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ON THE SINGULARITIES OF TAYLOR SERIES
WITH RECIPROCAL COEFFICIENTS

SHMUEL AGMON

1. Introduction. Let

(1.1) f(z) =
n-0

be a Taylor series with a nonvanishing radius of convergence and such that

an ^ 0. Put

and suppose that the latter series also has a positive radius of convergence.

Now / (z) can be considered as the inverse of f(z) under the Hadamard "multi-

plication" of series, and it is natural to inquire into the existence of a simple

relation between the singularities of the two functions. This problem was treated

by Soula [3], who discovered such a relation for the singularities of the two

series on their circles of convergence. His result is as follows:

T H E O R E M S. Let f(z) and fm (z) be defined by ( 1 . 1 ) and ( 1 . 1 ' ) , where

an is real, an ^ 0, and where, furthermore,

(1.2) lim \an\
ι/n = 1 .

(Thus the unit circle is the circle of convergence for both series.) // z — 1 is

the only singularity of f(z) on the unit circle then either the unit circle is a cut

for / - i ( z ) > or / - i ( z ) a^so n a s z = 1 as its only singularity on the unit circle.

Moreover, in the latter case we have:

( i ) \im(an/an + l) = 1
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432 SHMUEL AGMON

( i i ) z = 1 is a singularity "without contact" (with the unit c i rc le) for both

functions f(z) and /_ ( z ). That is, there exist δ > 0 and φ, with 0 < φ < 77/2,

such that f(z) and / M ( z ) are analytic in the sector

0 < | z - 1 | < δ , φ < | arg ( z - 1) | < TΓ .

We remark that if the radius of convergence of f(z) is 1 (which is no loss

of general i ty) then it is not difficult to see that one cannot expect to have a

dependence even between the singularit ies of the two ser ies on their circles of

convergence unless the radius of convergence of fmγ(z) i s a lso 1. Thus ( 1 . 2 )

is a necessary restriction. Also it seems that the condition that f(z) should

have only one singular point, say z = 1, on its circle of convergence is essen-

tial for the simple character of the result . However, the condition on the reality

of the coefficients in Soula's theorem is superfluous. All that is needed in

Soula's proof when the coefficients are complex is the use of Lemma 5 of this

paper. In what follows we shall refer to this more general result as Theorem S.

We propose in this paper to obtain a relation between the s ingularit ies of

f(z) and / (z) outside the unit circle. To this end it i s necessary to have

some information on the location of the singularit ies of f(z) outside the unit

circle. We shall impose on f(z) the somewhat restrictive condition that it be

holomorphic in the whole plane cut along the line 1 <C x < oc. With this con-

dition, however, we shall derive a surprisingly simple result concerning the

location of the s ingularit ies of fml(z) in the whole plane.

2. Preliminary considerations. We collect in this section the definitions

and lemmas which we shal l need in the proof of our main resul t . Some of these

lemmas are well-known theorems.

DEFINITION. Let f(z) be given in the neighborhood of the origin by the

Taylor ser ies ( 1 . 1 ) . The star of holomorphy of f{z) (Mittag-Leffler s t a r ) is

defined as the domain composed of all segments teι , 0 <̂  t < p (θ), where

p(θ)e i s the first singularity of f{z) on the ray teι ( 0 <_ t < 00) when

f{z) is continued analytically along this ray. The function p{θ) shal l be called

the star-function and shal l be defined by periodicity for all values of (9.

It follows readily from the definition that p(θ) is a lower semicontinuous

function, and as such it a t ta ins its lower bound in any finite interval.

LEMMA 1. (Hadamard's multiplication theorem for s tars [ l , p. 3 0 0 ] ) . Let
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(2.1) / ( * ) = £ anz
n and g ( z ) = £ bnz

n

71=0

have the radii of convergence Rf and Rg, respectively, and star-functions pr(θ)

and p {θ). Put

(2.2)
n-0

Then h(z) converges for \z\ < RfRg and can be continued analytically along

the segment te , 0 < t < r(β), for any 0 < θ < 2π, where

r ( θ) = min pΛu) p(θ - u).
O'̂  U< 277 * °

The following is a simple lemma on the separation of singularities of an

analytic function.

LEMMA 2. Let f(z) be an analytic function in the neighborhood of the

origin where it has the Taylor development ( 1 . 1 ) , and let p{θ) be its star-

function. Then, given 0χ and θ2, 0 < θι < θ2 < 2 π9 and e > 0, there exist

two analytic functions g ( z ) and g2(z) with developments

such that

( i ) f(z) = gι(z) + g2(z);

( i i ) the star-function pβ(θ) of g{(z) satisfy

(2.3)

pS(θ) = p(θ) and pξ{θ) = 00 for θx < θ < θ2 ,

pf(θ) = 00 αnrf p | ( 0 ) = p{θ) for θ2 < θ < θx + 2 τ τ ,

pίί1/) - € for i,j = 1 ,2 .

We shall indicate an easy proof of Lemma 2. Let C be a star-shaped recti-

fiable Jordan curve enclosing the origin, contained in the star of holomorphy of
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f(z), a n d w h o s e d e f i n i n g f u n c t i o n R - R(θ) ( 0 <̂  0 < 2π) s a t i s f i e s

R ( θ i ) > p i θ i ) - e (i = 1, 2 ) .

Let Cx be the part of C in the sector θx <^ θ < θ2, and C2 the complementary

part of Cm Then by Cauchy's theorem we have

2πι c ζ-z 2πι c\ ζ - z 2πi C2 ζ-z

It follows now readily that the functions g^ z) and g2(z) satisfy the conditions

of Lemma 2.

The following two lemmas are known. (For example, see [2, p. 103, Th. I l l] ,

where the lemmas are generalized to Dirichlet series). We remark, however, that

we make a trivial addition (without proof) to the lemmas by not assuming the

angle in question to be symmetric with respect to the positive axis.

LEMMA 3. Let

anz

be a Taylor series having the unit circle for its circle of convergence. Suppose

that f(z) can be continued analytically in a domain Dan whose boundary is

composed of the two spirals:

p = exp [ ( tan α ) θ] ( 0 < θ < θ0 ),

and

p = e x p [ ( t a n β) (2π- θ)] (θ 0 <θ<2 π),

where 0 < Ct, β < π/2 and θ0 = (2π tan / 3 ) / ( t a n α + tan β), and where

z = peιθ. Then, given 0 < 0C' < Cί and 0 < / 3 ' < β, there exists an "interpo-

lation function" G(u), analytic in the angle - j 3 ' < arg u < Cί' such that

(2.5) G(n) = an (n = 0, 1, . . . ) ,

and
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(2.5')
loglGU)l\

lim sup — <̂  0,

uniformly in -β' < arg u < 0t'.

The next lemma is a kind of converse of Lemma 3.

LEMMA 3'. Let G(u) be an analytic function of exponential type in the infi-

nite sector -β < arg u <_ Cί, \ u \ > Ro (0 < α , β < π/2) satisfying (2.5'). Let

/ ( * ) = G(n)zn.

Then f(z) can be continued analytically in the domain Da .

We shall prove now the following lemma.

LEMMA 4. Let G(u) be an analytic function of exponential type in the

a n g l e - j 8 < a r g u < C ί ( 0 < C ί , / 3 < 7 7 / 2 ) . P u t

(2.6) τΛΘ) = lim sup
l\oe\G(reiθ)\

Suppose that

ΊG(Θ) < Ωι sin θ for 0 < 0 <^ a,

( i )

\(0) < - Ω2 sin θ for -β < 0 <_0,

where Ωt > 0, Ω2 > 0 and ίlι + Ω2 < 2 77, and that

( i i ) G{n) = 0 for n = 0, 1, ••• .

Lei α * α^rf β * ( 0 < α*, /3* < 77/2) όe cίe/merf 67

(2.7)

tan α* =
2ττ- (Ω r + Ω 2 )

tan

ίlι cot β + (2 77- Ω2) cot α '

2π- (Ωx + Ω2)

(2 77 - Ω t) cot j8 + Ω2 cot α

Γ/te/x we have Ίr(θ) < 0 for -β* < θ < α*, αnίf, in particular,
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( 2 . 8 ) G(u) = O ( e " δ l u | ) ,

uniformly in any angle —β* < - β < arg u < Cί < Cί* /or some 8 - δ((X, β ) > 0.

Proo/. Put

C(u)

(2.9) F(u) = .
sin πu

It is easily seen that F(u) is analytic and of exponential type in the angle

-β < arg u < a. Let T F (#) be the "type function" (2.6) of F(u). It follows

from ( i ) and (2.9) that

T F ( α ) < (Ω t - π) sin α and τp(-β) < (Ω2 - 77) sin β .

Applying a well-known result of Phragmen and Lindelδf [5, p. 183 1, we deduce

from the last two inequalities that

(2.10) T F ( # ) < A cos 0 + B sin θ,

where A and B are the solutions of

A cos a + B sin Cί = (Ω t - 77) sin α ,

A cos β - B sin /3 = (Ω2 - π) sin /3.

That is:

Ωx + Ω2 - 2π (Ω t - 77) cot /3 - (Ω2 - 77) cot α

(2.100 ^ « , B =
cot α + cot β cot α + cot β

Hence, from (2.9), (2.10), and (2.10'), we get

(2.11) τ

cA
θ>) 1 ^ cos ^ + S sin (9+ 77 |sin (9 I (-β < <9 < α ) .

The assertion of the lemma now follows from (2.11) if we note that the right

side of (2.11) is a continuous negative function for -/3* < θ < α*. (We also

make use of the well-known fact that an analytic function of exponential type

satisfying (2.11) also satisfies

G(u) = 0 ( e x p [ H (.4 cos θ + ( ϋ + 77) sin θ + e ) ] )

uniformly in the angle.)
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Finally, we shall need the following lemma which is a generalization of a

lemma due to Soula [3, p. 38]. ϊt is stated in a somewhat more general form than

is needed for our purpose here; however, the lemma in this form is required for

the completion of Soula's theorem (Theorem S) mentioned in § 1.

LEMMA 5. Let h(z) be an analytic function in the infinite sector \z\ > Ro,

I a r £ z I < a < 77/2, where it satisfies

H\h(n)\
( i ) lim = 0 {n being an integer);

n=oo n

( i i ) there exists a nonnegative, continuous, and increasing function 8{θ),

0 <_0 < α , with 8(0) = 0, such that

H \ h ( r e ί d ) \ < I S ( | 0 | ) I s i n 0 \ + β ] r ,

for any e > 0 , r > _ r o ( e ) large enough, and \ θ | < Cί. Then

l h ( z ) \
(2.12) lim U 0,

l*h~\ 2 /

uniformly in any sector \ arg z \ < Ct' < 0C, | z | >̂  /v0 .

Proof. We shall make use of the well-known inequality

2 | z | U ( K ) - A(0))
( 2 . 1 3 ) | / ( 2 ) - / ( 0 ) t < ' , , ,

w h e r e f(z) i s a n a l y t i c for j z J <̂  R, a n d

A ( R ) = m a x R \ f ( z ) \ .

We shall first show that

(2.14) l i m \ h ( n + ζ ) - h ( n ) ] = 0 ,

uniformly for ς in any bounded set. Indeed, choose η such that 0 < η < Cλ, and

let \ζ\ < C. Let w + z = re1'^ be a point inside the circle of radius /{ = n sin η

and center z = w inscribed inside the angle | arg z | <_ η. On account of ( i i) ,

taking 6 = δ(r/) sin 17 and rc large enough, we have
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( 2 . 1 5 ) H\h(reίΘ)\ < 2δ(η) s in η r< 28{η) s in 77(1 + s in η) n

<, (48(η) s i n η )n .

A p p l y i n g ( 2 . 1 3 ) t o f(z) = h(n + z) f o r z = ζ, K = n s i n 17, a n d u s i n g ( 2 . 1 5 ) ,

w e g e t

n + ζ)-h(n)\ <
2\ζ\U48(η) sin η)n + \H \h(n)\\]

n s i n η - \ζ\

8C sinη 8(η) 2C h(n)

nsin η — C/n sin 77 — C/w

Sending n to infinity and using ( i ) , we find that

l i m s u p \ h ( n + ζ ) - h ( n ) \ < 8 C 8 ( η ) ,

uniformly for \ζ\ <^ C. L e t t i n g η tend to z e r o , and r e c a l l i n g t h a t δ ( 0 ) = 0 ,

we arr ive at ( 2 . 1 4 ) In w h a t fol lows we s h a l l n e e d only the w e a k e r r e s u l t

( 2 . 1 6 )
h(xV

1= 0 (x real),

which follows in an obvious way from ( 2 . 1 4 ) .

We next show that h(z )/z i s bounded in every sector

I arg z I < Of < a , I z I > Ro .

This will be established if we prove that/K-O/z is bounded uniformly in the

circles C •• \z — ξ\ <^ ξ sin of (ξ large enough). Now, as before, for £ positive

and large enough, and for z such that j z \ <_ ζ sin α, we have

R U ( f + * ) l < (4δ(α)sin a)ξ.

Applying (2.13), for | z | < ξ sin of we find

8δ(α) sin of sin α „ 2 sin of , n t . . , ,

| A ( ^ + z ) - A ( ί ) | < r - ^ + : ' 1 rfi I Λ C ^> $ I ,

s i n CC - s i n OC s i n α - s i n CC

from which we get that

(2.17) \h(ξ+ 2 ) | < C,ξ + C2 \h(ξ)\,
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where Cχ and C2 are constants depending only on Cί and Cί'. We have only to

divide (2.17) by έ;' + z and use (2.16) in order to obtain the uniform bounded-

ness of h ( ξ + z )/( ξ + z) for I z I <_ ξ sin Cί' ( ξ —> co), and therefore the bound-

edness of h(z)/z in any interior sector. To complete the lemma we apply a

well-known result of Phragme'n and Lindelδf by which the boundedness and

(2.16) imply (2.12). We also note that by successive applications of the last

lemma it follows that the result still holds if the arigle containing the posi-

tive axis is not supposed to be symmetric.

3. The main theorem. We pass now to our main result:

THEOREM 1. Let f(z) be an analytic function in the whole plane cut along

the line 1 <̂  x < oo. Suppose that the coefficients of its Taylor expansion ( 1 . 1 )

are different from zero and satisfy ( 1 . 2 ) . Let f_ {z) be the "inverse" series

defined by ( 1 . 1 ' ) , and denote by p_χ(θ) its star-function (Def. § 2 ) . Then there

exist two numbers α , β, with 0 < Cί < 77/2 and 0 <_ β < 77/2, such that for any

0 < θ < 2π we have

(3.1) P M (0) =

and (trivially) p_ ( 0 ) = 1.

The theorem states, in other words, that the star of holomorphy of

consists in general of the two logarithmic spirals:

ρ_i(θ) = exp[(tan Cί)6>] for 0 < θ < φ,

and

p ^ ( θ ) = e x p K t a n β ) {2π - θ ) ] f o r φ < θ < 2 π ,

where φ is given by

2τ7 tan β
(3.1')

tan Cί + tan β

(We shall treat # = 0 separately in order to account for the case where either

(X or β is equal to 77/2, in which case we agree that the product of a positive

number and infinity is infinity.)

It is possible to distinguish the following cases which correspond to limiting

values of Cί and β: ( i ) Cί = 0 or β = 0. In this case we have ^ ( 6 0 = 1, and the
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unit circle is a cut for f_Az); this is a particular case of Theorem S.

( i i ) 0 < α < 77/2 and 0 < β < π/2. In this case the star of holomorphy of

/_ (2) is the domain Daβ (introduced in Lemma 3), whose boundary consists of

the two spirals (3.1'); this domain is also the region of existence of /_ (z).

(i i i) 0 < α < π/2 while β = π/2. In this case all the points of the spiral

p = exp[(tan Ot)0] (0 <_ θ < 2π) are singularities. (However, this does not

exclude the possibility of analytic continuation through the segment 1 < x <

exp[(tan Gί)2τr].)

(iv) Gί = π/2 while 0 < β < π/2. This case is similar to the preceding one;

the only difference is that the roles of 0C and β are interchanged.

(v) α = β - π/2. In this case / (z) has the properties of f(z), and is ana-

lytic in the whole plane cut along 1 <_ x < 00.

Proof of Theorem 1. Since f(z) satisfies the conditions of Theorem S, it

follows that our results will go beyond those of Soula only when z = 1 is the

only singularity of f_χ(z) on the unit circle, and when it is, furthermore, "with-

out contact". We shall assume in what follows that this is indeed the case.

Now, the proof of the theorem is somewhat long and will be divided into two

parts.

Part I. Let us define α , β, with 0 < α < π/2 and 0 < β < π/2, by the

relations

tan Gί = lim sup

(3.2) A ^ + o

tan β = lim sup
Λ + o

We shall establish in this part of the proof that:

(a) The interval 0 <_ θ < 277 can be divided into two disjoint intervals Iχ and

/ 2, where Ix is the interval 0 < ^ 6 ' < ω or 0 < θ < ω, and /2 is the interval

ω < θ < 2rr or ω < θ <^2π (one of the intervals can consist of a single point),

such that p M ( 0 ) is increasing in lχ and decreasing in /2, and such that further-

more, the equality p (θ ι ) - p_ χ( θ2 ) for θx < θ2, θx and θ2 both in to the same

interval, can hold only if p ^ ( 0) = 00 for θί < θ <^ θ2.

(b) The following inequalities hold:
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(3.3) logp β l (fl) > (tan a)θ in lί ,

> (tan jβ) (2π~ θ) in 12 .

Now, both ( a ) and (b) are consequences of the following inequality which

we shall establish later:

(3.4) p M ( 0 ) > min j p_χ( βj p_χ( θ - θx ), p M ( θ2) p_χ{ 0 - 0 2 ) j ,

where 0 < # t < θ < θ2 < 2π. Indeed, it is easily seen that (a) will be proved if

we can show that the minimum of p . (0) in an interval 0 < θί <^ 0 < 6Ί < 2π

is attained only at one of the end-points. To establish this let us assume, by

way oί contradiction, that the minimum is attained at a certain inner point θ.

Using now (3.4) for θ = θ, and using the fact that both p_χ(θ - θy) and p_ ( θ2 -

0) are greater than one, we get the absurdity

p ( i n ί p ( 0 ^ , p ( P.A

This proves ( a ) . We note also that from ( a ) follows that the points where

pmί(θ) — oo constitute one interval.

Let us now establish (b) . We shall limit ourselves to proving the first in-

equality; the second will follow in a similar fashion. It is clear from the above

that it is enough to prove the first inequality (3.3) for θ which is interior to /t

and such that ρ_χ(x) is finite for 0 <_x <^ θ + 6, 6 being a small positive number

depending on 0 (if no such θ exists, then p . χ ( 0 ) = oo for 0 £ Il9 θ φ. 0, and

the inequality is satisfied with Cί = 77/2). Let now h > 0 be such that θ +

2h C llf and let us apply (3.4) to θx( = )β, 0( = ) 0 + h and 02( = )0+2/i . We get

. 1(6>)p. 1(Λ), p^( θ + 2h ) p^i-h

Since p e {-h) > 1 and p_ (0 + 2h) >_ p_ (0 + h), we obviously must have

p m l ( θ + h) > p m χ ( θ ) p _ χ ( h ) .

Passing to logarithms, from the last inequality we get

l o g p M ( 0 + A) - l o g p e l ( 0 )
(3.5) lim sup >̂  tan α ,
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where α was defined by (3.2). But, since log p_χ(θ) is an increasing function

in Il9 its derivative exists almost everywhere in Il9 the largest sub-interval of

lx where p_ (θ) is finite. Making use of (3.5), we see that almost everywhere

in 11, we have

(3.6) Π o g p M ( 0 ) ] ' > tan Cί.

We now employ a simple inequality applicable to any nondecreasing function

g(x) 15, pp. 361, 373]:

g(b)~ g(a) > fa

b g'(x)dx,

where the integral is taken in the Lebesgue sense. When applying this to the

function log p_Λθ) - (tan (λ)θ in [θϊ9 θ2], using (3.6), we conclude that

log p_ ( # ) - ( t a n Oi)θ is nondecreasing in ll9 and a fortiori in the interval

/ l β The desired first inequality (3.3) now follows if we note that log p_γ{0) -

(tan Cί)θ vanishes for θ = 0.

We still have to establish (3.4). Let θι and θ2 satisfy 0 < θx < θ2 < 2π,

and let 6 be an arbitrary positive number. By Lemma 2 there exist two analytic

functions gι(z) and g2(z), with star-functions p&(θ) and p^(θ), such that

a n d s u c h t h a t t h e c o r r e s p o n d i n g s t a r - f u n c t i o n s s a t i s f y t h e r e l a t i o n s ( 2 . 3 ) . Now

t h e H a d a m a r d m u l t i p l i c a t i o n of t h e two " i n v e r s e " f u n c t i o n s f(z) a n d f_χ{z)

i s t h e " u n i t " f u n c t i o n 1 / ( 1 - z), s o t h a t if w e d e f i n e

( 3 . 7 ) hι(z)^[f(z)tgι(z)] a n d Λ 2 ( r ) = [ / • ( * ) , g 2 U ) ] ,

we g e t

= [f(z\ φ ) ] + [ / ( * ) , g 2 ( z ) ] = A t ( z ) + h2(z).

L e t u s n o w d e n o t e by p^(θ) a n d p^iθ) t h e s t a r - f u n c t i o n s of A t ( z ) a n d h2(z).

I t f o l l o w s a g a i n from ( 3 . 7 ) a n d H a d a m a r d ' s m u l t i p l i c a t i o n t h e o r e m , s i n c e f(z)
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is analytic in the whole plane cut along 1 <_ x < oo, that

(3.8) pf(θ) > pf (0) and pj(0) > pξ{θ).

Using properties ( 2 . 3 ) of pf(O), we see that

443

(3.9) - oo for # 2 < 0 < θι + 27r,

) -- oo for θx < θ < θ2.

( I n o t h e r w o r d s , hι(z) a n d h2(z) a r e a n a l y t i c in t h e a n g l e s θ2 < a rg z < θι +

2?7 a n d θx < a r g z < θ2 r e s p e c t i v e l y . ) We a l s o find t h a t

( 3 . 1 0 ) ί , / = 1 . 2 ) .

Moreover , s i n c e hι(z) a n d h2(z) a d d to 1 / ( 1 — 2 ) , a f u n c t i o n h a v i n g i t s only

s i n g u l a r i t y a t z — 1, we c o n c l u d e t h a t

( 3 . 1 1 Ξ oo for θx < 0 < θ2 .

L e t u s c o n s i d e r now t h e H a d a m a r d m u l t i p l i c a t i o n of fm (z) a n d hί(z). C l e a r l y ,

we h a v e

(3.12)

1

1 - 2

Using once more Hadamard's theorem, taking into account (3.9)—(3.12) for

p (θ), and also remembering that pf( θ) = p_t( 0) for 0 t < 0 < 0 2, we obtain

P.ι(θ)-pf(θ)>min{ph

ιiθι)(ίι(θ-θ1),pll(θa)pml{θ-θ2)}

> ™n{(p_ι{θι)-e)Pmi(θ-θι),(p.ιiθ2)-e)p_ι(0-θ2)}.

We now have only to send 6 in the last inequality to zero in order to arrive at

the desired result (3.4).

Part II. It follows from Part I that if Ot and β are defined by (3.2), then

(3.13) log ρ_γ(θ) > min { (tan a) θ, (tan β) (2π ~ 0 ) 1 .
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Theorem 1 will, therefore, be established if we show that (3.13) is actually an

equality. Now, we may assume that (X and β are not both equal to 77/2. For,

if this were the case, then we would have pΛΘ) = oo for 0 < θ < 2π, and the

theorem would be proved. In what follows we shall assume that the theorem is

false and that (3.13) is a strict inequality for a certain θ— θ0. This we shall

show will lead to a contradiction. Now, from the lower semicontinuity of p_ (θ)

it follows that if we do not have everywhere equality in (3.13), then for in-

finitely many points we have a strict inequality. This allows us to assume that

ΘQ differs from ψ, where φ is defined by ( 3 . 1 ' ) . There is also no loss of gener-

ality in assuming 0 < θ0 < ι//, since otherwise we have only to replace / ( z )

and f_.(z) by f(z) and / . ( z ) , respectively. We first note that in the interval

[0,ψ)

(tan OL)Θ < (tan β) (2π - θ),

and hence there exists 8 > 0 small enough that

l o g p β l ( ^ 0 ) > (tan GC) 0O + δ .

We shall now define the domain D = Z)(α, β, θ0, 8) as the set of points z = re

satisfying

log r < (tan α ) 0 for 0 < 0 < θ0,

(3.14)

logr < min ί (tan α ) θ + 8, (tan β) (2π - θ)] for θ0 < 0 < 2π.

Let us denote by R(θ) the star-function corresponding to the boundary of D.

We claim that

(3.15) R(θ) < p_χ(θ).

Indeed, this is obvious from the definition of D and from (3.13) so long as

0 < θ < θ0. If θ0 < 0 < 2π, then we have to distinguish between two cases:

( i ) θ belongs to the interval I{ introduced in Part I; then both ΘΌ and θ(θ0 <

θ) belong to lϊ9 and since we have established before that log p M ( # ) - (tan Cί) θ

is an increasing function in 7χ, we have

log p M ( 0 ) - (tan α)θ > log p β l ( 0 o ) - (tan α ) 0 o > δ ,

so that
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θ+ δ >_ l o g R(θ).

( i i) θ C /2 In this case we see from (3.14) and (3.3) that

R ( θ ) < e x p [ ( t a n β ) ( 2 π - θ ) ] < p m χ ( θ ) .

This establishes (3.15).

Let now β', θ\ δ ' be such that 0 < β' < β, θ0 < θ' < φ and 0 < δ ' < δ,

where β'9 θ'9 and δ ' are chosen so near to /3, θ0, and zero, respectively, that

(3.16) (tan β') (2π- θ') > ( tan

Let 6 and ex be two small positive numbers, and let

ϋ* = D*(a -e,β',θ', δ', 6 l

be the domain defined by:

logr < [tan(α - e)] θ for 0 < θ < θ',

(3.17) , l o g r < m i n { [ t a n ( α -e)]θ+ δ', ( t a n β') (2π~θ)\ f o r θ' < θ < 2π,

log I z ~ 1 I > eι .

Because of (3.15) it is clear that f_χ{z) is analytic in the closure of D . Let

C be the boundary of lϊ , and set

(3.18)

where the determination of log z is chosen in the following manner: let Φ be the

argument corresponding to the vertex V of C where the two spirals

log r = [tan(α - e)]θ+8' and logr = (tan β) (2π - θ)

intersect, that is

2τ7tan / T - δ '
(3.19) φ = tan(α - e) + tan β'

Then we choose -(2π- Φ)_< arg z < Φ. It is readily seen that G(u) is an entire
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function of exponential type. Furthermore, for 6γ small enough, G(u) is in-

dependent of 6j. That is, if we change only e± and leave the other parameters

in the definition of C fixed, then the value of the integral (3.18) will remain

unchanged. This follows easily from Cauchy's theorem if we note that the curves

so obtained all have the same vertex V. Finally, if n is a nonnegative integer,

then from (3.18) and (1.1') we obtain

1

We shall now study the growth of G (u) more closely. For this purpose let

us put

u = \u\ e

and

(3.20) A ^ i z ) = (arg z) sin φ - ( log \ z\) cos φ .

From (3 .18) we get

(3 .21) log \G(u)\ < \u\ max Aφ(z) + K,

zee*

where K is a constant.

Now, the curve C is composed of five analytic arcs,

J = l

on each of which we shall evaluate the maximum of Aφ(z).

( i ) On C b the arc of circle

| z - 1[ '= ε l f ηχ < argz < η2,

since η and η tend to zero with el9 we have

(3.22) | Λ φ ( z ) | < I arg z I I sin 0 | + | log | z \ \ \ cos φ \

< 2π max ( ^ , η2 ) + log (1 + €ί ) = η3 ,
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w h e r e η t e n d s to z e r o wi th €« .
3

(ii) On C2, the spiral arc

log I z I = (arg z ) tan (α - e) for η2 < arg z < θ',

we have

(3.23) Λφ(z) = (arg z) sin φ (1 - cot φ tan(α - e)).

Hence

(3.24) max Aώ(z) < 0 for < φ < 0.
zβc2

 Ψ - 2 ~

On the other hand, if 0 < φ* < π/2 is defined by

δ'
(3.25) tan φ* = tan (α - e) + — = tan (α - e) + μ* ,

Φ

we get from (3.23) and (3.25), for 0 < φ < φ*,

(3.26) max AAz) < θ' sin 0 ( 1 - cot 0* t a n ( α - e)
zβC2

/ tan(α- e) \
= θ' sin ώ 1 = Ω* sin φ,

^ \ tan(α-6)+μ* | Ψ

where we put

θ'μ*
(3.27) Ω*

tan(α - e) + μ*

(iii) On C3, the segment

exp[£0'f] f where θ' tan (α - e) £ t < θ' tan(α - β) +

we obtain the same inequalities as in the preceding case,

(iv) On C4, the spiral

log ] z\ = δ ' + (arg z) tan((X- 6), 0' < arg 2: < φ ,

we have
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Aφ( z ) = (arg z ) sin φ 1 - cot φ tan(α - e)
S'

argz

from which, using (3.25), we get

(3.28) max Aώ(z) < 0 for < φ < φ*
zβc4

 φ * 2 ~

(v) Finally, on C5, the spiral

log \z I = - (arg z) tan β', - {2π - Φ) < arg z < - ηχ ,

we have

Aφ(z) = (arg z) sin φ (1 + cot <£ tan /3'),

from which it follows that

(3.29) max Aώ(z) < 0 for - β' < φ < π/2,
zec5

By combining the inequalities (3.22)—(3.29), we conclude that

max Aφ(z) < max(r/3, Ω* sin φ) for 0 < φ < φ*,

(3.30)
zee*

maxt Aφ(z) < η3 for ~β' < φ < 0.

But η3 tends to zero with elf while Ω* and G{z) are independent of e ι β This,

with (3.30) and (3.21), implies that the type-function (2.6) of G(u) satisfies

(3.31)

τG(φ) < Ω* sin φ for 0 < φ < φ*

ΊG(φ) < 0 for ~ β' < φ < 0.

Now, let γ be a number such that m a x { θ t - e , / 3 ' } < y < 77/2. S i n c e / ( z ) i s

analytic in the whole plane cut along the half-line 1 <C x < 00, there ex is t s

by Lemma 3 an analytic function F(u) of exponential type in the angle | arg u \ <

γ, such that

(3.32) F(n) = an U = 0, 1,
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and

(3.33)

Let us put

(3.34)

ΊJφ) < 0 for \φ\ <C γ.

H(u) = F(u)

Then H{u) is analytic and of exponential type in the angle — β' < arg u <^

Furthermore, because of (3.31)—(3.34), the following relations hold:

( i )

( i i )

and

H{n) = 0

tH(φ) < Ω* sin φ for 0 < φ < φ*f

τH(φ) < 0 for - β' < φ < 0.

0, 1,

Thus H(u) satisfies the conditions of Lemma 4 with Ω t = Ω*, Ω2 = 0, CX = φ*

and β - β '. Applying this lemma, we conclude that H (u) tends uniformly to zero

in any angle interior to the angle Aa*β*: - /3* < arg u < α*, where CX* and

β* (0 < α* < τr/2, 0 < β* < π/2) are defined by

(3.35)

tan Cί* =
Ω* cot β'+ 2π cot φ* '

tan jβ* =
( 2 τ τ ~ Ω * ) cot β

- = tan β' ,

From the last property, and from (3 .34) , it follows in particular that F (u) can

have only a finite number of zeros in any angle interior to Aa*β*. Let now 0C,

β satisfy 0 < α < Cί* and Θ < β < β* 3 and let Ro be large enough so that

F(u) £ 0 in the sector

In this sector any determination of log F{u) is analytic and sat i s f ies , because

of ( 3 . 3 2 ) , ( 3 . 3 3 ) , and ( 1 . 2 ) , the conditions of Lemma 5. Hence
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l o g \ F ( u ) \
(3.36) lim * ' = 0,

uniformly in any sector interior to Σ ^ f ^ # . Let us put F-^u) ~ I/F(u). Then

F.j(w) is analytic in Σ~at'βtR0 and satisfies

(i) F.^n) ~ — for n > Ro ,

(π) lim — = 0,
\u\->oo \U\

uniformly in any sector interior to Σ ^ ^ ^ o We can now apply Lemma 3', and

conclude that

F.ι{n)zn ^ Σ —
n >R0 n > Ro an

is analytic in the domain Ax,/Γ bounded by the two spirals

r = exp [ (tan (X) 0] for 0 < Θ < ψ,

and

r = e x p [ ( t a n β) (2π - θ)] for ψ < θ < 2π,

where φ is the expression (3.1') with bars. Obviously the function f_Λz) will

be analytic in the,same region. Moreover, since CC and β can be chosen as

near as we please to Oί* and /3*, respectively, it follows that f_γ(z) is analytic

in Da*fβ* This gives us, in particular, the inequality

iogP./tf) > < t a n α*)(9 for 0 < 0 < ^* ,

where ψ* is the expression (3.1') with asterisks. The last inequality and (3.2)

lead to the inequality

(3.37) tan α > tan α*.

Now, from (3.27), (3.35), and (3.25) we find that
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2π - Ώ*
(3.38) tan Cί* =

Ω* cot β'+2τr cot φ*

tan (α - e) + μ*

0 V β , 277
cot /3 +

t a n ( α - € ) + μ* t a n (θί - e ) + μ*

2τ7 t a n ( α ~ €) + μ*[2τ7- θ']

277+ θ'μ* cot β'

μ*[2τ7- θ'- 0 ' t a n ( α - e) cot β']
= tan (α - 6) +

277+ θ'μ* cot β'

Combining (3.37) with (3.38), and sending e to zero, we get

, tan α + tan β'
2π~θ'

(3.39) tan α > tan α + μQ

tan β*

2π+θ'μQ cot β'

where, by (3.25), we have μQ = δ'/Φ 0 > 0, and where φ 0 is given by

2τ7 tan β ' - δ '
Φ

tan α + tan β'

Since from (3.16) we also have

<9'{tan α + tan β') < 277 tan β' ,

we find that the last term in (3.39) is positive. This, however, leads us to

tan α > tan α (0 < 0t < 77/2), an absurdity. Thus the assumption that (3.13)

is not always an equality leads to a contradiction. This establishes the theo-

rem.

