by
xV=axl+rhY, xY = x) +rEY (0 r<1, y=1,---,v-1).
Then, if r and £ 7 are considered as functions of x, we have
r(x) =1 2% (x) = [EN(x) + 5}, oo, EV7 (%) + YT, AV 4+ 2]

.. . +
Similar coordinate systems may be set up on each of the other II; .

Define

©<r<1-kk),

(=4 .
i RETU(r — 1 + kA7) Q- kAT < r < 1),

Choose a sequence ( satisfying the conditions of Definition 3.1; and for each

n, define

£ () = (0] - & [+ ()],

Then each £ (x) is of class D’ on R.
We now compute the derivatives of £, on each pyramid Ha taking I} as an

example. Then

ny =71 ¢(r)é:§7 (1__<:y é v —-1),

Coxw = BT (DGE = (B r g () £7¢7 o (y summed from 1 to v~ 1).

Then, since r™' ¢(r) < 1and ¢°(r) = k" hforl — hE™' <7 <1,

| m G2 £ (Goly Goby) + UGN+ 22 EN (8 00

n n

A

2[k'2 Icn*I’z + K2<¢:;y C:;y)] (n not summed).

Using the inequality

1 (s £2)

(a2 + 832 < o5 (|a|® + |B]%), o
= 2(3-2)/2 (s

v

2),
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we obtain

Dy (2 ) < T S e L e

;
r e )]
< T hTUR [k—s fF: |¢x | ds + KS Dy (£F, F;)].
Also

Sy 16l d= S

[ T jF; | &x|s dS

<k fF+ |£*|® dS.
14

Adding these results for all the Hi, we obtain the result for each =n; and also
Dy ({,» R) is uniformly bounded. Thus, we may extract a subsequence which
tends weakly in P5 to some function ¢ of class $s on R. Since each ¢, = {*
on R*, ¢y tends strongly in Lg to é—'* on R*, we see from [2], Theorem 8.5, that
(= E* on R*. From the lower semicontinuity of D (see [2], Theorem 8.2), the
result follows.

LEMMA 3.3. Suppose f is quasi-convex and of class C’ for all p, and suppose
for all p that

z(fi)ngzﬂpP“+1V (s21).

lya a

If po is any constant vector, D is any bounded domain, and ¢ is of class L on

D and vanishes on D*, then f [p, + n(x)] is summable over D and
‘/L; flpo + a(x)] dx > m(D) - f(po) -

Proof. There exists a sequence of functions { , each of class C” on D and
vanishing on and near D*, such that D; (£, = ¢, D)— 0 (see [2], Definition
9.1). For each n and almost all x on D, we have

lf[Po + ()] = flpy + 7(%)] | =

| Lmho(®) = wh ()] L' Do + (L= 0) (%) + tma ()] dt|

a



QUASI-CONVEXITY AND THE LOWER SEMICONTINUITY OF MULTIPLE INTEGRALS 37

S lm@ = a@] Ko L1 {10 = 0p + () +tp + ma(x)) -+1}de

(3.2)
K 7 () = 1] [ hslpo + 7 I 4 by Ipo 4 ma(@)*7 4 1],

A

where
st 1<s< 2
hg = - =
s"l 25‘2 (S ; 2).

Using the Hélder inequality, and so on, and the strong convergence in L5, we

see that

lim ‘11; flpo + mn(x)] dx = j; flpy + n(x)] dx.

n —oo
Since f is quasi-convex, the result follows.

LEMMA 3.4. Suppose that f satisfies the hypotheses of Lemma 3.3. Suppose
also that each {, is of class Bs on a domain D and is strongly of class s on

R*, R c D, with
nlgnoo ‘/R:* ‘gn‘s ds = 0’ DS (é"’ R*) é MS’ DS (C,,, R) ; Ms (n = 1’2' ce )'
Then for each py, f[po + mn (x)] is summable for all sufficiently large n, and

lim inf J f[po + mn (x)] dx 2 m(R) - f(po), (%) = ¢! a(x).

n —oo

Proof. For each n, let
ko = U Lu1g, 15 dSTVS,

and let K and & be the quantities of Lemma 3.2 for R. Since k;, — 0, we have
kn < h for all n > some n;. For each such n, let », be the function of Lemma
3.2 which coincides on R* with {,» and let

- - i _ 1 i _
Xn_cn Mo Kna—nnxa’ Wpo = X, 0"

nx

Then, since x, = 0 on R¥, we have

S flmy + 0, (0)] dx 2 m(R) f(po) -
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As in (3.2), we see that, for each n, and almost all x on D,

[flpo + @, (%) + &, (£)] = flpy + @, (x)]]
<K -k, (0] (hs|Po + @ () + ke (05714 ks [Py + @, (0)|S71+ 1)

K.

A

Kn(x)l . [(1 + Shs) hs lpo + 7, (x)ls—l + Shz lKn(x)‘s-l + 1] .
Using the Holder inequality, and so on, we see that

lim '/n: [ flpo + m (%)) = flpo + w,(x)]] dx = 0,

7 —r 00
from which the result follows.

THEOREM 3.1. Suppose [ is of class C’ in (x,z,p) and quasi-convex in p.
Suppose also that there are numbers k and K, K > 0, such that

@) f(x’z9p);k9 (iii) fxa ];a hs K* ([pl° + D?
@ fi fo 2 KPP+ DY (v) f, £, < K (Ip® +1)%.

for all (x,z,p).

Suppose also that z, — zq weakly in Bs on the bounded domain D and that
either

(a) each z, and zy are continuous on D and z, converges uniformly to zy on
each closed set interior to D, or

(b) the set functions Dg (zn, €) are uniformly absolutely continuous on each

closed set interior to D.

Then

1(z4,D) < lim inf 7 (2,,D).

n-—oo
REMARK. If s=1, weak convergence in $; implies the hypothesis (b).

Proof. We note first that hypothesis (ii) implies

3.3) [ (zp) = (2,0 = Iy [1 £ (w2,0p;) de
Shple [T Ui fo (oztpp)1V? de

a
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Slpbe [URET PP o) de < K(sTH IS + [p]).
Also, hypotheses (iii) and (iv) similarly imply

(3.4) If(x,z,O)—f(0,0,0)];K(lxl+Iz[).

Thus, for all (x,z,p), we have

@5)  |f(xzp] 210,000 + K([x] + [z] + s7* [p]® + [p]).

Therefore /(zy,D) and the I(z,,D) are uniformly bounded.

For each & (1 < & < p), let (a% %) be the open interval projection of D
on the %% axis and let Z"‘ and Z be the sets of Lemma 3.1 for z, and z,. Also
for each o, n, k, let E:,k be the set of x* in (a%, b%) — Z2, where

D (z, Do) < K,

Dxa. being the set of x such that (x%, x® € D. Suppose that l—)-s (z,,D) =< M,

some uniform bound existing because of the weak convergence. Let
Z8 = (a% b9) - EZ .
Then
m(Znk) < ME™Y, m(En k) > (b%= a%) - ME™!,

For each «, let

E* = k‘ij N U EZ4 28 = (a®, b9 - E* v Z§ v

1 N=1 n=N n

3

ze .

1

Then m(Zg) = 0. For each ¢, each natural number n, and each integer i, define
Z,C:’i as the set of all x* such that x* —~ i . 27" € Zg' , and define

Then m(Z%) =

Now, choose a point x, such that xg‘ is not in Z% (X =1,+++, v). For
each natural number £, let (}, be the totality of hypercubes of side 27% bounded
by hyperplanes of the form x* = x2 + i . 27, None of the numbers X+ 27k
is in Z% and, moreover, z, and each z, is strongly of class §Bs on R* with
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Ds (zp, R) uniformly bounded for infinitely many values of n, R being any hy-
percube of any C’k' Since the totality of these hypercubes is countable, we may
choose a subsequence, still called z,, such that /(z,,D) tends to the former
lim inf, Z,— Z, almost everywhere on D, and Dg (z,,R*) is uniformly bounded

for R of any Qk in D. Since z, — z in B, we also have

lim ‘I};*lzn—zolsds=0

n —oo
for each such R.

Now, we first consider the alternative (a). Let € be any positive number.
For each %, let Dy be the union of all the cells of Qk which are interior to D.

Since f is bounded below and /(z,, D) is finite, we first choose k; so large that

1(zn,l)-l)kl)>—— €/5 (n=1,2,+++).

(3.6)
I(ZO,Dkx ) > [ (z9,D) — €/5.

For this ky, let Ry, - -, R4 be the cells of Dk1 and for each k& > ky, let

Rii (i =1y, 9 - 2V(k'kl))

be the cells of Q’k in Dkx For each %, define x;(x), z;:(x), and p]:(x) on Dkl by
(2.9). Then, from (ii), (iii), and (iv), it follows that

[fLx,20 (%), po(®)] = [l%(x), zj(x), pp(2)]]
(3.7) < K(lpe®)|* + 1)+ (|2 = x(2)| + |20(%) = z,(2)])

+ K(hs |po(0) |57 + ks [pr(x)[*71 + 1)+ [po(x) = pp(2)],
where
s 1<s<2),
sTH. 2872 (s > 2);
the method of proof is similar to that of (3.3). If we let
{y =2n ~ %05 M, = Pn = Po>

we see similarly that
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[ {2 20(x), po (%) + my ()] = fl23(%), Z5(x), PR(%) + 7, (x)]]
(3.8) < K(pa(®|® +1) (Ix=2(®)] + [20(%) = 7 (%)])
+ K(hs |pa(®) 57" + ks [pp(®) + m () [S70 + 1) + | po (%) = pp(x)];
(3.9 |f[%,20(x), pa()] = fl%20(x), pa(x)]]

< K(Ipa (0] + 1) + [za(x) = 20(2)] -
Now, by the Holder inequality on each Rj;s we see that

(3.10) VARLAOINCS 5, [Po(0]* da.

1

By applying the Minkowski inequality, we see that the integrals
*
(3.11) kal |7 (0)]° da, kal I (%) + 7 (%)]° dx

are uniformly bounded. Finally,

—o0 D

(3.12) klim jk |po(%) = pp(%)|® dx = 0.
1
Hence, using (3.7)-(3.12), we may choose a £ so large that

(3.13) 4k |f (% 20(%), Po(%)] = fLx}(x), z;(x), pp(x)]] dx < €/5,
1

(3.14) ‘4k | f[x,20(%), pr(x)] - f[x;:(x), z;(x) p}:(x) + 7, (%)]| dx < €/5
* 1
(”=192"")7

and then choose n, so large that

3.15) S [f[%2z(2), pa(®)] = flx,20(x), pn(2)]] dx < €/5, n>ny.

Dkl
Since x;:(x), z;;(x), pZ(x) are constant on each Ryj;, it follows from Lemma 3.4

that

(3.16) liminf [ 7050, 2 (0, pp(x) + 7 (1)) dx
n — oo 1
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> [ l(a) z(0), p()] dx.
= ke |

Using (3.6) and (3.13)-(3.16), we see that

lim inf 1 (23,D) > L(zy,D) - €.

n-—soo
The result follows in this case.

We now consider the alternative (b). For each natural number ¢, we define

fq (x,ZyP) = [1 - aq(x,z-)] f(x,Z’P) + k- aq(x,z)y
0 (0L RZ<gq),
ag(x,2) = {1 3(R-q) ~2(R-¢)* (¢ <R <q+1),

1 (R>qg+1), R=(x|?+]z]")V2.

Remembering (3.3)-(3.5), we see that each f; satisfies hypotheses (i)-(iv) with
the same k£ and some K;. Moreover f; is independent of (x,z) for R > ¢ + 1,

and also
fq(x,Z,P) i_ fq+ 1 (%,2,p), qli_.moo fq(x,Z,P) = f(x,2,p).

Thus it is sufficient to prove the lower semicontinuity for each gq.
For a fixed ¢, we note that we may replace |z,(x) - z;:(x)I by ¢, (x)in
(3.7) and (3.8) and |z, (x) — zo(x)| by ¢, (x) in (3.9), where

&by (%) = min (| z(%) - z;(x)l » 29 + 2),
U, (%) = min (] z5(x) - zo(x)|, 29 + 2) .

From the uniform boundedness of the ¢ and ¢, (¢ fixed), the uniform absolute

continuity of the set function Dg(z,,e), and the facts that

klim (%) =0, lim ¢ (x)=0

n —oo

almost everywhere, it follows that the argument can be carried through as before

for each fixed q.

THEOREM 3.2. Suppose s > v and suppose [ satisfies the hypotheses of
Theorem 3.1 with (i) replaced by
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(i) f(x,z,p);m[p|s+k (m > 0).

If z* is any function of class ng on the bounded domain D, then there is a
function z, of class $_ which coincides with z* on D* and minimizes 1(z,D)

among all such functions.

Proof. Let z, be a minimizing sequence. It follows from (i?) that Dg (z,,D)
is uniformly bounded. From [2], Theorem 9.4, it follows that Dg (z,,D) is uni-
formly bounded. But then a subsequence, still called { z;}, converges weakly in
EBS to some function z, of class §Bs which coincides with z* on D* by [2], Theo-
rem 9.2. But, from [3], Chapter II, Theorem 2.1, it follows that the equivalent
functions %, and z, are equicontinuous on closed sets interior to D. Hence z,
converges uniformly to z, on each closed set interior to D. Hence, from the pre-
ceding theorem, z, is a desired solution.

More general theorems involving variable boundary values, similar to those
in [3], Chapter III, $5, with s > v, can be proved.

4. Necessary conditions for quasi-convexity. In the two preceding sections,
we have established the connection between quasi-convexity and lower semi-
continuity. In this section, we shall establish some necessary conditions for
quasi-convexity. In the next section, we establish some sufficient conditions
which are also necessary when f has certain interesting special forms. Unfortu-
nately, the writer is unable to establish conditions which are both necessary and

sufficient in the general case.

LeEmMA 4.1. Suppose f is continuous,  is the cell
‘xa‘;l (@ =1,~++,v), § >0,

and suppose

4.1) £ flp+ w01 dx 2 f(p) - m(Q)

for every function { which satisfies a Lipschitz condition with coefficient < §
on Q and vanishes on Q*. Then (4.1) also holds with Q replaced by any bounded

domain D.

Proof. Suppose ¢ satisfies the conditions on the bounded domain D). Let
R be a hypercube of side h which contains D, and extend ¢ to R:

xd < x :xo+h
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by defining ¢ = 0 on R — D. Then { satisfies the conditions on R, and

£*(x) = h7H L(xg + ha)

satisfies the conditions on Q, and
*i 13
x) = %y + hx).
éxa( ) é—xa( 0 )

DEFINITION 4.1. The function [ is said to be weakly quasi-convex if with
each p is associated a & >0 such that (4.1) holds for all D and all { satisfying

a Lipschitz condition with coefficient < 8p and vanishing on D*.

In other words, f is weakly quasi-convex if and only if each linear function
furnishes a weak relative minimum among all Lipschitzian functions coinciding
with it on the boundary, whereas f is quasi-convex if and only if any linear
function furnishes the absolute minimum among all such functions. Thus we have
the following result.

THEOREM 4.1. If [ is continuous and quasi-convex, it is weakly quasi-

convex.

We shall see that if f is weakly quasi-convex and continuous, then f satis-
fies a uniform Lipschitz condition on any bounded set in p-space and satisfies
a generalized Weierstrass condition (see Theorem 4,3) which reduces to the
ordinary Weierstrass condition if f is of class C’ (see (4.7)) and is equivalent
to the Legendre-Hadamard condition (see (4.8)) if f is of class C”.

LEMMA 4.2. Suppose ¢ is continuous, and suppose corresponding to any

point X in E, there is a & > 0 such that for any unit vector u we have

kp (Ao — hp) + hp(hg + Ekp) > (A + k) ¢(Xg) (0<h<5,0<k<$).
Then ¢ is convex in \.

Proof. let A, be any point, and ; any point with | x| = 1. We shall show that

Y(t) = (Ao + )

is convex in t. From the hypothesis, it follows that for each ¢, there is a
8(ty) > 0 such that

4.2) ky(to—h) + hp(to+ k) 2 (h+ k) ¢(8) OLh <8, 02 k<8
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Now, suppose £; < t,. Let

t -t

x (8) = ¢ (2) - ¢ (4) - Ly (&) — ¢ ()],

2 1

Then 1y (%) satisfies (4.2) and x(#;) = x(2;) = 0. Suppose M = max ¥ (t)
(t; < ¢ <t ), and suppose M > 0. Let ¢, be the smallest value of ¢ such that
x(t)_= M, and let the number §(¢,) be chosen as above. Clearly ¢; < ¢, < ¢,.
Choose t; and ¢, with

[ts = to] <8, [ta= ]| <8 (4 S t3 < t5 < tg < 4).
Then yx (23) < M, x () < M, so that
(tg — t9) x [t — (8o = t3)] + (25— 83) x[to + (t4 = %) < (24 — t3) X (24),
which contradicts the hypothesis. Thus y (¢) <0, so that

t -t

(1) b ¥ (L) + Ly () - v (2],

2= b
Since ¢, and t, were arbitrary with ¢, < ¢,, the function ¢/ is convex in ¢. Thus

¢ is convex in A.

THEOREM 4.2. If f is weakly quasi-convex, then f(pi + A &%) is convex in
X\ for each fixed p and &.

Proof. Let pi, {—'i and Aoabe fixed and let i, be any unit vector, and sup-
pose b > 0, £ > 0. Choose 8(p;, fi, Aon) > Obutso small that, for any bounded

domain G,
4.3) L UL+ 2y &+ Zla(0)]de 2 m(6) f (P + Xy €9)

for all { satisfying a Lipschitz condition of constant < & on G and vanishing on
G*. Let (gy5+++, p,) be a normal orthogonal set of unit vectors. If £ = 0, the
result is obvious. If £ £ 0, choose hand k with0 < & |£] < 8, 0 < k [£] < &,
and let p be any number > | £|/ 6. Let H = (1/p) k, K = (1/p) h, and let R be
the rectangular parallelepiped

—pHSy' S oK 1YL Lo (B=200,v)
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where

y'B = X, I»L’B .

Let F] be the face y! = — p H, F; be the face y! = p K, F/g be the face
yB = - p, F/BT be the face y# = p, and 1et1]; and Hgbe the pyramids witﬁ vertex
at the origin and base F[; and ['E, respectively. Let ¢ be defined on R to be

with £(0) = &. Then

continuous on R, zero on R*, linear on each H,B and 11,

ﬁ’
(o)™t uy, & =k & , onII7

_ = (K)o, €5 =~ by € on DI
(4.4) ¢ 1
. a

x -1

i -—
Pl pgy € , on Il

i

-p7! Mg gi , on IIE
Also

m(I7) = 7t 277 p¥ H, m(I1}) = » 71 2¥71 p¥ K, m(R) = 2¥7! p¥ (H + K)
4.5)

m(I7) = m(1I3) = v7* 272 p¥ (H + K) (B=2,+++,v).

