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ON ALGEBRAS WHOSE FACTOR ALGEBRAS ARE BOOLEAN

J. M. G. FELL AND ALFRED TARSKI

1. Introduction.1 We consider an algebraic system 2Ϊ = {A, +) constituted

by an arbitrary set A and a binary operation +. The set A is assumed to be

closed under +, and to contain a (uniquely determined) zero element, that is, an

element 0 such that

for every x in A. We shall refer to such a system simply as an algebra. By a

subalgebra B of ?I we understand an arbitrary subset of A which is closed under

+ and contains 0 as an element.

For two subalgebras B and C, a function /, whose domain includes (but does

not necessarily coincide with) B and which maps B onto a subset of C in such

a way that

for all bl9 b2 in B, is called as usual a (B, C) -homomorphism; if in addition / i s

biunique on B, and maps B onto the whole of C, it is called a (B, C)-iso-

morphism.

A relation R holding between certain pairs of elements of A is called a

congruence relation over 21 if (i) R is an equivalence relation whose field is

A, and (ii) (α + b) /?(α' + b') whenever α/?α'and bRb'; here we have expressed

symbolically by cRd the statement that R holds between the elements c and d.

Suppose that R is a congruence relation over 21. For each element a of A, the

coset of a under R, in symbols a/R, will be defined as the set of all b in A for

which aRb. It is easy to see that any two cosets are either identical or else

have no element in common, and that the set-theoretical union of all the cosets

is simply A. If a/R and b/R are any two cosets, we denote by a/R +'b/R the

coset (α + b)/R. By condition (ii) of the definition of a congruence relation,

this determines an operation + ' on pairs of cosets. The algebra consisting of

*A detailed discussion of all the notions and results contained in the Introduction
will be found in [8] (see in particular Appendix § § A and B) and [4] (see in particular
§ § 1 and 2).
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the family of all cosets of elements of A under R9 with the binary operation +',

is called the coset algebra (of 21 under J?) and is denoted by 21/7?. 2

Given a subalgebra B of 21, by the center of β—in symbols β c - w e mean the

set of all c in B satisfying the following conditions: (i) there is an element d

in B with c + d = 0; (ii) the commutative-associative formula

(bx + b2) + c = bt + (b2 + c) = (bι + c) + b2

holds for any bl9 b2 in B. 3 Clearly 0 belongs to the center of all subalgebras.

It is not hard to see that b + c = c + b whenever b £ B and c £ β c (commutative

law); and that b± + c = b2 + c implies bγ = b2 for all bu b2 in B and c in Bc

(cancellation law). It follows that for any subalgebra β, the system ( β c , +) is

an Abelian group. A subalgebra B in which Bc = {0}, that is, Bc consists only

of 0, is called centerless. Similarly, an algebra 21 = {A, +> in which Ac = 1 0 } is

called centerless.

A subalgebra D is called the direct product of subalgebras B and C if (i)

every element d in D can be uniquely represented in the form d = b + c, where

b £ β and c £ C; (ii) we have ί> + c £ D for every 6 in β and c in C; (iii) the

formula

(£>! + c t ) + (b2 + c2) = (&! + ί>2) + ( q + c2)

holds for arbitrary bi9 b2 in β, and cl9 c2 in C The subalgebra D with these

properties (if it exists at all) is of course uniquely determined by B and C, and

will be denoted by β x C It is clear that if B x C exists, and β λ and Ct are

subalgebras included respectively in B and C, then β χ x Cx exists. It can be

shown without difficulty that the operation x on pairs of subalgebras satisfies

the commutative and associative laws. Two subalgebras B and C of 21 are called

complementary factors if B x C = A9 and a subalgebra β which has at least

one complementary factor is referred to as a factor of 21. For complementary

factors β and C of 21, it follows from the definition of direct product that

b + c = c + b whenever b £ B and c £ C; and aι + (a2 + α3) = (α t + c^) + α 3

whenever two of the elements aί9 a29 a3 belong to one of the pair β and C, while

the remaining element belongs to the other; it also follows that there exist an

{A9 β)-homomorphism / and an {A9 C)-homomorphism g such that a = f{a)

+ g(a) for every a in A.

2This definition of a coset algebra is given in [δ], p. 79 and p. 175. For an intro-
duction to equivalence relations and congruence relations, see [3], pp. 159-162.

3This definition of center is given in [5]. It can easily be shown to be equivalent
to the definition given in [4], p. 24, when the latter is applied to algebras with one binary
opefation.
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The notion of direct product can be extended in an obvious way to any finite

number of subalgebras.

In order to discuss direct decompositions of the algebra 21, that is, the repre-

sentations of A as a direct product of subalgebras, it is important to study

algebraic properties of the family $ (21) of all factors of 21. In particular, it

proves convenient to consider the so-called factor algebra of 21, that is, the

algebraic system formed by the family §(21) and the operation x. (This is clearly

a system in which the closure property does not hold.) An especially simple

case is the one in which the system <^(^)> χ ) ι s what is called a disjunctive

Boolean algebra, that is, in which the operation x has all the properties of

Boolean-algebraic addition (join operation) restricted to couples of disjoint

elements.4 Instead of the term 'disjunctive Boolean algebra', we shall use the

simpler term 'Boolean algebra'. Among consequences which follow from the

assumption that the factor algebra is Boolean, we mention the following: (i)

the factor algebra of 21 has the so-called refinement property; (ii) A has, apart

from order, at most one representation as a direct product of so-called indecom-

posable subalgebras; and (iii) it has just one such representation if it is finite.

Various conditions are known which are necessary and sufficient for the factor

algebra <g (21), x>to be Boolean.5One such condition is that $(2Ϊ) be a Boolean

algebra in the usual sense under set-theoretical inclusion. Another condition,

which will actually be used below, is the distributive law for the factor algebra

in the following form:

// B9 Cx and C2 are factors of 21, and if Cx x C2 exists and is also a factor

of 21, then

B n ( d x C2) = (B n Cx) x (B n C 2),

(where B n C denotes as usual the intersection of the sets B and C).

The main purpose of this paper is to establish two further necessary and

sufficient conditions of the same kind; they will be given in §2, Theorem 3 and

Corollary 4. In particular, from Theorem 3 we shall see that a necessary and

sufficient condition for the factor algebra to be Boolean is that for every factor

B there exists exactly one factor complementary to B. In §3 we shall see how,

by application of the results of §2, various simple and interesting classes of

algebraic systems can be shown to have Boolean factor algebras. Finally, in

§4, an extension of the results obtained to algebraic systems with many oper-

ations will be briefly discussed.