4. Some further results. In Theorem 1 the existence only of the constants

(X and β was proved. More careful analysis leads to the following more explicit

result concerning the constants. Let γ be a number such that 0 < γ < 77/2, and

let Fγ (it) be any interpolation function of f(z) defined in the angle \ arg u\ <_γ.

(Thus Fy(u) is of exponential type in the angle, verifying there (3.32) and

(3.33)). Then we have:
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( i ) The unit circle is a cut for / (2 ) if, and only if, the positive axis is a

direction of condensation of zeros for Fy{u). (That is, any angle | arg u\ < e

contains infinitely many zeros of Fy{u),)

( i i) If the positive axis is not a direction of condensation of zeros, then let

the two numbers φ+ (y) and φ~(γ) be defined in the following way: 0 < φ+ < y

is such that Fy{u) has only a finite number of zeros in any angle 0 _< arg u <

φ* — 6, and infinitely many zeros in any angle 0 <̂  arg u < φ+ + e. (We put

<̂>+ = y if Fy{u) has a finite number of zeros in any angle 0 < arg u <_ y — 6 )

Similarly we define φ" (0 < φ~ <_y) by the property that Fy(u) has a finite

number of zeros in any angle —φ~+ e <C arg u <^ 0 and infinitely many zeros

in —φΓ - £ < arg u < 0. Then, if φ+ < y, the constant Ot of Theorem 1 is the

number φ+ just defined. Similarly, if φ" < γ we have β - φ~. Furthermore, if

y is an increasing sequence such that y —> τr/2, then we always have

α = lim φ+(γn), β = Hm φ~(γn).

We shall omit here the proof of this result.

In Theorem 1 it was assumed that f(z) is analytic in the whole plane cut

along the line 1 <̂  x < oo. Suppose now that we know only that f(z) has the

point 2 = 1 as its only singularity on the unit circle, and that it is, furthermore,

semi-isolated. That is, there exists p > 1 such that f(z) is analytic in the

region bounded by the circle | z \ = p and the segment 1 <_ ̂  <. p It was shown

by Polya [4, p. 738] that in this case the singularities of f(z) can be "sepa-

rated" in the following way:

f{z) = /*(*) + f**{z) = Σa*an +Σ a** zn ,

where f*(z) is analytic in the whole plane cut along 1 <̂  x < oo while f**(z)

is analytic in the circle \ z\ < p. Obviously, we have an - a% + α^* with

lim sup | o * * | l / n = - .

Now, if the sequence ί an \ satisfies (1.2), it is easily seen that {a%} also

satisfies (1.2). There is also no loss of generality in assuming a% ^ 0. From

1 1 1 α£*

a* + α** α* an a*
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it follows that

1 1
lim sup

Hence, if we put

l/n

< P~ι

xn un

/ . (

we find that f_χ{z) — /_*(z) is analytic in | z \ < p. Applying Theorem 1 to

f*ι(z)9 we arrive at the following conclusion:

THEOREM 2. Let f{z) be analytic in the domain bounded by the circle

| z | < p ( p > l ) and the segment 1 <̂  x < p. Let (1.1) be the Taylor expansion

of f(z) in \z\ < 1, where an φ. 0 and where (1.2) £s satisfied. Let f_Λz) be

the "inverse" function defined by ( 1 . 1 ' ) . Then either the unit circle is a cut

for f_Λz), or there exist two constants CL and β (0 < OC < 77/2 and 0 < β <

77/2), such that fm<ί(z) can be continued analytically along any ray te , 0 <_t <

r(θ), where

r ( θ ) = m ί n { e

( t a n α ) ί ? , e < t a n 0 ) ( 2 τ r - 0 ) ^ p } f o r 0 < θ < 2 π ,

a n d

r ( 0 ) = 1 .

F u r t h e r m o r e , r ( 0 ) e l i s a c t u a l l y a s i n g u l a r i t y o f fm ( z ) i f r ( θ ) < p .
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A GENERALIZATION OF NORMED RINGS

RICHARD A R E N S

1. Introduction. A normed ring is, as is well known, a linear algebra A over

the complex numbers or the real numbers with a norm having, besides the usual

properties of a norm, also the "r ing" property

1.1 . l l * y l l < 11*11 l l r l l

The generalization studied here is that instead of merely one norm defined

on A there is a family of them, each satisfying 1.1; but of course it is natural

to permit \\x\\ = 0 even though x -f 0, to which attention is drawn by prefixing

the word 'pseudo.'

The theory can be briefly summed up by saying that a pseudo-ring-normed

algebra A is an "inverse limit" of normed algebras. The main tool, which is

rather obvious, is the fact that for a given pseudo-norm V (we avoid the use of

the double bars since an additional symbol would still be needed to distinguish

the various pseudo-norms) those x for which V(x) ~ 0 form a two-sided ideal

Zy, and that V can be used to define a norm in A/Zy When A is complete some

questions, such as whether x has an inverse, can be reduced to the correspond-

ing question for the completion By of A/Zv. It is of course profitable to be able

to reduce questions to By because By is a Banach algebra, while A/Zy need

not be complete. However, it seems to be difficult to say in general what ques-

tions can be so reduced to the case of Banach algebras. (We have spent much

time vainly trying to discover whether the question of an element's having a

right inverse in A is reducible to the same question for the various By,)

When a pseudo-ring-normed algebra A has a unit, then the latter may not be

an interior point of the set of regular elements, but inversion is nevertheless

continuous on the set of regular elements. On the other hand, there are many

dense proper ideals. We devote some time to the topologization of the space of

maximal, nondense (and hence closed), left ideals. From this a "structure

space" of the topologically significant primitive ideals can easily be obtained,

although we do not pursue the latter topic.
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In the commutative case, for each I in L and x in A, one can define %(£)to

be a complex number, just as for the normed case. There is given a sufficient

condition that the x{ ) be continuous, and this leads directly to be a character-

ization, among pseudo-ring-normed linear algebras over the complex numbers, of

the space of continuous functions on a locally compact paracompact Hausdorff

space.

Except for the part having to do with the paracompactness, which depends on

the existence of a "locally-finite partition of unity," this paper was presented

to the American Mathematical Society in November, 1946 (Bull. Amer. Math. Soc.

Abstract 53-1-93). A forthcoming memoir of the American Mathematical Society,

being prepared independently by Dr. Ernest Michael [16], on the subject of

generalizations of normed rings, will treat many of these topics in greater detail.

2. Pseudo-valuations and pseudo-norms. A pseudo-valuation in a ring A is

a nonnegative real-valued function V satisfying

V ( x + y ) < V { x ) + V ( γ ) , V ( x y ) < V ( x ) V ( y ) , V ( - x ) = V ( x ) , F ( 0 ) = 0 .

If A is a linear algebra over the field K (the real or complex numbers), and we

have

V(λx) = |λ | V(x)

as well as the other properties, we call V a pseudo-ring~norm. In a topological

ring we shall call a pseudo-valuation continuous if the set on which V(x) < e

is open for each real e.

We shall call a ring A pseudo-valuated if there is a family I) of pseudo-

valuations such that V{x) = 0 for all V in I) only if x - 0. It is not hard to see

that A becomes a topological ring if the various translations of the sets on

which V(x) < e, where e is real and V ranges through I), are taken as a sub-

base [14] for open sets . A pseudo-valuated ring A is called complete when it is

complete with respect to the uniform structure defined by the various relations

V(χ-y) < e.

2.1. THEOREM. Let U be a neighborhood of 0 in a topological linear alge-

bra A. Then there is a continuous pseudo-ring-norm, V, such that U contains

the set on which V(x) < 1 if and only if U is convex and UU lies in U.

We leave the proof to the reader, except that we give a formula for V when

U is given:

V(x) = sup inf {r; r > 0, x C λrU\
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3. Quasi-inversion. In a ring Af y is a right quasi-inverse of an element x if

x + y + xγ = 0

[cf 12, 111, and Λ; is a Ze/ί quasi-inverse of y.

The methods of normed rings can be adapted to establish the following con-

tinuity property of quasi-inversion.

3.1. THEOREM. Let R be the set of elements having right quasi-inverses

in a pseudo-valuated ring A. Let y be a left quasi-inverse of a limit point z of

R. For each x in R, select a right quasi-inverse x' of x. Then

3.2. y = lim x\
x-* z, xβ R

Proof. The expressions to be written down will seem to involve the assump-

tion that A has a unity element 1. However, such equations as we shall write

down can always be freed of this assumption by expansion and cancellation.

Now by hypothesis we have,

(1 + y) (1 + z) = 1 and (1 + x) (1 + * ' ) = 1

for x in R. Let u = z - x and v = x' — y. Then

{1 + z + u) {1 + y + v) = 1.

Multiplying this on the left by 1 -f y we obtain

3.3. v = (1 + y)uv + (1 + y ) u ( l + y ) .

Let V be a pseudo-valuation. Since

F ( ( l + y ) « ) = V ( u + y u ) < V { u ) + V ( y ) V ( u ) = ( l + V ( γ ) ) V ( u ) ,

we get

V { u . ) < ( 1 + V ( y ) ) V { u ) V ( v ) + ( l + V { y ) ) 2 V ( u ) .

If V(u)—» 0, then presently

V(u) < (1 \

and then
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V ( v ) < ( 1 + V ( y ) ) 2 V ( u ) ( l - ( 1 + V(y))V{u)Tι;

this shows that V (v) —> O

Since, in 3.1, 1 + x tends to 1 + 2 and 1 + x' tends to 1 + y, the continuity

of multiplication shows that (1 + %) (1 + # ' ) tends to (1 + z) (1 + y), so that

y is also a right quasi-inverse of z. For the sake of clarity we reformulate this

result for the special case of a pseudo-valuated ring with unity element.

3.4. COROLLARY. If Z is a left regular limit of right regular elements,

then z is also right regular, and right inversion is continuous at z.

A topological ring in which inversion is not continuous at 1, and which is

(consequently) not pseudo-valuated, is Lω [2, p. 629].

4. Expansions for quasi-inverses. With the hypotheses of 3.1, not only is

right quasi-inversion continuous at z, it is analytic, in a sense which we shall

not further define.

4.1. THEOREM. Let the hypothesis and notation of 3.2 be assumed. For

each x in R and each n, let

n

yn(χ) = Σ ( U + y M * - * ) ) 1 ' U + y ) - l .
i = 0

Then for any pseudo-valuation V and any x in R such that

V{x~z) < (l+V(y)T\

we have

lim V(y(x)-x')= 0.
ra->oo

Proof. Using u and v as in the proof of 3.2, we rewrite 3.3 as

4.2. ( l - ( l + y ) i » ) ( l + * ' ) - l + r

Let υn = yn(x) - x'. Substituting here the expansion for yn(*)> multiplying by

(1 — ( l + y ) « ) o n the left, and using 4.2, we obtain

If
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V(u) < r < ( 1 + V(y))"1,

it follows readily that

(l-r)V(vn) < (l+V(y))n+2 V(u)n+ι,

from which the conclusion follows,

REMARK. The infinite series obtained by setting n = oo in yn is of no use

in showing the existence of right-quasi-inverses even when A is complete, as

is done in the theory of Banach algebras. The reason is that a formal power

product series in A has something like a radius of convergence for each V, and

if these are not bounded away from 0 then the series may not converge in A.

5. Direct operators. Let L be an abelian group, and suppose there are de-

fined in L a number of real-valued functions P such that

P ( x ) > 0 , P ( 0 ) = 0 , P ( x - y ) < P ( x ) + P ( y ) .

A special case of this are the "pseudo-norms" of convex topological linear

spaces [ cf. 15]. Let I be any set of such P's defined in L. Then an endo-

morphism α of L into itself will be called fa-direct if for every P in P and each

positive e there is a positive d such that P {x) < d implies P (<X x) < e. The

implication of this requirement evidently depends on the size of the family P.

For example, if L is a convex topological linear space, and P is the class of

all continuous pseudo-norms in L, then a p-direct linear operator in L is neces-

sarily a scalar multiple of the identity.

There is another application of the idea of direct operators which we mention

in passing. Let L be a Banach space, and let £ be a Boolean ring (with unit)

of projections in L. For E in 8, we can define a pseudo-ring-norm P% by

PE(x)= \\Ex\\.

The result we wish to state is the following.

5.1. THEOREM. A bounded operator 0C in L is direct with respect to the

pseudo-norms Pj? if and only if (λE — Eθk for all E in c .

Proof. For each E in S, we have

\\E aχ\\ < CE 11 £ Λ; 11.
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Now l e t x= ( l - E ) y . T h e n

< CE \\E(1-E)y\\ = 0

for all y, or E a = E aE. Similarly ( l - £ ) α = ( l - £ ) α ( l - £ ) . Expanding

this and comparing with the former yields Ea - α £ , as desired.

Continuing with the general discussion, let us suppose that L is a linear

space, and that P is a fixed family of pseudo-norms. Let D^{L), or more briefly

D(L), be the family of P-direct linear operators in L.

5.2. THEOREM. The family D(L) is a linear algebra with unit element, and

the Vp, where

Vp(a) = sup P{0Lx) ,

form pseudo-ring-norms for D (L ).

We shall omit the proof, which is easy.

For our purposes, a linear space L with a family I of pseudo-norms P shall

be called complete if

a) P {x) = 0 for every P in P implies x = 0 and

b) whenever P (xμ — xv) converges to 0 for some directed set xμ in L, and every

P in P, there is an x in L such that P (xμ— x) converges to 0 for every P.

This definition obviously applies to ring-pseudo-normed linear algebras.

Concerning D (L) we may assert the following, again leaving the proof to the

reader.

5.3. THEOREM. // L is complete {with respect to the pseudo-norms P in

P ) , then D(L) is complete with respect to the Vp,

The purpose of the preceding discussion is to make possible the following

statement.

5.4. THEOREM. Let A be a linear algebra with unit element and a family

I) of pseudo-ring-norms such that F ( l ) = l for each V in I). Then A is iso-

morphiCy with preservation of pseudo-norms, to a subalgebra of D(B), where B

is A regarded as a pseudo-normed linear space with family I) of distinguished

pseudo-norms.

For the proof of 5.4 we represent each x in A by the operator that sends y in-

to xγ.
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6. Completeness of kernel quotients. Let A be a ring with a family I) of

pseudo-valuations, and suppose Vi9 , Vn belong to I). Then

V(x) = maxiV.ix), . . . ,Vn{x))

defines a pseudo-valuation in A. Those x with V(x) = 0 form a two-sided ideal

Zy, a kernel ideal of A (with respect to I) ). We could have limited our attention

to the case n = 1 by assuming that V C I) whenever Vl9 • , Vn C I), but it

is convenient not to assume this. The quotient ring Ay = A/Zy is a kernel

quotient, and V may be defined in it in an obvious way.

When V is a pseudo-ring-norm, Av is a normed ring.

The canonical homomorphism of A onto Ay is continuous when the topology

described in § 2 is used in A, and that defined by V is used in Ay. The com-

pletion in that topology of Ay will be denoted by Ay and called a completed

kernel quotient. In the ring-pseudo-norm case, the completed kernel quotients

are all Banach algebras.

We shall now give several examples to show that we have no right to suppose

that Ay is complete even when A is. In these examples, which are algebras A

of complex-valued continuous functions / on various spaces X, we presuppose

pseudo-ring-norms of the following type. Let K be a class of compact sets whose

interiors cover X. For each K in K let Vβif) be the maximum of | / ( ί ) j for t

in K (the topology in A is then the λ -topology, and X necessarily is locally

compact).

6.1. T H E O R E M . Let T be completely regular, and let C(T) be the ring of

continuous functions on T. Then C(T) is complete, and each C(T)yκ is com-

plete.

6 . 2 . THEOREM. Let H(D) be the holomorphic functions on an open set D

in the plane. Then H(D) is complete; but if K has at least one limit point,

then H{D)yκ is not complete.

6.3. THEOREM. Let BCiR^ be the ring of bounded continuous functions

on the real line. Then βC(i? t ) is not complete, but each BC(Rι )yκ is complete.

In 6.1, C(T) is well-known to be complete [ l ] ; %vκ consists of those

functions which vanish on K, and so C{T)yκ is naturally isomorphic to a sub-

algebra of C{K). By consideration of the Stone-Cech compactification, or

otherwise, one can extend any function continuous on K to all of T (as a matter

of fact, without increase of bound). Hence the subalgebra in question is all of

C(K) which is complete in its norm.
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Morera's theorem shows that H(D) is closed in C(D), and so it is complete.

Again Π{D)yj, is isomorphic to a subalgebra S of C{K). (Of course Z# con-

tains only 0.) This subalgebra is not closed, however, for we can select an

analytic function / holomorphic on K but with a singularity somewhere on D. It

is the uniform limit of polynomials on K and hence a limit of S in C(K), whence

S is not closed. We emphasize that this example shows that Zy may be 0 alone,

while the topology of Av is not the same as that of A.

Finally, 5C(/? 1 ) is not complete since it is dense in C(Rι); but each

BC{Ri)yκ is complete for the very reasons given for 6.1.

7. Right inverses. In a later section we want to show that each maximal

ideal of a commutative complete pseudo-valuated ring A is a ''divisor*9 of some

kernel ideal Zy. The following theorem together with Gelfand's principle yields

this result. It obviously implies that, if A is complete, an element x which has

a (two-sided) quasi-inverse in each Ay (the completion of Ay) has a quasi-

inverse in Ay since a two-sided quasi-inverse is a unique right quasi-inverse.

We have not been able to drop the requirement of " u n i q u e " in 7.1, since there

seem to be difficulties in combining the various right inverses which are sup-

posed to exist. If it should be in fact impossible to prove 7.1 without the word

"unique," then this would be the first indication of a serious divergence be-

tween the theory of pseudo-valuated rings and that of normed rings, after which

it is patterned.

After Theorem 7.1, we present a theorem like 7.1 in which the word " u n i q u e "

is omitted, but there are other hypotheses which are by no means always ful-

filled.

7.1. THEOREM. Let x be an element of a complete pseudo-valuated ring A.

Then x has a unique right quasi-inverse in A if and only if its image in each

completed kernel quotient has a unique right quasi-inverse there.

Proof: There is no loss in generality here in supposing the class D of

pseudo-valuations to contain

V(x) = max ( F , ( * ) , . . . . Vn(x))

when it contains Vl9 ••• , Vn. Let Xy be the image of x in the kernel quotient

Ay, and let Yy be the right quasi-inverse of Xy in Ay. For each positive in-

teger n9 one can find an element yγ^ n m A such that its image Yyn™
 AV is

close to Yy :

V(YVyn-Yv) < l/n.
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The index-pairs V, n on these yτ/ may be partially ordered by setting ( U, m) <

( F, n) whenever m < n, and U(z) < V(z) for all z in A (this latter we ab-

breviate U < V). When V < V, we have Zv C Zy\ moreover we have a natural

mapping (of bound 1) of Ay into Ay, and hence we can act as if an element

originally introduced as belonging to Ay (such as Yy) also belongs to Ay. As

a matter of fact, with this convention, we have Yy - Yy when U < V because

Yy is clearly a right quasi-inverse of Xy in Ay, and this was supposed to be

unique. Making use of this fact, we shall show that ! yy n \ forms a Cauchy

system. Let U belong to I), and suppose V, W > U. Then

1 1
< — + — .

m n

Because of the assumption made at the outset about max (Vi9 V2) belonging

to I) with Vχ and V29 the indices form a directed set; and the yy n form a Cauchy

directed system, which must converge to a y in A since A is complete. A calcu-

lation similar to that just performed shows that

V(xy + x-\-y)-0

for all V, whence y is a right quasi-inverse for x, as desired. This proves 7.1.

Let A be a pseudo-valuated ring, and suppose that for each V in U there is

selected an element uy of A such that

7.2. for each W in I) there is a finite set l)^ such that W(uy) Φ- 0 only for

those V which belong to l)jp, and W(uy) < 1;

7.3. W (γ -2^yuy) - 0, the sum being extended over all V in Xίψ

7.4. for a fixed V, we have W {uy) φ 0 only when W belongs to \Jy

Then we shall call uy a locally finite partition of unity.

The partial sums of the series 2*uv clearly form a Cauchy system, so that

when A is complete the existence of a locally finite partition of unity ensures

the existence of a unity element, and makes it possible to talk about inverses

rather than quasi-inverses.

We can exhibit nontrivial examples of such partitions.

7.5. THEOREM. Let C(X) be the ring of continuous complex-valued func-

tions on a locally compact, paracompact [see 8] Hausdorff space T. Then a
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family r of pseudo-norms can be defined in C(T) so that the ring D (C (T)) of

direct operators in C(T) pseudo°normed as in 5 .2, possesses a locally finite

partition of unity, and is complete.

Proof, According to the hypothesis we can obtain a neighborhood-finite

family ί G } of open sets which cover X and whose closures are compact.

Using Theorem 6 of [8] and the method of Bourbaki (partition continue de

Γunite) we construct a family of continuous real-valued nonnegative functions

fG, where fG(t) 41 0 only for x in G and 2*fGit) = 1. As pseudo-norms in C(T),

take

PG(f) = sup | / ( ί ) | .
te G

The topology thus obtained is the A -topology, in which C(T) is complete, and

hence D(C(T)) is complete. The operators uv defined by uy(f) = fGf, where

V = VpG (see 5.2), are surely direct. Now let G, H belong to ί G !, and let V9 W

be VpG9 Vpij respectively. Then W (uy) -f 0 only if H is one of the finitely many

sets of i G } which meet the compact closure of G, and only if G is one of the

finitely many sets of G which meet the closure of H. Except for details, this

proves 7.5.

7.6. THEOREM. Let x be an element of a complete pseudo-υaluated ring

A possessing a locally finite partition of unity. Then x has a right inverse in

A if and only if its image in each completed kernel quotient has a right inverse

there.

Proof, We adopt the notation of 7.2-7.4. We do not suppose that the class

I) here is closed under the maximum formation mentioned in the proof of 7.1,

because this would require a complicated reformulation of 7.4. For each V in

I), define F ι ( z ) = max W(z) for all W in l)y, and suppose V itself to be ad-

joined to l)p/. Let Xyγ be the image of x in Ay , and let Yy be a right inverse

of Xy in Ay . Select yv in A so that if YyyU is its image in Ay 9 then for

n - 1, 2, , we have

7.7. (Vγ(x) + 1) Vx(Ύy9n - Yv) < 2"n'1.

By the local finiteness, yn =2*vyy nuy converges. Let W belong to "Uy. Then

Since this sum needs to be extended only over the V in \Jψ9 and since then W
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lies in l)j/ so that W <_ Vl9 we have from 7.7 that the left member is less than

2~n times the number of elements in U^. Hence the sequence of yn is Cauchy

and converges to some γ in A. Now

W(xy- 1) = lim W(xyn - 1 ) ,

and

χyn ~ l = Σ(xyVtn - l)uv ,

so that

7.8. W(xyn - 1 ) < Σw(xyVtn-l),

where this sum needs to be extended only over the V in l)^. But then in each

case W belongs to l)j/, and so $ <_ Vι and

W(xyy>n-l) < Vι(xyv>n-l) = V^, Yv>n - XVι Yv)

< Vι(x)V1(Yv>n-Yv) < 2-""1.

Since 7.8 involves only a fixed finite number of terms of this sort, we conclude

that W (xyn - 1) tends to 0, whence xy = 1 as desired.

8. Ideals. In topological rings, naturally the closed ideals play a more

important part than the others. Much of the success of Banach algebras is due

to the fact that maximal (that is, maximally proper) ideals are closed. The same

is true for pseudo-valuated rings with only a finite set of pseudo-valuations.

However, it is not true in general. For example, if in the case of the ring in

6.1, when T is not compact, the ideal of functions each vanishing outside some

compact set is swelled (by Zorn's lemma) to a maximal ideal M, then this ideal

is certainly not closed. For every closed ideal in C(T) can easily be shown

to consist of all functions vanishing at a suitable point of T, and for each t of

T there is an / in M which is not zero there. This ideal is consequently dense

in C(T).

Our idea is to reduce certain parts of the ideal theory (and at some future

time, of the representation theory) of pseudo-valuated rings to that of the com-

pleted kernel quotients, in which some of the techniques of Banach algebras

can be applied. For terms used below but not defined, see [ 11].

8.1. THEOREM. In a pseudo-valuated ring, every nondense left and/or

regular and/or two-sided ideal L is contained in a closed left and/or regular
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and/or two-sided ideal N which contains a kernel ideal.

Proof. Let L be a nondense ideal. Then there is a u in A9 a V in I), and a

positive e, such that V(u- x) < e implies x ^L L. Let M be the sum of L and

the kernel ideal Zy Let x £- M. Then x = γ + z, y £! L, and 2 £! Zj/. Now

e < F ( a - y ) = V ( u - x + z ) <^ V ( u - x ) ,

whence u does not belong to the closure N of Λί Hence /V is the desired ideal.

However, if L is regular with relative right unit v, we must show that there is

a relative right unit modulo /V. But υ itself can obviously be chosen for this

purpose.

8.2. COROLLARY. Every nondense maximal {two-sided) or maximal left

ideal is closed and contains a kernel ideal.

9. An abstract approach to structure spaces. We note that the ideas of Stone

and Jacobson can be generalized to topologizing suitable subsets of partially

ordered systems. In what follows one may think of J a s the class of ideals of a

ring, 3, the two-sided ideals, and £, the maximal left ideals.

Let % be a partially ordered set, 3 a subset of % which forms a complete

lattice with greatest element A, and L an arbitrary subset of (j<. We want to de-

fine a closure operation in <C. For 31 C <C, let

i ( l ) = sup ί α; α C 3, α < I for every I in 1 } .

For α in 3, let

u ( α ) = ί t ; t C £ , I > a\.

One can easily verify that

9.1. u(sup α α ) = Π u ( α α ) .

For ! c ϋ , the closure I shall be ui(ffl).

The next three propositions, whose proofs are omitted, mention all the clo-

sure axioms needed for a topological ( T-) space; Λ is the void set:

9.2. Λ = Λ if and only if A has no upper bound in L.

9.3. 1 C I ; S C 5Γc implies Έ C U; and ϊ = ϊ .

9.4. ( 5 O ί u ? l ) C ϊ ! u 5 ί l holds generally in <C provided for each I in £ , the in-

equality l > α Λ f) implies ί > α or I >̂  f> .
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9.5. THEOREM. // the conditions of 9.4 and 9.2 are satisfied, £ becomes

a T-space.

As remarked by Jacobson, £ need not be a Tί-space, nor a J 2 " s P a c e even

when it is a Z^space. As a matter of fact, it need not even be a 70-space,

but this defect is smaller than the other two, for it may be "removed*' by a

process of identification.

These spaces <L often have compactness properties.

9.6. THEOREM. The set u ( α ) is compact if and only if given <Xa in 3 with

aa _> α such that every finite collection has an upper bound in £, then the en-

tire collection has an upper bound in L.

10. Application to rings. Now let A be a ring and let 3 be the class of tv/o-

sided ideals. Let <b be a class of ideals of A each of which is either

10.1. prime and proper,

10.2. maximal left, or

10.3. primitive.

Then the condition of 9.4 holds (case 10.3 was considered by Jacobson, and

the others are obvious), and £ becomes a space of 9.5.

The special case in which £ consists of the maximal left ideals is interest-

ing. It is fairly easy to see that ί ( i IS) is always primitive and that we thus

obtain an open continuous mapping on Jacobson's structure space.

In topological rings, £ may be chosen to contain only closed ideals, while

3 may be chosen as before. This does not adversely affect the fulfillment of

the closure axioms, but naturally when the class of ideals in £ is restricted,

limit points are lost and compactness is affected. Indeed, even when A is com-

mutative and has a unit, £ may be noncompact (see 8.1). Hence we prove the

following about pseudo-valuated rings.

10.4. THEOREM. Let £ be the class of nondense maximal left ideals, and

3 the two-sided ideals, of a pseudo-valuated ring A. Let & be a regular member

of 3, and let Zy be a kernel ideal. Then u (Ct) n \i(Zy) is compact.

Proof. Without loss of generality (see 9.1) we may suppose Ct D Zy, and

thus u ( α ) C u(Zy). Now let αα D α. Suppose that for <xi9 , Cln there is

an I in £ containing the αα^ for i = 1, , n. Let B = A/a, pseudo-valuated by

means of V, Since d is regular, B has a unit, and I does not map onto B. The

multiplicative properties of V ensure that the closure of the image of I is also
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an ideal in the completion β. Thus the images of α α , «« , α α generate a

proper left ideal in B. Hence, by the argument of Banach algebras (cf. [ l l ] ) ,

the images of the α α all fall into one (closed) maximal left ideal of B. The

inverse image of this in A provides a bound for the α α , and so 9.6 applies,

finishing the proof.

As in an earlier section, we can go further with the assumption of a locally

finite partition of unity.

10.5. LEMMA. Let £, 3, and A be as in 10.4. Let A have a locally finite

partition of unity, { uy }. Let Gy be the {open) complement of u(dj/), where

(Xy is the two"sided ideal generated by uy. Then Gy does not meet u ( Z ^ ) for

W not in Uy.

Proof. Clearly uv C Zψ when W £ \JV. Hence ay C Zψ, and so

u(Cty) D u ( Z ψ ) ,

from which the conclusion follows.

10.6. THEOREM. Let £, 3, A, and Gv be as in 10.5. Then each Gv has

a compact closure in £, and the Gy form a star-finite open covering of £, which

is consequently a paracompact* locally compact space.

Proof. By 8.2, the u (Zy ) cover £, and so Gy must be contained in the

union of those finitely many u ( Z ψ ) for which Ψ belongs to Uy, and this union

is compact by 10.4. (Recall that A has a unit.) Now suppose that Gy and Gψ in-

tersect in a nonvoid set. They must intersect in a point of some u (ZJJ ), whence

U G l)y, U C l)y. For V fixed, this rules out all but a finite set of possibilities

for W. This shows that the Gy form a star-finite system. Now let t belong to

£ . Then for some V, we have uy ψ. I ; for otherwise we would have 1 C I since

the latter is closed. Then I C Gy. Hence the Gy cover £, and £ is therefore

locally compact.

Now let an arbitrary open covering C of £ be given. For each V select a

finite number of these open sets to cover Gy, and cut these sets down so that

they lie in the union of those Gψ which meet Gy. The class of sets so obtained

is easily seen to form a neighborhood finite refinement of C. This completes the

proof of 10.6.

11. Characterization of the ring of continuous functions. We are now in a

position to characterize the ring A = C(T, K) (K is here the complex field),

*In the generalized sense obtained by removing the stipulation of Hausdorff separa-
tion from Dieudonne's definition.
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where 7 is a locally compact, paracompact Hausdorff space, as a pseudo-ring-

norm ed ring in which the topology is that of the A -topology. From 7.5 we say

about C ( X, K) that

11.1. it has a locally finite partition of unity; and moreover, if x* is defined

by x * ( 0 = x{t), then

11.2. it has a semilinear operation * such that (λx + yz )* = λx* + z*y*,

#** = x, and

11.3. V(xx*) > ky V(x) V(x*)9 where kv is some positive number, for each

V in I).

In C{X,K), all the kv = 1.

The main theorem is a converse of these observations.

11.4. THEOREM. A commutative complete pseudo-ring-normed linear algebra

A over the complex numbers K satisfying 11.1, 11.2, 11.3 is equivalent to a

C(T, K), where T is a locally compact, paracompact Hausdorff space which is

homeomorphic to the space <C of closed maximal ideals of A, topologized as in

10.6.

Proof, Since each closed maximal ideal contains some Zy, the corresponding

residue class ring is a normed field, which must be the field of complex numbers

K. For I in <C, define x(ί) = a if # — α 1 belongs to C. Now Av is isomorphic

to a subset of C(Xy, K) by Theorem 1 of [4], which is essentially the Gelfand-

Neumark lemma. It follows that

11.5. k2

v V(x) < s u p | * ( t ) | < V(x), x*(l) =

ίeu{Zy)

Let p , p , be a sequence of ordinary polynomials with real coefficients

such that

\pm(a)- \a\\ <Tm

for a any real number with \a\ <_ m. T h e s e can be constructed by Weierstrass '

approximation theorem. It follows from 11.5 that if x = x* in A, then pm(x) i s

a Cauchy system, and for the limit y we surely have \x( l)\ = y (I) ίor each I in

<C. Denote this 7 by | x \.

We must now establ ish that x( ) is continuous on £ . Let ( C C. Since A

has a unit we may suppose that x( I ) = 0. We may also suppose that x — x*.
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From the possibility of taking absolute values, it follows that

belongs to A, and it has the value 2 at I . Now let <x be the principal ideal

generated by y, and suppose m £ u ( α ) . Then y(m) = 0, so that m ^ I . Sup-

pose that | % ( m ) | > 1 for some m in «C. Then y(m) = 0, or m £ u( α). Hence

the complement of u ( α) is a neighborhood of I on which the absolute value of

value of x( ) is less than 1. In view of the possibility of scalar multiplication,

this shows that x( ) is continuous.

We next show that the topology of A is the same as the A -topology for the

corresponding functions. If K is a compact subset of <C, it is contained in fi-

nitely many of the Gy of 10.6, and by 10.5 it is contained in the union of some

finite class of U(Zj/) 's . Hence convergence in all pseudo-norms implies uniform

convergence on K by 11.5, hence in the A -topology. The other way around is

simpler, depending on 11 5 and the fact that each u{Zy) is compact. An appli-

cation of a generalized form [5, p 765] of Kakutani's method for the Stone-

Weierstrass theorem completes the proof of 11.4.

One could go on to generalize the numerous variations of the Gelfand -

Neumark lemma involving only real scalars, or quaternions, and so on, but the

method of reducing these questions to the corresponding case of normed rings

is now clear. The purpose of the partition of unity is of course to enable one

to disclose the topology of A as the ^-topology, and thus has no nontrivial

counterpart in the "normed" theory. If that part of the previous proof which in-

volves the Gy is ignored, we obtain the following:

11.6. THEOREM. A commutative complete pseudo-ring-normed linear algebra

A, with unit over the complex numbers satisfying 11.2 and 11.3, is isomorphic

to a C(T, K)9 where T is a completely regular space homeomorphic to the space

of closed maximal ideals, and such that the topology of A corresponds to some

topology in C{T, K) which has at most the open sets of the k-topology.

