ON THE BOUNDARY VALUES OF SOLUTIONS OF THE HEAT EQUATION

Watson Bryan Fulks
ON THE BOUNDARY VALUES OF SOLUTIONS
OF THE HEAT EQUATION

W. Fulks

1. Introduction. In a recent paper Hartman and Wintner [3] consider solutions of the heat equation

\[u_{xx}(x, t) - u_t(x, t) = 0 \]

in a rectangle \(R: 0 < x < 1 \) \((0 < t < k < \infty) \). There they obtain necessary and sufficient conditions for a solution of (1) in \(R \) to be representable in the form

\[u(x, t) = \int_0^1 G(x, t; y, s) \, d A(y) + \int_0^t G_y(x, t; 0, s) \, d B(s) - \int_0^t G_y(x, t; 1, s) \, d C(s), \]

the Green's function \(G \) being defined by

\[G(x, t; y, s) = \frac{1}{2} \left[\partial_3 \left(\frac{x - y}{2}, t - s \right) - \partial_3 \left(\frac{x + y}{2}, t - s \right) \right] \]

where \(\partial_3 \) is the well known Jacobi theta function. (The first integral in (2) is an absolutely convergent improper Riemann-Stieltjes integral.) They proceed to show that the functions representable in the form (2) exhibit the following behavior at the boundary of \(R \):

\[\lim_{t \to 0^+} u(x, t) = A'(x), \]

\[\lim_{t \to 0^+} u(x, t) = B'(t), \quad \lim_{t \to 1^+} u(x, t) = C'(t) \]

wherever the derivatives in question exist.

In the present note we present an improvement of (5) first given in the author's thesis [2]. The admittedly slight mathematical improvement is physically significant. A solution of (1) which admits the representation (2) gives the

Received July 6, 1951.
Pacific J. Math. 2 (1952), 141-145

141
temperature at time \(t \) and position \(x \) in an insulated rod of length unity and with a certain initial temperature distribution, given essentially by (4), and imposed end temperatures, given essentially by (5). We note that such solutions are not uniquely determined by (4) and (5).

As \(x \) approaches the boundary of \(R \) along a line \(t = t_0 \), it seems intuitively clear that the limit should be independent of values of \(B \) (or \(C \)) for \(t \geq t_0 \). Hence the expected result (for the left side of \(R \)) would be

\[
\lim_{x \to 0^+} u(x, t) = B'(t - 0) = \lim_{h \to 0^+} \frac{B(t - h) - B(t - 0)}{-h}
\]

wherever this derivative exists.

2. Theorem. For the above improvement it is sufficient to establish the following result.

Theorem. If \(B(s) \) is of bounded variation on every closed interval of \(0 \leq s < k \leq \infty \), then

\[
\lim_{x \to 0^+} \int_0^t G_y(x, t; 0, s) dB(s) = B'(t - 0)
\]

wherever this derivative exists.

Proof. Let

\[
u(x, t) = \int_0^t G_y(x, t; 0, s) dB(s).
\]

Then since

\[
\theta_3 \left(\frac{x}{2}, t \right) = (\pi t)^{-1/2} \sum_{n = -\infty}^{\infty} \exp \left[\frac{-(x + 2n)^2}{4t} \right]
\]

(see, for example, [1, p. 307]), we can write

\[
u(x, t) = \frac{1}{2} x \pi^{-1/2} \int_0^t (t - s)^{-3/2} \exp \left[\frac{-x^2}{4(t - s)} \right] d B(s)
\]

\[
+ \frac{1}{2} \pi^{-1/2} \int_0^t (t - s)^{-3/2} \sum_{n = -\infty}^{\infty} (x + 2n) \exp \left[\frac{-(x + 2n)^2}{4(t - s)} \right] d B(s)
\]

Clearly the latter integral vanishes with \(x \). Then denoting the first integral on
the right by I and by setting $z = x^2/4$ and $t - s = 1/v$, we get

$$I = \left(\frac{z}{\pi} \right)^{1/2} \int_0^\infty e^{-zv} v^{3/2} \, dB(t - 1/v).$$

If we define

$$\alpha(v) = \begin{cases} \int_a^v r^{3/2} \, dB(t - 1/r) & (v \geq 1/t), \\ \alpha(1/t) & (v < 1/t), \end{cases}$$

where α is a suitable constant, then we have

$$I = \left(\frac{z}{\pi} \right)^{1/2} \int_0^\infty e^{-zv} \, d\alpha(v).$$

To evaluate $\lim_{z \to \infty} I$ we apply [4, Theorem 1, p. 181], which states: If

$$f(s) = \int_0^\infty e^{-st} \, d\alpha(t),$$

then for any $\gamma \geq 0$ any constant A we have

$$\lim_{s \to 0^+} |S^\gamma f(s) - A| \leq \lim_{t \to \infty} |\alpha(t) t^{-\gamma} \Gamma(\gamma + 1) - A|.$$