4See [8], p. 205 ff.
5See [8], p. 272 ff.
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2. Main Results. We start with two auxiliary theorems.

THEOREM 1. Let A = B x C, and let D be a subalgebra of 21. In order that

A = B x D,

it is necessary and sufficient that there be a (C, Bc)~ homomorphism f such

that D consists of all elements of the form c + f (c) with c in C.

Proof. Parti (proof of necessity).6 Assume

(1) A = B x D.

Since by hypothesis

(2) i = ΰ x C ,

there is (see Introduction) an (A, B)-homomorphism g and an (A, C)-homo-

morphism h such that

(3) a = g(a) + h(a) for every a in A .

Obviously h is also a (Z), C)-homomorphism. With the aid of (1) and (2) we can

even show that

(4) h is a (Z), C) - isomorphism.7

Therefore, denoting by k the inverse of the biunique function obtained by re-

stricting the domain of h to /), we can put, for each c in C,

(5) f{c) = g[k(c)].

Evidently

(6) / i s a ( C, 5)-homomorphism.

By (3) and (5),

k(c) = c + /(c) for all c in C.

From this and (4) we deduce that

6 The proof of the "necessity part" of our Theorem 1 is essentially contained in the
proof of Theorem 2.17, p. 32 of [4]. Also if, instead of considering arbitrary algebras, we
restrict ourselves to the so-called loops, then the "necessity part" of our Theorem 1 can
easily be derived from Corollary 2, p. 69 of [ l ] ; on the other hand, by analyzing the proof
of Theorem 1, we can see that the corollary just mentioned extends from loops to arbi-
trary algebras.

7See [4], p. 32, the proof of Theorem 2.17.
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(7) D consists of all elements of the form c + f(c) with c in C.

Let us fix an element c of C. By (6) and (7),

(8) f(c)C B anάc + f{c) € D.

By (1) there are elements b of B and d of D such that c = d -f b. But d has the

form c t + / ( c i ) , with (^ in C. Consequently, by the associative law for elements

of complementary factors (stated in the Introduction),

c = \-cι + / ( c t ) ] + b = c t + [/(Ci) + i ] ,

from which it follows by the condition of unique representation in the definition

of direct product that c = cx and f{cx) + b = 0, and hence

(9) f ( c ) + b - 0 .

Let bιt b2 G B. By applying again the associative as well as the commutative

law for complementary factors, we obtain from (1), (2), and (8):

U ι + [b2 + f(c)]\ + c = fc, + | [ f c 2 + f ( c ) ] + c\

= bι +{b2 + [c + f(c)]\ = [bt + [ c + f(c)]\ + b2

= ί [ ^ + / ( c ) ] + c{ + 6 2 = [bt + / ( c ) ] + ( c + &,)

= U ί » ! + / ( C ) ] + fc2! + C,

s o t h a t f inal ly

ί * i + i h + f ( c ) ] } + c = { [ ό ι + f ( c ) ] + b 2 l + c .

Hence, by observing that bί +[b2 + f(c)] and [ bt + f{c)] + 62 are in β, while

c C C, we conclude from (2) that

(10) bx + [6 2 + f(c)] = [ ό t + f(c)] + fc2.

Similarly,

(11) 6i + [fc2 + / ( c ) ] = (bt + 62) + / ( C ) .

According to the definition of δ c , (9), (10), and (11) assure us that /(c) C Bc

whenever c £ C , Therefore, by (6),

(12) / is a ( C, Z?c)-homomorphism

By (7) and (12) the proof of necessity is complete.
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Part II {proof of sufficiency). Assume that a function /and a set D are given

which satisfy (7) and (12).

Let a £ A. We may write α = c + b9 where b £ B and c G C Since /(c)

G β c , there is a έ t in δ such that f(c) + 6 t = 0. Therefore, applying the as-

sociative properties of elements in the center and in complementary factors, we

get:

a = c + \ [/(c) + bx] + b \ = c + [/(c) + ( bx + 6)] = [ c + /(c)] + ( bx + 6),

where of course c + /(c) G D and bx -\- b C B. Thus every element α of A is of

the form

(13) α = rf'+ ft', where rf'G D and b'£ B.

Suppose that d + & = d ' + ί>', where d, rf' G D9 and 6, i ' G B. By hypothesis,

c? and d' are of the forms respectively c + f(c) and c ' + f(c')f where c, c 7 G C.

Therefore

From this follows c = c', hence d = d'; also

/(c) + ό = / ( c ) + 6'.

Hence, f(c) being in Bc, we obtain, using the commutative law and cancellation

law for elements in the center, b = b\ Therefore:

(14) The representation (13) of an arbitrary a in A is unique.

It is furthermore obvious that

(15) d + b G A for every d in D and b in B.

Finally, suppose d, ί / ' G D , and b9 t ' C δ . As usual, d~c + f{c) and

cf' = c ' + f{c')9 where c, c ' £C. Then, applying various properties of the center

and direct product which were used earlier in this proof, we obtain

(d+ rfO + (& + b') = \Vc + / ( c ) ] + [ c ' + / ( c ' ) ] } + ( 6 + 6 0

= { ( c + c θ + [ f ( c ) + f(c')]\ + (A + A ' )

- ( c + c ' ) + { [ / ( c ) + / ( c ' ) l + ( A + 6 ' ) }

= ( c + c ' ) + i [ / ( c ) + 6 ] + [ / ( c ' ) + A ' ] J

= { c + [ f ( c ) + A ] } + { c ' + [ / ( c θ + A l l

= \[c + / ( c ) ] + A| + { [ c ' + / ( c θ ] + A Ί ,
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so that finally

( 1 6 ) ( r f + < Γ ) + ( b + V ) = { d + b ) + ( d ' + b ' ) f o r b , V i n B a n d d9 d' i n D .

From (13), (14), (15), and (16) we conclude that

A = B x D9

and the proof of sufficiency is complete,

COROLLARY 2. Let A = B x C. For C £o &e ίλe only complementary factor

of B, it is necessary and sufficient that the only (C, Bc)-homomorphism (with

domain restricted to C) be the constant function f, with f(c) = 0 for every c in C.