Then, by applying (4.3), (4.4), and (4.5), we obtain

1 2k . .
—[ Up, + (Ngy— hpy ) €0 +

i i
2w L h+k f[Pa+(A0a+k#1a)‘f]

h+k

+

Z (10 O sk £ 11t 0 07 1)

18Y%

FpE+ A, &9).
Letting p—> ©, we obtain
EfUpE+ (Mgq= Ay o) EX1+ AfIph+ (Ng v by ) €51 > (R k) f(ph+ Xy, €F)

From the preceding lemma, it follows that f(pi + A, £') is convex in A for each

£ and p.
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THEOREM 4.3. Suppose f is continuous and convex in N for p and £.
Then f satisfies a uniform Lipschitz condition on each bounded closed set,

and for each fixed p there exists a set of constants A" such that

(4.6) fQph+ A E5) > f(p) + AF A &

for all ) and & If fis of class C*, (4.6) holds if and only if A} = fp,-, that is,
a

4.7 fOPE+ A, ED) > f(p)+ foi (P) A €5

If fis of class C*, (4.7) holds for all p, A, £ if and only if

. igj
(4.8 fp;pé(p) Agrg&H &l >0

for all A, &, p.

Proof. Suppose, first, that f is of class C’ Let p and ¢ be fixed. Then
(4.7) follows from the convexity in A. Moreover, since each unit vector ei in

the p-space is of the form A &%, we see from the convexity in A that
@) F =1 (p=ed) < fps @) < 1(p+d)= 1R

for all p. Thus the derivatives of f are uniformly bounded by these differences
in the values of f on any bounded part of space. Moreover, in this case, if

constants Alfl satisfy (4.6), we must have
Af = fp; (p).

Now, if f is of class C”, equation (4.8) with p replaced by p:; + A, £lis
equivalent to the condition that f is convex in A for each fixed p and £.

Finally, if f is continuous and has this stated convexity property, it is clear
that the k-average function also does, and f, is of class C’ By letting A —0,
we see that [ satisfies a uniform Lipschitz condition on any bounded closed
set. Now, choose k; = n~! and choose p fixed. From (4.9) and the uniform con-
vergence of f; to f on any bounded part of space, we conclude that the de-
rivatives fhnpé (p) are uniformly bounded. We may therefore choose a subse-
quence, still called #,, such that

Jim fh e () = 47
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Since (4.7) holds for all A and & for each n, (4.6) holds in the limit.

5. Sufficient conditions for quasi-convexity. In this section we prove one
general sufficient condition and then give conditions which are necessary and

sufficient when f has certain interesting special forms.

LEMMA 5.1. Suppose ( satisfies a uniform Lipschitz condition on the closure
D of the bounded domain D and suppose ¢ = 0 on D*. If

SN, 1< o <y <oene <o <o,

3L, ..., e
f (¢ ¢ )dx=0.

a a
a(xl,‘..’xy.)

Proof. Choose a large cell R containing D in its interior, and extend ¢ by
defining it to be zero outside D. Then the second h-average function Cyp is of
class C*’ on R and vanishes on and near R*. Since any integral of the above
type formed for {, tends to that for { as £— 0, we need prove the theorem
only for functions ¢ of class C* on cells R.

As an example, take iﬁ= Og= By, B=1,-++, u, D=R. Then

1

N
fa(é’ ) fRi(—l)#*aé:anx

Roaat, vnn, x#) o=

it

I
IS Y D R

a=1.

”w
NC LN W

a=1 ox*

!

Q dx,

where

a( 1,...’4'0.‘1’ aa"” M-l)
0.2 ¢ &y

a(xl,...,xa—l’ xa‘+1,...,x/-‘)

the last equality holding by Green’s theorem. But the boundary integral vanishes
since ¢ = 0 on R*, and the integrand in the second integral vanishes on R (see
[3], Chapter II, Lemma 1.1, for instance).
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THEOREM 5.1. 4 sufficient condition that f be quasi-convex is that for

each p there exist alternating forms

a I a.,B Apy *ttyay iy iy
¢ . o . oo cee T
Ag al, AZE wlaly, oo, ATN T Y g

such that for all w we have

flp+ m)

v

i iy oy ay
Proof. This is an immediate consequence of the preceding lemma.

THEOREM 5.2. If the a?’].ﬁ are constants and

(5.1) f(p) = aff pl ph,

a necessary and sufficient condition that f be quasi-convex is that

(5.2) aff A rg £1 8 20
for all X and €.

Proof. If ¢ = 0 on D¥*, we see from Lemma 5.1 that

L1l + a@lde = f(p) m (D) + [ a2 wi(2) ) () dc,

f(p)+Aia77‘;l+. R et L O S T L

But Van Hove [6] has shown that the condition (5.2) is necessary (this also

follows from Theorem 4.3) and sufficient for the second integral to be >0 for
all ¢ of class D’ on D which vanish on D* (hence this is true also for all ¢ of

class §, on D and vanishing on D*).

LEMMA 5.2. Suppose

1l
o

X oy
=1

for all x and y for which

I
o

n . .
2 bijxy

i,j=1

Then there is a constant K such that
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ai]'=Kbl‘j (i, j=1,++-, n).
Proof. We may introduce new variables £ and n by

x=c§9 y=d7)9

¢ and d being n x n nonsingular matrices. Let a and b be the matrices of the

original forms and 4 and B those of the transformed forms. Then

A=c’ad, B=c"bd (ci']. = c].i).

We shall show that there is a scalar K such that A = KB. We may assume that

Biji=1 (i=1,-+,7r); Bij = 0 otherwise, r <om,

unless B = 0 in which case 4 = 0 also and the theorem holds. By taking #° = 1,

=0 (j# s, s=1,-++, n) in turn we see that

Ais=0(i 1., n,s>r); Ais=0 (i7é39s=19"‘9r’i=19"'3n)-

Then, by choosing 1 < s < ¢ < rand setting 7° = =1, =0,j#s,j#t

we have
(A + Ai) €8 =0 for all & with &5 + &¢ = 0.
Thus there exists a constant K (s,t) such that
Ass + Ast = K (s,0), Ais + Ag = K (s,0).
Hence
Ay = Agg == 4Ap = K,

so that A = KB.

THEOREM 5.3. Suppose that N = v + 1 and
(5.3) fp)=F(Xy,eer, Xpsy),
where F is positively homogeneous of the first degree in the X; and

Xl-:—detMl (i=l,"', V), 1¥y+l=detMV+l,
i=1 vl i+l

MV‘H = Hpal7 "'1P:H9Mi = HP;_r"‘9Pa » Py Py 1"’!p:H

(i =1,%0c,v).
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Then f is quasi-convex in p if and only if F is convex in the X;.

Proof. If F is convex in the X;, it follows from Theorem 5.1 that f is quasi-
convex in p.

Hence suppose f is given by (5.3) and is quasi-convex in p. If
8X, = X (b + A, €7) = X, (1),
then
(5.4) DXy = Xypi A, £

Also, since

we have

(5.5) p’[g Xy pi = — 85

a X .

Now, choose a set of X; not all zero and choose any p such that
Xi (p) = Xi .
Since f is quasi-convex and hence weakly so, there are constants A; such that
f(Pa‘; + A fi) > f(p) + A2 X, &'
Since f depends only on the X, we must have

(5.6) AF A, € <0 forall A, fwitthpé)\agi =0 (k=1,ce0, v+1).

Obviously, then, the equality must hold in (5.6). Using (5.4) and (5.5), we see
that

(5.7) pEAX, = - (X &) (B=1,-v, v).

Hence, we must have

(5.8) A X &8 =0
for all A, & for which
(5.9) X, £'=0and D} A, &5 =0, DF = X X, ;.

a
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Now, since not all the X; are zero, assume X, # 0. Then

(5.10) > (X, -4 x)A £ =0
i £k

for all A, & for which

(5.11) Y (pgx, - Dgx) A € =o0.
i 2k

From the preceding lemma, it follows that there is a constant K such that

(5.12) A2 X, - 42 X, = K(D* X, - D X,).
Hence
(5.13) A% = KD# 4 L* X, L* = X' (48 - KDg).

From (5.7) and (5.13) it follows that
(5.14) A% A &1 = KDF A &'+ LoN X, € = CF AX,, C* = (KX, - L* pF)
Finally, if we are given any values of the AX,, the quantities
by =pFAX, G=1,000, v) andh , = X, AX,

are determined and the AX, are also uniquely determined by the 4. Using (5.7),
we may determine the A in terms of the A (i =1,+++, v), and substitute them

into
by = Xy A, = D A, £,
and we merely have to choose the ¢! to satisfy the equation
(D¢ by + hyyy X)) € =0 with X, & £ 0;

this is always possible unless all the DA = 0. Thus, unless these linear
ys P i a

relations in the AXi hold, we have
(5.15) F(X + AX) = f(pl+ A, &) > f(p) + AZ N &0 = F(X) + C* AX,.

The result follows in this case by continuity.
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Finally, since F is homogeneous of the first degree, we see by taking
AX = kX, b > -1,

that

FI+hX]=(Q+hF(X)> F(X)+hC*X,,
or
R[F(X) - C*x, ] > 0, b > - 1.

Hence F(X) = Cka. Then by setting X = X, X, # 0, choosing the C* for
this X, and then letting h—30, we see that (5.15) holds for some C* even if
X = 0.
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SOME INEQUALITIES IN CERTAIN NONORIENTABLE
RIEMANNIAN MANIFOLDS

P. M. Pu

1. Introduction. As is well known, the projective plane and the Moebius strip
are nonorientable manifolds of dimension two. After introducing a Riemannian
metric on each of them, we obtain two 2-dimensional nonorientable Riemannian
manifolds. For convenience of reference, let us denote them by M:z and M3,
respectively. Each of these manifolds has an area 4. Moreover, there exists a
family of closed curves, which are not homotopic to zero, on each manifold; and
hence the set of the lengths of all these closed curves in consideration has a
positive greatest lower bound, a. The purpose of this paper is to investigate
the relationship between these two geometrical constants, 4 and a. It is found

that, in each case, there exists an inequality [1] connecting them, of the form

® A > ka?,

k being a constant depending only on the conformal character of the Riemannian
manifold. To establish such inequalities and to determine the corresponding
best possible constants are the two central problems in this investigation.

For the time being, the projective plane is used in the following realization:
it is given as the unit sphere with identification of diametrically opposite points.
We assume further that the metric on M?,z is given by

ds? = g(p) dp?

dp? being the line element of the unit sphere taken from the embedding Euclidean
space; g(p)€Cy, g(p) > 0 for any point p on the manifold. As for the Moebius

strip, we assume that it is given by the strip

_B<y<B’

with identification given by the fundamental group
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Charles Loewner for his guidance and encouragement in the preparation of this paper
which represents the essential contents of his doctor thesis at Syracuse University.
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x’=x+n(2n),

y'=(-1)"y

We assume further that the metric on M2 is given by

ds? = g(x,y) (dx? + dy?),

where g(x,y)€ Cg and g(x,y) > 0. We shall see later that these assumptions
are admissible in our cases.

The main idea of the method for solving these problems is to reduce the
general metric, g(p)dp?, to a simple and special one, gdp?, for which the eg-
wality in (1) holds, by an averaging process over a certain continuous group
space; this enables us to handle our problems more easily. Let 4,4, ag, 4z, ag
be the geometrical constants defined in terms of the original metric and the
simplified metric respectively. Fortunately, this averaging process provides us
a means of comparison between Ay and A and between ag; and ag; namely, we
have

()

A comparison of the equality yielded by the special metric mentioned above with
the foregoing inequalities (2) gives us the desired result.

Take, for example, the manifold M2,. Each rotation of a 2-sphere about its
center in the ordinary space is actually a conformal mapping of M;z onto itself.
All these rotations form a compact Lie group G. Averaging [ g (p)]¥2 over G by

the Hurwitz integration,

L U@V do = b2

where o € G, and where §o is the invariant volume element, we can easily show
that ~ is a constant and that the simplified metric is an elliptic one; this pro-

duces the equality

3) Ah=—az.
g

A combination of (3) with the following inequalities corresponding to (2),
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vV

Ag > A,

ag < ap,

shows that we have, in general,
A > 2 a?.
- m

The same method can be extended, with some restrictions, to the case of
M;n , that is, the Riemannian manifold whose underlying topological space is
an n-dimensional projective space.

In the case of M2, let the rectangle
- o(ﬁ x <
[—B <y <B
be its fundamental region, as will be explained in §3. There exists a one-pa-

rameter family of conformal mappings of MZ onto itself,

x’=x+ c,

y =9,
¢ being real mod (40t). Averaging [g(x+c,y)]'/2 over the interval [0, 40] by the

formula

1
4o Lelxre, ]2 de = (g (0]

we can see that [g(y)]'/2 is free of x and is an even function on account of the

fact that the metric is invariant under the fundamental group I'; that is,

glx + n 2), (-1)"y] = g(x,y).

A further consideration of the same problem with the metric g(y) (dx? + dy?),
where g(y) is positive and even, leads to a distinguished g, (y) such that
go(y) (dx? + dy?) plays the same role as the elliptic metric in the case of M2
or M n 3 that is, go(y) (dx? + dy?) leads to the equality in (1).

2. Riemannian manifold M 22. whose underlying topological space is a pro-
jective plane P2, To begin w1th let us prove the following general lemma, which

will often be used.
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LEmMA 1. Let Mi2 (i =1,2, -.-,n)be asetof n 2-dimensional Riemannian
manifolds smooth of order 1 such that each M?, with the same underlying topo-

logical space T?, has a metric of the form
ds? = gi(p)ds2,
where g;(p) > 0, g; (p) € Co forp € Ml?,' and ds? is a Riemannian metric which

can be defined locally by

2
d32 = z gjk(ul,uz)llu]du,k, g].k(ul’uz) C CO .
js k=1

Let gn (p) be defined by the formula

lg, (P12 + oo + [gu(p)]1/2

n

En(p) =

If the sets of lengths S; = /(; [gi (p)1t/2ds (i = 1,2, - -+, n)of a family F

of curves C on T? have the same nonnegative greatest lower bound,

agl=ag2=-.-__agn,

and the areas Ag, of Mi2 have the same value,

Ag, =Agz == A,
then we have
(i) AénﬁAgl =..._.Agn
and
(ii) Ogn 2 Ggy = = g,

Proof. By the definition of area and that of g,, we have

[(g )l/2+ .o+ (gn)l/z]Z
5, = [f Ea(prdo = ff — do,

n2

where dw is the area element, which can be expressed locally by the formula
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1/2
811 812 /

do = du'du?.

812 822
Making use of the inequality
(Xg + >+ + (Xn)z < n(alz-f- o n v + 0(,,.2),

we have

( et og)
Agnﬁffn————__gl+ +gndw

n2

ffgldm+n~ + ffg,.d(o
<

n

Agl+'.'+Agn
<

n
By hypothesis, it follows that

A5, < Ay = o= 4
which is (i).

The proof of (ii) follows from the definitions of the concepts concerned,

g1/2+o..+gn1/2 -4g11/2ds+"'+fc&1/2ds
fé,.‘/”ds=,/' ! ds =
(o} (o} n

n

Ggy * v+ Gg,
d

- C =ag1=-\»=agn’
the line integrals being extended along any curve C of the family F. Hence

ag, = g L.b. (fc gn'/%ds) > ag, = ---=ag,.
c €EF

We shall now prove the following theorem, which characterizes the relation-
ship between the two geometrical constants 4 and @ in M:ﬂ
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THEOREM 1. Let M;z be the Riemannian manifold whose underlying topo-

logical space is a projective plane and whose metric is locally defined by

2
ds? = ¥ gik (u1, 1) du’ duF, gik (uy, uy) € Cos

L, k=1

let A be its area, and a the greatest lower bound of the lengths of all the closed

curves not homotopic to zero on M?z; then
2
A > — a2,
7

Moreover, 2/u is the best constant.

Proof. On account of the Weierstrass approximation theorem, it suffices to
assume that the fundamental tensor g;; (u;,u,) is analytic. Then we can in-
troduce, in the small, an isothermic coordinate system on Mi,z so that the metric

takes the form
g*(vy,vy) (dvy? + dv,?),

where g*(vy,v,) € C, g*(vy,v,) > 0. We define the metric on the universal
covering surface S? of the projective plane by a projection process. The
Riemannian manifold M%, thus obtained is actually a Riemannian surface. Ac-
cording to the uniformization theorem, we can map M252 onto the unit 2-sphere
manifold #7,,, and can arrange it in such a way that two diametrically opposite

points of U? correspond to the same point of M;z. The metric has then the form

ds? = g(p)dp?. g{p) > 0, g(p) € Cy, forp € MZU2 ,

where dp? is the line element of the unit sphere U? taken from the embedding
3-dimensional Euclidean space.

We remark that the area 4 of M;z is one half that of M?%,.

Let us consider all the rotations ¢ of the unit sphere U? about its center. All
these rotations form a compact Lie group G. Applying the process of averaging
over a compact Lie group, in this case the Hurwitz integration [2; 3, p.188], we

have

L Lg(V217 8o = [R(p)]V2.



SOME INEQUALITIES IN CERTAIN NONORIENTABLE RIEMANNIAN MANIFOLDS 61
We shall show that [A(p)]'/? is invariant with respect to all the left trans-
lations
T:0>0"= T, T,0,0 €6G,

and hence is a constant. In fact, let T be any element of G; then, by definition,
[RENY2IT = [ [ep)¥21™ s0 = [ [(s(p)¥?]177 570,
since S¢ is invariant under all left translations. Therefore,
[h(Tp1t/2 = [ [g(V2I* dr = [(p)]V2, A=To €GC.

As the group G is transitive, £'/2 is a constant.

Using hdp? instead of gdp? as the metric on the unit sphere U2, we obtain a
manifold with the spherical geometry. Preserving the metric hdp?, and identifying
the diametrical points on U?, we get a manifold hM2p2, with the elliptic ge-

ometry. The two geometrical constants Ay and aj can actually be evaluated:

Ap = 2nh,
ap = ﬂhl/z.
Hence
2
(4) Ap = ——ah2.
T

It is clear that if g(p) is subjected to a transformation o of G, the resulting
metric g7 (p)dp? is such that

(5) aga = ag
and
(6) Ago = Ag

By approximating integrals by suitable sums and using Lemma 1, we easily
obtain

(N ap > ag
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and
(8) A < Ag.

Combining (4), (7), and (8), we have

i)

> A a

e

2
4

2 2
ap > g

Dropping the unnecessary indices, we obtain the inequality

4>

EI,[\)
IS}

That 2/7 is the best constant is evident, since we already have shown that

the equality sign actually is attained when the metric is elliptic.