To this end we evaluate $\lim_{v \to \infty} v^{-1/2} \, \alpha(v)$. Now

$$v^{-1/2} \, \alpha(v) = v^{-1/2} \int_r^v r^{3/2} \, dB(t - 1/r)$$

$$= v^{-1/2} \int_r^v r^{3/2} \, d[B(t - 1/r) - B(t - 0)]$$

$$= r^{3/2} \, v^{-1/2} [B(t - 1/r) - B(t - 0)] \bigg|_a^v$$

$$+ \frac{3}{2} v^{-1/2} \int_a^v [B(t - 0) - B(t - 1/r)] \, r^{1/2} \, dr$$

$$= \frac{B(t - 1/v) - B(t - 0)}{1/v} - \frac{B(t - 1/a) - B(t - 0)}{v^{1/2}} a^{3/2}$$

$$+ \frac{3}{2} v^{-1/2} \int_a^v [B(t - 0) - B(t - 1/r)] \, r^{1/2} \, dr.$$
As \(v \to \infty \) the first expression on the right tends to \(-B'(t - 0)\), if this derivative exists, and the second vanishes. Now consider the integral term: given \(\epsilon > 0 \), choose \(T \) so large that

\[
\left| B'(t - 0) - \frac{B(t - 0) - B(t - 1/r)}{1/r} \right| < \epsilon \text{ if } r > T.
\]

Then

\[
\frac{3}{2} v^{-1/2} \int_a^v \left[B(t - 0) - B(t - 1/r) \right] r^{1/2} \, dr
\]

\[
= \frac{3}{2} v^{-1/2} \int_a^T \left[B(t - 0) - B(t - 1/r) \right] r^{1/2} \, dr
\]

\[
+ \frac{3}{2} v^{-1/2} \int_T^v \frac{B(t - 0) - B(t - 1/r)}{1/r} r^{-1/2} \, dr.
\]

The first integral on the right \(\to 0 \) as \(v \to \infty \), and

\[
\frac{3}{2} v^{-1/2} \int_T^v \frac{B(t - 0) - B(t - 1/r)}{1/r} r^{-1/2} \, dr
\]

\[
= 3 \left[B'(t - 0) + \eta(T, v) \right] (v^{1/2} - T^{1/2}) v^{-1/2},
\]

where \(|\eta| < \epsilon \) for all values of \(v > T \). Let \(v \to \infty \), then let \(\epsilon \to 0 \); the right side of the above equation approaches \(3B'(t - 0) \). Consequently we now have

\[
\lim_{v \to \infty} v^{-1/2} a(v) = 2B'(t - 0).
\]

By applying the above-mentioned theorem with \(\gamma = 1/2, A = \pi^{1/2} B'(t - 0) \), we now obtain

\[
\lim_{z \to 0} \left| z^{1/2} \int_0^\infty e^{-zv} d\alpha(v) - \pi^{1/2} B'(t - 0) \right|
\]

\[
\leq \lim_{v \to \infty} \left| \frac{1}{2} \pi^{1/2} v^{-1/2} B(v) - \pi^{1/2} B'(t - 0) \right| = 0.
\]

Hence

\[
\lim_{x \to 0^+} u(x, t) = \lim_{z \to 0} l = B'(t - 0).
\]
REFERENCES

UNIVERSITY OF MINNESOTA
L. Carlitz, *Some theorems on Bernoulli numbers of higher order* 127
Watson Bryan Fulks, *On the boundary values of solutions of the heat equation* .. 141
John W. Green, *On the level surfaces of potentials of masses with fixed center of gravity* .. 147
Isidore Heller, *Contributions to the theory of divergent series* 153
Melvin Henriksen, *On the ideal structure of the ring of entire functions* ... 179
James Richard Jackson, *Some theorems concerning absolute neighborhood retracts* ... 185
Everett H. Larguier, *Homology bases with applications to local connectedness* .. 191
Janet McDonald, *Davis's canonical pencils of lines* 209
J. D. Niblett, *Some hypergeometric identities* 219
Elmer Edwin Osborne, *On matrices having the same characteristic equation* .. 227
Robert Steinberg and Raymond Moos Redheffer, *Analytic proof of the Lindemmann theorem* 231
Edward Silverman, *Set functions associated with Lebesgue area* 243
James G. Wendel, *Left centralizers and isomorphisms of group algebras* ... 251
Kosaku Yosida, *On Brownian motion in a homogeneous Riemannian space* .. 263