Proof. The sufficiency follows immediately from Theorem 1.

To prove necessity, assume that C is the only complement of B, and that g is

a (C, βc)-homomorphism. For any given c in C, by Theorem 1, we have c + g(c)

£ C, and of course also [c + g(c)] + 0 = c + g{c). Hence, by the hypothesis

of the theorem and the definition of direct product, we have g(c) = 0.

THEOREM 3. For the factor algebra of an algebra 21 to be Boolean, it is

necessary and sufficient that every factor of 21 have exactly one complementary

factor. 8

Proof, The necessity follows from well-known properties of Boolean alge-

bras.

To prove sufficiency, assume that every factor of 21 has a unique comple-

mentary factor. Consider three subalgebras β, Cl9 C2 of ?ϊ such that

(1) β, Cι, C2 and Cλ x C2 are factors of 2ί.

Then, for some subalgebras D and C 3 , we have

(2) i = β χ D = ( C 1 x C 2 ) x C 3 ,

and it is known that formula (2) implies

(3) B C {[(Dc xB) n C J x [ ( D c x δ ) n C2]\ x [(Dc x B) n C 3 ] . 9

In view of (2) , there is an {A, Cx )-homomorphism gϊ9 an {A, C2)-homo-

morphism g2, and an {A, C3)-hornomorphism g$ such that

8 This theorem seems to be related to a result in [2], according to which a lattice
possessing (relative) complements is a Boolean algebra if and only if all complements
are unique. We see, however, no way of applying the result just mentioned in the proof
of Theorem 3.

9See [4], p. 21, Theorem 2.9.
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(4) a = [gχ (a) + g2 (a)] + g 3 (α) for all a in 4

(see Introduction). Hence it follows by (3) that

(5) gι(b) CDC x B, g2( b) CDC x B, and g 3(6) € Dc x B for all 6 in B.

Similarly by (2) there is an (A, B)-homomorphism / and an (A9 β)-homo-

morphism f2 such that

(6) « β /jία) + / 2(α) for all a in A .

Clearly / 2g 1 is an (/I, Z))-and hence also a (B, D)-homomorphism. More-

over, if 6 £ B, we have, by (6),

(7) gχ ( b) = / ι g l ( fc) + / ^ ( t ) , where fχ6χ{b) £ B and f2gχ{b)CD.

By comparing (5) and (7), we easily see that f2gι(b) £ Z)% so that f2gχ proves

to be a (B, Dc)-homomorphism. But, by hypothesis, B is the unique factor com-

plementary to D. Therefore, by Corollary 2, f2gx(b) = 0; hence, by (7),

(8) gχ(b) CB for all b in B.

For entirely analogous reasons,

(9) £ 2 ( δ ) £ B for all 6 in B.

Evidently (B n Ct) x (B n C2) exists. By use of (4), (8), and (9) we obtain

B n (Cx x C2) C (B n Q) x (B n C 2 ).

But it is clear that (B n Ct) x (B n C2) C B n (Cγ x C 2 ). Consequently

(10) B n ( d x C2) = (B n Ct) x (B n C 2).

We have now shown that, whenever B, C l 5 C2, and Cv x C2 are factors of

U, the relation (10) holds. As was pointed out in the Introduction, this is a

sufficient condition for the factor algebra of 11 to be Boolean.

COROLLARY 4. For the factor algebra of an algebra 21 to be Boolean, it

is necessary and sufficient that9 for every pair B and C of complementary factors

of 21, the only (C, Bcyhomomorphism (with domain restricted to C) be the con'

stant function f such that f(c) = 0 whenever c £ C.

Proof. This follows from Corollary 2 and Theorem 3.

We should like to conclude this section with some remarks which are related
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to Theorem 3, even though they are not connected with the main topic of this

paper. By Theorem 3, in every algebra 21 whose factor algebra is not Boolean,

we can find two different factors B and C which have a common complement D.

Hence it appears natural to consider the relation which holds between any two

factors B and C if and only ΊίBxD = CxD = A for some factor D. This

relation is often involved in the discussion of direct decompositions of algebras

and some of its properties can be found in the literature; it is known, for in-

stance, that any two factors between which this relation holds are isomorphic

(and even what is called central-isomorphic).10 In this connection it may be

interesting to notice that the relation in question, as opposed to that of iso-

morphism, is not transitive, and hence not an equivalence relation. To demon-

strate this fact, we take for a counterexample the additive group 21 = (A, + ) of

complex numbers a + bi, where a and b are integers. If p is an element of A, we

shall denote by [p] the subgroup of 21 generated by the element p. Now let Bχ -

[i]f B2 = [3 + 2i]9 Cγ = [1], C2 = [1 + ι], C3 = [7 + Si]. It is easy to check that

(1) x Cx = Bι x C2 * B2 x C2 = B2 x C 3 .

Let * be the relation which holds between factors B and C if and only if B x D -

C x D = A for some D. Then, by (1),

(2) Cι « C2 and C2 « C3

Now, suppose Ct ** C3. Then there is a factor D of 21 such that A = DxCι = Dx

C3# Using (1), we observe that D « β t ; therefore D = Bu and D is an infinite

cyclic group. Let α, b be such a pair of integers that D = [a + bi]. In order that

D x Cι = A, it is necessary that

a 1

b 0

from which follows b = ± 1. Similarly, in order that D x C3 = A, it is necessary

that

a 7

b 5
= ± 1;

1 0 See [4], p. 32, Theorem 2.17, and [ l] , p. 69, Corollary 2.
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this, combined with b = + 1, gives 5α ί 7 = ί 1, an impossibility. Consequently

(3) it is not true that Cx « C3 .

Now (2) and (3) imply at once that « is not transitive.

3. Applications. We shall now apply the results of the preceding section to

various special classes of algebraic systems. Although many of the results we

shall formulate in the present section are not essentially new, it may be interest-

ing to see that all of them can now be established by means of a simple and

uniform method.

While most of our discussion will be based directly on Corollary 4, we shall

start with a simple case of a straight application of Theorem 3.

THEOREM 5. The factor algebra of an arbitrary cyclic group is Boolean.11

Proof. Let ® be a cyclic group of finite order n. As is well known, (3 has

at most one subgroup of any given order. If now B is a factor of ($ of order m,

then a complementary factor of B must have exactly n/m elements, and hence

is uniquely determined. Hence, by Theorem 3, the conclusion follows immediate-

ly. The theorem applies trivially to infinite cyclic groups, since they are known

to be indecomposable.

