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INTRODUCTION

We shall be concerned throughout with methods of summability consistent
with the method of analytic continuation (P). We recall that two methods are
called consistent if whenever they are simultaneously effective they yield identi-
cal generalized sums. This property is not a consequence of regularity.

The purpose of this paper is to examine in a general way the class of methods

consistent with (P ) and subject to the following agreements.

1. For greater generality, regularity of the methods will not be assumed.

2. The class shall be closed with respect to multiplication; that is, the re-
sult of successive application of two methods of the class shall represent a
method of the class. To this end consistency is postulated, not only for the

case in which the series is summed, but in a general way (see postulates below).

We are thus led to consider the class of matrix transformations defined by

the following postulates.

(I) Any series Z u,, summable (P), is transformed into a series Z v,

summable (P)
() Zu, (P) = 2o, (P).

The class defined by these conditions is the exact analogue of the class
of regular matrices, which may be defined in a similar fashion if ‘“‘summable
(P)’ and ““(P)”’ in (I) and (II) are replaced by ‘‘convergent’”’ and ‘‘con-

vergence’’, respectively.

1. THE CLASS €4q

1.1. Notations and Definitions. The partial sums of a series ) u, will be
denoted by Up,:
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154 1. HELLER

(1.1.1) Un=u0+u,1+u2 + oo+ Up.
Also for series of variable terms:
Up(z) = ug(z) + uy (2) +oev+ up(z).

The matrix of a series-to-series transformation will be denoted by C =
(¢kn ), where generally &k, n =0, 1, 2, -+ ; only in Theorem 1 and its proof we
suppose k, n=1, 2, ««-.

By Cin Up = v the series Zun is transformed into the series ZUk.

The matrix of a sequence-to-sequence transformation will be denoted by
A=(ag, ) By Vg = ZGkn U, the sequence (U,) is transformed into the se-
quence (V).

I |u,| < M*™t (=0, 1, -++), then Zun will be said to be an analytic
series (as then Z u, 2" determines an analytic function f(z), regular at the
origin).

By €4, we denote the class of matrices C which transform any analytic
series into an analytic series, while by €. we denote the class of matrices
A which transform the sequence of partial sums of any analytic series into the

sequence of partial sums of an analytic series,
1.2. Theorems. Let C = (cy, ) be a matrix, where £, n=1, 2, «++ .

THEOREM 1. In order that C should belong to €,,, that is to say in order
that C should transform each analytic series into an analytic series, it is neces-

sary and sufficient that to each € > 0 there exists an M > 0 such that
(1.2.1) 1C,, | < e uE (byn=1,2, ).

COROLLARY 1. If C belongs to €, Zu,, is analytic, and 2 lcpn Unl =

w, , then Zwk is analytic.
CoROLLARY 2. If C is a triangular matrix, that is to say, if

cp =0 when n > k,
then condition (1.2.1) is equivalent to either of the conditions:

(1.2.2) le,,| < Pk,

-

(1.2.3) N, < Rk, where N, = Z | ¢kn
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THEOREM 2. The class @(;a ts identical with Cuq; that is to say: in order
that A should transform the sequence of partial sums of each analytic series
into the sequence of partial sums of an analytic series, it is necessary and
sufficient that to each € > 0 there exists an M, > 0 such that

(1.2.4) la,, | < € Mek (kyn =1,92, +0+).

REMARK. If the indices %, n of the matrix begin with 0, then conditions
(1.2.1)-(1.2.4) evidently run:

(1.2.1% legn | < €L Mkt

(1.2.2) le,, | < PF*Y,

1.2.3) N, < RF'Y, (kyn=0,1,2 ).
(1.2.4°) lay,| < €t MEt

We first prove the corollaries and Theorem 2.
Proof of Corollary 1. The result is evident.

Proof of Corollary 2. Condition (1.2.1) implies (1.2.3) for any arbitrary
matrix; indeed, for € < 1 and

we obtain

Me \k
- =R (k=1,2 +.4).

Z k Z EMf
N, = < M et = <
k lcknl —= e 1—-¢ — \1

Further, it is plain that (1.2.3) implies (1.2.2). Finally the chain is closed by
the proof that (1.2.2) implies (1.2.1): for € > 1 there is nothing to prove; for
€ < 1we put M, = P/e and obtain

lep,| < PP =k Mk < en uk (k=1,2-+),

the last relation holding because of n < k.

REMARK. In the general case, the condition of the theorem is not equivalent
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to those of Corollary 2, which continue to be necessary, but not sufficient, as
shown by the following example:
Take as the kth row of C the coefficients of the Taylor development of the

function

fk(z) = €zk§

the matrix C thus defined satisfies (1.2.3), because of
Ny = Ll = (1) = e

. . . k . .
but the series u, = r" is transformed into v, = €, which, for r > 1, is not

analytic, since

k k k
(er )l/ =€r/k—-)ooask—>oo.