This result, while perhaps more easily applicable, is not " a characterization

of those C( T, K) with a topology t <^ k," since such C( T, K) do not need to

be complete. In [6, p. 234] there is exhibited a space T in which all compact

sets are finite (although not always open as the next sentence in that paper

should have said). Consequently, the completion of the space C(T, K) in any

topology t which is _< k includes discontinuous functions.

When 11.3 does not hold, we have no way of knowing that the functions x ( )

are continuous on <C; in fact, even in the norm case they are sometimes not
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continuous (cf. Gelfand and Silov). Of course, one can force them to be con-

tinuous by abandoning the topology in L and introducing a new one ad hoc, de-

fining just enough sets to be open so that they are continuous. The result is a

completely regular space, and in it we can make this statement:

11.7. THEOREM, Let A be a commutative complete pseudo-normed linear

algebra over the complex or real numbers. For each % in A, define a function

x( ) on the space of closed maximal regular ideals. Then x has a quasi-inverse

in A if and only if x(ί) ^ — 1 for each t in L .

The proof follows from the preceding remarks, Theorem 7.1, and 8 2.
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INTERSECTION THEORY FOR CYCLES
OF AN ALGEBRAIC VARIETY

I. B A R S O T T I

Introduction. For a number of years intersection theory represented one of

the most debated subjects in the field of algebraic geometry; also one of the

main reasons for seeing in the whole structure of algebraic geometry an inherent

flimsiness which even discouraged the study of this branch of mathematics. This

situation came to an end when the methods of algebra began to be successfully

applied to geometry, mainly by van der Waerden and Zariski; in the specific case

of intersection theory, a completely general and rigorous treatment of the subject

was given by Chevalley [ 3] in 1945. This rebuilding of algebraic geometry on

firm foundations has often taken a form quite different from what the classical

works would have led one to expect. Thus it is not surprising that Chevalley's

solution of the problem has no evident link with the methods that, according to

the suggestions of the classical geometers, should have been used in order to

define the intersection multiplicity (for a sketch of these methods and sug-

gestions see, for instance, [4 ] ) ; rather, it is linked to the analytical approach,

and it is therefore a strictly 4< local" theory, thus having the advantage of pro-

viding an intersection multiplicity also for algebroid varieties. The method by

A. Weil [ 5] is another example of local theory.

The classical approach to the problem is illustrated in the introduction to [2]

(see "first approach"), and carried out in the present paper. After an introduc-

tion dealing with algebraic correspondences (§1) we study in §2 a particular

algebraic system related to any given cycle ^ of a projective space, namely the

system consisting of all the cycles obtained from % by projective transformations

of the ambient space, plus the "limit cycles" which must be added in order to

complete the algebraic system (and which would correspond to the degenerate

projective transformations). This system, called the homographic system of %

is used in §3 to obtain the principal results, namely Lemma 3.1 and Theorem

3.2. The wording of these results, as of the other results of §3, is complicated

by the fact that we do not restrict ourselves to varieties over an algebraically

Received October 15, 1951. This paper is a result of research sponsored by the U.S.
Navy (contract Nonr-10000 Office of Naval Research).

Pacific ]. Math. 2 (1952), 473 = 521.
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closed field, or to varieties in the sense of [$] ; the gist of them, however, is

the following:

Given the irreducible cycles ίj, g- of a projective space, let 3 be the "ge-

neric" element of the homographic system of %, and let P be an isolated com-

ponent (of the right dimension) of the intersection of the varieties § and £. Then

the number of those intersections of the varieties ^ and 3 which approach P

when 3 approaches % is, by definition, the intersection multiplicity of ίj and J

at P; this number does not change if % is allowed to vary in any "admissible"

algebraic system rather than in its homographic system; and finally, the number

is the same when % varies in any algebraic system, provided that then we al-

ready count each intersection of ^ and 3 with a certain multiplicity, to be com-

puted by means of an "admissible" system. Also, the same number is obtained

if ^, or both § and £, are allowed to vary.

The fact that we allow our varieties to be defined over an arbitrary field is

not just a refinement of debatable usefulness, but a plain necessity: in fact, the

general element of an algebraic system is never defined over an algebraically

closed field (unless the system consists of just one element).

This definition takes care of the intersection of cycles of a projective space;

the next step (carried out in §5) is the extension of the definition and of the

related results to the cycles of an arbitrary (irreducible) variety F. Should it be

possible to find, for any given cycle % of V, an algebraic system of cycles of V9

containing #, and playing the same role as the homographic system, then the

theory on V would not differ from the theory on a projective space; more gener-

ally, it would be enough to find another cycle £ which does not contain the inter-

section U in which we are interested, and such that $ + £ is contained in such

a general algebraic system. Now, it is well known that this is not the case in

general, but that one very wide class of cycles % through U which fulfill the

condition is the set of the cycles of V which are locally (at U) intersections of

V and of a cycle of the ambient space; and this, in turn, is always the case if

U is simple on V and the ground field is algebraically closed. As a conse-

quence, we define the intersection multiplicity of fc) and 3- at U on V only for the

case in which ^ and 3 are intersections, at t/, of V with cycles Y, Z of the

ambient space S; for this case the algebraic system containing % + £ (with £ not

passing through U) which can be used in order to define the intersection multi-

plicity is the system of the intersections of V with the elements of the homo-

graphic system of 3; it is not even necessary, however, to consider this system:

since the intersection of fc) and 3 i n S is already defined, the multiplicity of U

in this intersection can be assumed to be, by definition, the multiplicity of U in

the intersection of ^ and % on V. This is an outline of the content of §5, but
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one more detail needs to be mentioned here: it may happen, a priori at least,

that although # is not an intersection at U, it becomes such by a suitable bi-

rational transformation of V which is regular at U; this is taken into account

after Theorem 5.9. Finally, since we are using rational cycles, it must be re-

marked that such cases as the vertex of a quadric cone are naturally taken care

of by the theory: a line 3. through the vertex U of a quadric cone V is the inter-

section at U of V with the cycle 3/2 of the 3-space containing V, 3 being the

tangent plane to V along 3.

Bezout's theorem is proved in § 4 by means of one of the usual geometric

methods, namely by letting the two cycles degenerate completely into cycles

consisting of linear varieties only; other proofs of a more algebraic nature would

display the relations of Bezout's theorem to that property of the divisors which

is called the "product formula" by number theorists; the present proof, however,

offers the advantage of being extremely simple.

The main advantage of the present geometrical theory of intersections is the

fact that it can readily be applied to problems " i n the large" although through-

out this paper the local intersection number is stressed, the theory finds easy

and immediate application to the construction of the algebraic system determined

by two cycles over any connected component of their intersection which happens

to have a dimension larger than expected; in particular, the characteristic system

of an irreducible subvariety of a variety and its virtual degree could easily be

established. These topics, however, would find their natural place in a paper

dealing with algebraic equivalence.

1. Preliminary results. We shall use the same definitions and notations as in

[ l ] and [2], paying attention to the fact that some of the definitions or notations

of [ 1 ] have been modified in [ 2 ] . A few additional modifications or generaliza-

tions will be explained now. In [ 1 ] " c y c l e " meant "integral effective cycle"

(that is, with positive integers as coefficients); in [2] it meant "rational ef-

fective cycle"; it shall now mean "rational (effective or virtual) cycle". More

precisely, a cycle is an expression of the form

I = Σ atVιt
I = 1

where n > 1, the a^s are nonzero rational numbers, and the V^s are mutually dis-

tinct irreducible pseudosubvarieties of a pseudovariety over a field; 3 is unmixed

if all the F 's have the same dimension (called the dimension of the cycle). The

set of s-dimensional cycles becomes an additive group by addition of the zero

cycle 0 = OF for any s-dimensional irreducible pseudosubvariety V'. The above
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expression J V _ OJ Ft is called the minimal representation of %; any expression

OF is a minimal representation of 0. If V is an s-dimensional irreducible pseudo-

subvariety, the multiplicity of V in % is zero if V ^ Vι for each i or if 3- = 0,

and equals a{ if V = Fj. The cycle % is irreducible if n = α t = 1. The identifi-

cation, used in [l] and [2], of an irreducible cycle % = IV with the irreducible

pseudovariety F is no longer valid. If J \ _ α; F{ is the minimal representation

of the cycle % £ 0, then each F; is called a component variety of %, and each

lFj is a component of % the cycle ^ whose minimal representation is ^ - γ ty Wj

is pαrί of % iί m <n, and if it is possible to establish a 1 - 1 correspondence

j —» i(j) such that α-.x = 6., F ^ x = IFy for y = 1, , m; the only part of 0

is 0.

If U is a subvariety of a projective space S over k, two cycles ^, % of S

whose minimal representations are

= Σ

are said to coincide locally at U if either (1) no component of ί/ is a subvariety

of any F t of of any ί]^ , or (2) if, say, Vl9 , Vr and [Fj, , Ws are the com-

ponent varieties of t) and % respectively which contain some component of U,

then r = s, F/ = ff^ for i = 1, , r, and α; = 6/ for i = 1, , r; the cycle

Σ β, Ff . £ bj Wj
i = i 7 = 1

in case (2), or the cycle 0 in case (1), is called the U-part of #(oro/t ) ) ; the

radical rad ^ of % is the join of the component varieties of % if J ^ 0, and is the

empty variety if % ~ 0.

An algebraic correspondence is a cycle, not a pseudovariety. In the expres-

sions [D; F, G], ID; F, G], ( β ; F, G), D [ G ] , £>(G), Δ [ v ] , Δ ( v ) , the symbols

D and Δ are cycles, while the expressions themselves are pseudovarieties. In

the expressions \D; V, G }, ID; F, G }*, D{Gi, D ί G } * , Δίt ;} , Δ { v Γ , D and Δ

are cycles, and so are the expressions themselves. In the expressions e(Z)*/Z>;

F, G), e{D*/D; F, G)*, D is a cycle, D* a pseudovariety. In the expressions

ord 2, deg J, red % % can be either a cycle or a variety; in the expressions ins £,

exp £, h(%), % can be either an irreducible cycle or an irreducible pseudovariety.

It is thus evident that if t), % are cycles, then rad ^ n rad ^ is the variety

which is the intersection of the varieties rad fc) and rad % (point-set theoretic),

while t) n 3 has not been defined so far; and when it will be defined, it will be a
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cycle, not a variety.

Let F , F be variet ies over k9 F being irreducible, and let D be an unmixed

algebraic correspondence between F and F, every component of which operates

on the whole F ; let G be an irreducible subvariety of F , D an irreducible com-

ponent of [D; F , G ] . The symbol e{D*/D; F , G ) * has been defined (when it

exists) in [2] under the assumption that V and 0 be irreducible. We shall extend

it now to a more general c a s e . Let D be unmixed, and let D = 2L?. α; D; be i ts

minimal representat ion. Let v be a valuation of k{F) over k, of the same dimen-

sion a s G over k9 and whose center on F is G; let {x \ be the h.g.p. (homo-

geneous general point) of D(9 and denote by Ci(v) the complete set of exten-

sions of v to k{Dι) with respect to {%'*'! (see [2, § 3 ] ) . Assume dim D* =

dim D — dim F + dim G, and call τii(v) the number ( > 0 ) of elements of C({v)

whose center on D f is D*. If

£ . α, n, ( f ) i n s Z), [ F ] ( ord Z)* [ G ] Γ 1

does not depend on v9 this number will be denoted by

e(D*/D;V,G)* = e(D*/D; G, V)*.

Clearly, if D is another unmixed algebraic correspondence between F and F,

having the same dimension as D9 and if e(D*/D; V$ G) and e (D /D F s G)

both exist, then e(D*/aD + bθ'; F, G)* exists and equals

ae(D*/D; V9 G)* + be(D*/D'; F, G )*

for any pair of rational numbers α, b. As a consequence of statement 5 of Theor-

em 3.1 of [ 2 ] , we have the result: if vij{j = 1, 2, ) are the distinct elements

of Ci (v ) whose center on Dι is 0*, then

( 1 ) e(D*/D; V9GΫ = Σ ai[Γv : Γv] [Kυ : k{D*)] [Kv: k(G)Γι.

If D* has the dimension dim D - dim F + dim G, but it is not a component of

[D; V, G], then we set, by definition, e(D*/D; V9 G)* = 0. This is in accord-

ance with (1), since in this case no element of any Cι(v) has the center D* on D.

According to [2], instead of saying that e{D*/D; V, G)* = OC, we shall also

say that α is the multiplicity of D* in {D; F, G}*, even if { D; V, G }* does not

exist; this will be extended to the other expressions, like " # is part of \D; V,

G ! * " and similar ones.

Let ]Γ. a{ V: be the minimal representation of an unmixed cycle ^ over k. If

K is an extension of k9 and F/y (/' = 1, 2, •••) are the distinct components of

( V.)κ, the extension of t) over K has been defined in [2] to be
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§K = Σ Γ

 ai e x P

the exponent of Fty being independent of /. This had the advantage that ^t,y § =

^t,y §κ>
 a n d that deg φ = deg fc)^.. We shall often need, however, to consider

the cycle

ίj '= £ . . α* i n s ^ ( i n S ̂ / Γ l FV J

this, as remarked in [2, § 1 ] is an alternate definition of the extension of a

cycle. The cycle fc)' shall be called the modified extension of ^ over K, and no

special symbol will be used to denote it. We have ord *$' - ord fc). Let finally %)

be a cycle over K. We say that § is a partial extension of t) over K if |) = ^ ^. ,

where each component variety of %). is a component of (Vi)κ, and α; ord J/; =

ord?)..

LEMMA 1.1. Le£ D, D*, F, F, G, A: have the same meanings as in formula

(1). Let F be birationally equivalent to F$ and such that if G is any irreducible

subvariety of F which corresponds to G, and which has the same dimension as

G, then Q(G/F) C Q(G /F ). Let D be the algebraic correspondence between

F'and V such thatϋ'\F'\* =D{F\*; for each G''let £>*, D*, . . . be the pseudo-

varieties which correspond to D and such that I D * operates on G , and assume

F/ to be such that e (D*/D';V,G')* exists for each G'and each i. Then e(D /D;

V) G ) exists if and only if

α =
. e(D*/D';V, G')* ord (ID*)

does not depend on G'; that is, if and only if Z^ e(D*/D V, GO* D* is a

partial extension of a fixed multiple of ID* over k (G') for any G' In such case,

we have

e(D*/D;V,Gf = α(ord( lD*)[G])~ ι .

Proof. The proof of this lemma is an immediate application of (1), since the

varieties G' are the centers on F ' of the valuations v of formula (1).

COROLLARY. Maintain the notations of Lemma i.7$ and let \ ζ\ be a set of

parameters of Q (G/F ); then \ζ\ is a set of parameters of each Q(D*/Dι). If

e(U /D; V, G ) exists, it equals

Σ . α; e(Q(D*/Di);ζ) e (Q(G/F) ζ)~ι.

Proof. In Lemma 1.1 choose for F ' a normal associate to F, so that each

e(D*/lD t ' ; F, GO* exists (by statement 1 of Theorem 5.3 of [2]) and equals

e(^(D*/D { '); ζ) e(Q(G'/F'); ζ)~ι. As a consequence of the lemma we then

have
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e(D*/D; V, G)* = £. . α, β(ρ(Df/θΓ); ζ) e{Q{G'/F'); ζ)~ι x

o r d ( l D * ) [ G ' J ( o r d ( l Z > * ) [ C ] ) " x

for any G'. There are finitely many varieties G' in this case, and we shall denote

them by G {9 G , ••• , while the D*'s which operate on Gm shall be denoted by

D*( ) W hD*mj(j = 1, 2, . . . ) . We have:

Σ m ; C ; ord ( 1 0 * ) [ G ]

- Σ , »i Σjm eMD*mί/D;); ζ) αrd ( I D ; . ) E G ; ] [ * ( C ; ) = * < G ) ] ,
j m

or also

e(D*/D; V, G)* £ e{Q(G'/F') ^ ) [ A ( G ' ) : *

= Σ , »i Σ / m e(Q(D*mj/D;); ζ)[HD*m.): k(D*)].

Now, by Lemma 2.2 of [ 2 ] , we have

Σm e{Q(G'm/F'); ζ)[k(G'm): A(G)] = β ( ρ ( G / F ) ; 4)

and

Q.E.D.

We now maintain the same notations, and assume that V is irreducible and

that each component of D, as well as I D * , operates on the whole V. In this case

e{D*/D; V, G)* does not actually depend on Z), but depends only on D\ V {*, by

the above corollary, since Q(D*/D() contains k(V). Accordingly, if Δ denotes

D{ Fί* and Δ* denotes ( I D * ) [V], we shall denote e(D*/D; V, G )* also by

e ( Δ /Δ) . We remark that Δ can be described as a component of the inter-

section of rad Δ and G^(]/) such that 1Δ operates on the whole G. Let Δ t ,

Δ , ••• be components of rad Δ n Gjc(y) such that each 1Δ. operates on the

whole G. If OCj = e ( Δ * / Δ ) * exists for each i, we shall say that 2^. Ct; Δ* is part

of the intersection G' n Δ of G' with Δ, G' being the modified extension of 1 G

over k{V). Notice that the symbol n now links two cycles, so that no confusion

may arise with rad Δ n rad G\ This notation, as will appear later, is in agree-

ment with the general intersection theory.

LEMMA 1.2. Let K be an algebraic function field over k, Δ an algebraic

correspondence between K and an irreducible variety F over k, every component

of which operates on the whole F. Let K' be an algebraic function field over k
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containing K, and Δ ' the modified extension of Δ over K'. Let G be an irreducible

subvariety of /% Z and Z' the modified extensions of lG over K and K' respec-

tively. Let Δ be a component of rad Δ n rad Z, such that 1Δ operates on the

whole G, and let Δ̂ . (i - 1, 2, ) be the distinct components of Δ^' ; then each

Δ is a component of rad Δ ' n rad Z ' y am/ each I Δ J operates on the whole G.

The multiplicity e ( Δ /Δ) exists if and only if e( Δ /Δ ' ) exists for some i> in

which case this exists and is the same for each i. If this is the casey then the

modified extension Λ* ' of e{ Λ*/Λ)* Λ* over K ' is part of Z ' n /\'.

Proof. Obviously each Δ is a component of rad Δ ' n rad Z ' , and dim Δ =

dim Δ* for each i. Therefore, if Δ* has the dimension dim Δ + dim G - dim F, so

does Δ , and conversely. The contention which needs to be proved is the last

one. Now, if K' is purely transcendental over /(, also this contention becomes

obvious, since in such a case there is exactly one Δ*. We shall therefore assume

K' to be an algebraic extension of K. Again, a well-known artifice makes it

possible to prove the last contention if it is known that it holds true for each K'

which is normal over K. Hence we restrict our attention further to the case in

which £ ' i s normal over K (the word "normal" does not imply separability).

Under these assumptions, let v be a valuation of k(F) over k of dimension

equal to dim G, and whose center on F is G. Clearly we may further assume Δ

to be irreducible. Let then w be an extension of v to Λ (rad Λ), having the

center Δ* on rad Δ; let Δ ' ( i = 1, 2, •) be the component varieties of Δ', and

let w' be an extension of w to £ ' ( Δ p , whose center on Λ ' will therefore be,

say, Δ*. Each automorphism σ of the Galois group ® of K' over K can be in-

terpreted, in a natural way, as an operator which transforms, isomorphically and

transitively, the fields / ^ ( Δ p into each other. Then σw' has a meaning, and

when σ ranges in @, σw* ranges among all the extensions of w to K ' ( Δ p , for

each i, while the centers of these range among all the Δ . As a consequence,

[Tσw': Vw] and [Kσw': Kw] are the same for each σ. The ramification theory

gives then

n being the number of distinct extensions of w to £ ' ( Δ p whose center on AJ is

Δ*, and m being the number of distinct σΔ* which are subvarieties of Δ^. Now,

let a{w) be the sum of all the expressions [Γw»: Γw] [Kw»: ft'(Δ*)] when

w" ranges over the distinct extensions of w to i £ ' ( Δ p whose center on ΔΓ is

Δ*, and i = 1, 2, •• . If m' denotes the number of distinct Δ^-which contain Δ*,

from what precedes we obtain

a(w) = nm'YTw,: Γ j [Kw.: K'(Δ*)]
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= m'[K'(Δ[)ιK(radΔ)] m-ι[Kw:K(\*)][K'(A*):K(A*)]~ι.

Now, there is the relation

m x number of distinct Δ. = m' x number of distinct Δ

that is,

rn'rn'1 = redΔ r e d Δ * ( r e d Δ ^ r e d Δ * ) " 1 ;

on the other hand,

and l ikewise for [ K\A\): K(rad A)]. Hence

(X(w) = ins Δ [ i n s Δ * ( i n s Δ i n s Δ * ) " 1 [Kw

If we denote by β(v) the right side of formula ( 1 ) , which would equal

e(A*/Δ)* iϊ it were independent of v when C(v/F) = G, and hy γ(v) the simi-

lar expression for e ( Δ * / Δ ' ) * , then we have the relation:

γ(v) = Σw i n s Δ ( i n s Δ ^ ) " 1 Όi{w) [ΓW'.ΓV] [Kvι k(G)Γι

= ins Δ*(ins Δ*)-1 ΣW[ΓW:ΓJ [£„: £(Δ*)] [Kυ: k(G)Γι

υ

= ins Δ * ( i n s Δ * ) ~ ι β{v),

where w ranges over all the extensions of v to K(rad Δ) whose center on rad Δ

is Δ . This proves that γ(v) is independent of v if and only if β(v) has the

same property, and, because of (1), also proves all the statements of Lemma 1.2.

Q.E.D.

THEOREM 1.1. Let D be an unmixed algebraic correspondence between the

irreducible variety F over k and the variety V over k> every component of which

operates on the whole F. Let P and G be irreducible subvarieties of Fy P also

being a subvarietγ of Gy and let D' be a component of [D; V, P] such that

e(D'/D; V, P)* exists. Let D*9 £>*, ••• be the components of[D; V, G] which

contain D ' then

dim D* = dim D - dim F + dim G .

Assume e (D ./D V, G) to exist for each i, and set

D* = T e(D*/D; V,G)*D*.

Thene(D'/D*; V, P )* exists and equals e(D'/D; V, P )*.

Proof. If r = dim D., then we have dim D' > r — dim G + dim P . Since
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dim Z)' = dim D - dim F •+ dim P , it follows that r < dim D - dim F + dim G9 and

therefore the equal sign must hold. This proves the statement concerning the

dimension. We shall give a proof of the main result under the assumption that D

is irreducible; the proof in the general case would proceed exactly in the same

way.

Let v be a valuation of k(F) over k, of dimension equal to dim G, whose

center of F is G, and let «;[ be a valuation of Kv over k9 of dimension equal to

dim P, which compounded with υ gives a valuation of k(F)9 of dimension equal

to dim P, and whose center on F is P . Let u be the valuation of k(G) CKV in-

duced by w[9 and let w\9 w29 be the distinct extensions of u to Kv. Denote

by Wi the valuation of k(F) which is compounded of v and w'9 so that C(wι/F) =

P. For each i9 let υιχ9 Vy29 be the distinct extensions of v to A: (rad D) having

the center ϋ* on rad D, and let u , u. , be the distinct extensions of u to

&(/)* ) having the center Ό' on D*. For given i9 j9 r> /, let w^ rs (s = 1, 2, )

be the distinct extensions of u. to Λ^.. which induce wί in Kv, and call M;,..
IT IJ ί tlJT S

the valuation of k ( rad D ) compounded of f . , and w,'. . For a given /, the u;,..

are all the dist inct extensions of w^ to k (rad D ) which have the center D ' on D;

therefore formula (1) gives

e(D'/D;P,V)*[Kw>:k(P)] = Σ- r ίΓw Γ ^ H V :k(D')];
I ιJΓS lijrs I lijrs

now,

Wlijrs Wί Vij Wlίjrs I

so that

e(D'/D;P, V)* [KW / ' : K t t] [iKtt: k(P)] [ Γ ^ : Γ α ]

= Σ [ Γ , : Γ J [Γw,; : Γw ] [ΓUm : Γ j [X^;.. : Ku, ] x
^^ijrs ij lijrs ir ir lijrs ir

We now sum with respect to I, and use the formulas

Σ IK^: KjiΓ^ .Γu] = [Kv: tc(G)]

and

lijrs ir lijrs ir ij

obtaining
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e ( D ' / D ; P , V)* [ K u : k { P ) ] [ K v : k ( G ) ]

= Σ ( Σ . t Γ w :ΓV][KV :k(D*)])(Σ[Γu : Γu] [Ku. : k ( D ' ) } ) .

This proves Theorem 1.1, since

e ( D * / D ; G , V ) * [ K v : k ( G ) ] = £ . [ I \ , : Γ V ] [ K V : k ( D * ) ] 9 Q.E.D.

It is hardly worth mentioning that if w is a valuation of k{F) compounded of

a valuation v of k {F) and a valuation u of KV9 then

ΔUl* = (ΔM*)U!*;

the proof of this fact is an immediate consequence of the obvious relation

Δ{ιo i = (Δ{ι;}) { a}. Another result which will be used later is the following:

If Δ is an algebraic correspondence between the algebraic function field K over

k and the variety V over k, let &' be an extension of k, K' a composite of K and

k' over k (that is, the quotient field of the homomorphic image of K x h' over k

modulo one of its prime ideals), Δ ' t h e modified extension of Δ over K', so that

Δ ' is an algebraic correspondence between K' and F ' = V^,. If v is a valuation

of K over k, v' any extension of v to K' over k\ then Δ'{ v'}* is the modified

extension of Δί v \ over Kv* . This fact also is derived from the analogous result

concerning Δ{t>}, namely: if Δ ' = Δ ^ , , then Δ'{t/} is the extension of Δ{v}

over KV'.

Finally, the extension of the meaning of e(D*/D; V, G) to the case in

which D is reducible, and in particular the corollary to Lemma 1.1, affords a

generalization of the reduction theorem (Theorem 5.4 of [2]) in the following

sense:

THEOREM. 1.2. In the statement of Theorem 4.2 of [2], let us replace the

assumption of the existence of{D; Vj> W( \ and \D^; Wj, Wι \* by the following

assumption:

e{D^/D; Vj, Wi )* exists for each hy i,

and if

D < £ > = Σ

then e{V/D^ι); Wj, W^ ) exists for each i. Let us replace, moreover, the as-

sumption that D is irreducible by the assumption that D is unmixed. Then

e ( U/D{i); Wj, Wi )* does not depend on i.

2. The homographic system. An irreducible algebraic system S of integral
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effective cycles is in one-to-one correspondence with the irreducible variety G -

G(E ) (see [ l ]) ; therefore we shall apply to E the language adapted to varieties.

For instance, if G is a variety over k, we shall write A:(E) in place of k(G),

M(S ) in place of M(G) (this denotes the set of the places of G; see [ l ] ) ; the

cycle Δ = Δ((5) shall be referred to as the general element or general cycle of

ε.
A linear variety is an irreducible variety L over a field k such that ord L = 1,

or, equivalently, such that deg L = 1. From the definition of order or degree [1,

§ 2; 2, § 1 ] , it appears that an r-dimensional irreducible subvariety V of the pro-

jective space S = Sn{k) is linear if and only if φ{V/k[X]) has a basis con-

sisting of linear (i.e. of degree 1) forms in the X's \X\ being the h.g.p. of S;

and a minimal basis will consist then of n-r linear forms. After an obvious identi-

fication, it also follows that a linear variety is a projective space. A linear

cycle is an irreducible cycle whose radical is a linear variety.

Let 5 be an ^-dimensional projective space over ky\x\ its h.g.p., and let X

denote the one-column matrix (x0, ••• , xn ), while U = (u(j) is a square matrix

of order n + 1 with elements in k. Set X' - UX, and let x\ . . . , % ' be the ele-

ments of the one-column matrix X'\ let υ be the homomorphic mapping of k[x]

such that \)a = a if a C k, Όxi = x{ ( i = 0, , n); if det U £ 0, Ό is an auto-

morphism and transforms in an obvious way an ideal of k[x] into an ideal of

A;[#], a subvariety of S into a subvariety of S, and a cycle of S into a cycle of

S. U will be called the matrix of U two l)'s whose matrices have proportional

elements have the same effect on homogeneous ideals, subvarieties, and cycles,

and shall be identified; υ is called a nondegenerate homography of S. If % is a

cycle of S, then D^ is called a homographic transform of %•

Maintaining the same notations, assume the ZXJ 'S to be indeterminates; then

I) is a nondegenerate homography of Sn{k(u)), and will be referred to as the

general homography of S. Set K ' = k{u), so that K' is homogeneous for the set

ί u00, , unn \ let K be the subfield of K' consisting of all the homogeneous

elements of degree zero of K\ If % is an unmixed cycle of S, set 3 ' = ^%κ/, then

3 ' is a cycle of S^/, and it is the extension over AΌf a cycle 3 of S^ . Clearly 3

is an unmixed algebraic correspondence between K and 5, and is called the gen-

eral homographic transform of %• Assume g to be integral and effective; if k is

the algebraic closure of k, and ^, 3 a r e t n e extensions of £, 3 over k, Kk re-

spectively, then 3 i s related to % as 3 i s to %, and the set § of the cycles 31 ^K

where v ranges over the places of K k over A;, is an algebraic system of cycles

on 1 S, called the homographic system of %.

Note that, according t o [ l ] or [ 2 ] , a cycle on S means a cycle of the extension of S
over the algebraic closure of k.
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L E M M A 2.1. The homographic system of % is the smallest algebraic system

of cycles on S containing all the homographic transforms of #.

Proof. Set A = Kk9 and let v C M(K). Let u00 be such that v(uij UQQ)>0

for every i9 j . Let σ be the homomorphic mapping of Rv whose kernel is tyV9 and

set uij{v) ~ σ{uij UOQ); since u00 is not necessar i ly the only urs such that

v(uij urs ) > 0 for each i, /, the set { ιiij(v)\ i s determined but for a nonzero

factor in k. Let U(v) be the matrix obtained after replacing, in U, each u{j by

the corresponding uij(v): if det U(v) ^ 0, then U{v) is the matrix of a non-

degenerate homography Ό(V). These notations will be used throughout this

sect ion.

We contend that Ό(v) ~%= %{v], and this will completely prove the lemma.

Let ψ{t, y) be a determination of Ψ ί , y ^ = Ψ ί , y # ( s e e [ 1 , § 2 ] ) ; denote by Y

the one-column matrix (yo> * * * > Ύr + ι )> Γ being the dimension of %, and by T the

matrix ( ί / , ) , so that Y = Γ̂ Y; Dean be extended in a natural way to k ( t , u9 x)9

and we have

υY = υ ( Γ Z ) = TiυX) = Γί/Z = (τT)X= τ{TX) == τ Y ,

where by T we denote the automorphism of k(t9 u, x) over k(u9 x) such that

ΊT = Γί/. If t; has the previous meaning, jΓ(t>) and Ί(v) will be related to Γ, T,

f a s U{v)9 Ό(v) are to [/, U, v. If £ is irreducible, set

where K' - K'k; we have, by definition,

hence

«A(ί, Όy)K'(t)[\)y] = UίJ n « ' ( « ) [ U y ] .

Applying T " 1 , and using the fact that Uy = Ty, we obtain

. A ί τ " 1 ί , y ) X ' ( ί ) [ y ] = υfe n K ' ( ί ) [ y ] ,

v/hich proves that i/f( T " " 1 ί, y ) is a determination of Ψ ^ γ S ' J hence ψ{τ 1 (v) t9

y) is a determination of Ψj y 3 ί ^ l But, s ince

τ~ι(v) = ( τ ( i ) ) " 1 ,

we see in like manner that ψ{ τ " 1 (v)9 y) is a determination of Ψ ί > y U (v) J~. It

is thus proved that υ ( v ) 2 " = S ί v l i f ^ * i s irreducible. If ^ i s not irreducible, the

same relation is easi ly establ ished as a consequence of its validity for irre-
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ducible cycles, Q.E.O.

LEMMA 2.2. The homographic system of % contains the homographic system

of each of its cycles.

Proof. Let Sg> be the homographic system of £, and let %x £ § , so that

(but for a proportionality coefficient) for some v £ M(K); here T ι{v)tij has

to be interpreted as the i/'-th element of the matrix TU ι ( f ) , which has a mean-

ing even if det U(v) = 0. Let g j , 3 i be obtained from %x a s g ' , g are from ~%;

we have

Ψ ί > r 3 ; = ^ ( τ - 1 ( ^ ) τ - ι ί , y ) .

For any υ' £ M{K) we have therefore

y t > y 3 , U ' ! = < / / ( τ ~ ι U ) τ " ι ( w ' ) ί , y ) .

Now, there exists a place t/' C M{K) such that

τ ' ^ t ; ) τ~ ι (^ ' )Γ = τ ~ ι U " ) ?',

so that

Ψt.y Si l t Ί = ^ ( α - ι ( t ; " ) ί,y) = Ψ,,y 3 U " J ,

or

LEMMA 2.3. Let % be an unmixed integral effective cycle of S =Sn(k)9 and

let g be the general homographic transform of %. Set G = Go (see [ 1 ] , Lemma

4.2); let Δ be the algebraic correspondence between G and S induced by g ac-

cording to Lemma 4.2 o/[ l ] , and set Z = D/±fQ. Let h be the algebraic closure of

k9 and let P be a point of G such that (Z{P !) JΓΓ is a homographic transform of

#£-. Then G is analytically irreducible at P.

Proof. Let ,ξ» be the homographic system of £, and set £ = G(ίr>); then G

is a component of the extension of G over the algebraic closure k of k. Assume

the lemma to be true when k is algebraically closed. In this case, G is ana-

lytically irreducible at each P £ G such that P is the image point of a homo-

graphic transform of % - J p Let P be the point mentioned in the lemma, R =

Q(P/G)9 P the image (on G) oi(Z{P})j, R^Q(P/G). If m = $(P/G), m =

5 β ( P / G ) , we have that mk is a primary ideal of Rk belonging to ϊ n Rh, and

that m n R C m , where I —> oc when h —> oo. Therefore the topology induced
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in R by the /^-topology is the /^-topology, so that the completion R' of R is a

subring of the completion /? ' of R. Since, by assumption, R' is an integral do-

main, so is R'; that is, G is analytically irreducible at P. This shows that it is

enough to prove the statement under the further assumption that k be algebrai-

cally closed.