Theorem 5 can be considerably strengthened if we introduce the notion of a

generalized cyclic group. A generalized cyclic group is a group ® any two

elements of which are members of the cyclic group generated by some third

element of ®. All generalized cyclic groups are Abelian, and finite generalized

cyclic groups are cyclic. Now it is a known result that the lattice of all sub-

groups of a group ® is distributive if and only if © is a generalized cyclic

group. From this it follows that the factor algebra of an arbitrary generalized

cyclic group is Boolean. The latter fact also follows easily from our Corollary

4.

Since the above-mentioned result on lattices of subgroups holds in both

directions, one might enquire whether or not the statement on factor algebras of

generalized cyclic groups admits a converse. One can indeed show easily from

the well-known structure of finite Abelian groups that a finite Abelian group

whose factor algebra is Boolean must be cyclic. But for infinite Abelian groups,

no such characterization of those with Boolean factor algebras is known. In

1 1 For this result, indeed, for the more general result quoted below on lattices of
subgroups, see [7], p. 267 . The example of an indecomposable Abelian group which is
not a generalized cyclic group, also given below, is closely related to the counter-
examples provided by B. Jonsson, On Unique Factorization Problem for Torsionfree
Abelian Groups, Abstract, Bull. Amer. Math. Soc. 51(1945), 364.
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fact, there are Abelian groups which are not generalized cyclic groups and which

are indecomposable (their factor algebras being thus trivially Boolean). Such,

for example, is the additive group of all number pairs of the form (3ni + m/2,

5nj + m/2 >, where i, j , m and n are integers.

THEOREM 6. If, in an algebra 2Γ = <^, + >, the only (A, Ac) homomorphism

{with domain restricted to A) is the constant function { with /(α) = 0 for all

a in A, then the factor algebra of 21 is Boolean.12

Proof Let A - B x C, and let k be a (C, Bc)- homomorphism. As we know,

there is an {A, B)-homomorphism g and an (A, C)-homomorphism h such that

a = g(a) + h(a) for all a in A. Then kh is an (A, Bc) homomorphism. Since Bc is

known to be included 1 3 in Ac, kh is also an (A, Ac) homomorphism, and there-

fore, by hypothesis, kh(a)- 0 for all a in A. If in particular a C C, we see

that a = h(a)f and hence &(α) = 0. Now by applying Corollary 4 we obtain the

conclusion.

Using the notion of a centerless algebra, as defined in the Introduction, we

obtain as immediate consequences of Theorem 6:

COROLLARY 7. The factor algebra of a centerless algebra is Boolean.

COROLLARY 8. // 21 = </l, +> is either (i) a centerless group, or (ii) an

algebra in which, for any a, b in A, a + b = 0 implies a = b = 0 (in particular,

if 21 is a lattice1* with zero), then the factor algebra of 21 is Boolean.

Besides centerless algebras, there is another rather comprehensive class of

algebraic systems which satisfy the hypothesis of Theorem 6, which will be

referred to as zero-equivalent algebras. We arrive at these algebras in the

following way: 1 5

Given an algebra 21 = (A, +>, we define recursively the equivalence in order

n between two elements Jα, b in A, this relationship being expressed symboli-

cally by α Ξ b:

1 2 T h e results contained in Theorem 6 and its various applications mentioned below
(to centerless algebras, lattices with a zero element, centerless groups, and groups
which coincide with their commutator subgroups) are stated in [4], pp. 53-55; references
to earlier related results (for example, of G. Birkhoff and A. Speiser) can also be found
there.

1 3 S e e [4], p. 26, Theorem 2.11.

4 A lattice is here considered
8], p. 200 ff.

1 5 F o r a related construction see [9], § 2 .

1 4 A lattice is here considered to be a system with one operation + (join operation);
see [8], p. 200 ff.
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(i) a = b if either a-c^-d and b = d + c for some c and o? in A, or else

α = c + (c/+e) and b=(c + d) + e for some c, c/, and e in 4̂;

(ii) a n=ι b if either c = a and c = b for some c in A, or else α + c = b + c

for some c in .4, or finally a = c -\- e and b = d + e and c = d for some c, α?, and

e in /I.

The elements α and b are called equivalent-in symbols, α = 6-if they are

equivalent in some order n. Remembering now the definition of a commutative

semigroup as an algebra in which the commutative law, the associative law, and

the cancellation law hold, we obtain the following theorem:

THEOREM 9. The relation = is a congruence relation over 2Ϊ; and the coset

algebra 21/= is a commutative semigroup. In fact, = is the smallest congruence

relation R for which 2I//v is a commutative semigroup.

Proof. It is easily shown that the relation = is reflexive, symmetric, and

transitive; and that, if any two of the three formulae a = b, c = d, a + c = b + d

hold, then the third also holds. In particular, the relation = is a congruence

relation over 21, and we can construct the coset algebra 21/=. From the defi-

nition of = and = it follows that a + b = b + a and a + (b + c) = (a + b) + c

for all α, b and c in A. This establishes the commutative and associative laws

for 21/=. Further, from a + b = a + c it follows by the first sentence in this

proof that b = c; this proves the cancellation law. SI/= is therefore a commuta-

tive semigroup.

To prove the last statement of the theorem, it is sufficient to show that if

R is a congruence relation over 21 for which ?!//? is a commutative semigroup,

and a and b are members of A for which a = b, then we have aRb (that is,

< α, by C R). But from a = b follows a = b for some nonnegative integer π. If

n = 0, the conclusion aRb follows immediately from the definition of = and the

properties of ?!//?. The passage from n to n + 1 is carried out in a similar manner.

The algebra 21 is called zero-equivalent if a = b for all a and 6 in Af or

what amounts to the same, if α Ξ 0 for all a in A. The following necessary and

sufficient condition for zero-equivalence is an easy consequence of Theorem 9.

COROLLARY 10. The algebra 21 is zero-equivalent if and only if it cannot

be mapped homomorphically onto any commutative semigroup with more than one

element.