It will be observed that Theorem 1 is quite analogous to the theorem of
Toeplitz-Schur, which establishes *‘N; bounded’’ as a necessary and sufficient
condition in order that C should transform every bounded sequence into a bound-

ed sequence. This analogy persists also in the proof of Theorem 1 (see 1.3).

Proof of Theorem 2. If f(z)= x u, z" is convergent in a circle of radius

R, and g(z) = z", then the Cauchy product
f(z) - g(z) = h(z) = 2 Up2"

is convergent in a circle of radius r = minimum (R, 1).

Conversely, if h(z) = U,z" converges in a circle of radius r, then
h(z)/g(z)=f(z)= Z u,z" converges in the same circle.

This signifies that either the series Zun and ZU,, are both analytic, or
neither of them is analytic. The series ) v, and 2 V, behave in the same way.

Hence, to say that A transforms the partial sums of each analytic series
Zun into the partial sums of an analytic series ka, is the same as to say

that 4 transforms each analytic series ZU,L into an analytic series 2v,.

1.3. Proof of Theorem 1. a) The condition is sufficient: If |u,| < M",
then, for € < M™!, which implies €M = g < 1, we obtain

Lo, | = 12X, unl < Xley, un| < 2 € M5 M = MEX (eM)
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1 k
=L.Mf<( -M):Rk (k> 1).
1-g —\T-q =

b) The condition is necessary: We first remark that in order for C to be
applicable to each analytic series, the rows of C must necessarily represent

integral functions, that is,
(1.3.1) ) ¢, 2" must converge for every z.

Secondly, the columns of the unit matrix must be transformed into analytic

series; this signifies that each column of C is analytic:

(1.3.2) ley, | < ME,

Now the proof follows indirectly. From the hypothesis that C belongs to €44
without satisfying (1.2.1), a contradiction is derived by constructing a certain
analytic series, the transform of which is not analytic.

If (1.2.1) is not satisfied, then for a certain ¢ there exists no M such that
(1.2.1) holds; for this € and any M there exists a nonempty set £y of the Chen?
such that

(1.3.3) lep, | > € ME for all ¢, of Ey .

Ey may be supposed infinite.

By variation of ¥ > 0 we obtain a family of sets £y such that Ey C Eyx
when M > M*.

We now remark:

(a) A row of C can contain only a finite number of elements of Ey; if it

contained an infinite number of elements, we would have, for that row, because

of (1.3.3),
lim su l v/nos
P i Ckp l €,

in contradiction to (1.3.1).
(b) Given a fixed column (or a finite number of columns) of C, there exists
an Mg such that, for ¥ > Ms, Ey contains no element of this column (these

columns ). In fact (1.3.2) implies
mk My \ %

n

el < My = € S

en en
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hence, for Ms = M,/€", we have |c, | > €" Mf,
(Here we have supposed that € < 1; if € > 1, we set My = M,).

After these preparations there can be constructed an analytic series, the
transform of which is not analytic.

To that effect we first define, by induction, three increasing sequences of

positive integers
(M), (ki) (mi).

For the index 1 the three numbers are chosen arbitrarily. Supposing the se-
quences constructed up to the index i-1, we define the terms belonging to the

index i as follows:

1. M; > M;~, + 1, and [Remark (b)] such that
legsl < € Mft for n < n,_, and every k;
2. Mi' = (1 + "i—x)Mi +1;

3. k; = the first index > k;—,, such that the relation

n 'ki
‘ck,-n‘ > €ev . M

holds for some n (certainly > n;—,);
. k;
4. n! is such that |¢, | < €" M]™ for n > n! [Remark (a)];
; A 2
5. n; > n] and such that

o0
> leg.,l <1 (the rows being convergent).
12

n=n;
Setting now, for 0 < n < n,,
u, =0,
and, for n;-y < n < ng,
| Ckinl

(1.3.4‘) ll,n = €n - in
kin

0 when hin = 0,
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we obtain, for i > 1,

n;—1 ni—1-1

o0
lvki\ =\zckin up | > Z Ckin Un — Z lckin up | - Z .Ckinunl
n=n;—, n=o n=n;

kg

Lh; ks
>M.k‘—ni_l-/!ﬂ - 1>M";
12 l l

thus
k;
]vki| > Mt

The series (up), which is certainly analytic since

1

lup| = — or 0,
En

is transformed into the series (v, ), of which a partial sequence (vk.) is mi-
12
orized by (MFi).

The sequence (M;) tends to infinity because of
My > Mi—p + 13

therefore lim sup [vkll/k = o, which implies that (v, ) is not analytic, in

contradiction to the hypothesis. This completes the proof of Theorem 1.

