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ON A CHARACTERISTIC PROPERTY OF FINITE SETS

G. KϋREPA

1. Introduction. There are several equivalent definitions of finite sets

[2], [5] The purpose of this note is to give an equivalent property of finite sets

in terms of ramifications of sets.

DEFINITION 1. A partially ordered set S= (S; £ ) is said to be ramified

or to satisfy the ramification condition ([3], pp.69, 127; cf. 4) provided that

for every x ζl S the set (— 00, x) of all y C S satisfying y < x is totally ordered

(that is, contains no distinct noncomparable points). If the points of a ramified

set (S; <) are the same as these of a set M, one says that (S; < ) is a ramifi-

cation of M.

DEFINITION 2. A chain (anti-chain) of a partially ordered set (S; <_) is

any subset of S containing no distinct incomparable (comparable) points. Every

set containing a single point is considered both as chain and as anti-chain.

DEFINITION 3. For a partially ordered set (S; < ) = S, we denote by

(1) 0(S) or OS

the system of all maximal chains contained in S; analogously,

(2) 0 ( S ) or OS

denotes the system of all maximal anti-chains of 5.

THEOREM. In order that a nonvoid set S be finite, it is necessary and suf-

ficient that for every ramification T(S) of S the relations

(3) MCOT(S), ACOT(S)

imply

(4) M n A ^ A ( Λ = vacuous s e t ) .
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2. The condition is necessary. Otherwise, there would be a finite set S, a

ramification T(S), a set M £ OT(S), and a set A £ 7)T(S), such that

(5) H M = Λ,

Now, A is a maximal anti-chain of T(S); consequently, for every x £ T(S)

there is a point a(x) £ A such that the set i x, a(x)} is a chain of T(S). (Other-

wise, the set 4 u U ! would be an anti-chain greater than the maximal anti-

chain A,)

In particular, for any x £ M £ 0 T(S), the points x, a(x) are comparable.

We say that

(6) x < a(x).

Since M is a maximal chain of the ramified set T(S), M is an initial portion of

T(S); that is, M, which contains the point x contains also every point of T (S)

preceding x. In particular, if (6) did not hold then M would contain also a(x) <

x; consequently, a{x) £ M n A, contrary to the assumption (5).

Thus if (5) held then for every x £ M one would have (6); but M, as a non-

void subset of the finite set Γ(S), would have a terminal point, say I; I would

be a final point of T(S), too, contrary to the relation (6) for x - I. Thus the

relation (5) is not possible.

3. The condition is sufficient. If for every ramification T(S) the relations

(3) imply (4), then the set S is finite. Otherwise, the set S would be infinite;

consequently, there would be a one-to-one correspondence φ of the set N of

all natural numbers into S. Now, let us define the ordering (S; <_) by trans-

plantation of a certain order of the set N. We shall order N according to the

scheme \

1—>3 —»5 —»7—> .
Nι ^ N N»

2 4 6 8 . . . .

That is, the set 2iV— 1 of all 2n — 1 (n £ N) is ordered as in the natural

order; for every n £ /V, the set of numbers preceding 2n consists of the numbers

2v—l {v = 1, 2, , n); all other couples of natural integers are incompar-

able, by definition. In the ramified set /Vo so obtained one sees that 2/V £ ON0,

that 2ZV-1 £ ON0, and that the sets 2/V, 2W - 1 are disjoint. Now, the set

S being infinite by hypothesis, there is a one-to-one mapping φ of N = No into S.

1For the definition of schemes or diagrams of partly ordered sets see Birkhoff [1,
p .6] .
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That enables us to define the order in S by transporting the order of NQ into

S so that, on the one hand, the mapping φ is a similitude between No and φNQ C_

S, and so that, on the other hand, no point of φNo is comparable to any point

of 5\0iV o, and so that S\<£/Vo contains no comparable couple of distinct

points.

It is obvious that the set (S; <_) is ramified, that the set φ{2N — 1) is a

maximal chain of (S; <)9 and that the set A - φ(2N) u (S^φN) is a maximal

anti-chain of (S; < ).

According to (4), the set A n φ(2N — 1) would be nonvacuous, contrary to

the fact that the sets A, φ(2N - 1) are disjoint.

Thus, the proof of the theorem is completed.

4. Observation. We observe that the condition of ramification in the state-

ment of the theorem is essential. Namely, if we consider the partially ordered set

Sx = {1, 2, 3, 4, 5} with the diagram

3

ΐ
1 2

it is obvious that { 2, 3, 5 } is a maximal chain of S, that { 1, 4} is a maximal

anti-chain of S, and that the set { 2, 3, 5 } does not intersect the set { 1, 4 }.

5. Questions. In connection with the statement of the theorem it is interest-

ing to consider the following two questions:

QUESTION 1. Is there a partially ordered nonvacuous set S such that there

is no maximal anti-chain A £ 0 5 satisfying A n M ^ Λ for every maximal chain

M COS?

QUESTION 2. Is there a partially ordered nonvacuous set S such that there

is no maximal chain M £ 0 S satisfying M n A ^ Λ for every maximal anti-chain

AC OS?
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