We can point out many different examples of zero-equivalent algebras. For

instance, as is easily seen, an algebra </!,+) is zero-equivalent if to every

element a in A there is an element b such that α + b-b (or i + α= i ) . This
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condition will be satisfied, in particular, if in addition to the zero element 0

the algebra has an infinity element oo such that oc + a = oc (or a + oo = oo) for

all a in A. The description of the latter class of algebras assumes a more fa-

miliar form if one uses the multiplicative notation; the algebras to which we

refer are then systems 21 = {A, •) which have a unit element 1 with a 1 =

1 a = α, and a zero element 0 with a 0 = 0 (or 0 a = 0) for every a in A.

Again, an algebra (A9+) satisfies the above condition for zero-equivalence if

every element is idempotent, that is, a + a = a for all a in A. Another interesting

example of a class of zero-equivalent algebras is provided by the groups which

coincide with their commutator groups; in fact, as is seen from Corollary 10, a

group is zero-equivalent if and only if it coincides with its commutator group.

THEOREM 11. The {actor algebra of a zero-equivalent algebra is Boolean.

Proof. Suppose the algebra 21 =* (A,+) is zero-equivalent. Let / be an

{A, Ac)- homomorphism. It was remarked in the Introduction that {Ac, +> is an

Abelian group; consequently any subalgebra of Ac, in particular the subalgebra

onto which / maps A, is a commutative semigroup. Hence, by Corollary 10,

f(a) = 0 for all a in A. The conclusion now follows by application of Theorem 6.

As an immediate consequence of this theorem and the remarks which precede

it, we obtain:

COROLLARY 12. // 21 = (A9+) is either ( i ) an algebra with infinity

element oo such that oo + a = oo (or a + oo = oo) for any a in A, or ( i i ) an algebra

in which a + a = a for all a in A, or ( i i i ) a group identical with its commutator

group, then the factor algebra of 2ϊ is Boolean.

Note that Corollary 12 ( i i ) includes, as does Corollary 8 ( ϋ ) , the case of

lattices with zero element.

To conclude this section, we should like to point out a rather interesting

application of Theorem 1, and specifically of Corollary 2. So far we have been

concerned with algebras 21 = </!, + > having the unique complement property,

in the sense that every factor B of 21 has exactly one complementary factor.

We have seen in Theorem 3 that these algebras coincide with those whose factor

algebras are Boolean. We now turn to algebras which have the unique comple-

ment property in a different sense; in fact, to those algebras 21 = ( / ! , + ) for

which the set A has only one complementary factor with respect to every algebra

33 in which 21 is embedded as a subalgebra and of which A is a factor. By saying

that the algebra 21 == </!,+> is embedded as a subalgebra in the algebra 33 =

<By + ' ) , we mean that A is a subalgebra of S3 in the sense of the Introduction,
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and that the operations + and + ' coincide when applied to couples of elements

in A; we assume here that the operation + is not defined for any other couples.

It has been stated that for an algebra ?ί to have the unique complement

property in the new sense, it is necessary and sufficient that ?I be center less . 1 6

The proof of this statement can easily be carried through by means of Theorem 1

and Corollary 2. In fact, the sufficiency of the condition follows almost directly

from Corollary 2. To establish its necessity, we consider an arbitrary algebra

21 = (A, + ) . We can easily embed ϊ as a subalgebra in a new algebra δ =

( By + ' ) in which B = A x C, C being a subalgebra of δ isomorphic to Ac. Let

/ be a function which maps C isomorphically —and hence also homomorphically—

onto Ac. Then D, defined as the set of all c + /(c) , where c £ C, is clearly a

subalgebra of δ ; and we have by Theorem 1 that B = A x D. Now if 21 is not

centerless, Ac contains a nonzero element; therefore /(c) ^ 0 for some c in C.

Hence C £ D, and A has two distinct complements in 33. This completes the

proof. In consequence, the class of algebras having the unique complement

property in the new sense is included in, but by no means identical with, the

class of those algebras whose factor algebras are Boolean.

4. Algebras with many operations.17 Up to now we have considered only

algebras with one binary operation. In this final section we shall state the corre-

sponding results for a large class of algebraic systems with many operations.

A system 21 = {A9 +, 0 0 , Oi9 ••• , O^9 •••> will be referred to as a many-

operational algebra if it is constituted by a set A, a binary operation +, and a

finite or transfinite sequence of operations 0 O , 0l9 , 0g, . The set A

is assumed to be closed under all these operations, and to contain an element

0 which is the zero element for + and is idempotent for each of the remaining

operations Og that is, 0^ (0, 0, , 0) = 0. We restrict ourselves to the case

where all the operations (X are finitary,18 that is, each of them is defined ex-

clusively for finite sequences of definite length n^ (the number n* is called

the rank of O~ , and varies with ξ )•

By a subalgebra of ?I we understand a subset B of A which contains 0 and

is closed under all the operations +, 0 0 , Ol9 , 0ξ9 . If B and C are sub-

algebras of 21, the definition of a (B, C)- homomorphism or (B, C)- isomorphism

is an obvious extension of the earlier case. The definitions of a congruence

relation R over 21 and of the coset algebra 2I/J? are also easily generalized from

the earlier case.

1 6 S e e [4], p. 55. The proof of this statement has not previously been published.

1 7 S e e [4], § § 1 and 2, for most of the definitions given in this section.
1 8With small changes, the theory also applies to algebras with infinitary operations.
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The definition of center for many-operational algebras is somewhat involved.

Given an algebra 21 = (A, +, Oθ9 0u « , (X, •>, and a subalgebra B of 21, by

the center Bc of B we understand the union of all subalgebras C of 21 which are

included in B and satisfy the following conditions: (i) to every element c in C

there is an element d in C with c + d = 0; (ii) the commutative-associative

formula

(bί + b2) + c = &! + ( b2 + c) = ( ^ + c) + ό2

holds for any b±, b2 in B and any c in C; (iii) the formula

Oξ ( ^ o > K 9 ' y b q _ t , b q + c , b q + l9 ••• , b p Λ m l )

= o ^ ( b 0 , b i 9 . . . , ό p β l ) + σ f ( o , o , . . . , o , c , o , . . . , o )

holds whenever 0*. is an operation of 21 with p — flv, c is in C, io> î> •• > ̂ p-i

are elements of B, and q is a nonnegative integer less than p . 1 9 It follows from

this definition that Bc is itself a subalgebra of 21. As before, a subalgebra /Γ of

21, or the algebra 21 itself, is called centerless if Bc = ί 0}, or Ac = { 0 !, re-

spectively.