1.4. Corresponding transformations. The product of two matrices of €;, ex-

ists, and belongs to €;,. The multiplication is associative:
(1.4.1) A(BC)=(A4B) C=A4ABC.

We have to show that

(1.4.2) 2 z apy by, ¢, = Z Z ay by, cyne
A v v A

We write Z lb)w cvnl =Wy, .
v

By (1.3.2) and Corollary 1 of Theorem 1, the sequence w, , (n fixed) is analytic.

Hence z
A

lagy wy,l
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is convergent. This absolute convergence of the double series of (1.4.2) implies
that the summations are invertible.

A sequence may be written as a matrix having the sequence as first column,
while the other columns contain only zeros.

Evidently it means just the same to say that the sequence is analytic, or
that the matrix belongs to €,,.

The sequence of partial sums U, of a sequence u, is obtained in transform-

ing u, by a matrix B,
(1.4‘.3) Uk =B (”’n)’

where

0 when n > k
(1.4.4) B = (bkn)’ bkn = [

1 when n < k.

Evidently B and its inverse B™! belong to €44

In €, a matrix A, regarded as a sequence-to-sequence transformation, and
a matrix C, regarded as a series-to-series transformation, may be said to be
corresponding or associated when, for each analytic series, the A-transform of
the partial sums is the sequence of partial sums of the C-transform of the series.

This correspondence is biunique. We demand indeed that
Yoo, un=v, 2a U =V ad (U,)=B (u)
should imply
(V,) = B (v,), thatis tosay, AB (up) = BC (u,),

for each analytic series )> Up .

This is equivalent to 4 B = B C, which yields

(1.4.5) A=BCB™, C=B"' 4B.

2. THE CLASSES €; AND (S@t

2.1. Definitions of the Classes. If the method (P ) of analytic continuation
is restrained to the open Mittag-Leffler star, then it will be denoted by (P¢).
Thus an analytic series Zun will be said to be summable (Pt), if the point
z=1 is situated in the Mittag-Leffler star (briefly: star) of the principal

branch of the analytic continuation of f(z) = Zu,,z".
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Definition of the class €;. €, is defined as the class of matrices trans-
forming every series that is summable (Pt), into a series summable (Pt) to the
same (Pt) sum. They thus transform a point b of the star of a function F'(z) into
the point y = 1, situated within the star of a function H(y), such that F(b) =
H(1).

We shall use the following notations:

2, = f(2) ch" yE = en(y)

Z(,’kn up z"=vk(z) ZUk(Z)yk=f(Za}’)

F(z): analytic continuation of f(z) along straight lines through the
origin [uniform principal branch, represented, for small z, by f(z)]1.
F(z,y): analytic continuation of f(z,y), with regard to ¥ (uniform principal

branch), for each fixed z.

For the geometric series we write g and G instead of f and F; thus:

g(z) = 227 G(z)=1/(0 - 2), glzy) G(zy).

Under certain conditions the behaviour of a transformation when applied to
the geometric series 2 2" admits conclusions about how it will behave in the
general case of an arbitrary analytic series. This principle is used throughout
the remainder of this paper. The conclusions on behaviour will pass from a
given domain @ of G(z) to a certain domain % of F(z), where % depends on F

and G.
Definition of % = % (F, €). We denote by

@*: the star of 1/(1 — z) (that is, the whole z-plane except [1,®] of the
real axis);

@ : an open connected domain containing z = 0, and situated within @*; it
is further supposed that for each R > 0, the part of € situated in the
circle | z| < R has a rectifiable boundary;

A% the star of F(z);

G : the border of &*;

s : a point of G;

%s: the domain symbolically defined by s . @, that is, the set of points
obtained by multiplying every point of € by a fixed s of G,
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Then  is defined as the intersection of all .. We may write symbolically
$(F,8) = 3(F,) = (s - @) (s € 6).

REMARKS. 1. If € is star-shaped, then % does not change when © is de-
fined as consisting of all boundary points of {* and an additional arbitrary set
of points exterior to {{*. Especially G may be the part of the plane complementa-
ry to %%, or, in the case of a single-valued function, the set of all singular
points.

Indeed, if p is a point exterior to 3%*, then on the segment Op there is a

singular point s, and p=r-.s, where r > 1. Hence

This implies that %p contains {5, and consequently %P has no influence on the

intersection S( %S ).

2. % is open and contains the origin (and thus is never empty). To see that
it is open, we have to show that if b belongs to % then so does a certain neigh-
borhood of b. By definition of f, the set /G is contained in @. As Gis closed,
and does not contain the origin, b/C is closed and bounded. Since © is open,
there is a certain r > 0 such that, for each s of G, the circle K(b/s,r), of
centre b/s and radius r, is in . Then § = s « @ contains in particular the set
s « K(b/s,r)=K(b,r|s|). Now let ¢ > 0 be such that 0 < |s| for each s of 6.

