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1. Introduction. T. W. Chaundy [3] has given some hypergeometric identities

of which the most general is
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In this paper we give a generalisation of (1), namely,
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where (h — 0n + 1)-; means (h - &n)”! and ayy (ay)n, @y +n denote ay «-+, a, ;

(ag)p < (ay)n; and @y +1n, «++, a,+ n, respectively; and from (2), we deduce

some other identities.

2. Proof of (2). The following is a simple extension of Dr. Chaundy’s proof.
Comparing the coefficients in (2) of (ay)y/N!, we have to prove that
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Writing n = N + r, we find that this reduces to
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The term independent of x on the right is unity. It remains to be proved that

the coefficient of any positive power of x vanishes on the right, that is, when

M >0,
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in which the lowest term is xM,

This completes the formal proof of (2). The rearrangement of the infinite
series requires absolute convergence, which is secured when x is “‘sufficiently
small”’, at least for the case p= ¢ + 1, s = ¢, in which we are particularly inter-
ested.

3. A special case. If in (2) we write s=1¢, by =dj for k=1,2,-++,s, and

ey =c for k=1, ««+, q, then we obtain

ap;
3) (1-x) PFq[c ;x]
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4. Other cases, If
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then (2) and (3) reduce to simpler expressions.
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4.1. In the case p=g+1, (2) becomes

—X
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and (3) becomes
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which, for appropriate values of o, gives a relation between hypergeometric
functions of argument x and —x (1 — x)*71,

4.2. In the case ¢=1, & =1/2, ay =a, a; =2k, c=2a, (4) is summedby
Watson’s Theorem [1, p.16], and vanishes for odd powers of n. Then (6) becomes
(see [2, formula (4.22), with &+ B8 = a, & = A])

- U F a, 2h; F hya-h; —x?
- X X = ————
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and the corresponding formula (5) is
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If O(::—]_, q=2’ aIZBy Ay =7, 0’3:‘8’ €1=1+f3—% €2=1+B—8, /I’=B7

(4) can be summed by Dougall’s formula [1, p. 25],
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equation (5) becomes
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Bs ¥ 0, bs 3 ]
X
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by +n, 1+B~y+n, 1+B~8+n, B+2n;
% s+3lfs+a x|
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and (6) becomes Whipple’s formula [2, p. 250, where references are given]:
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then using Whipple’s transformation [1, p. 25],

" B’1+B/2, Y ) ’ € ) 0 ) —-n
(12) 7ﬁ6
B/2,1+B-vy,1+B-6,1+B-6 1+B-6,1+B+n

b

Q+Bn A+B=-€~0n o |1HB-y=8 &0 -n
CQ+B-n U+B=-0r T |14p-y, 14+B-8, €+60-B-n

in place of (4), we obtain
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bs +ny, 1+ 3=y +n, 1+B-056+n,
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I bp=di for k=1,ev,s, cr=14+f~y, ;=1+f-8 c3=1+f-¢
¢g =1+ (3~ 6, this reduces to
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by Bailey’s result [1, p.30, formula (1.3)],

(15)
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this becomes
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4.4. If we take 0.=0, ¢ =0 and use Vandermonde’s theorem in place of (4),

we obtain

1% bs ;
(17) s+1['s ds; x
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(bs)y (h—a)
n! (dg)n

n=0

bs +n, h+n;
x
dg + n;

(-x)" s+1Es|:

and if by =dj for k=1, ..+ s~1, by = b, d; = h this reduces to Euler’s identity,

3 a, b; h—a, by «x
(18) (1-=x) ,F " x| = ,F " — |

4.5. Multiplying (7) by (1 - x)™" and equating coefficients of x, we obtain

—h, - - (a), (2h)n
(19 3k [a > —/% n)/2] = a

a+1/2, 1-h-n C 2a), (B), ]

which is a particular case of Saalschutz’ theorem.

Similarly from (16) we get

a-2b, a/2~b+n, ~n (1 b)n (~a/2)p (1 +a/2)y (b),
(200  sf 1+a/2-2b, 1+a-b| (a/2, L +a=-b), (I+a/2-2b),

This is a special case of

(21) 3Fz{a, b, —n ] _ (e=b=-1), (e~a-1); (w+1),

e, 2+a+b-—e-n (e (e=a-b-1); (0w

’

where

(e-a-1) (e-b-1)
@ = ’

e—a-b-1

which is, in Whipple’s notation, a particular case of the relation between the
quantities Fy, (0; 4, 5) and Fp (2; 4, 5). [1, p.85; 4]. This gives a generalisation
of (16),

2, e~¢c~1, 2a—e+1, 1+ 1+6;
(22) (l—x)za 5F4 @ € ¢ ¢ ’ (/5! X
2a+c+2-e, e, 6, b3

e, 2+c+2a—e; (1-x)?

a, a+1/2, ¢ ; —4x
= 3F2 ’

where 6, ¢ are the roots of m?—2am+ (e —c—1) (2a + 1 — e) = 0. Comparing
with (14), we have
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e—0-1,1+¢, e—c—1, —n (e (2a - P)p
20 -0, e, p+e—c—2a-n N (e)y 1+ 2a—cp—e+c)y )

(23) 4F5

This is a generalisation of (15); we obtain (15), (16) from (22), (23) by taking
a=(a-2b)/4, c=a-2b, e=l+a-b, O=-b, ¢=a/2,

[ should like to take this opportunity of thanking Dr. Chaundy for many
kindnesses and especially for allowing me to see his most recent paper before

it was published.
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