If 21 is an algebra in the new sense, the notion of the direct product D of two

subalgebras B and C of 21 is defined just as it was in the Introduction for alge-

bras with one operation, except that to conditions (i), (ii), (iii) is added a fourth

condition, namely: (iv) the formula

Oξ (b0 + c 0 , bx + cl9 . . . , bpmml + C p . J

= 0^ (b0, bl9 . . , bp_ί) + 0^ ( c 0 , cl9 . . . , cp^ι)

h o l d s w h e n e v e r CL i s a n o p e r a t i o n of 21 w i t h ρ = n^9 b0, b19 ••• , bp_x a r e e l e -

m e n t s in β , a n d c 0 , c l 5 «•« , Cp^χ a r e e l e m e n t s in C . T h e c o n c e p t s of a factor

of 21, of complementary factors, and of the factor algebra of 21 are defined in

terms of the direct product precisely as they were in the one-operation case.

The concepts of equivalence and zero-equivalence also have a natural ex-

tension to the case of algebras with many operations. We obtain it by modifying

the definition of equivalence of order n (as given in §3 after Corollary 8) as

follows:

(i) a = b if either

The definition of center just given is equivalent to Definition 2.10 of [4], p. 24, if
the latter is applied to algebras without infinitary operations.
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1) one of the two alternatives in the definition of = in §3 holds,

or

2) a = Og (c09 cl9 ... 9 Cp^i) + 0~ {dQ9 dl9 ... 9 dp^i) and

* = ®ξ ( co + ^o > cι + d\ » » cp _ x + dp _ χ )

for some operation (X and some elements c 0 , ••• , Cp_ϊ9 d0, ••• , cL_i in

A (where p = n^ )

(ii) α n = A ί> if either

1) any one of the three alternatives in the definition of = in §3 holds,

or

2) a = 0g {c09 cl9 . 9 cp_x)9 b = Og {dQ9 dl9 ... 9 dp_x)9 and

* / ! « * (i = 0 , l , . . . f P - l )

for some CL and some elements c 0 , ••• , cp-\i dQ, •• , fl?p-i in A (where

p = ^ ) .

As before, a and 6 are called equivalent— in symbols, α = 6— if they are

equivalent of some order n. The algebra .?ί is said, as before, to be zero-equiva-

lent if α = 0 for every a in A.

Corresponding to the notion of a commutative semigroup, which appeared in

the treatment of equivalence for one-operation algebras, here we need the notion

of a commutative semigroup with operators, defined as follows: ?I = (A, +,

OQI 0i9 ••• , 0μ9 > is a commutative semigroup with operators if (i) (.4, +) is

a commutative semigroup, and (ii) the relation

0ξ ( α 0 , al9 ... 9 ap_γ) + 0^ ( 6 0 , bl9 , bp_ι)

= Og ( α 0 + bθ9 ax + bX9 ... 9 ap^γ + bp_ί)

h o l d s f o r a l l 0^ a n d a l l e l e m e n t s α 0 , ••• , « p - i , b 0 , ••• , b p m m l o f A ( w h e r e

p = τiξ ) .

Having extended the basic notions, one can carry through for many-operational

algebras a development similar to that given in §2 and §3 for algebras with one

operation. One then obtains:

THEOREM 13. Theorems and Corollaries 1, 2, 3, 4, 6, 7 and 11 remain valid

for many-operational algebras. Theorem 9 and Corollary 10 hold for many-oper-
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ational algebras if in them we replace *commutative semigroup' by 'commutative

semigroup with operators,9

Observe that in the definition of many-operational algebras the first operation

+ plays a special role. On the other hand, it may happen that an algebra 21 =

(A, +, O0 , Oί9 ••• , CL, •••> contains a binary operation Q. which has a zero

element that is idempotent with respect to all remaining operations (+ included).

By permuting, then, the operations +, 0 0 , Oί9 , Ct, ••• so that Ct replaces

+, we obtain a new algebra 21' which is formally different from SI. It turns out,

however, that if the factor algebra of 21 is Boolean, the same holds for 21'. Also

it turns out that if the factor algebra of 21 is Boolean, the same applies to every

algebra 21' obtained from 21 by adding new operations. These two facts are com-

bined in the following theorem:

T H E O R E M 14. Suppose that 21 = (A, +, Oθ9 0l9 •• , Cl, . > and 21' =

{A, + ', OQ, O[y ••• , 0 ' , •••> are two many-operational algebras {having the

same set A), and that the family {+ ', OQ, 0{, , 0*', ! of operations o/ 21'

contains the family {+, 0 0 , 0ί9 ••• , 0^9 . . . i of operations of 21. // the factor

algebra of 21 is Boolean, then that of 21' is also Boolean.20

Proof. The symbols x and x ' will refer to the operation of direct multi-

plication in the algebras 21 and 21', respectively. Let 0 and 0 ' be the zero ele-

ments of + and + ' , respectively.

We define an operation * on the factors of 21'as follows: Let B be any factor

of 21', and let C be some complementary factor of B (in 21'). Let Oβ and 0^ be

such elements of B and C respectively that 0 *= 0B +' 0^. Then B is defined

to be the set of all elements of the form b + ' 0^ with b in B,

Notice that, in case there are several complementary factors of B in 21', the

definition of B* is independent of which one is chosen as C.

We now fix two complementary factors B and C in 21'. We shall show that B

and C are complementary factors in 21. As before, let 0# and 0^ be such ele-

ments of B and C respectively that

0 = 0 β + ' 0 c .

First observe that

(1) θ€ B* n C*.

20This theorem is a simple corollary of some more general results obtained by B.
Jo'nsson and A. Tarski but not yet published, concerning algebraic systems which do not
necessarily have a zero element.
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Let P be any one of the operations in 21, of rank p; by the hypotheses of the

theorem, P is also an operation in 21'. From the idempotency of 0 with respect

to P and the well-known properties of the direct product (which in future we use

without mention), we deduce that

(2) P(0B, 0 β , . . . , 0 β ) = 0 β

and

(3) P ( 0 c , 0 c , . . . , 0 c ) = 0 c .