Then, for each s of G, K(b,r . 0) is contained in %s, and consequently in .
3. Special cases:

(a) If @ is the circle |z | < 1, then § is the circle of convergence of F(z).

(b) If @ is the half-plane %(z) < 1, then { is the Borel polygon of F(z).

(¢c) @ =@% then § = F*.

(d) If G is empty, then § is the whole plane.

Definition of the class @@z' C belongs to @@t means C transforms any series

Zun Zn = F(Z),

for each z of § = {(F, @), into a series summable (Pt), to the same (Pt) sum.
Evidently, when @ = ©* then €, becomes €,,, by (c), above.

2.2. An inclusion. Denoting by
g: a simply closed rectifiable curve, situated in @ and containing the

origin; the limit-case g = 0 is included;
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J: a domain (open, connected) in the y-plane, containing the closed interval
0,11,

we have the following result.
THEOREM 3. If
(I) € belongs to €yq,
(I1) for each g there exists a J such that G(z,v) is
(a) aregular function of y in ] for each fixed z of g,

(b) a continuous function of both variables (z,y), forz on g, y in I,

and
() G(z,1)= 1/(1-2z) for z in @,
then C belongs to @@t.

COROLLARY. Conditions (Ila,b) are in particular satisfied when G (z,v)
is regular in (@, [0,11).

Proof of the corollary. If G(z,y) is regular in (@, [0,1]), then in par-
ticular it is regular in the closed set (g, [0,1]), and consequently also in some
open domain containing (g, [0,1]). Hence it is certainly regular in (g, /) for

some J containing [0, 1], and this implies the conditions (Ila, b) of the theorem.
To prove the theorem, we first note this:

COROLLARY 3 oF THEOREM 1. If C belongs to S4,, Zun z" is analytic,
and R > 0, then the two series

(2.2.1) ZUk(Z) }’k,

(2.2.2) zCn(y) u, z"

converge absolutely, uniformly, and to the same sum f(z,y), for all z with

lz| < R, and all y of a certain neighborhood of the origin, |y| < p = p(R)

Proof. Tt follows from Theorem 1 that the double series
Z z Ckn Un 2" yk
k n

converges absolutely for |z| < R, |¥| < p(R), and this implies the corollary.

Proof of Theorem 3. Let f(z)= Zun z" [supposed continued by F(z)], and
let d be a closed Jordan curve around the origin, situated, together with its

interior, within the star of F (z).
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We obtain, for [z| < R, |y| < p:

f(z,y) = 2o, (2) y* = Zeg(y) uy 2"

1 F(x)
-2 cn(y)z"-m ‘I:i z dx]

+
xnl

F(x)

x

dx .

2ni

=L_ .Z‘L“cn(y)(%)".

When x varies on d, z/x remains bounded, say |z/x| < R’ By Corollary 3
there exists a certain p’ such that the series

n
’

ch(y)(-z-)

and (because F(x)/x is bounded on d) also the series

z\" F(x)
zcn(y)(;') x 9

are (absolutely and) uniformly convergent for all x of d and for |z| < R, jy| <

’

p .
Therefore summation and integration are permutable, and we obtain

I

1 no
flz,y) = =— ‘4 ch(y)(%) (x) dx

2mi

min (p, p") 1.

—
N
A
=
<
AN
)
I

Carrying out the summation we obtain

N

1 F
(2.2.3)  f(z,y) = — .4g(i y) =) dx (lz| <R, |yl <p™)
2mi x

’
x

We need F(z,y), the analytic continuation of f(z,y) with regard to y. We
first look for what is obtained by continuation of the integrand; that is to say,

we consider

(2.2.4) — G<i, y)

dx = H(z,y).
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We now suppose that z is a fixed point of §, and choose the curve d as follows:

As (see proof of Remark 2) z/C is closed, bounded and situated in €, it can
be included, together with the origin, in the interior of a rectifiable curve g,
entirely situated in @ (the latter domain being open). In the involutory corre-
spondence t = z/x (z fixed), g is the image of a rectifiable curve d. The segment
Oz is in the interior, © on the exterior of d (because [1, w] is exterior, while
the set z/C and the origin are interior to @). Thus d is rectifiable, includes
the segment Oz, and is situated, together with its interior, within the star of
F(z). When x describes d, then z/x = t describes g, and by hypothesis (Ila,b)
of the theorem there exists a Jsuch that G(z/x,y) = G(t,y) is regular in y and

continuous in (¢,%) (¢t on g, y in J). This is equivalent to:

z
(2.2.5) G(— y) is regular in y and continuous in (x,¥) (x on d,yin/J),

’
x

because ¢ = z/x is continuous in x on d (the origin not being on d).

As also F(x)/x is continuous on d, it may be verified that

F(x)

is regular in y and continuous in (x,y) (x on d, y in J).

