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THEOREMS ON GENERALIZED DEDEKIND SUMS

T. M. APOSTOL

1. Introduction. Generalized Dedekind sums sp (λ,&), defined by

were introduced by the author [l]. The integers h and k are assumed relatively

prime, Bp(x) is the p-th Bernoulli function, Bp (x) the p-th Bernoulli polynomial

(for definitions see [l;(2.11), (2.12)]), and [x] is the greatest integer <̂  x. For

even values of the integer p the sums (1) are trivial (see [l; (4.13)1) and we

assume in what follows that p is odd. These sums enjoy a reciprocity law, name-

(p + 1) (hkP sp (h9k) + khP sp

(2)
P + * IP + i\

i + Σ (-D S Bs Bp+is hs

s = o * s /

The B's being Bernoulli numbers*. An arithmetic proof of (2) is given in [l] by a

method closely related to a general summation technique recently developed by

Mordell [5]. When p = 1, the sums

k-i

(3) s^Kk) = Σ T
hμ \hμλ l \

are known as Dedekind sums and are usually denoted by s {h,k). Aside from be-

ing of interest from an arithmetical standpoint, these sums also occur in the

asymptotic theory of partitions and have been studied in a large number of papers,

for example [l],[3], [5], [6], [7], [8], [9], [10], and [ l l ] .

In this paper we establish a connection between the sums (1) and certain

finite sums involving Hurwitz zeta functions which makes it possible to give a

short analytic proof of (2).

When p > 1, the factor (— l)s may be suppressed in the summand in (2) because the
terms corresponding to odd values of s vanish.
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T. M. APOSTOL

2 The Hurwitz zeta function and Dedekind sums. The Hurwitz zeta function

ζ(s,a) is defined for 5ft (s) > 1 and a ^ 0, - 1 , -2, , by the series

n = 0

and its relation to sp (h,k) is given in the following theorem.

THEOREM 1. For odd p > 1 we have

(4) sp{h,k) = i p! {2

while for p = 1 w e /tαt e ί/ie ίw o equivalent expressions

1 / b " 1 7rΛμ rμ

(5) ' ( M ) ^ Σ ^ 0 1 — » t T

-1 * ~ ι πhμ Γ'(μ/lc)
,6) S ( M ) . _ ^ c o , _ _ _

Formula (5) is due to Rademacher [8], who derived it from the Fourier series

expansion of (3). We will give here a purely arithmetic proof of (5) based on

finite rather than infinite Fourier series. Secondly, we establish the equivalence

of (5) and (6) and then prove (4). Finally, we indicate how (5) and (6) can be

thought of as limiting cases of (4).

Proof of (5): The function Bί (x) is given by

x - [x] - 1/2 if x Φ integer,

I 0 otherwise.

Therefore, by formula (2.5) of [lθ] we may write

(7) s{h,k) = £ Bι(μ./k)Bι{hμ/k).

μ mod k

From Eisenstein's finite Fourier series expansion [4; p. 318] we have
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2πh— . , / f . 1 _
(8) Bx{hμ/k) = - — ^ s i n Γ !

2k v = ι k k

Using (8) in each factor of the summand in (7), we obtain

1 * ~ ι k ~ ι πv πλ ^ / 2irμ(λ-ι/Λ)

(9) s(h,k)~ ]Γ Σ c o t c o t Σ C 0 S

Sk2 λ=ι v = i k k μ mod & \ *
_ cos

because of the identity 2 sin x sin y = cos(x - y) - cos(x + y). Since we have

2πμ(λ±vh) [k i i λ t v h = 0 (mod &),
jcos

±vh) [k i i λ t v h = 0
= j

l 0 otherwise,

for each fixed v only one value of λ gives a nonzero contribution to each sum in

the second member of (9), namely λ = vh (mod k) in the first sum and λ = — vh

(mod k) in the second. Therefore we have

1 k~1 πv πhv 1 * ~ ι πv -πhv
syh.k) = — > cot cot > cot cot ,

8* v t Ί k k 8k ^ * *

and this is the same as (5).

Proof that (5) and (6) are equivalent: The relation [2; p. 163]

, ; n πμ
- _ y _ log A: - — cot

Γ (μ/4) Y * 2 k

(10)

V 2 7 Γ Λ μ 1 /o o
+ 2 L C O S — — l ° g 2 - 2 c o s

n<_k/2 k \ k I

where y is Euler's constant and the prime indicates that when k is even the last

term is to be multiplied by 1/2, is due to Gauss. Multiplying both sides of (10)

by cot (πhμ/ k) and summing on μ shows the equivalence of (5) and (6) upon

observing that we have



T. M. APOSTOL

(11) Σ

whenever / is an odd function of μ which is also periodic mod k.

Proof of (4): Formula (4.11) of [l] gives a representation of sp (h,k) as an

infinite series which, with some simplification, can be written in the form

oo L

^^ nπh
sp(h,k)~i p ! (2πiΓP Σ n~P c o t — — .

π = i k

n ~^o (mod k)

Writing n = qk + μ, with <? = 0, 1, 2, » , °°, and μ = 1, 2, , k - 1, we

obtain

& - 1 00 ^

sp(h,k) = i p\ (2πi)-P Σ Σ ^
μ= 1 9=0

where we must assume p > 1 in order to insure that the series involved should

be absolutely convergent and the rearrangements valid. This proves (4). We can-

not hope for a proof of (4) along the lines of our proof of (5) because of the non-

elementary nature of ζ {s,a).

If in (4) we replace p ! by Γ(p- f l ) and let p be a complex variable which

tends to 1, then we can show that the two expressions for s (h,k) in (5) and (6)

occur naturally as limiting cases of the right member of (4). We first observe

that, although the function ζ(s,a) has a pole at s = 1, the sum

k~l πhμ
(12) Σ to*-— ζ(s,μ/k)

is regular at s •= 1. This is easily seen by using the expansion

1 Γ'(α)
ζ(s,a)= - — — + 0 ( ^ - 1 ) ( a s s — > 1 )

s - 1 Γ(α)

obtained from Whittaker and Watson [12; p. 271], substituting in (12) and using

(11) to obtain
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i "v 1 , nhfl r ( m *v' πhμ Γ'{fl/k)

£ • « — ί ( / 4 ) £ t

which shows that the right member of (4) tends to the right member of (6) as

P - > 1 .

The connection between (5) and (4) can be obtained by using Hurwitz's

functional equation in the form given by Rademacher [6; (1.24)], namely:

ζ{s,μ/k) = 2Γ(1 - s) (2πk)s~ι £ (cos — sin
2

sin
2 k

πs

8 i n _ C 0 S2 k I " \ ky
this being valid for s *= 1, 1 <_ μ <_ λ Multiplying by cot (πhμ/k), summing on

μ and using (11) leads to

k~ι πhμ
Σ cot — — ζ (s,μ/k)

(13)

= 2 Γ (1 — s)(2πk)s 1 cos 2l c °t s^n C (1 "~ 5> λ/k)
2 λ,μ=l *. *

Since ζ (0,α) = 1/2 - o, when s tends to 1 the right member of (13) approaches

the value

1 * " 1 k~ι πhμ 2πλμ

— 2, 2̂  c o t "
^ λ = l μ=l

1 λ
' sin

- 1 k~ι πhμ k~1 . 2πλμ
= > cot > λ sin

2 k 2

 μ = χ k λ ! *

because of (11). Noticing that the last sum on λ is the imaginary part of the sum

™^k ) ( / A )Σ ™^k - 1) = - — cot ( f f μ /)
λ= l 2 2
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we see that the right member of (4) also tends to the right member of (5) when

P - > 1 .

3. Proof of the reciprocity law. We can now give a proof of the reciprocity

law (2) using complex integration. This proof is of additional interest in that

we use properties of ζ (s,a) for fixed s and variable α. We will need the follow-

ing facts about ζ (s, a) :

(14) ζ(s,a) = ζ(s9a + 1) + a~s ,

(15) ζ ( s , a + 1 ) = ζ ( s ) - s ζ ( s + 1 ) a + 0 ( a 2 ) a s a — > 0 ,

(16) /or 0 £ 5R (α) £ M, (M fixed), ζ (s,a) tends uniformly to 0 as 3 (α)—>

+_ °°. ( ΓAe uniformity is with respect to K(α)).

Equation (14) follows at once from the definition of ζ (s9a) and (15) is merely

the beginning of the Taylor series for ζ(s,a + 1) near a = 0. Here ζ (s) =

£ ( s , l ) is Riemann's zeta function. Relation (16) can be readily obtained, for

example, by applying the Riemann-Lebesgue theorem to the integral representa-

tion [2; p. 266]:

Γ(s)ζ(s,a)=f°

valid for 31 (s) > 1 and 5R (α) > 0. This gives (16) for 0 < SI (α) £ A/ and (14)

proves it for 0 £ 3t (α) £ Af.

Because of (4), the reciprocity formula (2) can now be put into the following

form:

THEOREM 2. For odd p > l we have

i{p + 1) !

(17)

* " 1 πhn h~ι

h Σ cot—^ί(p,μ/A) + * Σ cot
μ = l

S = 0

Proof. We apply Cauchy's residue theorem to the function

f(z) = cot πz cot (πhz/k) ζ{p,z/k),
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Integrating in the positive sense around a contour C consisting of a rectangle

whose vertices are the points ± iT, k + iT, with small semi-circular detours

Co and Cjs around the points 2 = 0, z = k, traversed along the arcs z = e e

and z = k + e eiθ, respectively, where π/2 <_ θ <. 3ττ/2, and 0 < e < I/A.

Ultimately, e will tend to 0 and T > 1/2 will tend to oo. The integrand f(z)

has first order poles at the points z = 1, 2, » , k - 1 due to the factor cot πz,

and at the points z = k/h, 2k/h, ^ , (h - 1) A /λ because of the factor

cot (πhz/k). By (14) we have

so that the point 2 = 0 is a pole of order p + 2 for /(z). Using the power series

expansion

- (2πi)n Bn

(18) πz cot 7rz = X z "
!

in the neighborhood of z = 0 (with the understanding that Bί should be replaced

by 0), and (15) with a = z/k we find that Cauchy's theorem gives us

1 _ 1 * " 1 rrhn

(19)

π

k h~ι

 πkv
Σ cot-— ζ(p,v/h) -

h
πh v^i n π2h

where

Ro = Res cot πz cot (πhz/k) (k/z)p .
z =0

We now observe that by periodicity of the cotangent and by (14), the contribu-

tion to the integral from the part of C consisting of vertical line segments is

l-fτiβ + G ] cot πz cot (πhz/k) {k/z)P dz'
and this vanishes since the integrand is an odd function of z. Next, the integrals

along the horizontal segments tend to zero as T—» oo since, for 0 j£ x j£ k we

have cot π(x + iy)—•> + i and, by (16), ζ (p, (x + iy)/k) tends to 0 uniformly
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in x as y —» + °°. Finally, combining the integrals over Co and C& by means of

(14) and letting T—> oo we obtain

lim f f(z) dz = f cot πz cot (πhz/k) (k/z)P dz.

When 6 —> 0 we find

lim f = 77i β 0

6 -o c o

so that equation (19) leads to the result

Y k~ι _ j . . . L Λ - i

~ Σ co

(20)

From (18) we easily calculate that

2t (2?τOp p + l (p

and, since we have

C(P + l ) = -

equation (20) yields (17) and the proof is complete.

In [8], Rademacher gives a proof for the case p = 1 using (5) instead of (4).

Apparently unaware of [δ], K. Iseki [3] has given a proof very much like

Rademacher's analytic proof for the case p — 1 in a recent paper.
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ADDENDUM TO 'ON THE LERCH ZETA FUNCTION'

T. M. APOSTOL

Professor L. Carlitz has been kind enough to point out that the functions

βn(a, (X) which were used in [l] to evaluate the Lerch zeta function φ(x, a, s)

for negative integer values of s have occurred elsewhere in the literature in

other connections, for example in [2] and [3]. As Carlitz points out, formula (3.3)

of [l] leads to the result

βn (m, α) - βn (0, α ) =
m

4

a

- 1

= 0

which, for integer values of the variable α, makes apparent the relation of the

functions βn (α, CC) with the Mirimanoff polynomials discussed by Vandiver in[3].

There is a misprint in the next to last equation on p. 164 of [l]. The coef-

ficient of a2/2 in the expression ίorφ(x,a, -2) should read i cot πx + 1 instead

of i cot πx + 1/4.
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EXTENSION OF FUNCTIONS ON FULLY NORMAL SPACES

RICHARD ARENS

1. Introduction. Starting from the recent discovery of A. H. Stone that metric

spaces are "paracompact" [12] (paracompactness means that every open cover-

ing has a refinement only a finite number of whose members meet a suitable

neighborhood of each point [5]), J Dugundji has been able to extend to metric

spaces certain techniques in the theory of retracts which were hitherto appli-

cable at most to separable metric spaces [6]. The cornerstone of his method is a

theorem (see 2.4, below) according to which a continuous function on a closed

set A of a metric space X with values in a convex (= "locally convex") topo-

logical linear space L may be extended to the whole space X, indeed without

enlarging the convex hull of the image Essentially, the possibility of doing

this for a locally separable metric space X is implicitly given by a procedure for

the real valued case in [lθ]

One of the problems to which we address ourselves in this paper is that of

determining whether the assumption that X is metric can be reduced to X is

merely paracompact. The answer (see 6, below) is no. However, we have fairly

general results which imply that if L is metric and complete (and X is para-

compact) then the extension is possible (4.1, below). Our proof utilizes a process

of extending a pseudo-metric on A to all of X, which is ultimately based on a

theorem of Hausdorff. We generalize Hausdorff s theorem (3.2 and 3.4) and inci-

dentally show how Dugundji's result enables one to construct a short proof of

Hausdorff s theorem.

None of these extension theorems can properly be regarded as a true gener-

alization of Tietze's extension theorem, which deals with mappings on normal

spaces with values on the line or in the Hubert cube, since there exist normal,

not fully normal spaces. In order to provide a generalization of Tietze's theorem,

we have shown by way of application that the Hubert cube may be replaced by

any compact convex subset of a normed linear space (4.3).

S. Kakutani [10] has introduced the notion of "simultaneous extension re-

garded as a linear positive operation," in his case of real valued functions on

a locally separable metric space X: this means that it is possible so to extend

Received March 10, 1951.

Pacific J. Math. 2 (1952), 11-22
11



12 RICHARD ARENS

all continuous functions such that (λf + g)e — λfe + g€ and fe > 0 whenever

/ > 0, where the superscribed e indicates the extension. We show that this is

possible in the more general case in which X is metric and L convex, the order

preserving feature of Kakutani's formulation being naturally reformulated as a

nonenlargement of the convex hull of the image (2.6). What is perhaps more sur-

prising is that the "simultaneous extension," while possible in more general

cases (4.2), is not possible under as general conditions as those under which

the individual extension (as in 4.1) is possible. As a matter of fact, we tie up

the notion of simultaneous linear and order relation preserving extension with

that of "sweeping" a measure from X onto A, and thus show that it is not always

possible even for compact ϊlausdorff spaces X (6.1).

The question arises whether among the simultaneous extensions which pre-

serve linear and order relations, there are not some which preserve quadratic

polynomial relations as well. It has already been shown by Yoshizawa just when

this is possible: at least when X is compact, A must be a retract of X,

We have inserted a section (5) showing that the "simultaneous extension"

for real valued functions can be derived from the "individual" extension of a

suitable continuous function with values in an infinite dimensional space, as

well as from the fundamental Lemma (2.1) directly.

In formulating our results, we shall always speak of "fully normal" [13]

rather than "paracompact" spaces, although it is known that these two proper-

ties coincide [12]. We do this because we use the full normality as such, using

Stone's result only for the metric case.

2. Extension of functions on metric space. One of the main geometric ideas

underlying the process of extension involved here is contained in the following

construction (cf. [6, 4.3] ).

2.1. LEMMA. Let X be a metric space, and A a closed subset of X. Then

there exists a family gy of continuous real-valued functions defined on X, and a

similarly indexed family of points ay of A such that

2.2. each gy vanishes on A, all but a finite number of the gv vanish in some

neighborhood of each point of X, the sum Z, gy {x) ~ 1 for all x in X — A and

each gy (x) is nonnegative;

2.3. for each a in A and each V, if gγ (x) > 0 then d(a, ay) < 3 d(a, x) (dis

the metric in X) and d(a, x) < d(a, aγ) + 2 d(x, A).

Proof. To each x in X - A, assign the open sphere of radius d(x9A)/4 Since

X - A is metric it is paracompact [12], so that this covering of X ~ A has a
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refinement R which is "neighborhood finite" (see [12]). For each V in R there is

a point x such that V is contained in the open sphere about x of radius d(x9A)/^

select such a point and call it xy. Also select ay in A such that d(av,xv)

< (5/4) d(xy, A). Let fv (x) = d(x, X - V) for every x in X. Since R is neighbor-

hood finite, each x in X has a neighborhood on which all but finitely many fy

vanish, and so s {x) - Σ y cr R fy M ι s b ° t n finite and continuous. Since 5 (x)

is never 0, the functions gy = fy/s are continuous. It is easy to see that they

provide the kind of "Dieudonne partition" required by 2.2.

We now turn to 2.3. Suppose gv(x) > 0. Then x belongs to the open set V.

From what has been said about V 9 Xy9 and ay follows

d(ay9 x) < d(av, xv) + d{xy9 x) < ( 5 / 4 ) d(xy9 A) + (1/4) d(xy9 A).

Of course

d(xy9 A) < d(xy9 a)

< d(xy9 x) 4- d(x9 a) < (1/4) d(xy9 A) + d(x9 a),

and so (3/4) d{xy9 A) < d(x9 a). Thus d(ay9 x) < (6/4)d(xy9 A) < 2d(x9 a).

Thus finally we have half of 2.3, since

d(a, av) < d(a, x) + d(x9 ay) < d(a9 x) + 2 d(x, a) = 3 d(a9 x).

For the second half of 2.3, we note first that d(x9 A) > 3/4 d{xy9 A). On the

other hand,

d(ay9x) < d(ay, Xy) + d(xy9 x) < (6/4) d(xy9A)9

which is thus less than 2 d(x9 A). Finally,

d{a9 x) < d{a9 ay) + d{ay9 x) < d{a9 ay) + 2 d(x9 A).

Thus the proof of 2.3 is complete.

Geometrically, the lemma given above says that X — A can be so mapped into

the finite dimensional faces of the "formal simplex" with vertices equal to the

points of A9 in such a way that as x tends to a point α 0 of A9 the vertices of the

carrier of the image of x all tend to α 0 , in the topology of A, With this picture

in mind, it is easy to imagine how functions on A with values in a convex set

£, can be extended to all of X. The next result [6, 4.1] makes this precise.
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2.4. THEOREM. Let K be a convex subset of a convex topological linear

space L (cf. [14]). Let A be a closed subset of a metric space X. Let f be con-

tinuous on A with values in K. Then f may be extended continuously to a function

fe defined on X with values in K.

Proof. Using the result and notation of 2.1, we define / e a t once by setting

fe(x) = i^y gv(x) f(ay)> for x in X - A, and fe(a) = f(a) for a in A. There

remains only the proof of continuity. Now the topology of L (and thus K) can be

based on neighborhoods of 0 defined by relations \\k\\ < 1 where | | | | is one

of the pseudo-norms of L, according to von Neumann's idea (cf. [14] )• Select

any point a of A. There is a positive r such that d(a, b) < r implies | | f(a)

- f(b) | | < 1 for b in A. Now suppose d(a, x) < r/3. For those finitely many V

for which gy (x) is not 0, we have J(α, ay) < r, so that

This shows the continuity of fe at any point of A. At points x of X — A we can

find a neighborhood in which only finitely many gv do not vanish, so that fe is

continuous there also. The rest of 2.4 is obvious. The second half of 2.3 is not

needed for this proof.

The fact that a single formula, so to speak, can be chosen to perform the

extension can be expressed in several ways. Suppose Kγ and K2 are convex

subsets of two convex topological linear spaces, and let there be an affine

mapping m of Kι into K2. Suppose fi9 f2 are functions as in 2.4 with values in

Kx, K2 respectively, but satisfying the condition m{fχ (a)) - f2 (a) for all a in

A. If we use the same system gv, ay in extending f2 as in extending fx then we

surely obtain m{ff(x)) = f2(x) for all x in X. We shall abbreviate this by saying

that the process of extension when applied to all possible f is consistent^ and

note the result:

2.5. THEOREM. Each f satisfying the hypothesis of 2.4 with K variablebut

A and X constant may be so extended that the entire process is consistent.

Another kind of consistency or simultaneity is expressed as follows.

2.6. THEOREM. Let K be a {linear or possibly merely convex) subset of a

convex topological linear space9 and let A be a closed subset of the metric

space X. Let F be the class of continuous functions on A with values in K. Then

each f may be extended by an fe(using 2.4) in such a way that> for f^9 , fnin

F and Cγ9 , cn real numbers {nonnegative with sum 1 when K is merely



EXTENSION OF1 FUNCTIONS ON FULLY NORMAL SPACES 15

convex), we have

(cι ft + + c n fn)
e = c t /\e + - + cn in

This result is a generalization of Kakutani's theorem [10] on "simultaneous

extension of continuous functions considered as a positive linear operation".

The only real advance of 2.6 over Kakutani's theorem is the removal of separa-

bility, although Kakutani limits F to the space of bounded real valued continuous

functions C (A).

An addendum to 2.4 and 2.6 is of interest:

2.7. Under the conditions of 2.4 or 2.6, if there is an f and a point a of A

such that f is constant on a neighborhood (relative to A) of α, then fe is con-

stant on a neighborhood (relative to X) of a.

In fact, suppose /(α') is constant for d(a9 a') < 3 e and a' in A. Then fe(x)

is constant for d(a, x) < e, since then d(a, a^) < 3 e.

3. Extension of pseudo-metrics. Let X be a topological space. Let s be a

real-valued function of two variables defined in X such that

s (y, x) = s (x, y) > 0, 5 (x9 z) < s (x, y) + s (y, z)

and such that the set of x such that s (x, y) < e is open for each e > 0 and γ.

Then 5 is a pseudo-metric. It falls short of being a metric in that 5 (xn, y) —> 0

[s (x, y) = ϋj does not necessarily imply xn—> y (x — y). Our first result is in

the direction of an extension of a pseudo-metric from a closed set to the whole

space.

3.1. LEMMA. Let X be a fully normal [13] topological space, and let q be a

pseudo-metric defined on a closed subset A of X. Then there is a pseudo-metric

s defined in all of X such that for x9 γ in A and k — 4, 5, , if s (x, y) < 2

then q(x9 y) < 2~k.

Proof. Select a positive integer n. Construct an open covering U consisting

of those open sets V which intersect A in a set of α-diameter less than 2 n,
* * *

Using the terminology, notation, and results of [13] we obtain U > Uγ > U2 >

[13, V-7.4], and a pseudo-metric rn such that [13, V-7.5, correcting C to ^

x ^L S(y, Up) implies rn(x, y) > 2 ~ ^ + 2 ) for p = 1, 2, . We may also assume
Γn (χ> y) < l ^ e c a n t n u s f°Γπl Γ(*> y) = Σ π 2~n rn(x9 y). This is clearly a

pseudo-metric. Suppose r(x, γ) < 2 , for k > 4 and %, y in /I. Then r^_3 (x9 γ) <

2" 3 . Hence x C S (y, Ut), this covering being the one obtained for n = k - 3.
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(We have omitted an index showing dependence on n.) Since U± < U we obtain

q(x, y) < 2 ' 3 . Setting s = 2 3 r gives the required pseudo-metric, completing

the proof of 3.1.

We remind the reader that compact IΊausdorff spaces and metric spaces are

fully normal [13, V-8.14, VI-4.5].

This lemma is actually all we need in order to extend the results of §2 as

we shall do later. However, by an application of a theorem of Hausdorff, we can

improve 3.1 aesthetically by obtaining a pseudo-metric s which is an extension

to X of the original q. In fact, rather than refer to Hausdorffs theorem, we first

give a new proof since it is an interesting application of 2.1, is much shorter

than HausdorfPs, and shows in passing how a metric space may be isometric ally

imbedded in its own space of bounded continuous functions (cf. [4, p.187]).

The present proof resembles that in [ i l ] more than that in [9] However,

Kuratowski's proof, besides requiring separability, generally does not provide an

isometric, but merely topological imbedding (see below, and also [9, p.47]).

3.2. THEOREM. [Hausdorff]. Let A be a closed subset of a metric space X,

and let f be a continuous mapping of A into another metric space B. Then B can

be isometricallγ imbedded in a metric space Y such that f can be continuously

extended to X with values in Y9 such that f is a homeomorphism of X — A with

Y — By and such that B is closed in Y.

Proof: For any space S let C (S) denote the Banach space of real-valued con-

tinuous bounded functions g on S, with \\ g\\ — sup ^ ς | g(x) j .

To begin the proof, obtain for X a bounded metric d The metric r in B we

must not alter, of course. For b in B, let rb denote the function with values

r,(b') = r(b9 b'). This function is not necessarily bounded, but r^ — rc is

bounded (cf. [4, p.187]) and | | r f e - r c | | = r(b, c), where b, c are points of B.

