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1. Introduction. Oscillation theorems for the solutions of the equation

d K()dy] G 0
dx * dx 1~ (x)y = 0.

are classical. It is the purpose of this paper to develop theorems of a similar

nature for a class of equations of the type
d[K()dy] G(x)y = 4(x)
7 iy R

It will be assumed that over an interval X: a < x < b (b > a), the functions
K(x), G(x), and A(x) are continuous. All quantities used are assumed to be
real. Primes will be used to indicate derivatives with respect to x.

Use will be made of the following lemma which gives a modified form of

properties of the second-order linear homogeneous equation developed by W. M.

Whyburn [3, pp. 633-634].

LEMMA 1. Let y(x), a solution of (Ky”)’~ Gy = 0 over X, have the m zeros
Tiyooe st (m > 2) on X. Let the inequalities K > 0, G < 0 hold, and let GK
be a nonincreasing function of x on X. If A is nonvanishing except possibly at

a, and for x > a either one of the following is true over X:

(a) 4 > 0and A4/G is a strictly decreasing function of x,
(b) A4 < 0and A/G is a strictly increasing function of x,

then
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In order to prove this lemma one needs only to make straightforward modi-

fications in the arguments given by Whyburn.

LEMMA 2. Under the hypotheses of Lemma 1, the zeros of
x
F(x) = ‘L‘ A(t)y(t)de

and y(x) separate each other on a < x < b.

This result, which also was given by Whyburn, is an immediate consequence

of Lemma 1.

LEMMA 3. Let u(x) be any solutmn of the system (Ky’) -= Gy =0, y(b) =
Under the hypotheses of Lemma 1, f A(t)u(t)dt does not vanish in a < x <
b.

Proof. If u(x) has no zero except b on X, the conclusion is obvious. Other-
wise, by Lemma 1, if g is the last zero of u(x) on X preceding b, then the
integral j A(t)u(t)dt has the sign of j A(t)u(t)d.

For the sake of brevity we shall henceforth let (H) represent the following

set of conditions on X.

(1) K(x) >0, G(x) < 0.

(2) K(x)G(x) is a nonincreasing function of x.

(3) Either one of the following is true:

(H)3 (i) B <0, A(x)> 0 for x > a and A(x)/G(x) is a strictly de-
creasing function of x.

(ii) B>0, A(x) <0 for x > a and 4(x)/G(x) is a strictly in-

creasing function of x.

Let u;(x) be any solution of (Ky”)’~ Gy = 0 such that u,(b) = 0. Choose
another solution u,(x) such that K(u,u{ —uju;) =1 on X. As a final pre-

liminary result we have the following:

LEMMA 4. Under the hypotheses (H) if B # 0, then

B
“2(b)

f A(t)uy (t)de > 0

overa < x < b.

Proof. By Lemma 3, 4b A(t)u, (t)dt has the same sign over a < x < b as
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fb A(t)u,(t)dt, where 9 is the last zero of u;(x) on @ < x < b (or where
qf‘f= a if u;(x) has no such zero). From K(u,u{ — uju, ) = 1 we obtain 1/u, (b)=

K(b)ui(b). Hence

B
uy(b)

fq” A(t)u, (t)dt = K(b) qub [BA)Iu{(b)u(t)]dt
f

and this latter expression is positive since the integrand is the product of two

negative quantities.

Hereafter free use will be made of the facts that any solution of (Ky’)" -
Gy = 0 can have onlya finite number of zeros on X and that, under the hypothesis

GK < 0, the zeros of any two linearly independent solutions separate each other.

2. Oscillation theorems. Let y,(x) be any solution of (Ky’)' - Gy=4
over X which satisfies the condition y(b)= 8. Then y,(x) can be expressed
in the form

yi(x)=cu(x)+ up (%) + uy (%) fa"A(z)uz(z)dt

uy(b)

+ uy (%) ‘!c'b A(t)u,(t)dt,

where u,(x) and u,(x) are as in Lemma 4, and c is a constant. We shall prove

the following result.

