ON BROWNIAN MOTION IN A HOMOGENEOUS RIEEMANNIAN SPACE

Kosaku Yosida
ON BROWNIAN MOTION IN A HOMOGENEOUS RIEMANNIAN SPACE

Kôsaku Yosida

1. Introduction. Let R be an n-dimensional, orientable, infinitely differentiable Riemannian space such that the group G of isometric transformations S^* of R onto R constitutes a Lie group transitive on R. Consider a temporally homogeneous Markoff process in R, and let $P(t, x, E)$ be the transition probability that the point $x \in R$ is, by this process, transferred into a Borel set $E \subseteq R$ after the lapse of t units of time, $t > 0$. We assume that $P(t, x, E)$ is, for fixed (t, x), countably additive for Borel sets E and, for fixed (t, E), Borel measurable in x. Then we must have the probability condition

$$P(t, x, E) \geq 0, \quad P(t, x, R) = 1,$$

and Smoluchowski's equation

$$P(t + s, x, E) = \int_R P(t, x, dy) P(s, y, E) \quad (t, s > 0).$$

We further assume that the process is spatially homogeneous:

$$P(t, x, E) = P(t, S^*x, S^*E) \quad \text{for every } S^* \in G.$$

The purpose of the present note is to prove the following:

Theorem 1. Let x_0 be any point of R and assume that the Lie subgroup \{ $S^* \in G; S^*x_0 = x_0$ \} of G is compact1. Let us denote by $d(x, y)$ the distance of two points $x, y \in R$. Then the continuity condition:

$$\lim_{t \to 0^+} \frac{1}{t} \int_{d(x, y) > \varepsilon} P(t, x, dy) = 0 \quad \text{for any } \quad \varepsilon > 0,$$

implies the condition of Lindeberg's type:

1At first, this condition was overlooked. Mr. Seizô Itô kindly remarked that this condition is necessary for the convergence of the integral (2.11) below.

Received August 30, 1951.

Pacific J. Math. 2 (1952), 263-270

263
From this theorem we may deduce:

Theorem 2. The finite limits \((x = (x^1, x^2, \ldots, x^n))\)

\[
(1.6) \quad a^i(x) = \lim_{t \to 0^+} \frac{1}{t} \int_{R} (y^i - x^i) P(t, x, dy),
\]

\[
(1.7) \quad b^{ij}(x) = \lim_{t \to 0^+} \frac{1}{t} \int_{R} (y^i - x^i)(y^j - x^j) P(t, x, dy)
\]

exist, independently of the sufficiently small \(\varepsilon > 0\). Moreover, if a real-valued function \(f_0(x)\) be such that \(f_0(x), \frac{\partial f_0}{\partial x^i}, \frac{\partial^2 f_0}{\partial x^i \partial x^j}\) are bounded and uniformly continuous on \(R\), then

\[
(1.8) \quad \lim_{t \to 0^+} \frac{1}{t} \left(\int_{R} f_0(y) P(t, x, dy) - f_0(x) \right) = a^i(x) \frac{\partial f_0}{\partial x^i} + b^{ij}(x) \frac{\partial^2 f_0}{\partial x^i \partial x^j}.
\]

Remark. In the literature \([4; 2; 6]\), (1.8) is derived by assuming the condition of Lindeberg’s type:

\[
(1.5)' \quad \lim_{t \to 0^+} \frac{1}{t} \left(\int_{R} d(x, y)^3 P(t, x, dy)/ \int_{R} d(x, y)^2 P(t, x, dy) \right) = 0
\]

and some differentiability hypothesis concerning \(P(t, x, E)\). Considering the Brownian motion on the real line, Seizô Itô raised the question whether, under the condition of the spatial homogeneity (1.3), “the (almost sure) continuity of the sample motions of the temporally homogeneous Markoff process” which is equivalent to the continuity condition (1.4), would be sufficient to derive Theorem 2. And he proved Theorem 2 in the special case where \(R = G\) and \(G\) is a maximally almost periodic Lie group. The present note gives an extension of his result to general homogeneous space, without the hypothesis of the maximal almost periodicity of the group \(G\) of motions of the space \(R\). Thus we may define the Brownian motions in a homogeneous Riemannian space \(R\) as temporally and spatially homogeneous Markoff processes satisfying the condition (1.4) of continuity.