Select a point o in A, to be held constant. The function φ defined for a in A by

φ (a) = Γ/ / \-~rf( \ evidently maps A into C (A). Indeed, since

\\φ(a)-φ{a')\\ = | | r / ( α ) - r / ( O | | = r ( / ( α ) , / ( « ' ) ) ,

the map φ is continuous. It may therefore by extended to all of X by 2.4, and we

denote the extension also be φ. Now form L - C{B) x R x C{X), where

and R is the real number system. For x, y in X dςfine dx(y) = d(x, y) as earlier,

and let d(x) = d(x, A). For x in Z, define F {x) = [φ (x), d{x), d(x) dx] in L .
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This F is obviously continuous. Define Bx ~ F(A) and Y = F(X)9 both subsets

of L. Clearly Bι is closed relative to Y. Now for each a in A we obtain f(a) on

one hand and F (a) on the other. We now show that it sets up an isometry between

B and Bv In fact,

\\F{a)-F{a')\\ - \\φ(a) -φ(a')\\ = | | r / ( f l ) - r / ( ( / ) | | = r [ / ( α ) , / ( α ' ) ] ,

as mentioned earlier. If we identify /? with S l f then F becomes an extension of

/, continuous on all of A. Suppose F(x) — F(y), where y belongs to X' — A. Then

d(x) = d(y) > 0; hence dx = dy9 which means x = y. Thus F has an inverse on

Y — βj_. We shall show that it is an homeomorphism. Let y ζl X — A and suppose

F(Λ )—> F (y). Then i/(%)—>d(y) > 0, and C?(Λ;) dx—>d(y) dy. From this we con-

clude dx—» dy or c/U, γ) = 11 rf^ — Jy 11—> 0. Thus 3.2, Hausdorffs theorem, is

proved. It is to be borne in mind that it was not known in 1938 that metric spaces

were paracornpact.

We go on to establish a refinement of 3.2 also due to Hausdorff.

3.3. THEOREM. // the { in 3.2 is a homeomorphism of A with B then it can

be arranged that F also is a homeomorphism.

To establish 3.3, Ilausdorff [9, p.46] modifies the construction of F. It is

an interesting fact that the F we construct automatically satisfies 3.3. The only

nontrivial part of the proof of 3.3 is that if F (x) —* F (a) for x in X — A and a in

A9 then x—»αin X. Therefore, suppose F (x)—>F (a). Let

h = g(x) - g(a) = Σ gv(x) ίrf(av) ~ Γ/(α)] '

w h e r e t h e gy a n d ay a r e d e s c r i b e d in 2 . 1 . Now | h(f{a)) | < \\h\\ — » 0 . B u t

hίf(a)] = Σδvlx)r[f(av),f(a)]

is not less than the least of those r[f(av), /(α)] which appear in this sum, that

is, for which gy {x) is not 0. Denote the ay in question by a^9 where of course

W depends on x. Since r(f(aw), f(a)] tends to 0 and / is a homeomorphism on A,

we see that a^—> α. From 2.3 we obtain d(a, x) < d(a, a^) + 2 d{x)9 and so

x—>α, as desired.

These two results have the following consequence.

3.4. COROLLARY. Let A be a closed subset of a metric space X. Let r be

a pseudo-metric defined on A. Then this pseudo-metric may be extended to all

of X in such a way that
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3.41 in X — A it is equivalent to the metric d of X;

3.42 in x G X - A then for some positive e, r(x, γ) < e implies y C X — A;

3.43 if r is a metric equivalent to d on A, the extension is equivalent to d on

all of X,

Proof. In A, form the equivalence classes for the relation r(x9 y) = 0, and

metrize in the obvious way using r. Call the resulting space B. The natural

mapping of A onto B satisfies the hypothesis of 3.2. Let m be the metric in Y.

Then m[F{x), F(y)] gives the desired extension of r(%, y).

We can now provide the finishing touch to 3.1.

3.5. THEOREM. Let X be a fully normal topological space, and let q be a

pseudo-metric defined on a closed subset of X. Then q can be extended to be a

pseudo-metric on X.

The proof is based on 3.1 and 3.4 as follows. Using the s of 3.1, partition X

into a set X of equivalence classes according to the relation s (%, γ) = 0, de-

noting the class containing x by %*, and so on. Define s*(x*, y*) = s (x, y); this

is a valid definition, which makes X a metric space, and the natural mapping of

X onto X* is continuous. Let A* be the closure in A* of the image of A. The

conclusion of 3.1 shows that q may be carried over in unique fashion to A , to

form a pseudo-metric q*. An appeal to 3.4 extends q* to X , and q(x, y) = ςr*Gc*,

y*) provides the desired extension.

Note that we have no use for 3.41 - 3.43 in 3.5 because the s was not given

to us in advance.

4. Extension of functions on fully normal spaces. In the next result, the

metric for X in 2.4 is shifted to K.

4.1. THEOREM. Let A be a closed subset of a fully normal space X. Let f

be continuous on A with values in a complete convex metric subset K of a con-

vex topological linear space L. Then f can be continuously extended to X with

all values still in K.

Proof. In A define the pseudo-metric q (α, α') = m[f(a), / ( α ' ) L where m is

the metric, and extend q to X by 3.5. Let Ao be the set of x such that q(x, A)

- 0. Given e > 0 and x in AQ, let Se be the set of a in A such that q(x9 a) < e.

The f(Se) form a nested system in K, and their diameters shrink to 0. Hence

there is just one point, which we call fix), common to all. This provides an
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extension of / t o Λo. Now partition X into a set X* of equivalence classes under

the relation q(x, y) = 0, denoting the class containing x by #*, and so on. Define

q* (x*, y*) = q (x, y); this makes X into a metric space and the continuous

natural image of A. In this natural mapping, Ao passes onto a closed subset A*

of X*. The function /* (α*) = /(α), a in .4 0, is continuous (indeed isometric) on

A*. It can be extended to all of X*9 by 2.4. Going back and defining f(x) =

/*(%*), we get an extension of /with the desired properties.

We shall show in 6 that a "simultaneous extension" of the type of 2.6 cannot

always be obtained if the hypothesis is merely that of 4.1 for each of the func-

tions involved. However, using the procedure of 4.1 and the result of 2.6, the

reader may prove the following:

4.2. THEOREM. Let A be a closed subset of a fully normal space X. Let F

be a linear {convex) set of functions each defined on A and with values in a com'

plete metric linear {convex) subset K of a convex topological linear space L.

Furthermore let there be defined on A a pseudo-metric q such that for each f in

F and for each positive r there is a positive s such that q{a, a') < s implies

m[f{a), f{a')] < r, where m is the metric in K. Then a simultaneous extension

{in the sense of 2.6) can be made for all the f in F.

None of the preceeding results can properly be claimed to be a generalization

of Tietze's extension theorem, since we always require more than normality of X.

We do not know whether the following is true: if 4̂ is a closed subset of a normal

space X, and / maps A continuously into a bounded closed convex subset K of a

Banach space L, then / can be continuously extended to X with values in K. Of

course, in the finite dimensional case of L, this result is an easy consequence of

the original theorem. In this case, we can replace "bounded" by "compact", and

in this form the theorem does admit generalization.

4.3. THEOREM. Let A be a closed subset of a normal space X. Let K be a

compact convex subset of a norrned linear space L. Let f be a continuous func-

tion on A with values in K. Then f can be continuously extended to X with values

in K {see note added in proof).

Proof: Since K is separable, we can find a countable family vt, v2, of

bounded linear functionals on L such that if u, u' belong to K and u{vn) = u'{vn)

for all n, then u = u\ (cf. [2, p.484, " N o t e " ] ) . We now imbed K in the space (s)

of [4]. For u in K, define U {u)n = vn {u). This mapping is continuous and one-to-

one, and hence a homeomorphism. We may therefore forget about the original L

and regard K as a compact convex subset of (s). By 2.4, since (s) is metrizable,

we can obtain a retraction of (s) on K, that is, a continuous r such that r{u) C K
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for u in(s), and r(u) = u for u in K. Let fn (a) = f(a)n* ^ n e ra-th coordinate of /(α)

in (s). By Tietze's original theorem, this fn may be extended continuously to all

of X, Defining fo(x) = Vf\ (x), f2 (χ)t ] in (s) we obtain a mapping of X into

(s). Setting f~(x) = r[fo(x)] gives the desired extension.

5. Simultaneous extension of real-valued functions. This section merely

shows that special cases of 2.6 and 4.2 in which the linear space is the real

number system R (or any finite dimensional linear space) can be reduced to 2.4

or 4.1, respectively, without further inquiry into the method of extension. In other

words the possibility of "simultaneous extension" of real-valued functions is a

direct consequence of the possibility of a single extension of a function with

values in a suitable infinite dimensional space. This sounds quite plausible, but

it is perhaps surprising that we must consider conjugate spaces.

Consider first a closed subset A of a metric space Z, and the spaces C (A)

and C (X) of continuous real-valued functions on them. Let L be C (A) , the con-

jugate space, with the weak topology (see [14], for example). Let K be the set of

ζ in L with norm not exceeding 1 and with ξ > 0 (that is, ζ(f) > 0 for/ > 0).

For a in A, define F (a) in K by F (a) (f) = /(α). This F is continuous since we

are using the weak topology, and K is convex. By 2.4 this F can be extended to

A. For / in C(A), define fe by fe(x) = F(x) (/). We leave to the reader the com-

pletion of the proof of the following:

5.1. THEOREM. The operation f—>fe is a linear, isometric^ nonnegative

transformation of C (A) into C (X), and fe is an extension of f.

In the next section we shall show that 5.1 cannot be generalized for nonmetric

X even if X is compact. However, the following is true.

5.2. T H E O R E M . Let A be a closed subset of a fully normal space X. Let S

be a separable (in the norm topology) closed linear subspace of C(A). Then there

is a linear isometric nonnegative transformation f—>/e of S into C (X) such that

fe is an extension of f.

The proof is just like that of 5.1, except that we appeal to 4.1. To do this we

must observe that since S is separable, K in S with the weak topology is

metrizable (as is well known), for example with the metric

m(ξ,η) = Σ 2 ~ B \(ξ-η) (/») I,

where the fn are dense in the unit ball of S; and that K is compact (Alaoglu-

Bourbaki [l]) and thus complete.
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6. Applications to measure in topological spaces. Let Z be a topological

space with a measure, and let A be a subset such that every function of a fixed

linear set F of real-valued functions on A can be extended to a summable func-

tion on X by a positive linear operation P. By defining / (/) = J P (/) {x) m (dx)

for f in F, we obtain a functional which may sometimes be represented by an

integral (cf. [2, 3] or any of the references given there). When this is true, one

obtains a measure m' on A which is generally not the mere restriction [m'(E)

= m {E) for E C A] of m to A.

Unfortunately we have not been able to apply this process to any situation

to obtain measures in A of a class not more easily obtainable by other methods.

This is because of the requirement of the existence of a pseudo-metric in 4.2

with the stated properties, or of the separability of S in 5.2. The interest of

the present section lies mainly in the fact that it is shown that one cannot

avoid limitations of this sort. For this purpose we present only one of a variety

of theorems, and then show why it cannot be generalized.

6.1. THEOREM. Let X be a fully normal Hausdorff space and let m be a

finite Baire measure [8] such that m(V) - 0 for an open V only if V is void.

Let A be a compact subset of X. Let S be a separable subset ofC(A). Then

there exists a strongly regular measure m' in A such that all functions in S are

measurable and if f £ S and f > 0, / Φ 0 then

SA f(a) m'(da) > 0.

Proof, Let Q be the normed linear algebra generated by S and 1. By [3, 4.4]

we can obtain a measure as described such that

SA f(a)m'{da) = fχ fe(x)m(dx).

The point to observe is that if / > 0, / ^ 0, then the same thing is true for fe

9

and thus the right integral is positive.

Why can we not ignore the separability of S in 6.1? Let Ao by any uncount-

able discrete set. By adding a "point at infinity" we obtain a compact space A.

This space A can be imbedded in a cartesian product X of unit intervals. The

obvious product measure [8, p.158 (2)] has the properties needed for 6.1. Let S

- C(A), and, forgetting that S is not separable, apply 6.1. The resulting measure

would make every one of the points Ao have nonzero measure, and so A itself

would not be measurable. This shows why the separability of S in 6.1 cannot

be ignored; and it also shows that one cannot ignore the pseudo-metric q in 4.2

or the separability of S in 5.2.
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Added in proof: We have recently found, and shall soon publish, a stronger

form of 4.3, namely in which "compact" is replaced by "separable".
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A SHORT PROOF OF PILLAΓS THEOREM ON NORMAL NUMBERS

JOHN E. MAXFIELD

l Introduction. The object of this paper is to give a short proof of the Pillai

theorem [2] on normal numbers using the Niven-Zuckerman result [l] as a tool.

DEFINITION 1. A number σ is simply normal to the base r if, in the ex-

pansion to the base r of the fractional part of σ9 we have limΛ _» oo nc/n - 1/r

for all c, where nc is the number of occurrences of the digit c in the first n

digits of σ.

DEFINITION 2. A number σ is normal to the base r if σ, rσ9 r2σ, « » are

each simply normal to all the bases r, r 2, r 3, » .

THEOREM (Pillai). A necessary and sufficient condition that a number

σ be normal to the base r is that it be simply normal to the bases r, r2, r3, . . . .

2. Proof. The necessity of the condition follows from the definition of normal-

ity.

To prove sufficiency, assume that σ is simply normal to the bases r9r
2

9 . . . .

Let A = (a1a2 av) be any fixed sequence of digits (to base r), where

v - hr - s9 h > 0, 0 <. s < r; and consider the occurrence of A in σ. Count

the number of occurrences of A in the collection of sequences of length hr. There

are s digits free after v of the hr digits are fixed. Thus there are (s + l ) r 5 differ-

ent occurrences of A in these sequences.

For any positive integer n9define fn(A) to be the frequency of the occurrences

of A in σ except in places where A will straddle the middle of sequences of

length 2h2n " xr starting in places congruent to 1 (mod 2h2n " V), or where A will

straddle the middle of sequences of length 4/ι2n" *r starting in places congruent

to 1 (mod 4h2n ιr)9 or , or where A will straddle the middle of sequences of

length 2sh2n"1r starting in places congruent to 1 (mod 2sh2n~1r)9 and so on.

Certainly limΛ ^ <*, fn{A)9 if it exists, will be equal to f{A)9 the frequency of

A in σ.

We have

t/Λ\ ( S + 1 ) Γ S X V ~ 1

fx(A) = . = ,hr Λ rv hrv
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since there are hr digits of σ to base r in each digit of σ to base r Γ, and σ is

simply normal to the base r . The number of occurrences of A straddling the

middle of blocks of length 2hr is (v - l ) r 2 Γ +s. The frequency of these in σ,

where the sequence of length 2hr starts in a place congruent to 1 (mod 2hr), is

{v-l)r*hr+s v-1

2hrr2hr 2hrv + x

since there are 2hr digits of σ to base r to each digit of σ to base r2 Γ .

Thus

1 v - l v-l
f2(A) « — +

rv hrv + x 2hrυ + x

Similarly,

v-l 1 i - l v - l Γl 1

and

+ ί hrv+1

It follows that

lim

Accordingly, by the Niven-Zuckerman result [ l] , stating that a necessary and

sufficient condition in order that a number σ be normal is that every fixed se-

quence of v digits occur in the expansion of σ with the frequency l/r v , we see

that σ is normal to the scale r.
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QUASI-CONVEXITY AND THE LOWER SEMICONTINUITY

OF MULTIPLE INTEGRALS

C H A R L E S B. MORREY, Jr.

1. Introduction. We are concerned in this paper with integrals of the form

(1.1) Kz,D) = fD

w h e r e

x = ( x \ . . . , χ * ) 9 z = ( z 1 , . . . , z N ) , p = p f

α

( i = l , . , /V; α = 1 , , v),

f(x,z,p) is continuous in its arguments, and D is a bounded domain.

The object of the paper is to discuss necessary and sufficient conditions on

the function f for the integral / to be lower semicontinuous with respect to vari-

ous types of convergence of the vector functions z. Because of the success of

the "direct methods" in the Calculus of Variations, many writers have shown

that certain integrals are lower semicontinuous. However, the writer knows of

no paper in which a necessary condition for lower semicontinuity was discussed,

although such a condition is very easy to obtain (see Theorem 2.1)

In §2, a general condition called "quasi-convexity" (see Definition 2.2) on

the behavior of / as a function of p is obtained which is both necessary and

sufficient for the lower semicontinuity of / with respect to the type of conver-

gence given in Definition 2.1. This condition is that any linear function furnish

the absolute minimum to I(z,D) among all Lipschitzian (see below) functions

which coincide with it on Z)*, D being any bounded domain and D* its boundary;

here, of course, we consider / to be a function of p only. Section 3 discusses

cases involving more general types of convergence and gives an existence

theorem. In §4, it is shown that if f(p) is continuous and quasi-convex, then

it satisfies a certain generalized Weierstrass condition which reduces to the

ordinary one (for the case at hand) when / is of class C ; this is, in turn, seen

to be equivalent to the Legendre-Hadamard condition (see (4.8)) (quasi-regu-

larity in its general form) when / is of class C . In §5, a general sufficient

presented to the American Mathematical Society at the Summer meeting of 1949 in
Boulder, Colorado, under the title "Quasi-convexity and the lower semicontinuity of
double integrals".

Received February 19, 1951.

Pacific /. Math. 2 (1952), 25-53
25



26 CHARLES B. MORREY, JR.

condition for quasi-convexity is proved and the necessary condition of §4 is

seen to be sufficient when / is either a quadratic form in the pι

a or is the inte-

grand of a parametric problem with N = v Λ- l The view of Terpstra's negative

result [5] that even the strong Legendre-Hadamard condition (> 0) does not

necessarily imply the existence of an alternating form C?. p^ p' (Cr.a= -

and so on) such that

(1.2) f(p)+Cfβ p> p>β ,

is positive definite when v > 2, it would seem that there is still a wide gap in

the general case between the necessary and sufficient conditions for quasi-

convexity which the writer has obtained. In fact, after a great deal of experimen-

tation, the writer is inclined to think that there is no condition of the type dis-

cussed, which involves /and only a finite number of its derivatives, and which

is both necessary and sufficient for quasi-con vexity in the general case.

In (1.2), we have used the usual tensor summation convention, and will con-

tinue to use it throughout the paper; unless otherwise specified, the Greek letters

will run from 1 to v and the Latin letters from 1 to N.

We shall denote the sum and difference of vectors of the various sorts (x, z,

p, and so on) in the usual way. We shall define

X = 1/2

If ζ(x) is a vector function with derivatives, π(x) will denote the vector function

πι {x) = ζι

a (#); similar notations involving other letters will be introduced as

the occasion demands.

All integrals are Lebesgue integrals, frequently of vector functions. It is

sometimes desirable to consider the behavior of a function z (x) with respect

to a particular variable xa or to the v - 1 variables (Λ;1, * , xa~ι, xa* ι ,

• , xv\ In such a case, we write x' for (x1, , xa~ 1, xa + ί, , xv\

(# ' , #α)for x and so on. It is also convenient to write the boundary integrals

fD.Aa (x) dxί,

where each Aa (x) may be a vector Aι

a (*) and the boundary D* of the domain is
sufficiently regular; such an integral is to be regarded as a Lebesgue-Stieltjes
integral with respect to the set function x£ (e) on D* chosen so that Green's
theorem



QUASI-CONVEXITY AND THE LOWER SEMI CONTINUITY OF MULTIPLE INTEGRALS 27

holds. The closure of a set E will be denoted by E.

Ordinary functions of class tys, 5(5/̂  ^/', and so on, s >_ 1, have been dis-

cussed at length in the papers [l] and [2]; the extension to vector functions is

trivial. We define the integrals ϋs (z,G) and Ds (z,G) by

Ds{z,G) = fG \z{x)\s dx + Ds (z,G), Ds {z,G) = £ [*' β(*) z^ (x)]s/2dx.

Each function z of class ?̂s is equivalent to a function z defined uniquely almost

everywhere as that number such that the Lebesgue derivative of the set function

j f \z(x)-Έ(xo)\s dx

is zero at xo; z is supposed to be defined at every point x0 where such a number

exists; ~z is of class ?β/ (see [1] and [2]) and is also of class §β/ in any co-

ordinate system related to the original by a regular Lipschitzian transformation

(cf. [2], Theorem 6.3; the z there used has a slightly different definition from

the present one but the present theorem has been proved for vectors z with

values in a Riemannian manifold in [4], Lemma 2.3 and Theorem 2.5).

A function z is said to satisfy a (uniform) Lipschitz condition with coef-

ficient M on a set S if and only if

| z ( * t ) - z ( x 2 ) \ < M \ x x - x 2 | , * i £ S , x 2 G S .

A function is Lipschitzian if it satisfies a Lipschitz condition.

K &(y)> 7 ~ (y l> * > yΛ)> ί s summable on a domain D, we define the A-
average function g, by

g A ( y ) = (2λ)-n ^ Λ g{η) dη, h>Q;

if g is summable then g^ is continuous where defined; if g is continuous on D

then gfr is of class C" and g^ tends uniformly to g on each bounded closed set

interior to D; if g is of class 5βs on D then ĝ  tends strongly in 5βs to g on each

domain G with G C D (see [1], Lemma 5.1).

A form

< ι/> χ < α < ^ χ < < / y χ \

is called alternating if and only if the C's satisfy the obvious symmetry require-

ments and also the antisymmetry condition that
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Qβ\t • » βμ _ + QO-I t # »αμ

*l» f*μ. ιl*'***iμ

according as (/31 ? > βμ) is an even or odd permutation of the indices

(<XU , Cίμ); if £ (x) is a vector function, then

3(% l , , X μ )

the fractions on the right denoting Jacobians.

2. A necessary and sufficient condition for lower-semicontinuity. We begin

with some definitions.

DEFINITION 2.1. For the purposes of this section, we say that the vector

functions zn tend to the vector function z on the domain D if and only if the zn

and z all satisfy a uniform Lipschitz condition on D, independent of n, and the

zn tend uniformly to z on D. We shall write zn —> z to denote this type of con-

vergence.

DEFINITION 2.2. A function f{pι) is said to be quasi-convex if and only if

S D f [ p + π ( * ) ] dx > f(p) m ( D ) , ^ (*) = ζι

χa(x),

for each constant p, each domain Z), and each vector function ζ which satisfies

a uniform Lipschitz condition on D and vanishes on D .

We shall show in this section that the integral l{z,D) is lower semicontinu-

ous with respect to the type of convergence specified in Definition 2.1 on each

bounded domain D if and only if f(x9 z,p) is quasi-convex in p for each fixed

THEOREM 2.1. Suppose I(z,D) is lower semi continuous with respect to the

type of convergence indicated on every region D. Then f is quasi-convex in p

for each fixed (x, z).

Proof. Let x0 be any point, R be the cell x0 j< xι <^ x\ + h, Q be the cell

0 <_ xι _< 1, and ζ be any function of class C x and periodic in each xι with

period 1. Let z0 be any function of class C o n R.

For each n, define ζn(x) on R by
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0 * ) = »~l h ζl [nA-i (x-x0)].

Then

and

ζn, R)= fR f{*,*'0 (*) + C (*). P^y <*) + π'γ [nh~ι(x - **)]} dx

= Σ fRa(f {X>zio (X> + ?n (*>» Po r <*) + 4 tnA"1 (* - *o)]}

P'
θγ

where

α = ( α l f

xa=xp

n \,χP = ra"1 (0Lβ- 1), β = 1, , v.

As n—->°°, we see, since / i s uniformly continuous on any bounded part of space,

ζ (x) tends uniformly to zero, and the πι are bounded, that

lim I(z0 + ζn, R) = / f JΓ / [ Λ : , 2 0 (%), p0 (%) + 77 (£)] ^ 1 ^ λ '

FVom the lower semicontinuity of /, we must have

f I f f[x,zQ (*), Po (Λ) + π (ξ)] dξ] dx > f f[x,z0 (x), p0 (x)] dx.
K [ Q J — A

Now, let Λ;0, Z 0 , and p 0 be any constant vectors. By letting

z0 (x) ~ z0 + Pθα ( Λ "" % o ' '

div id ing by hv a n d l e t t i n g h —> 0, we obta in

JU 7 L X O > 2 O > P O + ^ v ς J a ζ ζ_ J \XQJ zo> Po)
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By approximations, we can extend this to all ζ which satisfy a uniform Lipsx:hitz

condition over the whole space and are periodic of period 1 in each xa.

Now, let D be a bounded domain and suppose ζ satisfies a uniform Lipschitz

condition on D and vanishes on D*. Let R be a hypercube of edge A, with edges

parallel to the axes which contains D. Extend ζ to the whole space by first de-

fining it to be zero on R-D and then extending it to be periodic of period h in

each variable. Then a simple change of function and variable reduces R to Q and

establishes the result.

LEMMA 2.1. Suppose R is a cell with edges (2hι), , (2hv) and center

x0. Let h be the smallest ha. Suppose also that 0 < k < h, that ζ* satisfies

a uniform Lipschitz condition with coefficient M >_ 1 on R*, and suppose

\ζ*(x)\ < A, xCli*.

Then there is a function ζ on R which satisfies a Lipschitz condition with

coefficient M on R, coincides with ζ* on /?*, and is zero except on a set of

measure at most

m(R) [1 - (1 - h~ιk)v]-

Proof. Let Rι be the cell with center at x0 and edges 2 (ha - k), α = 1,

• , v . Then, since h = min ha , we have

m(Rx) ^ m(R) . (1 - h~ι k)v .

Define ζχ = 0 on Rx and equal to ζ* on /?*. Then

\ ζ ι ( * ι ) - ζ ^ l < l * i - * 2 | i f * i C Λ , , x2CR*

Thus ζt satisfies a uniform Lipschitz condition with coefficient M on Rx U R*.

By a well known theorem, there exists an extension of ζ to R (the whole space

in fact) which satisfies the same Lipschitz condition.

LEMMA 2.2. Suppose the vectors ζn—»0 (in our sense) on R and suppose

f is quasi-convex in p. Then if p0 is a constant vector we have

m f(Po) < liminf / f[p0 + πn (x)} dx .

Proof. For all sufficiently large n, we have kn < h, and A^—> 0, kn being

the maximum of | ζn (x)\ for x C R* For each n for which kn < h, let ηn be the
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function of the preceding lemma which coincides on /?* with ζ , and let ωn

— ζ — η , Then if each ζn satisfies a uniform Lipschitz condition with coef-

ficient M _> 1 on R, then each η and ωn satisfies one with coefficient M and

2Λf, respectively. Moreover, each derivative ηι

nχ0L is uniformly bounded and

ηι

nχa—>0 almost everywhere. Since / is uniformly continuous on any bounded

portion of p-space, we see that

But the result then follows, since, for each n9 we have

because of the quasi-convexity of the function /.