THEOREM 1. Under the hypotheses (H) the zeros of y,(x) and u,(x) sepa-
rate each other on a < x < b.

[If B # O the restriction that 4/G be strictly increasing or decreasing may
be modified to the extent of allowing A/G to be a monotone increasing or de-
creasing function. Under the modified hypotheses it can be shown that

B
uz(b)

4” A(t)uy(e)de > 0,

and since B/u,(b) is not zero the proof of the theorem is still valid.]

Proof. The functions y,(x) and u,(x) cannot vanish simultaneously on X

except at b; for, letting g be a zero of y,(x) and u,(x) one obtains

¥1(q) = uy(q) [jq” A(e)uy(2)de + Bluy(B)| = 0.



284 LEONARD P. BURTON

This is impossible since u,(q) # 0 and, by Lemmas 3 (if B8 = 0) and 4 (if
B # 0), the expression in brackets never vanishes.

Suppose now that g and ¢° # b, (¢ < q”), are consecutive zeros of u;(x),
and that y,(x) does not vanish at any point of ¢ < x < ¢’. Then, by Rolle’s
Theorem, [u,(x)/y,(%)]’ must vanish at least once in this interval. But

[ ul(x)] o LA w @)+ B/ Tuy(5)]

yi(x) K(x)yf(x)

and, as above, this expression never vanishes.
In a similar manner it can be shown that between two consecutive zeros of

y1 (%), u;(x) must vanish at least once.

COROLLARY 1. If B # 0, the zeros of y,(x) and uy(x) separate each other
ona<x <b

Proof. 1f B # 0, the above argument is valid with ¢* = b.

COROLLARY 2. If u;(x) has m zeros on X, then y,(x) has either m -1,

m, orm + 1 zeros on X.

Proof. Let qo be the first zero of u;(x) on X and gf be the last zero of
uy(x) preceding b; y;(x) may or may not have a zero in a < x < gq. In the
interval go < x < 9> y1(x) has exactly m — 2 zeros. If 8 # 0, then y;(x) has
exactly one zero in g < x < b by Corollary 1. If 8 =0, y,(x) may or may not
vanish in g <x< b. (See Theorem 4.)

The next theorem is applicable only if the system (Ky’) -~ Gy =0, y(a)=
y(b)=0 is incompatible. In this case (i) one can select linearly independent
solutions u;(x) and u,(x) of (Ky’)’ — Gy = 0 such that u;(b) =u,(a) =0 and
K(uyuf{ —usu;) = 1 on X and (ii) the nonhomogeneous system (Ky”)" - Gy = 4,
y(a) =0, y(b)= B has a solution, say y,(x). We then have the following result.

THEOREM 2. Let the hypotheses (H) be satisfied. Assume that u,(x)
oscillates on X, and let a = py, py, «++, pm (m > 3) be its consecutive zeros.
Then, for i #1, y,(p;)# 0 and either y,(x) has two zeros in (p;, p;,,) and
none in (pi“, p“z) (2 < i < m=-2), or vice versa. In the interval a < x < p,,
y,(x) has either no zero or one zero. In the former case it has two zeros in
(p,s P3)s in the latter case it has no zero in (p,, p, ). If y2(x) has two zeros

in (P, s Py )s it has no zero inp, < x < b.

Proof. The function y,(x) can be expressed in the form
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yy(x) = ul®) + 1 (2) [ A w0k + ug(x) 4” A(t)uy(e) de.

uy(b)

If y,(x) has three or more zeros in (p;, p;,,) (2 < i < m - 1), Theorem 1
requires that u,(x) have more than one zero in that interval; this is impossible
since the zeros of u,(x) and u,(x) separate each other. Also, y,(x) cannot
have a single zero in (p;, p;,,) (2 < i < m — 1), for then y,(p; )y2(p;4,) <O
and such a product is always positive. To see this, notice that

ya(pi) = wa(pi) [7 A(D)uy(0)de = w(pi) F(pi),

where F(x)= j‘;x A(t)uy(t)dt as in Lemma 2. Since the zeros of both u;(x)
and F(x) separate those of u,(x), the product u;(p;)F(p;) (2 < i < m) is
consistently positive or negative. Thus y,(p;)y2(p;,) > 0(2 < i < m ~1).