A slight generalization of Theorem 1, referring to certain special Riemannian
metrics on the n-dimensional projective space P,, can be proved in a similar

fashion, using Hélder’s inequality
(a, by +++» +apby) < (afl’ F oo+ arﬁ)‘/P(b;I 4o 4 bgl)”q,

where a;,b; > Oand p,qg > 1 suchthat 1/p + 1/¢ = 1. The generalized theorem

reads as follows:

THEOREM 2. Let Mgn be the Riemannian manifold whose underlying topo-
logical space is an n-dimensional projective space P", which we suppose re-
presented by the unit n-sphere U™ of the (n+1)-dimensional Euclidean space
with identification of diametrically opposite points p and py, and whose metric

can be represented in the form

ds? = g(p)dp?,

where g(p) > 0, g(p) € Cy, g(p) = g(pg) for p € M;n, and dp? is the line-
element of the n-sphere, taken from the embedding Euclidean space; let V be
its volume, and a the greatest lower bound of the lengths of all the closed curves

which are not homotopic to zero on Mgn; then

1—-n
T 2
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Further, the above k, is the best constant.
The proof of Theorem 2 is left to the reader.

3. Riemannian manifold M,f,, wliose underlying topological space is a Moebius
strip. Let M2 be the Riemannian manifold whose underlying topological space
is a Moebius strip and whose metric is locally defined by

2 .
ds? = Y git (uy,u,) du’ du¥, gir € C,.

itk =1

By Weierstrass’ approximation theorem, it suffices to assume that g;; € C,,.

After introduction of the isothermic coordinate system, the metric takes the form

ds? = g*(u,v)(du? + dv?),

where g* (u,v) € C, and g*(u,v) > 0. We define the metric ds? on the universal
covering surface of the Moebius strip by a projection process: ds? = d§2; that
is, the metric is invariant under the fundamental group of the Moebius strip. The
covering manifold of M% thus obtained is actually a simply connected Riemann
surface. According to the uniformization theorem, we can map it conformally

onto a strip
“B<y<B
-0 < x < ®©
of the (x,y)-plane. The fundamental group I' appears then in the form:
x’=x+n(2da),

y' =Dy (n =0, +1, +2, -+ - ).

The given manifold M2 is mapped isogonally onto the fundamental region

-B<y<B

with a metric of the form

ds? = g(x,y)(dx? + dy?),
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where g(x,y) > 0 and g(x,y) € C, . Moreover,

glx +n(2a),(-1)"y) = g(x,y).

We are now in a position to prove the following theorem, which connects the

two geometrical constants 4 and a in M3.

THEOREM 3. Let M2 be the Riemannian manifold whose underlying topo-
logical space is a Moebius strip and whose metric is locally defined by

2
ds? = Y gig(uy,uy) du® duF, gik € Co;

i, k=1

let A be its area, and a the greatest lower bound of the lengths of all the closed

curves which are not homotopic to zero on M%; then we have

Bm/a _
4> 2. 1
B

- a?=kyp a®

eBm/a +1

where 20 and 23 are the Euclidean lengths of the sides of the fundamental
region R of the Moebius strip. Moreover, the above constant kqp is best for a

given ratio /0.

Proof. Let us consider the continuous group

x’ =%+ ¢

H:
y' =y,

¢ being real (mod 4&); H consists of conformal transformations of the Moebius
strip onto itself. It is evident that every two points which are equivalent under
I" remain equivalent under I" after being operated on by elements of H. Defining

the mean value, [Z (y)1*/2, of [g(x+¢,y)11/2 by the formula

1 aa —_
e fo lg(x+c,y)1/2de = [g(y)]/3

we can prove, by a method similar to that in the former cases, that

A< A4,

a

(9)

AVAREAN

Qi

2
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where 4 and @ have the same meaning as 4 and a except that we use the metric
Z(y)(dx? + dy?®) instead of the general one. Moreover, from the invariance of
g(%,y) under the group I', it follows immediately that

g2(y) = g(-y).

We now shall consider the same problem with the simple metric

ds? = g(y)(dx? + dy?),

where g(~v) = g(y) > 0. Noting (9), we see that if the best inequality is found

for such a g(y), it is also found for all g(x,y), and hence our problem is solved.

We are now going to determine a special positive, even, and for nonnegative
y monotonically decreasing function g(y) such that a family F* of closed geo-
desic lines through the origin and not homotopic to zero on M2 can be defined
in terms of it.

Let us first establish a differential equation for such g(y). Putting
ds = [g(y) (1 + x"%)1V/2 dy ("= —),

we know that the equation for the extremals is

d , g(y) 1/2
—{ x —_— = 0.
dy 1+x°2

Solving this equation, we have

x = fy—————Cdn + k.

® [g(n)—c?]2/?

Since the geodesics under consideration have to go through the origin, the con-
stant k£ has to be zero, and hence the equation becomes

cd

x = foy _.—_1’_._—-— .
[g(n)-c?]1*/?

The condition that the geodesics of the family be closed and not homotopic to
zero requires that

d
@ Y
dx | (u, 1)
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for -8 < T< B; that is,

[g(D]V/2=c¢
for -8 < T < B. Hence we have
T g(T) 1/2
= —_— dn, 0<T<B.
(10) % ‘I(‘) [g(n)—g(’f) ] " T8

For simplicity, let us normalize g(y) so that g(0) = 1. Since g(y) is supposed

to be monotonically decreasing for nonnegative y, we can put

1-g(n)=t¢,

1-¢(T) = w,
and have

w=-t=g(n) - g(T)
dy = - d .
g’(n)
Then equation (10) takes the form
(1) L S
[1-wlt/2 70 87 [g_g)1r2

This is an Abel integral equation. According to the formula (cf. [1, p.484]) for

the solution of such an equation,

x d
o = [ RAVLEN
® (x-t)1/?
we have
1 0 ‘(2)d
(12) y(t) = _[f() + ft f(#},
m | /2 ® (t-2)1/2

and, in our case,

1=—i[1+—1-f’ dz ]

£1/2 2 Yo a1 - z)3/2(t _ 2)1/2
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a1 t1/2 o 1 o 1
B2 e o + = = — ———— = e —
T |s1/2 1-t¢ rr (1-¢) £1/2 T g(n)[l_g(n)]x/z

Thus we have established the differential equation for g(y),
3) i % g(1-g)172.

The general solution of (13) is found to be

1+ (1-g12

log ————— = il y + k.
1 - (-2 &

When y = 0, we have [1-g(0)1*/2 = 0 and hence %k = 0. Therefore,

1+ Q-2 ¢
0 — = - y.
1 _ (l_g)l/z A

An explicit expression for g(y) is as follows:

4 my/a
(14) g(y) = __e_._
(1 +e17y/a.)2
for -8 <y <B.

From the explicit expression (14) for g(y), every property of g(y) we as-
sumed at the beginning is verified. It is a positive, even, and monotonic de-
creasing function for y > 0. Moreover, g(y) >0 as y— @ and g(0) = 0. Such a
g(y), with those properties just mentioned and defining the family F* of the
closed geodesics through (0, 0) and not homotopic to zero, is distinguished. Let
us denote it by go(¥); that is, go(y) is defined by either (13) or (14).

We are now in a position to establish the inequality in question for a posi-

tive, even, analytic function g(y). By the definition of a, we have
2 ST e - W+ x"H12dy = (1) 2 0

for a closed curve, not homotopic to zero, on M3. By taking this curve as one

of F*, we obtain
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go(y) ] 1/2

Q+xavea | 0
8o (y) — g (T)

Hence,
() g0 (y) vz
(15) P AL RV
0 go(y) - & (1) « 2 2

This equation can be put into a more suitable form by setting
1 - 80(y) = ¢,
1 -80(T) = w.
Then we have
w=t=2go(y) - 80(T),

dt
go (n)’

dy = -

T=go' (1 - 0).

Equation (15) then takes the form

£(¥) g0 (%) ]1/2 dt 9
2

w -1

16) fo‘" [

In formula (12), we have
f2) = - £ gt - o))

¢ (0)
0) = — ~———=
f(0) = - 5

1 P’ (go* (1 — 2))

2 g (g5* - 2)

f(z) =

Solving (16), we obtain

[g(y) go (N1V?
go-(y)

®(0) 1 .. 9(gQ - 2) dz
+ .

22 2 70 gr(git(1 - 2)) (t-2)V?

1
o
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Putting

811 - 2) = u,

&1l -¢) =y,
we have
[g(y) go(N1V? - ®(0) 1 fy @’ (u)du

8o(y) 2n[l - go(NIV2 27 70 [g () = go(y)]V2
or
P(0) g (y) 1 “(u)d

[g(y) go (9]1V2 = - ° -— &y [ P (u)du

27(1 - go(y)1V2 27 [go(u)—go(y)]l/z.
Integrating from O to 8, we get
(1) B &0 ()
27 o [1-80(}’)]1/2
, (u)d
‘/0‘5 8o{y) lj;y ¥ lu)eu ]dy

[go (u) - go()’)]l/z

foﬁ (8(y) go (N2 dy = - "

-(‘ig[lﬂs'o(ﬁ)]"2

“(y)d
.I;'B (;P’A(u,)[j’B 8§ V% }du

Y g (u) = go (9)1V2

?(—m [1-g0(8)1V2

It

SP @7 ()l go (u) - 80(B)1V2 du

(1]

3|~

d
lf P (u) [ ;; [go(u) - go(B)]1/2, du

w0
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1 d
= ‘[(;’B Cp(u)l— E[go(u)—go(ﬁ’)]‘/2 du.

We remark that —d[go(u) — go(B)1Y2/du > 0. Squaring and applying

Schwarz’s inequality, we have

[foﬁ[g(y) g0 (1)1Y2 dyl
1 d 2
e [fﬁ - (- T 18- go(B”l/z) du} :
2 0 du

02
LPedy - [P g(ndy > — [ - & (B

m

The equality sign holds when g = g, due to a converse part of the theorem on

Schwarz’s inequality. Then we have

2 1 - g (B)
17 '/.oﬁ g(y)dy > ﬁ_.—_g_o_i,

e dy

From (14), we can easily compute

e’ﬂﬁ/a 1 2 2
(18) 1 - - =T e
go(ﬁ) (e,”ﬁ/a + 1) 4 a’ﬁ
B ZC( e‘”ﬁ/a _ 1
19) j; go (y)dy = — = kop O .

e"/a 4

Combining (17), (18), and (19), we obtain

2

A il
(20) S8 dy 2 kag R
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We remark that the equality sign in (20) holds for g = g,. In fact, in this case,
it can easily be proved that @ = 200 by using the Weierstrass theory of extremal
fields. From (19), we have

a2

@1 ff go(y) dy = & kapg = kap—r

Combining the definition of area and (20), we obtain

8
4 =40 [7 g(y)dy > kopga®.
By (21), we know that
A= ka,B a?

for g = go. This shows that our %, is the best constant.

3. Added in proof. In a course on Riemannian Geometry given at Syracuse
University in 1949, Professor C. Loewner proved the inequality 4 > 31/, a2/,
for the case of M7, the Riemannian manifold whose underlying topological space
torus. The present investigation originates from this idea and has a similar
method of treatment.
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ON THE BARYCENTRIC HOMOMORPHISM
IN A SINGULAR COMPLEX

PauL V. REICHELDERFER

INTRODUCTION

0.1. Radb has introduced and studied the following approach to singular
homology theory (see [2;3;4] for details). With a general topological space X
associate a complex R = R(X) in the following manner. For integers p > 0, let
Vgy + + +, vp be a sequence of p + 1 points in Hilbert space E_, which are not
required to be distinct or linearly independent, and let |vo, « « « , v,| denote
their convex hull. Suppose that T is a continuous mapping from |vg, « + -, vp|
into X. Then the sequence vy, + -+, v, jointly with T determines a p-cell in R,
which is denoted by (v, + « « , vp, T)R. The free Abelian group C; generated
by the p-cells in R is termed the group of integral p-chains in R. For integers
p <0, Cg is defined to be the group consisting of the zero element alone. The
boundary operator 05: Cg—)Cg_l is defined, in the usual manner, as the trivial

homomorphism if p < 0, and by the relation

P
aI;(Uo’ * s Vps T)R = z (_1)P (vO’ Tty f)i, sy Vp T)R

i=0

if p > 0. Since 9%, a{} = 0, one introduces the subgroup Zg of p-cycles in Cs
and the subgroup BS of p-boundaries in Cg in the customary way, and defines
the quotient group of Zg with respect to BI; to be the homology group [1'5.

0.2. The approach to singular homology theory pursued by Radé differs from
other approaches in that absolutely no identifications are made. Thus two p-cells
(g + =+ 5 vpy TR and (0§, + + -, vps T”)R are equal only if they are identi-
cal; that is, if v/ = v/ for i =0, -+ -, p and T'=T" on [vgs + = =5 v
=|vgy « o+, vpl.In [3;4], Rad$ introduces a technique for making identi-
fications in a general Mayer complex and applies his procedure to study identi-
fications in R, particularly those which yield homology groups isomorphic to the
l]g. It is a primary purpose of the present paper to pursue the matter further in
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order to establish stronger results than those obtained by Rads.
The identification scheme of Radd for the complex R is briefly described in
$0.3 below; the reader should consult [3, $1] or [4, $5] for details.

0.3. Let {Gp} be a collection of subgroups G, of the group Cg of integral
p-chains in R such that 85 Gp C Gp-l for every integer p; such a system is
termed an identifier for R. Let Cp' be the quotient group of C? with respectto
Gp, and denote that element of Cp' to which a chain Cg in Cg belongs by {cg}.
The restriction on the groups G, clearly implies that the element {85 cg} in
Cp.y is independent of the choice of the representative cg of the element {cﬁ}
in Cp'; thus one may define homomorphisms dp': Cp'—Cp.; by the formula
ap {cg} = {85 c‘g}. The resulting system of groups C}' together with the operator
dp constitutes a Mayer complex m with homology groups /. Define a natural
homomorphism 7pt Cg———)CZ‘ by the formula p cg = {cg }. It is readily verified
that 7, is a chain mapping; hence it induces homomorphisms 74, : Hg—)H",". If
for every integer p these homomorphisms are isomorphisms onto, then the identi-
fier {Gp} is termed unessential for R. Radé notes that a necessary and suf-
ficient condition in order that an identifier Gp be unessential for R is that every
cycle zg in G, should be the boundary of some chain cgﬂ in Gpyq. (See [3,
$81.3,1.4,1.5] or [4, §5].)

0.4. One of the principal results in this paper may now be described. Let
Bl;: Cg———)Cg be the barycentric homomorphism in R (see [3, $3.1] or [4, S6];
also $1.3), and denote by N(Bg) the nucleus of this homomorphism for every

integer p.

TueEorEM. The system of nuclei N (Bg) of the barycentric homomorphisms in

in R constitutes an unessential identifier for R (see $3.2).

This result is combined with those of Radé in [3] to obtain stronger theorems
concerning identifiers than any previously obtained. Since further definitions
are necessary before these results can be described, the reader is requested to

consult $3 for their statements.

0.5. In the process of proving the theorem above, various results of inde-
pendent interest have been attained. The reader is referred especially to $$1.6,
1.7, 1.10, 2.2 for theorems which show the structural description of the barycen-

tric homomorphism and of the barycentric homotopy operator.
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I. FURTHER RELATIONS IN THE AUXILIARY COMPLEX K

1.1. As in Radd [3;4], the auxiliary complex K is the *formal complex”, in
the sense of [1], for the set £ of points in Hilbert space. For integers p > 0,
p-cells in K are ordered sequences (vq, « + -, vp) of p+ 1 points in E_, which
are not required to be distinct or linearly independent. These p-cells are taken as
the base for a free Abelian group Cp, which is termed the group of finite integral
p-chains in K. For p < 0, the group C), is defined to be the group composed of
the zero element alone. (See [3, $2.1] or [4, $6].)

1.2. In K the following known homomorphisms will Pe used. (See [3, §2.2] or
[4, Sel.)

(i) For integers j, p such that 0 < j < p, 'p > 0, the homomorphism
jpt Cp—Cp—y
is defined by the relation jp(vg, « + +, vp) = (1) (vgy = =+ 31-, s+ +, p), where
the symbol * is placed over the point v; to indicate that v is to be deleted. For
j =p =0, jp is defined to be the trivial homomorphism. A homomorphism differ-
ing from this one only by the absence of the factor (~1)/ has been used by Rad$

in [2, $2.6]. The definition given above has been chosen because it permits

simplifications in later definitions and formulas.
(ii) For integers p > 0, the boundary operator
dp: Cp ™ Cp
is defined by the formula
P ) .
ap(vo’...,vp) = Z (—1)](1)0’...’1),-, ...’q,b).
j=o
For integers p < 0, d, is defined to be the trivial homomorphism.

(iii) For integers p > 0 and an arbitrary point v in E_, the cone homo-
morphism h;: Cp— Cp +, is defined by the relation

hZ(vo’ c 'Up) = (—l)p+l (vo, c ey vprv)-
For integers p < 0, hg is defined to be the trivial homomorphism.

(iv) For integers j, p such that 0 < j < p -1, the transposition homo-
morphism tpj: Cp—> Cp is defined by the relation
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tpj(vo”"rvj’ vj+p"',vp) = (‘Uov"',vj+l, v]',°~-,vp).
Observe that tpj(vo, ceey, up) = (vgy o+ o vp) if and only if Vj = Vj4q-

(v) The barycentric homomorphism By Cp-——) C  is defined as follows.
For integers p < 0, Bp is the trivial homomorphism; for p = 0, 8, = 1; and
forp > 0, Bp is defined by the recursion formula

b
Bpos +++ s vp) = hp -1 Bp~-1 Iplvg, v,
where b is the barycenter of the points vg, - -+, vp.

(vi) The barycentric l:omotopy operator p, used by Radé [1; 3, $2.2 (iv);
4, $6] will not be used in this paper. In its stead, a modification pip is presently
introduced, which has a simpler form, satisfies all the important identities which
hold for the Pps and has useful properties not possessed by Pp- The modified

barycentric homotopy operator
P xp : CP b 4 CP +1

is defined as follows. For integers p <0, p,, is the trivial homomorphism; for

P =0, py is defined by the relation

Prg (Wo) = —ho? (vg) = (v5,0);
and for p > 0, pap iS defined by the recursion formula
Pap (Wos = v+ 5 0p) = =RSLL + pup =y Gp] (wgs + =+, 1),
where b is the barycenter of the points vy, « - -, vp.