THEOREM 2.2. Suppose f is continuous in (x,z,p) for all (x,z9p) and is

quasi-convex in p for each (x, z). Suppose also that zn—» z0 on the bounded

domain D. Then

I(zo,D) < lim inf I{zn,D).
— n-*oo

Proof. Let e be any positive number. For each positive integer k, let D^

consist of all the hypercubes of edge 2" whose faces lie along hyperplanes

xa = 2 ia (each i α a n integer) which lie in D. Since all the points [x,zQ (x),

po(x)] and [ x, zn (x), pn (x) ] for % £ D lie in a bounded portion of {x, z, p)

space, we may choose kx so large that

( 2 X ) •£ n , \f<<x>zn,Pn)\ dx < e/5, / \f(x,zo,Po)\ dx < */5

for all n .

Let the hypercubes of Dj€ι be Rγ 9 9 /?#. For each k >_ kί9 let Rfci,

i = 1, , N 2v(<k ~kι\ be all the hypercubes of side 2~k described above

which lie in Djfcj. For each such k, define x^{x)9 z£ (x)9 pζ (x) on D^^ by

x*(x) = [m(β^)]-1 / x dx, z*(x) = [m(Rki)Γι / z0 (x) dx,
κki Rki

(2.2) pi (X) = [ m ( ^ ) ] - 1 fRki p0 (x) dx

rk
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where x £ Rki . Let ζn (x) = zn (x) - z0 (x), πn (x) = pn {x) - p 0 (x) Then, on

Dkι,

f[x,zn (x), pn (x)] - f[x,z0 (%), po (*)]

= {f[x,zn (x), Pn (x)] "~ /[*» *o (*)»

(2.3) +

2o(*)» Po (*)1 ~ /[^(^)» z^(*)f P^

+ [f[x*k(x), z^{x\ pl(x) + ττn (*)] - / [ ^ ( Λ ) , p^(*), P^(«)]} .

Now, all the arguments of / occurring in (2.3) for xζ^D^^ lie in a bounded

closed cell in (x,z9 p )- space over which / i s uniformly continuous. Let

€ ( p ) = max | / ( * ' , z ' , p ' ) - f(*",z",p")\, P > 0

for all (*', 2 ' , p θ and ( x " , 2 " , p " ) in this cell with

then 6 ( p ) is continuous for p >_ 0 with e (0) = 0. Then, for each rc and each

k >_ A:t , we have

| / [ Λ , 2 Π (%), p n (%)] - f[x,z0 (x), pn {x)]\ ;£ e(\zn{x) - z 0 ( * ) | ) »

\f[x,zo(x), po(x) + TΓΛ(Λ;)] - / [ ^ ( * ) , z ^ ( « ) , p ^ ( * ) + w n ( « ) ] | < € [ Γ Λ ( Λ ; ) ] ,

Now, the Γ̂ . (%) are uniformly bounded on D^ and tend to zero almost every-

where on Djtι Hence we may choose a k >_ kγ so large that

S \f[x,Zo{x)f Po(χ) + πn(
χ)] ~ f[χl(χ)> zk(x>>> Pk(χ) + " " Λ ( % ) 1 | rf* "̂  € / 5 >

(2.4)

f \f [x, zo{x), po(x)] - f[xl(x), z*k{
χ), pl{x)]\ dx < e/5,

for all n. Since zn converges uniformly to z 0, there is an nχ such that

(2.5) / \f[χ

9zn{x),Pn(x)] - f[x9z0(x),pn(x)]\ dx < e/S, n > nx .
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Finally, since Xi(x)9 and so on, are constant on each Rki* and / is quasi-convex,

we conclude from the previous lemma that

lim inf f \f[xUx), z*k(x\ p£(x) + πn(x)] - f[xUx), *&(*), p£(*)l \dx >_ 0
n— oo L>kί I J ""

Using (2.3)-(2.5) and the above inequality, we see that

lim inf I(zn,D) > I(z09D) - e.
n —» oo

Since e is any positive number, the result follows.

3. Lower semicontinuity and weak convergence in P s (s :> 1). In this

section, we discuss additional conditions which with the quasi-convexity of

/in p are sufficient to guarantee the lower semicontinuity of l(z,D) with respect

to weak convergence in $β on D.

DEFINITION 3.1. Suppose ζ is of class 5βs on the bounded domain D and

suppose R is a cell with R C D. Then ζ is said to be strongly of class ^>s on

R* if and only if ζ is of class ^βs in x£ on each face xa = const, of R and there

is a sequence ζn of class C o n R such that

Ά Ua - C> R) - » o , DS (ζn - ζ, R*) _ » 0 .

LEMMA 3.1 Suppose ζ is of class 5βs (s >_ \) on the bounded domain D.

For each 0C, 1 <_ 0C <̂  1/, let (αα, ba) be the open interval projection of D on

the xaaxis. Then there exist sets Za of measure zero such that if R:ca<_ xa £ da

(α = 1, , v) is any closed cell in D with

caC(aa,ba) - Za, d« £ (a«, ba) ~ Z« ( α = 1, . . . , v ) ,

then ζ is strongly of class tys on /?*.

Proof. Let R' be any rational cell in D (that is, R = [ C, D] with Cα, Da

rational). In [l], Lemma 5.1, we have seen that if ζ is of class $βs on D, then

(3.1) lim D8{ζ - ζ, R) = 0.
h -* 0

For each α , define

[Σ
β
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Since 1 is obviously of class ψs in < for almost all xa on [Ca,Da], φ%(xa,R')

is defined for almost all xa and

lim JD

a

a \φ%(xa,R')\ ώ α - 0.
Λ —»0 C

By arranging the rational cells /?' in some order and choosing successive

subsequences, we may choose (on account of (3.1)) a final sequence h^—» 0

such that φ% (xa, # ')—> 0 and ~ζ is of class ^ in Λ/ on [ C ^ D£] for each

# α not in a set Za{R') of measure zero ( α = 1, , v ) . Now let

Zα = UZα(/ϊ0;

then

m ( Z α ) = 0 ( α = 1, , v ) .

Now suppose /? is one of the cells described in the lemma. Then it lies in some

rational cell /?' and we may take ζn - ζ^ .

LEMMA 3.2. Suppose R is a cell with edges (2>hι), , (2AV) and center

x0. Let

h = min ha, K = h~ι (ha ha)ί/2 .

Suppose also that 0 < k < h, that ζ* is of class ^>s on an open domain con-

taining R in its interior, and that ζ* is strongly of class 5βs on /?* with

jr. \ζ*\s dS <ks, Ds(ζ*,R*)<Ms ( * > 1 ) .

Then there is a function ζ of class 5̂ on R which coincides with ζ* on

i?*, is zero except on a set of measure

m{R) [1 - α -

and satisfies

2S/2 (s < 2),

Proof. For each x C R, x ^ xθ9 let x*(x) be the intersection of the ray xQx

with /?*, and for each x C R define

0 (x = * 0 ) ,

Let Π~ be the pyramid in R with vertex x0 and base the face F~ where
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On the pyramid Π*, introduce coordinates ξι

9 , ξv~ι

9 r by

xv = %l + rhv, x? = Xy + rξΎ (0 < r < 1, y = 1, . . . , „ - 1).

Then, if r and £" ̂  are considered as functions of x, we have

r(x) = r, *•(*) = [^(at) + %l , , ξv~l (*) + * P A" + xol

Similar coordinate systems may be set up on each of the other Γ^ .

Define

φ(r)
AA"ι(r - 1 +

(0 ;< r < 1 - AA"1),

(1 - kh~ι < r < 1).

Choose a sequence ζ* satisfying the conditions of Definition 3.1; and for each

n, define

£„(*)- φ[r(x)] C [**(*)]•

Then each ζn (x) is of class D ' on /?.

We now compute the derivatives of ζ on each pyramid Πα taking Π^ as an

example. Then

O =Γ"1 ^ G {I < γ < v - l ) ,

= (A")"1 φ' (r) 4* - (ATT 1 ^ y (y summed from 1 to 1/ — 1) .

Then, since r~ι φ(r) <^ 1 and ̂ ' (r ) = k~ι A for 1 - Aί;"1 < r £ 1,

Using the inequality

(a < σs ( | α |

(nnotsummed)

1 (s < 2)

2 < s - 2 ) / 2 ( s > 2 ) f
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we obtain

-* f \ζ*\s ds + K> Da (ζ£, F+)\.
v J

Also

/ Π ί 14 Is «& - j T A_, Γ""1 ^ (r) ̂  jf ; i c | ds

^h~lk 1+ \ c \ s dS-
v

Adding these results for all the Π , we obtain the result for each n; and also

Ds (ζn, R) is uniformly bounded. Thus, we may extract a subsequence which

tends weakly in 5β5 to some function ζ of class ^>s on R. Since each ζn - ζ*

on R*, ζ* tends strongly in Ls to ζ* on /?*, we see from [2], Theorem 8.5, that

ζ - ζ* on /?*. From the lower semicontinuity of Ds (see [2], Theorem 8.2), the

result follows.

LEMMA 3.3 Suppose f is quasi-convex and of class C for all p, and suppose

for all p that

Σ ( f i
p

If p 0 is any constant vector, D is any bounded domain, and ζ is of class ^βs on

D and vanishes on D*9 then f [p0 + π{x)] is summable over D and

fD fίpo + n(x)] dx > m(D) . f (p0) .

Proof. There exists a sequence of functions ζn, each of class C o n fl and

vanishing on and near D , such that Ds(ζ — ζ, D)—»0 (see [2], Definition

9.1). For each n and almost all x on D, we have

1/ [Po + πn (*)] - fίPo + π(x)] \ =
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<. \nn(x) - n(x)\ . K ' J^ I I (1 - t) p0 + π (x) + tp0 + πn {x) \ - + 1 [ dt

(3.2)
< K\πn{*)- π(x)\ { M P o + π{x)\8~ι+ K \p0 + ^ ( x ) ! ' " 1 +

where

is"1 (1 < s < 2)

[s""1 2S~2 (s > 2).

Using the Holder inequality, and so on, and the strong convergence in $βs, we

see that

l i m X flPo + ιrπ(*)l ^ = / / [p 0 + 77(%)] ώ .

Since / is quasi-convex, the result follows.

LEMMA 3.4. Suppose that f satisfies the hypotheses of Lemma 3.3. Suppose

also that each ζn is of class Sβs on a domain D and is strongly of class 5βs on

/?*, fic D, with

lim / * \ζn\
s dS=O, Ds(ζn,R*) <Ms,Ds(ζn,R) < Ms (n « 1,2. )•

n —»<χ> **

ΓΛera for each p 0 , / [ p 0 + πn (x)λ ι s summable for all sufficiently large n> and

l i m i n f / / [ p 0 + τ τ n ( χ ) ] d,x > m ( R ) / ( P n ) , 77L ( Λ ; ) = /" π ί ^ ) *
/I —»oo Λ " *

Proof. For each τι, let

and let K and A be the quantities of Lemma 3.2 for R. Since kn—> 0, we have

kn < h for all n > some nx. For each such n, let 77̂  be the function of Lemma

3.2 which coincides on R* with ζn, and let

Then, since y Λ = 0 on /?*, we have

fR f[π0 +ωn(x)] dx lm(R) f(Po) .
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As in (3.2), we see that, for each n, and almost all x on D,

l / Ί P o + ω π (x) + / ^ (x)] - f[p0 + ωn (x)]\

<K 1 ^ ( ^ ) 1 (hs\Po + ω n ( * ) + κ n ( * ) | β " ι + λ s |po + ω n ( % ) | s " ι +

< K | κ π ( * ) | [(l + shs)hs \Po + 7 7 r t ( % ) | s ^ + sλ* \κn(x)\*~ι+ 1 1 .

Using the Holder inequality, and so on, we see that

l i m X l / t P o + ^ n ( * ) 3 ~ / t P o + ωn(x)]\ dx = 0 ,

from which the resul t follows.

THEOREM 3.1 . Suppose f is of class C in (x,z,p) and quasi-convex in p.

Suppose also that there are numbers k and K, K > 0, such that

( i ) f ( x , z , p ) l k , (in) fχ<χ f%a < K 2 (\P\S + I)2

( " ) f i f i < K 2 ( \ p \ s ~ ι + I ) 2 , ( i v ) fz. fz. < K2 ( \ p \ s + I ) 2 .
OL OL

for all (x,z,p).

Suppose also that zn—> z0 weakly in 5βs on the bounded domain D and that

either

(a) each zn and z0 are continuous on D and zn converges uniformly to z0 on

each closed set interior to D, or

(b) the set functions Ds (zn,e) are uniformly absolutely continuous on each

closed set interior to D.

Then

I(zo,D) < liminf I(zn9D).

n —>oo

REMARK. If s = 1, weak convergence in ^ s implies the hypothesis (b).

Proof. We note first that hypothesis (ii) implies

(3 3) \ f (χi z*p) ~~ f (χi z >0) = p Γ f 4 (x.z.tp ) dt\
a Jo pa a

< \P\ / ' M i f i (x,z,tf



QUASI-CONVEXITY AND THE LOWER SEMICONTINUITΪ OF MULTIPLE INTEGRALS 3 9

< \P\ j f K ( t s ~ l P 5 " 1 + 1 ) d t < K ( s ~ ι \ p \ s + \ P \ ) .

Also, hypotheses (iii) and (iv) similarly imply

(3.4) l / ( * , * , 0 ) - / (0,0, 0 ) | < K(\x\ + | z | ) .

Thus, for all (%, z,p), we have

(3.5) \ f ( x , z , p ) \ < | / ( 0 , 0 , 0 ) | + K ( \ x \ + \ z \ + s ~ ι \ p \ s + \ p \ ) .

Therefore /(z o ,D) and the I(zn,D) are uniformly bounded.

For each OC (1 <_ OC _< 1/), let (αα, ba) be the open interval projection of D

on the xa axis and let Z^ and Z£ be the sets of Lemma 3.1 for z0 and zn. Also

for each α, n, k, let £ ^ k be the set of xa in (α α , fcα) - Z£ , where

D s(F r a,D^α) < t,

A^α ^ e i n g t n e s e t °f x ά such that (Λ;^, #α) C D. Suppose that Ds (zn, D) _< M,

some uniform bound existing because of the weak convergence. Let

Then

For each α, let

εa= u n u ££*, Zo = («α. n - £ α υ z* u u zn

α.
A = l ΛΓ= l n = N n = l

Then m(Z0) = 0. For each (X, each natural number n, and each integer i, define

ZΠj , as the set of all xa such that xa — i 2 ~" C Z o , and define

Z α = U
71, ί

Then/π(Zα) = 0.

Now, choose a point # 0 such that x^ is not in Z (CX = 1, , v). For

each natural number kf let Q̂ . be the totality of hypercubes of side 2 bounded

by hyperplanes of the form xa « x% + i 2~k. None of the numbers x£ + i 2*^

is in Z and, moreover, To and each "zn is strongly of class $βs on /?* with
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Ds (zn9R) uniformly bounded for infinitely many values of n, R being any hy-

percube of any Q.̂ . Since the totality of these hypercubes is countable, we may

choose a subsequence, still called zn, such that I(zn,D) tends to the former

lim inf, ~zn—> To almost everywhere on D, and Ds (zπ,/?*) is uniformly bounded

for R of any Q^ in D. Since zn —> z in | ? s , we also have

lim / I zn - z0 Is dS = 0

for each such R

Now, we first consider the alternative (a). Let 6 be any positive number.

For each k, let Dk be the union of all the cells of Q̂ . which are interior to D.

Since / i s bounded below and I(zo,D) is finite, we first choose kx so large that

(n = 1,2, )•

(3.6)

1 (zn,D-Dkί) > - 6/5

I (zo,Dkι ) > I(zo,D) - 6/5.

For this kl9 let Rl9 , Rq be the cells of Dk and for each k >_ kί9 let

/?*.- (ί = l, , q 2" ( *-*

be the cells of Q̂ . in D^ For each k, define x^.(x), \{x), and P^ix) on Z)̂ . by

(2.9). Then, from (ii), (iii), and (iv), it follows that

\f[x,zo(x), Po(x)] - f[x*k(χ), z*k(x), p*k(x)]

(3.7)

where

| p o ( * ) - p * ( x ) | ,

~ι

" 1 2 s " 2

(1 < s < 2),

2 s " 2 (s > 2);

the method of proof is similar to that of (3.3). If we let

Cn = zn ~ 2o» ">, = Pn ~ Po »

we see similarly that
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\f[x,zo(x), po(x) + πn{x)] - f[x*k(x), z*k(x), p*k(x) + πn(x)]\

(3.8) < K(\Pn(x)\s + 1) {\x-x*k(x)\ + I zo(x)- z*k{x)\ )

+ K(hs I p ^ ^ l 5 " 1 + hs \p*k(x)+ πn(x)\s~ι + 1) \Po(x)~P*k(x)\;

(3.9) \f[x,zn(x), pn(x)] - f[x,zo(x), Mx)]\

< K(\pn(x)\s + 1) \zn(x) - zo(x)\ .

Now, by the Hβlder inequality on each β^, » we see that

(3.10) 1 \p*k{x)\s dx< jΓ | p o ( ^ ) | s dx.
υkί

 υkι

By applying the Minkowski inequality, we see that the integrals

(3.11) X \πn(x)\s dx, S \p*k(x) + πn(x)\s dx
kl kl

are uniformly bounded. Finally,

(3.12) lim f \Po(x) - PUx)\s dx = 0.
/C-KX) L>kγ

Hence, using (3.7)-(3.12)> we may choose a i so large that

(3.13) / \f[x,zo{x), Po{x)) - f[x*k(x), z*k(x), P*k(x)]\ dx< e/5,
kχ

(3 14) ^D \ί^Z^X^ Pn{x)λ - f[x*k(x)9 **k(x) P*k(x) + πn(x)]\ dx < e/5

(n = 1, 2, ),

and then choose nί so large that

(3.15) / \f[x,zn(x), Pn(x)] - f[x,zo(x), pn(x)]\ dx < e/5, n > nι .
Dkι

Since xk(x)9 z^(x)f pk{x) are constant on each Rk{, it follows from Lemma 3.4

that

(3.16) lim inf jΓ f[x*k(x), zUx), pϊ(x) + πn(x)] dx
n -+ oo υk ^
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Using (3.6) and (3.13)-(3.16), we see that

liminf I (zn,D) > l{zo,D) - e.

n —>oo —

The result follows in this case.

We now consider the alternative (b). For each natural number q, we define

fq(x,z,p) = [1 - aq(x,z)] f(x,z9p) + k aq(x,z)9

0 ( 0 < R < q),
aQ(x,z) = 3(Λ - 7)2 ~ 2(R-q)3 (q <R <q + 1),

1 ( « > ? + ! ) , Λ

Remembering (3.3)"(3.5)> we see that each fq satisfies hypotheses (i)-(iv) with

the same k and some K^. Moreover fq is independent of (x, z) for R >_ q + 1,

and also

Thus it is sufficient to prove the lower semi continuity for each q.

For a fixed qr, we note that we may replace | zo(x) - z^(x)\ by

(3.7) and (3.8) and \zn(x) ~ z o(%)| by ψn(x) in (3.9), where

φk(x) = min ( | Z O ( Λ ) - z£(x) | , 2ςr + 2) ,

0 Λ («) = min (I zn(x) - 2 0 (^)l , 2̂ 7 + 2) .

From the uniform boundedness of the φ^ and φn (q fixed), the uniform absolute

continuity of the set function Ds(zn,e), and the facts that

lim φk(x) = 0, lim φΛx) = 0

almost everywhere, it follows that the argument can be carried through as before

for each fixed q.

THEOREM 3.2. Suppose s > v and suppose {satisfies the hypotheses of

Theorem 3.1 with (i) replaced by
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0 ' ) f{x,z,p) > m\p\s + k (rn > 0) .

If z* is any function of class tys on the bounded domain D, then there is a

function zQ of class $ s which coincides with z* on D* and minimizes I(z,D)

among all such functions.

Proof. Let zn be a minimizing sequence. It follows from ( i ' ) that Ds (zn,D)

is uniformly bounded. From [2], Theorem 9.4, it follows that Ds (zn,D) is uni-

formly bounded. But then a subsequence, still called 1-2̂  I, converges weakly in

$ s to some function z0 of class 5ps which coincides with z* on D* by [2], Theo-

rem 9.2. But, from [3], Chapter II, Theorem 2.1, it follows that the equivalent

functions ~zn and F o are equicontinuous on closed sets interior to D. Hence zn

converges uniformly to Fo on each closed set interior to D. Hence, from the pre-

ceding theorem, z0 is a desired solution.

More general theorems involving variable boundary values, similar to those

in [3], Chapter III, §5, with s > v, can be proved.

4 Necessary conditions for quasi-convexity. In the two preceding sections,

we have established the connection between quasi-convexity and lower semi-

continuity. In this section, we shall establish some necessary conditions for

quasi-convexity. In the next section, we establish some sufficient conditions

which are also necessary when /has certain interesting special forms. Unfortu-

nately, the writer is unable to establish conditions which are both necessary and

sufficient in the general case.

LEMMA 4.1. Suppose f is continuous, Q is the cell

\χa\ < l ( α - 1 , . , v ) , δ > 0 ,

and suppose

(4.1) j£ f[p + π(x)]dx l

for every function ζ which satisfies a Lipschitz condition with coefficient < 3

on Q and vanishes on Q*. Then (4.1) also holds with Q replaced by any bounded

domain D.

Proof. Suppose ζ satisfies the conditions on the bounded domain D. Let

R be a hypercube of side h which contains Z), and extend ζ to R :

xo = χCL = xo + h
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by defining ζ = OonR-D. Then ζ satisfies the conditions on R, and

ζ*{x)-h'1 ζ{x0 + hx)

satisfies the conditions on Q, and

ζ*ίi*) - <£α(*b + **)•

DEFINITION 4.1- The function / is said to be weakly quasi-convex if with

each p is associated a § > 0 such that (4 1) holds for all D and all ζ satisfying

a Lipschitz condition with coefficient < 8 and vanishing on D* .

In other words, / is weakly quasi-convex if and only if each linear function

furnishes a weak relative minimum among all Lipschitzian functions coinciding

with it on the boundary, whereas / is quasi-convex if and only if any linear

function furnishes the absolute minimum among all such functions. Thus we have

the following result.

THEOREM 4.1. // f is continuous and quasi-convex, it is weakly quasi-

convex.

We shall see that if / is weakly quasi-convex and continuous, then / satis-

fies a uniform Lipschitz condition on any bounded set in p-space and satisfies

a generalized Weierstrass condition (see Theorem 4.3) which reduces to the

ordinary Weierstrass condition if / is of class C (see (4.7)) and is equivalent

to the Legendre-Hadamard condition (see (4.8)) if / is of class C " .

LEMMA 4.2. Suppose φ is continuous, and suppose corresponding to any

point X in Ev there is a 8 > 0 such that for any unit vector μ we have

kφ(λ0 - hμ) + hφ(λ0 + kμ) :> {h + k) φ(λ0) (0 < h < δ , 0 < k < 8).

Then φ is convex in λ.

Proof. Let λ 0 be any point, and μ any point with | μ| = 1. We shall show that

φ{t) = φ(λ0 + μt)

is convex in t. From the hypothesis, it follows that for each ^ , there is a

8(t0) > 0 such that

( 4 . 2 ) kψ{t0 - h) + hψ(t0 + k ) > ( A + k ) ψ(t0) ( 0 < h < 8, 0 < i < S ) .
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Now, suppose tί < t2 . Let

t ~tx

l ψ ( t 2 ) - ψ ( h ) ] .
t2 -

Then χ(t) satisfies (4.2) and χ(t\) = χ(h) - 0. Suppose M = max χ(t)

(t1 <C t <^ t2), and suppose M > 0. Let ί0 be the smallest value of t such that

χ(t) - M, and let the number δ(t0) be chosen as above. Clearly tγ < t0 < ί2.

Choose £3 and £4 with

Then ^ ( ί 3 ) < M, y ( ί 4 ) <_ Af, so that

which contradicts the hypothesis. Thus x (t) <^ 0, so that

Since tx and t2 were arbitrary with tx < t2, the function ψ is convex in t. Thus

0 is convex in λ.

THEOREM 4.2 // / is weakly quasi-convex, then f(pι + λα ζι) is convex in

X for each fixed p and ξ.

Proof. Let pι

a, ξι and λ Q α b e fixed and let μι be any unit vector, and sup-

pose h > 0, h > 0. Choose δ(p^, ζι

9 λQ α) > 0 but so small that, for any bounded

domain G,

(4.3) ζ i ^ i i

for all £ satisfying a Lipschitz condition of constant < δ on G and vanishing on

G . Let (μ 1 , , μ j / ) b e a normal orthogonal set of unit vectors. If ξ = 0, the

result is obvious. If ξ £ 0, choose h and A; with 0 < h \ξ\ < δ, 0 < k \ξ\ < δ,

and let p be any number > | £ | / δ Let // = (1/p) k, K = (1/p) Λ, and let i? be

the rectangular parallelepiped

^ < /> (/3 = 2, , v)
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where

μβ

Let Fΐ be the face yι = - p //, F* be the face y 1 = p K, Fg be the face

yβ = — p , F + be the face yβ = p 9 and letΓΠ and Π tbe the pyramids with vertex

at the origin and base FT and Fβ9 respectively. Let ζ be defined on R to be

continuous on R, zero on /?*, linear on each EL and IIί", with ^(0) = <f. Then

(4.4)

, on Π'

, on

Also

(4.5)

lβ)= v

pv K, m{R) = 2v~ι pv (H + K)

( j 8 = 2 , f i / ) .