Under this assumption, let 3' be a homographic transform of %, and set P =

P(%), P'=P(%')9 so that %=Z\P }, %'=Z{P'\. Let K have the previous usual

meaning. For each v0 £ M{K) whose center on G is P ' we have det U(v0 ) ^ 0;

let π be the automorphism of k(u) over k such that π U = ί/"" ι(^0 ) #• We have,

Ψ ί , y 3 U ^ 1 = ψ(τ'ι(πv)tfy).

N o w ,

τ Γ = Γ ί / , τ~ιT = Γ ί / " 1 ,

τ ^ ί T Γ t ; ) Γ = Γ ί / " 1 ( / 7 ί ; ) = Γ ( 7 7 " " 1 U~ι)iv) =TU'ι(v) U"1 (v0)

= τ~ι(v) τ'ι{v0)T,

so that

Ψ ί ( y 3 1 " ! = φ(τ-ι(v) τ~ι(v0)t, y ) .

On the other hand, as we have already seen, Ψ ί > y υ (v0 ) 3 ί t; ] is obtained from

Ψ ί p y3M = Mτ- ιUHy)

by replacing ί t \ with ί τ " 1 (v 0 ) t \, so that

Ψ t > y υ K ) 3 l » l = ^ ( τ ^ d ί τ ^ ί t o J ί , y) = Vι>y3{πv\.

It follows that

and this proves that C(πv/G) depends only on C (υ/G). Then the same is true

for C{v/π~ι 6 ) and C(v/G). Let H be the smallest subfield of K containing k(G)

and π l{k{G))=Ίc{π lG); the embedding of k ( G ) and k (π ~1 G ) in // gives an

irreducible algebraic correspondence C between G and π~ιG, and the above-

proved property shows that C has the same dimension as G, and that k ( rad C)is

purely inseparable over k(G). Besides, if P =P{ %\ £ G, then C[P] is the

point π~ιP'oί π~l G, and P = C[π~ιP']. Now, by Lemma 2.1, P' can be chosen

in such a way that G is analytically irreducible at P ' , and therefore 77 1 G is
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analytically irreducible at π~l P'. Let G* be a normal associate to G, C* the

irreducible algebraic correspondence between π"1 G and G* generated by the em-

bedding of k(π ι G) and k (G* ) in H. Should G be not analytically irreducible at

P, L, [ π" P' ] would contain two distinct points, which is impossible by

Theorem 4.1 of [ l ] Kence G is analytically irreducible at P. By Lemma 2.1,

however, we can choose for P the image of any cycle # " of ξ> whose homo-

graphic system is ξ>, Q.E.D.

THEOREM 2.1. Maintain the same notation as in Lemma 2.3. // V is an ir-

reducible subvariety of Sy then Z{V\ exists^ and each component of the total

transform \Z; V, G] operates on the whole V.

Proof. Let D be a component of { Z; F, G ] , P a point of V on which ID oper-

ates, and assume

dim D > dim Z - dim S + dim V.

If then D' is a component of [D; P, G], we have

dim D' > dim D — dim V > dim Z - dim S,

and D' belongs to (Z; P, G). If, therefore, we show that each component of [Z

P, G] has dimension equal to dim Z — dim S, it is also proved that each com-

ponent of { Z; V, G] has dimension equal to dim Z - dim S + dim V, and that as a

consequence Z{ V \ exists, because V is simple on S (see statement / of Lemma

4.2 of [l]). In order to show that \Z; P, G] has the pure dimension dim Z -

dim S, we proceed as follows: let k be the algebraic closure of k, and let 3 be

the general homographic transform of %; let K have the usual meaning, and set

K = Kk, 3 = 3j£» 2= 2jg-; let G, Z be related to 3 as G, Z are to 3, so that G is

a component of the extension of G over k. Let P t , P 2 , be the components of

P-p we have Q €1[Z; P .9 G] for some i if and only if there exists a Q G [ 2 ; P ,

G] such that (} is a component of Q^. Therefore [Z; P , G] has the pure dimen-

sion dim Z - dim S if and only if each [Z; P; , G] has the same property. As a

consequence, it is sufficient to prove the statement under the further assumption

that k is algebraically closed. Under this assumption, let P ' G S , and let π be

a non-degenerate homography of S such that π P = P '. Let M be the matrix of π9

so that 77-Z = MX (X being the one-column matrix (x0, ••• , xn)) Let σ be the

automorphism of k(u) over A: such that σU = Λfί/. Then it is possible to prove

(by the same method used in the proof of Lemma 2.3) the following: if v £ M(K)

a n d P C rad (Si t ; } ) , then P ' £ rad (3{ σ~ι v }); in other words, Z [ P ' ] is the

total transform of σ ~ x Z [ P ] in the algebraic correspondence C (between σ ιG

and G) generated by the embedding of k (G) and ά ( σ ~ ι G ) in X. Now, C is the
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same as the algebraic correspondence C used in the proof of Lemma 2.3, con-

cerning which it was proved that it does not have fundamental points either on G

or on σ ι G. Therefore C has no fundamental variety either on G or on σ ι G.

Since P ' can be chosen in such a way that Z[P'] has the pure dimension

dim Z — dim S, it follows that Z [ P ] also has the pure dimension dim Z — dim S,

as asserted.

Suppose that a component D of { Z; V9 G] operates on W C V, so that it is

also a component of [Z; W9 G ] . From the above proof it follows that

dim D = dim Z - dim S + dim W < dim Z - dim S + dim V,

a contradiction, Q.E.D.

We say that a cycle or a subvariety % of S is degenerate if each component

of % is a linear cycle or subvariety.

LEMMA 2 . 4 . The homographic system of an unmixed cycle of S = Sn(k) con-

tains some degenerate cycle.

Proof. We may assume k to be algebraically closed, since we are dealing

with an algebraic system. In view of Lemma 2.2, the statement is true if it is

true when 3 is irreducible. Therefore we assume £ to be irreducible. Set r =

dim 2, and let F be a linear subvariety of S such that rad % n F consists of

finitely many points; we also require F to have dimension n - r. Such an F cer-

tainly exists, because by repeated application of the theorem according to which

each minimal prime of a principal ideal is maximal dimensional, one can easily

establish that the intersection of rad % with a linear subvariety of S of dimension

s has dimension > r + s - n, and that there exists some s-dimensional linear sub-

variety of S whose intersection with rad % has the pure dimension r + s - n if

this number is not negative.

Let \x\ be the h.g.p. of S, and let ll9 ••• , lr be the linear forms in them's

forming a basis of p(F/k[x]). The system of equations /j = 0( ι = 1, , r )

can be solved for r among the * ' s , say %Λ-Γ + 1 , ••• , xn, and the solution is

written in the form

xi = Σ ai-n+rfj Xj (a p,q C A, i = n - r + 1, , n) <

Let ί/'be the square matrix
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0
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0 1 0 0

°l,0* # * a\,n-r 0 0

ar, o ' ' ' arfn-r 0 § j

of o r d e r n + 1 . L e t i; C M (K) b e s u c h t h a t JJ {v) - Ό\ a n d s e t

Let T be the projective space over k whose h.g.p. is { u }, and se t

Uίj = "i/ %0 '

so that v is at finite distance for ί u ' } . lί {p ι(x)9 p2 (x), \ is a bas i s of *fi,

set

and let 2) be the radical of the ideal of k[x9 u'] whose basis is

\pt (x'), p2 (xΊ , ••• I .

If D = £>(!5>), then ID is an algebraic correspondence between T and S, and it

differs from Z = D o ^ a t m o s t ^ 0 Γ components which do not operate on the whole

T. Set

P = C{v/T), C(= C ( v / A [ u T ) ,

and let σ be the homomorphic mapping of k[x, u'] whose kernel is C[k\_xy α ' ] .

Then \σx'\ is the h.g.p. of F , and ίp ίσΛ: ' ) } is the bas i s of an ideal of k[x]

whose radical i s $>{(lD) [P]/k[x]). However, since \σx'\ is the h.g.p. of F ,

\p(σx')\ is also the bas is of an ideal of k[x0, ••• , xn-A whose radical 3ΐ is

^?(rad £ n F/k[x0, ••• , xn-Γ])', therefore 31 is purely 0-dimensional. Also, 3ΐ

can be extended to an ideal KA:[%] of &[%], and

Now, 3iA;[%] is purely r-dimensional; besides, each minimal prime of 3ί, being

a 0-dimensional ideal of k[x0, ••• , xn-r], has a basis consisting of linear forms
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in the x's with coefficients in k9 and the same must be true of each minimal

prime of 3ϊ Λ: [ Λ;]. This proves that (1D)[P] is a degenerate r-dimensional va-

riety. Since Z[P] C (ID) [ P ] , and since each component of Z [ P ] has dimen-

sion > r, this also proves that (1) Z[P] is purely r-dimensional, and (2) Z[P]

is degenerate. From (1) , and from the fact that T is locally normal at P, fol-

lows that Z [ P ] = S[^]> so that (2) implies that S t ^ L which is the radical of a

cycle of the homographic system of %, is degenerate, Q.E.D.

LEMMA 2.5. Maintain the notations of Theorem 2.1, and assume k to be al-

gebraically closed, and % to be irreducible. Then Z[V] is irreducible.

Proof. Since, by Theorem 2.1, Z\V\ exists, and so does Z\P \ if P £ F, by

Theorem 1.1 we have that (Z{ V \) {P\ exists, and that it is enough to prove

the lemma under the additional assumption that V is a point. Besides, the same

argument used in the proof of Theorem 2.1 shows that Z[P] is either irreducible

for each P C G, or reducible for each P £ G. Set D = Do γ, T having the same

meaning as in the proof of Lemma 2.4. In order to prove that Z[P] is irreduci-

ble, it is enough to prove that D[P] is irreducible for some (hence for each)

PCS. Let IF be the subvariety of T consisting of the centers on T of those

v £M(T) for which det U(v) = 0. We shall show first that if it is true that

D[P] has only one component outside W for P £ S, then it is also true that

D[P] is irreducible. In fact, let 21 be the prime algebraic system of cycles of

T whose general element is Z){5! (after extending it over k(S)). If D[P] is

reducible for each P £ S, then 21 is not simple; according to Theorem 5.4 of [ l ] ,

21 is then composed with a simple algebraic system 21' and an involution 3? on

G( 21'); 21' contains cycles which have no component variety on ψ (because not

every element of ?l has the radical in W), and 3 contains cycles which have no

component variety in any one given proper subvariety of G(2I'). Therefore 21

contains cycles which have no component variety in W, and this proves that for

some (hence for each) P £ 5, D[P] is irreducible, as claimed.

For any point Q £ T - W we shall write υ (Q) instead of υ ( v ) , v £ M ( T),

C(v/T) = Q. Then D[P] ~(D[P] n if) consists of the Q £ T - W such that

D ~ ι ( ( ) ) £ rad £. Let 5β be the general homographic transform of P constructed

with the general-homography υ " 1 (rather than U), and set E = Z)<g j then

Ό~ι(Q)P =E[Q] if QC Γ ~ίF, so that D [ P ] - ( D [ P ] n !T) = L - ( L nW),

where L is the subvariety of T on which E[vaά j ] operates. If we prove that

£[ rad %] is irreducible, it will follow that L is irreducible, as desired. Now,

the same argument used at the beginning of this proof shows that E [ rad ^]

is irreducible if £ [ P ' ] is irreducible for some (hence for each) P' £S9 or also
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if £ [ P ' ] has only one component outside W for a P ' £ S , say P'=P. But this

is obviously true, since the set of the Q £ T — W for which U ι (Q)P = P , that

i s , for which υ( (̂  ) P = P, is a linear variety l e s s its intersection with if, Q.E D.

THEOREM 2.2. Notations as in Theorem 2 .1. Set n = dim S, r - dim £, 5 =

dim F. // r + s — 7z > 0, ίΛe/i eαcΛ component of[Z; F, G] operates on the whole

G, F n rad $ i s not empty^ and each of its components has dimension >r + s—n.

Proof The proof of this result, like that of Theorem 2.1, is readily reduced

to the case in which k is algebraically closed and % is irreducible. In this case,

according to Lemma 2.5, D = [Z; F, G] is irreducible, and, by Theorem 2.1, D =

! Z ; F, G]. H P is a point of G such that Z\ P }= %', then F n rad 3'= ( I D ) [ P ]

by Theorem 2.1. Set d - dim D, and let F be the irreducible subvariety of G on

which ID operates. Then d = r + m-n + s, where m = dim G. Therefore,

( I D ) [ P ] is empty if P ^ F, while if P £ F each component of ( I D ) [ P ] ,

hence of F n rad 3, has dimension > r + s~τz + m - dim F. By Lemma 2.4, the

homographic system ίρ of % contains some degenerate cycle 3", and therefore, by

Lemma'2.2, it contains the homographic system ίξ)'of #". According to the first

part of the proof of Lemma 2.4, § ' contains some cycle %0 such that F n rad %0

is nonempty and has pure dimension r + s - n. If P o £ G is such that £ 0 =

Z\ Po \, it follows that Po £ F and that

r + s— n + m — dim F < r + s — rc,

that is, that dim F = m, F = G. Hence ID operates on the whole G, as claimed,

and each component of (1 D) [ P ] , for any P, has dimension >r + s - n, Q.E.D.

3. Intersection of cycles of a projective space. In this section S denotes an

n-dimensional projective space over k.

If t), % are unmixed cycles of S, of dimensions r, s respectively, such that

r + s — n > 0, then a component F of rad 3 n rad ^ is said to be a component

variety of % n t) or 0/ t) n % if dim F = r + s - n.

Let fc), 3 be unmixed integral effective cycles of S, of dimensions r, 5 re-

spectively; assume F to be a component variety of ^ n J, and let fc) = 2 ^ α j ^

be the minimal representation of t). Let 3 be the general homographic transform

of 3, G = Gπ, Z the algebraic correspondence between k(G) and S induced by

3 according to Lemma 4.2 of [ l ] . Let P be the (unique) point of G such that

Z\P\- 3. Then P is a rational point, so that F x P is irreducible, and F x P is

a pseudosubvariety of {Z; t)/, G] for some ι; Theorems 2.1 and 2.2 imply then

that V x P is a component of [{Z; ίjj, G }; ^ j , P ] for some i. Now assume Z =

2^. c. Z. to be a minimal representation of Z, and let 3 ^ ^ 2 , ••• be the distinct
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component variet ies of %. Then each %ι x P is component of exactly one [ l Z y ;

S, P ] , say [ l Z y ( i ) ; S, P ] ; and if some Zy is such that [ l Z y ; S, P ] has more than

one component, say ^ and ^2>
 t n e n A ( £ t ) = A ( £ 2 ) This being e s t a b l i s h e d ,

set c j = Cy.A( ^ ) ( A ( ( 1 Z ) [ G ] ) ) " 1 , i being such that / ( ί ) = / ; set also Z* =

Σ ; cf Z y . Then we have Z * { P S* = Z { P 1 = 3 . By Theorem 2.1, { Z * ; ^ , G }*

exis t s for each i. Since £ is analytically irreducible at P by Lemma 2.3,

α. = e ( K x P / ί Z * ; ί ) . , G l * ; V P J*

e x i s t s f o r e a c h i b y T h e o r e m 5 . 3 o f [ 2 ] . T h e n u m b e r Σ a α * s d e n o t e d b y i( V,

^ n #, S) and called the intersection multiplicity of t) with % at V on S. We set

i (V, ίj n £, S) = 0 if dim F = r + s - n but F is not a subvariety of rad t) n rad #.

If each component Vj of rad t) n rad J has the dimension r + s - n, we set

t) n ^ is called the intersection of § with % on S (although S does not appear,

at this stage, in the symbol fc) n %). Evidently, if i( V, t) t n %, S) and i( V, §2

 n

%, S) both exist and have the same dimension, then i ( V, ( t) t + fy2 ) n J, S) also

exists, and equals ^i(V, tyj n £, S).

A cycle 32 of S whose minimal representation is 3S = Σ e W. is said to be a

part of t) n % (whether ^ n ^ exists or not) if (1) each Wj is a component variety

of b) n 2, and (2) ey = i($y, t) n ^, S). The same cycle 52 is said to coincide lo-

cally at U with fc) n % (U being a subvariety of S) if (1) each Wj which contains

some component of U is a component variety of fc) n £, (2) each component of

rad ^ n rad % which contains some component of U coincides with some Wj, and

(3) ej = i(Wj, fc) n j , S) for each Wj which contains some component of U. Also,

^ n % is said to exist locally at U iί i(V, fc) n ^, S) exists for each component

V of rad ^ n rad g- which contains some component of U; the local part of § n %

at U is 2*j i(Xj, fc) n %, S) Xj, where Kj ranges among all the components of

rad fy n r a d % each of which contains some component of U.

LEMMA 3.1. Let t), % be unmixed integral effective cycles of S = Sn(k),of

dimensions r, s respectively. If r + s — n > 0, let V be a component variety of

^ n %. Let θ be an unmixed algebraic correspondence between an algebraic func-

tion field K over k and Ss such that the set N(θ) of the v G M(K) for which

θ{v\ is the modified extension of % over Kv is nonempty. If fc)' is the modified

extension of ^ over K, let Λ; (j = 1, 2, ) be the component varieties of fc)' n 09

and set

Λ , =
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// v £ N(θ), then a partial extension of i(V9 ty n %, S) V over Kv is part of

\θ\v\*.

Proof. The statement is clearly true if it is true when ^ is irreducible; ac-

cordingly, we shall assume t) to be irreducible, and put Y = rad fc).

In order to avoid lengthy repetitions, we shall say that the set \ K, θ\ is "ad-

missible" if (1) every component of 0 operates on the whole S, (2) N(θ) is not

empty, and (3) each component of rad θ n Y# has dimension r + s - n and oper-

ates on the whole Y. And we shall say that an admissible set { K, θ\ is "satis-

factory" if the following statement is true: Set

then, for each υ £ N(θ), a partial extension of i (V, § n %, S) V over Kv is

part of Γβ ί v }*.

Step 1. Let 3 be the general homographic transform of %, G = Gp, K — k{G),

Q' the algebraic correspondence between K and S induced by 3 according to

Lemma 4.2 of [ l ] . If θ'= Σ * a'@- * s t n e minimal representation of Q\ set

and let P £ G be such that £ • αj D̂  ί P } = J. Set

Ji being any component variety of Dy ί P \; finally, put

Then clearly { K, β\ is admissible by Theorems 2.1, 2.2, and N(θ) is the set of

the v £ M(X) whose center on G is P. If Γ = Γ^ and C = D^ , then by defini-

tion we have

* ( F , ^ n ^ , S ) = e(J/ x P / C ; Y, P )*;

if t> £ /V((9), by formula (1) and by the corollary to Theorem 5.1 of [2] it follows

that Γ{ v ϊ* is a partial extension of C{ P i*, and therefore { K,θ \ is satisfactory.

This is the contention of Step 1.

Step 2. Let K* be an algebraic function field over K9 θ* the modified exten-

sion of θ over X*. By means of Lemma 1.2 it is a simple matter to prove that

{K , θ* ! is admissible if and only if { K, θ\ is admissible; in this case, N(θ*)

consists of the extensions to K* of the elements of N(θ); and clearly, if {X*,
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θ* ! and \K9 θ\ are admissible, then ί A*, (9*! is satisfactory if and only if

\K9Θ\ is such.

Step 3. We work again with two sets \ K9 0 I and \ A*, θ* 1, on which we make

the following assumptions: (1) if G = Gθ, G* = Gθ*9 then £ = k(G)9 A* = A(G*);

(2) { K9 θ\ is (admissible and) satisfactory; (3) if Z -DQ^Q, Z* = /)#*, G*> t n e n

G C G* and Z = { Z*; S, G S*. We wish to prove that { A*, θ* ! is admissible and

satisfactory.

Clearly each component of θ* operates on the whole S. If N = N(θ)9 N* =

/V(0 ), let uC/V, and let to be a valuation of A whose dimension equals dim G,

and such that C (w/G* ) ~ G. Then any valuation of X* compounded of ẑ  and of

an extension of v to A^ belongs to N*f so that /V* is nonempty. Let C* be a

component of {Z Y, G ] such that 1 C* operates on the whole G*, and let Y'

be the subvariety of Y on which 1G operates. Since (1G ) [ G ] i s a component

of Z [G ] n Yj£* , by Theorem 2.2 it has dimension > r + s — n9 so that dim C >

r + s - n + dim G*. Let Cy be a component of [ 1 C*; Y, G], so that

dim C. > dim C* — dim G* + dim G > r + s — n + dim G.

Since C; is also a pseudosubvariety of { Z; Y, G], and since 1 G, operates on the

whole G, by assumption Cj is also a pseudosubvariety of [Z; Y, G], and there-

fore

d i m C.<r + s - n + d i m G .

This proves that

d i m C. = r + s~-n + d i m G

hence Cj is a component of [Z; Y, G] and 1 Cj operates on the whole G; there-

fore 1 Cj operates on the whole Y, and the same must be true of 1C*. As a con-

sequence, { K*, θ ! is admissible. We remark that we have also proved that G is

not fundamental for 1 C* .

Let now G ' * be a normal associate to G , and call G' an irreducible sub-

variety of G'* which corresponds to G in the birational correspondence between

G* a n d G ' * . Set

7'* — Π

If C'* is any component of SZ '* ; Y, G ' * ] , and if 1 C * operates on the whole

G'*, since ! A' , 0 } is admissible and 5 is normal we have that e ( C ' * / Z ' * ;

Y, £ ' * ) * exists. Set
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ThenΓ*=Γ6>* equals C'*{G'*\*. Set also Z ' = { Z '*; S, G'}*, so that Z'{G'}*

is the modified extension of Z{G}* over k(G'). Since G is not fundamental for

1 C* (as previously remarked), G'is not fundamental for C'*, and G'* is locally

normal at G'. Hence, by Theorem 4.1 of [ l ] , C'={C'*; Y, G'}* exists. The

component varieties C' of C a r e those components A of {Z'; Y, G'] such that

1A operates on the whole G'; but then C% Z '*, Y, G' can replace respectively

ί/, D, tF1, IF2 in Theorem 1.2, and the result is that C" equals the cycle obtained

from [Z'; Y, G'] in the same way as C * is obtained from [ Z ' * ; Y, G'*] .

Let C be obtained in the same way from [Z; Y, G]; then

Γ = Γ^ = C{Gf,

and, by Lemma 1.2, C'\G'\* is the modified extension of Γ over k(G').

If v* £ /V* and P = C(v*/G*), then Z*{P |* is the modified extension of %

over jfc(P); therefore P £ G; hence P ' = C (v*/C* ) belongs to one of the irre-

ducible subvarieties of G'* (say G') which correspond to G. Since C'jG'}* is

the modified extension of Γ over k(G'), and because of formula (1), there are

components Vj (j = 1, 2, ) of V x P such that e( Vj/C; Y, PO* exists, and

such that

U F , ^ n %,S)oτάV = Σ ^ ί ^ . / C ; Y, P ' )* ord (1 V ) \P'\\

Hence each Fy is a component of [ C * ; Y, P ' ] , and e(Fy/C'*; Γ, P')* exists

since G'* is normal (see Theorem 5.3 of [ 2] ). But then Theorem 1.1 yields

e(F./C/*; Y,P'T = e(V./C; Y,P')*.

As a consequence, a partial extension of

(which is also a partial extension of i ( F , ^ n %f S)V) over X^* is part of

Γ* ί ι;* }*. This means that ί K*, #* } is satisfactory, as announced.

Step 4. If \K, θ\ is the set given in the statement of Lemma 3.1, let # 'be

the general homographic transform of %, and set

the Uη's playing the usual role in the definition of θ'. Let K*, θ* be obtained

from K, θ as K'* 0 ' are from A:, ^, and by means of the same ttjy's. Set also

G = G^,, G* = G^,, Xχ = k(G), K* = A(G*),
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and let θi9 θ\ be the algebraic correspondences between respectively, Kί9 Kl9

and S of which θ'9 0 are modified extensions over respectively, K' and K*.

If v C N = N ( 0 ) and w is the unique extension of υ over R*9 since θ{ v\*

is the modified extension of % over Kv it follows that #*{κ;S* is the modified

extension of θ' over A^. This also means that G C G*, and that Z t = { Z*;

5, G ! , where we have set

7 - Π 7* - D
Z l ~ ^ i , G » Z i ~ UΘ*,G*-

By Step 1, {Kp 0X } is satisfactory; since { K*9 θ*} has been shown to be re-

lated to ί K l9 θι ! as {X*, (9* 1 is related to { K, 0} in Step 3, it follows that {K*9

#* } is satisfactory. Step 2 implies then that {&*, <9* 1 is satisfactory.

Step 5. Let K, θ9 K*, θ , N have the same meanings as in Step 4, and set

N* = N(0*), Γ* = Γ β # .

Let w be a valuation of X* over X such that uij{w) = 0 if i Φ /, u { ι (ι^) = 1, and

Kw — K. If v C /V, let ι;* be the place of K* over A; which is compounded of w

and f, so that t;* G! /V*. Since \K*9 θ ! is satisfactory by Step 4, a modified ex-

tension of i ( Vt ^ n ^, S) F over X^^ = Kp j s part of

} v ! = I Γ (u l l l i l ,

Since w is a place of K* over /ί, and Kw = Â , and since θ is the general homo-

graphic transform of θ, the following statement is true by definition: If Λy is a

component variety of t)' n (9, then ι(Λy, t)'n (9, S/ζ ) Λy is part of θ \w\ . As a

consequence, Λ = An is part of Γ ί w \ , and its component varieties are all the

components of rad t)' n rad θ' of dimension r + 5 - n. If Ĵ  is a component of the

extension of V over Λt>, and if Λ' is a component variety of Γ \w\ such that

(1Λ') if!* has R as a component variety, certainly

dim Λ ' = dim V, — r + s — n;

that is, Λ' is a component variety of Λ. This proves that (Γ { w \ ) ί v \ and

Λίz;!* coincide locally at V^\ hence a partial extension of i ( V, t) n %, S) V

over Kv is part ot Λ{ v !*, Q.E.D.

REMARK 1. Maintaining the same notations, by comparing Steps 3 and 5 we

see that if ί K, θ\ is admissible, then Γ^ = Λ^, and ί K9 θ \ is satisfactory.

REMARK 2. Remark 1 shows that the use of the word "intersection" and of

the symbol n in Lemma 1.2 agrees with the present definition of intersection of

cycles.
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REMARK 3. Remark 1 also shows that in defining the intersection t) n %9

any admissible set \K9 θ\ can be used in place of the set {K9 θ\ of Step 1 of the

proof of Lemma 3.1. Step 1 itself shows that admissible sets do exist.

THEOREM 3.1. // ^χ9 §2

 a r e ^'dimensional cycles of S9 and %ί9 %2

 a r e s "

dimensional cycles of S9 and V is a component variety of

then

n %.,

Proof. (See Remark 4 at the end of this proof). Assume t) , %. ( / = 1, 2 ) to

be integral effective cycles . By definition,

i(V* U i + ^ 2 ) π (%t + J 2 ) , S ) = ΣLi(V9 ^ n (%χ + J 2 ) f S ) .

Hence it is enough to prove that if ^ denotes either ^ , then

i(V9 ^ n ( ^ n 2 2 U ) = Σ / . i ( F , ^ n ^ , S ) .

N o w , l e t ^, be t h e g e n e r a l h o m o g r a p h i c t rans form of % 9 a n d s e t

£ = * ( . . . , ^ 7 %0S ).

Then 0 t + ^ 2 is the general homographic transform of %χ + £ 2 . In the notations

of Lemma 3.1 and its proof,

N = N(θι + θ2) = ^Vίβi) n N(Θ2)9

and

U , βyl ( ; = 1, 2 ) , \K9ΘX + ^ 2 }

are satisfactory. We a l s o have

Γ ^ +^ 2

 = Γθί

 + Γθ2>

so that Lemma 3.1 itself and Remark 3 imply

HV,S n ( ^ + j a ) , S ) = ΣjUVΛ n J ; .,S), Q.E.D.

REMARK 4. So far, Theorem 3.1 has a meaning only if tyjf %j (j - 1, 2) are

integral effective cycles. This particular case is sufficient, however, to give a

meaning to i{V9 ^ n £, S) when t), £ are rational virtual cycles: in fact, for
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some integer m it is true that

where ^y, £y (y = l , 2) are integral effective cycles; Theorem 3.1 shows that

the number

~ι [i(V, $ ! n % ι t S ) - i

depends only on F, ^, %. This number will be denoted by i(V, fc) n £, S) and

called the intersection multiplicity of fc) w iίA % at V on S; all the other notations

and definitions concerning t) n % are extended likewise. With this definition it

is easily proved that Theorem 3.1 remains true in general. As a matter of fact,

Lemma 3.1 itself remains true after removing the assumption that ^ and % are in-

tegral effective cycles.

Let $ be an unmixed r-dimensional cycle of an irreducible n- dimensional va-

riety U over k, and let V be an irreducible subvariety of U of dimension < r, R -

Q(V/U); let % = ^ bi %i be the minimal representation of %, and set jo. =

? ( fy/V) n R for each i such that R C Q{ %./U) (that is, such that V C ^ ) .

We say that ^ is a complete intersection at V on U if there exists a subset { ζ\

of a set of parameters of R such that (1) the ^ / s are all the distinct minimal

primes of the ideal of R whose basis is { ζ , ζ , !, and (2) we have

for each i for which ^. exists. Any such set { ζ\ is called a set of representa-

tives of % at V on U. Also, { ζ\ is assumed to consist of units of R if V £ rad ^.

A complete intersection at V obviously coincides, locally at F, with an integral

effective cycle.

L E M M A 3.2. Maintain the notations of Lemma 3.1; assume % to be irreduci-

ble, and t) to be a complete intersection at V on S. Let {ζ} be a set of repre-

sentatives of t) at V on S9 and set £>= 5β (rad %/S) n Q{V/S). If σ is the homo-

morphic mapping of Q( V/S) whose kernel is )p9 then \σζ\ is a set of parameters

ofQ{V/τad %),αndi(V, $ n 3, S) = e (Q( F/rad 3 ) ; σζ).

Proof. Let θ be the general homographic transform of %,

K = H ••• , u. u~l> . . . ) ,

T the projective space whose h.g.p. is { u\9 P the point of T at which uij = 0 for

i 4" j9 uα = l Let { η \ be a regular set of parameters of Q (P/T). Set Z = Dθ τ ,
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and let t) = 2ϋ α *}• be the minimal representation of i). Set C; = {Z; *);, Γ}*

If Cy/ (Z = 1, 2, ••• ) are the component varieties of Cy, then from the corollary

to Lemma 1.1 follows that

Cj - Σ z e(ρ(C7/rad Z); ζ) e(Q{ S,/S); ζVι Cμ.

According to Lemma 3.1 and its proof, we also have, by Theorem 3.1:

i(V, i> n 1, S) = Σj aje(V x P/C.; fy, P )*

x P/Cμ);η)e(Q(P/T);η)-y e(<?(C / 7/rad Z ) ; £)

x e ( ρ ( i)j/S); ζΓι

Since α̂  = e((?( |jy/S); ^) , this also gives

The ideals 5β (Cy//rad Z ) n ^ ( F x P/rad Z) are all the minimal primes of the

ideal of Q( V x P/rad Z ) whose basis is { ζ \; therefore the associativity formu-

la (Theorem 2.1 of [ 2 ] ) gives

i(V, $ π %9S) = e{Q(V x P / r a d Z ) , ς, η ) .

The only minimal prime of the ideal of Q(V x P/rad Z ) whose basis is {77} is

the ideal 5β (rad % x P/rad Z) n (?( V x P/rad Z ) , and

e((?(rad J x P/rad Z ) ; η) = e(rad j x P/rad Z; S, P )* = 1;

therefore, if T denotes the homomorphic mapping of Q(V x P/rad Z) whose

kernel is said prime, the associativity formula gives

i(V, $ π i,S) = e(Q(V x P/rad j x P ; τ ^ ) = e((?(F/rad j ) ; σζ), Q.E.D.

Notice that the fact expressed in Lemma 3.2 is the basic reason for which

Γ^ = Λ^ when θ is admissible (see Remark 1 and the proof of Lemma 3.1).

LEMMA 3.3. Let ty, % be unmixed cycles of S, and let V be a component

variety of § n %. Let Δ be the general homographic transform of t),

K = k( ••• , utj u~Q

ι

0, ••• ) ,

v any place of K over k such that Kv = k9 uij (v) - 0 if i £ y, ua (v) = 1. // 3'

is the modified extension of % over K, and Λy (y = 1, 2, ) are all the com-

ponent varieties o/Δ n %', set
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Λ = Σ / i ' U y . Δ n i'9SK)A..

Theni(V,ϊ>n %, S) V is part of A{ v}*.

Proof. Assume first ^ and J to be integral effective cycles. Let u^ be the

reciprocal element of u{j in the matrix U = (U(j); if ί X } is the h.g.p. of S, let σ

be the non-degenerate homography of Sκ such that

Then σΔ is the modified extension fc)' of ty over K, and # = σ % is the general

homographic transform of %. If Λy is a component variety of Δ n %', then σ Λy is

a component variety of i)' n Θ, and

»(A;., Λ n j ' , S ) ί ) = iiσλr $' n 6>, S R ) .

If

and T is constructed from { u^- u I as T is constructed from { u -r} in § 2 , then

by § 2 we have

Ψ t > y ( σ Λ ) =ψ(~-,uijU~o

l

o, . . - , τ " x ί , y ) .

If we replace here each Uj y by uij(v), we obtain

Ψ t > y ( ( σ Λ ) M * ) = ψ(u..{υ),t,y) = Ψ t j y ( Λ{ v \* ) ,

which goes to show that

( σ Λ ) M * = Aft;}*.

But i{ V, § n %, S) V is part of (σΛ) { v }* by Lemma 3.1, so that it is also part

of Λ { v \ , as asserted.

If ^ or % are not integral effective cycles, the proof of Lemma 3.3 is easily

derived from the above special case, Q.E.D.

THEOREM 3.2. Let K be an algebraic function field over k$ Δ and Θ two un-

mixed algebraic correspondences between K and S9 of dimensions r, s respec-

tively. Let ^, % be two cycles of S such that the set N of the v C M(K) for

which Δ{ v \ , θ{ v } are the modified extensions over Kv of t), % respectively is

nonempty. Let V be a component variety of § n £, and let Λy (/ = 1, 2, ) be

all the component varieties of θ n Δ; set
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j ' Π ' K ' * ~ j j j "

Then the set { Λy } is nonempty, and, for each v £ N, a partial extension of i( V,

% π ^, S) over Kv is part of Λ{ v 1*.