1.3. Amongst the preceding homomorphisms the following identities hold (see
(2, §2, 3, §2-3])3

p

o= 3 Jp (p20);
j=o

Gp 41 hY + hE oy 3y = 1 ® > 0);

ap BP=’8P"16P (- w<p <+ m;

Bp tpj = ~Bp O<j<p~-1;

Op +1 p*p+p*P_16P=BP—-1 0<p<+w.
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Of these identities, only the last is new; it may be established by an inductive
reasoning similar to that used to prove the corresponding identity for the conven-

tional barycentric homotopy operator pj,.
1.4. For integers k,p such that 0 < k& < p, the homomorphism

kvp: Cp — Cp

is defined by the relation
k*p(UOv ceey vp) = (___1)p+k (UO’ c ey 3k9 ML vp,vk)o
and the homomorphism
Y Cp— L,

is defined by the formula y, = ZZ___O k«p. Obviously one has the identities

v
k*p(v09 "'9vp) ="'I‘?p"'l}"pk (voa "'9vp)’ p20,

k*p(UO""9vp)=h:k_1 kp(vo’... vp)’p>0,

Now the reader will easily verify the relations

(k—l)*p-l ]p ’ 03] <k5_p,
jp kp = 1 k*p'-l(].,*'l)p » 05k <j<p,
kp ’ 0§k§j= p>

G-Dp kep » 0<k<j<p,

ksxp —4 = ¢
Pt o+ Dup 5 0<j <k <p.

From these relations the following identity is readily established:
Yp-19% = % ()’p - D.
Using the identity, the reader will easily prove the following result.
LEMMA. If P (x) be any polynomial having integral coefficients, then
Plyp-1) dp =3 Ply, = D).

Explicitly, if P(x) = z:n=0 a;ix’, where the a; are integers, then
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m . m L Lo
Zi:o % }/pl"l ap = zi=o % ap [Y;’ -t )’;; ' e '+(—1)l] *
where y;; means that the homomorphism y, is to be repeated i times.
1.5. For integers k,p such that 0 < k& < p, the homomorphism
bpk: Cp h— Cp +1
is defined by the relation
bpk(vo,' c vy vp) = ("'1)k Vos * * *y Uy b(‘l}o, c ey vk)’

b(vov”‘svk9vk+l)a"‘,b(UO’°"9vk""svp)]’

where b (vg, « + + , vy) is the barycenter of the points vg, « + +, vg. Verification

of the following simple relations is left to the reader:

b ge e,
_.hp(vo vp) (UO’ ey, vp) = bpp(vo, sy vp);

b(vgysee,v,)
—hp 10 Plbp -1k (Woy e ey vp-y) = bpkh;p-l (g + « ¢y vp=y)

O0W<k<p-D;

b(vo,...

"hp bpk]*p ('Uov R ] vp)

I

» Up) .
P bp-lk ]p(vO’ . "'Up)

0Lk<p-1,0%<j<0p;

b(vg, eee,vp)
_hp 0 pTp

p—1ik ap(vos“‘avp) bpk}’p(vo”",vp)

(0<Ek<p-1);
b(vg,eee,v,) ;-1 i .
hp Pbp-tk Gpyp  Jrp(ert s vp) = bpkyp isp(vos v e vy p)
0<k<p-1,0<j<p, 124

b(vg,eee, ) ; i +1
—hp Yo “p bp—-lkapy;(vo9"'svp)=bpky;7 (UOQ.'.va)

©O<k<p-1,0<%3i.

If P(x) be any polynomial having integral coefficients, then, for 0 < £ < p-1,

we have

_hz(vo,o.-.vp) bp_lkapp(.yp) (vO’ . .’vp) = bpk Yp P('}’p) (on ey, ‘Up).
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1.6. For the homomorphisms 8, and p+,sthe following structural descriptions

are now obtained.

THEOREM. The following relations hold:

Pro = boo>

P
prp = bpp + X bpp-jyp e lp-i+l) (p > 0).
j=1

Proof. Itis sufficient to verify these formulas for a given p-cell (vy,+ + +, vp).
For p = 0, the formula pso(vy) = byo(vy) is obvious from the definitions. So

assume that
p-1
P*p"l=bp“1p"1+ Z bp"lp‘l"jYP‘I"'(yp‘l"j+1) (P.?_l)-

j=1

Using $1.2, $1.4, $1.5, and this assumption, and letting b = b(vg, « ¢+ ¢, vp),

one obtains
Pap (vgy * + *  Vg)

b b
== —hp(vo, e ooy, UP) "hp p*p"l ap(vo, ¢ e ,vp)

b
bpp(vo,o-.,vp) "'hp bP'lp"l ap(vo,--.’vp)

It

p-1

b .
"Z hp bp"lp"l'j )’p—l"'(}’p—l“]"'l) ap(vOD'°’!Up)
i=1

bpp(vo,-‘- P)+bPP-1 )lp(vos"‘avp)

p~1 b

—Z hpbp—lp—l—-jap(}/p‘l)"'(}’p"‘j) ('Uo:""vp)
=t

= bpp(vos"‘,vp) +pr"1 )’p(vo""’vp)

p
2 bppojplp =D e bp=j+ D) (oo, e, wp)
i=2

P
= pr+ z bpp—]‘)./PO-O(‘yp—-j-{»l) (vo’...,vp).
j=1
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So the proof is complete by induction.

1.7. TuEOREM. The following relations hold:

Bo

0y bgo>
Bp = 0p+1 bpo )’p()’p “1)"'(Yp—P+1)’ p > 0.
The proof is similar to that for the theorm in the preceding section.

1.8. From these formulas for 8, and Pip and the identities in §1.3, many
further interesting relations may be obtained. For example, it is easy to establish

the following results:

By = Wper =+ Dyl oo (¢ > 0
ap = =Pp p*p -1 ap (P 2 0);
Bo = (+Dp+1 (p+2p+2 pap+1 prp (p 2 0).

These relations are not needed for the present purposes; they may be studied
on a later occasion.
In order to clarify the structural descriptions for Bp and pxp given in §¢1.6,

1.7, it is convenient to introduce another homomorphism.

1.9. For integers p > 0, let iy, « - -, i, be any rearrangement of the se-
quence 0, « - +, p, and put € ... ip equal to +1 or to ~1 according as 5, « « « , ip
is obtained from 0, - - - , p by an even or by an odd number of transpositions.
With each rearrangement one associates a homomorphism

Tpt Cp——) Cp

defined by the formula

Tp(vo, e ey, vp) = €i0°"ip (viO: ey ”ip)-

Sometimes, for clarity, the more explicit notation Tp, (ig, * + 5 ip) is used for
this homomorphism. For integers j such that 0 < j < p, denote by Ty; the class
of all T,(i, + « +, ip) for which i, < ... <ij —thatis, for which ig, « « «, i;
are in natural order. Obviously Tj,, consists of just one element, namely
Tp(0, « « «, p) = 1; and T, consists of the T, obtained by all possible re-
arrangements of 0, « « «, p. Moreover, Tp j~, D Tpj for 1 < j < p. Clearly the
number of elements in the class T, jis(p+ D p -+ (j+2) for0 <j<p-1.
For each integer j in 0 < j < p, define a homomorphism
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Pp]': CP -3 Cp
by the formula
Bpj = 2 Tp (tp € Tp))-

Observe that P,, = 1. The reader will readily verify these identities:

ksp Ppj=Ppjs 02 <k <p;

j
Y kwp Ppj = Ppj-1,0<j<p.
k=0

From these identities, the following result is established.
LEmmA. The following relations hold:

Ppp:l’

PPP_j = yp(yp-'l)"‘(yp—j+]-)’1.Sj_<.P‘

Proof. That Py, = 1 was noted above. From the second relation above it
follows that

P
Pop-1 = kZ kxp Fop = ¥p Ppp = ¥p»
=0

so the general formula is established for j = 1. Now suppose that

Pop-jt1 = vplyp=1) e e yp —j+2) (22ji2p-

Using the preceding identities, one finds

p
YW Ppp-j+1 = X Fsp Ppp-j+1
k=o
p-itt P
= Z k*p PPP'J'“"’ Z k*p PPP‘I’“
k=0 k=p-j+a2
=Ppp-j+ (G=1) Pop-jsss

Ppp-j = (Vp'ff+1) Pop-j+1 = yvplp =D e (p~j+1D.

Thus the lemma is established.
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1.10. Combining the results of the preceding lemma with those in the theo-

ems in $§1.6, 1.7, one obtains the following description for the homomorphisms

Bp and pup.

THEOREM. The following relations hold:

Bp = Op+1bpo Ppg = Y Opsybp Tp (p 2 0);
Tp eTpo
p
Prp = 2 bpk Ppi = Z 2 b o P2 0.
k=0 =0 7 € Ty

1.11. Let vg,+ + +, v, (p > 0) be any sequence of p + 1 points in £_. In
§§1.2, 1.4, 1.5, 1.9, homomorphisms Jps tpjs k*p, bpk’ Tps have been introduced
which, when applied in any appropriate combination A, to the special chain
(Vgsy *+ * * vp), yield a special chain either of the form +(yg, « + +, yq) or of the
form —(yg, «« -, yq). In the sequel, [hp (vgy =+, vp)] is defined to be thep-cell
(Yos * =+ » ¥g)s and | Ay (vy, « « +, vp)| denotes its convex hull | yg, « + 4 ¥, .

For example,
[0p +1 bpo Tpligs =+ 5 ip) (vg, = v+, vp)]
= (b(v,-o), b(vio, Uil) N b(v,-o, Vijs tt s vip)).
If for two sequences of points ug, = « +, up and vy, « « +, vp it is true that
(b(ug)y b(ugs ug)y « v vy blug, ugy « « + 5 up))
= (b(vg), b(vgs )y = = =5 b(vg, vy« + 5 1))

then clearly u; = v; for 0 < j < p. From the remarks in $1.9 and the preceding

theorem, one thus obtains the following result.

LEMMA. [f the points vy, » « « , v, (p > 0) are distinct, then the cham
p 0 p \P Z
BP (vgy =+ » vp) contains (p + 1)! terms; that is, for distinct elements ’I.'p and

pm Tpo » we have
[0p +1 bpo T6 (wos +++ 5 vp)] # [0p 41 bpo Tp (vgs =+ 5 1) 1.

1.12. LEMMA. Let vg, « =+, vp (p > 0) be any set of p + 1 points in E_,
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not necessarily distinct or linearly independent. A necessary and sufficient

condition that a point v belong to the convex hull of the points

(1) blug)s blvgsvy)s » ot s blvgyvyse e, vp)

is that it possess a representation of the form

P P
(i) v="3 T om=Llopo 2 200 2 pp 2 0]
j=o j=o

Proof. If v belongs to the convex hull of the points (i), then it has a repre-
sentation of the form

(iii) v=§ Aj blvgy o ,v)) Zp Ai=1,0<X;,0<i<p
i=0 i=0
Thus
P 4 v; P P )t,;
v=iz=:o Az]§0i+1=]§0 EJHlvi,

which gives a representation of form (ii) for v. Conversely, if v has a representa-
tion of form (ii), put A;= G+ 1) (ui~pi+) for 0 < i < p=1,Ap=(p+1) pp,
It follows at once that v has a representation of form (iii), and hence belongs to

the convex hull of the set of points (i).

1.13. For integers p > 0, if ug, + « +, up is any sequence of p + 1 points in
Es, then |ug, « « «, u, | will denote its convex hull. Let k£ be any integer such

that 0 < £ < p, and consider the sequence of p + 2 points
(i) uoy"'uk,b(uo""uk)9"'sb(uoa""”k""!up)’

that is (see §1.5), the sequence of points occurring in bp (ug, « + « , up). Let
(i1) wgy « + Wp + 1

be any rearrangement of the sequence of points (i). Designate by x, = Why = Ui,
the first u; (0 < i < k) occurring in the sequence (ii). In general, let x; = wy,
=uj (0 < 1 < k) bethe (I +1)stu; (0 < i < k) occurring in the sequence (ii),
and put x; = u; for k+1 < [ < p in case £ < p. Now clearly xp, « - -, xp isa
rearrangement of the sequence ug, + « -, up in which the last p — & elements are

unaltered; the sequence (i) is a rearrangement of the sequence
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(ui) xo,...’xk,b(xo’...,xk),...,b(xo,...,xk,..-’xp)

in which the last p + 1 — k elements are unaltered; and the sequence (ii) is a re-
arrangement of the sequence (iii) in which the points x,, - - + , x; appear in the
same order as in (iii); that is, x; =wp, for 0 < I < k, where 0 < Ay < &,
< .+..<hy < p.Now let ¢ be any integer such that 0 < ¢ < p + 1. It will be

shown that

(iv) b(wgy « =+ 5 wg) € |blxg)y b(xg, 1), =+« b(xg, 21, « + + 5 %p) |
0<qg<p+].

Case q¢=0. Then b(wy) = wy. If wy is one of the u; (0 < i < k), it follows
by the choice above that Ay =0 and w, =x, = b(x,). If w, is not one of the
u; (0 < i < k), there must be a [ > % such that wy = b(ug, « « +, ugy « +, up)
= b(xg, * *+ * 5 Xy + » + 5 x7). Thus relation (iv) is established when g = 0.

General case. By a rearrangement, the points wg, « + + , w, may be ordered

into two sets

Why = %g s vy Why =X 0< 1<k 0<hy <+:e:<h;<p),

0
whl+l =b(u0""’uk”"’uil+1) =b(x0,--.’xil+l)
whl*Z = b(uo, c ey Uy vy, uil+2) = b(xo, ooy xil+2)

whq=b(u0a"',uks""uiq)=b(x°’“"xiq)

(B < ip+y < ip4g <eve<ig < p).

The special cases which arise when one of these sets is missing are left to the

reader. Now clearly

b(wos c wq) = b(whOQ c whq)

1 EAC

= 1+ x; + x;
. ] . ]
i=o g+1 h=l+1 iptl j=l+1 g+l , 4, i +1
142 i
1 d 1 a 1 1
> IR e A 1 +1
jEipgg t1 g+1 p=p4p pt =iy g+l 1.+
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In view of this equation and of the lemma in $1.12, the relation (iv) now follows.

1.14. From the facts presented above, the following result is presently es-

tablished.

LEMMA. Let vgy -+, vp (p < 0) be any sequence of p + 1 points in E_.
Fix Tp+i € Tp+10(0 <k < p) Tp € Tpk (see $1.9). Then there exists a
TI; CTPO such that (see $1.11).

|0p+2 bp+10 Tp+1 bpk Tp(vos cvey,vp)| Cl0p+y bpg T(wgy « ooy vp)].

Proof. Evidently [T, (vgy e« vp)] = (vio’ cen, Uip)v where igy < o, ip is
a rearrangement of 0, « « -, p such that i, <. .. <i;. Puty;= vy for0<j<p,
so that [Tp (vgy * * = » vp)] =(ugy ** *» up). Then

[bpk ’tp(uo, ooy, vp)]
= Ctigy » + + » ks Bltigy =+ = )y« + v, Blugs + + =y ks + = +5up)),
and [Tp+1 bpy Tp(vgy « =+ vp)] = (o, <+« wp +1), Where wg, -, w‘:,“
is a rearrangement of
oy + =+t blugs v o s uk)y o v ey blugy = v ey thy ey up).
Finally,
[0p+2 bp+io Tp+1 bpk Tp("o’ "‘a”p)]
= [b(wg)y blwgytoy)y =+ 5 blwg,wys e, wp+1)].

The reasoning of $1.13 shows that there is a rearrangement x4, « « «, %p of

Ugs * = * 5 Up, and hence of vy, « ¢ -, vp, such that
|0p+2 bp+10 Tp+1 bpk Tp (vgy + = =5 vp) |
C | b(xp)y blxgsxy)y » + vy Bxgs2ys oo o5 xp) |-

Let T; be that element of Tp, such that [Tg(vgs « =+ 5 vp)] = (xgy =+« %p)-

Since
[Op +1 pr Tp'(vov ey, Up)] = (b(xo)y b(xoaxx)y cey b(xlyx[a ey xp)),
the lemma is established.

1.15. If ¢, is a p-chain in K, and 4 is a convex subset in E_, then the in-
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clusion ep C A will mean that either cp=0 € Cp or else

n

C‘P = z mj(vol-,...,vpj)’
J=1

where the m; are nonzero integers and [vgj, « -« -, vpjl € 4 for 1 <j < n.One

readily verifies the following inclusions (see [3, $92.4]):

Jp oy e e vy vp) T Jugy e vey vp 0<j<p,
ap(vos"‘svp) C l”o""s”pl >0,
Bp(vgs »+ =5 vp) C Jvgy + v, vp| (p > 0),
prplvg, <+ vy vp) C lvo,---,vp‘ (>0,
tpj (wgs + vy vp) T fug, ey vp | 0<j<p-D,
T O N LT ©<k<p)
)/p(vo,'--,vp) C |v0,---,vp] (>0,
bpk(vgs ¢+ vy vp) C Jugy vy vp] 0<k<p),
Y N IR <l P (1, € Tpo),
Bpj (g ooy vp) C Jugyee ey vp (0<j<p.

II. ReELaTions IN THE CompLEX R = R(X).

2.1. If 4 is a convex subset of £_, then for integers p > 0, Cﬁ denotes that

subgroup of C, generated by those p-cells (vg, « « « , vp) for which |vg, « « «, vp |
C A; for p <0, we have C{,i =0 € Cp, (see §1.1). Suppose T: A—>X is a con-

tinuous mapping (see §0.1). For integers p > 0 define a homomorphism
. A R
Tp: CP — Cp

by the relation Tp(vg, «+«, vp) = (vgy « ¢+ vps TYR for (vgy « -+, vp) € C;,l.
For p <0, let T, be the trivial homomorphism. For chains ¢ in Cg the notation

Tp cp = (cp, T)R is used. In terms of this notation one finds the relation (see
§0.1: 9f (cpy DX = 9, cp, DE.

Now suppose that, for certain integers p,
hp: Cp— Cy

is a homomorphism from the group Cp, of p-chains into the group Cg of g-chains
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in K with the property that for all p-cells (vg, « « +, vp) in K one has
hp(vo9“'9 Up) C ‘1’09 "’,vpl.
Then clearly one may define for these integers p a homomorphism
R, R R
hp 2 C)— Cy

by the formula hg (vgy o2+ » Ups R - (hp (vgs *=v vp), T)R in case p >0, and
one may make AR the trivial homomorphism if p < 0. In view of the inclusions in

$1.15, one observes that this definition creates the following homomorphisms in

R (see[3, $3.11):

R ., R R < i< .
] .Cp_")cp_l (0_]__p)’

P
R, (R R o < p < . R, (R R .
Byt CF—Cp (~0 < p < + 0); vp: Cp—=Ch (p20);

R:Cﬁ—)CI;.,.l (-0 < p < +; bgk: C§—>C§+1 (0 <k <p);
R, R R < i < _ . R, R R .
thit C'p——)C'p__l 0W<LjLp-1); TP.CP——)CP (TPCTPO),
R, CR R <i<o).
Ppyz Cp—> €y 0<j<p)

2.2. From the relations in $1.3, one derives the following (see [3, $3.1]):

ag B}}::,BR_lag (—(X)<p<+m);
R R R .

= - <i<p=1);
Bp toj = PBp 0<j<p~-1);
R
Oy Phy + g 9E = BR -1 (0<p<+a).