(2.2.6) G(i, y) .
X

This implies the regularity of (2.2.4), that is to say:
(2.2.7) H(z,y) 1isregular, with regard to y, in J.

On the other hand, for |y| < p?, we have

z z
G(-,y) = g(—, y) ,
x x
and from (2.2.3) and (2.2.4) it follows that
f(z,y) = H(z,y) (lyl < p™).

Hence for the analytic continuation we still have the identity:

F
(2.2.8) F(z,y) = H(z,y) = 1‘ f G(i, y) (x) dx (y in J),
2 d x x

ml

and, for each point z of §, F(z,y) is regular, with regard to ¥, in J=J(2).
Using now the hypothesis that / contains the segment 0 < ¥ < 1, we have
thus established that
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(2.2.9) F(z,y)is regular in 0 < y < 1 for each fixed z of .

To complete the proof of the theorem, we have still to verify that
(2.2.10) F(z,1) = F(z) (z point of %).

Setting y = 1 in (2.2.8), and using the hypothesis (III), which implies

z z\ ! x
) b
x x x -z

we obtain

F(z,1) = 21_ S, &) e 2 Fla).

wl X — 2z

3. ASSOCIATED FuNcTIONS

3.1. A biunique correspondence. By Theorem 1 and its Corollary 3, with
each matrix of €;, is associated a function G(z,y), which, for each given
R > 0, is regular in both variables for |z| < R and |y| < p (p depending on
R). Theorem 3 has been expressed in terms of this function.

There is a biunique correspondence between the class of functions G(z,y)
regular in (0,0), and a certain class of matrices C = (¢, )s containing the

class €,,, and characterised by the condition

(3.1.1) lc, | < Pk gt (kyn = 0,1,2,++).
The cormrespondence is established by the two formulae

3.1.2) G(z,y) = > Cpn 2" yk

absolutely convergent for |z| < P71, |y| < Q7%,

1 ak"‘ﬂ
“kn = Tl A
s ni ay azn

(3.1.3) G(z,y) (z =0,y =0).

The condition of Theorem 1 may be expressed in terms of the associated

function. We then obtain:

THEOREM 4. In order that C should belong to C,,, it is necessary and
sufficient that G(z,y) be regular in (2,0) for each z.
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Proof. The necessity is implied by Theorem 1, Corollary 3.
To see that the condition is sufficient, let z be a fixed point of the z-plane.

Regular in (z,0) means regular in a certain neighborhood of (z,0), say
(z + ¢, 1), (1€l <ps [0l <p)

where p = p(2).

We take the neighborhoods half as large, thus p” = p/2. By Borel’s theorem,
the closed and bounded domain ( |z| < R, y = 0) may be covered by a finite
number of the p’ neighborhoods. Let (z]., 0), (j=1,2,+++, k), be their centers,
and p; the smallest of their radii. An arbitrary point (z,0) of the domain ( |[z]| <
R, y = 0) is situated in at least one of the covering neighborhoods, say center
z and radius p” = p'(z]- ). Hence the p” neighborhood of (z,0) is situated in
the 2p” = p neighborhood of (z]., 0), in which G(z,y) has been supposed regular.
Consequently G(z,y) is regular in

(lzl <R +pg, |yl <py),

and its Taylor series (3.1.2) is certainly absolutely convergent in
([z] <R, 1yl £0<p,).

n*1 then

From this it follows that if |u,| < R", and evidently also if |u,| < R
Zun is transformed by C into an analytic series. As R has been chosen arbi-

trarily, the proof is complete.

3.2. A corollary. If we substitute the condition of Theorem 4 for condition
(I) in Theorem 3, then this theorem is entirely expressed in terms of the as-
sociated function G(z,y). Because of its importance for applications, we ex-

plicitly state the particular case of its corollary:
THEOREM 5. If

(I) G(z,y) is regular
(a) in (z,0) for each z,
(b) ineach (z,y) of (8, 0 < y< 1), and
(I1) G(z,1) = 1(1~ z) foreach z of @,
then C belongs to &g, .

3.3. Inverse considerations. The preceding two paragraphs show that it
may offer some methodical advantages, especially for applications, if investi-

gation of matrices is replaced by investigation of their associated functions.
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Inversely we may start from functions in order to construct matrices by means
of formula (3.1.3); the theorems of this section may then be considered as ex-
amples showing how certain properties of the function yield corresponding
properties of the associated matrix.

In view of the condition G(z,1)=1/(1 - z), a particular and most simple

class of functions is obtained if we choose

1

G(z,y) = —m—— ,
3.3.1) (z,y) T2 70

as we have but to postulate #{1) =1 in order to satisfy the above condition.
If A(y) is supposed to be regular at the origin, then G(z,y) is regular in
(0,0), and the associated matrix is calculated by (3.1.3); this yields

(3.3.9) Lo o
.3. Chp = — — y)1".
n k! dk
Y

Theorems 4 and 5, applied to this class of functions, yield the following
two theorems:

THEOREM 6. In order that C should belong to Cu4, it is necessary and
sufficient that

(I k(y) is regular at the origin, and

(I1) A(0) = 0.