Then, by applying (4.3), (4.4), and (4.5), we obtain

1 f 2A; Ίh

τ;

Letting p—>oo, we obtain

^ )

( h + A)

From the preceding lemma, it follows that f (pι

a + λaξ
ι) is convex in λ for each

ζ and p.
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THEOREM 4.3. Suppose f is continuous and convex in λ for p and ξ.

Then f satisfies a uniform Lipschitz condition on each bounded closed set,

and for each fixed p there exists a set of constants A? such that

(4.6) α ^ f α

for all λ and ξ. If f is of class C, (4.6) holds if and only if A* - f ι, that is,
Pa

(4.7) / ( p ' . + λ ^ ) > / ( p ) + / i ( P ) λ α ^ .

Pa

If f is of class C", (4.7) holds for all p, λ, ζ if and only if

(4.8) / p ί p ; ( p ) λ α λ ^ f ι ^ > 0

for all λ, ξ, p.

Proof. Suppose, first, that / is of class C". Let p and ξ be fixed. Then

(4.7) follows from the convexity in λ. Moreover, since each unit vector e£ in

the p-space is of the form λ ξι, we see from the convexity in λ that

(4.9) f(p)-f(p-ea)<fi(p)<

V *J = pα

for all p. Thus the derivatives of / are uniformly bounded by these differences

in the values of f on any bounded part of space. Moreover, in this case, if

constants A? satisfy (4.6), we must have

Now, if / is of class C"9 equation (4.8) with p replaced by pι

a + λα £ ι i s

equivalent to the condition that / is convex in λ for each fixed p and ξ.

Finally, if / is continuous and has this stated convexity property, it is clear

that the A-average function also does, and f^ is of class C. By letting h—»0,

we see that / satisfies a uniform Lipschitz condition on any bounded closed

set. Now, choose hn = n ι and choose p fixed. From (4.9) and the uniform con-

vergence of /̂  to f on any bounded part of space, we conclude that the de-

rivatives /Λnpί (p) are uniformly bounded. We may therefore choose a subse-

quence, still called hn, such that
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Since (4.7) holds for all λ and ξ for each n, (4.6) holds in the limit.

5. Sufficient conditions for quasi-convexity. In this section we prove one

general sufficient condition and then give conditions which are necessary and

sufficient when / h a s certain interesting special forms.

LEMMA 5.1. Suppose ζ satisfies a uniform Lipschitz condition on the closure

D of the bounded domain D and suppose ζ = 0 on D . //

1 < μ < v, 1 < iχf , iμ < N, 1 < OLX < α 2 < < aμ < v,

then

J dx = 0.
μD T / α l aLL\

d(x S , x μ)

Proof. Choose a large cell R containing D in its interior, and extend ζ by

defining it to be zero outside D. Then the second /^-average function ζ^ is of

class C " on R and vanishes on and near R . Since any integral of the above

type formed for ζ^ tends to that for ζ as h —> 0, we need prove the theorem

only for functions ζ of class C o n cells R.

As an example, take i* = 0(g= β, β = 1, , μ, D = R. Then

= fR* Cμ Σ ( - D μ + α

α = 1 .

Σ
α = l dxa

where

the last equality holding by Green's theorem. But the boundary integral vanishes

since ζ - 0 on /?*, and the integrand in the second integral vanishes on R (see

[3], Chapter II, Lemma 1.1, for instance).
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THEOREM 5.1. A sufficient condition that f be quasi-convex is that for

each p there exist alternating forms

A? j , Af? πi π L , . . . , A?u " ''a.v i r ' v . . . I T ' "
i a' ij a β> ι l f •• , ι v ax av

such that for all π we have

Proof. This is an immediate consequence of the preceding lemma.

THEOREM 5.2. // the a°β are constants and

(5.1) / < P > - ί f Pi p £ .

a necessary and sufficient condition that f be quasi-convex is that

(5.2) <tf λaλβ ξι ξ' > 0

for all λ and ξ.

Proof. If ζ - 0 on D*f we see from Lemma 5.1 that

fDf\-P+ *(*)] dx = f(p) m (D) + JD <ήf <(*) πμx) dx.

But Van Hove [6] has shown that the condition (5.2) is necessary (this also

follows from Theorem 4.3) and sufficient for the second integral to be > 0 for

all ζ of class D' on D which vanish on D (hence this is true also for all ζ of

class $β on D and vanishing on D ).

LEMMA 5.2. Suppose

for all x and y for which

Σ bi

Then there is a constant K such that
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atj = Kbη (i, j = 1, , n).

Proof. We may introduce new variables ξ and η by

x = cξ, y = dη,

c and d being n x n nonsingular matrices. Let a and b be the matrices of the

original forms and A and B those of the transformed forms. Then

A = c'ad, B = c'bd (cf. = c . ; ) .

We shall show that there is a scalar K such that y4 = KB. We may assume that

Ba = 1 (ί = 1, . . . , r); B/y = 0 otherwise, r < n,

unless B = 0 in which case /4 = 0 also and the theorem holds. By taking ηs = 1,

ηl = 0 (/ ^ s, s = 1, , Λ) in turn we see that

Ais = 0 (t = 1,. . . . , rc, 5 > r); 4 ; s = 0 (i £ s, s = 1, , r, i = 1, . . . , n).

Then, by choosing 1 < s < t < r and setting ηs = 7/ = 1, 7/ = 0, / 7̂  5, / ^ t,

we have

(-4»s + 4 t ί ) ^'" = 0 for all f with ξs + ξι = 0.

Thus tliere exists a constant K (s,t) such that

4 S S + Ast = X (s , ί ) , ' 4 ί s + >4tί = X ( s , ί ) .

Hence

^ 11 — ^ 2 2 = = / i Γ r — ^ >

so that v4 = /vβ.

THEOREM 5.3. Suppose that N = v + 1 arc*/

(5.3) / (p) = F(Xl9..., Xv+X),

where F is positively homogeneous of the first degree in the X( and

Xi = - det Mi (i = 1, , i/), ^ v + 1 = det Mv+ι ,

* v + i = U P . 1 . •••. P . V I I , Mi = l l p i , •••, P Γ 1 . P Γ > PL+1> — .pva\\

{i = 1, •• , v).
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Then f is quasi-convex in p if and only if F is convex in the X(.

Proof. If F is convex in the Xi, it follows from Theorem 5.1 that / is quasi-

convex in p.

Hence suppose / is given by (5.3) and is quasi-convex in p. If

then

(5.4)

Also, since

Pk

β Xk = 0 ( / 3 - 1 , . . . , v),

we have

(C r\ k v . __ s>α y

Now, choose a set of Xi not all zero and choose any p such that

Since / is quasi-convex and hence weakly so, there are constants A1 such that

Since /depends only on the X.f we must have

(5.6) Af λaξ
i <0 for all λ, ξ with Xkp^ λ α ξl = 0 (k = 1, . . . , v + 1).

Obviously, then, the equality must hold in (5.6). Using (5.4) and (5.5), we see

that

(5.7)

Hence,

(5.8)

for all

we

λ,

must

ξ for

have

which

Af λα ξ* = 0

(5.9) X. ξι = 0 and Df λa ξι = 0, Of = Xk Xkpi.
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Now, since not all the X^ are zero, assume X^ ̂  0. Then

(5.10) Σ te^-

for all λ, ζ for which

(5.11) Σ ( D f ^ -
itk

From the preceding lemma, it follows that there is a constant K such that

(5.12) A^.Xk-AlXi^

Hence

(5.13) Af = KDf + La X. , La = X" 1 ( 4 * - AD*) .

From (5.7) and (5.13) it follows that

(5.14) Af λa ξ
ι = KDf λα ξ

ι + La λα X. ξι = Ck AXk, Ck =

Finally, if we are given any values of the ΔZ/ , the quantities

h = P* Δ h <*' - ! ' » ") a n d Av+i = ̂  Δ Z t

are determined and the ΔA .̂ are also uniquely determined by the h^. Using (5.7),

we may determine the λα in terms of the hj (i - 1, , v), and substitute them

into

*v+l - * * * * * - * ? * . £ ' .

and we merely have to choose the ζι to satisfy the equation

l = 0 w i t h X ξι' + 0;

this is always possible unless all the D^h^ — 0. Thus, unless these linear

relations in the ΔX hold, we have

(5.15) F(X+ ΔX) =

The result follows in this case by continuity.
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Finally, since F is homogeneous of the first degree, we see by taking

AX = hX, A > - 1,

that

F [ ( l + h ) X ] = ( 1 + h ) F ( X ) > F ( X ) + h C k X k ,

o r

h[F(X) - CkXk] > 0, A > - 1.

Hence F(X) - C X^ Then by setting X = hXQ, XQ £ 0, choosing the C for
this XQ, and then letting A—> 0, we see that (5.15) holds for some C even if
X = 0.
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SOME INEQUALITIES IN CERTAIN NONORIENTABLE
RIEMANNIAN MANIFOLDS

P. M. Pu

1# Introduction. As is well known, the projective plane and the Moebius strip

are nonorientable manifolds of dimension two. After introducing a Riemannian

metric on each of them, we obtain two 2-dimensional nonorientable Riemannian

manifolds. For convenience of reference, let us denote them by M2

2 and M^,

respectively. Each of these manifolds has an area A, Moreover, there exists a

family of closed curves, which are not homotopic to zero, on each manifold; and

hence the set of the lengths of all these closed curves in consideration has a

positive greatest lower bound, α. The purpose of this paper is to investigate

the relationship between these two geometrical constants, A and α. It is found

that, in each case, there exists an inequality [l] connecting them, of the form

(1) A > ka2,

k being a constant depending only on the conformal character of the Riemannian

manifold. To establish such inequalities and to determine the corresponding

best possible constants are the two central problems in this investigation.

For the time being, the projective plane is used in the following realization:

it is given as the unit sphere with identification of diametrically opposite points.

We assume further that the metric on M2

 2 is given by

ds2 = g{p) dp2,

dp2 being the line element of the unit sphere taken from the embedding Euclidean

space; g(p)£C&)> &(p) > 0 for any point p on the manifold. As for the Moebius

strip, we assume that it is given by the strip

-β<y<β,

with identification given by the fundamental group
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Charles Loewner for his guidance and encouragement in the preparation of this paper
which represents the essential contents of his doctor thesis at Syracuse University.
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*'«= x + 7i (2 α),
( Λ = 0, ± 1, + 2, ••• ).

We assume further that the metric on Mm is given by

ds2 = g{x,γ) (dx2

+dγ2),

where g(x9y)£.Cω

 a n ( ^ &(*>y) > 0. We shall see later that these assumptions

are admissible in our cases.

The main idea of the method for solving these problems is to reduce the

general metric, g(p)dρ , to a simple and special one, gdp , for which the eq-

uality in (1) holds, by an averaging process over a certain continuous group

space; this enables us to handle our problems more easily. Let Ag, ag, Ag, ag

be the geometrical constants defined in terms of the original metric and the

simplified metric respectively. Fortunately, this averaging process provides us

a means of comparison between Ag and Ag and between Og and α^; namely, we

have

Ag :> A',

(2)

ag <_ag.

A comparison of the equality yielded by the special metric mentioned above with

the foregoing inequalities (2) gives us the desired result.

Take, for example, the manifold M2

2 . Each rotation of a 2-sphere about its

center in the ordinary space is actually a conformal mapping of M ĝ onto itself.

All these rotations form a compact Lie group G, Averaging [g (p)]V2 over G by

the Hurwitz integration,

where σ £ £ , and where δσ is the invariant volume element, we can easily show

that h is a constant and that the simplified metric is an elliptic one; this pro-

duces the equality

(3) Ah.lai.
π

A combination of (3) with the following inequalities corresponding to (2),
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Ag >. Ah,

ag 1 ah,

shows that we have, in general,

A > - a2 .
π

The same method can be extended, with some restrictions, to the case of

M**n , that is, the Riemannian manifold whose underlying topological space is

an rc-dimensional projective space.

In the case of M^, let the rectangle

ft: \ ~ a - X <

\-β <Ύ <

be its fundamental region, as will be explained in §3. There exists a one-pa-

rameter family of conformal mappings of M^ onto itself,

x' = x + c,

y' - y»

c being real mod (4α). Averaging [g(* + c , y ) ] 1 / 2 over the interval [O,4oc] by the

formula

dc = [g(γ)]ί/2

we can see that [ g ( y ) ] I / 2 is free of x and is an even function on account of the

fact that the metric is invariant under the fundamental group Γ that is,

g[x + 7i (2 α), (-l) π y] = g(x,y).

A further consideration of the same problem with the metric g(y) {dx2 + dy2),

where g(y) is positive and even, leads to a distinguished go(y) such that

goiy) (dx2 + dγ2) plays the same role as the elliptic metric in the case of M2

 2

or MpΛ that is, go{γ) (dx2 + dy2) leads to the equality in (1).

2. Riemannian manifold M2^, whose underlying topological space is a pro-
p *

jective plane P 2 . To begin with, let us prove the following general lemma, which

will often be used.
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LEMMA 1. Let Λf? (ί = 1,2, , n) be a set of n 2-dimensional Riemannian

manifolds smooth of order 1 such that each M2, with the same underlying topo-

logical space T2

 y has a metric of the form

ds] = gi(p)ds2,

where g^ (p) > 0, gi (p) £ CQ for p £ M2; and ds2 is a Riemannian metric which

can be defined locally by

jk {uuu2)dJdu , gjk (uί9u2
Co .

Let gn(p) be defined by the formula

gnip) =

If the sets of lengths St = f [gt ( p ) ] ι / 2 ds (i = 1,2, , n) of a family F

of curves C on T2 have the same nonnegative greatest lower bound,

and the areas Ag. of M2 have the same value.

A" < A — —A
&n — & 1

then we have

( i )

and

( i i ) a~Z > α~ - = a0 .
o n — &1 &ra

Proof. By the definition of area and that of gn, we have

Sj Sn(p)dω = JJ dω,

where dω is the area element, which can be expressed locally by the formula
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dcύ

Making use of the inequality

Sn Si2

#12 #22

1/2

duιdu2.

an)
2 < Λ ( α i 2 + . . , + α Λ

2 ) ,

we have

(gl + * + gn)
Agn < JJ n dω

2

+ » + / /

S i + • • •

By hypothesis, it follows that

Ajn i Agx = . . . = Agn ,

which is ( i ) .

The proof of ( i i ) follows from the definitions of the concepts concerned,

" δ l + n

the line integrals being extended along any curve C of the family F. Hence

Ίn g l k ( / c gπ1

We shall now prove the following theorem, which characterizes the relation-

ship between the two geometrical constants A and a in M2

p2
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THEOREM 1. Let M2

 2 be the Riemannian manifold whose underlying topo"

logical space is a projective plane and whose metric is locally defined by

ds2 = £ gik(uι,u2) duιduk, gik {ul9 u2) C Co

i, k = l

let A be its area, and a the greatest lower bound of the lengths of all the closed

curves not homotopic to zero on M2

 2 >* then

A > — a2.

Moreover, 2/π is the best constant.

Proof. On account of the Weierstrass approximation theorem, it suffices to

assume that the fundamental tensor gfc (uί9u2) is analytic. Then we can in-

troduce, in the small, an isothermic coordinate system on M2

 2 so that the metric

takes the form

g*{vί9v2) (dvί

2 + dv2

2),

where g* (vx,v2) £ C, g*(vί9v2) > 0. We define the metric on the universal

covering surface S2 of the projective plane by a projection process. The

Riemannian manifold M2^2 thus obtained is actually a Riemannian surface. Ac-

cording to the uniformization theorem, we can map M2

s2 onto the unit 2-sphere

manifold M2

u29 and can arrange it in such a way that two diametrically opposite

points of U2 correspond to the same point of M2

 2 . The metric has then the form

ds2 = g(p)dp2. g(p) > 0, g(p) C Cω for p C M%2 ,

where dp2 is the line element of the unit sphere U2 taken from the embedding

3-dimensional Euclidean space.

We remark that the area A of M2

 2 is one half that of M2

u2 .

Let us consider all the rotations σ of the unit sphere U2 about its center. All

these rotations form a compact Lie group G. Applying the process of averaging

over a compact Lie group, in this case the Hurwitz integration [2; 3, p.188], we

have
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We shall show that [ λ ( p ) ] 1 / 2 is invariant with respect to all the left trans-

lations

T: σ -» σ' = Tσ, T, σ, σ ' C G,

and hence is a constant. In fact, let T be any element of G; then, by definition,

[ W P ) ) 1 / 2 Γ = / [(g(P))ι/2Vσ δ α = / [ ( g ( p ) ) 1 / 2 Γ σ δ τ σ ,

since Sσ is invariant under all left translations. Therefore,

[A(τP)] 1 / 2 = £ ί(g(p))V2]λ dλ = [h(p)Y", λ = τσCG.
G

As the group G is transitive, A ι / 2 is a constant.

Using hdp2 instead of gdp2 as the metric on the unit sphere ί/2, we obtain a

manifold with the spherical geometry. Preserving the metric hdp2, and identifying

the diametrical points on f/2, we get a manifold /jM2

p2, with the elliptic ge-

ometry. The two geometrical constants A^ and a^ can actually be evaluated:

Ah = 2πh,

ah =

Hence

A(4)
π

It is clear that if g(p) is subjected to a transformation σ of G, the resulting

metric gσ(p)dρ2 is such that

(5) a σ = ag
6

and

(6) A σ = Ag.

By approximating integrals by suitable sums and using Lemma 1, we easily

obtain

(7) ah >_ ag
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and

(8) Ah < Λg .

Combining (4), (7), and (8), we have

2 2
Ag > 4 = — a\ > - a2 .

π ~~ π

Dropping the unnecessary indices, we obtain the inequality

A > — a2.
π

That 2/π is the best constant is evident, since we already have shown that

the equality sign actually is attained when the metric is elliptic.

A slight generalization of Theorem 1, referring to certain special Riemannian

metrics on the π,-dimensional projective space Pn, can be proved in a similar

fashion, using Holder's inequality

K 6 , + . . . + ambm)< ( a P + . . +aP)l'P{bf + • - • + ^ ) 1 / 9 ,

where a^bi >_ 0 and p, q > 1 such that \/p + \/q - 1. The generalized theorem

reads as follows:

THEOREM 2. Let Mn

n be the Riemannian manifold whose underlying topo-

logical space is an n-dimensional projective space Pn, which we suppose re-

presented by the unit n-sphere Un of the (n + \)-dimensional Euclidean space

with identification of diametrically opposite points p and pd, and whose metric

can be represented in the form

ds2 = g(p)dp2 ,

where g(p) > 0, g{p) £ C o , g(p) = g(pd) for p £ M^n, and dp2 is the line-

element of the n-sphere, taken from the embedding Euclidean space; let V be

its volume, and a the greatest lower bound of the lengths of all the closed curves

which are not homotopic to zero on Mn

n; then

l -n

π 2

V >_ a" = kn aP> .



SOME INEQUALITIES IN CERTAIN NONORIEJίTABLE RIEMANNIAN MANIFOLDS 6 3

Further, the above kn is the best constant.

The proof of Theorem 2 is left to the reader.

3. Riemannian manifold M^f whose underlying topological space is a Moebius

strip. Let M^ be the Riemannian manifold whose underlying topological space

is a Moebius strip and whose metric is locally defined by

2
d s 2 = Σ gik(^iyu2) duιduk, gikCC0.

it k = l

By Weierstrass' approximation theorem, it suffices to assume that gifc £ Cω

After introduction of the isothermic coordinate system, the metric takes the form

ds2 = g*(u,v)(du2 + dv2),

where g*(u,v) £ Cω and g* (u, v) > 0. We define the metric ds2 on the universal

covering surface of the Moebius strip by a projection process: ds2 = ds2; that

is, the metric is invariant under the fundamental group of the Moebius strip. The

covering manifold of M^ thus obtained is actually a simply connected Riemann

surface. According to the uniformization theorem, we can map it conformally

onto a strip

\-β <y < β
S:

I - 0 0 < X < 03

of the (%,y)-plane. The fundamental group Γ appears then in the form:

I x' = x + τ ι ( 2 α ) ,

y '= (-Όn y (n = o, ± i , ±2, . . . ) .

The given manifold M2^ is mapped isogonally onto the fundamental region

I - α < x < a

-β < y < β

with a metric of the form

ds2 = g{x9y)(dx2 + dy2),
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where g(x,y) > 0 and g{x9y) £ Cω . Moreover,

g(χ + n{2a),(-Όny) = g(*,y)

We are now in a position to prove the following theorem, which connects the

two geometrical constants A and a in Mjb

THEOREM 3. Let M^ be the Riemannian manifold whose underlying topo-

logical space is a Moebius strip and whose metric is locally defined by

2

ds2 = ]Γ gik (uί9u2) duι duk, gik £ Co

i, k = l

let A be its area, and a the greatest lower bound of the lengths of all the closed

curves which are not homotopic to zero on M^; then we have

2 e^π^a^ι
A > —- . . a~ = kaβ a*

where 2θL and 2β are the Euclidean lengths of the sides of the fundamental

region R of the Moebius strip. Moreover, the above constant kaβ is best for a

given ratio β/(X.

Proof. Let us consider the continuous group

x' = X + c

c being real (mod 40ί); // consists of conformal transformations of the Moebius

strip onto itself. It is evident that every two points which are equivalent under

Γ remain equivalent under Γ after being operated on by elements of H. Defining

the mean value, [g ( y ) ] 1 / 2 , of [g(x + c,y)] 1 / 2 by the formula

/ {g{ ,γ)γ dc = [g

we can prove, by a method similar to that in the former cases, that

A < A,
(9) -

a >_ a,
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where K and a have the same meaning as A and a except that we use the metric

"g(y)(dx2 + dy2) instead of the general one. Moreover, from the invariance of

g{x,y) under the group Γ, it follows immediately that

g(y) = ! ( - y ) .

We now shall consider the same problem with the simple metric

ds2 = g(y)(dx* + dy*),

where g(-y) = g(y) > 0. Noting (9), we see that if the best inequality is found

for such a g(y), it is also found for all g(x9y), and hence our problem is solved.

We are now going to determine a special positive, even, and for nonnegative

y monotonically decreasing function g(γ) such that a family F* of closed geo-

desic lines through the origin and not homotopic to zero on M^ can be defined

in terms of it.

Let us first establish a differential equation for such g(y). Putting

ds = [ g ( y ) ( l + x' dy
dx

dy

we know that the equation for the extremals is

dy

Solving this equation, we have

g(y) ] 1/8

0.

cdη

ίg(η)-cSV/S

+ k.

Since the geodesies under consideration have to go through the origin, the con-

stant k has to be zero, and hence the equation becomes

n cdη

The condition that the geodesies of the family be closed and not homotopic to
zero requires that

dy_

dx (α,τ)
0
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for -β < τ < β that is,

for -β < T < β. Hence we have

(10) α=

= c

1 / 2

0 < τ < /3.

For simplicity, let us normalize g(y) so that g(0) = 1. Since g(y) is supposed

to be monotonically decreasing for nonnegative y, we can put

1 - g(η)= t,

1 - g(T) = ω,

and have

ω - ί =

Then equation (10) takes the form

- α
n T 7(11)

This is an Abel integral equation. According to the formula (cf. [l, p.484] ) for

the solution of such an equation,

*) = r y(t)dt

we have

(12)

and, in our case,

1

g'lη)

yit)

a

π

1

π

1

,1/2

/(0)

,1/2

1

2

dz

- 2)3/2
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α 1 t1'2 α
π

α

Thus we have established the differential equation for g(y),

(13) * _ J L
αy α

The general solution of (13) is found to be

, 1 + ( l - g ) 1 / a n
log = — y + k.

1 - ( l - g ) 1 / 8 α

When y = 0, we have [ l - g ( 0 ) ] 1 / a = 0 and hence k = 0. Therefore,

log = - γ.
α1 - (1-g) 1 / 8 α

An explicit expression for g(y) is as follows:

(14) g(y) =

for -β < y < β .

From the explicit expression (14) for g(y), every property of g(y) we as-

sumed at the beginning is verified. It is a positive, even, and monotonic de-

creasing function for y > O Moreover, g(y)—»0 as y—>oo and g'(0) = O Such a

g(y), with those properties just mentioned and defining the family F of the

closed geodesies through (0, 0) and not homotopic to zero, is distinguished. Let

us denote it by go(y); that is, go(y) is defined by either (13) or (14).

We are now in a position to establish the inequality in question for a posi-

tive, even, analytic function g(γ)* By the definition of α, we have

2 JT U(y) (1 + *' 8 )P/ S dy = φ (τ) > a

for a closed curve, not homotopic to zero, on M^. By taking this curve as one

of F*9 we obtain



68 P. M. PU

go(y)

go(y) - go

1 / 2

Hence,

(15)
g(y)go(y)

dγ

This equation can be put into a more suitable form by setting

Then we have

- t =

τ=

Equation (15) then takes the form

(16) Γ
go(y)

ω - t

In formula (12), we have

1 / 2

ω

(y)

- ω).

2

φ(o)
2

1
2

-*))

Solving (16), we obtain

[ g ( y ) g o ( y ) ] 1 / a ^

go (gόMi -

φ(o) l ct

2 °

dz
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Putting

Sό1(l - z) = «,

- ί) = y,

we have

tg(y) φ(o)

or

l r
φ'{u)du

2π

Integrating from 0 to β , we get

φ(o)
dy

ti-go(y)l 1 / 2

y y'(u)du
ί

• tgo(« )-go(y )] 1 / 2

φ(o)

φ(o)

1
+ —

du
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d

du

We remark that - d[go(u) - go(β)

Schwarz's inequality, we have

d

du

du.

/ du >_ 0. Squaring and applying

ff > ^ ~ [ 1 -gΌ(β)].