The theorems in $$1.6, 1,7 give rise to these formulas for Bg and pfp:

R _ iR
Pxo = 550>
b R
Pwp = Z pPp ]yP S lp =i+ (> 0);
R _ oR 1R .
Bo '"O boo’
R R
By = O b YaOh =1y =p+ D) (> 0.

From the theorem in $1.10, one obtains the following description for Bg and pfp.
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TaeorEM. The following relations hold:

» € Tho

AP RG>0y,

P p

P P
kz ByPh = XX bk T (20,
=0

k=0 Ty, € Tpj

It

Py

2.3. The writer is indebted to T. Radé for suggestions which led to the
results presently presented in $$2.3-2.7, 2.9, 2.10, 2,12. The new facts con-
tributed by this paper are contained in $$2.8, 2.11, 2.13. For integers p > 1,
any chain of the form (1 + tpl) (vgy o+ v s YR (0 < j< p=-1) is termed an

elementary t-chain in R (see [3, $3.2] or [4, §7] ), and the subgroup of C gener-
ated by these elementary t-chains is denoted by TII; For p < 1, T is defmed

to be the subgroup of CR composed of the zero element alone.
LEMMA. Ifc € TR, then
: R _R R
(1) ap CP € Tp -4
(i) By ¢f =0,

(iii) p*p g € T’;+1

This lemma differs from that in Radé [3, $3.2], only by the fact that the
barycentric homotopy operator pI; has been replaced by the modified operator pI:p
(see $1.2). It may be established by the same reasoning as that employed by
Radé.

2.4. For integers p > 1, any chain of the form
(vos *e s Uiy Ujtyqs sy Upy T)R

with v; = v; 4, for some j such that 0 < j < p — 1 is called an elementary d-chain
in R (see [3, $3.3] or [4, $71), and the subgroup of Cp generated by these ele-
mentary d-chains is denoted by Dg. Forp < 1, DP is defined to be that subgroup

of Cg composed of the zero element alone.
LEMMA. [fc;f € Dg, then

. R R R
(i) ap cp € Dp“l’

(ii) 3’; c;f =0,
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.. R _R R
(iii) Pup p € DP+1'
This is the lemma in [3, §3.3], except that the modified barycentric homotopy

operator pfp is used in place of p;f; it is proved in the same way.

2.5. LEMMA. Let (vg, « * = 5 vp, T)R be any p-cell in R (p > 1).Suppose that
the sequence wg, « « +, wp is obtainable from the sequence vy, «« -, vy, by n

transpositions. Then there is an element tg in Tg such that
(vgs + =y vps DR = (=D (wgy + ++, wp, DR + t;}.
Proof. By assumption there exist n + 1 sequences vgj, « « « ,vp; for 0 <7< n
where v;, = v; and v;, = w; for 0 < i < p such that
. . TR _ 4R R
(vO]’ ceey vp], T) = tpl] (1)0]-_1, e ey, vp ]"'l’ D

for some integer i; satisfying0 < i; < p~1,1 < j < n. Clearly

(Uos“‘,vp’ T)R = (“1)" (wo""gwp, T)R
n .
+ z ("‘ 1)]—1 (1+t}}5ij) (1}0 ) At § IRERRE Up j-1s T)R’
j=1

and the lemma is established.

2.6. LEMMA. Let (vgy * « + 4 vp,y T)R be any p-cell in R (p > 1), for which

v; = v, for some i,k such that 0 < i < k < p. Then there are elements tg in

Ty and d in DY such that

R R R
(v0,~'-,vp,T) =tp+dp.

Moreover, 2(vgy + « « Ups TR is in Tg .

Proof. Since the sequence vy, « = <y Vi1, Upy Vs ** 5 Vpgs Vpyps ** *5 Up
is obtained from wp, <+, v+, vy, -+, vp by k~i transpositions, and

v; = vy by assumption, if follows that

- R
(“]—)k ' (1)0, Ce s VUimly Vpy Upy s Upys Vpyys *° vp)

is an element dIR; of Dg. Moreover, from the lemma in §2.5 it follows that there
is an element t§ in Tg such that (vg, « + -, Up» TR = d}g + tg, and the first part
of the lemma is proven. Now the sequence vg, ++ <y Vpy = e, Vjy = o, Vp is

obtained from vy, e+, vy c e, v, 0, v, by 2(h-i)~1 transpositions.
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Again, from the lemma in §9.5 it follows that there is an element tg in Tlg such
that

R R
(vo’..-’vi,..o’vk’.-.’vp’ T)R = - (UOI""vk""’vi9""vp’ T) + tp .

Since v; = v, , one obtains 2(vy, + « +, vy, Nk - tg; and the second part of the

lemma is demonstrated.

2.7. For integers p > 0, a chain cg is termed an elementary n-chain in R if

it has the form

n

R
CR = z mr(vo,°",vp’ Tr) ’
r=1

where
(i) for1 < r < n, the m, are nonzero integers;

(i) for1 < r; < r, < n, the transformations T, and T;, are not identical
on |vg, ++ ¢, vp|;

(iii) the points v, « « «, v, are distinct. The p-cell (vg, + + +, vp) in K (see
$1.11) is called the base for cg, and the notation cg = cg (vgy » » vp) is

used when it is desirable to display the base.

2.8. LEMMA. Suppose that cg is an elementary n-chain in R for which

R R R R R
'BP cp = 0. Thean+1 Prp Cp = 0.

Proof. With the notation of $2.7, one finds (see $$2.1, 2.2).

n
(l) '8}15 05 = Z Z TIlr(Op t1 bPO Tp(vO’ M} vp)1 Tr)R = 0;
Tp C TPO r=1i

P n

(i) Bgn pr cp = 2 ) 2 X mOp+z by

To+1 € Tp+10 k=0 T € Tpp 7 =1
Tp+l bpk Tp(vo’ ctty vp)’ Tr)R .
In view of $2.7 (iii), and $1.11, it follows from (i) that for each T}; € Tpos

one has

n
(i) X mr0p+y bpo Tplvg «oey vp)y THR =0 (tp €Ty,

r=1
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Fix
To+1 € Tp+10s Tp € Tpk (0<k<p.
From the lemma in $1.14 follows the existence of a 15 € Tpo such that
(v) [Op+2 bp+1o Tp+1 bpr Tplvgy ==+ vp)|
Cl0p+y bpo Tplvg, eoey vp)]|.
From (iii) and (iv) one concludes that for each
Tp+l€Tp+10’ TPE-'TPk (Osksp)’
we have
n
(V) X mrOp+2.bp+10 Tp+1 bpi Tplvg, =y vp), DF = 0.
r=1
In view of (ii) and (v) the lemma is now established.

2.9. For integers p > 0, the class N§ is defined to be that subset of Cg
composed of the chain 0 € Cg and of all cg having a representation of the form

R
ps (voss *+ = vps)

o

T X
1]
M=

1

where

(i) forl < s < nthe cgs (voss + + + » vps) are elementary n-chains (see 2.7);

(ii) for 1 £ s; < s, < n, the point sets Vosgs *** s Ups, and Vos,s * s Ups,
are distinct. For p < 0, the class Ng consists of the chain 0 € Cg alone.
Each of the elementary n-chains cgs (vosy =»* vps) (1 <s <n), is termed a

n-composant of 05' Observe that the sets Ng are not generally subgroups of
CR
p*

2.10. LEMMA. Let

o
°T
Il

WM =

R
ps (vosy =+ 1’ps)

s =1

be any nonzero element in Ng. A necessary and sufficient condition in order that
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BR R = 0is that BR

R
p p = 0 for every n-composant Chs (1 <s < n).

PPS

Proof. Trivially the condition suffices. It is presently shown to be neces-
sary. With explicit notations (see $$2.7, 2.9),

n n s
Bg CIIS = Z Bg gs = Z E Mrs (:Bp (UOS’ ccy vps) Trs)R
s =1 s=1r=1
n ng
= z E Z Mrs (OP +1 bPO Tp (vOS! ] vps), Trs)R =0.
s =1 r= P € T,

In view of $2.9 (ii) and of the remarks in $1.11, it is clear (see $0.2) that, for
1 <s < n we have

p ps = Z Z mfs(op *t1 bPO p (vosy *ov s vps)’ Trs)R =0
=1 7o & Tpo

and hence the assertion in the lemma is verified.

2.11. LEMMA. Let cg be any element in Ng for which Bg cg = 0. Then
R
Bp +1 p*p P = 0.

This result is an immediate consequence of the lemmas in §$92.8, 2.10.

2.12. LEMMA. Every chain cg has a representation of the form (see $$2.3,
2.4, 2.9)

R _ ,R R R R R R R R R
ey = ¢, +dp +ny, (LPCTP, dPCDp, anNp).

Generally this representation is not unique.

Proof. The nonuniqueness of the representation will be evident from the
proof of its existence which follows. For chains cﬁ =0 € Cg, the result is

trivial, so assume that cg # 0. Then cg has a unique representation of the form

n
: R R
(1) CP = E m]' (vojy ey vp]" T]) ’

J=1

where the m; are nonzero integers and the p-cells (vgj, ==+, vpj;» le)R and
(voiz’ cety Upjy sz)R are distinct for 1 < j; < j, < n. The proof is made by

an induction on n. If n = 1, then cg =my(vors =+ s Vpys T)E. I, for some inte-
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gers i, k such that 0 < i < k < p, one finds v;; = v, , then the fact that cg
has a representation of the prescribed form follows from the lemma in $2.6. On
the other hand, if all the vgy, ««+, vy, are distinct, then cg is an elementary
n-chain (see $2.7). Thus the lemma is established in case n = 1. Suppose that
the lemma is true for all chains cg having a representation of the form (i) with at
mostn = N — 1 terms (N > 1). For chains cg whose representations (i) have N
terms it is convenient to consider several cases.

Case 1. Assume there is some term in the representation (i) of cg—— without
loss of generality one may assume it to be the first = for which there are inte-
gers i, k such that 0 < i < k < p and v;; = v, . By the lemma in $2.6 there
are elements t:f in Tg and d§1 in Dg such that

.. R _ ,R R
mx(vo‘,- ,vpl,T1) _tp1+dp1’

By assumption there are elements tgz in TS, dgz in Dg, and ng in Ng such that

N

(v .y ooe L, TR = 4R R R
.;2 mi s vees g TT =g, 4 dy + mp
e

Thus

R _ (,R R R R R
cp = (tp1 + tp2) + (dpl + dp2) +ny
and since Tg and Dg are subgroups of Cg, the existence of a representation of
the prescribed form for cg follows in Case 1.

Case 2. Assume that for each j (1 < j < N) the vyjy ¢+, vpj are distinct.

By rearranging terms one may obtain from (i) a representation of the form
m m
. R R
(ii) p = Z mrs (Vgsy =+ oy Upss Trs)™, Z ns =N,
= s =1
satisfying these conditions: none of the m,s is zero; for the same s (1 <s < m),
1 <r; <ry < ns, jge mappings Tr s and T, s are not identical on | voss
ey vpsl; for 1 <'s; < s, < m, the p-cells (voslr sty Ups,) and (vosz’

«++, vps,) are distinct in K (see $1.1). Now for each s (1 < s < m) clearly

each of the chains

ps? °rs
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is an elementary n-chain in R (see §2.7). The proof is carried forth by an in-
ductive reasoning on m. If m = 1 then cg is an elementary n-chain in R, and the
representation (ii) already has the prescribed form. So assume that c;f, whose
representation (i) has at most N terms, has a representation of the prescribed
form whenever its representation (ii) has at most m = M ~ 1 terms (M > 1).
Suppose now that Cg is a chain whose representation (i) has N terms while its

o

representation (ii) has M terms

M
Zn,s=N
s=1

Subcase 2.1. Assume that for 1 <s; <s, < M the point sets Vosyr *** s Ups,
and vog,, o0 0y vps, are distinct. From $2.9 it is clear that cg is itself an ele-
ment in Ng and representation (ii) has the prescribed form.

Subcase 2.2. Assume that there are distinct integers s — with no loss of
generality one may assume these to be s =1 and s = 2 — such that the sets
Vors tte s Upy and vg,, +++, vp, are the same. It follows that the sequence
Vs *** s Upy is obtainable from vyy, +++, vpy by a positive number [ of trans-

positions. lence by the lemma in $2.5 there exists for each r in 1 <r < n, an

element tﬁ, in Tg such that
R R
(Vo1 *** s Upts Trl)R = (— 1)1 (vgy == Vp2s T, )% + tor (1 <r<ng.
Since Tg is a subgroup of Cg, the chain
!
z mry tgr
r=1
. R . R
is an element 5+ in Tp. Consequently,
™
R _ ,R l R
¢p = tp* + Z 1) Mry (voz’ Tt Upyr Trl)
r=1

Clearly the terms in square brackets may be rearranged into the form (i1) with
an integer m < M ~ 1, and their representation in form (i) has an integer n < N.

By the inductive assumption there are elements tg# in Tg, dg, in Dg and ng in
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Ng such that cg = (tg* + tg#) + dg + nlg, and the existence of a representation
of the prescribed form for c{f now follows in Case 2. Indeed, it is obvious in this
case that dg =0€ Cg. So the lemma is completely established.

2.13. LEMmaA. If c}; is\any chain in CR for which Bg cl; = 0, then
R

Bp +1 p*p p

The proof follows at once from the lemmas in $$2.3, 2.4, 2.11, 2.12.

R -o.

REsuLTs

3.1. In[3, $4.1] (see also [4, $8]) Radé has established a lemma from which
one derives the following statement by replacing the barycentric homotopy oper-
ator pI; by the modified barycentric homotopy operator pI:P (see §$1.2, 2.1).

LEMMA. Let {Gp} be an identifier for R (see $0.3) such that the following

conditions hold:
N R .. R R _ .
(i) cy (= Gp implies that ’BP cp = 0;
.. R . . R R
(i) cp € Gp implies that Pp p € Gp ‘e
Then {Cp} is unessential.

3.2. For each integer p let N(BR) be the nucleus of the homomorphism
BR CR-—)CR (see $2.1). Since 8 is a chain mapping (see §92.2) it is clear
that the nuclel N(B ) constitute an 1dent1f1er for R (see $0.3). Now in view of
the lemma in $2.13, conditions (i) and (ii) of the lemma above are clearly ful-
filled for the identifier {N(ﬂﬁ)}, and furthermore, this choice of an identifier
yields the maximum amount of information that may be obtained from that lemma.
Thus the {N(BR) constitute an unessential identifier for R, and one of the
main results is now established (see $0.4). It is summarized in the following

statement.

THEOREM. The system of nuclei N (BR) of the barycentric homomorphisms

,Bg CR——)CR constitutes an unessential zdentzfzer for R.

3.3. In order to compare this result with those in Rad$ [3; 4], first observe
that it follows from the lemmas in $$2.3, 2.4 that

N(By) > TR + Df (-w<p<+ .

Moreover, since C’; is a free group, it is clear that the division hull of N(Bg)
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must be identical with the group N(BR) Thus the group N(,B ) also contains the
the division hull of the group TR DR for all integers p. An example is now

given to show that the group N (Bp) generally contains more.

3.4. Denote by d,, d,, d the points (1, 0, 0, -++), (0, 1, 0, 0, --+), (1/2,
1/2, 0, 0, «++) respectively, let X be Euclidean x-space, and define transforma-

tions by the following relations:

Ti:x=vy = 1/2 (v € |dysdy )
{O (v € |dy,d |);
Ty): x =
- 1/2 w€|d,d |);
{00‘1/2 (v € |dy,d |);
T3: X =
0 (U Cld ’dl‘);
T,: x=0 (v € |dg,dy ).
Clearly
= (do’ d1, Tl)R - (doy dly TZ)R - (do9 d1’ T3)R + (do’ dl, T4)R
belongs to Cff and Bf{ ¢® = 0. Moreover, cX is an elementary n-chain (see

§2.7). An elementary reasoning shows that it cannot belong to the division hull

for the group TR + DR,

3.5. In order to describe the largest unessential identifier for R obtained by
Rad8, a further definition is needed. For integers p > 0, let (vg, +--, Vps T)R
bé any p-cell in R (see §€0.1). Let Woy * =+ 5 Wp be any set sequence of p + 1

linearly independent points in E,. Then there is a linear mapping
s IWO! ey wp' _)lUOa sty Up.,
such that & (w;) = v; for 0 < i < p. The p-chain

CI; = (1)0,°",7-)p, T)R - (wm cet W ,TOL)R

is termed an elementary a-chain in R (see [3, $3.4]), and the subgroup of CR
generated by the elementary a-chains is denoted by A . Forp <0, AP consists
of the zero element alone. In [3, $3.4] Rad$ has a smple characterization for

the group Ag which he uses to define the group in [4, $7].

3.6. For each integer p, put FR AR + Dg + TR (see $82.3, 2 4, 3.5),
and let F denote the division hull of FR Then Rado shows that {F } is an
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unessential identifier in R (see [3, $4.7] or [4, §9]), and this is his best result.
If one sets AR = + N(BR) (see $3. 2) and lets A denote the division hull
of A , then clearly AR P FR, and hence AR D) F . If one modifies the reasoning
of Rado in [3, $4] by replacing the barycentnc homotopy operator pg by the
modified barycentric homotopy operator pfp (see §2.1), one finds that Ag is an

unessential identifier for R. Thus one obtains the following result.

THEOREM. If AR is the division hull of the group A + N(Bg) then the

system {A }is an unessentml identifier for R.
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INCIDENCE RELATIONS IN MULTICOHERENT SPACES III

A. H. Stong

1. Introduction.

1.1. PRELIMINARIES. The present paper is concerned with relations be-
tween systems of sets and their frontiers in a locally connected space S of given
degree of multicoherence, r(S). The results are generalizations of those derived
in [4] for the unicoherent case [r(S) = 0], and of those in [5] for the case of

‘‘ana-

two sets; the methods are those used in [5] and {6]. First we apply the
lytic’” method (cf. [1; 2; 6]) to obtain a general ““addition theorem’’ for arbi-
trary sets with “‘nearly disjoint’’ frontiers (Theorem 1), which is shown to be
“‘best possible’” (Theorem 2), and to derive also relations between arbitrary
systems of sets and their frontiers (Theorems 3 and 4). Next ($4) we consider
a function of sets which measures (roughly speaking) the amount of discon-
nectedness of the frontiers of the components of the complementary set, and,
after deriving some of its properties, use it to extend the Phragmen-Brouwer
theorem to arbitrary sets (Theorem 6), and to obtain some related results. A
modified ‘‘addition theorem’’ is then established (Theorem 9) which includes
both Theorem 1 and Theorem 6 as special cases. Finally, we consider the in-
cidences of sets with disjoint frontiers and subject to further restrictions (for
example, that the sets be connected and have connected complements), showing
that many problems of this type can be reduced to purely combinatorial problems

in graph-theory.