THEOREM 3.3. // fc), % are unmixed cycles of S, and V is a component vari-

ety of § n J, then

i{V, § π %, S) = i(V, % n t ) , S ) .

Proof Theorems 3.2 and 3.3 will be proved together in a number of steps.

We shall prove them under the additional assumption that t), $ are integral ef-

fective cycles. The transition to the general case is obvious.

Step 1. In the notation of Theorem 3.2, let k' be the algebraic closure of k in

K, and let K' be a field isomorphic to X over k'; then the direct product K x K'

over Z ' i s an integral domain. Let E be the quotient field of K x K'. Let Δ'be a

"copy" of Δ over K'. Given a v £ N, select elements xv , xm C K such

that (1)X = A'U), (2) kΊx] C Λv, (3) if ̂ )= C( V/A'[Λ;]), then k'[x]^ contains

all the coefficients of

\yθ£K[t,y],

after one of these has been made equal to 1, and (4) A't^l^ contains all the co-

efficients of

after one of these has been made equal to 1.

Let χ'9 ••• , x'm be the elements of K' which correspond to xχ9 , xm in

the isomorphism between K and K'. Then E = k'(x, x'). The ideal ^ of k'\_x, %']

whose basis is \x{ - xl9 , x'm - xm \ is prime; let u be any valuation of E

over k whose center on k'[x, x'\ is ̂ J, and whose dimension over tc equals

dim ^/k = transc K/k, Then u is a place of E over X. Let Δ* be the modified

extension of Δ ' over K: then we see that Δ*{ wS* is the modified extension of

Δ over Ku. Let Λ* be obtained from Δ* and 0 as Λ# (in Lemma 3.1) is obtained

from θ and t). Then, by Lemma 3.1, a partial extension of Λ over Ku is part of

Λ*Ui*.

Step 2. Let k'[z] be the integral closure of k'[x9 x'\ and let υ' be the

place of K* whiqh corresponds to v in the isomorphism between K and K'. Set

Cf= C(t; '/&'[%']), and let Q be the minimal prime of C\k\x, % ' ] . Denote by t>*

the place of £ over k which is compounded of u and of an extension of v to Ku
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Then Ω C C(v*/k'\_Xt * ' ] ) , and therefore some minimal prime Ω' of Qk'[z] is

contained in C( v*/k'[ z]). We select a place w of E over K whose center on

k'[z] is Ω'; then there exists a place w* of E over A; whose center o n i ' [ z ] is

C (t>*/&'[ z]), and which is compounded of w and of some place vί of Z ^ over

A;. If v0 is the place of K over k induced by υι, we have

hence

C(vo/k'[x]) = C(w*/k'[x]) = C{v*/k'[x]) = C(v/!c'[x]).

As a consequence, because of the choice of {x \, v0 and v have, on G$ and G^,

the same centers; since v G /V, we deduce that t>0 G N. We also have

C(w/k'[x']) = Ω' n &'[*'] = q == C( υ'/k'ίx']) I

therefore, since v d N9 it follows that Δ* { M; }* is the modified extension of ̂

over Kw. Let Λ ' be obtained from θ, §' (= modified extension of φ over Â ) as

Λ^ (in Lemma 3.1) is obtained from t), 0 respectively. Now we can replace, in

Lemma 3.1 t) by θ, % by fc)', 0 by Δ*, Λ^ by Λ*, and the result is that a partial

extension of Λ ' over Kw is part of Λ* { w }*.

Step 3. We now make the assumption that a partial extension of ί ( F, % n t),

S) V over X v is part of Λ'{ v0 !*. Since we also have that

is the modified extension of Λ'ί t?0 }* over Kw+, we deduce that a partial exten-

sion of i{ V, % n φ, S ) F over Kί;1 is part of Λ {if }*.

Let F be the irreducible variety over k' whose n.h.g*p. is { z }; set

L = ϋ Λ * F ' ^ = C ^ * / F ) = C(v*/F),

and let U be the subvariety of S on which L operates. Since F is normal, for any

component C of [L; ί/, P ] of dimension r + 5 - n the number e(C/L; U, P )*

exists. The previous result shows that among the C*s there are pseudosubvarie-

ties Vj of S .̂, x F such that ( lFy ) [ P ] is a component of V^ίpγ a n c ^ i* a lso

shows that if

then a partial extension of i ( V, % n §, S) V over k{P) is p art of V.

The concluding statement of Step 1 shows that a partial extension of Λ[ v }*

over Kv* is part of Λ*{ v* 1*. If F " is the part of Λ{ v }* whose component varie-
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ties are components of the extension of V over KV9 this also means that a partial

extension of F " over Kυ* coincides with a partial extension of F'over X^*, and

therefore also with a partial extension of i( F, % n §, S) V over Kv*. But then

F " itself is a partial extension of i ( F, % n ty, S) V over Kv, and this proves

that Theorem 3.2 is irue if the assumption made at the beginning of Step 3 is

true.

Step 4. We now apply the content of Steps 1, 2, 3, to the following case:

assume ij, $ to be irreducible; let # 'be the general homographic transform of %,

let Δ ' be the general homographic transform of fy, constructed with an inde-

pendent set { uij \ of indeterminates, and set

s e t

and let Δ, ^ be the modified extensions of Δ ' 0 ' over X. We select places p,

p 'of //, //' over A; such that

κ p = κ p , = A, ̂ . (p) = tt^.(p') = o if i t j , u.;(p) = u -(p') = i .

We further select for v the place of K over A which is compounded of the unique

extension p* of p over //', and of p ' . In this case the set {x \ can be selected to

coincide with the set

(see Step 1), and k' = k. Besides, k[x, x'\ is integrally closed, so that \z \ -

{%, x'\ (see Step 2). The fact that k[z] = k[x9 x'\ implies that we can select

v0 = v in Step 2» Hence we can replace, in Lemma 3.3, S by S / / /, ty by the modi-

fied extension # " of % over # ' , J by the modified extension ψ' of t) over H', K

by K, x; by p*, Δ by 0, Λ by Λ', F by the extension F " of F over # ' and Lemma

3.3 yields that i(V", %" n $", S^,) V" is part of Λ i p * }*. Now, from the defi-

nition of intersection multiplicity follows that

i(V", I" n V',SH,) = i{V, 2 n ^ . S ) ;

therefore i( F, J n t), S) F is part of

(ΛVπipT = Λ ' ί υ ! * = A'ίυor.
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Hence, in this particular case, the assumption made at the beginning of Step 3 is

true, and therefore, by Step 3, i(V, % n ^, S) V is part of Λ{ t>}*. If Λy is any

component variety of Λ, then lΛy, considered as an algebraic correspondence

between K and S^, operates on the whole rad 0 ' (see Remark 1), while, con-

sidered as an algebraic correspondence between K and SH', lΛy operates on the

whole rad Δ'. If { ζ!, \8\ are sets of regular parameters of Q(raά Θ'/SH ) and

()(rad Δ'/SH') respectively, it follows that 0, Δ are complete intersections at

Λy on Sκ, and that \ ζ\, { 8 \ are sets of representatives of 0, Δ, respectively, on

Sκ. Set

R = Q(Aj/Sκ).

If σ, T are the homomorphic mappings of R whose kernels are 5β (rad Δ/S^ ) n R

and 3̂ (rad θ/Sκ ) n R respectively, Lemma 3.2 implies that

i{Aj, 0 n Δ, Sκ) = e(σR σζ),

and this equals e (R; ζ, 8) by the associativity formula (Theorem 2.1 of [ 2 ] ) ;

therefore, again by the associativity formula and Lemma 3.2, we have

i(Λy, 0 n Δ, Sκ) = e{R; ζ, 8) = e(τR; τ δ ) = i(Ajf Δ n 0, S χ ) .

This shows that Λ is unaffected when Δ, 0 are interchanged, that is, when φ f %

are interchanged; hence i (V, ίj n %, S) V is also part of A{v }*, and this

amounts to saying that

i ( P> ^ n % S) = i ( V9 % n t), S).

Theorem 3.3 is thus completely proved when t) and £ are irreducible, and there-

fore also when they are not irreducible, because of Theorem 3.1.

Step 5. We go back to the general case considered in Steps 1, 2, 3, and prove

that the assumption made at the beginning of Step 3 is always true. According to

Theorem 3.3, proved in Step 4, the equality

i{A'> Θ n $', sκ) = ; ( Λ ; , γ n 0, sκ)

is true for any component variety Λ^of Λ'. Therefore we can replace, in Lemma

3.1, fc) by ^, 3- by £, 0 by 0, Λ# by Λ', and the result is that a partial extension

of

over KVQ is part of Λ'f t>0 }*, since, as it was proved in Step 2, v0 G /V. This

completes the proof of Theorem 3.2, Q.E.D.
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THEOREM 3.4. Let £, ^, % be three unmixed cycles of S - Sn(k)9 of di-

mensions r, s9 t respectively such that

r + s + £ - 2π > 0

let V be a component of rad £ n rad fc) n rad 3 of dimension r + s + t - 2n. Let

U i, U29 ••• be the components of rad £ n rad ty which contain V, and let Wι,

W29 ••• be the components of rad ^ n rad % which contain V. Then

dim Uj = r + s - rc, dim ΪFy = s + £ - n,

ϋ = ΣjHUj* ? n ^ S ) ί / ; . one? IF = Σ y ^ ^ . ίJ π Ϊ , S ) ^

exist. Moreover,

i(V, jp n I Γ , S ) = U F , ί/ n j , S ) .

ΓAis number shall be denoted by i(V, $ n fc) n ^, S ) , αrcc? α similar notation

will be used when more that three cycles are involved.

Proof. We may assume, by Theorem 3.1* £, *), $ to be irreducible. Let 3£ ,

D , 3 be the general homographic transforms of £, fy, J, respectively, con-

structed with three independent sets of indeterminates'l α, y }, { v, y 1, { u y }, and

set

fl = £ ( . . . , u y α ^ f . . . ) , / = 4( , v^ VQ0

1, •••), L = *(••• , w y M;QQ, •••)

Let X, H), 3 be the modified extensions of 3C , |!) , 3 respectively over K. Then

(X n |9) n 3 and X n (^) n 3) exist. Let 1 ξ}, {77 {, { ζ\ be sets of regular parame-

ters of ρ( rad X'/Sfl), (?(rad g)VSy ), (?(rad SVSL ) respectively. If Λy is any

component variety of Λ = X n ^), lΛ. operates on the whole rad X' and the whole

rad D , so that X and )̂ are complete intersections at Λy on S^, and { ξ\9 {η} are

their sets of representatives at Λy on 5^.. Therefore, by Lemma 3.2, Theorem

3.3, and the associativity formula (Theorem 2.1 of [ 2 ] ) , we have

i (Λ y , X n$,Sκ) = e ( ρ ( Λ ; . / S χ ) ; ξ, η) .

If Γj is a component variety of Γ = Λ n 3> this also shows that Λ is a complete

intersection at Γ̂  on S^, and that { ξ9 η \ is a set of representatives of Λ at Γ̂

on S since 3 i s a^so a complete intersection at Γj on S χ , and | ( ! is a set of
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representatives of 3 at Γ^ on S^ , the same argument gives

i(Γ z ,Λ n 8,SK) = e{Q(Γι/Sκ); ξ9η9 ζ).

If now Δ = J) n S, we can prove by the same method that

i(Γz, X n Δ, Sκ) = e(<?(ΓySχ); f , , , , () ,

so that Λ n β = ^ n Δ. Let now v be a place of K over A: such that,

ij ^ ' ~ ij^ ' ~ ij ^ ' ' * a^ ' ~~ H ~~ ΰ" 9 v

T h e o r e m 3.2 i m p l i e s t h a t U i s p a r t of Λ j v ! * , a n d t h e r e f o r e a l s o t h a t i( V, U n %9

S)V i s p a r t of Γ j t ί for the s a m e r e a s o n , i(V, $nW,S)V i s p a r t oϊΓ\v\ ,

Q . E . D .

4. Further properties of the intersection multiplicity in a projective space.

Throughout this section? S will be an n-dimensional projective space over the

field k.

THEOREM 4.1. // £, ^ are unmixed integral effective cycles of S, and V is

a component variety of £ n ί), ίΛerc i{V9 £ n t), S ) is a positive integer.

Proof. In the proof of Theorem 3.4 it has been shown that

i(Λ., X n D, Sv ) = e((KΛ./S^ ); f, 77),

so that Λ is an integral effective cycle. But then i(V9 $ n ίj, 5) is an integer

because it is the multiplicity of V in Λ j v} {v having the same meaning as

in the proof of Theorem 3.4), Q.E.D.

From Lemma 3.2, Theorems 3.2 and 3.4, and Lemma 2.3 of [ 2 ] , it is now

possible to see that a cycle j is a complete intersection at V on S, and has the

set of representatives { ζ\ at V on S, if and only if % coincides locally at V with

£1 n 5?2 n # * * 9 w n e r e £1 is t n e (n — 1 )-dimensional cycle

5. = Σ ; fi; (ίi) IKvu' k{C{Vij/S))] Civy/S);

h e r e v.. {j = 1, 2, •• •) a r e a l l t h e d i s c r e t e n o r m a l i z e d v a l u a t i o n s of k(S) o v e r k

of r a n k 1 a n d d i m e n s i o n n — 1 s u c h t h a t v. (ζ ) > 0.

THEOREM 4.2. Let ^, % be unmixed cycles of S of dimensions r, s such

that r + s - n > 0; let V be a component variety of t> n %. Let k' be an extension

of k9 and ίj', ^ the modified extensions of §9 % over k\ Then each component

Vj of Vfc' is a component variety of §' n %% and
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is the modified extension over k' of i(V, fc) n 2 , 5 ) V.

Proof. The first assertion is evidently true. In order to prove the second

statement, let |[) , 3 be the general homographic transforms of ΐ), 3 respec-

tively, constructed with two independent sets of indeterminates { u(j }, { V(j !• Set

and let g), 3 be the modified extensions of § * , 3* respectively over X. Then

Λ = D n 3 exists, and if v is a place of K over k such that

Kv = &, uij(v) = v.. ( f ) = 0 Ίί i £ /, ua(v) = f j i i^) = 1>

then ΐ ( F , t> n 3, S) F is part of Λ M * by Theorem 3.2. Now let g)', 3 ' , X ' b e

obtained from ^\ ^ as g), 3> ̂  a Γ e from >̂ ϊ*> ̂ ^ D^ 3 a r e t n e modified ex-

tensions of |9, 3 respectively over K'. If Λ ' = D n 3» assume for a moment Λ '

to be the modified extension of Λ over k'. If υ' is any extension of υ to X'over

k' such that Kv, = k'9 then Λ'lz;'!* is the modified extension of Λ{ v }* over A'-,

and therefore

is the modified extension over ά 'of i(V, t) n 3, S ) F , as claimed. We conclude

that the theorem is true if it is true when applied to |J), 3> 0 Γ also, a fortiori, if it

is true under the additional assumption that fc), 3 are complete intersections at F.

This, in turn, is equivalent, by Lemma 3.2, to the following assertion: Let A be

an irreducible subvariety of S, { ζ\ a set of parameters of R - Q{A/S); let A ' be

the modified extension of 1 A over k% Av . . . , Am its component varieties,

and set

Ri = Q{Ai/Sk,).

Then

Now, if A;' is an algebraic function field over k the proof of this statement is

implicitly contained in the proof of Lemma 1.2; otherwise, it can be obtained by

a well-known limiting process, Q E.D.

T H E O R E M 4.3 ( B E Z O U T ' S T H E O R E M ) . Let ty, % be unmixed cycles of S

such that ^ n 3 exists. Then
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ord ( § n %) = ( ord ίj) (ord %).

Proof. By Theorem 3.1, we may assume without loss of generality that fc) and

% are irreducible; and, by Theorem 4.2, we may assume k to be algebraically

closed. Let |f), 3> ^> Λ have the same meanings as in the proof of Theorem 4.2.

Then

ord ( fc) n ^) = ord Λ.

Since k is algebraically closed, fξ) and 3 a r e t n e modified extensions over K of

the general elements of the homographic systems § , S of t), £ respectively. Ac-

cording to Lemma 2.4, § and ® contain two degenerate cycles fc)', $',- and there-

fore they contain the homographic systems ίρ', S ' of fc)', 3' respectively (Lemma

2.2). Two cycles §", 3 " of § , S , respectively, can be found in such a way

that *)" n 3 " exists; we have then that §" n j ' ' = Λ { ι ; } * for some v C

(Theorem 3.2), and therefore

ord ( fc)" n %"•) = ord Λ = ord ( t) n ^ ) .

If r = ord t), s = ord 3, we have

the ^ .'s and ^ ' s being linear varieties. Lemma 3.2 gives that for each i, j the

intersection 1^. n \%. is an irreducible cycle whose radical is a linear variety.

Hence Theorem 3.1 implies that ord ( φ n %) - rs, Q.E.D.

THEOREM 4.4 (CRITERION FOR SIMPLE INTERSECTIONS). Let *), % be

irreducible cycles of S9 of dimensions r9 s respectively such that r + s — n > 0.

Let V be a component of rad t) n rad j . ΓΛeπ the following four statements are

equivalent:

(1) i( V, t) n £, S) exists and equals 1;

(2) Zeί \X\ be the h.g.p. o/S; let

{fί(X),f2(X)9.-.} and i6ι(X)9g2(X),.--\

be bases of p (rad fc)/S) and p (rad j / S ) respectively. Let {x } be the

h.g.p. of V. Then the Jacobian matrix J (f(X), g(X); X, t) acquires the

rank 2n - r — s when \X\ is replaced by {x }. Here {t} is a p-independent

basis of k over kp if p is the characteristic of k;
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(3) there are regular sets of parameters \ ζ}9 {η } ofQ{rad %/S), Q (rad

respectively such that { ζ, η\ is a regular set of parameters of Q{ V/S);

(4) p( V/S) is an isolated primary component of

If ins V = 1, then J (f(X), g(X); X, t) in Statement 2 can be replaced by

j(f{X),g{xy,X).

Proof Let |9, 3, Λ, K have the same meaning as in the proof of Theorem 4.2.

Let Sί, S2 be the projective spaces whose h.g.p. are { u\, \v\ respectively. Set

Z*

and let P, (̂  be points ofS t , S2 such that

γ*\p\* = ̂ ,z*{ρι* = r,

set also G = P x Q. Then the ideal whose basis is the set of the

has

. . , «tf/ « „ . • , . v.. v , ])

as an isolated primary component, and the ideal whose basis is the set of the

Gi (X, v) = gi( , Σ ; vZy ^oo */' ' " ^

has

ψ (rad Z/λ [Z, , α ι 7 M^ 1, , , v.. v~*9 ] )

as an isolated primary component. If assertion 1 is true, then only one com-

ponent Λ' of Λ has the property that L'=rad D^ ^ contains V x G; besides,

rad Λ' has in Λ the multiplicity 1. Therefore, by Lemma 3.2, { Fx, F 2 , , G ί9

G29 } is the basis of an ideal of which

p { L ' / k [ X , ••• , » , 7 « u o « * " ' " • > v i j v o o > ' " ] )

is an isolated primary component. Since

i(V, ^ J , S ) = e(V x G/lL'iS,R)*,
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and since upon replacing the ix 's, i^ ' s by their values at G the Fi(X9 u),

Gi(X, v) are replaced by the fi(X), gi(X), Theorem 5.6 of [2] or its corollary

implies that Statement 2 is true.

Assume now Statement 2 to be true; then Theorem 10 of [6] implies that

Statement 3 is true. Finally, if Statement 3 is true, then fc) and % are complete

intersections at V on S, and Lemma 3.2, together with Theorem 2.1 of [ 2 ] , yields

the result that Statement 1 is true. Statement 4 is clearly a consequence of

Statement 3, and it implies Statement 2, Q.EoD.

COROLLARY. With notations as in Theorem 4.4, if

then V is simple on rad ^ and rad £.

Proof. This is a consequence of Statement 3 of the theorem and of a well-

known result on regular local rings, Q.E.1J.

5. Intersection of cycles of an algebraic irreducible variety. Let V be an ir-

reducible variety over the field k9 U a subvariety of V, S the ambient space

of V. By this expression we mean to express the fact that if { X } is the h.g.p. of

5, then the h.g.p. ί x \ of V is a homomorphic image of { X !; of course S is not the

only projective space of which V is a subvariety. Let £ be an unmixed cycle of

V We say that % is a section of V at U if there exists an unmixed cycle 3 of

S such that 1 V n 3 a n d % coincide locally at JJ'. We shall develop in this section

a theory of intersections of cycles of V which will be valid when the cycles are

sections of V at some ί/; before we do so, however, it is important to show that

this is the case under the customary conditions. Namely, we have:

THEOREM 5.1. Let V be an irreducible variety over the algebraically closed

field k9 S the ambient space of V\ U a nonempty irreducible subvariety of V9

simple on V, % an irreducible cycle of V; then there exists an irreducible cycle

£ of S such that IV r»3 coincides with % locally at V.

Proof Since, by Theorem 3 of [ 6 ] , each U simple on V contains a point P

simple on F, the theorem will be proved in general if it is proved under the as-

sumption that U is a point. Let { x \ be a n.h.g.p. of V for which U is a finite

distance, R = Q(U/V). If

m = dim S, n = dim V9 r = dim £,

let {y , ••• , γn \ be a set of regular parameters of R contained in &[#]; then

¥\9 "' ' yji a Γ e algebraically independent over Ic. Let F be the projective space
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over k whose n.h.g.p. is {γ}, and set

\) nk[y]), Z ' = p{p{τad %/k[x]) n k[y]) .

Then ί/' is a point, and dim Z ' < r. The embedding of &[y] in k[x] gives an ir-

reducible algebraic correspondence D between F and V9 such that rad D is bi-

rationally equivalent to V in a birational correspondence which is regular2 at

finite distance; we shall therefore denote subvarieties of V and D which corres-

pond to each other with the same symbol. Since Q(U'/F) contains a set of regu-

lar parameters of R9 from the corrollary to Lemma 1.1 we obtain

e(U/D; U% V)* = 1.

Let Z be a component of [D; Z', V] containing U; then Theorem 1.1 implies that

dim Z = dim Z ' since among the Z's there is one which contains rad £, and

which therefore has dimension > r, we conclude that dim Z4= r, so that dim Z ̂  r

for each Z. Now, by Theorem 1.1, we have

1 = e{U/D; V% V)* = e(U/Σz e(Z/D; Z\ V)* Z; U', V)*.

Since Z ' is simple on F9 according to a remark preceding Theorem 5.5 of [2] we

have that each e(Z/D; Z'9 V)* is an integer; we cannot state that e ( ί / / l Z ; ί/',

V)* exists for each Z; however, according^to Lemma 1.1, we may operate in the

following way: Replace, in Lemma 1.1, D9 /)*, F, F9 G9 k respectively by

Σze(Z/D;Z',V)*Z9U9V,Z',U'fkf

and select correspondingly Z*, G'9 Ό% U*f ί/*, ••• to replace F% G% D'9 D*,

Z)*, in Lemma 1.1; impose upon Z* the additional condition that{lD.'; V9

G'}* exists for each component variety D. of Ό'\ for each Z, set

α(Z) = ΣjeiUj/D , V, G')*ord(lί/*)[GΊ,

where / is such that

(lopiz*}* = (1Z)UΊ*.

Since { 1D^; V9 G'{* exists, and h{ U* ) = 1, we deduce that α(Z ) is an integer.

The α of Lemma 1.1 is given by

α = Σze(Z/D;Z%V)* α(Z),

and therefore, since ord U = 1 in this case, Lemma 1.1 itself gives that

2T is regular at ί/ if for each t/'•= Γ (ί/) it is true that ρ( ί//K) = Q (ί/'/K')ί in this
case ί/' is unique.
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1= e(U/Σze(Z/D;Z', V)*Z; F, UT = Σz e(Z/D; Z'9 V)* α(Z).

Since we have seen that each e(Z/D; Z ' , F ) * and each Cί(Z) is an integer, it

follows that there is exactly one Z, namely rad %, and that e(Z/D; Z', F ) * = 1.

Now, the set \y\ can be identified with a subset of k[X], \X\ beiηg the

n.h.g.p. of S which corresponds to 1 x }. Set

S = lφ(p{Z'/k[y])k[X]),

so that 3 i s a n irreducible cycle of S of dimension r + m - n. The fact that the

only Z is rad £ means that rad 3. is the only component of F n rad 3 containing

U; since

r = n + dim 3 - m,

we also have that rad ^ is a component variety of 1 V n 3 Finally, since

e{Z/D;Z', V)* = 1,

a regular set of parameters of Q(Z'/F) is a regular set of parameters of Q(Z/V),

and this means that ^>(rad %/k[X]) is an isolated primary component of

φ{V/k[X\) + p ( r a d 3 / A U ] ) .

This, in turn, by Statement 4 of Theorem 4.4 shows that ΐ(rad £, \V n 3> S ) =

1, Q.E.D.

Let V be an irreducible /ι-dimensional variety over the (arbitrary) field k9 and

let fc), ̂  be unmixed cycles of V of dimension r, s respectively; if {] is an ir-

reducible subvariety of rad ^ n rad 3, we say that U is a component variety of

( ty n 2> F) if dim ί/ = r + s - n. If J is a section of V at ί/, let 3 be an unmixed

cycle of the m-dimensional ambient space S of F, such that % coincides locally

at U with 3 n 1 F. If ί/ is also a subvariety of rad t), then it is a subvariety of

rad fc) n rad 3 Since

dim 3 = 5 + m - n 1

by Theorem 2.2 we have

dim U > r + s — /ι.

Assume ί/ to have exactly the dimension r + s - rc, so that it is a component

variety of ( t) n % V) and of ij n 3 Assume also t) to be a section of F at ί/,

and let JΓ! be related to ty as 3 i s t o ί The number i(U, ̂  n 3> S ) exists, and

by Theorem 3.4 it equals
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i ( ί / , δ n I F n S , S) = »( ί/ , g) n a . S ) .

This proves that

i(U, $ n S , S ) = * ( £ / , 8 n i , S )

does not depend on the choice of § , 3> but depends only on ί/, fc), 3, F; accord-

ingly, it will be denoted by i ( ί/, fc) n 3, F ) . We shall put i( U9 § n %, V) = 0 if

dim U ~ r + s — n but f/ <t rad i) n rad %. A generalization of the meaning of this

symbol will be given after Theorem 5.9; the remark following Theorem 5.9 con-

tains comments on the validity of most results of this section for the generalized

symbol. Theorem 3.3 yields:

HU, t) n 3, F) = i{U, <9 n 3 , S) = i{Uf 3 n t), S) = i(ί/, 3 n t), J/);

that is, we have the following result:

T H E O R E M 5.2 ( C O M M U T A T I V Ϊ T Y LAW). If one of the symbols

a meaning, the other also has a meaning? and their values are equal.

The number i ({/, ^ n £, F) is called the intersection multiplicity of fc) α/zc?

% at U on V. Assume that ίj, % are such that each component Uj of rad t) n rad ^

is a component variety of ( fc) n 3, ^)> a n ( ^ ^ n a t i(U > § n >̂ ^ ) i s defined for

each/; in this case we shall set

the cycle ( ^ n 3, F) is called the intersection of ^ ατιo? % on V. The locutions

" t o be part of ( $ n 3, F ) " , " t o coincide locally at . . . with ( fc) n 3, F ) " , " to

exist locally at " , and " the local part of ( t) n 3, F) at " shall have a

meaning even if ( t> n %, V) does not exist, in exactly the same way as the simi-

lar locutions in § 3 have a meaning even if ίj n 3 does not exist. Obviously, in

the special case in which V = S, the symbols i(ί/, fc) n 3, S) as defined here or

in § 3 have the same meaning; accordingly, the symbol ^ n 3 of § 3 shall be de-

noted from now on by ( ^ n 3, S) .

From Theorem 4.2 we obtain:

THEOREM 5.3. Let V be an irreducible variety over k9 fy and % two unmixed

cycles of V such that

dim ^ + dim % - dim F > 0,
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and let $ be a part of ( t) n $, V). Let k'be an extension of k; V' the extension

of V over k'\ £ ' , fc>', 3 ' the modified extensions of $, t)9 % respectively over

k'. Assume V to be irreducible. Then ins I7 (ins V')~ι$' is part of { t)' n %', V).

From the definition, and from Theorem 3.1, we obtain:

T H E O R E M 5.4 ( D I S T R I B U T I V I T Y LAW). // U, *) , %l9 V are such that ί(U,

^ n %ι> V) has a meaning for /, / = 1, 2, and ij

dim t) t = dim fc)2, dim %χ = dim %2 ,

then

i(U, ( ^ + \) n (%ι+ j 2 ) , V)

has a meaning and equals

2

Σ i(U, fy π %p V).

THEOREM 5.5 (ASSOCIATIVITY LAW). Let £, t), % be three unmixed cycles

of the n-dimensional irreducible variety V over k, of dimensions r s s9 t respec-

tively. Let U be a component of rad £ n rad t) n rad j o/ dimensions r + s+ t ~ 2n;

assume J , t), % to be sections of V at U; let $'9 ty' be the local parts? at ί/s of

( 2? n 9̂, F ) , ( t) n %, V) respectively. Then i(U, $' n %, V) and i(U, $ n %', V)

exist and are equal. Their common value is denoted by i{(J, y n t) n ^, V)9 and

a similar notation is used when more than three cycles are involved.

Proof. Let 3C, ?), 3 t>e unmixed cycles of S (the ambient space of V) such

that £, $, 3 coincide locally at ί/ with ( X n 1 V, S), (g) n 1 F, S), ( 3 n l F , S )

respectively. Then (X n g), S) and ( |) n 3> S) exist locally at U; let X , 3 be

the local parts of (X n ^), S), (S) n 3> S), respectively, at U. Theorem 3.4 im-

plies that

i(U, X ' n %, S) = i(ί/, y n S ' , S ) ;

on the other hand, again by Theorem 3.4, (X n I F , S) coincides locally at U

with ( X n ίj, S), and therefore with ( £ n fc), V) and with Jp'; this proves that

i(U, X ' n j , S ) = i(U, ? ' n a, F ) .

In the same way we obtain

i(U, 5 n 3 ' , S ) = i ( ί / , p n i ', F ) , Q . E . D .
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THEOREM 5.0 (TRANSITIVITY LAW). Let V be an irreducible variety over

k9^ W an irreducible subvariety of V. Let t), % be unmixed cycles of W9 and U a

component variety of ( ̂  n %9 W). Let ^)$ 3 °e unmixed cycles of V such that

(?) n 1IF, F ) , ( 3 n 11F, V) exist locally at U and coincide at U with h, %

respectively. Then ( § n 3* ^ ) exists locally at U; let X be the local part of

(D n 3, V) at U. Then ( X n 1 IF, V) and ( fc> n %, W) both locally exist and coin-

cide at U.

Proof. Let H) , 3 b e unmixed cycles of the ambient space S of V such that

( $ * n I F , S), ( 3 * n I F , S) coincide locally at U with g), 3 respectively. Then

O * n l l F , S), ( 3 * nl lF, S) coincide locally at £/ with ί?, % respectively by

definition. Let X* be the local part of ( ?)* n 3*» S) a t ί̂ ϊ ^* exists because

the dimensions fulfill the correct relations. Then (X n 1 F, S ) coincides local-

ly at U with X, so that ( X* n 1 W, S) coincides locally at U with ( X n 1 W, V).

On the other hand, ( t) n & I* ) coincides locally at U with (?)*n 3 * n l ίί', S),

Q.E.D.

Theorem 5.6 also shows that in the definition of i ( U, § n £, F ) , the ambient

space S could be replaced by any space S containing F as a subvariety.

T H E O R E M 5.7 (LAW O F T H E C O N S E R V A T I O N O F T H E N U M B E R ) . Let A

be an irreducible variety over k9 and K an algebraic function field over k let

S be an irreducible algebraic correspondence between K and A, and let X, S) be

unmixed cycles of rad S. Let v G M(K) be such that Kv = k> and that S{ v \ is

irreducible? say Ώ { v }* = I F , where V is an irreducible variety over k. Set

so that 3ps ^ are unmixed cycles of F; let U be a component variety of ( £ n ^,

F ) . Among the components of rad X n rad §, Zeί lly (/ = 1, 2, ) be those such

that rad (lUj) {v\* contains U; then

dim 11. = dim X + dim |Γ) - dim S

/or eαcA /. Assume X, §) ί o &e sections of r a d δ α ί 11 j u U 2 u ••• . Then (1) CXy =

/(lly, X n f), rad SB) exists for each j , so that U = ̂ . (X. U. exists, (2) U is a

component variety^of each ( 1 Uy ) { v j * , and (3) i(U, £ n t), F ) exists and equals

the multiplicity of U in U{v !*.

Proof. We need to prove only the last statement, since the others are an

immediate consequence of the relations between the dimensions. Let 5 be the

ambient space of S, X an unmixed cycle of S such that (X n ϋ , 6) and X coin-
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cide locally at XL t u U2 u . Then 11 coincides locally at each Uj with (X n ̂ ),

o) by definition. Let S ~ Si v }* be the ambient space of F; the application of

Theorem 3.2 to the two algebraic correspondences X , 33 between K and S proves

that (X { v }* n 1 V, S) coincides locally with £ at ί/. The same theorem, applied

to X and |9, yields the result that ( X ί v }* n fc), S) coincides locally at U with

U{v\*; therefore U M * coincides locally at ί/ with ( p n ίj, F ) , Q.E.D.

THEOREM 5.8. Le£ F &e arc n-dimensional irreducible variety over k, t) an

r-dimensional irreducible cycle of F, U an irreducible subvariety of rad fc), £ arc

s-dimens ional cycle of V which is a complete intersection at U on V9 and such

that

r + s - n = dim U.

Assume ty to be a section of V at U. Let { ζ\ be a set of representatives of % at

U on F, and set

fc= 5β(rad $/V) n Q(U/V).

If σ is the homomorphic mapping of Q(U/V) whose kernel is \), then \σζ] is a

set of parameters of Q{U/τad ^ ), and i{U, ty n ^, F) exists and equals

e((?(ί//rad ^ ) ; σ ^ ) .