2. **Preliminaries.** Let us denote by \(C(R)\) the totality of real-valued bounded functions \(f(x)\) on \(R\) which are uniformly continuous on \(R\). The space \(C(R)\) is a Banach space by the norm
(2.1) \[||f|| = \sup_x |f(x)|. \]

We define, for any \(f \in C(\mathbb{R}) \),

\[(T_t f)(x) = \int_\mathbb{R} P(t, x, dy) f(y); \]

then we have, by (1.1),

\[\sup_x |(T_t f)(x)| \leq \sup_x |f(x)|. \]

We have, by (1.3),

\[(T_t f)(S^* x) = \int_\mathbb{R} P(t, S^* x, dy) f(y) = \int_\mathbb{R} P[t, S^* x, d(S^* y)] f(S^* y) = \int_\mathbb{R} P(t, x, dy) f(S^* y), \]

and hence the commutativity

\[T_t S = ST_t, \]

where \(S \) is defined by

\[(Sf)(x) = f(S^* x), \quad S^* \in G. \]

Thus, if \(S^* \in G \) be such that \(S^* x = x' \), we have

\[(T_t f)(x) - (T_t f)(x') = (T_t f)(x) - (ST_t f)(x) = T_t(f - Sf)(x). \]

By the uniform continuity of \(f(x) \), and by (2.3) and (2.6), we see that \((T_t f)(x) \) is bounded and uniformly continuous in \(x \). Hence \(T_t \) defines a bounded linear transformation on \(C(\mathbb{R}) \) into \(C(\mathbb{R}) \) such that

\[||T_t|| = \sup_{\|f\| = 1} ||T_t f|| = 1. \]

We have, from (1.2),

\[T_{t+s} = T_t T_s \quad (t, s > 0). \]

We have also, from (1.1),

\[(T_t f)(x) - f(x) = \int_\mathbb{R} P(t, x, dy) [f(y) - f(x)] \]

\[= \int_{d(x, y) \leq \epsilon} P(t, x, dy) [f(y) - f(x)] + \int_{d(x, y) \geq \epsilon} P(t, x, dy) [f(y) - f(x)]. \]
Thus, in view of conditions (1.4) and (1.1), and the uniform continuity of \(f(x) \), we have

\[
(2.9) \quad \lim_{t \to 0^+} (T_t f)(x) = f(x) \quad \text{boundedly in } x.
\]

Hence \(T_t \) is weakly continuous in \(t \), and therefore, by (2.8) and N. Dunford's theorem [1], \(T_t \) is strongly continuous in \(t \) and

\[
(2.9') \quad \lim_{t \to 0^+} T_t f = f; \text{ that is, } \lim_{t \to 0^+} \| T_t f - f \| = 0.
\]

Therefore we may apply the theory [3; 5] of one-parameter semigroups of bounded linear operators to the semigroup \(\{T_t\} \). In particular, we have the result:

\[
(2.10) \quad \lim_{t \to 0^+} (T_t f - f)/t = Af \text{ exists, for those } f \text{ which constitute a linear subset } D(A) \text{ of } C(R) \text{ which is dense in } C(R). \text{ Moreover, } A \text{ is a closed linear operator defined on } D(A) \subseteq C(R) \text{ with values in } C(R).
\]

Lemma. Let \(g(x) \in C(R) \) vanish outside a compact set. Then the convolution

\[
(2.11) \quad (f \ast g)(x) = \int_G f(S_y x) g(S_y x_0) \, dy
\]

belongs to \(D(A) \) if \(f \) belongs to \(D(A) \). Here \(S_y^* \) is a general element of \(G \), \(dy \) is a right invariant Haar measure of \(G \), and \(x_0 \) is any fixed point of \(R \).

Proof. The integral may be approximated by the Riemann sum

\[
(2.12) \quad \sum_{i=1}^{m} f(S_{y_i}^* x_i) c_i
\]

uniformly in \(x \). This we see by the uniform continuity of \(f(x) \) and the fact that \(g(x) \) vanishes outside a compact set. We know, from (2.4), that \(A \) is commutative with every \(S_y \):

\[
(2.13) \quad f \in D(A) \text{ implies } S_y f \in D(A) \text{ and } S_y Af = AS_y f.
\]

Hence (2.12) belongs to \(D(A) \), and we have

\[
(2.14) \quad A \left(\sum_{i=1}^{m} f(S_{y_i}^* x_i) c_i \right) = A \left(\sum_{i=1}^{m} (S_{y_i} f)(x) c_i \right) = \sum_{i=1}^{m} (S_{y_i} h)(x) c_i,
\]

where \(h = Af \). Therefore, since \(h \in C(R) \), we see that (2.14) converges, when
m \to \infty$, to a function $\in C(R)$ uniformly in x. Since A is a closed operator, we must have $(f \otimes g)(x) \in D(A)$.

Corollary 1. The convolution $(f \otimes g)(x)$ is infinitely differentiable if $g(x)$ is infinitely differentiable.