1.2. NorATioNs. We shall be concerned throughout with subsets of a fixed
nonempty, connected, locally connected, completely normal® T, space, S. The
notations are, in general, the same as in {4; 5; Gl; but the following items are
repeated for the convenience of the reader.

The number of components, less one, of a set £, is denoted by b,(E); thus
bo(0) = — 1. If the number of components of £ is infinite, we write by(E) = ©,
without distinction as to cardinality. The degree of multicoherence of S is de-
fined by r(S) = sup b,(4 n B), where 4 and B are closed connected sets such
that 4 v B = S. It is known [5] that ““closed’’ can be replaced by ““open’” here.

If A, A, -++, A, are any n sets (that is, subsets of S), and / is any non-
empty collection of distinct suffixes

L As was remarked in (5, §6.6 8)], there would be no difficulty in reformulating the
theorems so as to apply if complete normality were weakened to normality.
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j19j29""jk acx< jl < j2 < eee < ]k < n),
we write A; as an abbreviation for 4;; n 4j; n.«+ n4;,, and write

Utd; | || =k} as Xy (A, Agy oev, 44),
or simply as Xj;. Thus

Ud;j = Xy D X DeeeD Xy = N4

For convenience, we introduce the conventions Xg = S and X; = 0 if £ > n.

We write
(D) h(Ay, Agyeeey An) = 2 b (Xg) = 2 bo (Ag) a<k<n,

with the convention that in interpreting an equality or inequality involving
h(Ay, «++,A4,) in which > bo(Ag) = o, we first transpose all negative
terms. If the sets A; are all closed, or all open, or more generally have sepa-
rated differences?, it is known [4, Th. 6b] that A(A4,, -+, 4,) > O.

Again, following Eilenberg [1], we consider (continuous) mappings f of sub-
sets of S into the circle S' of complex numbers of unit modulus, and write “f ~ 1
on X”’ to mean that there exists a real (continuous) function ¢ on X such that
f(x) = exp [ih (x)] when x € X. Mappings f1, fa, *++, fm of X in S! are in-
dependent on X if the only (positive or negative) integers py, ps, ***, Pm, for

which the product (in the sense of complex numbers)

ffr fP2e.. fPm ~ 1 on X,

are p; = py =++»= pp = 0. H 4,, 4,,+++, A, are closed sets whose union
is X, the greatest number of mappings f of X in S! which are independent on
X and such that f~1 on each 4; (or w if there is no such greatest number) is
denoted by p(A4;, Ay, +++, Ay). For fixed X and n, we write

2) rp (X) = sup p(A4y, +v, 4),

the supremum being taken over all systems of n closed sets 4, +++, 4; whose
union is X. Clearly 0 = r;(X) < r,(X) < ... it is known [1] that

sup, i (X) = by (X)
and [1; 6] that r, (S) = r(S).

2That is, Aj — Ay and Ag —Aj are separated (1 <j <k < n), (Two sets are ‘‘sepa-
rated’’ if neither meets the closure of the other.)
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1.3. SoMe LEMMAS. We shall require the following lemmas, some of which

are known; the proofs of the rest are easy.
(1) If Ay, Ay, +++, A, have separated differences, then
(i) UFr(Aj) = UFI‘(X]');

(ii) 4; n A and Co(4j u Aj) are separated (1 < j < k < n)if and
only if Cl(X}) C Xj and Xz C Int (X]-);

(iii) Fr(4; n 4g) nFr(4j v 45) =0 (1 < j < k < n) if and only if
Xy, Xay+++, X, have disjoint® frontiers; that is, Cl(Xz) C Int(X;);

(iv) A{, Ay, +e+, A, are of finite incidence* if and only if
z by (Xj) < .

(2) If A, and 4, are both open, or both closed, then 4; — 4, and 4, — 4,
are separated; and further, 4; n 4, and Co(A4; n 4,) are separated -
if and only if Fr(4; n 4,) nFr(4, v 4,) = 0. If 4; and 4, are open,
this condition is equivalent to Fr(4,) n Fr(4,) n Fr(4; n 4,) = 0.

(3) *‘Approximation lemma.” If 4; — A and Ay — A; are separated, and
also 4; n Ay and Co(4; u Aj) are separated (1 < j < k& < n), then,
given any open sets W (J) D A; (where J runs over all nonempty sets of
suffixes between 1 and =), there exist open sets A; D Aj such that, for
any open sets B; satisfying 4; C Bj C A;‘, we have B; C W(J) and

Fr(Bj) n Fr(Bg) n Fr(Bj n By) =0 (1 <j<k<n).

If further Fr(4;) n Fr(4g) n Fr(4; v Ag) = 0 (j # k), the sets Aj* can

be chosen so that the sets B; have disjoint frontiers.

(If n = 2, this reduces to [5, Ths. 7 and 7al; the general case follows by a

straightforward induction over n.)
4) If Ay, A3y +++, 4, are closed sets of finite incidence, then

P(AI’A29 0y An) < h(Aly A21 eeey An);

if further no three of the sets A; have a common point (for example, if

n = 2), then p = . (Cf. [6, $2.6).)

3Throughout this paper, ‘‘disjoint’’ means *‘pairwise disjoint’’.

4That is, the sets 4; and all their intersections 4j have only finitely many com-
ponents.
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(5) If fmaps X in S!, and X is a finite union of disjoint closed sets on each
of which f~1, then f~1 on X. (Trivial.)

(6) If fmaps S in S?, and f~1 on a closed set A C S, then there exists an
open set V O A such that f~1 on V. (Cf. [1, p.157; 6, $2.2(2)].)

(7) If fmaps 4 in S, and f~1 on Fr(A4), then f may be extended to a map-
ping f* of Sin S! such that f*~1 on CI(S - A).

For f = exp(i¢) on Fr(A4); since C1(S — A) is normal, ¢ can be extended
to a continuous real function ¢* on Cl(S — A); define f* = exp(i$™) on

CI(S - A), and f* = [ elsewhere.

(8) If Ay, Agy oo+, Ap are n closed sets, and 1 < m < n, then

P(Alv Ay eeey 4y) < tm (X1) + th41-m (Xp)

A

mm (X1) + by (Xp).

For consider N mappings f;, +++, fy of X; (= U4;) in S which are inde-
pendent on X, and satisfy fy ~1on 4; (1 < &k < N, 1 £ j < n). We must prove

N é r,,,(Xl) + rn+1—m(Xm).

Let s be the greatest number of mappings f; which are independent on X;;; since
Xm CAy v Ayu ees UAps1-my clearly s < rp4y-m (Xp). We may suppose
that the mappings f are independent on X, for N—s < k& < N, and then have,

for each £ < N — s, a relation of the form

— gt ~
gk:fkkt;[l\l-sftkt !
on Xp, where the exponents p,, g,, are integers not all zero, so that clearly
p, # 0. It readily follows that the mappings g, (1 < &k < N ~ s) of X, in St
are independent on X;, and they clearly satisfy g ~1 on each 4;. Further, from
(6) above, there exists an open set V;; D X, such that each g, ~1 on C1(Vp,).
Now X,,-; — Vy, is a finite union of disjoint closed sets of the form 4; — V,,
(where |J| =k — 1), on each of which each g ~1: hence, by (5), g, ~1 on
Xm-1 = Vm, so that there exists an open set Vj -y D X, -1 ~ Vp, such that

each g; ~1 on C1(Vp -). Proceeding in this way, we obtain open sets

B Xa= sy v gy ueerv Vn) M2 A < m)

such that each g, ~1 on Cl( V5). Since UCI(VX) D X,, the number N —s of
mappings g is at most p(Vyi, Vayooey V) < 1n(X)), and the result follows.
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As corollaries, we have:

(9) If, in the proof of (8), each of the mappings f, ~1 on Xy, then
N 5 rm(Xx).

(10) If no m + 1 of the sets A; in (8) can have a common point (for example,
if m=n), then p(4,, 43, +++, 4y) < rp(Xy).

For in this case, X;, falls into disjoint closed sets 4, each contained in a

single A]'; hence, from (5), each fi ~1 on Xp.

2. An additional theorem.
2.1. INTRODUCTION. The last result, 1.3 (10), combined with 1.3 (4), gives
another proof of the fact [6, Ths. 3 and 4al that if 4;, 4,, -+, A, are closed

sets which cover S, and no three of them have a common point, then
h(A1, M ] An) _<_ T(S),

In the present section we shall obtain a considerable extension of this property
(Theorem 1), and show that it is the ““best possible’’ of its kind, incidentally

obtaining a new characterization of r(S) (Theorem 2).

2.2. THEOREM 1. Let Ay, Ay, +++ s An be any subsets of S having sepa-
rated differences and such that A; n Ay and Co(4; v Ay) are separated when-
ever j # k.® Suppose that no point belongs to Aj for more than m distinct values
of j, where 2 < m < n.® Then

0 _<_ h(An A29 "';An) _<_ (m—l)r(S).

Proof. Clearly we may assume that r(S) and b, (4;) are finite (1 < j < n);
from [5, Th. 9], the sets A;j are then of finite incidence. Further, it will suffice
to prove the theorem under the additional assumptions that the sets 4; are
closed and have disjoint frontiers. For if the theorem is known in this case,
the method of ‘‘approximation’’ extends it first [applying the second part of
1.3(3) to the sets Co(4;)] to the case in which the sets 4; are open and satisfy

5These hypotheses are implied by: (a) the sets Fr (Aj) are disjoint, or (b) Ay,+-+, 4,
are all open, or all closed, and Fr(Aj n Ag) n F‘r(Aj u Ag) = 0 whenever j £k, or
(c) Ay,+++, A, are all closed and Fr(4;) n Fr(4z) n Fr(4; v Ax) =0 (j £ k), or
dually, and thus also by: (d) 4,,+++, 4, are closed and cover S, and no three of them
have a common point. A slight relaxation of the hypotheses on the sets 4; is possible;
see 2.3 (3) below.

6The case m =1 is trivial. If equality holds in the conclusion of Theorem 1, and both
sides are finite, then the sets A; must in fact satisfy stronger frontier conditions; see

5.6 below.
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Fr(Aj) n Fr(4g) n Fr(4j n Ag) = 0 (j#K),

and thence [by the first part of 1.3(3)] to the general case; we omit the details,
since the argument is a straightforward generalization of that in [5, $$7.4 and
7.5] (cf. also [6, $4.4]).

We write Xg (A, Apyevey A;) as X! (1 < s < t < n), and introduce the
conventions X! = S if1 <s <n <t orif0=s < tyand X; = 0if s > ¢

Now (all the numbers involved being finite here) one readily verifies that
(1) A(Ay, Agyeeey An) = (A}, Ay ooy 4p=y)

+ X h(4, 0 Xool, XY Q@ <s < a-1),
and repeated application of this identity gives .

(2) h(Al, Aza e 7An) = Zl ‘+ Zg+".+ Zn—l:

where
2= 2 h(dgey n Xy XE) (s <t<n-1).

We first show that

3) Zs < r(S) Q1<s<n-1).
For, from 1.3(4), we have
2 = 2 p(Aay 0 Xboyy XD (s <t <n-1).

Let fzj , where j=1, 2, .., n;, be mappings of

XE < (dgey 0 Xeoy) u XL

in the unit circle such that

(i) ftj"l on Ag4y n XE_y,

(ii) ftj ~1 on Xﬁ ,

(iii) for fixed ¢, these mappings are independent on X1 .
pping P

To prove (3), it suffices to show that the total number Znt
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(s £ ¢t < n—1) of these mappings is at most r(S).
We have

FrlCI(S — X(*1)] ¢ Fr(Xi*') C Fr(d4p4, n Xio)) u Fr(X}),

a union of two closed sets which are easily seen [from 1.3(1)] to be
disjoint. Hence [from 1.3 (5) and 1.3(7)] ft]- ~1 on Fr[CI(S - X:*1)],
and so fti can be extended to a mapping, which we still denote by ftj’ of

S in the unit circle, in such a way that
(iv) ft].~1 on Cl(S — X!*1),

We assert that the extended mappings ftj are all independent on S. For
suppose not; then, for each ¢, there exists a mapping of the form
- II Pt] .
g = Il f; Q<< m).
where the exponents p;; are positive or negative integers, not all zero
for all ¢, such that

Es gs+l e Sn—y1 ™ 1 on S.

From (ii), we have g; ~1 on X!; and so, if ¢ > s, we have g;~ 1 on
X$*L, Thus (4) gives gs ~1 on X$*!; hence, from (iii), it follows that
gs = 1, and all the exponents ps; are zero. A similar argument, with s
replaced by s + 1, then proves g+, = 1, and so on; finally all the ex-
ponents p;; must be zero, giving the desired contradiction.

Now write
Ep = ClL(X$*emr  xsth-2), E=1,2+,n+2=s;

thus the sets Ej are closed and cover S,.and it is easy to see that no
three of them have a common point. We shall show:

ftj"’l on Ej.

In fact, if k< t+1-s, then By C X$™*™ ' C X5 if k=t+2-s,
then £ C Agyy n Xi-j; and if & > ¢+ 3 s, then E C CI1(S - X¢*1);
thus in each case (5) follows from (ii), (i), or (iv).

Thus the total number of mappings ftj is at most
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P(Ey, Ezy eeey Ensg—s);

but, by 1.3(10), this number is at most r, (UEL) = r(S); thus (3) is
established.

Now we further have Zs = 0if s > m, since the sets 44, n Xi-,
and X! are then disjoint (for X5 +; = 0). Thus the theorem follows from
(2) and (3).

2.3. COROLLARIES AND REMARKS. We make the following observations.

(1) For any two sets A, B, satisfying the hypotheses of Theorem 1, we have
by (A) + by(B) < bo(A u B) + bo(A4 n B) < bo(A) + bo(B) + r(S).
(this generalizes [5, Th. 9].)

(2) For any set E, we have
bo(Fr(E)) < bo(E) + bo(CL(Co(E)) + r(S).

(this generalizes [4, §6.5].)

(3) In Theorem 1, the hypothesis that A]' n A; and Co(Aj u 4;) be sepa-
rated (j # k) may be omitted for each pair j, k for which A; C Ay; that
is, it may be replaced by: For each j, k (1 < j,k < n), either Aj C Ag,
or 4; D Ay, or Aj n Ay and Co(Aj u Aj) are separated. This is proved
by noting that a more careful application of the approximation argument

will still lead to closed sets with disjoint frontiers.

(4) Other results may be derived by observing that, under suitable conditions
on the sets 4, «++ , 4,, further sums ZS in 2.2(1) above will vanish.

For example, Theorem 1 can be slightly sharpened as follows:

If Ayy v+, A, satisfy the hypotheses of Theorem 1 (as weakened
in (3) above), and if they can be renumbered so that

A)\"’l C A)\+2 C eee C Any
then
h(Ay, +++, 45) < min(A, m - 1) r(S).

For the approximation argument enables us to assume, as before,
that the sets A, ..., 4, are closed and have disjoint frontiers. In

2.2(2) we easily verify that now X! C 4,4, n X!_, whenever
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A+1<s<t<n-1;
hence Zs = 0 whenever s > A.

A further slight sharpening of Theorem 1 is implied by the following
result. :

If the sets Ay, +++ , Ay have separated differences, and if A, (say) is
either disjoint from, or contains, or is contained in, each other set, then

h(Ap cey An—h An) = h(Au MR ] An—l)-
We may assume that 4, is disjoint from 4, -++, A%, contains
Ak+1s o5 41,

and is contained in Aj+yy o+, Ap-; (Where 0 < k <! < n - 1). It is
easy to see that we may take 4, --+, 4, to be of finite incidence, and
then, by 2.2(1), have only to prove that

h(4, n X221, XB71) = 0 (1<s<n-1).

If s<n-1 then 4, C X§™!, and the result is trivial. If s > n -,

write
Yp = Xp(Al’ ooy Agy Arayy eoe s An=y)
and
Zq = Zq(Ak'H’ sy Ay Al4ys e An-1);

it is easily verified that X7 ! = ¥; u Z; and that Ys C Co(4;,) and
Zs C Ap, from which again the result follows.

Finally, as a corollary from (4), we have the following extension of (1):

If By, «s«y By, Cyy +++, Cq are arbitrary sets such that Bj ~ Cyand
Cx — B; are separated, and Bj n Cp and Co(B; u Cj) are separated,
whenever 1 < j < p, 1 < k < q, then

B(Byy ooy By) + h(Cyyveey Cg) < h(Byy vee s By, Cyy oee sy Cy)
< h(Byyeees Bp) + h(Cyy vee, Cq) + min(p,q, m - 1) r(S),

where m is the greatest number of the p + q sets By, <.+, Cy which
have a common point.
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This follows on application of (4) and Theorem 1 to the p + ¢ sets
Xi(Byy ++es Bp)y Xp(Cyyenvy Cp).

2.4. CONVERSE. The converse of Theorem 1 holds in the following rather
strong form, which represents an extension to any number of sets of the defining
property of r(S).

THEOREM 2. Let integers m, n be given, where 2 < m < n. Let A,-++, 4,
be any n closed connected sets, no m + 1 of which have a common point, such
that Fr(4;) nFr(Ag) = O whenever j # k, and such that 4j v Ay = S when-
ever 1 < j<k<m?" Then

sup bo(Xp) = (m = 1) 7(S) + n — m.
In this statement, the word “‘closed’’ may be replaced by “‘open’’.

To show that
(1) bo(Xp) < (m =D r(S) +n - m,

we clearly may assume Xp, # 0; then bo(Xs) > 0 if s < m, and

bo(Xs) = -1
for m < s < n, so that (1) is a trivial consequence of Theorem 1.
To complete the proof, let N be any integer such that
0< N < (m=-1)r(8).

We first construct m closed connected sets By, B,, -+, By, such that

(2) Bj uBr =S (1 <j<k<m and b(NBj) > N.

If r(S) = o, this is trivial (take all but two of the sets Bj to be S), so
we may assume r(S) < co. From [6, $4.1], there exists a finite covering
of S by closed connected sets E,, E;, «++, Ey, no three of which have
a common point, whose nerve G satisfies r(G) = r(S) = r, say, and
such that G is arbitrarily often “‘dispersed’’; this implies [6, $3.4(7)]
that G is obtainable from a graph H by subdividing each arc ) of H
which belongs to a simple closed curve in H, into at least 2m + 2 sub-
arcs by extra vertices of order 2. We can select® r such (disjoint, open)
7Note that we do not require every two sets A;, Ay to cover S. In fact, if n nonempty

closed sets are such that every two of them cover S, then trivially all of them have a
common point.