Furthermore, if 60, •«• ,6p-i £ B, we obtain from (3) the result that

(4) P{b0 +' 0c, . . . , ^ , _ 1 + ' 0 c ) = P ( έ b . •••, t p - i ) + ' 0 c ;

similarly, if c 0 , ••• , Cp-\ d C, we have

(5) P(c0 + ' 0 β , - . , cp_ί + ' 0 B ) = P(cQ, . . . , c p ^ ) + ' Oβ .

Now (1), (4), and (5) give that

(6) # * and C* are subalgebras of 21.

From the fact that 0 is the zero element of + in A, it is not hard to show

that Oβ and 0^ are the zero elements of + in B and C respectively; that is,

(7) b + Oβ = Oβ + b = b for all b in B

and

(8) c + 0Q = 0c + c ~ c for all c in C.

Using (7) and (8) we find that

(9) (b + ' 0 c ) + (c +' Oβ) = b +' c whenever b € B, c C C,
from which it follows that

(10) every element of A can be written uniquely in the form 6* + c*, with 6* in
β* and c* in C*.

Further, if P is any operation of 21, of rank p, and if

&o> ' ' 9 bp^x G B; c 0 , , cp_ι C C,

then by repeated application of (9), (4)> and (5), we get

(11) P\[{b0 + ' 0 c ) + ( c 0 + / 0 β ) ] , . . . , [ ( 6 p _ 1 + ' o c ) + U p - ! + Ό β ) ] |

= P[b0 + Ό C , .-• , fcp_! + Ό C ] + P[c0 + Ό β , ••• , c p _ t + Ό β ] .
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Now (6), (10), and (11) give

β* x C* = A.

Thus we have shown that B and C are complementary factors in 21 when-

ever B and C are complementary factors in 21'.

Now let B, Cί9 and C2 be such subalgebras of SI' that

(12) δ x ' C , = B x ' C2 = A.

By our last result, we have

(13) δ * x C* = δ * x C* = A.

But, since the factor algebra of 21 is by hypothesis Boolean, (13) combined with

Theorem 3 (see Theorem 13) gives

(14) C? = C*.

Now using Theorem 1 (see Theorem 13), let g be the ( C l f B c )-homomor-

phism with respect to 21' (Bc being the center of B in SI') such that C 2 is the

set of elements of the form cx +' g(cx) with cx in C\ L e t 0β and 0^ be those

elements of B for which, for some 0^ in Cx and 0£ in C 2 ,

0 = 0 β + Ό C = 0+ + ' 0 + .

Then (14) together with (12) as sures us that

(15) cx + Ό β = cγ +'[g(ct) + ' 0+] for all cx in Q .

In particular, set t ing cγ = 0 ' in (15), we find

0 β = 0+

hence (15) assumes the form

(16) 0 β = g(cx) +' 0β for all cί in Ct .

But by the definition of g9 we have g(cί) C Bc for each cχ in C t consequently

(17) * ! + [b2 +' g(Cι)] = ( 6 t + ό 2 ) + ' [ 0 ' + g ( c t ) ]

whenever o l f 62 C δ and c λ C C t .

Setting Z>2 = 0β and i x = 0 ' i n (17) we conclude with the aid of (16) and (7) that

(18) 0 ' + g(ct) = 0 ' for each cί in Cx .
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On the other hand, setting bγ — Oβ and b2 = 0 ' in (17), we get with the aid of

(18) and (7) the result that

g(cι) = 0 ' for all cι in Cγ.

Consequently, by the definition of g, we have

We have now shown that if Bf Ci9 and C2 are subalgebras of 21' for which

(12) holds, then Q = C2 But, by Theorem 3, this implies that the factor algebra

of 21' is Boolean.

We shall end this section with an application of the general theory to rings.

THEOREM 15. The factor algebra of a ring with unit element is Boolean.21

We can prove this theorem by three different methods, applying either Corol-

lary 7, Theorem 11, or Theorem 14.

First proof. Let 21'= (/!,+,•> be a ring with the unit element 1 (and of

course with the zero element 0). Let c £1 Ac By the definition of center, we

must have

(a + c) b ~ a b for all α, b in A.

Setting a = 0, 6 = 1 , we obtain c ~ 0. Thus 21' is centerless, and by applying

Corollary 7 (see Theorem 13) we obtain the desired result.

Second proof. Let 21' = { A9 +, ) be a ring with unit element 1. By the defi-

nition of equivalence of order 0, we have

(a + c) ( b + d) = a b + c d for all α, b, c, d in A.

Setting b = c = 0 and d = 1, we obtain a = 0 for all a in A. 21' is therefore zero-

equivalent, and the desired result follows from Theorem 11 (see Theorem 13).

Third proof. Again, let 21' = {A, +, > be a ring with unit. Let 21 = {A, ).

By Corollary 12 (and a remark following Corollary 10) the factor algebra of 21 is

Boolean. Hence, by Theorem 14, the factor algebra of 21' is Boolean.

It may be noticed that, by applying the first two methods of proof, we can

extend Theorem 15 to wider classes of rings. In fact, the first method of proof

2 1 T h i s result is stated in a different form in [4], p. 55, where a reference to an
earlier result of Jacobson can be found. The extension of this result to centerless rings,
which will be discussed below, is to be found in [6]; it also follows immediately from
remarks in [4], p. 25 (Example III) and p. 54.
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permits us to extend it to all centerless r ings, 2 2 while by the second method of

proof it applies to all zero-equivalent rings. It is easily seen that a ring is

centerless if and only if it has no annihilator different from 0, that is, no element

α / 0 such that a b = 6 a = 0 for all elements b of the ring. On the other hand

a ring proves to be zero-equivalent if and only if every element a of the ring is

of the form

a = b0 c0 + bι ci + ••• + i Λ - i cn-ι ,

where n is a positive integer and bθ9 c09 bί9 ci9 ••• , bn_ί9 cn^ι are elements

of the ring. Either of these classes includes all rings with unit and also many

other rings.

It may be noticed that neither of these two classes of rings includes the

other. Indeed, the ring of even integers is centerless but not zero-equivalent.

To obtain a ring which is zero-equivalent but not centerless, consider the family

R of all finite sets of real numbers x for which 0 < x <_ 1. If A9 B ζl R9 we

denote by A + B the symmetric difference of A and B9 that is, the set of numbers

belonging either to A or to B but not to both; and we denote by A B the set

of all numbers x for which (i) 0 < x £ 1 and (ii) the number of elements y of A

such that x — y €1 B is odd. The system 5? = </?,+, ) can be shown to be a

ring which is zero-equivalent but not centerless. Indeed, 5R has the further proper-

ties that it is commutative and every element in it is of order 2.