THEOREM 7. If h(0) =0, then the following conditions are necessary and
sufficient in order that C should belong to g, :

(I) h(y) isregularin 0 <y < 1,

(I zh(y) # 1 foreach (z,y) of (8, 0 < y < 1), and

(1) A(1) = 1.

REMARK. If @ = @%, condition (II) of Theorem 7 is equivalent to
(IT*) 0 < A(y) <1, when 0 < y < 1.

Proof of Theorem 6. The condition of Theorem 4, namely ““G(z,y) is regular
in (z,0) for each z,” is equivalent to: ““A(y) is regular at y = 0 and 22 (0) # 1
for each z”’. The second part of this latter condition is further equivalent to

ﬂlh(o) = O”‘

Proof of Theorem 7. The necessity is evident, as the conditions merely

signify that C behaves as a method of the respective class when applied to the
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geometric series Zz". As for sufficiency, the conditions (Ia), (Ib) and (II)

of Theorem 5 here are respectively equivalent to:

h(y) is regularat y = 0 and A(0) = 0;
zh(y) # 1 for each (z,y) of (G, [0,11);
(1) = 1.

4. SEQUENCE-TO-SEQUENCE TRANSFORMATIONS

4.1. A sequence equivalent of Theorem 3. Theorems 1 and 3 dealt with
series-to-series transformations C. Theorem 2, expressed in terms of sequence-
to-sequence transformations A, is equivalent to Theorem 1. We now want to
translate also Theorem 3 in terms of 4.

Let A be a sequence-to-sequence transformation of €,,, and C the corre-

sponding series-to-series transformation (in the sense of $1.4), so that from
> Chn Un = Uy
there follows

Zakﬂ Un = Vk

for each analytic series > up (we always write ug + oo +up=Us, vg + +++ +
vk = Vk )-

Preserving the notations of (2,2), we have the following:

DEFINITIONS. The statement that 4 belongs to C;; means that A transforms
the sequence of partial sums of any series summable (Pt) into the sequence
of partial sums of a series summable (P¢) to the same (P t) sum; A belongs
to @ét means that 4 transforms the sequence of partial sums of a series zu,nz”=
F(z), for each z of &= §(F, @), into the sequence of partial sums of a series
summable (P t) to the same (P t) sum.

Evidently ‘““A belongs to € (or @@t )’ is equivalent to ‘‘C belongs to €;; (or
6.0

In the case of a sequence-to-sequence transformation, the associated function
will be denoted by T (z,y), represented, for each fixed z, at the origin of the
y-plane, by

(4.1.1) T(z,y):Ztk(z)yk, where tk(z)=z;zkn z".

Using the notation @, {§, g, J of Theorem 3, we now may state its equivalent:
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THEOREM 8. If

(I) A4 belongs to €,,,
(1) for each g there exists a | such that T(z,y) is
(a) a regular function of y in | for each fixed z of g,

(b) a continuous function of both variables (z,y) forz on g,y in ],
and

() (1 -9vy). T(1,y) is
(a) regularin 0 < y < 1, and
(b) =1, fory:'l,

then A belongs to @ét .

CorOLLARY. The conditions (Ila,b) are satisfied in particular when
T(z,v) is regular at each (z,v) of (@, [0,1]).

Proofs. The corollary is identical to the corollary of Theorem 3, which has
already been proved.
As for the theorem itself, we like to prove not only that it holds but also

that it is not weaker than the corresponding Theorem 3; we shall therefore prove:

THEOREM 8a. The conditions of Theorem 8 are equivalent to those of
Theorem 3.

For this purpose there must first be found a relation between T (z,y) (as-
sociated with 4) and G (z,y) (associated with C).

Setting
1 _ zn+1
when z #£ 1
l1-2z2
Up(2) =20+ zt +eee 4 2™ =
n+1 when z =1,

chn Z" = vk(z), Vk(z) = vp(2z) + v5(2) 400+ vk(z),

we see that the correspondence between 4 and C implies

(4.1.2) Za, Up(z) =V, (2).

Calculating the left side, we obtain

nt+1 1

1-2=z
Zakn Up(z) = Zakn 7 = - Zakn-—zZalmz"

-z 1~
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=11 [tk(l)—z-tk(Z)]-

-z
Thus (4.1.2) is equivalent to

1
(4.1.3)

- [4,(1) =z 4. (2)] =V, (2) (z £ 1),

(4.1.4) Xa, (n+1)=7V, (1)
Substitution of these formulae in

Glzy) = Lo (2) vk = 2 [V, (2) = V,_ ()] ¥ = (1=9) 2V, (2) y*

yields

1 -~
G(z,y):l—__—z-Z[tk(l)-—ztk(z)] yk (z #1).