8See, for example, the argument proving [6, $4.1(3)].
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arcs U in H, say ly, I3y <, I, whose removal does not disconnect H;
let I) (where 1 < A < r) contain the consecutive vertices Pxno* Py
P, *** » P, om Of order 2 in G. Denote by E7\-i the set E; which corre-
sponds to Paj} thus, if 1 < A < randl < j < 2m-1, each E)\,j meets
two and only two other sets Ej, namely E)\’]._l and E)\'].H. Define Bg,
where 1 < ¢ < m, to be the union of all the sets Ej except

E1.2q-1’ E2,2q-1’ R ] Er.zq—l .
Then By is closed, and is easily seen to be connected (cf. [6, Th. 1]).
Further, since Co(Bg) C U, E)\,zq—l’ we have Co(By) nCo(Bs) = 0
if ¢ # s, so that By v Bs = S. On the other hand, let D be the union
of those sets Ej which are not of the form E)\’]- Q<Ar<rn 1<j
< 2m - 1); then

NB; ¢ DuUE, ,, Q<AL r,1<h<m=1),

a union of 1 + (m - 1)r disjoint closed sets, each of which it meets;

thus bo(ﬂBq) >(m-1r>N.

There exist (cf. 1.3(3) and [6, $6.1]) connected open sets Cq D By

whose closures Aq have the same incidences as the sets Bq; then
Fr(4;) n Fr(4g) C Fr(Cj) n Fr(Cy) C Co(C; v C) =0

whenever j # k, and moreover we have 4; v 4y = S < j <k < m)
and bo(N4;) > N.

If n = m, the theorem is thus established. If » > m, we note that
the open set Int [ Xy 3 (A4, +s+, Ap)] = X (44, <<+ 5 4Ap) is nonempty,
from 1.3(1), and take A,;,4+4, +++, Ay to be n — m distinct points in it;
clearly

bolXm(Ayy voe s Apy ooy 4)1 > N+ n=m,

and the proof is complete.
The modifications required to produce open sets A; with similar

properties are obvious.
3. Index inequalities for arbitrary sets.

3.1. AN INEQUALITY. Let E,, E,;, ++-+, E, be arbitrary subsets of S. As
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in [4, §7], we write
A] = CI(E]), B] = CI(S - E]), P] = X] (Al, see, An), Q] = X]'(Bl,.o., Bn)‘
An argument entirely analogous to that in [4, $7], based on 2.3 (1) and (2), gives:

THEOREM 3. We have

RIFr(E,), +++, Fr(E,)] = nr(S) < h(Ay, v+, Ap) + B(By, +++, By)

+h(Pyn QnyPynQpeyyeeey Py n Q)
< h[Fr(El)’ s ,FI‘(En)]+nr(S)-

COROLLARY. We have

M(Ey, Egy «+v y By) < R[Fr(Ey), Fr(Ey), «++, Fr(E,)] + nr(S).

3.2 THE CASE m = 2. It is easy to see that the inequalities in Theorem 3
are ‘‘best possible’’; however, Theorem 1 suggests that in the Corollary the
term nr(S) could be replaced by (n — 1) r(S), or more generally by (m — 1) r(S),
where no m + 1 of the sets Cl(E;) have a common point. I have been able to

prove this only in the case m=2:

THEOREM 4. If E, E,, +«++, E, are arbitrary subsets of S, no three of

whose closures have a common point, then
h(Ey, Egy +++ , Ep) < hIFr(E)), Fr(Ey), -+, Fr(Ea)] + r(S).

Proof. We can assume that r(S) is finite, and that the systems of sets
[CI(E,), «++, CI(E;)] and [Fr(E,), +++ , Fr(E,)1 are both of finite incidence,
since otherwise (in view of the convention regarding infinite terms in the -
function; see 1.2) Theorem 4 asserts no more than Theorem 3, Corollary. Hence,
in view of 1.3(4), Theorem 4 will follow [if we take 4; =Cl (E]') and F; = Fr (Ej)]

from:

THEOREM 4a. Let Ay, Ay, ey Ay, Fy, Fyy oo« F, be any closed sets
such that 4j > Fj and UF; D UFr(4;). Then

p(Al’ A21 e 9An) < P(Fp F2, L Fn) + r(S).

3.3. PRoOF OF THEOREM 4a. Let f;, f, - , fy be N independent mappings
of U4; in the unit circle such that each fy~1 on each 4j; we must prove that
N < p(Fyy eeey Fp) + 7(5). Let s be the greatest number of mappings f, which
are independent on UF]': clearly s < p(Fy, «++, F,). We may suppose that the
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mappings f, are independent on UFj for N—s +1 < k < N, and then have, for

each t < N—s, a relation (say)
P 9k
g =1' IkI fo @ ~1

on UF;, where N~s + 1 < k < N, Thus g, is a mapping of U4; in S* which
~1 on each 4;; and, since clearly p; # 0, thé mappings g (1 < ¢ < N ~s) are
independent on U4;.

Write Co = C1(S ~U4;); then Fr(Co) C UF;, so that, from 1.3(7), each
g may be extended to a mapping (still denoted by g;) of S in S! such that g;~ 1
on Cqo. Now define Cy=4;, C;=Cl[4; - (4 uAyu--eu Aj—l)] (2 <j<n);
then the sets C,, Gy, +++, G, are closed and cover S, and each g;~1-on each
Cj. Let Z=U(Cj n Cp), where 0 < j < k < n; then Z C UFr(Aj) c UF; ,
so that each g;~1 on Z. From 1.3(9), the number N ~s of mappings g is at

most r(S), and the theorem follows.

3.4. REMARK. We remark that no inequality similar to Theorem 4, but in
the reverse direction, can hold in general. For example, take S to be the plane,
and let A be a circular disc and B an inscribed convex polygon plus its interior;

then A, B are closed and connected, and A(A4, B) = 0, but A[Fr(4), Fr(B) ]

can be arbitrarily large.
4. Frontiers of complementary components.

4.1. DEFINITION. For any 4 C S, let { G, } be the components of the com-

plement of A, and write
M) e(4) = X by(Fr(Cy),

with the usual convention that a vacuous sum is zero. [Thus ¢ (S) =0,

c(0)=~-1.] From [5, Th. 4] we have
(2) c(A) + by [CL(S ~ 4)] > by[Fr(4)],

and (a weaker statement unless by [C1(S — 4)] is infinite)
@) c(4) > bo(4).

If A is open, we evidently have equality in (2). (Note that (3) contains
the well-known fact that, if 4 is not connected, at least one component

of Co(A) has a disconnected frontier.)

4.2 LEMMA. Let C be a component of S — A, and let U be an open set con-
taining Fr(C). Then there exists an open set V O A such that V n C C U.
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This follows from [6, $6.11] applied to the sets A-: E; a direct proof is also

easy.

4.3 THEOREM 5. If ¢(A) > n, then there exists an open set A* D A such
that, for each set B satisfying A ¢ B C A, we have c(B) > n.

For if ¢(A4) > n, then there exist finitely many components, say C;, G,
+++y Cp, of Co(A), such that by [Fr(Cj)] > nj where Zni >n(l<j<m.
Thus, for each j, Fr(C;) is a union of nj +1 disjoint closed nonempty sets
Fip (1 <k < nj+1), and there exist open sets Uj; D Fjj such that C1(Uj)
n CL(Uj) =0 (j # D. Let Uj = Ug Ujg, an open set containing Fr(C;); from
the lemma in 4.2, there exists an open set V] D A such that Cl(V]') n Cl(Cj)
C U;. Take A* = N; V;, and suppose that B is any set satisfying 4 C B C A*.
Then, since Ug Fjr C B n C; C Ug Ujg, we have bo(B n Cj) > nj. Now let
{Dj,} be those components of Co(B) which are contained in Cj, and write
Ej =U,Dj . One readily verifies that Fr(£;) C B n (; C C1(S - Ej), and that
E;u (B nC)) = Cj; hence, from [5, Th. 4], 2, bo(Fr(Uju)) > bo(B n Cj)
> nj, so that ¢(B) > X}, bo(Fr(Dj,)) > X ni > n.

COROLLARY. We have c(4) < c(4).

4.4. EXTENSION OF THE PHRAGMEN-BROUWER THEOREM. This theo-

rem, as extended in [5, Th. 5], can now be extended still further.
THEOREM 6. For any set A, we have c(A4) < by(A) + r(S).

The proof is almost identical with that for the case in which 4 is connected,
in [5, $4.2]; the difference arises from the fact that the sets L, M there con-
structed need not here be connected. But we may assume without loss that
bo(A) < , and have by(L) < bo(A) and bo(M) < bo(A); hence, from 2.3 (1),
we have by(L n M) < 2b0(Z) + r(S). Since bo(Z) + 1 of the components of
L n M now arise from A, the argument can be concluded in the same way as

before.

COROLLARY 1. If r(S) is finite, and A is any subset of S such that A has
only a finite number of components, then all but at most a finite number of the

components of S— A have connected frontiers.

COROLLARY 2. If S is unicoherent, then c(A)=by(A4); and, conversely,

this equality is characteristic of unicoherence.

(This follows from 4.1(2) and [5, Th. 5].)
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4.5. ANOTHER EXTENSION. It has been shown in [5, Th. 5] that, con-
versely, Theorem 6 serves to characterize r(S), even when restricted to the
case in which 4 is closed (or open) and connected. However, Theorem 6 can
be restated in a slightly different though equally natural way, in which the con-

verse question is more difficult.
THEOREM 6a. For any set A, we have
(i) bo(Fr(4)) < c(4) + bo(CL(S = 4)) < ¢(4) + bo(CL(S - 4))
< bo(Fr(4)) + r(9).

Conversely, if for some fixed (finite) n we have

(ii) c(A4) £ bo(Fr(4)) + n
whenever A is nowhere dense, and if further

(iii) S is metrizable, or r(S) is finite,
then r(S) < n.

The first inequality in (i) is a restatement of 4.1(2), the second follows
from Theorem 5, Corollary, and the third from Theorem 6 applied to A, in view
of the fact [4, §6.2] that bo(4) + bo(Cl(S = A)) < by(Fr(4)). For the con-
verse, suppose that (ii) holds, but that r(S) > n. From [5, Th. 5a), there exists
a closed connected set A’ such that S~ A4’ has only a finite number of (open)
components C,, Cy +++, Cp, and by(Fr(4°’)) > m+n - 1; thus from [5, Th.
4], we have 2, bo(Fr(Cj)) > n. Suppose now that r(S) is finite, and write
A =Fr(A4A’); thus A is nowhere dense, and, from 2.3 (2), bo(4) < . Let { Dy }
be the components of Int (4 “); then [5, Th. 4] we have Z bo(Fr(Dy)1 > by(4)
= by[Fr(4)]. But the components of Co(4) are precisely the sets Cj, Dy; hence
c¢(A) > blFr(4)] + n, contradicting (ii).

If r(S) = o, the above argument still applies provided that b,[Fr(4°)] < .
Hence we may assume bo[Fr(A4’)]=cc, so that there must exist some Cj, say
C, for which b4[Fr(C)] = . Now, the complement (say) F of C is closed and
connected. If it is assumed that S is metrizable, then there exists a sequence
of open sets G, such that G, D Cl(G,+,) (n=1, 2,+++), and NG, = F. Let
X = C - UFr(G,); from a theorem of Hewitt [3], there exist disjoint sets Y, Z
such that YuZ =X and Y=Z=X=C. We take 4 = C — Y. Thus C1(S - 4) = S;
and Fr(4) = C, which is connected. But Co(4) can be separated, by one of
the sets Fr(G,), between F and any given point of Y; thus one of the com-
ponents of Co(A4) is F itself, and again (ii) is contradicted.

COROLLARY. If S is unicoherent, and {C)} are the components of an
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arbitrary set E, then
bolFr(Cy)1 + bo(E) = bo[Fr(E)];

and this property characterizes unicoherence among metrizable (locally con-

nected and connected) spaces.

It would be interesting to know whether the extra hypotheses on S imposed
in (ii1) are needed. It would be easy to replace them by others (for example,

local compactness plus perfect normality).
5. Modified addition theorems.

5.1. A MODIFICATION. As in the case of two connected sets [5, Ths. 11
and 1lal, special cases of Theorem 1 can be obtained under alternative hy-

potheses. As an example, we state:
THEOREM 7. If A and B are any sets satisfying
Fr(4) n Fr(B) n Fr(4 n B) = 0,
then

bo (A u B) + bo(4 n B) < by(A) + by(B) + r(S);

and if there is finite equality here, then A — B and B — A are separated (so that
Theorem 1 then in fact applies).®

The proof is a fairly straightforward generalization of that of [5, Th. 11],
with 2.3 (1) replacing [5, $7.4]. The extension of Theorem 7 to n sets, however,

appears to present some difficulty.

5.2. ANOTHER MODIFICATION. A more interesting modification of Theorem
1 is the following, in which r(S) does not enter explicitly; in some cases (in

view of Theorem 6) it gives more information than does Theorem 1.
THEOREM 8. If A and B are arbitrary sets such that
Fr(A) n Fr(B) n Fr(AuB) =0,

then
h(A, B) + by(A) < c(A).
91t follows (see 5.6 below) that, in the case of finite equality, we have for each

component E of A uB that Fr(4 nE) nFr(B nE) =0. It is false, in general, that
Fr(4) n Fr(B) =0.
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Proof. Write C = C1[Co(4)], and apply [4, Th. 6b] to the closed sets 4 u B,

AnB

(1)

, C. We obtain

bo(AuB) + bo(A nB) + bo(C) < bylB uFr(4)] + bo[B n Fr(4)].

From the frontier relation satisfied by the sets 4 and B, it readily
follows that Fr(4) n Co(E) is closed, and thence that each component
of Fr(A) which meets B is contained in B. Hence we see that

bolB u Fr(4)] + bo[B n Fr(A4)] = bo(B) + bo[Fr(4)1,

and consequently

(2) bo(A uB) + bo(A n B) + bo(C) < bo(B) + bo[Fr(4)].

(3)

@)

But by 4.1(2), we have bo[Fr(4)] < by(C) + c(4). Thus, provided
that by(C) is finite, we have proved

bo(A uB) + bo(A nB) < bo(B) + c(A),

from which the theorem follows immediately.

To complete the proof, we deduce that (3) continues to hold even
when b3(C) = ov; and in doing so, we may assume that bo(B) + c(4) < oo.
Define B* to be the union of those components of B which meet 4, and
A* to be the union of 4 with all components of Co(A4) which have con-
nected frontiers. It is easy to verify that

Fr(4*) n Fr(B*) nFr(4* n B*) = 0,

and that, since ¢(A4) < o, bo[Co(4*)] is finite. Hence (3) holds for
the sets A*, B*; and it is a routine matter to deduce that (3) also holds
for A and B*, and thence finally for 4 and B.

There is no difficulty in extending this theorem to any number of
sets; for example, (2) can be extended to the following property, valid
in an arbitrary topological space S (and generalizing [4, $7.4(1)]):

If Ay, «++, Ay, By, +++, B, are arbitrary sets such that
Fr(4;) n Fr(Bg) n Fr(4j v B) = 0 L<j<ml<k<n),

and Cj = Cl[Co(A,')], then
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Zbo[xh(A_u M} A—my B-b M | En)] +z bo[Xj(Cn sy Cm)]
< X bo[X;[Fr(4y), -+, Fr(4m)1}

+ 2 b [Xe(Byy ovv s Bn)l+ mby(S),

the ranges of summation beingl < A <m +n,1 <j<m1l <k <m
and (3) can be extended similarly.

5.3. AN INCLUSIVE RESULT. The next theorem includes both Theorem 1
and the extended Phragmén-Brouwer theorem (Theorem 6) as special cases. We

shall need the following lemma.

LEMMA. If G is a set with only finitely many components, then there exists
a finite set of points %y, %z v+, %g € Fr(G) such that

bo (G u (1) ueer u(xg)] = bo(G).

For if G has components G, G,, + + -+ , G5, we have only to take at least one

point Xj in every nonempty set Gx n Eu (A # p).

5.4. THEOREM 9. Let Ay, Ay, +++, A, be any subsets of S having separated
differences and such that A; n Ay and Co(4; v Ag) are separated whenever
j # k; and suppose that no point belongs to Aj for more than m values of j,
where 2 < m < n. Then

(1) A(Ay, oeey 4) + (X)) + c(X) +evetc(Xp-y)
< bo(Xy) + bo(Xp) +oov + bg(Xp—y) + (m = 1) r(S),

where X;j = Xj(Ay, «++, A). Further, if there is finite equality in (1),
then, for each ¢ < n—1, for each set | of q + 1 distinct suffixes j,,

Jas =+ + 5 jg+1 between 1 and n, and for each component k of X4, we have
(2) N{Fr(4; nE)|j €J}CE.

To prove (1), we may assume throughout that r(S) and > bo(4})
are finite; it then follows from Theorems 1 and 6 that the numbers bo(X]-),
bo(X;j), and c(X;) are also finite. Further, we may obviously suppose
that X,,—; # O (otherwise (1) would be derived with a smaller value of
m). Again, by using the method of approximation, we may assume in
addition that the sets 4; are all open and, by 1.3(2), satisfy

(3) Fr(4;) nFr(dg) nFr(4; ndg) =0 (j £ k).
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For, in the general case, we apply 1.3(3) to replace the sets 4; by
slightly larger relatively connected sets 4;* having the same incidences
and satisfying (3); and, in view of Theorem 5, the truth of (1) for the
sets Aj* will imply (1) for the sets A]'.

From (3) and 1.3(1), the open sets X; satisfy

XIIDX—QDX2DIY;D"'DX”1+I=O-

We shall define inductively, for j=1,2, ..+, m -1, open sets G;
consisting of a finite number of components (jj of Co(/Yj), and open
sets V; D Fr(G;), such that 11

Gj u Vj C Gi whenever j < k;

Vi CXimas Vj nXKjuy =0V a Wy =0 if j# k;

Fr(Vi) nFr(4;) = 0 (for all j, k); and Fr(Vj) n Fr(X]-) =0.
Further,

bo(V;) < w, bo(Xj u¥j) < bo()?j), and

bo(V; 0 G) > c(X) + bo(Gj).

For suppose this done for all j < p, where 1 < p < m. Define G, to
be the union of all those components of Co(Xp) which either (a) have
disconnected frontiers, or (b) meet G,-; u ¥p-y. Since Gp-yv Vp-
C Co(Xp), this gives Gp-yu Vp~y C Gp; and since further

bo(Gp-1 v Vp-1) < 0,

Theorem 6, Corollary 1, shows that b,(Gp) < w. Let G, consist of the
components Cpy of CO(XP) (k=1,2,+--,mp); thus

Zy by [Fe(Coi)] = (%) .

Hence, if the components of Fr(Cpk) are denoted by Fpkl (l=1,2,

*» k), we have k (npr —1)=c(Xp). For fixed p and £, there
exist open sets Npg O Fpkl with disjoint closures (for varying {); and
it follows from the lemma in 4.2 that an open set U, exists such that
Up D Fr(Xp) and Up nCl(Cpg) C Uy Npgi. We may further suppose,
from (4), that U, C Xp-1, Up n Xp4y =0yand Up nVp-; = 0. It readily
follows that Fr(Up) ? Fr(4g) = 0 for each &k (1 < k < n). Again, from

11By convention, X, = § and X 4y =
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the lemma in 5.3, there exists a finite set () C Fr(Xp) such that
bo(Xp u Qp) = byo(Xp).