The function u,(x) has a zero in each of (p;, pi+1) and (p;, > P;4,) (1 2
i < m - 2). By Theorem 1, y,(x) must have a zero in (p;, p;;,). If y,(x)
has no zero in (pj, p;,, ), it must have one, and therefore two, in (p;, ., p;4,)-
Now assume that y,(x) has two zeros in (p;, p;4 ). If ¥2(x) also has two zeros
in (pi“, p“z), then u, (x) must have three zeros in (p;, Pi+, ); but this is
impossible. Hence y;(x) has no zero in (p;;,, p;4,)-

This same type of argument can be used to prove the part of the theorem
pertaining to the interval ¢ < x < p, and the interval p,, < x < b.

REMARK. Theorems 1 and 2 are not true in case 8 # 0 without the re-
striction B4 (x) < 0, x > a. This is shown by the example

1 ‘ -
(';}") +xy=_x3, y(0)=0, y(\/9n)=_977,

Here BA(x)=97x3 > 0 on 0 < x < \/9n. The solution of the given systemis
y (x) = -x2, which does not oscillate. However, each of u,(x) =~ cos (x%/2),
uy(x) = sin (x?/2) has five zeros on 0 < x < /97,

3. Application to a system involving a parameter. It will now be supposed
that K, G, and A are continuous functions of (x, A) when a < x < b, A, <
A < A,. The system

[K(x, M)y’ = G(x, A)y =0, y(a,A) =0, y(b, ) =0,

is a system of Sturmian type. Let K and G satisfy conditions sufficient to assure
the validity of known oscillation theorems for this system [1, p.66] to the
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extent that there exists an infinite set of characteristic numbers \;, A; < Ay <

vee < Ay < oo+ < A,, having no limit point except A,, and such that if u,, is the

characteristic function corresponding to A, then u, has m zeros in @ < x < b.
Let v,(x, A) be the solution of

[K(x, M)yl = G(%, M)y =0

satisfying the initial conditions v,(a, A) = 0, v3(a, A) = o, where o is a posi-
tive constant. By the fundamental existence theorem [1, p.7], v,(x, A) is a
continuous function of x and A. It is well known [2, pp. 229, 232] that as A in-
creases from A; a new zero of v,(x, A\) appears at b for A=\; (i=0,1, +++),
and that each such zero moves continuously towards @ as M increases continu-
ously.

For each A, let v;(x, A) be a solution of
[K(x, M)yl = G(x, M)y =0

satisfying the condition v;(b, A)=0. If A=X; (i=0, 1, «++), vy (%, A) is simply
a constant multiple of v,(x, A). For A # XA;, vy (%, A) and v,(x, A) are linearly
independent. It follows that on X, for A < Ay, v;(x, A) has a zero only at &;
for Ay < A < Apey (m=0,1,+++), v,(x, \) has m + 2 zeros. Theorem 1 and
its corollaries apply to give the following result.

THEOREM 3. Let the system
[K(x, M)yl = G(x, M)y =A4(x, 2), y(b, 1) = B(A),

for each fixed X in (A, A,), satisfy the hypotheses (H). Let y,(x, ) be a
solution. Over X: a < x < b, if

B(N) # 0 and A < )y, then y;(x, A) has either no zero or one zero,
A= Ap (m > 0), then y,(x, L) has m + 1 zeros,

Amn <A< Ap4y (m > 0), then yy(x, A) has m + 1

orm+ 2 zeros;
B(\) = 0and A < Xy, then y,(x, \) has either one zero or two zeros,
A=Ay (m > 0), then y;(x, A) has m + 1 or m + 2 zeros,

Am < A < Ap+y (m > 0) then y(x, A) has m + 1, m + 2,

or m + 3 zeros.
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COROLLARY. As A increases in (A, A;) the number of zeros of the so-
lutions y,(x, A) increases indefinitely.