We thus have

1 -
(4.1.5) G&J)=TT1[TUJ)—ZﬂLyﬂ (z £ 1),
(4.1.6) C(Ly)=(1~-y) 2 % X (n+1)q,.

k n

The relation wanted is (4,1.5).

To prove the equivalence of the conditions of Theorems 3 and 8, we first
observe that, by Theorem 2, the condition (I) of Theorem 8 is certainly equiva-
lent to (I) of Theorem 3.

Further by (4.1.5) it is plain that if the conditions of Theorem 8 are satis-
fied, then those of Theorem 3 also are satisfied. This already establishes the
truth of Theorem 8.

To complete the proof of Theorem 8a, there remains to show: If all condi-
tions of Theorem 3 are satisfied, then conditions (II) and (III) of Theorem 8 are
satisfied.

We now suppose all conditions of Theorem 3 to be satisfied; C then belongs
to @@t .

The series

1+0+0+...=Zun, where uy = 1, up = 0 (n>1),



172 I. HELLER

which may be considered as the Taylor series of F(z) = 1, is summable (P¢)

to the sum 1, and so must be its C transform. Hence, it for this series we write
chn up = v, 2 v, vk = H(y)

then
4.1.7) H(y) isregularin [0,1], and H(1) = 1.

On the other hand we have

H(y) = Zv, yk'_'z(Vk—Vk-l) = (1 -y) X,
= (1-1y) Z(Z a, Un)yk=(1—y) %(Z a,,m)y";
k n n

thus, by (4.1.1),
(4.1.8) H(y)= (1 -y) T(Ly),

so that (4.1.7) is exactly the condition (III) of Theorem 8.

It remains to show that conditions (IIa,b) of Theorem 8 are satisfied.

It is plain that (1 —y) T(1,y) is still regular in an open domain J contain-
ing [o,1].

The conditions (Ila,b) of Theorem 8 will be satisfied if T(z,y) is replaced

by (1-y) T(1,y) (as this function does not depend on z),
or by G(z,y) (because we then obtain (Ila,b) of Theorem 3),
or by (1-2)G(z,y) (as g does not pass through z = 1),

or finally by (1-y) T(1,y) - (1-2) G(z,y) =(1-y) z T(z,y) (the e-
quality following from (4.1.5)).

Further from

G(z,y)=1/(1 -2z) when y =1,
(1-v%)T(l,y)=1 when y =1,

it follows that
(1-y)z2T(zy)=0 when y=1.

Hence z T(z,y) is regular in y wherever (1 -y) z T(z,y) is regular in y, and
the conditions (Ila,b) will be satisfied, if 7(z,y) is replaced by z T(z,y).
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Now, for z # 0, T(z,v) is regular in ¥ wherever z T(z,y) is regular in y.
Consequently the conditions (Ila,b) of Theorem 8 are certainly satisfied when
z £ 0.

For z = 0 we may calculate 7(0,y) in the same way as we did for z = 1. We

start from the series
1-1+0+0+---,

which is the Taylor series of F(z)=1~2z for z =1, and certainly summable
(Pt).
Its C transform E v,, where

Y = 2 Chn tn (= ¢4y = ¢y ),

must also be summable (Pt); that is to say, if we write z v yk = P (y), then
(4.1.9) P(y) isregularin [0,1], and P(1)=0.

On the other hand we obtain

P(y) = (1-—y)z<Zakn Un), where now U, =1, U, = 0 (n > 1).
Thus, by (4.1.1),

(4.1.10) P(y)=(1 -y) T(0,v%),

so that T(0,y) is regular in 0 <y < 1, and consequently also in an open
domain J containing [0,1]. This signifies that the conditions (Ila,b) of Theo-
rem 8 are also satisfied when z = 0, and completes the proof that all conditions

of Theorem 8 are implied by those of Theorem 3.

4.2. Sequence equivalents of other results. Finally we state the equivalents
of the formulae and theorems of $3.
The biunique correspondence between the matrices 4 of €4, and the class

of associated functions T(z,y) is given by the two formulae:

(4.2.1) t(z,y) = 2 2a, 2"y,
and
1 ak+n
(4.2.2) Y%n = T T(z,y) (z =0,y =0).

9yt zn
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T(z,y) is the analytic continuation of ¢(z,y) with respect to y, for each
fixed z.
If A = (ag,) belongs to €44, then for each R > 0 the double series is abso-

lutely convergent for

lz] <R, [y|<p=p(R).
In terms of T(z,y), Theorem 2 and Theorem 8, Corollary, respectively yield

the following two theorems.