Proof. It is possible, for sufficiently small $d(x, x_0)$, to choose $S^*(x) \in G$ such that

$$(2.15) \quad S^*(x)x = x_0 \quad \text{and} \quad S^*(x)x_0 \quad \text{depends analytically on} \quad x^1, \ldots, x^n.$$

This we see from the fact that the set $\{S^*_y \in G; S^*_y x = x_0\}$ forms an analytic submanifold of G; it is one of the cosets of G with respect to the Lie subgroup $\{S^*_y \in G; S^*_y x_0 = x_0\}$. Hence, by the right invariance of $d\gamma$, we have

$$(2.16) \quad (f \otimes g)(x) = \int_G f(S^*_y S^*(x)x)(g(S^*_y S^*(x)x_0)) \, d\gamma$$

The right side is infinitely differentiable in the vicinity of x_0, and

$$(2.17) \quad \frac{\partial^{q_1 + \cdots + q_n}(f \otimes g)(x)}{\partial (x^1)^{q_1} \cdots \partial (x^n)^{q_n}} = \int_G f(S^*_y x_0) \frac{\partial^{q_1 + \cdots + q_n}(S^*_y S^*(x)x_0)}{\partial (x^1)^{q_1} \cdots \partial (x^n)^{q_n}} \, d\gamma$$

belongs to $C(R)$.

Corollary 2. (i) There exist infinitely differentiable functions $F^1(x), F^2(x), \ldots, F^n(x) \in D(A)$ such that the Jacobian

$$(2.18) \quad \frac{\partial(F^1(x), \ldots, F^n(x))}{\partial (x^1, \ldots, x^n)} \quad \text{does not vanish at} \quad x = x_0.$$

(ii) There exists an infinitely differentiable function $F_0(x) \in D(A)$ such that

$$(2.19) \quad (x^i - x^i_0)(x^j - x^j_0) \frac{\partial^2 F}{\partial x^i_0 \partial x^j_0} \geq \sum_{i=1}^n (x^i - x^i_0)^2.$$

Proof. In (2.16), f belongs to $D(A)$, which is dense in $C(R)$; and $g(x) \in C(R)$.
is arbitrary except that \(g(x) \) must vanish outside a compact set. Thus, by taking
\(F(x) = (f \otimes g)(x) \) suitably, we may prove (i) and (ii).

3. Proof of Theorem 1. Because of their functional independence, we may take \(F^1(x), \ldots, F^n(x) \) as local coordinates of the points \(x \) which satisfy \(d(x, x_0) < \varepsilon \) for sufficiently small \(\varepsilon > 0 \). Since \(F^i(x) \in D(A) \),

\[
(3.1) \quad \text{a finite limit } \lim_{t \to 0^+} \frac{1}{t} \int_R (F^i(x) - F^i(x_0)) P(t, x_0, dx) \text{ exists } \quad (i = 1, \ldots, n).
\]

Because of (1.4), this limit is equal to

\[
(3.1)' \quad \lim_{t \to 0^+} \frac{1}{t} \int d(x, x_0) \leq \varepsilon (F^i(x) - F^i(x_0)) P(t, x, dx),
\]

independently of the positive constant \(\varepsilon \). We shall denote these new local co-
ordinates \(F^1(x), F^2(x), \ldots, F^n(x) \) by the letters \(x^1, x^2, \ldots, x^n \). Then

\[
(3.1)'' \quad \lim_{t \to 0^+} \frac{1}{t} \int (x^i - x^i_0) P(t, x, dx) = a^i(x_0) \text{ exists }
\]

\[
(i = 1, \ldots, n),
\]

independently of \(\varepsilon > 0 \). The function \(F_0(x) \) belongs to \(D(A) \); hence, by (1.4),

\[
(3.2) \quad (AF_0)(x_0) = \lim_{t \to 0^+} \frac{1}{t} \int d(x, x_0) \leq \varepsilon (F_0(x) - F_0(x_0)) P(t, x_0, dx),
\]

independently of \(\varepsilon > 0 \). This limit is equal to

\[
\lim_{t \to 0^+} \left[\frac{1}{t} \int (x^i - x^i_0) \frac{\partial F_0}{\partial x^i_0} P(t, x_0, dx) + \frac{1}{t} \int (x^i - x^i_0) (x^j - x^j_0) \left(\frac{\partial^2 F_0}{\partial x^i \partial x^j} \right)_{x = x_0 + \theta(x - x_0)} P(t, x_0, dx) \right] = 0 < \theta < 1.
\]

The first term in \([] \) has the limit

\[
a^i(x_0) \frac{\partial F_0}{\partial x^i_0},
\]
and hence the second term has a limit. Thus, by virtue of (1.1) and (2.19),

\[
\lim_{t \to 0^+} \frac{1}{t} \int d(x, x_0) \leq \epsilon \sum_{i=1}^{n} (x^i - x_0^i)^2 P(t, x_0, dx) < \infty.
\]

Hence, by (1.1) and Schwarz’s inequality,

\[
\frac{1}{t} \int (x^i - x_0^i) (x^j - x_0^j) P(t, x_0, dx) \text{ is bounded in } t > 0.
\]

Therefore, by (1.4), we obtain (1.5).