Proof, lϊ \x] is a n.h.g.p. of F for which U is at finite distance, we may

assume ζ. C k[x] for each /. Let { X \ be the correspondent n.h.g.p. of the ambi-

ent space S of F, T the homomorphic mapping of &[Z] onto &[%] such that ΊXj =

Λy. Let ZJ (/ = 1, 2, ••• ) be elements of A:[A] such that T Zj = ζμ then the set

ί z ! is a subset of a set of parameters of Q( U/S), and, if m = dim S, there exists

a cycle 3 °f S, of dimension s + m — n, such that 3 is a complete intersection at

U on S, and has { z \ as a set of representatives at U on S. Therefore, by Lemma

3.2, % coincides locally at U with ( g n I F , S), so that i(U, t) n %9 V) exists

and coincides with i (ί/, ty n 3> S) locally at {/ this, in turn, by Lemma 3.2,

equals e(Q(U/τad ^) ; σΊz), Q.E.D.

T H E O R E M 5.9 ( R E L A T I V E I N V A R I A N C E O F T H E I N T E R S E C T I O N M U L T I -

P L I C I T Y ) . Let F, V be irreducible varieties over k> T a birational correspond-

ence between V and F ' ; let §9 % be unmixed cycles of V, U a component variety

°f ( ty n %9 V) such that i(U, ^ n %> V) exists. Assume T to be regular2at U9 so

that T is also regular at each component variety t)y of fc) containing U and at

each component variety %ι of % containing U. Let aj, b[ be the multiplicities of

$μ %ι, respectively, in t), %; set
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ί/'= τ(uχ $:= n^), ι\ = nh), *r= Σ y α . $;, a ' = Σ z ^ %'r

Then ifi(U% fc)' n #', F ' ) exists it equals i{U, t) n £, F ) .

The cyc le fc)' i s cal led a transform of fc) at U in (or with respect to) T.

Proof, By considering the composite variety of V and F ' , we may clearly

reduce the proof to the following simpler case: There exists a n.h.g.p. { x \ of

V for which U is a finite distance, and there exist elements x , x , ••• ζLk(V)

such that { x, x'\ is a n.h.g.p. of F ' for which {/' is a finite distance. In this

case let S be the ambient space of F, and let \X] be the n.h.g.p. of S corre-

sponding to {x\; if S ' is similarly related to F ' , we may assume that a n.h.g.p.

of S ' has the form {X, X'\ \X'\ being a set of indeterminates. The correspond-

ence between F ' and V is now visualized as a "projection" of F ' on S C S'.

If A (resp. A*) is an irreducible subvariety of S (resp. of F') containing 67

(resp. ί/'), whose n.h.g.p. is {̂ { (resp. { ξ, f ' l ) , we shall denote by /I* the

irreducible subvariety of S ' whose n.h.g.p. is ί f, X'\; therefore we have

A* n S = 4 (resp. /I* n F ' = 4 ' ) .

This correspondence generates in an obvious way a correspondence

3-* 3* (resp. 3 ' -»3*)

among c y c l e s . Now, l e t 3 be a c y c l e of S s u c h t h a t ( I F n 3> S ) c o i n c i d e s

l o c a l l y at ί/ with £ ; then

by definition. Theorem 4.4 readily shows that i), S> 1 ^ coincide, respectively,

with ($* n 15, SO, ( 3 * n I S , S), (1 F* n I S , SO locally at U, and then an

immediate application of Theorem 5.6 yields that

;(ί/, $ n 3, s ) = »(*/*, tf π 3 * , s ' ) .

In like manner, we obtain that £* coincides locally at 6' with ( 3 * n ^ > S'),

and therefore also that

i ( ί / * , tf π 3 * , S ' ) = i ( ί / * , *̂ n f , V * ) .

We now wish to show that 1 F ' is a complete intersection on F at each irre-

ducible subvariety A ' of F ' which contains ί/' (and which is therefore regular

for the birational correspondence between F and F') Let in fact A be the trans-

form of A * in F; since
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QU/V) = QU'/V),

t h e r e e x i s t s a p £. k[x] — p( A/k[x]) s u c h t h a t px' ζL h\_x\ f o r e a c h y . W e a l s o

have p £ k[x, X'] - p(A'/k[x9 X'])f and therefore

x'j-x- = P~
ι(pχ;-χp c QU'/V*)

for each y. The set { , X? - x', } is a regular set of parameters of

Q{ V'/V*), hence a subset of a set of parameters of Q{A '/V* ), hence also a set

of representatives of 1 F ' at A ' on V , as announced.

This being established, we apply Theorem 5.8 to the varieties F , U' and

and the irreducible cycles I F ' , 1 £/*, obtaining the result that i(U% 1 ί/* n I F ' ,

F* ) exists and equals

e ( Q ( U ' / U * ) ; . . ,Xj-ξj, - ) ,

where we have denoted by { ζ, ζ'\ the n.h.g.p. of ί/'; but, as before,

is a regular set of parameters of Q( U'/U*)9 and therefore

(If/* n I P ' , F*) = \U\

Likewise, we obtain that ( t)* n l F ' , F*) and ( ^* n l F ' , F* ) coincide locally at

ί/'with fc)', ?' respectively. Now, Theorem 5.6 applied to V*, V, t)', %% {/', ^*,

2* yields the result that ( t)'n %', F') exists locally at ί/' and coincides locally

at ί/'with

(ϊ(ϋ*, *̂ n tf,V*)U*n IF', F*).

In view of the previous equalities, this amounts to saying that

i(U', V n & V) = i(U> t) n i, V), Q.E.D.

Theorem 5.9 implies that i ( U9 ^ n %, V) depends only on Q(U/V), on the

quotient rings in V of those component varieties of t), £ which contain c/, and on

the multiplicities of such component varieties in t), % respectively. Accord-

ingly, in the notations of Theorem 5.9, if ty', #' are not both sections of F ' a t

U% but i(U, ty n %, V) exists, we shall define i ( U', ty' n ^', F') to be equal to

i ( U, t) n 2, F ) ; Theorem 5.9 itself shows that this is a good difinition, that is,

that it is independent of the choice of F ' . This enables us to define i ({/, ij n 2,

F) also when F is an irreducible pseudovariety (see [ l ] ) , since each irreduci-
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ble pseudovariety is regularly equivalent to an irreducible variety. The question

is now raised as to whether all the results of this section remain true for the

present extended definition of the meaning of the symbol i ( ί/, ^ n %, V). The

answer is as follows:

REMARK. Theorems 5.2 to 5.9 remain true after we replace the word "va-

iety" by the word "pseudovariety", and the sentence " ^ is a section of V at

U" (or a logically equivalent one) by the sentence "there exists an irreducible

variety V9 birationally equivalent to V in a correspondence T which is regular

at each component of U, such that a transform of t) at U in T is a section of V

at Γ(U)" (or by a logically equivalent one). The question is not even raised,

however, when U is simple on V and the ground field is algebraically closed

(see Theorem 5.1).

A comparison between Theorem 5.8 and the corollary to Lemma 1.1 shows

the a posteriori connection between the theory of intersections and the theory

of algebraic correspondences, namely:

THEOREM 5.10. Let D be an unmixed algebraic correspondence between

the irreducible variety F over k and the projective space S over k, and assume

each component of D to operate on the whole F. Let G be an irreducible sub-

variety of F, D a component of [D; S, G] Then if

e(D*/D;S,G)* and i(D*,D n 1 ( 5 x G), S x F)

both exist, they are equal.

From Theorems 5.1, 4.1, and 4.4 we obtain:

THEOREM 5.11. Let U be a simple irreducible subvariety of the irreducible

variety V over the algebraically closed field k. If φ, % are irreducible cycles of

V such that U is a component variety of (§ n %, V), then i(U, t) n $, V) exists

and is a positive integer. A necessary and sufficient condition in order that

i(U, *} n%,V) = 1

is that %) ( U/V) be an isolated primary component of

Let finally ί/, V be irreducible subvarieties of a projective space S over an

algebraically closed field k; let S ' b e a "copy" of S over k, V* a copy of U in

S', M a component variety of (1 U π 1 V9 5) . Let Δ be the identical algebraic

correspondence between S and S'9 and set
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MA = [Δ; M, S I , ί/Δ = [Δ; U, S'], V^ = [Δ; V, S'].

From the results of the present section, the following equalities are easily es-

tablished:

l ( ί / ' . χ V) = ( 1 ( 1 / ' x S) n K S ' x Π . S x SO;

l ί / Δ = (Δ n K f / ' x S ) , S x SO, 1 F Δ = (Δ n 1 (V x SO, S x SO,

i(M, IU n IV, S) = i(ΛfΔ, 1 ί/Δ n 1 F Δ , rad Δ)

= i(Λ/Δ, Δ n l ( ί / ' x S) n 1 ( F x SO, S x SO

= *(A/Δ, Δ n l(U'x V), S x SO,

and this, by Theorem 5.8, proves that our definition of intersection multiplici-

ties coincides with the one given in [3] for the case of algebraic varieties,

when the latter is defined.
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TWO EXISTENCE THEOREMS FOR SYSTEMS

OF LINEAR INEQUALITIES

LEONARD M. BLUMENTHAL

1. introduction. In a previous paper [ l ] , the writer initiated the development

of the theory of linear inequalities by means of metric methods. This program is

continued in the present note to obtain existence theorems for the solutions of

two types of (finite) homogeneous systems of inequalities; existence criteria

for such systems, different from those established in this paper, are given in the

fundamental work of Theodore Motzkin [4]; see also [ 3].

If A denotes an m x n matrix of real elements, and x a column matrix of n

indeterminates, then the matrix Ax gives rise to the two systems of m homogene-

ous linear inequalities in n unknowns,

(1) Ax > 0

and

( 2 ) Ax > 0,

where the notation > 0 is interpreted to demand that at least one of the left mem-

bers in (1) be positive. In this note necessary and sufficient conditions are

found in order that these systems have a solution, which is nontrivial in the

case of system ( 2 ) . These conditions are expressed in terms of the signs of cer-

tain minors of the symmetric positive semi-definite matrix of order m formed upon

multiplying the matrix A by its transpose A . They follow easily from a lemma

concerning the distribution of n + 2 points of the convexly metrized unit ^-sphere

Sn; this lemma is stated without proof in [ 2 ] .

2. The Lemma. Let p 0, pί9 ••• , pn + ι be n + 2 points of the Sn and denote

the geodesic distance of p;, pj by pipj; that is, pipj is the length of a shorter

great circle arc that joins pi and py. Denoting the determinant

I cos pipj I ( i, j = 0, 1, , n + 1)
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by

Δ ( P o , P , , , p n + 1 ) ,

we recall the well-known result that

P^ ••• , P Λ + ι ) = 0,

while each principal minor of the determinant is nonnegative. If, moreover, a

principal minor sat i s f ies

then the points p f , p:9 ••• , pιk are contained irreducibly in a A -dimensional

( g r e a t ) hypersphere S^, and conversely. Clearly each (m + 1 )-tuple of such a

set of k + 1 points is contained irreducibly in an S m .

L E M M A . / /

ith

Sn>

i ) ίAe points p 0 , p p ••• , P 7 l _ 1 determine uniquely an (n - \)-dimensional

great hypersphere $n-u an^ (" ') ^ e points pnf p Λ + ι /ie orc ίAβ same or o/z oppo-

5iίe si'c/es o/ ί/̂ e hypersphere Sn-ι if and only if the co factor [ c o s pnpn+ι] of

the element cos pnpn+ι in Δ ( p 0 , pί9 ••• , pn + ι) be negative or positive, respec-

tively.

Proof. S i n c e Δ ( p 0 , p t , ••• , p Λ ) ^ 0 ( a n d c o n s e q u e n t l y i s p o s i t i v e ) , the

p o i n t s p 0 , p t , , pn a r e i r r e d u c i b l y c o n t a i n e d in 5 ^ , a n d s o p 0 , pl9 ••• , p n - i

a r e i r r e d u c i b l y c o n t a i n e d in a g r e a t h y p e r s p h e r e Sn-ι(p09 pχ9 ••• , p ^ - i ) w h i c h

t h e y d e t e r m i n e u n i q u e l y .

L e t s be any e l e m e n t of Sn9 s 4 Po> Pi> * # ' > Pn N o w

( 1 ) 0i Λ i 0 l Λ

= Δ ( p o , P l , .-• , p π ) Δ ( p Q , P l , . . . , p π - 1 , s ) - [ c o s P / ι s ] 2 ,

and the vanishing of Δ ( p , p t , ••• , p Λ , s ), together with the nonvanishing of

> Pi9 " » Pτι)> implies that [ c o s p n s ] = 0 if and only if
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t h a t i s , if and only if s £ S n « . i ( p 0 , pl9 ••• , pn-ι)

It follows at once that if p, q are any elements of Sn which are on the same

side of Sn_ί ( p 0 , pl9 •• , pn-ι)9 then

sgn [ cos pnp] = sgn [ c o s p ^ g ] ,

where [ c o s pnp], [ c o s pnq] are cofactors of the indicated elements in the de-

terminants Δ ( p 0 , p ^ ••• , pn, p ) , Δ ( p 0 , pl9 ••• , pn9 q)9 respectively. For in

the contrary case , the continuous function [ cos pns] changes sign for s = p and

s — q, and consequently it vanishes for some point of the geodesic ( s h o r t e r ) arc

joining p and q. But by the above, this point belongs to Sn-χ { p 0 , p t , « , p n ) ,

and so p, q are on opposite s i d e s of this great hypersphere, contrary to assump-

tion.

If, therefore, pn and p π + 1 are on the same s ide of Sn-ι ( p 0 , p i, , pn _ i ) ,

then

sgn [ cos p n p π + ι ] = s g n [ c o s p ^ p j = - s g n Δ ( p o , P l , ••. , pn ) ,

and c o n s e q u e n t l y [ c o s pn p n + i ] < 0 .

S u p p o s e , now, t h a t pn and pn + ι are on o p p o s i t e s i d e s of

and denote the reflection of pn in this hypersphere by p n * . Then p n * , p n + ι are

on the same side of the hypersphere, and so

sgn [ cos pnpn^ι] = s g n [ c o s p π p | i * ] .

From the vanishing of Δ ( p 0 , pl9 , pn9 pn* ) and the relations

PiPn* = PiPn ( i = 0, 1, - . , Λ - 1 ) ,

which follow from the def ini t ion of p Λ * , ( 1 ) y i e l d s

To determine the sign, we have, first,
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C O S P 0

[ cos pnpn*] = ~

c o s popn* c o s p l P n * . . . cos pnpn*

Taking account of the relations p(pn* = pipn (i = 0, 1, , n - 1), and writing

the determinant as the sum of two determinants whose last rows are cos p 0 pn,

cos pi PTJ, , cos pn-ιPn9 1 a n d 0, 0, , 0 , cos pn pn* - 1, respectively, we

easily obtain

(2) [cospnpn*]

= - Δ ( p o , P l , , P J + ( 1 - c o s p B p Λ * ) Δ ( p o , P ι , . . . , P n _ 1 ) .

T h e n c l e a r l y

[ c o s p Λ p ^ * ] = Δ ( p o , P l , . . . , P | i ) > 0 ,

for if t h e n e g a t i v e s i g n w e r e v a l i d , s u b s t i t u t i o n in ( 2 ) w o u l d g i v e

( 1 - c o s pnpn*) Δ ( p o , P l , . . . , pn__ί) = 0 .

B u t

because p 0 , p t , «-• , pn-χ are irreducibly contained in Sn-U while, since p ,

Pi> •* y Pn-ι> Pn a r e irreducibly contained in Sn, pnQ Sn^ί ( p 0 , pl9 •- , p r t ~i) ,

and so pn i s dis t inct from i ts reflection p Λ * in that hypersphere; that is,

1 - cosPnPn* * °

H e n c e if p n , p n + 1 a r e on o p p o s i t e s i d e s of 5 n _ t ( p 0 , p i> , P n - i ) > t n e n

[ c o s P Π P Λ + I I ^ 0 . T o c o m p l e t e t h e proof, i t s u f f i c e s to o b s e r v e t h a t if

then pΛ+χ ί SΛ--i (p o> Pι> > Pn-ι )• This is evident upon substituting p n + 1 for
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COROLLARY. Let p 0 , ρl9 •• , p^+i be paίrwise distinct points of Sm no

n + 1 of which are in a great hypersphere. If €.^ - \ or —\ according as pi and pj

are on opposite sides or on the same side? respectively, of the great hypersphere

(i, j = 0, 1, ••• , n + 1; i Φ j)

and en - 1 ( i = 0, 1, , n + 1), then the matrix ( β y) (i, j = 0, 1, , n + 1)

has rank 1.

REMARK. In a manner similar to that employed above, companion theorems

that characterize in a purely metric way the sides of hyperplanes in rc-dimen-

sional euclidean and hyperbolic spaces that are determined by a given set of n

points may be obtained. We state the euclidean theorem, which may be exploited

to obtain existence theorems for systems of linear inequalities in much the same

way as the lemma just proved will be used in the next section.

T H E O R E M 1. Let pQ9 pί9 , pn + ι be n + 2 points of euclidean n-space En

with p 0 , pl9 ••• , pn irreduciblγ contained in En. Then p 0 , pi9 ••• , p Λ _ i deter-

mine a unique hyperplane En_ί9 and pn9 pn + ι are on the same side or on opposite

sides of this hyperplane if and only if

s^hnp
2

n+l^ = ̂ - 1 ) " °r ( - n B + ι ,

respectively, where Lp^P«+i] denotes the cofactor of PnPn + ι ^n ίne determinant

1

0

P 0 P i :

1

• PoPn + 1

0

We o b s e r v e , moreover , t h a t for p 0 , pί9 , pn i r reduc ib ly c o n t a i n e d in En it

may be s h o w n t h a t

= ( - I ) " " 1 2 " " 1 [ U - I ) ! ] 2 V(Po, . . . , Pn_2, p B - l ) F ( p c > P l . . . . , Pn_2, P n )

x cos
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where [pn-ί pn

2] i s the cofactor of pn-ιpn

2 in D(p0, pt, , pn),V i s the vol-

ume of the (n - l)-dimensional simplex determined by the points indicated, and

^ ( p o > Pi 9 ••• i Pn-2: Pn-19 Pn) denotes the " d i h e d r a l " angle with (n - 2 ) -

dimensional edge £ Λ - 2 ( P o > Pι> " * > Pn-2^ °^ ^ e s * m p l e x with vert ices p 0 ,

Pi9 ••• 9 Pn-i9 Pn-

Hence [ p ^ - ^ 2 ] = 0 if and only if £ (p 0 , p 1 ? , pn-2* Pn-u Pn) = π/2, and

sgn [ p n _ ! P Λ

2 ] = ( ~ 1 ) Λ " " 1 if and only if the dihedral angle is acute.

It is, perhaps, worth pointing out that Theorem 1 yields a purely metric char-

acterization of a nondegenerate simplex (interior and boundary) of En. For if

Po 9 Pi 9 ' " 9 Pn a r e t n e vertices of such a simplex, a point p of Eμ evidently be-

longs to its interior or boundary if and only if p and p t are not on opposite sides

of the hyperplane En-X ( p 0 , , p i- i , Pι+ι> > Pπ ) U = 0, 1, , rc ); that is,

according to the theorem, if and only if

sgn [ p . p 2 ] = ( - 1 ) Λ or 0 ( i = 0, 1, . . . , n),

where [pip2] is the cofactor of p t p
2 in the determinant D(p0, pi9 , pn, p).

Since a point of En is contained in the convex extension of a /c-tuple of En

(not of En-i) if and only if it belongs to the simplex determined by some n + 1

points of the i-tuple, the above observation yields a metric characterization of

such convex extensions.

3. The theorems. We are now in position to prove the two existence theorems.

THEOREM 2. Let Ax > 0 be a system of m linear inequalities in n inde-

terminates with rank r + 1, and let B denote the determinant of the matrix A A .

The system has a solution if and only if a shifting of rows and corresponding

columns of A exists such that

(i) the upper left principal minor M of B of order r + 1 does not vanish,

( i i) each minor of B formed from M by replacing its last row with that part of

the j-th row of B contained in the first r + 1 columns (j = r + 2, r + 3, , m) is

positive or zero.

Proof. Each row of A gives, after normalization, a point of the unit /z-sphere

SΛ, and since the rank of A is r + 1 it follows that the m "row points" are con-

tained irreducibly in an r-dimensional hypersphere SΓ of the Sn. Denoting by pi

the point corresponding to the i-th row of A (i - 1, 2, , m) after a shifting of

rows and columns of A in conformity with the hypotheses has been carried out,

we see that p i9 p 2 , , pΓ, p r + ι lie irreducibly in SΓ, and that p i9 p2, , pr

determine a unique (r — 1 )-dimensional great hypersphere Sr~ί (p u p 2, ••• , p Γ ) .
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Now the cofactor [ c o s Pr + iP/] of the element cos pr + χPj in the vanishing

determinant Δ ( p t , p 2 , , p Γ + 1 , pj) (j = r + 2, r + 3, , m) has the sign oppo-

site to that of the minor of that element which, in turn, has the same sign as the

minor of B described in hypothesis (ii). Hence

_ , p . ] < 0 ( ; = r + 2 , •••, m )

and so, by the lemma, each of the points pΓ+2> Pr+3> ••• » Pm ^ e s o n the

side of S r_ 1 (p if p 2 , ? Pr) a s Pr + i> O Γ * s contained in that hypersphere.

Hence the m points are contained in a hemi-SΓ with at least one of the m

points, p r + 1 , not on the SΓ_X forming its " r im". The center of this hemi-SΓ is

evidently a solution of the system of inequalities, and so the conditions stated

in the theorem are sufficient. We have, indeed, found that the Sr itself contains a

solution of the system.

To extablish the necessity, we remark that if the system has a solution in

Sn, then it has a solution in the Sr containing the m points pl9 p 2 , , pm irre-

ducibly. For if p £ S^ which is a solution of the system, then p is the center of

a hemi-Sn which contains p ί9 p 2 , ••• > pm

 a n c ^ has a * l e a s t one of these points,

say, p m , in its interior. But if the Sr has no solution of the system, the (spheri-

cal ) convex extension of the m-tuple is the whole Sn which must be contained in

the hemi-Sft on which the m points lie. But this is impossible since the point

p m * diametral to pm lies in the Sr but it clearly does not belong to the hemi-Sre.

If, therefore, the system has a solution, there is a point of the SΓ containing

P i> P2> *•' 9 Pm which is the center of a hemi-SΓ that contains p t , p 2 , ••• , p m ,

with at least one of these points in its interior. It is easily seen that any such

hemi-SΓ may be rotated so as to retain this property and have some r of the m

points, say p lf p 2 , , pΓ, on the SΓ_ι forming its rim. If p r + 1 is in the interior

of the hemi-Sr so obtained, then clearly each of the remaining points is either on

its rim or on the same side of the rim as pΓ + i Invoking, now, the lemma, we see

that the conditions of the theorem are satisfied.

REMARK. The direction-cosines of the normal to the hyperplane Er deter-

mined by the points pίf p29 ' > Pr ( a n ( l the origin) give a solution of the system

of inequalities; but since these numbers are found by evaluating determinants, a

solution method based on the theorem is probably not suitable for computing

machines.

THEOREM 3. Let Ax ;> 0 be a system of m linear inequalities in n indeter-

minates. The system possesses a nontrivial solution if and only if whenever the
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rank of A equals n9 a shifting of rows and corresponding columns of the deter-

minant B of AΛ exists such that (i) the nth. order upper left principal minor M

of B is not zero, while (ii) each nth order minor of B obtained from M by re-

placing the last row of M with that part of the j-th row contained in the first n

columns of B is positive or zero for j = n + 1, n + 2, , m.

Proof. The rank of A is, of course, at most n; and if it is less than n then

the m row points lie in an En^i containing the origin, the coefficients of which

annul all the members of the system of inequalities and hence form a solution.

If the rank of A equals n then the row points are not contained in any En^ί

passing through the origin, and so the system has a nontrivial solution if and

only if the system Ax > 0 has a solution; that is (by virtue of Theorem 3), if and

only if conditions (i) and (ii) are satisfied.
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TRANSLATION INVARIANT MEASURE OVER SEPARABLE

HILBERT SPACE AND OTHER

TRANSLATION SPACES

F. H. BROWNELL

1. Introduction. We consider the problem of defining a nontrivial, transla-

tion-invariant Borel measure over real separable Hubert space. As noted by

Loewner [4l, this is not possible; but instead of relinquishing as he does the

real number system for a non-Archimedean ordered field for the values of a

"measure,*' we shall consider several topological subspaces of Hubert space

arising frequently in analysis. These are locally compact; and using either the

Kolmogoroff stochastic processes construction [2], or else following the Haar

measure construction [ l ] or L 5], we can get a nontrivial, essentially translation-

invariant Borel measure. However, since the special subspaces considered are

not groups under translation, and do not even contain a group germ, the usual

Haar measure construction must be modified in a special fashion, and the pre-

cise translation invariance obtained is somewhat restrictive. Actually we carry

through this modified Haar measure construction for the more general situation

of a locally compact translation space, which is defined as an appropriate sub-

space of an Abelian topological group. The results are collected in a summary

at the end.

2. Formulation of the problem. Let

oo

^ (xn ) 2 < +00 , xn real

the square summable real sequences and thus the real separable Hubert space

prototype. Since "ί2 i s a subset of Roc, the countably infinite Cartesian product

of the real line ( —oo, oo), we have available on Λs2

 a s w e l l as the ΛJ2 norm metric

topology also the product topology defined relatively from Roc Under these two

topologies we shall consider the Έ2-subsets

X = 1 x C ̂ 2 I I x n I <. h ( n ) f o r a l l n },
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Y = \ x € l 2 \ £ \Xj\
2 < f(n) forallrc},

j = n

where f(n) and h(n) are specified functions defined over the integers n >^ 1

with values real or +00 having h (n) > 0 and f(n) >_ f(n+l) > 0.

Let Z = X or Y; we want to define the Borel class of subsets of Z. The open

intervals of Z are defined relatively from the elementary open intervals of 7?^,

and so we can define β as the σ-algebra of subsets of Z generated by the open

intervals, B 2 as that generated by the product-topology open sets, g 3 by the

metric spheres, and B4 by the metricly open sets. Actually B ι = B 2 = B3 = B 4 ,

and will be denoted by B and called the class of Borel subsets of Z. To see

this we note first by using the rationale that Roo and hence Z has a countable

basis of open intervals, so B t = B 2 . Similarly B 3 = B 4 , since ^ 2

 a n ^ hence Z is

a separable metric space and thus has a countable basis of spheres. Since any

product-topology open set is clearly open metricly, B2 C B 4 . Now it is easy to

see that any closed sphere

S = \ x C Z I | | * - y | l < p i

is actually closed in the product topology. Since any open sphere is a countable

union of closed ones, B3 <C 6 2 . Thus B3 = B 4 makes B t = B2 = B 3 = B 4 , as

desired.

Define

= U

for u C Roo and for any subset A of R^. We note that u G Z and A C_ Z do not

always make [A + u] C Z if Z ^ Z2 However, if A C B and u £ R^ then

[ i + « ] n Z C B , For

3 = U I [A + u]nZ £ B }

is easily seen to be a σ-algebra containing the intervals of Z, so 0 = 1^ C_ o,

which gives the result.

Our problem is to find a Borel measure φ9 that is, a nonnegative extended

real set function defined and countably additive over B, which is nontrivial

(Condition I) and translation-invariant (Condition II or II ') according to a speci-

fied topology.

CONDITION I. φ{Z) > 0 and φ{V) < +co for some nonempty V open in

the specified topology;
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C O N D I T I O N II. φ([Λ + u]) = φ(Λ) if A £ B, u C i 2 , and [A + u] c Z;

C O N D I T I O N I I ' . a ) <£(U + u]) = < £ U ) if ,4 C 6 , « C ^ ^ £ ^ where

F and [ F 4- u] are both open s u b s e t s of Z.

b ) 0 ( U + M] n Z ) < 0 U ) i f u C l 2 and both 4 and

[A + u] n Z are open subset s of Z .

Condition II clearly implies I I ' , and hence is a stronger requirement,

3. Negative results. We shall start with a few preliminary lemmas. F i r s t

define

S ( Z , x , p ) = \ y € Z \ \ \ x - y \ \ < P \ ,

the p-radius open Z-sphere about x

LEMMA 1. For any real r > 0 there exists no nonnegative, finitely additive

set function φ over the Borel subsets of

z = y = sα2,o, r),

satisfying I I ' , (or thus II also), under the metric topology such that

0 < φ(S(Ί2, 0, p)) < +oo for 0 < p < r .

Proo/. Let

p* = {p*/} C 5 ( ^ 2 , 0, r)

by defining pXj = 0 if / ^ p and p%p = r/2 for integer p >_ 1. Let

vp = s K 2 »p«, - A ,

so that Fp ^ 5 ( ^ 2 , 0> Γ ) ; a « d F p n Vq = φ for p ^ q follows from

\i~2- 1

^ — r> o

for y ζL Vp and y ' £ F^. But IK under the metric topology makes

φ{\'p) = φ(s(l2, o, i
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with 0 < b < +co. Thus

N

SU2,0,r) D U Vp9

p=l

and finite additivity of φ yields the contradiction

N

0 < Nb = Σ φ(Vp) < φ{S(<i2, 0, r ) ) < +oo
p = l

for arbitrary integer /V. Thus such φ cannot exist.

LEMMA 2. //

0 < inf h(n) for Z = X,
n > 1

or if

0 < inf f(n) for Z=Y,
n > l

then for any x C Z am/ p > 0 there exists some z £ Z am/ p ' > 0 sac/i ί/iaί

S(^2>
 z> P ' ) C S(Z, x, p) .

Proof. For the given Λ; C Z choose some W > 1 so that

/ 1 \ 2

Σ <*/>2< T p ) .

possible since x C ^ Define

as the projection of ^ 2

 o n t o Euclidean /V space £yγ. Clearly P{Z) is a convex

set with a nonvoid interior in EN including the origin; so we can find an interior

point z ' on the line-segment from x'= P(x) to the origin so that

N /I \ 2

Σ ( * Λ - * n > 2 < - P i
71 = 1 y 6 '

D e f i n e z G ί 2 s o t h a t z ' = P ( z ) b y t a k i n g zn = 0 for n > /V + 1 . T h u s
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\X-Z\\ =

N

Σ
1/2

Σ <\ < V

Let

b0 = inf A(/ι) > 0 for Z =
71 > 1

or

inf /(
n > 1

n)]
1/2

> o for y.

Now if Z = X, by choosing p " > 0 so that p " < &0 and

S(£tf, z ' . p " ) C

as we may since z' G! int P(Z), we get

, z, p " ) ^ Z.

If Z = y, then z ' G int P(Z) makes

JV

Σ (η)2 < / ( * )

for 1 < n <_ N, so here we choose 0 < p " < b0 and

p " < min \[f(n)]ι/2 - ^ < z / )

N 1/2
2

Thus

Σ (3}-

1/2 1/2

and

Σ (5}
1/2

< b0 <^ f(n) ΐor n > N + I,



536 F. H. BROWNELL

makes S(i2y z, p") C Y = Z.

Thus

p " , p > 0

yields

S(^2> z> p') C % n 5 ( ^ 2 , x, p) = S(Z, x, p)

as desired, since

makes

l l * - y | | < l l r - ^ l l + l l * - * l l < P

because | | Λ ; — z | | < (\/2/3)p.

T H E O R E M 3. //

0 < lim inf A (rc) tciί/i Z = X,

or i/

0 < lim inf / U ) with Z = Y,
71 —• o o

ίAen ίλere exists no Borel measure φ on such Z which is nontrivial ( I ) and

translation-invariant ( I I ' ) under the norm-metric topology.

Proof. Set

6 0 = inf h ( n ) if Z = X,
rc > i

or

6 0 = [ i n f f ( n ) ] ι / 2 if Z = Y ;
U >i J

thus clearly b0 > 0 is required by hypothesis. Obviously
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S(Z, 0, p) = SU2, 0, p)

for 0 < p < bQ, so the metricly open set

S(Z,x, p) = [ S U 2 , 0, p) + % ] n Z = [ S ( Z , 0, p) + x] nZ

for such p. Hence if φ ex i s t s , then φ(S(Z, x9 p)) < <£(S(Z, 0, p ) ) by Con-

dition II ' b ) for x C /V2, 0 < p < 6 0

Now set

bx = inf {all p > 0 such that <£(S(Z, 0, p ) ) > 0 } ,

so φ{S{Z, 0, p ) ) > 0 for p > i l f and = 0 for 0 < p < bt if bι > 0. Actually

6 t = 0. For if not set 8- (min 6 0 , ^ ! / 2 ) ; then Z, being separable, i s a count-

able union of spheres of radius p < δ. But such spheres have

φ{S{Z, x, p)) < φ{S{Z, 0 , p ) ) = 0 ,

implying φ ( Z ) = 0 by countable additivity, which contradicts Condition I.

Thus bί = 0 and φ(S(Z, 0, p)) > 0 for all p > 0.

We want to show that φ(S(Z, 0, r ) ) < +oo for some r > 0. By Condition I

under the metric topology and Lemma 2 it is clear that there exists some r > 0

and z C Z such that

, z, r) C_ Z and <£(S(-£2, z, r)) < +oo.

Since S(^ 2 > *> Γ ) ζ. 2 , it i s easi ly seen for either X = Z or Y = Z that we must

have r < Z?o, and hence

Z 3 S ( ^ , 0, r) = S ( Z , 0, r ) .

Thus [S{Z, 0, r ) + z ] = S( / t 2 > z> Γ)> a n open subset of Z, so Condition I I ' a )

makes

φ(S(Z, 0, r ) ) = ψ ( S ( ^ 2 , z, r ) ) < +co.

Thus

0 < φ{S{Z, 0, p ) ) < +oc

with S(Z, 0, p ) = S(Ί2, 0, p ) for 0 < p < r for some r, 0 < r < b0, which is

impossible by Lemma 1. Thus the s ta ted φ cannot exis t .
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We also easily get the following considerably weaker result for the product

topology.

THEOREM 4. lf\n A(τι) =-foo! is an infinite set, then there exists no

Borel measure φ on X which is nontrίvial ( I ) and translation-invariant ( I I ' )

under the product topology.