The equality sign holds when g = g0 due to a converse part of the theorem on

Schwarz's inequality. Then we have

(17) g(y) dy >_
- 2

l - g o ( / 3 )

From (14), we can easily compute

(18) - g o ( / 3 )
,πβ/a

(19) f

J

Combining (17), (18), and (19), we obtain

(20) ff g(y)dy > kaβ ^ 1 .
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We remark that the equality sign in (20) holds for g = g0. In fact, in this case,

it can easily be proved that a = 2& by using the Weierstrass theory of extremal

fields. From (19), we have

R α
(21) JT go(γ) dy = α kaβ = haβ—.

Combining the definition of area and (20), we obtain

A - 4<X jTβ g(y)dy > kaβa*

By (21), we know that

A = kaβ a*kaβ

for g = g0. This shows that our kaβ is the best constant.

3. Added in proof. In a course on Riemannian Geometry given at Syracuse

University in 1949, Professor C. Loewner proved the inequality A > 3ι/2

 a2/z

for the case of Mf, the Riemannian manifold whose underlying topological space

torus. The present investigation originates from this idea and has a similar

method of treatment.
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ON THE BARYCENTRIC HOMOMORPHISM
IN A SINGULAR COMPLEX

P A U L V. R E I C H E L D E R F E R

I N T R O D U C T I O N

0.1. Radό has introduced and studied the following approach to singular

homology theory (see [2; 3; 4] for details). With a general topological space X

associate a complex R s= R (X) in the following manner. For integers p ^ 0, let
vo> , Vp he a sequence of p + 1 points in Hubert space Z?^, which are not

required to be distinct or linearly independent, and let \vQ9 , vp | denote

their convex hull. Suppose that T is a continuous mapping from | vOf , vp \

into X. Then the sequence vQ9 , vp jointly with T determines a p-cell in/?,

which is denoted by (v0, , vp9 T) . The free Abelian group Cp generated

by the p-cells in R is termed the group of integral p-chains in R. For integers

p < 0, Cp is defined to be the group consisting of the zero element alone. The

boundary operator dp: Cp—
>Cpmί is defined, in the usual manner, as the trivial

homomorphism if p £ 0, and by the relation

dR ( v 0 , , vp, T)R = £ (-l)P ( v 0 , . . . , ϊ i t . . . , v p , T ) R

P
i = o

if p > 0. Since dpmi dp = 0, one introduces the subgroup Zp of p-cycles in Cp

and the subgroup Bp of p-boundaries in Cp in the customary way, and defines

the quotient group of Zp with respect to Bp to be the homology group Hp .

0.2. The approach to singular homology theory pursued by Ίladό differs from

other approaches in that absolutely no identifications are made. Thus two p-cells

(vό, 9 vp, T')R and (v"f , vp\ T")R are equal only if they are identi-

cal; that is, if v\ = υ" for i ~ 0, , p and T = T on | t>ό, , vp \

= \VQ'9 , f p | . In [3;4], Radό introduces a technique for making identi-

fications in a general Mayer complex and applies his procedure to study identi-

fications in R9 particularly those which yield homology groups isomorphic to the

Hp. It is a primary purpose of the present paper to pursue the matter further in
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73
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order to establish stronger results than those obtained by Radδ.

The identification scheme of Rado for the complex R is briefly described in

§0.3 below; the reader should consult [3, §1] or [4, §5] for details.

0.3. Let \Gp\ be a collection of subgroups Gp of the group Cp of integral

p-chains in R such that dp Gp C Gp_i for every integer p; such a system is

termed an identifier for R. Let CT1 be the quotient group βf Cp with respect to

Gp, and denote that element of C™ to which a chain cp in Cp belongs by \cp }.

The restriction on the groups Gp clearly implies that the element \dp cp\ in

Cp-i is independent of the choice of the representative Cp of the element \cp}

in C^; thus one may define homomorphisms d%: C^—•CrΓ-i by the formula

d™ \cp ? = \dp Cp\. The resulting system of groups C™ together with the operator

d™ constitutes a Mayer complex m with homology groups //™. Define a natural

homomorphism πpi Cp—>C™ by the formula πp Cp = { Cp \, It is readily verified

that πp is a chain mapping; hence it induces homomorphisms π*p: Hp—>H™ If

for every integer p these homomorphisms are isomorphisms onto, then the identi-

fier \Gp\ is termed unessential for R. Rado notes that a necessary and suf-

ficient condition in order that an identifier Gp be unessential for R is that every

cycle Zp in Gp should be the boundary of some chain cp+ί in G p + 1 . (See [3,

§§1.3,1.4,1.5] or [4, §5].)

0.4. One of the principal results in this paper may now be described. Let

βp : Cp—*Cp ^ e the barycentric homomorphism in R (see [3, §3.1] or [4, §6];

also §1.3), and denote by N {βp) the nucleus of this homomorphism for every

integer p.

THEOREM. The system of nucleiN (βp) of the barycentric homomorphisms in

in R constitutes an unessential identifier for R (see §3.2).

This result is combined with those of Radό in [3] to obtain stronger theorems

concerning identifiers than any previously obtained. Since further definitions

are necessary before these results can be described, the reader is requested to

consult §3 for their statements.

0.5. In the process of proving the theorem above, various results of inde-

pendent interest have been attained. The reader is referred especially to §§1.6,

1.7, 1.10, 2.2 for theorems which show the structural description of the barycen-

tric homomorphism and of the barycentric homotopy operator.
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I. F U R T H E R RELATIONS IN THE AUXILIARY COMPLEX K

1.1. As in Radό* [3;4], the auxiliary complex K is the "formal complex", in

the sense of [ l ] , for the set E^ of points in Hubert space. For integers p >; 0,

p-cells in K are ordered sequences (v0, , vp) of p + 1 points in E^, which

are not required to be distinct or linearly independent. These p-cells are taken as

the base for a free Abelian group Cp, which is termed the group of finite integral

p-chains in K. For p < 0, the group Cp is defined to be the group composed of

the zero element alone. (See [3, §2.1] or [4, §6].)

1.2. In K the following known homomorphisms will be used. (See [3, §2.2] or

[4, §6].) *

(i) For integers /, p such that 0 £ / £ p, p > 0, the homomorphism

jp' Cp * ̂ p - l

is defined by the relation jp(v09 , vp) = (—IV (v0, , ty, , vp)f where

the symbol A is placed over the point VJ to indicate that VJ is to be deleted. For

j = p ss 0, j p is defined to be the trivial homomorphism. A homomorphism differ-

ing from this one only by the absence of the factor (—1)' has been used by Radδ

in [2, §2.6]. The definition given above has been chosen because it permits

simplifications in later definitions and formulas.

(ii) For integers p > 0, the boundary operator

^ P : P * P " i

is defined by the formula

P
dp (v0, , vp) = ^ (-I)' (ι>0, , VJ, , ι^).

; = o

For integers p £ 0, dp is defined to be the trivial homomorphism.

(iii) For integers p >. 0 and an arbitrary point v in E^, the cone homo-

morphism hpi Cp—> Cp + i is defined by the relation

hv

p (vQ9 , vp) = {-l)P + ι (v0, , vp, v).

For integers p < 0, hp is defined to be the trivial homomorphism.

(iv) For integers /, p such that 0 £ / £ p - 1, the transposition homo-

morphism tpj: Cp —> Cp is defined by the relation
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ιpj(VO> ' * # ' Vj9 Vj + l f , Vp) = (v0, , Vj + l f Vj, , Vp) .

Observe that tpj (v09 , ι>p) = (v09 , Vp) if and only if Vj = vy +1 •

(v) The barγcentric hornomorphism β : C —» C is defined as follows.
J r ^P P P

For integers p < 0, /3 is the trivial homomorphism; for p = 0, β Q = 1; and
for p > 0, β is defined by the recursion formula

βp (*Ό> ' 9

 V

P) = hp - ! β p - ! (9p (v0, . v p ) ,

where έ is the barycenter of the points v0, , vp.

(vi) The barycentric homotopy operator pp used by Radδ [ l ; 3> §2.2 (iv)

4, §6] will not be used in this paper. In its stead, a modification p*p is presently

introduced, which has a simpler form, satisfies all the important identities which

hold for the ρp> and has useful properties not possessed by pp. The modified

barycentric homotopy operator

is defined as follows. For integers p < 0, p*p is the trivial homomorphism; for

p = 0, p + p is defined by the relation

and for p > 0, p* is defined by the recursion formula

P*P (v09 , vp) = - λ p [ l + p*p-ι dp] (v09 , vp)9

where b is the barycenter of the points v09 , vp.

1.3. Amongst the preceding homomorphisms the following identities hold (see

[2, §2; 3, §2.3]):
P

dp = Σ h ( P > 0);

dp+1h% + hv

p-ι dp = 1 (p > 0) ;

dp βp = βp-ι dp (- oo < p < + oo)

(0 < P
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Of these identities, only the last is new; it may be established by an inductive

reasoning similar to that used to prove the corresponding identity for the conven-

tional barycentric homotopy operator pp.

1.4. For integers k9p such that 0 j< k £ p, the homomorphism

is defined by the relation

and the homomorphism

is defined by the formula γp = Σ/p = 0 ^*p Obviously one has the identities

&*p(ι>0, , vp) = -kp + ι hp

h (v0, , vp)9 p >_ 0 ,

&*p (̂ o» * ' 9 vp) = A ^ χ kp (v0, . , vp), p > 0 .

Now the reader will easily verify the relations

(* " D*p -1 j p » 0 < / < k < p,

jp

k*p -I jp

* * p - ι ( / + l)p , 0 < k < j < p ,

kp , 0 < A; < j = p

( / - D p **p . 0 < A < / < p f

/p(* + l)*p , 0 < / < k < p.

From these relations the following identity is readily established:

y P - i dp = dp (γp - 1) .

Using the identity, the reader will easily prove the following result.

L E M M A . If P (X) be any polynomial having integral coefficients^ then

P<Ύp-i) dp = dp P(γp - 1).

Explicitly, if P {x) = ) . . <*iχl

9 where the a{ are integers, then
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where ylp means that the homomorphism γp is to be repeated i times.

1 5 For integers k9p such that 0 _< A ^ p, the homomorphism

6p& 2 Cp * C p + i

is defined by the relation

t>pk(v09- , vp) = (-1)* [v0, , vfa b(v0, , vk),

b(v0, , t ^ , ^ +ι), , b(v0, , v^, , vp) J ,

where a(v 0 , , t^) i s the barycenter of the points v0, , Vq. Verification

of the following simple relations is left to the reader:

jb (ι>0, >vp) .
~hP v^o* ' ' J

 vp> = bpp (v09 . . , vp);

,b(υQψ.. fv p ) v
~ Λ P ^p ~ 1 k (v09 , Vp - ^ = 6 p £ Λp

p- ! ( v 0 , . . . , vp - J

W < A < p - 1)

-hp bp-xk ]p\v09 - , Vp) = bpkj*p(v09 , Vp)

(0 < * < p - 1, 0 < / < p)

6 ( t ; 0 , • • • , V p ) , , Λ . .

-Λp ^p-lA; °p\v09 , Vp) = fyjfcyp Uo> , ί̂ p)

(0 < k < p - 1)

Lb (vQf •• ,v ) i-l . , v * / \
Λp

 P bp~tk dp γp ; * p ( v 0 , * , vp) = 6pΛ. y p j*p{v09 , vp)

6 (f O , . ,V p ) ί . v 1 + 1 .
p υ p 6 p - ! jfc dp γp (v0, , Vp) = 6pA; y p (v09 ,

If P (x) be any polynomial having integral coefficients, then, for 0 j< A <. p — 1,

we have

A υ ° f * " ' p
dp P (γp) (v09 , vp) = £>p& y p P ( y p ) (v09 • • , vp)
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1.6. For the homomorphisms βp and p.*p*jthe following structural descriptions

are now obtained.

THEOREM. The following relations hold:

P*o = 4oo»
P

P*P = bpp + Σ έ pp-7 fy # ' * fy> * / + ^ (p > 0) .

Proof. It is sufficient to verify these formulas for a given p-cell(v0, , vp).

For p = 0, the formula p*0(v0) = ftoo^o) * s obvious from the definitions. So

assume that

p - i

P*p - l = &p ~ l p - l + Σ bP " i P ~ i -/ Yp - i # * #
 (ΎP " i - / + D (P > χ ) •

Using §1.2, §1.4, §1.5, and this assumption, and letting b = i ( v 0 , , vp\

one obtains

P*p (v0, . , v0)

P*p - i dp(v09 . . . , Vp)

ί>pp (^05 > v p) -Ap ftp - 1 p -1 <9p (t; 0, , vp)

P b

~ Σ A P & P - 1 P - 1 -/ yp - 1 * fyp - 1 ~ / + 1^ d
p

P 6

- Σ Apέp~ lp -l -;^> (yP - 1) (yP -/) (*
7 = 1

pp (^o> » Vp) + ftpp - 1 yp (^0> ' ' * 9 Vp)

P
+ Σ bpp-j yp (yp - 1 ) (yp - / + D (̂ o»

p

p + Σ hp-j Yp * *' ^p ~/ + ^ (̂ o> »
7 = 1
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So the proof is complete by induction.

1.7. THEOREM. The following relations hold*.

βo = 0i *oo>

βp = Op +1 b

Po YP (yP ~ 1) * typ - P + 1) > P > °

The proof is similar to that for the theorm in the preceding section.

1.8. From these formulas for βp and p^ and the identities in §1.3, many

further interesting relations may be obtained. For example, it is easy to establish

the following results:

(p > 0);

dP = ~Pp P*P~ι

βp = (P + Dp + 1 (p + 2) p + 2 p*p + ! p*p (p >. 0) .

These relations are not needed for the present purposes; they may be studied

on a later occasion.

In order to clarify the structural descriptions for βp and p*p given in §§1.6,

1.7, it is convenient to introduce another homomorphism.

1.9. For integers p >_ 0, let i0, , ip be any rearrangement of the se-

quence 0, , p, and put £ l o . . . ι equal to +1 or to ~1 according as i09 , ip

is obtained from 0, , p by an even or by an odd number of transpositions.

With each rearrangement one associates a homomorphism

defined by the formula

τ p (v0,

V

' , Vp) =

cp^
CP

, vip).

Sometimes, for clarity, the more explicit notation Tp(i0, , ip) is used for

this homomorphism. For integers / such that 0 <^ j <_ p, denote by Tpj the class

of all Tp(i0, , ip) for which i0 < < ij — that is, for which i0, , ij

are in natural order. Obviously Tpp consists of just one element, namely

^p(0, , p) = 1; and Tpo consists of the Ίp obtained by all possible re-

arrangements of 0, , p. Moreover, Tp y - x D Tpj for 1 £ j' <^ p. Clearly the

number of elements in the class Γpy is (p + 1) p (/ + 2) for 0 _£ / ^ p — l

For each integer / in 0 <_ / £ p, define a homomorphism
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cp

by the formula

Ppi = Σ τp ( χ P c r p i ) .

Observe that P p p = 1. The reader will readily verify these identities:

k*p Ppj = Ppj, 0 < < k < p;

i
£ k*p Ppj = Ppj-ι, 0 < / < p.

k =0

From these identities, the following result is established.

LEMMA. The following relations hold:

Ppp = ι,

Ppp-j = y P ( y p - l ) ( y P - y + l ) , 1 < / £ P

Proof, That Ppn = 1 was noted above. From the second relation above it

follows that

P
ppp~ι = Σ k*p ppp = ΎP PPP β yp»

A; = 0

so the general formula is established for j = 1. Now suppose that

Ppp~j + ι - y p ( y p - l ) (yP - ; + 2) (2 < / < p) .

Using the preceding identities, one finds

P

YpPpp-j+l = Σ k*pPpp~j + l
k=o

p -/ + l p

Σ ^*p ^ p p - / + i + Σ ^*P PPP~i + ι

k = 0 A; = p - / + 2

= P p p - + 0' - W ^p p -/ + 15

^ P p -/ = (yP - / + D p p p -y +1 = yP (yP - l) (yP - / + D •

Thus the lemma is established.
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1.10. Combining the results of the preceding lemma with those in the theo-

ems in §§1.6, 1.7, one obtains the following description for the homomorphisms

βp and p * p .

THEOREM. The following relations hold:

βP = 0 p + 1 bp0 Pp0 = £ 0 p + 1 bp0 τp (p > 0 ) ;

P P

P*P = Σ hpk p

Pk = Σ Σ bpk τ p (P > 0).
k=o /c=o τp e τpk

1.11. Let t> 0 , , vp (p •> 0) be any sequence of p + 1 points in E^. In

§§1.2, 1.4, 1.5, 1.9, homomorphisms / p , tpj, k*p, ip&, T p , have been introduced

which, when applied in any appropriate combination hp to the special chain

(v0, , vp), yield a special chain either of the form +(yo>
 # * > Ύq) 0 Γ °̂  t n e

form -(yo» ' > 7q) I n t n e sequel, [Ap {v0, , f p ) ] is defined to be thep-cell

(yo> * 9 Ύq)i a n ( l I hp(v0, , Vp) I denotes its convex hull | y 0 , , yq\ .

For example,

[0 p +! 6 p 0 Tp(i 0 , , ip) (i;0, , Vp)]

If for two sequences of points ιt0, , up and v0, , tγ> it is true that

= (b(vo)9 b{v0, vx\ , 6(v0, vi9 , vp))

then clearly wy = Vj for 0 < / < p. From the remarks in §1.9 and the preceding

theorem, one thus obtains the following result.

LEMMA. // the points v0, , Vp (p 2l 0) are distinct, then the chain

βp(vo> ' > vp) contains (p + 1)! terms; that is, for distinct elements Ίp and

Ίp in Tp0, we have

[Op + l ^po tp (t>o> 9 vp)] £ [Op +i 6po Tp'(t>0» , v p ) ] .

1.12. LEMMA. Lei v0, , vp (p >_ 0) be any set of p + 1 points in E^,



μy = 1, μ 0 > μt >_ > μp > 0

λ ; = l , 0 < λ i f 0 < j < p .
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not necessarily distinct or linearly independent. A necessary and sufficient

condition that a point v belong to the convex hull of the points

(i) b(v0), b(v0, t ^ ) , , b(v0, vx , , vp)

is that it possess a representation of the form

P
(ii) t;= j μjVj

7 = 0

Proof. If v belongs to the convex hull of the points (i), then it has a repre-

sentation of the form

P
(iii) v = ]Γ λj b{v0, ,Vi)

i =o

Thus

P ί VJ P P λ;

»- Σ λ< Σ 77τ= Σ Σ — T V
ι = 0 / = 0 7 = 0 1 = 7

which gives a representation of form (ii) for v. Conversely, if v has a representa-

tion of form (ii), put λ; = (i + 1) (μ; - μι + γ) for 0 £ i ^_ p — 1, λp - (p + 1) μp .

It follows at once that v has a representation of form (iii), and hence belongs to

the convex hull of the set of points (i).

1.13. For integers p >_ 0, if u0, , up is any sequence of p + 1 points in

Eoo, then \u09 , Up \ will denote its convex hull. Let k be any integer such

that 0 £ k _£ p, and consider the sequence of p + 2 points

(i) u09 u^9 b(uQ9 UA ) , , b{uQ9 , u/ΐ9 , Up),

that is (see §1.5), the sequence of points occurring in bp^ (uθ9 , up). Let

(ii) w09 , Wp + ι

be any rearrangement of the sequence of points (i). Designate by x0 = whQ = u,0

the first M; (0 £ i _< A;) occurring in the sequence (ii). In general, let x\ - whι

- uiχ (0 £ Z < A:) be the (Z + l)st U( (0 £ ι £ A;) occurring in the sequence (ii),

and put x\ — u\ for A: + l _ £ Z _ £ p i n case k < p. Now clearly # 0 , , Xp is a

rearrangement of the sequence u09 , u« in which the last p — A; elements are

unaltered; the sequence (i) is a rearrangement of the sequence
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. (iii) x09 , xjς, b(x0, . , xk)9. . . , b(x0, , **, * , xp)

in which the last p + 1 — k elements are unaltered; and the sequence (ii) is a re-

arrangement of the sequence (iii) in which the points xOf , x^ appear in the

same order as in (iii); that is, %/ = wfy for 0 £ I £ k, where 0 £ h0 < hi

< . . . < hk £ p. Now let q be any integer such that 0 £ q £ p + 1. It will be

shown that

(iv) b(w09 , wq) G I b(x0), b{x0, xx\ , b{x0fxl9 , xp) \

(0 < q < p + 1) .

Case q = 0. Then b(w0) = w0. If w0 is one of the u( (0 £ ί £ A;), it follows

by the choice above that h0 ~ 0 and M;0 = %0 = b(x0). If M;0 is not one of the
ui (0 _̂  ι \ £ )̂» there must be a / >_ ̂  such that tc0 = b{uQ9 , w ,̂ , &/)

= b(x0, , Λ^, , */) . Thus relation (iv) is established when q ~ 0.

General case. By a rearrangement, the points wOf , w;̂  may be ordered

into two sets

wh0 = *o 5 * * > whι = «/ (0 £ Z £ A, 0 <_ Ao < < hi < p),

(k £ ί/ + i < ii+2 < < ί9 £ p) .

The special cases which arise when one of these sets is missing are left to the

reader. Now clearly

b(w0, , Wq) = b(wh0, , whq)
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In view of this equation and of the lemma in §1.12, the relation (iv) now follows.

1.14. From the facts presented above, the following result is presently es-

tablished.

LEMMA. Let v09 , vp (p £ 0) be any sequence of p + 1 points in E^

Fix T p + ι C Tp+ίo(0 < k < p), τ p C Tpk (see §1.9). Then there exists a

Tp C Tp0 such that (see §1.11).

I °p + 2 bp + l o τ p + l bpk τp(*>o> # ' # 9 vp) I C I Op + ! 6 p 0 Tp'(t;0, . , vp) \ .

Proof. Evidently [τ p(t> 0, , υp)] = (i; l o, . • • , v(p), where ΐ 0 , . . , ip is

a rearrangement of 0, , p such that i0 < < ijς Put αy = V(. for 0 £ / £ p,

so that [τ p (z; 0 , , vp)] = (M 0, , Up). Then

[bpk τp(v0, , vp)]

= (u 0, , ufr, b{u0, u^), , b{uθ9 jUfc, ,Up)),

and [ τ p +1 όp .̂ τ p (v09 , vp)] = (ι^0, , wp + i), where w0, , wp + i

is a rearrangement of

o> > /c> o o * * > "Λ> * •'• f up)

Finally,

[Op +2 ί>p +1 o t p -v l bpk Ίp {v09 , vp)]

= [b(wo)9 b(w09wx)9 , ύ ί ^ o ί ^ i * * " * 9 Wp +i)3

The reasoning of §1.13 shows that there is a rearrangement x09 , xp of

u09 , up9 and hence of v09 , vp9 such that

I Op + 2 bp +1 o τ p + x ipfc τ p (v0, . . , vp) I

C \b(xQ\ bixQ.xJ, , 6 U 0 , x l f 9 x p ) \ .

Let Tp be that element of Tp0 such that [Ίp(v09 , r p ) ] = (Λ 0 , , Λ;p).

Since

[Op +! δp0 ^p'(^o» * 9 ^p)] β (ί>Uo)

the lemma is established.

1.15. If cp is a p-chain in K, and A is a convex subset in EOQ9 then the in-
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elusion Cp C A will mean that either cp - 0 £ Cp or else

n
c p "
Cp = Σ mj(vOj> * » Vp/)»

where the πij are nonzero integers and | voj , , vpj | C A for 1 £ j £ n One

readily verifies the following inclusions (see [3, §2.4]):

jp (v09 ,vp) C I v 0 , 9 υ p I (0 < y < p ) ,

dp (ι>o, * > v p ) C I v 0 , , vp I (p > 0 ) ,

βp(v09 , vp) C I v0, . , vp I (p > 0),

P *p (v0, , Vp) C I v0, , Vp I (p >. 0) ,

« k*p(v0, , ι;p) C I v0, , vp I (0 £ A £ p),

yP (v09 , vp) c I vQ9 , vp I (p >. 0),

*p*(f0,
 5 , V C K , . . . 9vp\ (0 < A £ p),

τp(^0> * * ' > vp) C I v0> ' ' * 9 vp I ( τ p C Γp0) ,

ίpy (vo. . V c I v09 ,vp I (0 < / < p) .

II. R E L A T I O N S IN T H E C O M P L E X R = R(X).

2.1. If A is a convex subset of E^ then for integers p >_ 0, Cp denotes that

subgroup of Cp generated by those p-cells (v0, , vp) for which | v0, , vp \

C A; for p < 0, we have Cp = 0 C Cp (see §1.1). Suppose T: A—>X is a con-

tinuous mapping (see §0.1). For integers p >_ 0 define a homomorphism

by the relation Tp (v0, . , vp) = (v09 , vp9 T)R for (v09 , vp) C Cp .

For p < 0, let Tp be the trivial homomorphism. For chains cp in Cp the notation

7V> Cp — {cp, T) is used. In terms of this notation one finds the relation (see

§0.1): d*(cp9 T)R = (dp cp, T)R.

Now suppose that, for certain integers p,

is a homomorphism from the group Cp of p-chains into the group Cq of qr-chains
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in K with the property that for all p-cells (vOf , vp) in K one has

hp (t>0, , vp) C I v0, , vp I .

Then clearly one may define for these integers p a homomorphism

r R rR . rR

by the formula hR (v0, , vp, DR = (hp (v0, , vp), T)R in case p > 0, and

one may make hp the trivial homomorphism if p < 0. In view of the inclusions in

§1.15, one observes that this definition creates the following homomorphisms in

R (see [3, §3.1]):

jp-- C*-*CΪ-t (0<j<p);

β R

p : C«—>C* ( - o o < p < + c o ) ; γR: CR — > CR ( p > 0 ) ;

P% ^ - > C J + 1 ( - α > < P < + o o ) ; b^ . CR — CR

 + ι (0 < k < p);

fί/ s C " ^ C ? ( 0 < / < P - l ) ; τ j : C« — C« ( T C T ) ;

2 . 2 . From the re lat ions in § 1 . 3 , one der ives the fol lowing ( s e e [ 3 , § 3 . 1 ] ) :

ΘP βR

P - βR-idR

P < - « < P < + « > ;

< / < p - l ) ;

1 p < + oo).