4. Proof of Theorem 2. Since \(c_{ij}(\epsilon) \) is of order \(\epsilon \), we have

\[
\frac{1}{t} \int (x^i - x_0^i) (x^j - x_0^j) P(t, x_0, dx) \frac{\partial f_0}{\partial x_0^i} \frac{\partial^2 f_0}{\partial x_0^j} \frac{\partial f_0}{\partial x_0^j}
\]

\[
+ \frac{1}{t} \int (x^i - x_0^i) (x^j - x_0^j) c_{ij}(\epsilon) P(t, x_0, dx)
\]

\[
+ \frac{1}{t} \int (f_0(x) - f_0(x_0)) P(t, x_0, dx)
\]

\[
= I_1(t, \epsilon) + I_2(t, \epsilon) + I_3(t, \epsilon) + I_4(t, \epsilon).
\]

Now

\[
\lim_{t \to 0^+} I_1(t, \epsilon) = a^i(x_0) \frac{\partial f_0}{\partial x_0^i} \text{ by (3.1)''; } \lim_{\epsilon \to 0^+} I_3(t, \epsilon) = 0 \text{ by (3.4)};
\]

\[
\lim_{t \to 0^+} I_4(t, \epsilon) = 0 \text{ by (1.4)}.
\]

On the other hand, by (1.4) and (3.4), the finite limits

\[
\lim_{t \to 0^+} \frac{1}{t} \int d(x, x_0) \leq \epsilon (x^i - x_0^i) (x^j - x_0^j) P(t, x_0, dx) = b_{1i}(x_0),
\]

\[
\lim_{t \to 0^+} \frac{1}{t} \int d(x, x_0) \leq \epsilon (x^i - x_0^i) (x^j - x_0^j) P(t, x_0, dx) = b_{2i}(x_0)
\]
exist and are independent of $\varepsilon > 0$. Let us, in place of $f_0(x)$, take $F_0(x)$ of the form $(f \otimes g)(x)$. We may choose $F_0(x)$ such that $\partial F_0/\partial x^i_0 \partial x^j_0$ assumes values arbitrarily near to given constants $\alpha_{ij}(i, j = 1, \ldots, n)$. Thus, by (4.1) and (4.2) and the fact $F_0(x) \in D(\Lambda)$, we see that $b^{ij}_1(x_0)$ must be equal to $b^{ij}_2(x_0)$. Hence (1.7) is proved.

Therefore, by (1.4), (3.1)**, and (4.2), we obtain (1.8).

References

Mathematical Institute,
Nagoya University.
Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any of the editors. All other communications to the editors should be addressed to the managing editor, E. F. Beckenbach, at the address given above.

Authors are entitled to receive 100 free reprints of their published papers and may obtain additional copies at cost.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December, by the University of California, Berkeley 4, California. The price per volume (4 numbers) is $8.00; single issues, $2.50. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues, $1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to the publishers, University of California Press, Berkeley 4, California.

Printed at Ann Arbor, Michigan. Entered as second class matter at the Post Office, Berkeley, California.

UNIVERSITY OF CALIFORNIA PRESS • BERKELEY AND LOS ANGELES

COPYRIGHT 1952 BY PACIFIC JOURNAL OF MATHEMATICS
L. Carlitz, *Some theorems on Bernoulli numbers of higher order* 127
Watson Bryan Fulks, *On the boundary values of solutions of the heat equation* .. 141
John W. Green, *On the level surfaces of potentials of masses with fixed center of gravity* .. 147
Isidore Heller, *Contributions to the theory of divergent series* 153
Melvin Henriksen, *On the ideal structure of the ring of entire functions* 179
James Richard Jackson, *Some theorems concerning absolute neighborhood retracts* .. 185
Everett H. Larguier, *Homology bases with applications to local connectedness* .. 191
Janet McDonald, *Davis’s canonical pencils of lines* 209
J. D. Niblett, *Some hypergeometric identities* 219
Elmer Edwin Osborne, *On matrices having the same characteristic equation* .. 227
Robert Steinberg and Raymond Moos Redheffer, *Analytic proof of the Lindemann theorem* .. 231
Edward Silverman, *Set functions associated with Lebesgue area* 243
James G. Wendel, *Left centralizers and isomorphisms of group algebras* 251
Kosaku Yosida, *On Brownian motion in a homogeneous Riemannian space* .. 263