Proof. Let V be any nonempty open interval of X. It is clear that by trans-

lating along each of the finite set of coordinates given in the definition of the

interval V, we can find a finite or countable set of pX £ "£2 such that

[V + px] C X and X = U [F + n*] .
p = l

Also Condition I Γ a ) makes φ(V + px) = φ{V) if φ e x i s t s . Thus φ{X) > 0

for nontriviality yields by countable additivity φ(V) > 0 for any open intervall

v 4 φ.
Now Condition I under the product topology implies that some open interval

VQ φ. φ has φ(V0) < +oo, so 0 < φ(VQ) < +co. Since VQ is defined in terms

of only a finite number of coordinates, and {n j h(n) - +ool is infinite, there

must exist some p so that x £ Vo imposes no restriction on the pth coordinate

of x. Let

W0 = \ y € V 0 I \ y p \ < U ,

a nonvoid open X interval, so φ(W0) > 0. Let 0Zj = 0 if / Φ P> ozp = 1> so

clearly {[ί#o+ m oz^ 5 f° r m a disjoint union of sets C VQ for different integer

m, with

0 +moz]) =

by Condition II'a). Thus

+ o c

which is a contradiction. Thus <£ cannot exist.

We remark that ^2 - ^ by taking Λ(τι) = +oo, so Theorems 3 and 4 show that

there exists no Borel measure φ on ^ 2 which is nontrivial and translation-

invariant under either the norm metric or product topologies.
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4. Positive results via Kolmogoroff. We want to give conditions under which

an invariant measure does exist on X or Y, getting a converse of Theorem 3. For

X we shall use the construction of Kolmogoroff [2, p. 27] of a probability mea-

sure P over real product spaces, in our case Z?^. Here we need a family Q of

real set functions, each member Qnίf... f nk being nonnegative and countably

additive over the intervals of E^, with coordinates indexed nl9 • •« , n, , and

having Qnίf... , n^^) = l Th e family Q is assumed to satisfy Kolmogoroff's

two consistency conditions:

where n' ^n., α ' = a., bf— b. for n ' , , nf a reordering of n , ••• , rc,. The

resulting P has P(I) - Q(I) if the interval I is the cylinder set by n , , n^ of

the interval / of JE .̂, P being the Borel-Hopf extension [ 1, p . 54] of Q from the

intervals to the Borel s e t s .

T H E O R E M 5. //

oo

Σ [h(n)]2 < + o o

/or some /miίe Λ/, then for X the product and metric topologies coincide, X being

locally compact; there exists a Borel measure φ which is nontrivial ( I ) and

translation-invariant (II) on X; and such a measure is unique up to constant

factors.

Proof. The stated condition on h(n) makes the equivalence of the topo-

logies over X obvious, as well as local compactness. Let X% Ί^, and β^ be

defined like X, ^ a n d <̂χ» except only with coordinates of n > N + 1, so

clearly

X = AN x X ,

where AN is an interval of E^ Construct the Borel measure P on Rζo by the

Kolmogoroff construction from
k

aJ9
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where E (n, a, b) is the length, possibly zero, of the interval of intersection of

[-h(n), h(n)] and [α, 6] This ()-function family has Qn , , n (^β) = l>

has Q countably additive since it is a multiple of k dimensional Lebesque mea-

sure, and satisfies Kolmogoroff s consistency conditions as needed.

Let

p \xp\ > h(p)\

open in /?4 clearly

P*(Vp) = ρ ( F p ) = — - - [ £ ( p , - o c , - A ( p ) ) + £ ( p , A ( p ) , + oo)] = 0 .
2h(p)

Now

X ' = \ x £ l \ I \xn\ < h(n) for n > N + 1 }

and the given condition on h{n) makes it poss ible to replace Λ/2 by Roo in this

formula, so that

U vp,

which i s in the Borel family B* of R^. Thus ? * ( X ' ) = P * {R^) = 1 follows

from P * ( F p ) = 0, and * ' is thick in R^ ( s e e [ 1, p. 7 4 ] ) . Hence P(A (\X') =

P*{A) defines P uniquely over s e t s A n X , /4 C B*, which form the Borel

family B of X\ so P i s a Borel probability measure on / ¥ ' with P ( / Π ^ L ' ) =

h
Of μ^ is /V-dimensional Lebesque measure, φ = μN x P is a Borel measure

on AN x X = X. Also

and we obtain

φ(B x A') = μN(B) < +oo

for open bounded E^ intervals B C AN by using P(A ) = 1, and thus φ is non-

trivial (/) on X.
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We want to show φ to be translation-invariant (II) on X If W is any X-

interval, then W = X n I with / an Roa-interval, and if u G Ί2i
 s e t

B p = U C Λ o o I \ x p \ < h ( p ) } ,

Cn = / π Π [ f l p - « ] n * ,

and

\p=l

so that

φ(Wn[X-u]) = φ(In[X-u]nX) - l im
71 -•βo

a n d

φ { [ W + u ] n X ) = ψ ( [ l + u ] n X n [ X + u ] ) = l i m
n —* σo

Now the first rc coordinate edges of Dn are those of C^ translated by the cor-

responding u coordinates. Thus taking n > the greatest of the finite number of

coordinate indices involved in /, from φ - μN x P and P (X'n /) = Q(J) we get

φ(Cn)- φ{Dn), both being the product of a normalization factor and the first

n coordinate edge lengths. Thus we have

φ(W n[X- u]) = lim φ(Cn) = lim φ(Dn ) = φ([ W + u] n X),
71—• oo 71 —» oo

as desired.

Now let[/4 + w]c^/Sίbe given for some Borel subset A of Z. If { Wι \ is a

countable disjoint /Y-interval family covering A, then also

A C U d F f n U - B ] ) C UWf.

Since

= inf [2iφ(Wi)]
AC u ^
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as the unique Borel-Hopf extension [ l , p. 54] of φ from the intervals to the

Borel sets, we have

φ(Λ) = inf &iφ(Win[X-u]))
A<Z_ U Wi

ί

= i n f ( X i φ ( [ W i + u ] n X ) ) > φ ( [ A + u ] )
AC_ U Wi

i

from

φ ( W i n [ X - u ] ) = φ([Wi + α ] n X ) .

Thus φ(A) > φ([A + u])f and symmetrically φ( [A + u ]) ;> φ(A), so that

φ(A) = φ([A + u]) for Condition II of translation-invariance.

Finally for the uniqueness of φ it is easy to see by division of intervals

into large numbers of equal subintervals that any nontrivial, translation-invari-

ant φ will have ψ(I)9 I being an interval of X, proportional to the length of each

of the edges of /. By our definition of μN and Q, this makes ψ(I) - Kφ(I),

with 0 < K < +oo and K independent of /. The extension to all Borel sets

thus gives ψ(A) = Kφ(A), A C B, as desired,

5. Haar measure and translation spaces. For the space Y our positive

result is a complete converse of Theorem 3. We shall get the result by con-

sidering a considerably more general situation. Let the Hausdorff space R be

an Abelian topological group, and as before define

u + ϋ] = u e R I u-tt)CA\

under β-group addition for A Ĉ  R and u C /?. Consider a fixed closed subset

Z of /?, which becomes a Hausdorff space under the relative topology from R,

but not in general a group under /?-group addition. Such a space containing the

zero of R is said to be a translation space if it satisfies the following con-

dition:

i) If V is any open subset of Z containing zero, then Z is covered by the

open interiors in Z of the sets of the collection | Z n [ F + α ] j u ζi R\.

LEMMA 6. X is a translation space for R = Ί2 under the metric topology.

Proof. Let V be the given neighborhood of zero, so that we have some

small p > 0 with S ( Z , 0, p) (I V. Then for any given z G Z = X we will find
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u £ Z and p ' > 0 so that

S{Z, z, p ' ) CZ n [ S ( Z , 0, p ) + u] C Z n [V + u],

w h i c h m a k e s z C int (Z n[V + u]) for C o n d i t i o n i ) . F i r s t s i n c e t h e g i v e n

z £ Ί2i
 w e c a n find f in i te Λ; s o t h a t

Σ

l / 2

and then define u €2 Z = X by un = zn for 1 <^n <_ N and un = 0 for TZ > /V. Then

set

p ' = min ί — p , A ( / ι ) for n = 1, 2, , N J > 0 ,

s o a n y % € I S ( Z , z, p ' ) h a s

\ z - u \ - p < p

Any such Λ; also has

for 1 < n < N, and

% - zrc I < P' < h ( n

for w > /V, so that # C [S(Z, 0, p) + u]. Thus

S(Z, z, p ' ) C Z n[S(Z, 0, p) + i*] f

as desired.

LEMMA 7. Y is α translation space for R — α^ under the metric topology.

Proof. If F is the given neighborhood of zero in Z = Y, we can find p > 0

with p 2 < / ( I ) and S(Z, 0, p) C V. Now either p 2 < f(n) for all τι, or else

by the definition of Y there is a unique finite N with

f(N) > p2 >
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In the first case for the given z C Z we take u = z9 and since now S( Y, 0, p) =

S(Ί2i 0, p) by p 2 < /(rc), we have

C1 / 'Ύ \ 'Ύ X Q ί y f\ \ Λ r~ r7 X "X} 1

J ( Z , z , p ) = Z n L J V ^ 2 > " , p ) + M j C Z n L K + M J

for z £ int (Z n [ F + u]) as desired for Condition i ) .

In the second case for the given z £ Z = Y we define a £ Z by wπ = zn for

1 <_ n <C /V, and wn = 0 for n > /V In this case also we have

S(Z, u,p) = Z n [ S ( Z , 0, p) + u\.

For the left side clearly includes the right side, while if y £ S(Z, u, p), then

for 1 < n < N we have

oo oo

Σ / \ 2 \7 / \ 2 2 r( \

(y. - tt. ) £ 2* {ϊi ~~ Uj> < P < / V ^ )

For n > N we have

oo oo

(y. - u.) = > y < f(n)9

so that

y £ Z n [ S ( Z , 0, p ) + i t ] ,

and hence

S(Z, u, p) C Z n [ S ( Z , 0, p) + u]

for equality. Finally since z £ S ( Z , ixp) by

/ oo \l/2

\/=/V+l /

we have

z CS(Z,u,p)cZn[V+u],

so that



TRANSLATION INVARIANT MEASURE OVER SEPARABLE HILBERT SPACE 5 4 5

z £ i n t ( Z n [ V + u ] ) ,

S(Z, u, p) being open, for Condition i ) .

Thus X and Y are special translation spaces, so the result we shall obtain

for translation spaces applies to them. For the general translation space Z we

define the Borel class B as the σ-algebra generated by the open subsets of Z,

given by the relative topology from R. For a Borel measure φ defined over 6 we

note that Condition I of nontriviality and I I ' of translation-invariance still make

perfect sense in this more general context, if u £ /u2 i*1 Π ' ι s replaced by

M £ /?. We shall now establish that a locally compact translation space does

possess something like a Haar measure, that is a nontrivial, translation-in-

variant, regular Borel measure. First we need a few more lemmas.

LEMMA 8. // V Q_ W are both open subsets of the translation space Z and

if [ W + u ] n Z is open in Z for some u £ R, then so also is [ V + u ] n Z.

Proof. Since Z is a translation space, it is closed in R, so Z — W and Z — V

are both closed in R as well as in Z. Since open and closed subsets of the

topological group R remain such under translation, B = [(Z — W) + u] n Z and

C = [ ( Z - V) + u] nZ are both closed in R, and hence in Z. Defining A-

( / ? - [ Z + α ] ) n Z , w e have

Au B = Z - ( [ W + u]nZ)9

known closed in Z, so that i - i C β must follow. We obtain B (̂  C from F C f,

and this makes A — A C C; thus Z - ([V + u] n Z ) = A u C is closed in Z, or

[V + u] r\Z is open, as desired.

Let [ B + C] = ί x + y I x C B and y £ C \ and B" = \ x \ -x C B \ for the

following lemma.

LEMMA 9. // the translation space Z has compact subsets B and C with

B r\C — φ, then there exists some Z-neighborhood V of zero so that

[ 5 + V] n [ C + V] = φ .

Moreover, both [ F + z ] n B φ. φ and [ F + z ] n C ^ φ are not simultaneously

possible for any z £ /?.

Proof. Since B and C are compact subsets of Z, they are also such of the

topological group R. Thus there exists an /^-neighborhood W of zero so that
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[B + W"]n[C + Π = φ .

Hence F = Z n«/, so F" C ίΓ, gives the first result. If [V + z] nB £ φ and

[ F + z ] n C ^ φ , then z G [ β + Γ ] n [ C + Γ ] = φ , a contradiction, which

gives the last.

Following Halmos [ l , p. 252], if B and C are subsets of the translation

space Z, we let (C:B) denote the least cardinal (thus ^o or an integer .> 0)

of sets P of z £ R such that

C C U [B + z ] .
~~ z e P

LEMMA 10 // C is a compact subset of the translation space Z and V is

an open Z-subset containing zero, then (C : V) < +oc.

Proof. By Condition i) we have

C C U int (Z n[V -+ u]),
uβR

an open covering of compact C. Thus there exists a finite set A of such a with

C C U int ( Z n [ F + it]) C U [V + i t] ,

and hence

) < +oo.

This lemma is the only place where Condition i ) is used to get our following

main result on the existence of a Ilaar measure.

THEOREM 11. If Z is a locally compact translation space, then there exists

a regular Borel measure φ on Z which is nontrivial (I) and translation-invariant

(ID.

Proof. Since Z is locally compact, it possesses a neighborhood F t of zero

such that Vί is compact, so 0 < (Vι:V) < +oo for any other Z-neighborhood

V of zero, by Lemma 10. Also clearly

(CiV) < (C-.V,) (Vr-V) < ( C : ^ ) (Vr-V),

so we may define
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λ o ( C ) = (V,: VT1 (C .V)

and have

0 < λv(C) < (C .V,) < +co

for any compact subset C of Z and any Z-neighborhood V of zero. Following

Halmos [ l , pp. 254-256], we construct a content λ from λv. Let Ω be the

Cartesian product of the bounded closed intervals [0, ( C : ^ ) ] over all com-

pact subsets C of Z; Ω is compact by Tychonoff's theorem, and each λ^ €1 Ω.

Setting

A(V) = \λw I W' C V, W a Z-neighborhood of zero},

we see that Ω contains by compactness some λ C Π^ Λ ( F ) , the intersection

being over all Z-neighborhoods V of zero. As in [ 1 ], this function λ ( C ) de-

fined over compact Z-subsets C is a content; that is, for subsets B, C, and D

compact we have

0 < λ (C) < λ (B) < +oo

if C C β, and

λ(CuD) < λ ( C ) + λ ( D )

with equality if C nD = φ by use of Lemma 9. Also λ( Vx) = 1 since λ^ ( Vι) = 1

for any F. For translation invariance we note that if [ C + z ] Ĉ  Z for a compact

Z-subset C and z C R9 then [ C + z ] is also compact, since translation by z

is a homeomorphism of R onto /?; ( [ C + z ] : F ) = ( C : I / ) , obviously; and thus

λv([C + z]) = λv(C) for any neighborhood V makes λ ( [ C + zλ) = λ ( C ) .

Let IF be any subset of Z, define the inner content

λ*( lΠ = s u p λ ( C )

over compact C C W, and for any subset E define

φ(E) = inf λ*(JΠ

over open Z subsets W D. £• Restricting 9S to 13, we see that φ is a regular

Borel measure on Z; φ is nontrivial (I) by

φ(Z) > φiVi) > λ ( F i ) = 1 and φ(Vx) < λ ( F t ) = 1,
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( s e e [ 1 , 53 C and E, p. 2 3 4 ] ) .

It remains only to show that φ is translation-invariant ( I I ' ) . F i r s t

for z £ R and any Z-subset W having [ W + z ] C 2 . For then compact C C_ W

has [ C + z ] C_ Z and compact, so λ ( [ C +z]) = λ(C) and thus λ*([W + z]) >

λ # ( l F ) The opposite inequality follows symmetrically to give the result , s ince

any compact C C [ W + z ] has C = [ C — z ] compact with

C C ^ C Z and λ ( C ) = λ ( C ' ) .

Now if F is an open Z-subset then <£(F) = λ * ( F ) s ince λ* is monotone.

Thus If V and [ F + « ] n Z are both open in Z, and u €. R, then IP C F and

[W + u] = [V + u]nZ, where ^ = [ ( ] F + α ] n Z ) - u] so that

^ ( [ F + i t ] n Z ) = λ*([W + u] = λ * ( I F ) < λ * ( F ) = φ(V)

for part b ) of Condition II .

For part a ) , assume A G 13, u C R, and A C Vo, where F o and [ F o + u]

are both open Z-subsets . Then for any open Z-subset V ~3_ A, Lemma 8 with

V = V n Vo and W = F o both open makes [ F n Vo + u ] open also, and we note

that

[A + u] C [ F n J / 0 + ι/] c [ F 0 + M ] c Z .

Hence

λ * ( [ F n F 0 + i t]) = λ * ( F n F 0 )

makes

ΦU) = inf λ* (
open V^_A

inf λ# ( [
open VD A

V) = inf λ*(l
open VDA

~~ open
inf λ*(in< = φ ( [ A+ u ] ) .

Symmetrically, φ([A + u]) > φ(A) gives φ([A + u]) = φ(A) for our resul t .

Presumably resul t s similar to Theorem 11 are true for similar subspaces of

non-Abelian topological groups. We have considered only the Abelian case for

simplicity and because the interesting examples in analys i s are Abelian.
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COROLLARY 12. / /

liminf f(n) = 0,

then the space Y is locally compact under coincident metric and product to-

pologies, and Y possesses a regular Borel measure nontrivial ( I ) and translation

invariant ( I I ' ) under this topology.

Proof. The coincidence of the topologies and local compactness of Y is

trivial from f{n) 10; and Lemma 7 and Theorem 11 give the rest.

6. Another translation space example. In addition to X and Y, we want to

give another example of a translation space, still with R = ^ 2 Let

z, = \x€i2 I £ n2r (xny < M\
n=l

for some fixed real r > 0 and M > 0, so that clearly Zι is actually compact.

Such a space would arise by using Fourier analysis on L 2 " ^ u n c t i ° n ' s P a c e s in

which the rth derivative was subjected to a fixed bound in norm. We shall now

show that Z t is a translation space, though our proof seems unnecessarily

long.

LEMMA 13. If u £ Zi has un-0 for n > N for some finite N, and

1/2

for some p > 0, then

Zx n [ S ( Z t , 0 , p ) + ί ί ] = S(Zl9 u, p)

open in Zt.

Proof. We only need to show that

S{Zι, u, p ) C Z t n [ S ( Z 1 ? 0 , p ) + u],

the o p p o s i t e i n c l u s i o n b e i n g o b v i o u s . C o n s i d e r a n y z £ . S(Zχ, u, p); we n e e d

o n l y s h o w ( z — u) £ Zχ. H e r e 11 z - u \ \ < p , s o

-un)2 <N 2 r
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and thus from

1

- 2*
n=l

1/2

we obtain, by Minkowski's inequality,

1/2

0 <• - PNΓ <

Thus un = 0 for n > N and z £ Z t yields

N

Ύ n7

n=N+ί

1/2

« 2 r u « ) 2 - Σ »a

/v
2r

Thus we have shown that

N I 1 / 2 \2
a r u ) 2 P HΣ »a ru»)

N

71 = 1

1/2

n2r (zn-un)
2

1/2

so (z — u) £. Zί as desired.

THEOREM 14. Z t satisfies Condition i), and hence is a compact trans la-

tion space possessing a Haar measure in the sense of Theorem 11.

Proof. We merely need to verify Condition i) for Z 1 # Thus given any open

Z^subset V containing zero and any z £ Zl9 we shall find some u £ Zγ and

p > 0 so that S(Zl9 0, p) C t7 and
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z C Zχ n[S(Zl9 0, p) + u] = S(Zl9 u, p)

o p e n in Zl9 w h i c h m a k e s z G int ( Z t n [ F + u l ) , a s d e s i r e d . H e r e w e n e e d

c o n s i d e r only 2 ^ 0 , s i n c e u = 0 m a k e s 0 G F = i n t (Zιn[V + u]) for t h e

r e s u l t if z = 0. S i n c e z ^ 0 , we may c h o o s e /V s u f f i c i e n t l y l a r g e s o t h a t

Σ -

h a s 0 < β < 1/5, a n d s o t h a t

yJM

2Nr
'<PX

for some pχ such that S {Zl9 0, p^ ) C_ V. Let

so

p < — < p t and S(Zl9 0, p) C F .
~" 2Λ'Γ

Define z/ G Z t by un = zn for 1 < n < N and un = 0 for n > N.

we have

Lemma 13,

Zx n [ S ( Z l 9 0 , p ) + u ] = S ( Z l 9 u , p )

o p e n i n Z ι # F i n a l l y t o c o m p l e t e t h e p r o o f w e h a v e z £ S { Z X , u , p ) , f o r

1
- « I I 2 = Σ

N
2r Σ » 2 r ( ^

— 2, n (zw) < — —
N2Γ \n = l /V2r 4

(2/Vr)r\2 Σ -2
= P
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or 11 z - u 11 < p, as desired, since β < (1 - β )/4 from 0 < β < 1/5.

7. Summary of results. We have discussed here the translation spaces

X = \xCl2 I K | < h(n)\

and

Y =\xCl2\ £ xf < f { n ) \ ,

and also

Zι=\xCl2\ Σ n2r(xn)
2 < M\

n-ϊ

in § 6 , all being subspaces of real separable Hubert space. For X under the

metric topology we have found (Theorem 3) that there exists no nontrivial,

translation-invariant (II or I I ' ) Borel measure if

lim inf h(n) > 0
n —><χ>

u n d e r t h e p r o d u c t t o p o l o g y we h a v e t h e s a m e c o n c l u s i o n i f A ( w ) = +oo i n f i n i t e l y

often ( T h e o r e m 4 ) . If

which is equivalent to local compactness, then under the metric topology X has

a nontrivial, translation-invariant (II) Borel measure which is unique up to

constant factors (Theorem 5). For Y under the metric topology

lim inf f(n) = 0,
71

or thus f(n) iQ, is equivalent to local compactness, and necessary and suf-

ficient for the existence of a nontrivial, translation-invariant ( I I ' ) Borel mea-

sure (Theorem 3 and Corollary 12). Also we found (Theorem 12) that any

locally compact translation space possesses a nontrivial, translation-invariant

( I I ' ) Borel measure; thus so does Zγ (Theorem 14).

It is clear from the foregoing results that local compactness is in general



TRANSLATION INVARIANT MEASURE OVER SEPARABLE HILBERT SPACE 5 5 3

the crucial condition for the existence of a nontrivial, translation-invariant

Iiorel measure. This is well known for topological groups [ 5, p. 144], and con-

jectured for spaces with a group germ (a neighborhood of zero in which group

addition is always possible). However, it is to be noted that neither X nor Y,

when locally compact, nor Zι has a group germ. Thus our results seem to be

new, and the concept of a translation-space a fruitful one. In fact the idea of a

group germ cannot lead to anything here; for it is not difficult to see that any

convex metric subspace of ΛJ2^ which is locally compact and contains a group

germ under Λ/2~
vector-addition, must be finite dimensional, hence a subspace of

EN and thus trivial. In connection with local compactness it should be noted

that our results are not complete for X; here if Σ ^ t Λ ί r c ) ] 2 = + oc the space is

not locally compact under the metric topology and presumably no nontrivial,

invariant Borel measure exists. We could only show this if

lim inf h(n) > 0,
n—* oo

which assumes more.

The construction of an invariant measure on subspaces of real separable

Hubert space suggests an attempt to carry over vector analysis from E^ In

particular, in a later paper the author investigates the relationship between

^-vector-differentiation [6, p. 72] and Fourier transforms over X. Here X is a

modification of Jessen's torus space [3] and can be made into a group, so

standard Fourier theory applies [7 or 5]
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ON A PAPER OF NIVEN AND ZUCKERMAN

J . W. S. C A S S E L S

1. Introduction. L e t 'digi t ' mean an integer in the range 0 < a < 10. For

digits α t , α 2 , , ar; bx, b2 , , bs (s > r) and integer m, denote by

the number of solutions of

bn = α i» /̂ι + i = a

2' " ' > ̂ r i+r-i = ar (0 <n < n + r <s; n = m mod r)

so that

(1) 0 < ί w ( o 1 , . . . , o r ; 4 1 , . . . , 6 s ) < s - f + l .

Suppose that

vv
is an infinite sequence of digi ts . It has been shown [ 2 ] that if

1 r

( 2 ) l i m — Σ R J a ^ - - , a r ; x ι f . . . , x N ) = I 0 ~ Γ

for all integers r and digits at, , α r , then

for all integers r, m, and digits α t , , aΓ. A possibly simpler proof is a s

follows.

2. Proof. Let e > 0 and digits α l f , ar be given. The simple argument of

Hardy-Wright [ l ] shows that if the integer 5 is fixed large enough, then
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(4) Max R μ ( a ι > " ' ' α r ; b ι 9 ••• , b s ) -
s - r + 1

except for at most 6 1 0 s s e t s of digits i j , •-« , bs. ( 'Except iona l ' s e t s . ) Thus,

by ( 2 ) with bι9 , bs for α χ , , αΓ , the number of exceptional s e t s

(5) ( 1 < t < N - s + 1)

is at most 2 €/V for all large enough N.

On the other hand,

(6) (s - ar;

differs from

(7)

N -s + i

Σ
ί = 1

by at most 2 s 2 , since each solution of

α i =
R r_ί

mod r)

c o n t r i b u t e s e x a c t l y s — r + 1 both to ( 6 ) and to ( 7 ) . H e n c e , u s i n g the e s t i m a t e

( 3 ) for the at most 2 €/V excep t iona l s e t s ( 5 ) , and the e s t ima te ( 4 ) for the

o the r s , we have

/V-s + 1
V V '*Jv>- r lor

2s2

< + e(N-s
s - r + 1

and so

lim sup
N

, α r ; Xy, •" , xN) - r X 10 Γ < 3 6 .

Since € is arbitrarily small, this proves (3) as required.
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SPECTRAL THEORY II. RESOLUTIONS OF THE IDENTITY

NELSON DUNFORD

Introduction

In attempting to extend elementary divisor theory to the case of a linear

operator on a complex Banach space one is naturally led to a consideration of

the various equivalent definitions of the multiplicity ι^(λ) of a complex number

λ as a root of the minimal equation of a finite matrix T. Of the numerous equiva-

lent definitions of this integer we have found only one which seems to have

some virtue when applied to the infinite dimensional case. That one is as fol-

lows: v{λ) is the smallest positive integer or zero for which

l < f _ λ r ( λ ) \(ξ-τrι\

is bounded for ξ near λ. Thus the rate of growth of the resolvent

T(ξ) = (ξ- TTι

for ξ near λ determines v(λ). In this paper we consider the problem of deter-

mining conditions on the rate of growth and the mean rate of growth of the re-

solvent which are necessary and sufficient for a complete reduction of a linear

operator on a complex Banach space. What is to be meant by a "complete"

reduction? There are several apparent meanings that might be given to the no-

tion of the resolution of the identity for an operator, all reducing to the clas-

sical one in the case of a finite matrix. For example, are we to require that Eσ be

defined for all Borel sets σ or for σ in some sufficiently large subalgebra; should

it be countably or just finitely additive; should it be bounded or not? All prob-

lems are legitimate and in this paper we have chosen the most restrictive of

all the obvious interpretations. Consequently the conditions found on T(ζ) are

restrictive and the corresponding class of operators is small. On the other hand,

such operators have many important properties not shared by operators outside

this class. Other meanings for the notion of resolution of the identity will be

Received January 2, 1951. The research contained in this paper was done under
contract N7onr-448 with, and reported to, the Office of Naval Research during the period
between September 1, 1947, and May 1, 1948.

Pacific J. Math. 2 (1952), 559-614
559



560 NELSON DUNFORD

considered in another report.

Before stating what is to be meant by a resolution of the identity for T, let

us recall that if T is a linear operator in the finite dimensional linear vector

space X over the field of complex numbers, and Πj(λ —λj)v* (λ; distinct)

is its minimal polynomial, then there are projections E\i with

Eχ.X = [x\(T-λi)viχ = 0 ]

and such that

If, for a Borel set σ in the complex plane, Eσ is defined to be the sum of those

Eχ. for which λj d σ, then Eσ is a resolution of the identity for T in the sense

that it has the properties ( i ) below:

E £ s = E . , £ , = / - £ , TE = E T
Co CO C C C C

Eσ% is completely additive in σ, x C X

the spectrum of T when considered as an operator in EX is contained

in σ, the closure of o.

If, for a given linear operator T in a complex Banach space, there exists a

family Eσ (σ a Borel set) of operators in X satisfying ( i ) , then Eσ is called

a resolution of the identity for T. Such operators will be called spectral oper-

ators. If T is a spectral operator its resolution of the identity is unique, and

operators f(T) corresponding to scalar functions analytic and single valued on

the spectrum σ{T) are given by the formula

where the integral exists as a Riemann integral in the uniform topology of oper-

ators and the series is convergent in the uniform topology of operators.

The main problem is, however, to determine when T is a spectral operator.

We have endeavored to state conditions on the rate of growth and the mean rate

of growth of the resolvent

T(ξ) = (ξ- TT1
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which are sufficient and in some cases necessary and sufficient for the exis-

tence of a resolution of the identity. In order to do this, we have had to restrict

ourselves to the case where the spectrum σ{T) lies in a sufficiently smooth

Jordan curve. To describe briefly in this introduction the nature of the results

obtained in this direction, suppose that T has its spectrum in the interval [0, l ] .

The underlying assumption is then that for each λ £ [0, l] there is a positive

integer v(λ) and a positive number M(λ) such that

(iii) \ μ v ( λ ) Π λ + iμ)\ < M(λ), 0 < | μ | < 1 .

This alone is far from sufficient to ensure that T is a spectral operator, even

in case

v ( λ ) = M(λ) = 1.

An obvious necessary condition may be stated in terms of the following notion

of residue. Let C be a rectifiable Jordan curve contained in the set where

x* T{ξ)x is analytic. Let σ be the set of all singularities of x* T(ξ)x which

are inside C. Then

(x*,x)σ = J - Γx*T(ξ)xdξ
2πι c

is called a residue of x*T{ξ)x. It is clear that if T has a resolution of the

identity then

(#*, x)σ = x*Eσx,

and hence

(iv) | U * , * ) σ | < K-l**| \χ\, xCX, χ*CX*.

ConditiDns (i i i) and (iv) are very nearly sufficient to ensure that T is a spec-

tral operator. In reflexive spaces they are sufficient. In general though there

are operators satisfying (i i i) and (iv) with

ι/(λ) = M(λ) = 1

and not possessing a resolution of the identity. A final condition which in the

case of a weakly complete space X makes the set of ( i i i) , ( iv), (v) sufficient

for the existence of a resolution of the identity is the following. Let Mχ, Nχ be

zeros and the range of (Γ — λ) , respectively. The condition is:
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(v) For every λ in a set dense in [0, 1] , Mχ + Nχ is dense in X.

In case ι/(λ) = 1, the condition ( iv) may be stated in the equivalent form:

( i v ) ' l . u . b . / l \x* { T(λ + iμ) - T(λ - iμ)\x\dλ < oo.
0<μ<l °

Unless v{λ)-l the condition ( i v ) ' is more restrictive than ( iv) . However

there is a condition analogous to ( i v ) ' which is equivalent to ( iv) . It may be

stated in terms of a decomposition of the resolvent. It turns out that for a spec-

tral T there are two operators U(ζ) and V{ζ) such that

T(ξ) = U{ξ) + V{ξ)

and such that x*V(ξ)x is the derivative of a single valued analytic function

at every point ζ where x*T(ζ)x is analytic, and U{ζ) satisfies the condition

( i v ) ' The condition (iv) may be replaced by:

( i v ) " The resolvent T(ζ) has a decomposition as described above.

In any one of the following situations the conditions ( i i i) and (iv) (or

( i v ) ' or ( i v ) " ) are sufficient for the existence of a resolution of the identity

since in these cases (v) will automatically be satisfied:

( a ) The union of the resolvent set and the continuous spectrum is dense on

[ 0 , 1 ] ,

(b) There is no interval of positive length consisting entirely of points in the

point spectrum of the adjoint.

( c ) X is reflexive.

(d) T is completely continuous.

Let d{ξ) be the distance from ζ to the spectrum σ(T); then a condition

more restrictive than ( i i i ) is

( i i i ) ' \ d m ( ξ ) T ( ξ ) \ < M, n e a r σ ( T ) .

T h i s c o n d i t i o n i s n e c e s s a r y and s u f f i c i e n t for the s i m p l i f i c a t i o n of ( i i ) to

mΊ f^(λ)

( i i ) ' / ( Π = Σ fσ(τ) !—— (T-λrdEλ.

T h u s , in a w e a k l y c o m p l e t e s p a c e , ( i i i ) ' , ( i v ) , ( v ) imply t h a t T i s a s p e c t r a l
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operator satisfying ( i i ) ' In a reflexive space, ( i i i ) ' and (iv) are equivalent

to the statement that T is a spectral operator satisfying ( i i ) '

In case X is not weakly complete, the above statements remain valid pro-

viding the notion of the resolution of the identity is weakened in the following

manner. Instead of requiring that Eσ be defined for all Borel sets, we demand

that it be defined and countably additive on the Boolean algebra determined by

the real intervals. This enables one to define the integral occurring in ( i i ) '

Thus in this extended sense we may say that for an arbitrary complex Banach

space the conditions ( i i i ) ' , ( iv), (v) imply that T is a spectral operator satis-

fying (i i) ' .

Although this is the second in a series of articles on spectral theory, not

much knowledge of the contents of the first [l] paper is assumed or used. We

collect here the terminology, notation, and results from that paper that are used

in the present one. An admissible domain is an open set bounded by a finite

number of rectifiable Jordan curves. It is called a T-admissible domain in case

its boundary is contained in the resolvent set p(T) of T. The class of complex

valued functions analytic and single valued on some T-admissible domain con-

taining the spectrum σ(T) is denoted by F(T) or F(σ(T)). For / ζlF(T),

the operator f(T) is defined by the formula

f(T) = / f(λ)T(λ)dλ,
2πi c

where C is the boundary of some Γ-admissible domain containing the spectrum

of T. The mapping, given by the above formula, of the algebra of analytic func-

tions into an algebra of operators is a homomorphism which assigns the oper-

ators /, T to the functions 1, λ, respectively.