T h e theorems in § § 1 . 6 , 1,7 give r i se to t h e s e formulas for βp and p .

_, dR = /8j - 1 (0 1 p < + oo).

P*p-bR

PP

+ Σ ^pp-jYΪ' 'Λγϊ-J + l) (P>0);

i - »

β R r°R

P

 bR

0 >

βR = °p + i *Jo j ί ^ - w ^ j ί - p + w ( p > 0 )

From the theorem in §1.10, one obtains the following description for βp and p*p.
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THEOREM. The following relations hold:

4 - Σ * ; * * £ - Σ Σ * ^ τ j (p>o).

2.3. The writer is indebted to T. Radό for suggestions which led to the

results presently presented in §§2.3-2.7, 2.9, 2.10, 2,12. The new facts con-

tributed by this paper are contained in §§2.8, 2.11, 2*13. For integers p >_ I,

any chain of the form (1 + tR) (v0, , vpt T)R (0 < j 1 p - D is termed an

elementary t-chain in R (see [3, §3.2] or [4, §7]), and the subgroup of C* gener-

ated by these elementary ί-chains is denoted by Γ Λ . For p < 1, T is defined

to be the subgroup of C composed of the zero element alone.

LEMMA, / / C * G T*9 then

βR

p cR

p - 0,

This lemma differs from that in Rado [3, §3.2], only by the fact that the

barycentric homotopy operator pR has been replaced by the modified operator p

(see §1.2). It may be established by the same reasoning as that employed by

ttadό.

2.4. For integers p L̂ 1> a n y chain of the form

(v0, , vj, VJ + 1 ? . . , vp9 T)

with VJ ~ Vj + x for some / such that 0 £ / 5 p - 1 i s called an elementary fl?-chain

in R (see [3, §3.3] or [4, §7]), and the subgroup of C* generated by these ele-

mentary ^-chains is denoted by DR. For p < 1, DR is defined to be that subgroup

of CR composed of the zero element alone.

LEMMA. If C* € DR, then

(ii) β* cR

p = 0 ,
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(iii) pR
p cR

p€DR
p + ι .

This is the lemma in [3, §3.3], except that the modified barycentric homotopy

operator pR is used in place of pR; it is proved in the same way.

2.5. LEMMA. Let (v09 , Vp9 T) be any p-cell in R (p _> 1).Suppose that

the sequence wθ9 , Wp is obtainable from the sequence vQ9 , Vp by n

transpositions. Then there is an element tR in TR such that

(v09 , vp, T)R = (- l ) n (w0, --.,wp, T)R + tR.

Proof. By assumption there exist n + 1 sequences v0 , , Vpj for 0 <_ / ^_n

where V(o - V{ and V(n = wι for 0 <̂  ι <_ p such that

(**>;» » vpj* T)* = tpij (v0 j - u , vp , - ! , T)R

for some integer ij satisfying 0 <. ij £ p — 1, 1 <̂  / £ n. Clearly

(vo» V ^ = (- I)71 K , Wp, Π R

7 = 1

and the lemma is established.

2.6. LEMMA. Lei (ι;0, , vp9 T)R be any p-cell in R (p >_ 1), for which

Vi = v^ for some i9k such that 0 <_ i £ k <^ p. ΓAew ίAere are elements tR in

TR and dR in DR such that

(v09 . - , t ι p > T)R = tR + dR.

Moreover, 2(v09 , vp9 T) is in T .

Proof. Since the sequence v09 , v;-i, t;̂ , vt , , ^^-p vk+ι> * β ' » VP

is obtained from ι;0, , t?j, , v^9 , vp by k — i transpositions, and

Vj s vyr. by assumption, if follows that

is an element dp of Dp. Moreover, from the lemma in §2.5 it follows that there

is an element tR in TR such that (vQ9 , vp9 T)R = dR + tR, and the first part

of the lemma is proven. Now the sequence v09 , v^9 , v , , vp is

obtained from v09 , t>j, , v^9 , vp by 2(k - i) - 1 transpositions.
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Again, from the lemma in §2.5 it follows that there is an element tR in TR such

that

(ι;0, , Vi, , vk, - , vp, T)R = - (v0, , vk, , Vi, , vp9 T)R + tp .

Since v{ = v^9 one obtains 2(vO9 , vp9 T) - tp and the second part of the

lemma is demonstrated.

2.7. For integers p >_ 0, a chain Cp is termed an elementary rc-chain in R if

it has the form

n

cp =
cp = Σ mΛvθ9

 # * " > vp>
r = 1

where

(i) for 1 £ r <_ n9 the mr are nonzero integers;

(ii) for 1 < Γj ^ r2 — n* the transformations Tr and TΓ are not identical

on I v09 , vp I

(iii) the points t>0, , vp are distinct. The p-cell (v09 , vp) in K (see

§1.11) is called the base for Cp, and the notation cR - cR (v09 , vp) is

used when it is desirable to display the base.

2.8. LEMMA. Suppose that cp is an elementary n-chain in R for which

βp $ = 0 . T h e n ^ + l p * p cR

p = 0 .

Proof. With the notation of §2.7, one finds (see §§2.1, 2.2).

cp = Σ Σ ^ r ( 0 p + 1 6 p 0 T p ( t ; 0 , . . . , V p ) , Tr)
R = 0 ;cp

Σ Σ Σ Σ
T P + I G ^p + i o Λ = o TpζTpk T = i

τ p + ! ά p ^ τp (v09 , v p ) , Γ Γ ) Λ .

In view of §2.7 (iii), and §1.11, it follows from (i) that for each τ p £ Γ p 0 ,

one has

n
(iii) Σ « r ( 0 p + i ί>po τ £ ( v 0 , ••-, t;p), Γ r )

R = 0 ( τ p ' G Γ p 0 ) ,
r = l
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Fix

τ p + i G Tp + 1 0 , τ p G Tpk (o < A < p) .

From the lemma in §1.14 follows the existence of a T p G Γp 0 such that

( i v ) I Op + 2 bp + ί 0 Ίp + ι bpk Ίp(v09 ••• , v p ) \

c I °p + l δpo Tp(^o» * f vp) I •

From (iii) and (iv) one concludes that for each

τp +! C Γp +! o , τ p G Tpk (0 < £ < P ) ,

we have

(v) 2 mr(0p+2 ^p + io τp+i bpk ^ t ^ ^ V ' Γ ^ = 0 #

Γ = 1

In view of (ii) and (v) the lemma is now established.

2.9. For integers p >; 0, the class Np is defined to be that subset of Cp

composed of the chain 0 G Cp and of all cp having a representation of the form

R V •»**
C — 7 C

p *•* p s

s = 1

where

(i) for 1 <̂  s £ n the c p s (t>os, * , vps) are elementary ra-chains (see 2.7);

(ii) for 1 < s t < s2 < n, the point sets v0Sι, •• , vpSί and vOs2» " * ' vps2

are distinct. For p < 0, the class Np consists of the chain 0 C. Cp alone.

Each of the elementary rc-chains cps (v0S9 , vps) (1 ;£ 5 <^ n)9 is termed a

Λ-composant of c p . Observe that the sets Np are not generally subgroups of

CR

2.10. LEMMA. Let

n
CR = Y CR (VQS9 . . . f t, s )

s = l

ie ατιy nonzero element in Np. A necessary and sufficient condition in order that
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βR

 C

R = 0 is that βR cR

s = 0 for every n-composant c* (1 < s < re).

Proof. Trivially the condition suffices. It is presently shown to be neces-

sary. With explicit notations (see §§2.7, 2.9),

βR CR _ V βR CR - y Y* m (8 (v v ) Γ ) R

s = 1 s = 1 Γ = 1

= Σ Σ Σ mrs(Op+ι bpo τp{vos, . . . , ι ; p s ), Trs)
R « 0.

s = 1 r = l τ p (Γ Γ p 0

In view of §2.9 (ii) and of the remarks in §1.11, it is clear (see §0.2) that, for

1 < s < n we have

p c

pS

Σ Σ m r s (Op + ! 6 p 0 Tp ( i ; 0 S f . . . , vps), Trs)
R = 0

and hence the assertion in the lemma is verified.

2.11. LEMMA. Let cR be any element in NR for which βR cR = 0. Then

This result is an immediate consequence of the lemmas in §§2.8, 2.10.

2.12. LEMMA. Every chain cR has a representation of the form (see §§2.3,

2.4, 2.9)

cR =tR+dR+nR (tR C Γ j f dR € DR
p, nR € NR).

Generally this representation is not unique.

Proof. The nonuniqueness of the representation will be evident from the

proof of its existence which follows. For chains cp = 0 G CR, the result is

trivial, so assume that cR ^ 0. Then cR has a unique representation of the form

n

( i) cR = 2 » » / ( v o / V " . ^ Tj)R*

i - i

whe re t h e mj a r e n o n z e r o i n t e g e r s and the p - c e l l s (voj , • • • , vpj*y ^ / ι ^ a n c ^

" P7*2f; p/ 2 /2 f°Γ 1 £ 7i £ 7*2 £ Λ ^ n e proof is made by

an induction on n. If n = 1, then c ί = mι(vQι9 ••• , ^pi> TJ . If, for some inte-
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gers i, k such that 0 £ i < k £ p, one finds V( t = t ^ , then the fact that Cp

has a representation of the prescribed form follows from the lemma in §2.6. On

the other hand, if all the t>0 1, ••• , vpϊ are distinct, then Cp is an elementary

Ti-chain (see §2.7). Thus the lemma is established in case n = 1. Suppose that

the lemma is true for all chains Cp having a representation of the form (i) with at

most n ~ N — 1 terms (N > 1). For chains Cp whose representations (i) have N

terms it is convenient to consider several cases.

Case 1. Assume there is some term in the representation (i) of cζ without

loss of generality one may assume it to be the first for which there are inte-

gers i, k such that 0 £ i < i £ p and v(t = v, . By the lemma in §2.6 there

are elements ίpX in Tp and dpt in Dp such that

By assumption there are elements tp2 in Tp, dp2 in Dp, and rip in Np such that

7 = 2

Thus

and since Tp and Dp are subgroups of Cp, the existence of a representation of

the prescribed form for cζ follows in Case 1.

Case 2. Assume that for each (1 £ / £ N) the vojf ••• , vpj are distinct.

By rearranging terms one may obtain from (i) a representation of the form

m

(ii) Cp = £ ^ m Γ S (ί; 0 S , . . . , v p s , Trs)
R, 2 ns = N,

s = i r = i s = l

satisfying these conditions: none of the mrs is zero; for the same s (1 _< s <, m),

1 £ 7*! < r 2 £ Λ S , Uae mappings Γ Γ l S and Γ Γ 2 S are not identical on | t > o s ,

•• > V p s | ; f°Γ 1 l s i < S2 - m> t n e p-cells (vO 5 ] l» ••" » v p s t ) a n ( l ( v os 2 »

'•• 9 vps ) are dist inct in K ( see §1 .1) . Now for each s (1 £ s £ m) clearly

each of the chains

Σ
/ =
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is an elementary rc-chain in R (see §2.7). The proof is carried forth by an in-

ductive reasoning on m. If m - 1 then Cp is an elementary ra-chain in /?, and the

representation (ii) already has the prescribed form. So assume that Cp, whose

representation (i) has at most N terms, has a representation of the prescribed

form whenever its representation (ii) has at most m — M — 1 terms (M > 1).

Suppose now that Cp is a chain whose representation (i) has N terms while its

representation (ii) has M terms

s = 1

Subcase 2.1. Assume that for 1 <_ s ,_ < s2 £ M the point sets v0Sι, ••• , vps

and t>os2> •'• 9 vps2

 a r e distinct. From §2.9 it is clear that cp is itself an ele-

ment in Np and representation (ii) has the prescribed form.

Subcase 2.2. Assume that there are distinct integers 5 with no loss of

generality one may assume these to be s = 1 and s = 2 such that the sets

voί, ••• , Vpi and v02, ••• , tv>2 are the same. It follows that the sequence
v02» ••• » ^p2 i s obtainable from v o v , vpl by a positive number I of trans-

positions. Hence by the lemma in §2.5 there exists for each r in 1 <_ r £ nx an

element tpr in Tp such that

(voι, •• , Vpi, lrι) = V- -U \v02, •• , Vp2f irO + tpr U < r < nί).

Since Tp is a subgroup of Cp , the chain

r = l

is an element £p* in Tp. Consequently,

Σ (~ι)l
cR = ίK,

P P* r - 1

M ns

+ Σ Σ
S = 2 Γ = 1

Clearly the terms in square brackets may be rearranged into the form (ii) with

an integer m £ M - 1, and their representation in form (i) has an integer n £ /V.

By the inductive assumption there are elements t # in Γp , dp , in Dp and ^p in
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NR such that cR ~ {tR* + tR#) + dR + nR, and the existence of a representation

of the prescribed form for cR now follows in Case 2. Indeed, it is obvious in this

case that dR = 0 G CR. So the lemma is completely established.

2.13. LEMMA. If CR isxatty chain in CR for which βR cR = 0, then

The proof follows at once from the lemmas in §§2.3, 2.4, 2.11, 2.12.

R E S U L T S

3.1. In [3, §4.1] (see also [4, §8]) Radό has established a lemma from which

one derives the following statement by replacing the barycentric homotopy oper-

ator p by the modified barycentric homotopy operator pR (see §§1.2, 2.1).

LEMMA. Let \Gp\ be an identifier for R (see §0.3) such that the following

conditions hold:

(i) cR C Gp implies that βR cR « 0;

(ϋ) cR € Gp implies that pR
p c

R CGp+χ.

Then \Gp\ is unessential.

3.2. For each integer p let N(β ) be the nucleus of the homomorphism

βRι Cp—*CR (see §2.1). Since βR is a chain mapping (see §2.2) it is clear

that the nuclei N (β ) constitute an identifier for R (see §0.3). Now in view of

the lemma in §2.13, conditions (i) and (ii) of the lemma above are clearly ful-

filled for the identifier \N(βR)\, and furthermore, this choice of an identifier

yields the maximum amount of information that may be obtained from that lemma.

Thus the \N(βR)\ constitute an unessential identifier for /?, and one of the

main results is now established (see §0.4). It is summarized in the following

statement.

THEOREM. The system of nuclei N(β ) of the barycentric homomorphisms

β : C —>C constitutes an unessential identifier for R.

3.3. In order to compare this result with those in Radό [3; 4], first observe

that it follows from the lemmas in §§2.3, 2.4 that

N(β*)?T*+D* ( - o o < P < + α ) ) .

Moreover, since CR is a free group, it is clear that the division hull oί N (β )
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must be identical with the group N(βR). Thus the group N {βR) also contains the

the division hull of the group Tp + Dp for all integers p. An example is now

given to show that the group N (βR) generally contains more.

3.4. Denote by d0, dl9 d the points (1, 0, 0, •••), (0, 1, 0, 0, ), (1/2,

1/2, 0, 0, •••) respectively, let X be Euclidean %-space, and define transforma-

tions by the following relations:

7\: x = υ0 - 1/2 (i; C \do,dt\);

τ . Λ β ( 0 (v€\d09d | ) ;
2' X \v0 - 1 / 2 {v C \d ,dι | ) ;

> - 1/2 (v C \do,d | ) ;

(i G μ . i J ) ;

Γ4: x = 0 (t> C I dQ9 dt I ) .

Clearly

R (J J ππ \R ίj J T \R ίj J T \R , ίj J nr \Rc χ - ( d Q f d 1 9 l ι ) - { a O 9 a l 9 l 2 ) - { a 0 , d i 9 1 3 ) + κ a Q 9 d ί 9 l 4 )

belongs to C t and βR cR = 0. Moreover, cR is an elementary rc-chain (see

§2.7). An elementary reasoning shows that it cannot belong to the division hull

for the group T ί -f D ί .

3.5. In order to describe the largest unessential identifier for R obtained by

Radδ, a further definition is needed. For integers p >_ 0, let (v0, , vp9 T)

be any p-cell in R (see §0.1). Let wQ9 , wp be any set sequence of p + 1

linearly independent points in E^. Then there is a linear mapping

α: I w09 , Wp I — > I v09 , vp m

such that (λ(w{) ~ V( for 0 £ i _£ p. The p-chain

p P P

is termed an elementary a-chaίn in R (see [3, §3.4]), and the subgroup of Cp

generated by the elementary α-chains is denoted by Λp. For p < 0, Λp consists

of the zero element alone. In [3, §3.4] Radδ has a simple characterization for

the group AR which he uses to define the group in [4, §7].

3.6. For each integer p, put Γ£ = A* + DR + TR (see §§2.3,^2.4, 3.5),

and let Γp denote the division hull of Γp . Then Radδ shows that ίΓp} is an
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unessential identifier in R (see [3, §4.7] or [4, §9]), and this is his best result.

If one sets Δp = Ap + N{βR) (see §3.2) and lets Δp denote the division hull

of Δp, then clearly Δp 3 Γp, and hence Δp D Γp . If one modifies the reasoning

of Radδ in [3, §4] by replacing the barycentric homotopy operator pR by the

modified barycentric homotopy operator ρ*p (see §2.1), one finds that Δp is an

unessential identifier for/?. Thus one obtains the following result.

THEOREM. // Δp is the division hull of the group Ap + N(βR) then the

system {Δp 1 is an unessential identifier for R.
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INCIDENCE RELATIONS IN MULTICOHERENT SPACES III

A. H. S T O N E

1. Introduction.

1.1. PRELIMINARIES. The present paper is concerned with relations be-

tween systems of sets and their frontiers in a locally connected space 5 of given

degree of multicoherence, r(S). The results are generalizations of those derived

in [4] for the unicoherent case [ r ( S ) = 0 ] , and of those in [5] for the case of

two sets; the methods are those used in [5] and [6]. First we apply the "ana-

lyt ic" method (cf. [ l ; 2; 6]) to obtain a general "addition theorem" for arbi-

trary sets with "nearly disjoint" frontiers (Theorem 1), which is shown to be

"best possible" (Theorem 2), and to derive also relations between arbitrary

systems of sets and their frontiers (Theorems 3 and 4). Next (§4) we consider

a function of sets which measures (roughly speaking) the amount of discon-

nectedness of the frontiers of the components of the complementary set, and,

after deriving some of its properties, use it to extend the Phragmen-Brouwer

theorem to arbitrary sets (Theorem 6), and to obtain some related results. A

modified "addition theorem" is then established (Theorem 9) which includes

both Theorem 1 and Theorem 6 as special cases. Finally, we consider the in-

cidences of sets with disjoint frontiers and subject to further restrictions (for

example, that the sets be connected and have connected complements), showing

that many problems of this type can be reduced to purely combinatorial problems

in graph-theory.

1.2. NOTATIONS. We shall be concerned throughout with subsets of a fixed

nonempty, connected, locally connected, completely normal1 7\ space, S. The

notations are, in general, the same as in [4; 5; 6]; but the following items are

repeated for the convenience of the reader.

The number of components, less one, of a set E, is denoted by bo(E); thus

bo(0) = — 1. If the number of components of E is infinite, we write bo(E) - ω

9

without distinction as to cardinality. The degree of multicoherence of S is de-

fined by r(5) = sup bo(A π β) , where A and B are closed connected sets such

that A u B = S. It is known [5] that "c losed" can be replaced by "open" here.

If A if A2> > An are any n sets (that is, subsets of S), and / is any non-

empty collection of distinct suffixes

1 As was remarked in [δ, §6.6(3)], there would be no difficulty in reformulating the
theorems so as to apply if complete normality were weakened to normality.
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we write Aj a s an abbreviation for Ajx n Aj2 n n^y^ , and write

U U y I | / | = A;} a s Xk ( A ί 9 A 2 , - - , A n ) ,

or simply as X^ . Thus

UAj - * x D X2 D . . O * π = r U / .

For convenience, we introduce the conventions /£0 = 'S and Xfc — 0 if k > n.

We write

(1) A ( i 4 l f X 2 , ... , An) = Σ 6 0 U * ) - Σ 6 0 U * ) (1 < * < *).

with the convention that in interpreting an equality or inequality involving

h(Al9 ••• 9 An) in which 2^ ^o (&k ) - °°> w e f i Γ s t transpose all negative

terms. If the sets Aj are all closed, or all open, or more generally have sepa-

rated differences2, it is known [4, Th. 6b] that h(Al9 ••• , An) >_ 0.

Again, following Eilenberg [l], we consider (continuous) mappings / of sub-

sets of S into the circle S of complex numbers of unit modulus, and write "f ~ 1

on X" to mean that there exists a real (continuous) function φ on X such that

f { x ) - e x p [ i φ ( x ) ] w h e n x C X. M a p p i n g s fί9 f2, ••• , fm o f X i n S 1 a r e i n -

dependent on X if t h e o n l y ( p o s i t i v e or n e g a t i v e ) i n t e g e r s p l 9 p 2 9 ••• , p m > f ° Γ

w h i c h t h e p r o d u c t ( in t h e s e n s e of c o m p l e x n u m b e r s )

fPi fP2...fPm ~ i o n / γ ,

are p t = p 2 • = = p m = 0. If Aϊ9 A2, ••• , An are closed se t s whose union

is X9 the greatest number of mappings / of X in Sι which are independent on

X and such that f ~ 1 on each Aj (or oo if there is no such greatest number) is

denoted by p(Ai9 A2, ••• , An). For fixed X and n9 we write

(2) rn (X) = sup p(/4 ! , . . . , An),

the supremum being taken over all systems of n closed s e t s Al9 ••• , An whose

union is X. Clearly 0 = rt(X) < r2(X) < it is known [ l ] that

s u p , r n ( X ) = b x { X )

and [1 ; 6] that r2 (S) = r(S).

That is, Aj ~~ Ajς and Ajς ~ Aj are separated (1 <_j < k <_n), (Two sets are "sepa-
rated" if neither meets the closure of the other.)
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1.3. SOME LEMMAS. We shall require the following lemmas, some of which

are known; the proofs of the rest are easy.

(1) If Aί9 A2, • ••,/!„ have separated differences, then

(i) UFτ(Aj) = ϋFv(Xj);

(ii) Aj n Ah and Co(i4y u Ak) are separated (1 < < k £ n) if and

only if C1U Λ ) C Xj and Xk C Int (Xj);

(iii) F r U ; n Ak) n Fv(Aj u Ak) = 0 (1 < / < k < ή) if and only if

Xϊf X2, , Xn have disjoint3 frontiers; that is, C1(Z&) C Int(/Yy);

(iv) Alf A2, ••• , An are of finite incidence4 if and only if

(2) If Ax and /12

 a r e both open, or both closed, then Ax - A2 and A2 - At

are separated; and further, v4x n A2 and C o ί ^ n A2) are separated

if and only if Fr(Aι n ^ 2 ) n Fτ(Aι u ^ 2 ) = 0 H ^ l a n ( l -̂2 a r e open,

this condition is equivalent to Fr(Ax) n Fr(y42) n F r ( ^ x n A2) = 0.

(3) "Approximation lemma/' If Aj — ^ and /4̂  - Aj are separated, and

also Aj n 4̂̂ . and Co (Aj u /!&) are separated (1 < / < k < n), then,

given any open sets W (/) D /4y (where / runs over all nonempty sets of

suffixes between 1 and n), there exist open sets Aj D Aj such that, for

any open sets Bj satisfying Aj C Bj C Aj, we have Bj C W (/) and

Fr(βy) n Fr(#A;) n Fr(By n β^) = 0 (1 < / < k < n).

If further F r ( ^ ; ) n Fr(/4&) n F r ( ^ ; u Ak) = 0 (/ ^ k), the sets /4;* can

be chosen so that the sets Bj have disjoint frontiers.

(If n = 2, this reduces to [5, Ths. 7 and 7a]; the general case follows by a

straightforward induction over n*)

(4) If Al9 A2, , An are closed sets of finite incidence, then

p(Aί9 A2, . . . , An) < h{Aι, A2, . . . , An);

if further no three of the sets Aj have a common point (for example, if

n = 2), then p = h. (Cf. [6, §2.6].)

3Throughout this paper, "disjoint" means "pairwise disjoint".
4That is, the sets Aj and all their intersections Aj have only finitely many com-

ponents.
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(5) If /maps X in S 1 , and X is a finite union of disjoint closed sets on each

of which / ~ 1 , then / ~ 1 on A!. (Trivial.)

(6) If /maps S in S 1, and / ~ Ί on a closed set A C 5, then there exists an

open set F 3 ^ such that / - I on F. (Cf. [l, p. 157; 6, §2.2(2)].)

(7) If /maps /I in S 1 , and / ~ Ί on Fr(/4), then /may be extended to a map-

ping / of S in S 1 such that / ~-1 on Cl (S — A).

For / = exp(ί'0) on F r ( ^ ) ; since C1(S - A) is normal, 0 can be extended

to a continuous real function φ* on C1(S — ^4); define / = exp ( iφ ) on

Cl (S — A), and /* — / elsewhere.

(8) // /lχ, /42, * m > An are n closed sets, and 1 £ m < n, then

p(Au A2, . . . , An) < rm{Xx) +

For consider A1 mappings /1 5 , f^ of Z x (= U/4y) in S 1 which are inde-

pendent on Xx and satisfy fy ~ 1 on Aj (1 <_ k <_ N, 1 £ / <_ Λ). We must prove

Let s be the greatest number of mappings fa which are independent on Xm; since

Xm C Ax u A2 u u An + ι-m, clearly s <̂  r/z + i~m (^m) We may suppose

that the mappings /& are independent on Xm for N - s < ^ <_ Λ/, and then have,

for each k <_ N — s, a. relation of the form

S, = fiPk Π f9/cί - 1

on Z m , where the exponents p^, ςr̂ .̂  are integers not all zero, so that clearly

p^ φ 0. It readily follows that the mappings g^ (1 <̂  k <_ N — s) oί Xι in S 1

are independent on XΪ9 and they clearly satisfy g^^l on each Aj. Further, from

(6) above, there exists an open set Vm D Xm such that each g^ * 1 on C l ( F m ) .