Interesting and more precise results can be obtained in connection with the

two-point system

[K(x, A)y’]' - G(x, )\))’ = A(x’ )\)’
(S,)
y(a, A) = 0) y(b9 )‘-) = O’

where K, G, A conform to the hypotheses (H) for each fixed A in (A, A, ). I
A=) (¢=0,1,.-+), then (S,) is of course incompatible. Otherwise, for each
)\ one can choose v; (x, \) such that

1

b = U { b’ = ’
vy (b, 1) = 0, v{ (b, \) K(5, ) og(b, 1)

so that
K(x, M) [vy(=, M) vf (%, A) = v3 (%, M) vy(x, A)]

= K(b, M) [vp(b, M) vf (5, M) ] =1

on X. It follows that v;(a, A)=~-1/[0K(a, )] is negative for all \.
The solution of (S)\) can be expressed as

y2(x’ A) = vl(xQ A) ‘/ax A(t, A)‘Uz(t, )\)dt

+ vy(x, A) fx”A(t, A) v, (2, \)de.

We now consider an interval Lp: A, < A < A+, and let Xy represent the
interval @ < x < b. For a fixed A in L,, each of v,(x, \) and v,(x, \) has
m+ 1 zeros on Xy. For the sake of definiteness let 4(x, A) be positive over
XoLp,; and let m be odd so that, for A in Ly, v,(x, A) and v,(x, ) each has
an even number, m + 1, of zeros in X,. Then v{ (b, A) > 0 and, by virtue of

Lemma 3,
, b
y3(a,A) = o L‘ A(t, Mo, (t A)de

is negative, Let qf()\) represent the last zero of v,(x, \) preceding b. By The-
orem 1 it follows that yz[qf(A), M1 is positive over L,. However, y; (b, \) is



288 LEONARD P. BURTON

negative for )\ sufficiently close to A, positive for A sufficiently close to

Am+1s because
. . b
y2 (b A) = o] (b, A) [ A5, M)wy(s, N,
and by Lemma 3
b b
L7 A6 M) vy (8, A )de < 0 and fa Aty At 1) v2(y Ams 1) d2 > 0.

Since y,(x, A) is a continuous function of (x, \) over XL, [1, p. 114], it follows
that there exist €, > 0 and €4+, > O such that for A"~ \,, < €, and A4, -
A’ < €n+1s ¥Y2(x, 1) has no zero in qf()t') < x < b, and y,(x, A”) has one
zero in qf()\") <x<b

A similar argument can be made in case m is even or in case 4 (x, \) is

negative over X,. This proves the following result.

THEOREM 4. Let (S,) satisfy the hypotheses (H) for each X in (A, A;).
On Xy, ¥52(x, \) has m zeros for A sufficiently close to Ay, m + 1 zeros for A
sufficiently close to Appyy (m=0,1, 2, +++).

Letting po(A) be the first zero of v,(x, A) to the right of a, one readily

sees that

yalpo(A), A1 = o, Lpo(A) A1 [5Y A(e, M)y, M) de

is positive or negative according as 4 is positive or negative. If 4 > 0, then
y5(a, M) =0 ‘L.b A(t, M) v (¢ M) dt is positive or negative over L, according
as m is even or odd. f 4 < 0, y; (@, \) is negative or positive over L, accord-
ing as m is even or odd. If one uses these relations as well as Theorem 1 and
Theorem 2 to sketch graphically several typical cases, he obtains a striking
illustration of the effect of the discontinuities of the function y,(x, A) at the
characteristic values of A. Finally, one may observe that, regardless of the
sign of 4, for an even value of m the first zero of v,(x, A) on @ < x < b pre-
cedes the first zero of y,(x, A), and for an odd value of m the opposite is the

case.
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