Let V, = union of those components of U, which meet ¢p u UFpgs;
clearly by( Vp) is finite; and, since Fr(Vp) C Fr(Up), it is easily seen
that (5) continues to hold when j = p. Also the sets V, n Cpp n Npgy are
(for varying & and [) all pairwise separated and nonempty; hence the
number of components of V, n Gp is at least &y nyy = C(XP) + np, SO
that (6) holds.

To start the induction, we take G; to consist of the components of
Co(X,) with disconnected frontiers; the rest of the construction is ex-
actly as in the general case. Thus (5) and (6) hold for j=1,2,+.., m - 1.
We remark that it follows trivially from (5) that

Fr(¥;) n Fr(Gy) = 0 whenever j # k, and ¥; n Gy = 0 if j > k.
Now consider the ‘‘elementary symmetric sets’’
Y, = X (G, Goy vy Gy Viy Vayvons Vmmy) (1< j < 2m=2)
and
Zp = Xp(Ay, Ayy voe s Any Gryooe s Geyy Vigooe sy Vipey)
1<k<2m+n-2).
Using (5) and (7), we obtain
Yi=Gn-19Vn-1, Yj = Gu—ju Vip—ju (Gp-js1 0 Vim-jsy) if
2< j<m=1;Y, =G nV;and ¥;=0if j>m.
Thus, since Zy = X; v U(Xg-p n¥p) v ¥, we find:
Zp £0if 1 <k < my Zp = XnuU(Xp n¥}) u U(Gy n Vp)
(p,g=1,2,e0e,m —=1); and Z = 0 if &k > m.

Now the open sets Ay, Ay, coey Ap; Gy ooy Gy Vi ooy Vin—y
satisfy the hypotheses of Theorem 1, since this is true of Ay, «--, 4,
from (3), while we readily verify that

Fr(4;) n Fr(Gg) n Fr(4; n G;) =0,
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and that in all the remaining cases the sets have disjoint frontiers.

Hence
100 2 bg(Zp) < Zbold) + 2 bo(Gr) + 2 bo( W) + (m = 1) r(S)
I<p<n+2m-2, 1<j<n 1<k<m-1).
But (9) shows that
Y b0(Zp) > bo(Xm) + T bo(Xe n Vi) + Lbo(Vk n G + m = n.
Also

bo(Xg n Vi) > bo(Xg) + by (Vi) — bo(Xp n Vi) (cf. [4, $6.21)

v

bo(Xi) + bo(Vk) — bo( X)),
and, from (6).

bo(Ve n Gr) > c(X) + bo(6).

Thus finally, since all the numbers involved here are finite, (1) follows
from (10).

5.5. THE CASE OF FINITE EQUALITY. Suppose now that there is finite
equality in (1) above, and that a point y exists in (say)

Fr(4; n E) n Fr(dy n E) neee n Fr(dpsy n E) = E,

where £ is a component of X, ; thus y ¢X .Itis easy to see that we may as-
sume without loss of generality that p < m — 1 and that the sets 4; are all
open. Clearly y € Fr(Xp); thus we may carry out the preceding construction
in such a way that y € ¢p C V. But, from the way in which (1) was derived
from (10), we must now have h(Xp, VP ) = 0, so that the component W of Vp which
contains y must meet £ in a connected set; consequently, since ¥ n Cl(XpH)
= 0, it follows that W n E meets one and only one of the sets

Aj(=Nt4;,j€7})

with |J| = p. Since W meets 4; n E, we have 1 € J; similarly 2 € J, «+., and
(p + 1) € J, giving a contradiction.

5.6. REMARKS. We observe that the preceding results contain those con-
cerning modified addition theorems in [5S, Ths. 11 and 1la]. For, in the first

3

place, 1.3 (1) together with an ““approximation” argument shows that the relation
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(2) above is equivalent to the apparently stronger relation
(2a) N{Fr(4; nE)} C Cl1(Xp4q) GEL |Jl=p+1,p<n).
(In fact, the left side here is contained in

Fr(Xp.H) U Fr(Xp+2) ueeeu Fr( X))

Hence if 4;, «.. , A, also satisfy the condition (slightly stronger than in Theo-
rem 9) that Fr(4; n Ag) n Fr(4; v Ag) = 0 (j # k), finite equality in Theorem
9 will imply, again from 1.3(1), that

(2b) N{Fr(4; nE)} C Int (E) GELJ|=p+1,p<n),

a relation which is slightly stronger than (2). And if the sets 4; satisfy the even

stronger condition

Fr(4;) aFr(4g) nFr(4; n4) =0 (j# k),
it can be deduced from (2b) that
(2¢)  Ni{Fr(4; nE)} =0 if 2p > n GEIL |[Jl=p+1,p<n).

Finally, if there is finite equality in Theorem 1, then there will be finite
equality in Theorem 9, for c(/?]) > bo(X}), by 4.1(3); and thus the above con-

siderations will apply.

5.7. OTHER INEQUALITIES. Many other inequalities can be derived from

Theorem 9; for example:
THEOREM 9a. Under the hypotheses of Theorem 9, we have
() e(Xp) + (X ++eet e (Xpoy) + bo(Xen) + bo(Xpmag) 00 vt bo(Xp)
< X b(4) + (m = 1) r(S).
Further, if there is finite equality in (i), we have
(D) Xp(4y, Ay +ovy 4y) = X, 1<p< m.2
Proof. Relation (i) is a trivial consequence of Theorem 9, (1), since

by (X)) < bo(X)) .

12 Condition (ii) need not hold for p>m.
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Suppose there is finite equality in (i); as before it will suffice, by an approxi-
mation argument, to prove (ii) assuming that the sets A4; are open. Now, finite
equality in (i) implies that Theorem 9, (2), holds, and also that bo(X;) = bo(X;)
for all j < m. If J, K denote sets of p distinct suffixes between 1 and n, and
I # K, we find (writing 4; = N{4; | j € J}) that

Z]nZKC}(—PH if p<m.

This includes (ii) when p = 2; and (ii) follows in general by an easy induction

over p.

5.8. GEOMETRICAL CONSIDERATIONS. To illustrate the geometrical con-

tent of these theorems, we consider the case of two sets in more detail.

THEOREM 10. Let A and B be sets, neither of which contains the other,

having separated differences and connected complements, and suppose that

A 0 B and Co(A v B) are separated. Then
bo(A n B) + by(Co(A4 uB)) < by(A4) + bo(B) + r(S) - 1.

If there is finite equality here, and further Fr(A4) n Fr(B) nFr(4 uB) = 0,
then each component of Co(A v B) has a frontier consisting of exactly two com-

ponents.

Proof. We can assume that r(S) is finite. Write P = Co(4), Q = Co(B);
then P and  are connected, so that, from Theorem 1, b4(P n Q) is finite. Let
P nQ (=Co(A4 u B)) have components H,, Hyy +++, Hy. Then

(1) A and H; are not separated,

since otherwise Q={(Q n4) u (P n Q—Hj)} U H]’, a union of two
nonempty separated sets. Similarly B and H; are not separated. Hence

(2) Fr(H]-) meets both Fr(A4) and Fr(B).

Let A* = Au(P nQ), B* = Bu(P nQ); from (1), A* is connected
relative to 4, so that b,(4™) < by(4), and similarly bo(B*) < by(B).
It is easy to see that 4* — B* and B* — A™ are separated, and that
A* n B* and Co(A*u B*) are separated; hence 2.3 (1) gives

bo(A* a B*) < bo(A) + bo(B) + r(8).

But A4* n B* = (4 n B)uCo(4 v B), a union of two separated sets;
thus the first part of the theorem follows.
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From Theorem 9a and Theorem 5, Corollary, we also have
bo(A n B) + 2 bo(Fr(H;)) < by(4) + bo(B) + r(S).

If further Fr(A4) n Fr(B) nFr(4 v B) = 0, (2) shows that bo[Fr(Hj)]
> 1 for each j. Hence finite equality in Theorem 10 requires bo[ Fr (#;)]
= 1 for each j, and the proof is complete.

COROLLARY. If A and B are simple sets'® with disjoint frontiers, and
neither A nor B contains the other, then by(A n B) + b4[Co (4 u B)] < r(8)-1;
and if there is finite equality here, then each component of A n B or of Co(4 v B)

has a frontier with exactly two components.

This follows on applying Theorem 10 first to 4, B and then to Co (4), Co (B).
If S is unicoherent, the first part of this corollary reduces to [4, $4.5).

6. Simple sets with disjoint frontiers.

6.1. FINITELY MULTICOHERENT SPACES. Throughout this section, we
shall assume that r(S) is finite.

THEOREM 11. Let Ay, Ayy +++, Ay be simple'* subsets of S, every two of
which meet, and which have disjoint frontiers. Then there exist N or fewer of

the sets Aj whose union is Ut 4; , where
N =2r(S) if r(S) > 1, orif r(S) =1 and N4; # 0.
N=3ifr(S)=1 and N4; = 0, and
N=2if r(S)=0.

These values of N are the smallest possible.

It is easy to see by examples (it suffices to take S to be a linear graph) that
no smaller values of N are possible in general. To prove the rest of the theorem,

we need two graph-theoretic lemmas.

6.2. LEMMA 1. Let G be a connected linear graph having no end-points, and
let £y, Eyy «++ , E, be closed connected subsets of G, every two of which meet.
If r(G) > 1, or if 1(G) = 1 and NE; # 0, then UE; is the union of 2r(G) or
fewer of the sets Ej; if r(G) =1 and NE; =0, then UE; is the union of at most
3 sets Ej.

13 A set E is ‘‘simple’” if E and § - E are both connected.

141t would suffice to require only that Cl(4;) and CI[Co(A]-)] be connected (1 <j < n).
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The proof is by induction over r(G). If r(G) < 2, the lemma can be verified
by inspection of the possible graphs G. Suppose, then, that r(G) > 3, and that
the lemma is true for all graphs of smaller degree of multicoherence but not for
G, and that n is the smallest number of sets for which the lemma fails for G.
Thus no Ej is contained in the union of the others.

From G we derive a homeomorphic graph G* by suppressing all vertices of
order 2; the (open) 1-cells of G* will thus be the components of G minus its
vertices of orders other than 2; we call them the ‘‘maximal 1-cells” of G. (A

maximal 1-cell may have coincident end-points.) We consider three cases:

(1) If G has a cut-point R which is not a vertex of G, let PQ be the maximal
1-cell of G which contains R; thus here P #£ (, and G — PQ is a union of two
disjoint, closed connected nonempty subgraphs H, K, neither of which has an
end-point. From (6, $3.2(1)], we see that r(H) + r(K) = r(G), while, since G
has no end-points, r(H) > 1 and r(K) > 1. For the moment we assume that
neither r(H) nor r(K) is 1. Write Ej ‘= Ej nH, E]- = Ej n K; it is easy to see
that these sets are closed and connected, though possibly empty. Further, every
two nonempty sets k; “ must meet, since both must contain P unless one of the
corresponding sets Ej is contained in H. Hence the hypothesis of induction
applies to H and the nonempty sets E;’, and UE;“ must be contained in the union
of at most 2r(H) sets Ej. Similarly UE; ** is contained in the union of at most
2r(K) sets Ej. Thus we obtain at most 2r(G) sets £ in all, which together
contain UE; “ v UE; *%; further, their union is connected and so contains PQ and
thus UE;, unless UE; or UE;” is empty.

If UE; “, say, is empty but UE; “ £ 0, it is easy to see that at most 2r(H) + 1
< 2r(G) sets E; will suffice, namely those selected to contain UE;", together
with the set £; which contains the largest subarc of PQ. If UE;* = UE;” = 0,
all the sets E; are contained in PQ, and two of them will suffice.

If r(H), say, is 1 (so that H is a circle), the above argument needs modifi-
cation only if one of the given sets is contained in H — (P); we leave the de-

tails to the reader.

(2) If G has a cut-vertex R, but no cut-point other than a vertex, the argument

is essentially the same as before, with PQ degenerating to R.

(3) Finally, if G has no cut-points, pick x € E, — (E,u -+ u E,); replacing
x by a sufficiently nearby point if necessary, we can suppose that x is not a
vertex and so belongs to a unique maximal 1-cell PQ of G. Here P # (Q, since
G has no cut-points, and the subgraph H = G — PQ is connected and has no end-
lines. We easily find r(H) = r(G) — 1. Write E]-'= Ej n H; as before, at most
2r(H) of the sets Ey, <« , £, say Ejy oo+, Epy (m < 2r(H) + 1), must contain
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UE;* (j > 2). The connected set E; u E, joins x to H (for we may clearly as-
sume UE;” # 0), and so contains one of the arcs Px, (x, say Px. If none of
En+1y o+, By meets Qx, the m sets £y, E,, - .., Ey contain UE;. If Qx n
(Ep+y Uessu Ey) £ 0, let y be its point on Qx closest to x, and let y € Ey;
then the connected set E, u E; joins y to H without containing x, and so con-
tains QX; thus the m + 1 sets E,, E,, <+« , Ep," Ef contain UE;. Since m + 1
< 2r(G), the proof is complete.

6.3. LEMMA 2. Let By, By, -+, B, be n simple closed subsets of a con-
nected linear graph G, every two of which meet. If r(G) > 1, or if r(G) =1 and
NB; # 0, then UB; is the union of 2r(G) or fewer of the sets Bj; if r(G) =1 and
NB; = 0, then UB; is the union of at most 3 sets B;.

As before, we may assume that the lemma is false, and that n is the smallest
number of sets for which it fails; thus no B]- is contained in the union of the
others. Define a ‘‘maximal end-line’” PQ of G to be a maximal l-cell PQ of G
in which Q is an end-point of G; thus P # Q. If B,, say, meets a maximal end-
line PQ which it does not contain, then (being closed and simple) B, must be
either a closed arc x(QJ, where x € PQ, or the closure of the complement in G of
such an arc. In the latter case, it is clear that B, together with one other set
B; will contain the rest; in the former case, we see similarly that either By u B,
= G, or B, D By, or By D B,—all of which are excluded. This proves, then,
that each B; contains all maximal end-lines of G which it meets. Let H be the
graph obtained from G by removing all end-points and maximal end-lines, and
write £; = B; n H. On applying Lemma 1 to the sets E;, ..+, E; in the graph
H, we see that UE; is the union of the desired number of sets Ej;; the analogous

conclusion for the sets Bj follows.

6.4. Proof of Theorem 11. We shall consider only the case r(S) > 1 ex-
plicitly; the modifications needed when r(S) = 1 will be obvious, and the case
r(S) = 0 is covered by [4, $4.5]. It will thus suffice to prove that, if n > 2r(S)
> 4, one of the sets 4; is contained in the union of the others. Consider the
2" intersections Yy = Dy n Dy neve nD, (1 < k < 27), where each I; takes
the two values 4;, Co(4;), in all possible combinations. The sets Yj are closed
and cover S; and, since the sets Fr(Aj) are disjoint, no three of them have a
common point. Further, from Theorem 1, b4(Y%) is finite, and so the sets Y are
of finite incidence. Let G denote the modified nerve (cf. [6]) of the sets Y;; as
in [6, §6.4], G is connected and r(G) < r(S). Let By, denote the subgraph of
G consisting of (i) all vertices which correspond to intersections Y in which
the pth “‘factor” Dy is 4y, and (ii) all edges of G both of whose end-points
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have been assigned to Bp. Let Cp be defined similarly, lat with Co (4p) replac-
ing 4p. Thus, for each p (1 < p < n), B, and G, are disjoint subgraphs which
together contain all the vertices of G; and it is easy to see that B, and (, are
connected, since 4, and Cl1{Co(4p)] are. Hence B, By, -+-, B, are simple
closed subsets of G. Further, if p # g, B, and By have at least a common vertex.
Thus, by Lemma 2, one of the sets B, is contained in the union of the others;
say By C By u---u B,. It readily follows that 4, C 4, u -+ u 4,, whence the

proof is completed.

6.5. COROLLARY. For any collection of more than 2r(S) simple subsets
of S with disjoint frontiers, the union of some two of the sets contains the inter-

section of the rest.

6.6. FURTHER RESULTS. Evidently the method which was employed to
prove Theorem 11 is of more general applicability; it shows, roughly speaking,
that the incidences of a system of sets with disjoint frontiers are no worse than
if S were a linear graph of the same degree of multicoherence. In the same way

we may prove:

THEOREM 1la. Let Ay, Ay +++, A, be n simple subsets of S, every two
of which meet, and which have disjoint frontiers. If n is large enough compared

with r(S) (assumed finite), then some A; is contained in the union of two others.

(Note that no A; need be contained in one other, irrespective of how large
n is.) Here the determination of the ‘‘best” bound for n seems to be difficult:
it can be shown, however, that, disregarding the trivial case r(S) = 0, it lies
between expi{explec;r(S)]} and explexplc,r(S)1}, where ¢, c, are positive

constants.
Another related theorem, proved in a similar way, is:

THEOREM 11b. Let Ay, Ay, +++, A, be connected subsets of S such that
bolCo(4j)] £ q(j =1, 2+, n). Suppose that every two of the sets A; meet,
and that they have disjoint frontiers. Then there exists a function N of q and
r(S) (independent of n) such that UA; is contained in the union of N or fewer
of the sets 4;.

It is easy to show by examples that, with ¢ > 1, we have

N> (qg+1)(q+2)r(S) if r(S) > 1,

and
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N>qg?>4+q+ 2 if r(S)=0;
but the author does not know if these values are in fact the best.

For theorems of this type, the conditions that the sets 4; (or, more generally,
their closures) be connected, and that the numbers b,{ Cl1[ Co (Aj)] } be bounded,
cannot be omitted. In [4, $8] a theorem in a similar order of ideas was obtained
for arbitrary connected sets in a unicoherent space; it can indeed be extended
to the multicoherent case, but at the cost of requiring not only that certain inter-
sections of the sets 4; be nonempty, but that they have sufficiently many com-

ponents. For example, the theorem for three sets becomes:

(1) If 4,, A,, As, are connected subsets of S such that A, n 4, n4; = 0,
and bo(A]- n Ag) > r(S) whenever j £ k, then every two of the sets
Fr(Aj) meet.

The proof of (1) is an easy consequence of [5, $7.21.

We finally remark that the present technique can be used to give a direct
““elementary” proof of Theorem 1, without using mappings in S'. However,
though the basic idea (showing that the sets have the same incidences as if S
were a linear graph) is simple, a quite lengthy and tedious argument is needed
to reduce the general theorem to the case in which the complements of the sets

are of finite incidence; and the proof given in 2.2 above is considerably shorter.
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