Now ^ m _ ! - Vm is a finite union of disjoint closed sets of the form Aj - Vm

(where | / | = k — 1), on each of which each g ^ ^ l : hence, by (5), g^ ~ 1 on

^77i-i ~ ^m> s o that there exists an open set Vm ~ t 3 A!m_x — Fm such that

each gfo^-1 on C l ( F m - i ) . Proceeding in this way, we obtain open sets

F λ D * λ - ( F λ + 1 u F λ + 2 u . u Vm) (1 < λ < m)

such that each g^^-1 on Cl ( F^). Since UCl(K^) 3 λ ^ the number N — s of

mappings g^ is at most p ( ^ i , ^2> ••• > ^m) £ Γm(^i)> a n ( l t n e result follows.
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As corollaries, we have:

(9) If, in the proof of (8), each of the mappings f^ <*» 1 on Xm, then

tf < r m U , ) .

(10) If no m + 1 of the sets Aj in (8) can have a coπnhon point (for example,

if m = n)9 then p(Al9 A2, ••• , An) £ r m ( Z x ) .

For in this case, Xm falls into disjoint closed sets Aj, each contained in a

single i4y; hence, from (5), each / ^ 1 on Xm.

2. An additional theorem.

2.1. I N T R O D U C T I O N . The last result, 1.3(10), combined with 1.3(4), gives

another proof of the fact [6, Ths. 3 and 4a] that if Ai9 A2, , An are closed

sets which cover S, and no three of them have a common point, then

hUι," ,An) < r(S).

In the present section we shall obtain a considerable extension of this property

(Theorem 1), and show that it is the "best possible" of its kind, incidentally

obtaining a new characterization of r(S) (Theorem 2).

2.2. THEOREM 1. Let A ι, A2, , An be any subsets of S having sepa-

rated differences and such that Aj n Ajς and Co (Aj u Ajε) are separated when-

ever j j£ k,Q Suppose that no point belongs to Aj for more than m distinct values

of j, where 2 £ m < n.β Then

0 < h(Aί9 A29 . . . , An) < ( m - l ) r ( S ) .

Proof. Clearly we may assume that r(S) and bo(Aj) are finite (1 <̂  / ;< n);

from [5, Th. 9], the sets Aj are then of finite incidence. Further, it will suffice

to prove the theorem under the additional assumptions that the sets Aj are

closed and have disjoint frontiers. For if the theorem is known in this case,

the method of "approximation" extends it first [applying the second part of

1.3(3) to the sets Co(/4y)] to the case in which the sets Aj are open and satisfy

5These hypotheses are implied by: (a) the sets Fr (Aj) are disjoint, or (b) Aif , An

are all open, or all closed, and Fr (Aj n A^) n Fτ(Aj u A^) = 0 whenever / / k, or
(c) Λ l f . - . , An are all closed and F r U , ) n Fτ(Ak) n Fr U ; u Ak) = 0 ( / k), or
dually, and thus also by: (d) Aίf f An are closed and cover S, and no three of them
have a common point. A slight relaxation of the hypotheses on the sets Aj is possible;
see 2.3(3) below.

βThe case m - 1 is trivial. If equality holds in the conclusion of Theorem 1, and both
sides are finite, then the sets Aj must in fact satisfy stronger frontier conditions; see
5.6 below.
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Fv(Aj) n Fr(Ak) n F r U ; n Ak) = 0 (/ Φ k),

and thence [by the first part of 1.3(3)] to the general case; we omit the details,

since the argument is a straightforward generalization of that in [5, §§7.4 and

7.5] (cf. also [6, §4.4]).

We write Xs (Ai9 A2, ••• > At) as Xι

s (1 < s < ί < n), and introduce the

conventions X\ - S if 1 < s <^ n < ί, or if 0 = s < t, and Xι

s - 0 if 5 > ί.

Now (all the numbers involved being finite here) one readily verifies that

(1) h ( A l 9 A 2 , ••• , A n ) = h ( A l 9 A 2 , ••• , A n - X )

+ Σ h ( A n n Xn

s~-\, X Γ l ) ( l < s < i i - 1 ) ,

and repeated application of this identity gives

(2) h(Al9 A 2 , . . . , A n ) = Σ t

where

Σ s = Σt hUm n X'-u XI) (s<t<n-l).

We first show that

(3) Σ s < r(S) (1 < β < n - 1 ) .

For, from 1.3(4), we have

Σ s = Σ { p(AίU n Xi-U X*) ( s < ί < ι i - l ) .

Let ft- , where / = 1, 2, , rej, be mappings of

in the unit circle such that

(i) ft.~ 1 on Atu n ^ - l f

(ii) ft - 1 on Z | ,

(iii) for fixed ί, these mappings are independent on Xs

 ι .

To prove (3), it suffices to show that the total number 2*nt
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.£ ί £ n — 1) of these mappings is at most r(S).

We have

Fr[Cl(S - Zf 1 )] C Fr(4 + ι ) C Fr(Atu n ^J-J u Fr(*J),

a union of two closed sets which are easily seen [from 1.3(1)] to be

disjoint. Hence [from 1.3(5) and 1.3(7)] / . ~ 1 on Fr[Cl(S - A* + ι ) l ,

and so ft can be extended to a mapping, which we still denote by /.., of

5 in the unit circle, in such a way that

(iv) ftΓl on C 1 ( S - X?1).

We assert that the extended mappings /.. are all independent on S. For

suppose not; then, for each t, there exists a mapping of the form

δt = Π; ft' (1 < j < m).

where the exponents ptj are positive or negative integers, not all zero

for all £, such that

(4) gs g s + ! g/ι-l ~ 1 on S.

From (ii), we have gt ~ 1 on Xζ and so, if t > s, we have gt ^ 1 on

^L| 1 Thus (4) gives gs ^ 1 o n ^ s + 1 ; hence, from (iii), it follows that

gs — 1, and all the exponents psy are zero. A similar argument, with s

replaced by s + 1, then proves g5 + i = 1, and so on; finally all the ex-

ponents ptj must be zero, giving the desired contradiction.

Now write

Ek = C l U Γ * " 1 - Xϊ+k~2), k = 1, 2, . . . , Λ + 2 - s;

thus the sets £& are closed and cover S,.and it is easy to see that no

three of them have a common point. We shall show:

(5) ftj ~ 1 on Ek .

In fact, if k < t + 1 - s, then Ek C Xl+k~ι C Xl; ii k= t+2-s,

then Ek C ̂ i t + 1 n X*-x; and if A > ί + 3 - s , then Ek C C l ( 5

thus in each case (5) follows from (ii), (i), or (iv).

Thus the total number of mappings /j. is at most
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p(El9 E29 •••

but, by 1.3(10), this number is at most r2 (UEjς) - r(S); thus (3) is

established.

Now we further have Z*s = 0 if s >_ m, since the sets ^ + i n Xs-\

and Xs are then disjoint (for ^ s + i = 0) Thus the theorem follows from

(2) and (3).

2.3. C O R O L L A R I E S AND REMARKS. We make the following observations.

(1) For any two sets A, B9 satisfying the hypotheses of Theorem 1, we have

bo(Λ) + bo(B) < bo(A u B) + bo(A n B) < bo(A) + bo(B) + r{S),

(this generalizes [5, Th. 9].)

(2) For any set E9 we have

bo(Fτ(E)) < bo(Έ) + b0(Cl{Co(E)) + r(S).

(this generalizes [4, §6.5].)

(3) In Theorem 1, the hypothesis that Aj n A^ and Co (Aj u Ajς) be sepa-

rated (j ^ k) maybe omitted for each pair /, k for which Aj C A^; that

is, it may be replaced by: For each /, k (1 < j,k < n), either Aj C A^,

or Aj D Ah, or Aj n ,4& and Co (Aj u .4^) are separated. This is proved

by noting that a more careful application of the approximation argument

will still lead to closed sets with disjoint frontiers.

(4) Other results may be derived by observing that, under suitable conditions

on the sets Aί9 ••• , An, further sums 2*s in 2.2(1) above will vanish.

For example, Theorem 1 can be slightly sharpened as follows:

If Ai9 j An satisfy the hypotheses of Theorem 1 {as weakened

in (3) above), and if they can be renumbered so that

+i C Aχ+2 C ••• C An ,

then

n) < min(λ, m - 1) r(S).

For the approximation argument enables us to assume, as before,

that the sets Ai9 •.. , An are closed and have disjoint frontiers. In

2.2(2) we easily verify that now Zj C At + ι n X§-i whenever
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hence 2*s = 0 whenever s > λ.

(5) A further slight sharpening of Theorem 1 is implied by the following

result.

If the sets Al9 « , An have separated differences, and if An (say) is

either disjoint from, or contains, or is contained in, each other set, then

h(Al9 . . . , An-χ, An) = h(Al9 . . . , An-X).

We m a y a s s u m e t h a t A n i s d i s j o i n t from A ί 9 *•• , A ^ 9 c o n t a i n s

and is contained in A[+ί9 ••• , An-X (where 0 < k < I < n - 1). It is

easy to s e e that we may take Aϊ9 ••• , An to be of finite incidence, and

then, by 2.2(1), have only to prove that

h(An n XSZ\,X»-1) « 0 (1 < 5 < n - 1).

If s < n — Z, then An C AJ~ι, and the result is trivial. If s >̂  n - Z,

write

Yp

and

Zq =

it is easily verified that A^~ι ^ Ys u Zs and that y s C Co(An) and

Zs C /4n, from which again the result follows.

(6) Finally, as a corollary from (4), we have the following extension of (1):

If Bi9 •*• , Bp, Cγ9 ••• , Cq are arbitrary sets such that Bj — C^and

Cjς — Bj are separated, and Bj n C& and Co (Bj υ C&) are separated,

whenever l<_j<p9l^h<q> then

h(Bl9 . . . , Bp) + A ( C t , •*• , Cq) <_ h(Bχ9 ••• , B p , C l f . . . , C g )

£ h(Bl9 . . . , ffp) + h(Cϊ9 . . . , C^) + m i n ( p , g , m - 1 ) r ( S ) ,

where m is the greatest number of the p + q sets Bl9 , Cq which

have a common point.
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This follows on application of (4) and Theorem 1 to the p + q sets

2.4. CONVERSE. The converse of Theorem 1 holds in the following rather

strong form, which represents an extension to any number of sets of the defining

property of r(S).

THEOREM 2. Let integers m, n be given, where 2 < m _< n. Let Al9 9 An

be any n closed connected sets, no m + 1 of which have a common point, such

that Fτ{Aj) n Fr(/4&) = 0 whenever j Φ k, and such that Aj u Afc - S when-

ever 1 £ j < k <_ m. 7 Then

sup bo(Xm) = (m - 1) r(S) + n - m.

In this statement, the word "closed" may be replaced by "open".

To show that

(1) bo{Xm) < {m - l )r(S) + n - m,

we clearly may assume Xm Φ 0; then bo(Xs) >. 0 if s £ m, and

bo(Xs) = - 1

for m < s _< 7i, so that (1) is a trivial consequence of Theorem 1.

To complete the proof, let N be any integer such that

0 1 N < (TO - l ) r ( S ) .

We first construct m closed connected sets Bi9 B2, ••• , Bmj such that

(2) Bj u Bk = S (1 < / < k < m) and bo(Γ) Bj) > N.

If r(S) = oo, this is trivial (take all but two of the sets Bj to be S), so

we may assume r(S) < oo. From [6, §4.l], there exists a finite covering

of S by closed connected sets Eϊ9 E29 ••• , Ey, no three of which have

a common point, whose nerve G satisfies r(G) = r(S) = r, say, and

such that G is arbitrarily often "dispersed"; this implies [6, §3.4(7)]

that G is obtainable from a graph H by subdividing each arc l\ of H

which belongs to a simple closed curve in H, into at least 2 m 4- 2 sub-

arcs by extra vertices of order 2. We can select8 r such (disjoint, open)

7Note that we do not require every two sets Aj, Afc to cover S. In fact, if n nonempty
closed sets are such that every two of them cover 5, then trivially all of them have a
common point.

8 See, for example, the argument proving [β, §4.1(3)] .
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arcs Zx in //, say li9 l29 9 Zr, whose removal does not disconnect H;

let Zλ (where 1 < λ < r) contain the consecutive vertices p^ Q, p ^ ^

Pλ 2* * * * ' Pλ im °̂  O Γ <^e r ^ in G Denote by E^ . the set £& which corre-

sponds to p^ .; thus, if 1 < λ £ r and 1 < / <_ 2 m — 1, each E-^ • meets

two and only two other sets Ek9 namely £ ^ _χ and £ ^ + 1 Define Bq,

where 1 .<_ q < m, to be the union of all the sets £& except

Then Bq is closed, and is easily seen to be connected (cf. [6, Th. 1]).

Further, since Co(Bq) C U χ Eλ2q_ι9 we have C o ( ^ ) c\Co(Bs) = 0

if q £ 5, so that Bq u Bs = S. On the other hand, let D be the union

of those sets £& which are not of the form E-x (1 _< λ £ r, 1 <C y

< 2m - 1); then

Π ^ C Du\JEλ2h (1 < λ < r, 1 < λ < m - 1),

a union of 1 + (m - l ) r disjoint closed sets, each of which it meets;

thus bo(ΠBq) > (m - l ) r > /V.

There exist (cf. 1.3(3) and [6, §6.1]) connected open sets Cq 3 Bq

whose closures Aq have the same incidences as the sets Bq; then

Fv(Aj) n Fv(Ak) C F r ( C ; ) n F r ( C Λ ) C Co(Cy u Ck) = 0

whenever / ^ A, and moreover we have Aj u Ak = S (I <_ j < ϊc <_ m)

and i o ( Π ^ / ) > N.

If n - m9 the theorem is thus established. If n > m9 we note that

the open set Int [Xm-ι (Al9 ••• , Am)] - ^ T O ( ^ i , ••• , Am) is nonempty,

from 1.3(1), and take Am+l9 , An to be n - m distinct points in it;

clearly

fco[*mUi> ••• , Am9 . . . , An)] > yV + 7i ~ m ,

and the proof is complete.

The modifications required to produce open sets Aj with similar

properties are obvious.

3. Index inequalities for arbitrary sets.

3.1. AN INEQUALITY. Let El9 E29 . •• , En be arbitrary subsets of S. As
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in [4, §7], we write

Aj = Cl ( £ , ) , £ / = CHS -Ej),Pj = Xj(Al9...,An),Qj = Xj (Bί9..., Bn).

An argument entirely analogous to that in [4, §7], based on 2.3 (1) and (2), gives:

THEOREM 3. We have

EJ, . - . , F r ( £ π ) ] - nr(S) < h(Aιt . . . , An) + h(Bu •••, Bn)

+ h(Pι n Qn,P2 n Q a - ί t . . . , P n n & )

COROLLARY. We have

h(Ei,Έa,...,Έa) < A[Fr(£ 1 ),Fr(£ 2 ), . . . ,Fr(£ β )] + nr(S).

3.2. THE CASE ra = 2. It is easy to see that the inequalities in Theorem 3

are "best possible"; however, Theorem 1 suggests that in the Corollary the

term nr(S) could be replaced by (n - 1) r(S), or more generally by (m - 1) r{S)f

where no m + 1 of the sets Cl(£y) have a common point. I have been able to

prove this only in the case m = 2:

THEOREM 4. If El9 E2f , En are arbitrary subsets of S, no three of

whose closures have a common point, then

h(ΈuΈ29 --,Έn) < h[Fr(Eί),Fr(E2), . . . , F r ( £ n ) ] + r(S).

Proof. We can assume that r(S) is finite, and that the systems of sets

[C1(£L), ••• , Cl(En)] and [ F r ( £ t ) , •• , Fτ(En)] are both of finite incidence,

since otherwise (in view of the convention regarding infinite terms in the h-

function; see 1.2) Theorem 4 asserts no more than Theorem 3, Corollary. Hence,

in view of 1.3(4), Theorem 4 will follow [if we take Aj = Cl (Ej) and Fj = Fr(£y )]

from:

T H E O R E M 4 a . Let Al9 A2, ••• , An9 Fί9 F2, ••• , Fn be any closed sets

such that Aj D Fj and ΌFj D U F r U y ) . Then

p(Aί9A29 . . . , Λ ) 1 p(F\9 F29 ...,Fn) + r(S).

3.3. PROOF OF THEOREM 4a, Let fi9 f29 ••• ,/jγbe N independent mappings

of \JAj in the unit circle such that each f^^-1 on each Aj we must prove that

N £ p(Fi9 ••• , Fn) + r(S). Let s be the greatest number of mappings ft which

are independent on \JFj : clearly s <^ p(Fi9 ••• , Fn), We may suppose that the
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m a p p i n g s f, a r e i n d e p e n d e n t o n ΌFj f o r N — s + l^k^N, a n d t h e n h a v e , for

e a c h t < N — s, a r e l a t i o n ( s a y )

*.if'Π/« ~i
on ΌFj, where N — s + l^k^N. Thus gt is a mapping of ΌAj in S 1 which

~ 1 on each Aj and, since clearly pt £ 0, the' mappings gt (1 £ t £ N - s) are

independent on LL4y.

Write Co = C1(S-IΛ47 ); then F r ( C 0 ) C \JFJ9 so that, from 1.3(7), each

gt may be extended to a mapping (still denoted by gt) of 5 in 5 ι such that gt~Ί

on C o . Now define Ct = 4 l f Cj = Cl U ; - U t u A2 u . . . u Aj-t)] (2 < / < n);

then the sets C o , Cl9 ••• , CΛ are closed and cover S, and each g ^ ^ l o n each

Cj. Let Z = U(C ; n C^), where 0 < / < h < n; then Z C UFr (Aj) C U/^ ,

so that each gt ~ 1 on Z. From 1.3(9), the number N — s of mappings ĝ  is at

most r(S), and the theorem follows.

3.4. REMARK. We remark that no inequality similar to Theorem 4, but in

the reverse direction, can hold in general. For example, take S to be the plane,

and let A be a circular disc and B an inscribed convex polygon plus its interior;

then A, B are closed and connected, and h{A9 B) = 0, but h[Fr(A), Fτ(B) ]

can be arbitrarily large.

4. Frontiers of complementary components.

4.1. DEFINITION. For any 4 C 5, let { C λ ! be the components of the com-

plement of A, and write

(1) c{A) = Σ 40(Fr(C λ)),

with the usual convention that a vacuous sum is zero. [ T h u s c(S)= 0,

c (0) = - 1.] From [ 5, Th. 4 ] we have

(2) c(A) + δ o [ C l ( S - A)] > fco[

and (a weaker statement unless b0 [ C l ( 5 - A) ] is infinite)

(3) c(A) > bo(A).

If A is open, we evidently have equality in (2). (Note that (3) contains

the well-known fact that, if A is not connected, at least one component

of Co(i4) has a disconnected frontier.)

4.2 LEMMA. Let C be a component of S — A, and let U be an open set con-

taining Fr(C). Then there exists an open set V 3 A such that V n C C V.
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This follows from [6, §6.1] applied to the sets A, C; a direct proof is also

easy.

4.3 THEOREM 5. // c(A) >_ n, then there exists an open set A D A such

that, for each set B satisfying A C B C A , we have c(B) >_ n.

For if c{A) _> n, then there exist finitely many components, say Cί9 C2,

••• > C m , of Co (^4), such that bo[Fr(Cj)] :> nj where Σ nj >_ n (1 £ / < m).

Thus, for each /, Fr (Cy) is a union of nj + 1 disjoint closed nonempty sets

Fjk (1 £ k £ nj + 1), and there exist open sets Όjk 3 Fjk such that Cl(f/y&)

n Cl ( Uji) - 0 (/ £ /). Let Uj = U& £/y£, an open set containing Fr (Cy); from

the lemma in 4.2, there exists an open set Vj D A such that Cl (Fy) n Cl (Cy)

C ί/y. Take A = ΠyFy, and suppose that B is any set satisfying A C B C A .

Then, since U& Fjk C B n Cj C U& ί/y&, we have 6 0 ( # n Cy) >_ nj. Now let

5^/μ.i he those components of Co (B) which are contained in Cj, and write

Ej = UμDyμ. One readily verifies that Fr(Ey) C B n Cy C Cl (S - £y), and that

Ej u CS n Cj) = CJ; hence, from [5, Th. 4], Σ μ bo(Fv(ϋjμ)) > fco(β n Cy )

> nj, so that c ( β ) > Σ y , μ bo(Fτ(Djμ)) > Σ «/ > »•

C O R O L L A R Y . ΪFe Aαve c ( ^ ) < c ( 4 ) .

4.4. E X T E N S I O N O F T H E P H R A G M E N - B R O U W E R T H E O R E M . This theo-

rem, as extended in [5, Th. 5], can now be extended still further.

T H E O R E M 6. For any set A, we have c(A) £ b0 {A ) + r{S).

The proof is almost identical with that for the case in which A is connected,

in [5, §4.2]; the difference arises from the fact that the sets L, M there con-

structed need not here be connected. But we may assume without loss that

bo(A) < 00, and have bo(L) £ bQ(A ) and bo(M) < bo(A); hence, from 2.3(1),

we have bo(L n M) < 2bo(A) 4- r(S). Since bo(A) + 1 of the components of

L n M now arise from A, the argument can be concluded in the same way as

before.

COROLLARY 1. If r(S) is finite, and A is any subset of S such that A has

only a finite number of components, then all but at most a finite number of the

components of S — A have connected frontiers,

COROLLARY 2. If S is unicoherent, then c {A) = bo{A ); and, conversely,

this equality is characteristic of unicoherence.

(This follows from 4.1(2) and [5, Th. 5].)
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4.5. ANOTHER EXTENSION. It has been shown in [5, Th. 5] that, con-

versely, Theorem 6 serves to characterize r(S), even when restricted to the

case in which A is closed (or open) and connected. However, Theorem 6 can

be restated in a slightly different though equally natural way, in which the con-

verse question is more difficult.

THEOREM 6a. For any set A, we have

(i) 6 0 ( F r U ) ) < C U ) + M C K S - A)) < c(A) + &O(C1(S - A))

< 6 0 ( F r U ) ) + r(S).

Conversely, if for some fixed (finite) n we have

(ii) c(A) < bo(Fτ(A)) + n

whenever A is nowhere dense, and if further

(iii) S is metrizable, or r{S) is finite,

then r(S) £ n.

The first inequality in (i) is a restatement of 4.1 (2), the second follows

from Theorem 5, Corollary, and the third from Theorem 6 applied to A9 in view

of the fact [4, §6.2] that bo(A) + bQ(Cl(S-A)) < bo(Fr(A)). For the con-

verse, suppose that (ii) holds, but that r(S) > n. From [5, Th. 5a), there exists

a closed connected set A' such that S — A ' has only a finite number of (open)

components Clf C2, ••• , Cm, and bo(Fr(A')) > m + n — 1; thus from [5, Th.

4], we have Σ bo(Fr(Cj)) > n. Suppose now that r(S) is finite, and write

A =Fr(v4'); thus A is nowhere dense, and, from 2.3(2), bo(A) < 00. Let {Z)χ }

be the components of Int(4'); then [5, Th. 4] we have Σ bo(Fτ (Dγ)] :> bo(A)

— &0[Fr(/4)] But the components of Co (A) are precisely the sets Cj9 D\; hence

c(A) > bo[Fr(A)] + rc, contradicting (ii).

If r(S)~ 00, the above argument still applies provided that bo[Fτ(A')] < 00.

Hence we may assume bo[Fτ(A')] = 00, so that there must exist some Cy, say

C, for which bo[Fr (C)] = 00. Now, the complement (say) F of C is closed and

connected. If it is assumed that S is metrizable, then there exists a sequence

of open sets Gn such that Gn D CHG^ + j) (n = 1, 2, •••), and Π Gn = F. Let

X = C - UFr(GΛ); from a theorem of Hewitt [3], there exist disjoint sets Y, Z

such that Y u Z = X and Y = Z = Z = C. We take A = C-Y. Thus C1(S - A) = S;

and Fr(/4)=C, which is connected. But Co (/I) can be separated, by one of

the sets Fr(GΛ), between F and any given point of Y; thus one of the com-

ponents of Co(i4) is jF itself, and again (ii) is contradicted.

COROLLARY. // S is unicoherent, and \ C\ \ are the components of an
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arbitrary set E, then

bo[Fr(Cλ)] + bo(E) = bo[Fr(E)];

and this property characterizes unicoherence among metrizable (locally con-

nected and connected) spaces.

It would be interesting to know whether the extra hypotheses on 5 imposed

in (iii) are needed. It would be easy to replace them by others (for example,

local compactness plus perfect normality).

5. Modified addition theorems.

5.1. A MODIFICATION. AS in the case of two connected sets [5, Ths. 11

and l l a ] , special cases of Theorem 1 can be obtained under alternative hy-

potheses. As an example, we state:

THEOREM 7. If A and B are any sets satisfying

F r U ) n F r ( S ) n F r U n β ) = 0,

then

bo(A u B) + bo(A n β) < 6 0 U ) + bo(B) + r(S);

and if there is finite equality here, then A — B and B - A are separated (so that

Theorem 1 then in fact applies).9

The proof is a fairly straightforward generalization of that of [5, Th. l l ] ,

with 2,3(1) replacing [5, §7.4]. The extension of Theorem 7 to n sets, however,

appears to present some difficulty.

5.2. ANOTHER MODIFICATION. A more interesting modification of Theorem

1 is the following, in which r(S) does not enter explicitly; in some cases (in

view of Theorem 6) it gives more information than does Theorem 1.