Examples of rings whose factor algebras are not Boolean are easy to obtain.

Let 21 = (A9 +> be an Abelian group with zero element 0, and set a b = 0 for

all α, b in A. Then 21' = {A9 +, > is a ring whose factors are identical with

those of ?I. Thus, if the factor algebra of ?I is not Boolean (for example, if ?I is

the four group, that is, the direct product of two groups of order 2), then the

factor algebra of 21' also is not Boolean.

R E F E R E N C E S

1. R. Baer, Direct decompositions, Trans. Amer. Math. Soc. 62(1947), 62-98.

2. G. Bergman, Zur Axiomatik der Geometrie, Monatsh. Math. Phys. 36(1929), 269-
284.

3. G. Birkhoff and S. MacLane, A survey of modern algebra, Macmillan, 1941.

2 2 I t should be noticed that our definition of the center of a ring, obtained by special-
izing to rings the general definition of the center of an algebra with many operations,
differs from the usual meaning of that term.



318 J M. G. FELL AND ALFRED TARSKI

4. B. Jonsson and A. Tarski, Direct decompositions of finite algebraic systems,
Notre Dame Mathematical Lectures, No. 5, 1947.

5. , On direct products of algebras. Abstract 149, Bull. Amer. Math. Soc.
51(1945), 656.

6. A. Kurosh, ίzomorfizmy pryamyh razlozenii {Isomorphisms of direct decompo-
sitions), (Russian; English Summary), Izvestiya Akad. Nauk S.S.S.R. Ser. Mat. 7 (1943),
185-202.

7. O. Ore, Structures and group theory, II, Duke Math. J., 4(1938), 247-269.

8. A. Tarski, Cardinal algebras, with an appendix by B. Jonsson and A. Tarski,
Cardinal products of isomorphism types, New York, 1949.

9. A. Tarski, Algebraische Fassung des Massproblems, Fund. Math., 31(1938), 47-66.

UNIVERSITY OF CALIFORNIA, BERKELEY



PACIFIC JOURNAL OF MATHEMATICS

EDITORS

R. M. ROBINSON *R. P. DILWORTH

University of California California Institute of Technology
Berkeley 4, California Pasadena 4, California

E. F. BECKENBACH, Managing Editor

University of California
Los Angeles 24, California

*During the absence of Herbert Busemann in 1952.

ASSOCIATE EDITORS

R. P. DILWORTH P. R. HALMOS B0RGE JESSEN J. J. STOKER

HERBERT FEDERER HEINZ HOPF PAUL LEVY E. G. STRAUS

MARSHALL HALL R. D. JAMES GEORGE POLYA KOSAKU YOSIDA

SPONSORS

UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA

CALIFORNIA WSTΊTVTE OF TECHNOLOGY STANFORD UNIVERSITY

UNIVERSITY OF CALIFORNIA, BERKELEY WASHINGTON STATE COLLEGE

UNIVERSITY OF CALIFORNIA, DAVIS UNIVERSITY OF WASHINGTON

UNIVERSITY OF CALIFORNIA, LOS ANGELES * *

UNIVERSITY OF CALIFORNIA, SANTA BARBARA AMERICAN MATHEMATICAL SOCIETY

OREGON STATE COLLEGE NATIONAL BUREAU OF STANDARDS,

UNIVERSITY OF OREGON INSTITUTE FOR NUMERICAL ANALYSIS

Mathematical papers intended for publication in the Pacific Journal of Mathematics
should be typewritten (double spaced), and the author should keep a complete copy. Manu-
scripts may be sent to any of the editors. All other communications to the editors should
be addressed to the managing editor, E. F. Beckenbach, at the address given above.

Authors are entitled to receive 100 free reprints of their published papers and may ob-
tain additional copies at cost.

The Pacific Journal of Mathematics i s published quarterly, in March, June, September,
and December, by the University of California, Berkeley 4, California. The price per
volume (4 numbers) is $8.00; single issues, $2.50. Special price to individual faculty
members of supporting institutions and to individual members of the American Mathe-
matical Society: $4,00 per volume; single issues, $1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to the
publishers, University of California Press, Berkeley 4, California.

Printed at Ann Arbor, Michigan. Entered as second class matter at the Post Office,
Berkeley, California.

UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LOS ANGELES

COPYRIGHT 1952 BY PACIFIC JOURNAL OF MATHEMATICS



Pacific Journal of Mathematics
Vol. 2, No. 3 March, 1952

Lars V. Ahlfors, Remarks on the Neumann-Poincaré integral equation . . . . . 271
Leonard P. Burton, Oscillation theorems for the solutions of linear,

nonhomogeneous, second-order differential systems . . . . . . . . . . . . . . . . . 281
Paul Civin, Multiplicative closure and the Walsh functions . . . . . . . . . . . . . . . . 291
James Michael Gardner Fell and Alfred Tarski, On algebras whose factor

algebras are Boolean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
Paul Joseph Kelly and Lowell J. Paige, Symmetric perpendicularity in

Hilbert geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
G. Kurepa, On a characteristic property of finite sets . . . . . . . . . . . . . . . . . . . . . 323
Joseph Lehner, A diophantine property of the Fuchsian groups . . . . . . . . . . . . 327
Donald Alan Norton, Groups of orthogonal row-latin squares . . . . . . . . . . . . . 335
R. S. Phillips, On the generation of semigroups of linear operators . . . . . . . . 343
G. Piranian, Uniformly accessible Jordan curves through large sets of

relative harmonic measure zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
C. T. Rajagopal, Note on some Tauberian theorems of O. SzÃ¡sz . . . . . . . . . . . 377
Halsey Lawrence Royden, Jr., A modification of the Neumann-Poincaré

method for multiply connected regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
George H. Seifert, A third order irregular boundary value problem and the

associated series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
Herbert E. Vaughan, Well-ordered subsets and maximal members of ordered

sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
Hans F. Weinberger, An optimum problem in the Weinstein method for

eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
Shigeki Yano, Note on Fourier analysis. XXXI. Cesàro summability of

Fourier series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

Pacific
JournalofM

athem
atics

1952
Vol.2,N

o.3


	
	
	