THEOREM 9. In order that A = (a, ) of (4.2.2) should belong to €y, it is
necessary and sufficient that T (z,v), considered as a function of both vari-

ables, be regular at (z,0) for each z.

THEOREM 10. If
(1) T(z,y), as a function of two variables, is regular
(a) in (z,0) for each z, and
(b) in each (z,y)of (&8,[0,11), and
() (1-9v) T(1,y), as function of vy, is
(a) regularin0 <y < 1, and
(b) =1 when y=1,

then A belongs to @é

L
A very particular and simple class of functions T'(z,y), satisfying the condi-
tions of Theorem 8, may be obtained as follows:

Condition (IIIb), postulating
(1-9)T(l,y)=1 when y =1,
is satisfied when we place
(1 -9) T(Ly)=1;

thus
1
(4.2.3) T(l,y) = ——.
1-y

Among the functions T(z,y) satisfying (4.2.3), we may choose the special

class

T(z,y) = ——,
(4.2.4) (z,%) T35
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where we have only to postulate (1) =1 in order to obtain (4.2.3).

If h(z) is regular at the origin, then T (z,y) is regular at (0,0) and formula
(4.2.2) gives the associated matrix 4.

As for (z,y)=(0,0), we have here

1 gltn 1
T(Z,y) = =

[h(2)1%,
k! n! ayk 92" n! dz"

and the matrix A is determined by

|
S dzt

(4.2.5) [h(z)]E.

n

1 d®
n

The possibility of associating a matrix A with a function h(z) by formula

(4.2.5) was pointed out by J. Sonnenschein [1], who gave the conditions
h(1)=1, and A(z) # 1 when 2z # 1,

in order that A be consistent with analytic continuation, when applied to the

sequence of partial sums of the geometric series 2 2" and its finite linear

combinations

/\122”-}—/\222:-}---.-{.}\1)2 z:,

1

thus to series Z u,, where

unz)\1 z1+---+)\p z, (n=0,1,++).

In view of (4.2.4) we may easily verify the following two theorems, as im-
mediate applications of Theorems 9 and 10 respectively.

THEOREM 11. If h(z) is an integral function, then A belongs to C,q4.
THEOREM 12. If

(I)  h(z) is an integral function,
(I1) A(z) isnotinll,w], when z in &, and
(1) A(1)=1,

then A belongs to Cg .

Theorem 12a. [n Theorem 12 the conditions (II) and (III) are necessary.
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Proof of Theorem 11. Evidently if h(z) is regular in the whole plane then,
by (4.2.4), T(z,y) is regular when 1~ yk(z) # 0. Now let z be a fixed point.

As h(z) is bounded in any bounded region, we have

lyh(z)| < 1; consequently 1 —~ yh(z) # O in a certain neighborhood of (z,0).

Proof of Theorem 12. Condition (1) yields

yh(z) £1 (0<y<1,zin @),

which implies condition (Ib) of Theorem 10. Further A(1) =1 yields (1 ~y)x
T(1l,y) = 1, which implies (IIa,b) of Theorem 10.

Proof of Theorem 12a, For the necessity of condition (III) evidence is
obtained by application of 4 to the sequence 1,1,1, --+ , which is the sequence
of partial sums of 1 + 0+ 0+ ... . The necessity of condition (II) is verified

by application of 4 to the sequence of partial sums of the geometric series 2"
thus to the sequence

’

1-2z2 1 -2

1 - 2"t 1
£ [1—2"“] =a+ bz2" (z £1).

5. SoOME REMARKS

5.1. For applications, the class €;; = €g,, may be of more importance than
any other @@t‘ Theorems on the particular case are obtained by replacing © by
@* in Theorems 3, 5, 7, 8, 10, and 12. See also the remark following Theorem 7.

5.2. This paper is not concerned with summability. However we point out
that replacement of the domain / by an open circle |y| < r with 7 > 1 in con-
ditions and proof of Theorem 3, readily yields:

If in the conditions of either of the theorems mentioned in (5.1) the domains
[0,1] and J (containing [0,11) are replaced by

lyl <1 and |y| < (r>1)

respectively, then a transformation (C or A) satisfying the new conditions of
the theorem certainly sums Zun z" to the sum of analytic continuation, for
each z of % = {(F,@&). In Theorem 12, “4(z) is not in [1,00]’’ then is to be
replaced by ““|A(z)| < 1”° (compare proof of the same theorem).



CONTRIBUTIONS TO THE THEORY OF DIVERGENT SERIES 177

5.3. Theorem 1 characterizes the linear operations defined at any point of
the space of all analytic sequences, and can also be proved by the methods of
operator theory; however it takes some pages to establish the basic properties
of this space, after introduction of an appropriate metric (for instance |x| =
sup | %y | /7 or an only locally defined distance |x —y| = 2 (%p — yn)z] 1/2,

or the corresponding hermitian expression).
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