THEOREM 8. If A and B are arbitrary sets such that

FrU) n Fr(β) n FrU uδ) = 0,

then

h(A,B) + bo(A) < c(A).

9 It follows (see 5.6 below) that, in the case of finite equality, we have for each
component E of A u B that Fτ{Λ n E) n Fr(β n E) =0. It is false, in general, that
F r U ) n Fr(β) =0.
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Proof. Write C = C l [ C o U ) ] , and apply [4, Th. 6b] to the closed sets J u B,

A n B, C. We obtain

(1) bo(AuB) + i o U n S ) + 6o(C) < bo[BuFτ(A)] + bo[B n F r U ) ] .

From the frontier relation satisfied by the sets A and B, it readily

follows that FT (A) n Co(B) is closed, and thence that each component

of Fr(A) which meets B is contained in B. Hence we see that

6 0 [δuFrU)] + bJLB n FrU)] = bo(B) + bo[Ft(A)],

and consequently

(2) bo(Au B) + bo(A n 5) + bo(C) < bo(~B) + bo[Fv(A)].

But by 4.1(2), we have ί> 0[FrU)] < bo(C) + c {A). Thus, provided

that bo(C) is finite, we have proved

(3) bo(Au B) + bo(A n B) < bo(B) + c(A),

from which the theorem follows immediately.

To complete the proof, we deduce that (3) continues to hold even

when bo( C) = oo; and in doing so, we may assume that bo( B) + c(A) < oo.

Define B to be the union of those components of B which meet A, and

A* to be the union of A with all components of Co .(A) which have con-

nected frontiers. It is easy to verify that

F r U * ) n Fr(β*) n F r U * n B*) = 0,

and that, since c(A) < oc, bo[Co(/4*)] is finite. Hence (3) holds for

the sets A*f B*; and it is a routine matter to deduce that (3) also holds

for A and β*, and thence finally for A and B.

There is no difficulty in extending this theorem to any number of

sets; for example, (2) can be extended to the following property, valid

in an arbitrary topological space S (and generalizing [4, §7.4(1)]):

(4) If Al9 , Am> Bί9 , Bn are arbitrary sets such that

FrUy) n Fτ(Bk) n F r U ; υ Bk) = 0 (1 < / < m, 1 < k < n),

and Cj = Cl[Co(Aj)], then
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> Am, Bu ••• , Sπ)] + Σ ftoU/ί^, . . . , Cm)]

£ Σ t o U / t F r i ^ ) , . . . , F r U

the ranges of summation being 1 <_ h <^ m + n, 1 <_ 7 £ m, 1 _< k < n;

and (3) can be extended similarly.

5.3. AN INCLUSIVE RESULT. The next theorem includes both Theorem 1

and the extended Phragmen-Brouwer theorem (Theorem 6) as special cases. We

shall need the following lemma.

LEMMA. If G is a set with only finitely many components, then there exists

a finite set of points xΪ9 x2, , Xq £- Fr(G) such that

b0 [G u (xx) u ••• u (xq)] = bo(G).

For if G has components Gu G29 , Gs, we have only to take at least one

point Xj in every nonempty set Gχ n Gμ (λ ^ μ ) .

5.4. THEOREM 9. Let Aί9 A2, •• , Λn be any subsets of S having separated

differences and such that Aj n A^ and Co (Aj u Ajς) are separated whenever

j £ k; and suppose that no point belongs to Aj for more than m values of j,

where 2 <_ m <_ n. Then

(1) h(Au...,An) + eUO + c(X2) + . ^ 0 ( 1 ^ )

< bo(Xx) + bo(X2) + . . . + fco(ΓTO-1) + ( m - l ) r ( S ) ,

where Xj - Xj(Aΐ9 «•• , An). Further, if there is finite equality in (1),

then, for each q _< n — 1, for each set ] of q + 1 distinct suffixes jί9

lit " * 5 /9 + 1 between 1 cmα? τι, am/ /or eac^ component E of Xq, we have

(2) Γ Π F r U y n £ ) | ; C / l C E.

To prove (1), we may assume throughout that r{S) and 2^ bo(Aj)

are finite; it then follows from Theorems 1 and 6 that the numbers bo(Xj),

bo(Xj)9 and c(^y) are also finite. Further, we may obviously suppose

that Xm-ι Φ 0 (otherwise (1) would be derived with a smaller value of

m). Again, by using the method of approximation, we may assume in

addition that the sets Aj are all open and, by 1.3(2), satisfy

(3) Fv(Aj) n FrUk) n F r U ; n Ak) = 0 (/ ^ k) .
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For, in the general case, we apply 1.3(3) to replace the sets Aj by

slightly larger relatively connected sets Aj* having the same incidences

and satisfying (3); and, in view of Theorem 5, the truth of (1) for the

sets Aj* will imply (1) for the sets Aj.

From (3) and 1.3(1), the open sets Xj satisfy

(4) Xx D X2 D X2 D X3 D O Xm + ι = 0 .

We shall define inductively, for / = 1, 2, , m - 1, open sets Gj

consisting of a finite number of components Cjk of Co(Λy), and open

sets Vj D Fr(Gj), such that 1 1

(5) Gj u Vj C Gk whenever / < k;

Vj C Xj-X; Vj n l / + 1 = 0; Vj nVk = 0 if j ί k;

Fr(Vj) nFr(Ak) - 0 (for all /, k) and Fr (Vj) π Fτ(Xj) = 0.

Further,

(6) bo(Vj ) < oo, bo(Xj u Vj) < bo(Xj), and

KiVj πG ; ) > c(Xj) + bo(Gj).

For suppose this done for all / < p, where 1 < p < m. Define Gp to

be the union of all those components of Co(Xp) which either (a) have

disconnected frontiers, or (b) meet Gp-.ί u Pp-i Since Gp-χ u Vp-.ί

C Co(Ap), this gives G p - 1 u Vp-t C Gp and since further

bo(Gp-ι u Fp-i) < oo,

Theorem 6, Corollary 1, shows that bo(Gp) < oo. Let Gp consist of the

components Gp^ of Co{Xp) {k = 1, 2, , rip); thus

ζfc bo[Fr(Cpk)]= c(Xp).

Hence, if the components of Fr(Cpk) are denoted by Fpkι (I = 1,2,

••• > Hpfc)» w e n a v e ^/c (̂ pA: - 1)= c(Xp) For fixed p and k, there

exist open sets Npkl ^ fp^Z w i t n disjoint closures (for varying I); and

it follows from the lemma in 4.2 that an open set Up exists such that

Up D Fr(^Lp) and Vp nCl(Cp&) C U/ Wp̂ /. We may further suppose,

from (4), that Up C Xp-u Up n ^p+i = 0, and Up n F p - i « 0. It readily

follows that Fr(ί/p) n F r ( ^ ) = 0 for each k (1 < k <_ n). Again, from

1 1 By convention, Xo * S and £ n + i = 0.
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the lemma in 5.3, there exists a finite set Qp C Fr(Xp) such that

t>o(Xp u Qp) = bo(Xp).

Let Vp - union of those components of Up which meet Qp u \JFpkl\

clearly bo(Vp) is finite; and, since Fr(Fp) C Fr (t/p), it is easily seen

that (5) continues to hold when /= p. Also the sets K, n Cpk n Λp&/ are

(for varying k and ϊ) all pairwise separated and nonempty; hence the

number of components of Vp n Gp is at least 2*k npk = c(%p) + np> s °

that (6) holds.

To start the induction, we take Gx to consist of the components of

Co(Xy) with disconnected frontiers; the rest of the construction is ex-

actly as in the general case. Thus (5) and (6) hold for / = 1, 2, , m — 1.

We remark that it follows trivially from (5) that

(7) Fτ(Vj) n Fr(Gk) = 0 whenever / φ k, and Vj n Gk = 0 if / > k.

Now consider the "elementary symmetric sets"

Yj- Xj(Gι,G2,...,Gm-ι,VuV2,..., Vm-X) (1 < / < 2 m - 2 )

and

%k ~ %k (^i 9 A2, , An, Gl9 , Gm-ι, Vl9 , F m - t )

(1 < k < 2m+ n- 2 ) .

Using (5) and (7), we obtain

(8) Yt = Gm-ι u F m - ! , Yy = G m - ; u F m - j u ( G m - / + ι n F m - / + 1 ) if

2 < < m - 1 Ym = Gt n F t and Yy = 0 if / > m.

Thus, since Zk — Xk u U ( ^ ~ p n Yp) u Y& , we find:

(9) Zfc ^ 0 if 1 < k <__ m; Zm = ,Ym u U (Xp n Fp) u U (Gq n Vq)

(p, ^ = 1,2, , m - 1) and Z& = 0 if k > m.

Now the open sets Au A2, . . . , An; Gu . . . , G m - X ; Vl9 ••• , F m - ι

satisfy the hypotheses of Theorem 1, since this is true of Au - , An

from (3), while we readily verify that

FrUy) n Fτ(Gk) n FrUy n GΛ) = 0,
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and that in all the remaining cases the sets have disjoint frontiers.
Hence

(10) Σbo(Zp) < ΣbQ(Aj)+ Σ bo(Gk) + Σbo(Vk) + (m - l)r(S)

(1 < p < n + 2m - 2, 1 < < n, 1 < A < m - 1).

But (9) shows that

Σbo{Zp) > bo{Xm) + X 60(Λ)fc n Vk) + ΣMPfc π GA) + m - n.

Also

*oU* " ?*) > M * * ) + bo(Vk) - 6 0 U * n Vk) (cf. [4, §6.2])

> bo(Xk) + 60(FΛ)

and, from (6).

Thus finally, since all the numbers involved here are finite, (1) follows
from (10).

5.5. T H E CASE OF FINITE EQUALITY. Suppose now that there is finite
equality in (1) above, and that a point y exists in (say)

Fτ(Λι n E) n Fr(A2 n E) n . . . n Fτ(Ap + ί n E) - £ ,

where £ is a component of Xp; thus y ψ.Xp. It is easy to see that we may as-

sume without loss of generality that p < m — 1 and that the sets Aj are all

open. Clearly y £ Fr(/Yp); thus we may carry out the preceding construction

in such a way that y G Qp C Vp. But, from the way in which (1) was derived

from (10), we must now have h{Xp, Vp) = 0, so that the component W of Vp which

contains y must meet £ in a connected set; consequently, since W

= 0, it follows tkat W n £ meets one and only one of the sets

with I / I = p. Since W meets Aγ n £, we have 1 C /; similarly 2 €1 / , , and
(p + 1) C / , giving a contradiction.

5.6. REMARKS. We observe that the preceding results contain those con-
cerning modified addition theorems in [$, Ths. 11 and lla]. For, in the first
place, 1.3(1) together with an "approximation** argument shows that the relation
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(2) above is equivalent to the apparently stronger relation

(2a) ΓHFrUy n E) \ C C l U p + 1 ) (/ £ / , | / | = p + 1, p < ι»).

(In fact, the left side here is contained in

u F r U p + 2 ) υ . . . u F r U m ) . )

Hence if Aί9 , An also satisfy the condition (slightly stronger than in Theo-

rem 9) that ¥τ(Aj n A^) n Fτ(Aj u A^) - 0 (/ 5̂  &), finite equality in Theorem

9 will imply, again from 1.3(1), that

(2b) .Π{FrU 7 nE)\ C Int (E) (j C /, | / | = p + 1, p < n),

a relation which is slightly stronger than (2), And if the sets A; satisfy the even

stronger condition

Fr(i4 ; ) nFrUfc) n F r U y n Ak) = 0 (/ 4 * ) ,

it can be deduced from (2b) that

(2c) fHFrUy nE)} = 0 if 2p > n (/ C /, | / | = p -+- 1, p < n).

Finally, if there is finite equality in Theorem 1, then there will be finite

equality in Theorem 9, for c(Xj) _> bo(Xj), by 4.1(3); and thus the above con-

siderations will apply.

5.7. OTHER INEQUALITIES. Many other inequalities can be derived from

Theorem 9; for example:

THEOREM 9a. Under the hypotheses of Theorem 9, we have

(i) c d t ) + c(X2) + . . . + c ί ^ - O + bo(Xm) + bo(Xm + ι) + . . . + bo(Xn)

£ Σ bo(Aj) + (m - l ) r ( S ) .

Further, if there is finite equality in (i), w e have

(ϋ) A:P(J,, J 2 , . . . , In) = Ip (i < p i m). l s

Proof. Relation (i) is a trivial consequence of Theorem 9, (1), since

bo(Xj) < bo(Xj) .

1 2 Condition (ii) need not hold for p > m.
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Suppose there is finite equality in (i); as before it will suffice, by an approxi-

mation argument, to prove (ii) assuming that the sets Aj are open. Now, finite

equality in (i) implies that Theorem 9, (2), holds, and also that bo(Xj) = bo(Xj)

for all / < m. If /, K denote sets of p distinct suffixes between 1 and n, and

/ φ K, we find (writing Aj = Π{ Aj \ j G / } ) that

if p < m.

This includes (ii) when p = 2; and (ii) follows in general by an easy induction

over p.

5.8. GEOMETRICAL CONSIDERATIONS. TO illustrate the geometrical con-

tent of these theorems, we consider the case of two sets in more detail.

THEOREM 10. Let A and B be sets, neither of which contains the other,

having separated differences and connected complements, and suppose that

A n B and Co {A u B) are separated. Then

bo(A n B) + b0(Co(A u B)) < bo(A) + bo(B) + r(S) - 1.

// there is finite equality here, and further FT (A) n Fτ(B) n FT {A uδ) = 0,

then each component of Co (A uδ) has a frontier consisting of exactly two com-

ponents.

Proof. We can assume that r(S) is finite. Write P = C o ( ^ ) , Q = Co(£);

then P and Q are connected, so that, from Theorem 1, bQ(P n Q) is finite. Let

P n ( ) ( = C o ( ^ u δ ) ) have components Hu H29 ••• , Hn Then

(1) A and Hj are not separated,

since otherwise Q={(Q n A) u (P n Q — Hj)\ u fly, a union of two

nonempty separated sets. Similarly B and Hj are not separated. Hence

(2) Fτ(Hj) meets both FT (A) and F r ( β ) .

Let i * = i u ( P n ρ ) , δ * = δ u ( P n Q); from (1), A* is connected

relative to A9 so that bo(A*) < bo(A), and similarly bo(B*) <_ bo(B).

It is easy to see that A* — β* and B* — /4* are separated, and that

4̂ n δ and Co (.4 u β ) are separated; hence 2.3(1) gives

bo(A* n δ * ) < bQ{A) + bo(B)+ r(S).

But A* n S* = (A n B) u Co(A υ β), a union of two separated sets;

thus the first part of the theorem follows.



122 A. H. STONE

From Theorem 9a and Theorem 5, Corollary, we also have

bo(A n B) + Σ bo{Fτ(Hj)) < bo(A) + bo(B) + r(S).

If further F r U ) n Fr(B) n FT {A u δ) = 0, (2) shows that bo[Fτ{Hj)]

> 1 for each /". Hence finite equality in Theorem 10 requires bo[Fτ(Hj)]

= 1 for each /, and the proof is complete.

COROLLARY. // A and B are simple sets13 with disjoint frontiers, and

neither A nor B contains the other, then bo(A n B) + 60[Co (A u B)] <_ r(S) — 1;

and if there is finite equality here, then each component of A n B or of Co (A u B)

has a frontier with exactly two components.

This follows on applying Theorem 10 first to A, B and then to Co (A), Co(B).

If S is unicoherent, the first part of this corollary reduces to [4, §4.5].

6. Simple sets with disjoint frontiers.

6.1. FINITELY MULTICOHERENT SPACES. Throughout this section, we

shall assume that r(S) is finite.

THEOREM 11. Let Au A2, ••• , An be simple14 subsets of S, every two of

which meet, and which have disjoint frontiers. Then there exist N or fewer of

the sets Aj whose union is UJ A; , where

N = 2r(S) if r(S) > 1, orifr(S) = 1 and ΠAj φ 0.

N = 3 if r(S) = 1 and ΠAj = 0, and

N = 2 if r(S) = 0.

These values of N are the smallest possible.

It is easy to see by examples (it suffices to take S to be a linear graph) that

no smaller values of N are possible in general. To prove the rest of the theorem,

we need two graph-theoretic lemmas.

6.2. LEMMA 1. Let G be a connected linear graph having no end-points, and

let Eί9 E29 9 En be closed connected subsets of G, every two of which meet.

If r(G) > 1, or if r(G) = 1 and Π£; φ 0, then UEj is the union of 2r{G) or

fewer of the sets EJ; if r(G) = 1 and ΠEj = 0, then ΌEj is the union of at most

3 sets Ej.

set E is "simple" if E and S - E are both connected,

would suffice to require only that Cl(Λj) and Cl[CoUy)] be connected (1 < / < n).
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The proof is by induction over r(G). If r(G) <_ 2, the lemma can be verified

by inspection of the possible graphs G. Suppose, then, that r(G) >^ 3, and that

the lemma is true for all graphs of smaller degree of multicoherence but not for

G, and that n is the smallest number of sets for which the lemma fails for G.

Thus no Ej is contained in the union of the others.

From G we derive a homeomorphic graph G* by suppressing all vertices of

order 2; the (open) 1-cells of G will thus be the components of G minus its

vertices of orders other than 2; we call them the "maximal 1-cells" of G. (A

maximal 1-cell may have coincident end-points ) We consider three cases:

(1) If G has a cut-point R which is not a vertex of G, let PQ be the maximal

1-cell of G which contains R; thus here P Φ Q* and Q _ PQ is a union of two

disjoint, closed connected nonempty subgraphs fl, K9 neither of which has an

end-point. From [6, §3.2(1)], we see that r(H) + r(K) = r(G), while, since G

has no end-points, r(H) > 1 and r(K) >. 1. For the moment we assume that

neither r(H) nor r(K) is 1. Write Ej ' = Ej n H, Ej" = Ej n K; it is easy to see

that these sets are closed and connected, though possibly empty. Further, every

two nonempty sets Ej ' must meet, since both must contain P unless one of the

corresponding sets Ej is contained in H. Hence the hypothesis of induction

applies to H and the nonempty sets Ej' y and UEj ' must be contained in the union

of at most 2r(H) sets Ej, Similarly UEj " i s contained in the union of at most

2r(K) sets £y. Thus we obtain at most 2r(G) sets Ej in all, which together

contain UEj ' u UEj " further, their union is connected and so contains PQ and

thus UEj, unless UEj' or UEj" is empty.

If UEj ", say, is empty but UEj ' Φ 0, it is easy to see that at most 2r{H) + 1

< 2r(G) sets Ej will suffice, namely those selected to contain UEj ', together

with the set Ej which contains the largest subarc of PQ. If UEj ' = UEj " = 0,

all the sets Ej are contained in PQ9 and two of them will suffice.

If r(//), say, is 1 (so that H is a circle), the above argument needs modifi-

cation only if one of the given sets is contained in H — (P); we leave the de-

tails to the reader.

(2) If G has a cut-vertex /?, but no cut-point other than a vertex, the argument

is essentially the same as before, with PQ degenerating to R .

(3) Finally, if G has no cut-points, pick x G £ \ — (E2u ••• u En); replacing

x by a sufficiently nearby point if necessary, we can suppose that x is not a

vertex and so belongs to a unique maximal 1-cell PQ of G. Here P Φ Q, since

G has no cut-points, and the subgraph H = G — PQ is connected and has no end-

lines. We easily find r(H) = r(G) - 1. Write Ej ' = Ej n H; as before, at most

2r(H) of the sets E29 ••• , Enf say E2, ••• , Em (m £ 2r(H) + 1), must contain
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U£y ' (/ >. 2). The connected set Ei u E2 joins x to H (for we may clearly as-

sume \JEj' ^ 0)> and so contains one of the arcs Px, Qx9 say Px. If none of

Em + u * > En meets Qx, the m sets E\, E2, , £ m contain U£y. If Qx n

( £ m + i u u En) ^ 0, let y be its point on Qx closest to x, and let y £ £&

then the connected set £ 2

 u /̂c joins y to H without containing #, and so con-

tains QX; thus the m + 1 sets £ l f £ 2 , ••• , £ m , '£& contain U£y. Since m + 1

< 2r(G), the proof is complete.

6.3. LEMMA 2. Let Bu B2, ••• , Bn be τι simple closed subsets of a con-

nected linear graph G, every two of which meet. If r( G) > 1, or if r(G) = 1 and

f)Bj 4 0, then \JBj is the union of 2r(G) or fewer of the sets BJ; if r{G) = 1 and

Γ\Bj = 0, ίλerc Ufii is the union of at most 3 sets Bj.

As before, we may assume that the lemma is false, and that n is the smallest

number of sets for which it fails; thus no Bj is contained in the union of the

others. Define a "maximal end-line" PQ of G to be a maximal 1-cell PQ of G

in which Q is an end-point of G; thus P ^ Q. li Bl9 say, meets a maximal end-

line PQ which it does not contain, then (being closed and simple) Bι must be

either a closed arc xQ, where x £ PQ, or the closure of the complement in G of

such an arc. In the latter case, it is clear that Bγ together with one other set

Bj will contain the rest; in the former case, we see similarly that either Bx u B2

= G, or B2 D Biy or Bι D B2—all of which are excluded. This proves, then,

that each Bj contains all maximal end-lines of G which it meets. Let H be the

graph obtained from G by removing all end-points and maximal end-lines, and

write E( = B( n H. On applying Lemma 1 to the sets Ex, , En in the graph

H, we see that U£y is the union of the desired number of sets £y; the analogous

conclusion for the sets Bj follows.

6.4. Proof of Theorem 11. We shall consider only the case r(S) > 1 ex-

plicitly; the modifications needed when r(S) = 1 will be obvious, and the case

r(S) - 0 is covered by [4, §4.5]. It will thus suffice to prove that, if n > 2r(S)

>_ 4, one of the sets Aj is contained in the union of the others. Consider the

2n intersections Y& = Dt n D2 n . . nDn (1 £ k £ 2n), where each Dj takes

the two values Aj, Co {Aj), in all possible combinations. The sets Y& are closed

and cover 5; and, since the sets Fr(Aj) are disjoint, no three of them have a

common point. Further, from Theorem 1, 60( Y&) is finite, and so the sets Y& are

of finite incidence. Let G denote the modified nerve (cf. [6]) of the sets Y& as

in [6, §6.4], G is connected and r(G) £ r(S). Let Bp denote the subgraph of

G consisting of (i) all vertices which correspond to intersections Y& in which

the pth "factor" Dp is Ap, and (ii) all edges of G both of whose end-points
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have been assigned to Bp. Let Cp be defined similarly, hit with Co(Ap) replac-

ing Ap. Thus, for each p (1 <̂  p < n), Bp and Cp are disjoint subgraphs which

together contain all the vertices of G; and it is easy to see that Bp and Cp are

connected, since Ap and Cl[Co(/4p)] are. Hence Bu B29 , Bn are simple

closed subsets of G. Further, if p ^ q, Bp and Bq have at least a common vertex.

Thus, by Lemma 2, one of the sets Bp is contained in the union of the others;

say Bt C B2 u u Bn. It readily follows that Ax C A2 u u An, whence the

proof is completed.

6.5. COROLLARY. For any collection of more than 2r(S) simple subsets

of S with disjoint frontiers, the union of some two of the sets contains the inter-

section of the rest.

6.6. FURTHER RESULTS. Evidently the method which was employed to

prove Theorem 11 is of more general applicability; it shows, roughly speaking,

that the incidences of a system of sets with disjoint frontiers are no worse than

if S were a linear graph of the same degree of multicoherence. In the same way

we may prove:

THEOREM l la. Let Ai9 A2, ••• , An be n simple subsets of S, every two

of which meet, and which have disjoint frontiers. If n is large enough compared

with r(S) (assumed finite), then some Aj is contained in the union of two others.

(Note that no Aj need be contained in one other, irrespective of how large

n is.) Here the determination of the " b e s t " bound for n seems to be difficult:

it can be shown, however, that, disregarding the trivial case r(S) = 0, it lies

between exp{ exp[ c t r ( S ) ] } and exp{ exp [ c2 r(S)] }, where cl9 <% are positive

constants.

Another related theorem, proved in a similar way, is:

THEOREM lib. Let Aί9 A2, ••• , An be connected subsets of S such that

b0[Co(Aj)] <_ q (j = 1, 2, , n). Suppose that every two of the sets Aj meet,

and that they have disjoint frontiers. Then there exists a function N of q and

r(S) (independent of n) such that \JAj is contained in the union of N or fewer

of the sets Aj.

It is easy to show by examples that, with q > 1, we have

N > (q + l)(q + 2)r(S) if r(S) > 1,

and



126 A. H. STONE

N ^q2 + q + 2 if r(S) = 0;

but the author does not know if these values are in fact the best.

For theorems of this type, the conditions that the sets Aj (or, more generally,

their closures) be connected, and that the numbers bo{ Cl[Co (Aj)] \ be bounded,

cannot be omitted. In [4, §8] a theorem in a similar order of ideas was obtained

for arbitrary connected sets in a unicoherent space; it can indeed be extended

to the multicoherent case, but at the cost of requiring not only that certain inter-

sections of the sets Aj be nonempty, but that they have sufficiently many com-

ponents. For example, the theorem for three sets becomes:

(1) // Al9 A2, A3, are connected subsets of S such that A± n A2 n A3 = 0,

and bo(Aj n A^) >_ r(S) whenever j φ k9 then every two of the sets

Fr (Aj) meet.

The proof of (1) is an easy consequence of [5, §7.2].

We finally remark that the present technique can be used to give a direct

"elementary" proof of Theorem 1, without using mappings in S ι . However,

though the basic idea (showing that the sets have the same incidences as if S

were a linear graph) is simple, a quite lengthy and tedious argument is needed

to reduce the general theorem to the case in which the complements of the sets

are of finite incidence; and the proof given in 2.2 above is considerably shorter.
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