I. Operators with nondense spectra and preliminary lemmas

In this section we consider an operator T whose spectrum σ(T) is nondense

in the complex plane. Two conditions concerning the singularities of the ana-

lytic function (ζ— T)~ιx are introduced (these are 1.7 and 1.14 below). As we

show later, these are necessary conditions for the existence of a resolution

of the identity regardless of the operator T or the character of the space X. The

main purpose of § 1 is to show how near these two conditions come to being

sufficient. Later, in § 2, we shall determine the meaning of these two conditions

in terms of the rate of growth and the mean rate of growth of the resolvent T{ξ)

for ξ near the spectrum. The basic assumption for § 1 is then:

1.1 . A S S U M P T I O N . The spectrum σ(T) of T is nondense in the complex
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plane.

This means that the resolvent set p(T) of T is dense in the plane. The

chief purpose of this assumption is to prove the following lemma which asserts

that the analytic function (ζ — T)"ιx is single valued; if this fact is already

known then Assumption 1.1 may easily, in most of what follows, be discarded.

Since 1.1 is the underlying assumption for practically all of § 1, it will not be

explicitly stated in the lemmas to follow. The other assumptions 1.7 and 1.14,

and others in § 2, will however be indicated parenthetically when they are used.

1.2. LEMMA. For each x ζL X the analytic function T(ξ)x defined on p(T)

has a unique maximal single valued analytic extension.

Let /, g be two vector-valued analytic functions defined on open s e t s D(f),

D(g), respect ively. We suppose that D(f)D(g) D ρ(T) and that

/ ( £ ) = T(ξ)x-giξ) for ξ€p(T).

Let <f0 £ D(f) D(g). By 1.1, there is a sequence of points ξR £ p(T) with

ξn—» ζQ, and so f(ζQ)= g(ζQ). Thus, if p(x) is the union of all open sets

containing p(T) upon which T(ξ)x has an analytic extension, we have uniquely

defined upon p(x) an analytic extension of T{ξ)x.

1.3. DEFINITIONS. By x(ζ) we shall mean the unique maximal single

valued analytic extension of T(ξ)x whose existence is established in 1.2.

The symbol p(x) will be used for the domain of definition of x{ζ), and the

symbol σ(x) will be used for the set of singularities of x{ξ). Thus σ{x) is

the complement of p ( x ) , and ρ(x) D p(T), σ(x) C σ(T).

1.4. DEFINITION. By [x] we shall mean the smallest closed linear mani-

fold containing all of the vectors T{ξ)x, ξ £ p( Γ) .

1.5. LEMMA. For every x £ X we have:

1.5.1. x C[x];

1.5.2. f(T) [x] C [ % ] , fCF(σ(T));

1 . 5 . 3 . x(ξ)C ίx], ξ Cp(x);

1.5.4. [y] C [%], y £ [%].

Let C be a large circle such that

x= — f T(ξ)xdξCίχ];
2πi c
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t h i s p r o v e s 1 .5 .1 . L e t y £ [x] a n d / £ F {σ{T)). S i n c e y may be a p p r o x i m a t e d

by s u m s of the form 2 , Cίy T(ξj)x, f(T)y may be a p p r o x i m a t e d by s u m s of t h e

form

Σ«,r<f,>fli ),- Σα,.J- L!ψψl it,
Δπi A ς • — ς

w h e r e Γ i s c h o s e n , i n t h e d o m a i n o f r e g u l a r i t y o f /, t o i n c l u d e σ{T) a n d e x -

c l u d e t h e p o i n t s ξj. T h u s / ( T ) y £ [x], a n d 1 . 5 . 2 i s p r o v e d . N e x t l e t ξQ £ p(x)

a n d , u s i n g ( 1 . 1 ) , c h o o s e a s e q u e n c e ξn £ p(T) w i t h ξn—> ξ . T h u s

and since [x] is closed we have x(ζQ) C [ # ] . Finally if γ £ [%] we have,

by 1.5.2, T(ξ)yC [x], ξ Cρ(T), and thus [y] C [*]• This completes the

proof of 1.5.

1.6. LEMMA. For x, y ζL X we have

σ(x + γ) C σ(x) u

and for ξ £ p(%) p(y) we have

x{ξ) + y(ξ) = (x +

On the open s e t p(x) p(y), t h e funct ion x(ζ) + y(ζ) i s an a n a l y t i c ex-

t e n s i o n of

x + y), ξCp{T).

T h u s p { x + y ) D p ( x ) p ( y ) , a n d f o r ζ ζ i p { x ) p ( y ) w e h a v e , b y 1 . 2 ,

X(ξ) + y(ξ) = (X + y) {ξ).

The second assumption which is needed in most of § 1 is:

1.7. ASSUMPTION. // σ is a closed set of complex numbers, then the set

[σ] of all vectors x with σ(x) C σ is also closed.

1.8. LEMMA. (Assumption 1.7.) // σ is a closed set of complex numbers,

then [σ] is a closed linear manifold, T[σ] C [σ], and the spectrum of T when

considered as an operator in [σ] is contained in σ.

That [σ] is a closed linear manifold follows from 1.6 and 1.7. Since
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Tx{μ) = T{μ)Tx,

for μ in p ( T) we have p(x) C p(Tx) or σ(Tx) C σ(x), and thus Γ [ σ ] C [ σ ].

Now let Λ; £ [σ] , f C σ ' (the complement of σ in the whole plane ), ζR £ p{ J ) ,

and f —> f. Since for μ £ p (T) we have

it follows that p{x) C p ( T ( ^ ) x ) and thus Γ ( ^ ) Λ ; C [σ]. Since

and [σ] is closed, we have x(ζ) £ [σ]. Thus, since

(f- T)x{O-x,

it follows that

( ^ - T)[σ] = [ σ ] .

To see that ξ — T is one-to-one on [σ], suppose that

(ξ - T)y = 0, y C M .

Then

y(\) = _ L _ and σ(y) C (£) n σ = φ ,
v λ — ς )

the void set. This means that y ( λ ) is analytic for all λ and thus that y - 0.

Plence, if ξ £ σ ' then f — Γ is a one-to-one map of [ σ ] into all of itself.

1.9. LEMMA. (Assumption 1.7.) For every pair σu σ2 of disjoint closed

sets, there is a constant K(σί9 σ2) such that

\x(ξ)\ < K{σltσ3) \x\, ξ € σ l t xC\.o3].

By 1.8, o^ is contained in the resolvent set of T when considered as an

operator in [σ 2 ]• Since x(ζ) is the value of this resolvent at the point ξ £ σ\

when operating on x £ [σ 2 ], the present lemma follows from the preceeding one.

1.10. LEMMA. (Assumption 1.7.) For every x £ X we have T[x] C [%],

and when T is regarded as an operator in the space [x] it has σ(x) for its
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spectrum and p(x) for its resolvent set.

It was proved in 1.5.2 that T[x] C [x]. Let pι be the resolvent set of T a s

an operator in [ # ] . Using 1.5.2 again, we readily show that p(T) C p and

since T(ξ)x is analytic on p l ( s ince x £ [x~\9 by 1.5.1), we have p χ C p{x).

We shall now show that for every y £ [ x ] we have ρ(y) 3 p ( # ) , which means

that for every y £ [%] the function T(ξ)y defined for ξ £ p ( T ) has an ana-

lytic extension to p{x). Elements of the form

L . T { ξ . ) x , ξ. € P ( T )

are dense in [x], and for such y we have, for μ £ p( T),

T{μ)y = ΣαT(^.) T(μ)x.

Thus T(μ)y has the analytic extension 2*QL.T{ξ. )x{μ), μ £ p(x)9 and so,

for y of the form (*), we have p(y) 3 p ( # ) , σ(y) C σ(x). Let y £ [%], and

let yn be a sequence of vectors of the form (*) with yn —> y. Since yn - ym has

the form (*), we have σ{yn - ym ) C σ(%) Let /V be a neighborhood whose

closure N C p{x), so that /V and σ(x) are closed disjoint sets. By 1.9, then,

\yniξ) - ym(ξ)\ = \(yn-ym)(ξ)\ <K(N,σ(x)) \yn-ym\-^o

uniformly for ζ £ /V. The function

= lim

is analytic on /V, and for every ζ £ p(T)N we have

= l im yn(ξ) = lim ( f - TTι yn=(ξ- TTιy.

Hence f(ξ) = y(ξ), ξ £ /V, and p ( y ) 3 p U ) . Final ly we let ̂  £ p(x) and

show that ξ - T is a one-to-one map of [ # ] into all of itself. Let y £ [%]; then

since f £ p(χ) C p ( y ) we have, by 1.5.3 and 1.5.4, y(ζQ) £ [ y l C [ Λ ] .

Since

(ξ- T)y(ξ) = y

for f £ p ( Γ ) , this same equation must hold for ζ £ p ( y ) ; in particular,
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Thus (ξ - T)[x]~ [ x ] . To see that ξ - T is a one-to-one map on [ x ] , let

y £ [*] and (ξQ - T)γ = 0. For large ξ, we have the expansion

hence T (ξ) y = y/ (ξ — ξ^). Thus if y ^ 0 we have σ (y) consisting of the single

point ζ C pix) C p ( y ) , a contradiction since p(y) and σ ( y ) are disjoint.

Thus it has been proved that for every ζ G. ρ{x) the operator <f — T is a one-to-

one map of [ x ] into all of itself, and hence p(x) C pχ C p ( x ) .

1.11. LEMMA. (Assumption 1.7.) //y C lx] then σ(y) C σ(#).

T h i s w a s p r o v e d ( i n t h e f o r m ρ(y) D p ( ^ ) ) d u r i n g t h e c o u r s e o f t h e p r o o f

of L e m m a 1 . 1 0 .

1 . 1 2 . LEMMA. [Assumption 1.7.) The set σ(x) is void if and only if x = 0.

If x = 0 it follows from Definition 1.3 that cr(x) is void. Conversely, if

σ(x) is void then by (7) the spectrum of T as an operator in the space [x] is

void. This, according to Taylor's result [3], implies that [x] consists of the

zero vector alone. Hence x = 0.

1.13. LEMMA. (Assumption 1.7.) Let σ be a set of complex numbers, and

σ' its complement. If x + y = xi + yl9 where σ(x), σ(xi) C σ and σ ( y ) , σ(γx ) C

σ '9 then x — xί, y = y i .

The sets

σγ = σ(x) u σ(xx), σ2 = σ ( y ) u σ ( y χ )

a r e b o u n d e d , c l o s e d , a n d d i s j o i n t . S i n c e , b y 1 . 6 , σ(x + y) C σγ u σ 2 , t h e r e i s

a n a d m i s s i b l e c o n t o u r C c o n t a i n i n g σί a n d e x c l u d i n g σ2 w h i c h l i e s i n p(x + y ) .

T h u s

2πι

Since y(<f) is regular in the closed domain bounded by C, the second integral

on the right side of the above equality is zero. Since σ(x) is contained within

the domain bounded by C we see, from 1.10, that the first integral on the right

of the above equality is equal to x Hence
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2m c

and similarly

Thus x - xγ , y = y t .

In most of what follows we shall need besides Assumption 1.7 the fol-

lowing:

1.14. ASSUMPTION. There is a constant K, depending only upon T, such

that for every pair x, γ of vectors with σ(x), σ(y) disjoint we have

\x\ < K\x + y\.

1.15. DEFINITION. By sί we shall mean the family of all sets σ with the

property that vectors of the form x + y with σ(x) C σ, σ(y) C σ ' are dense in

X. Clearly, if σ £ sχ then the complement σ ' £ sv

1.16. LEMMA. {Assumptions 1.7, 1.14.) For σ £ sχ there is one and only

one bounded projection Eσ on X with the properties Eσx = x if σ{x) C σ;

Eσχ— 0 if σ{x) C σ'. This projection has the further properties that

Eσ + Eσ.= I, EσEσ, = 0, \Eσ\ < K.

Vectors of the form z = x + y with σ{x) C σ, σ{y) C σ ' are dense in X In

view of 1.13 it is permissible to define, on this dense se t , Eσz = x. From 1.14

it follows that | Eσz | <_ K\z\. Now if

zι = xχ + yχ with σ(%j ) C σ, a ( y t ) C σ ' ,

then

* + * ! = * + * ! + y + y t ,

and, by 1.6, σ(% + % t ) C σ, σ ( y + y t ) C σ ' . Thus

Eσ\z + Zγ) = Δ ^ + Eσzl9

and £ σ is additive and continuous on a dense linear set. Thus Eσz is uniquely
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defined for z £ X by the requirements that Eσz is continuous in z. For elements

z of the original dense set we have

E z = Eσx = Λ; = £crZ, where z = % + y, α ( x ) C σ, σ(y) C σ ' .

Thus 2?£ = Eσ It is also clear that

EσEσ, = 0 and £ σ + £ σ , = /.

If Aσ is another bounded projection with the properties

Aσx - x if σ{x) C σ and /icr% = 0 if σ(%) C σ ' ,

then for z - x + y, where CΓ(Λ ) C σ, σ ( y ) C σ' we have i4σz = x - Eσ z, and

hence Aσz - Eσz for every z C Z.

1 . 1 7 . L E M M A . (Assumptions 1 .7 , 1 . 1 4 . ) If σ C s t and f €. F ( σ ( T ) ) , then

f(T)Eσ = £ σ /(Π.

Let z = x + y, σ(x) C σ, σ(y) C σ' Then

By 1.5.1 and 1.5.2, f(T)xC [x]; and by 1.11, σ(f(T)x) C σ{x) C σ. Simi-

larly, σ(/( T)γ) C σ ( y ) C σ ' . So

Eσf{T)z = /(Γ)* = f{T)Eσz.

Since the vectors z are dense, the lemma is proved.

1.18. LEMMA. (Assumptions 1.7, 1.14.) We have σ(Eσx) C σ(x), σ C sί9

χ£X.

We have, by 1.17,

σx = EσT(ξ)x, ξCp(T),

and hence the analytic function T(ξ)Eσx has the analytic extension Eσx(ξ)

for ξ C p(x). Thus p(Eσx) D p(%) and σC^Λ;) C σ(Λ ).

1.19. D E F I N I T I O N . For σ C s t , define Z σ = ^ σ Z .

1.20. DEFINITION. If M is a closed linear manifold in X for which TM C Λί,

we use the symbol σ(M) for the spectrum of T when considered as an operator

in M9 and the symbol p(M) for the resolvent set of T as an operator in M.
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1.21. THEOREM. (Assumptions 1.7, 1.14.) // σ C sl9 then TXσ C Xσ and

σ(Xσ) C σ, where σ is the closure of σ.

It follows from 1.17 that TXσ C Xσ. Let ξ (jL σ. We shall first show that

ζ- T i s o n e - t o - o n e o n Xσ I f x G Xσ, ( ξ - T ) x = 0, t h e n x ( λ ) = x / ( λ - ξ )

since for all large λ we have

(T - £)n

Since x €L Xσ, we have x - Eσx; and since x(λ) is everywhere regular except

possibly at the point ξ C σ', we have σ ( # ) C σ', from which it follows that

Eσx - 0. Thus f- Γ is one-to-one on Xσ. We next show that (ζ- T)Xσ= Xσ.

Let

x C Xσ and Λ;Λ + yn —> Λ:, σ{xn) C σ, σ(yΛ ) C σ ' .

Then

x = Eσx = lim Eσ(xn + γn ) = lim £O-%re = lim xn.
n n n

Let yn = Λπ ( f ) , so that

Jn~ Jm = Xn(O ~ « m ( f ) = (%„ - %m ) ( f ) ,

and hence, by 1.9,

I Jn - Jm I < # i I Λ/i - ΛJm I —> 0 .

Let y = lim yw , so that
n

x = lim xn = lim (ξ - T)yn = (^ - Γ ) y .

It remains to be shown that y C Z ^ . Since ξ €1 p(xn), we see from 1.5.3 that

y n = χ n ( O C[χn]9

and thus 1.11 gives σ(yn ) C σ(xn ) C σ. Thus yΛ = ̂ CTyw C Xσ and y G /f̂ .

We have shown that if ζ ψ- σ then ξ- T is a one-to-one map of ^ σ into all of

itself; that is, σ{Xσ) C σ,

1.22 . L E M M A . (Assumptions 1.7, 1 .14.) If σ C slf then σ(Eσx) C σrσ(x)
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for every x ζl X.

In view of 1.18 it will suffice to show that σ{Eσx) C σ. From 1.21 it fol-

lows that ρ{Eσx) D ~σ\ and thus σ(Eσx) C σ".

1.23. DEFINITION. The symbol s2 will be used for the family of all sets

σ having the following property. For every x £ X and every € > 0 there are

v e c t o r s xl9 x[ wi th σ(xι) C σ(x)σ, σ{x[) C σ(x)σ' a n d \xx + x[ - x\ < 6.

1.24. LEMMA. The family s2 is a Boolean algebra and s2 C s x .

That s2 C sί is clear from the definition of these c l a s s e s . Let σ ι , σ2 £ s 2 ,

x £ X and € > 0. We then have

x = % + x[ + ω x , σ ί ^ j ) C σ{x)σx j σ(x[) C σίΛ ίσx ' , IwJ < e / 2 ;

Λ;^ = %2 + Λ?2 + W2 > σ ( Λ ; 2 ) c ^ ( ^ 1 ) ^ 2 , σ ( x 2 ) C σ(x[)σ2 , I M2 I < 6 / 2 ;

Using 1.6 we see that

σ{xx + x2) C σ(xι) u CΓ(Λ;2) C ( σ ( % ) σ ι ) u ( σ ( % f ) σ 2 )

C (σ(x)σϊ)v {σ(x)σ2)

= σ ( x ) (σί u σ2 ) ,

and

σ(x2) C σ{x[)σ2 C σ(x)σ( σ2 - σ(x) (σx u σ2 )'•

Thus σλ u σ2 £ s 2 . It is clear from 1.23 that s2 is closed under complementa-

tion and that the void set and the whole plane are in s2. Thus s2 is closed

under crosscut; that is, σί σ2 £ s2 if σlf σ2 £ s2, and s2 is a Boolean algebra.

1.25. THEOREM. (Assumptions 1.7, 1.14.) On the Boolean algebra s2 the

projections Eσ have the following properties:

Eσ\ u £ σ 2 = Eσι u σ2 ' E°Ί Eσ2 = E(Tι σ2 ' E'σ = £ σ ' ;

~ /, £ A = 0, where φ is ίΛe void set.
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If the projections Eσ9 σ €1 s2 are ordered in the usual fashion (that is,

Eσχ C Eσi means Eσ2 Eσχ = Eσγ or equivalently Xσγ C Xσ2) then, by defi-

nition, Eσι u Eσ2 is the smallest projection containing Eσ^ and Eσ2 It may be

given by the formula

This formula is readily derived from the relation

E°Ί E(T2 = Eσ2 E σ ι *

which of course will be established as soon as we have shown that

F F - F

Now l e t x C X9 e > 0, σ 1 ? σ 2 C s2 We h a v e

% = xγ + χ[ + u, x[ = x2 + ^2 + ^ , Λ;t = y 2

 + 72* + w9

where \u\ 9 \v\ 9 | M; | < e , and

σ(xι) C σ(x)σl9 σ(x[) C σ(x)σ{,

σ{x2) C σ{x[)σ2 C σ{x)σ{ σ2 C (σί σ2)',

σ(χ2) C σfxpσj C σ(x)σ( σ2 C (σt u σ2 ) ' C (σt σ2 ) ' ,

σ(y2 ) C a(%t )σ2 C σ{x)σι σ2 ,

σ(y2 ) C σ(xί)σ2 C σ(x)σισ2 C (σt σ2)^σι .

P l a c e -z = y 2 + y 2 + %2 + ̂ 2% y = w + f + w;, so that % = z + y and \y\ < 3 e .

Remembering that Eσx = x for every Λ; with σ(x) C σ and Eσx - 0 iί σ(x) C σ ' ,

we see from the above inclusion relations that

Eσx f = Ϊ2 + 72 » £ σ 2 ^ = 7 2 + %2 >

E<*2 E σ l Z = ^ σ l E(J2 Z = ^ σ l σ 2 Z = ?2 '

(E

σι + Eσ2 - Eσx

 Eσ2 ) z = y2 + y2 + x2 = Eσγ u ^ z .

Hence
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\(Eσι Eσ2 - Eσχ σ2 ) χ I = I (Eσι Eσ2 - Eσισ2)y\<

Since e is independent of x9 we have

F F - F - F F

Also,

| ( ( £ σ i u £ σ 2 ) ~ EσιΌσ2)x I < 4K \y\ < UK e,

so that £C Γ l u Eσ2 = Eσ u σ . The remaining conclusions have been proved

in 1.16.

1.26. DEFINITION. (Assumptions 1.7, 1.14.) The symbol s3 will be used

for those sets σ v-s , for which there exist closed sets μ , v KL sΊ with

vn C σ, μn C σ', n = l , 2 , --- a n d

x - l im {Ev + Eu )xy x £ X.
n n n

1.27. LEMMA. (Assumptions 1.7, 1.14.) The family s3 is a Boolean algebra

and 5 3 C $2

If σ C s 3 and μ^, ^ are as in 1.26, then by 1.22 we have

σ(EVjιx) C vn σ(x) C σ σ(x), σ(Eμnx) C μn σ(x) C σ ' σ(x),

and so α C s2; that is, s 3 C 5 2 . It is clear that s3 is closed under comple-

mentation; hence, in order to show that s3 is a Boolean algebra, it will suffice

to show that it is closed under the operation of forming unions. Let σl9 σ2 £ s3

and v(i9 n), μ{i, n), {i = 1, 2; n = 1, 2, ) be closed s 2 sets with v{i, n) C

σit μ(i, n) C σ/ (i = 1, 2) and

) ( i = 1 ,2) .

Then

x
=

 E
v(l,n)

x + E
μ(l,n)

X + u
»'

Thus

£
^'

 X
"

E
μU,n)

X + E
*[

 B
»
 a n d £

μ( 1, B)
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This last fact shows that the sequence vn defined by the next equation has the

property that vn —> 0:

Eι x — E t \E i x -\- E / E x \- v
μ{l,n) v\2,n) μ\\,n) μ{2, n) μ{l, n) n '

Upon substituting the above expression for E / γo into the formula defining

un, we see by using 1.25 that

x = EVγι x + Eμn x + un + vn ,

where

v n = v ( l , Λ ) U v ( 2 , n ) μ ( l , n ) a n d μ = μ { 2 , n ) μ ( l , n ) .

Since i/n, μn are closed s2 sets (by 1.24) with vn C σ t u σ 2, and μrt C σ[ σ2 -

(σ t u σ2 )', it follows that σχ u o2 is an s 3 set, and the lemma is established.

1.28. LEMMA. (Assumptions 1.7, 1.14.) Let σ £ s3, x €. X, e > 0.

there are sets μ, v 61 s2 with μ open, v closed, μ D σ D v, and such that

I Eωx I < e, ω C μ - v, ω C s 2 ;

\LjσX — Cjσ^X\ <. t , μ J Gγ J I/, (Jj ζ._ 5 2 .

Since σ is an s3 set, there are closed sets v, μ' C s2 with

v C σ , μ ' C σ ' , % = £VΛ;-I- E μ*x + u, and | α | < e.

Then

[ ^ /v- ^ ^ji __ E u\ K. K. ζ.

Let ω C μ — v, ω €L s2 . Then

this proves the first conclusion. Now

and since σ — σσχ C μ — v, σγ — σσί C μ — ι̂ , the second conclusion follows

from the first conclusion.
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1 . 2 9 L E M M Λ (Assumption 1 . 7 , 1 . 1 4 . ) // σmy σ C s 3 ; σm C σm + x ( m =

1, 2, ); and σm —> σ then Eσ x —> E^x, x C X.

Let x C X, e > 0 be arbitrary. Let en > 0 and Σ Γ = i e π < 6 Using 1.28,

pick open sets μn G s 2 with μn 3 σΛ and

I Eωx I < €Λ , ω C μ R - σ n , ω C s 2 .

We shall now show that

n
(*) F Ύ I <r V ^ ω C (μi +•••+ μ j - σn, ω

The statement (*) is true for n = 1. Assume that it is true for n and let

so that

ω«= ω [ ( μ ι + + μ^) - σΛ ] + ω ( μ π + 1 -

and ω = ωx + ω2 , where

ω t = ω [ ( μ t + ••• + μn) - σn ] (μ α + ι - σn + ι)', ω 2 =

By our induction assumption we have

n
I 7-1 V *

\Πjω\x ^ ZJ βj>

and since ω 2 C μ^+ j — crn + 1 we have

Since ω t and ω2 are disjoint, it follows that

71+1

\ F r\ <r \ F r\ + \ F *• I <r V

this proves (*) . Now let ξn - μγ + + μn, so that ^ is open, increasing with

n, ξ D σn, and [ £ ω % | < e for every ωC s2 with ω C ^ n - σn. Using 1.28, let
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μ, v £ s2i μ open, v closed, μ 3 o 3 v, and \Eσx — Eσ x\ < 6 for every

σχ £ s2 with μ 3 σt 3 ι/. We have

μ 3 U ξm μ D μ \J σm = μ σ 3 σ 3 y.

Since v is closed, there is an integer k0 such that

k
μ 3 U ξm μ = ^ μ 3 v , (A: > &0 ) .

m = l

Thus

and since ^ μ - σ̂ . C ^ - σ^ we have, from (*) ,

Hence

this proves the lemma.

1.30. THEOREM. (Assumptions 1.7, 1.14.) For each x £ Z ίAe seί function

Eσx is countably additive on the Boolean algebra s 3 .

The conclusion of the theorem means that if σ, σn £ s 3 , σn σm is void for

n £ m, σ — U °̂ σn, then

Eσ x =
re

The lemma is an immediate consequence of 1.25, 1.27, and 1.29.

1.31. DEFINITION. By a Borel algebra of sets we shall mean a Boolean

algebra of sets which is closed under the operation of taking denumerable
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1.32. DEFINITION. The smallest Borel algebra of sets containing the

Boolean algebra s 3 will be called the family of sets measurable T and will be

denoted by m(T).

In part of what follows we shall assume:

1.33. ASSUMPTION. The space X is weakly complete.

1.34. THEOREM. (Assumptions 1.7, 1.14, 1.33.) The function Ee defined

on s3 to the set of bounded projections on X has a unique extension to m(T)

with the properties [the first of which ensures uniqueness):

(i) Eex is countably additive on m(T)9 x £ X;

( i i ) \ E e I < K, e £ m ( T ) ;

( i i i ) Eeι

Ee2 = Eeγ e2> e 1 , e 2 £ m ( Γ ) ;

( i v ) E e χ u e 2 = E e ι u £ β 2 , e ί 9 e 2 G m ( T ) ;

( v ) £e ' = Ee.9 Eσ(τ) = /, £φ = 0, e G m{T), φ void;

(vi) f(T)Ee = Eef(T\ e Cm(T), f€F(σ(T)).

For point s e t s en, e we mean by en —» e or \\n\n en = e that

e = Π U e n = U Π e n ,
m=l n=m m=l ^=m

and we recall that if

then

α u

We define a transfinite sequence of Boolean algebras / 3 0 , βl9 ••• a s follows:

/3Q = 5 3 and ̂ Sα cons i s t s of all e such that there exis ts a sequence

y< a

with en —» e. Thus m(T) - Uγ<ωβγ9 where ω is the first ordinal whose cardi-

nal is that of a nonenumerable class. For each x C X and #* £ Z there is,

according to a well-known theorem of Hahn, a uniquely defined countably
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additive numerical set function m (e, x, x*) on m ( T) such that

m (e, x9 x*) = x*Eex9 e G s 3 = /30, x £ ί , x* G Z * .

We first show that for every x G X and e G m(T) there is a unique vector

xe ζL X such that

x*xe = m (e, x, x*), x* ζl X .

This is true for e G /3 0 . Assume that it is true for e G Uy < α βy and let e G β α ,

en G U y < α βy , en —> e. Then

Since X is weakly complete, there is a vector xe with

x*xe — m ( e, x, x*), x* G X .

This last equation shows that xe is independent of the sequence en—»e and

also is uniquely defined. Next consider the statements:

\ m ( e 9 x , x * ) I <_ K \ x \ I x * I

m (e, αx, x*) - dm (e, x, x*), α scalar.

These relations hold for e G βQ9 and since τn(e, x, x*) is continuous on m(T)

in the topology en —» e it is seen by induction that they hold for any e G m(T).

They show that for fixed e G m(T) the vector x e is linear and continuous in

x; that is, for e G m(T) there is a bounded linear operator Ee on X with £ e x =

x e . Hence we have

x*£ e x = m (e, x, x*), \Ee\ <^ K, e G m ( Γ), x G Z, x* G Z * .

The uniqueness of Ee follows from the uniqueness of m (e, x, x*) asserted by

Hahn's theorem. That Eex is countably additive on m(E) in the strong topology

of operators and not merely in the weak topology follows from a theorem of

Orlicz concerning weakly complete spaces. Banach has restated the theorem of

Orlicz in a form to hold on any Banach space and it reads as follows [2]:

ORLICZ-BANACH THEOREM. // all the partial sums of 2*xn converge

weakly to an element, then the series 2-*xn is unconditionally convergent.
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The countable additivity of Eex is a corollary. For let

enem = Φ J n ^ m, en £ m ( T), e = U en .
n-l

For every set π of integers, let

π € π

Then we have the weak series convergence:

n en

Thus, according to the Orlicz-Banach theorem, 2*E6nx converges uncondition-

ally in the strong vector topology. The sum is, of course, Eex since

x*Eex = Σ x * £ e n « , x* C X*.

T h u s w e h a v e p r o v e d s t a t e m e n t s ( i ) a n d ( i i ) . S t a t e m e n t ( i i i ) h o l d s for e 1

e 2 C β0. We s u p p o s e t h a t

EaEb = Eab, a, b C U βy ,
y < a

and let

a, bn G U βy with bn —> b C βa.
y< α

Then

= m(ό, x, x*Ea) - lim (ό^, Λ;, Λ;*£α ) = lim % * £ a ^ %

= lim x^Eab^x - lim m(abn, x, x*) - m(ab9 x9 %*) =

Thus

£a£fc = £a5 for a C U βγ , b C βa.
y< a

Next choose
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an C U βγ with an —> a C βa.
y<a

Then

x*EaEyx - m(a, E^x, x*) = lim m(an, E^x, %*) = lim x*

= lim x*Eanbx = lim m(anb9 x, x*) = m(ab, x, x*) = x*Ea\)x .
n n

This proves ( i i i ) . Statements (v) and (vi) are readily proved by induction,

and (iv) follows from (i i i) and (v) .

1.35. DEFINITION. If for each e £ 5 , the Borel sets in the complex plane,

there is a bounded linear operator Ee on X, then the function Ee on B to the

ring of operators on X is called a resolution of the identity in case Ee* = / — Ee9

^ e i ^ e 2 ~ ^ e i e 2 ^OΓ e > e * ' e2 ^~ ^ ' a n c ^ x * ^ e % is countably additive on B for
every Λ; £ Z, x* £ Z .

1.36. LEMMA, A resolution of the identity has the further properties

( i ) Eex is countably additive on B, x ζL X

( i i ) s u p \Ee\ < oo
e e B

(i i i) EeιEe2 = £ e i e 2 , £ e i u e 2 = £ e i u £ β 2 , e 1 ? e2 C β

(iv) EQ — Ee*, EΛ — 0, Ep = /, e \L B, φ voiί/, p = ίAe whole plane.

Statement ( i ) follows from the Orlicz-Banach theorem, and ( i i ) from the

principle of uniform boundedness. EA = 0 since Ee is additive in e; hence

/ = EX — Ep. The second part of ( i i i) follows from the first part and (iv ).

1.37. DEFINITION. A resolution of the identity Ee is called a resolution

of the identity for the linear operator T in case

TEe = EeT and σ(EeX) C 7, e € B.

1.38. LEMMA. Let X be weakly complete, and let T be a bounded linear

operator in X whose spectrum is nondense. Then T has a resolution of the

identity if and only if it satisfies the conditions 1.7, 1.14 and:

1.39. For every complex number λ and every e > 0 there is an s3 set of

diameter < e and containing λ as an interior point.

Furthermore, when T has a resolution of the identity Ee it is unique and has
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the following properties:

( i ) if σ is closed, then Eσx — x if and only if σ(x) C σ;

(i i) σ(Eσx) C oO(x\ σ C B, x C X.

To prove the sufficiency of the conditions it is, in view of 1.34, sufficient

to show that σ(Xe) C e, e C B, where Xe = EeX. Let ξ be a complex number

not in eσ(T), and with each λ G eσ(T) associate an s 3 set σ\ whose diameter

is less than 1/2 the distance from ξ to e~σ{T) and such that λ is in the in-

terior of σ .̂ A finite number σl9 ••• , σn of these sets Ov covers e~σ(T), and

since s 3 is a Boolean algebra the set σ= U?= 1 σt £ s 3 . Since s 3 C s t , we see

from 1.21 that σ(Xσ) C σ. But since

^β = EeEσ{τ) = Eeσ(τ) C £ - σ ( τ ) C Eσ ,

we have Xe C Z σ Since f 0 σ7 and σ ( Z σ ) C σ7, the operator ξ - T is one-to-

one on Λ^ to all of Xσ, and hence likewise on the invariant subspace Xe . Thus

ξCp(Xe), (Tσ(T)V C p(Xe), JDJa(T) D σ(Λβ).

It will now be shown that if T has a resolution of the identity Ee, then it is

unique. Let Λe also be a resolution of the identity for 7\ Let σ, σί be disjoint

closed sets of complex numbers. Since σ(Eσ^X) C σv the function T(ζ) Eσ^x

analytic on p(T) has an analytic extension to σt'* Hence also the function

T(ξ)ΛσEσιx = AσT(ξ)Eσιx

analytic on p(T) has an analytic extension to σ[. Since σ(AσX) C σ, the

function T(ζ) AσEσ x has an analytic extension to σ ' Thus

p(ΛσEσ x) D (j[ u α ' = ( σ 1 σ ) / = the whole plane;

that is, σ ί ^ f i ^ Λ ) is void. By 1.12 we have AσEσχ = 0. Likewise Eσχ Aσ= 0.

Now there are closed sets σΛ C σn + ί —>σf, and hence Aσnx —> ^σ-^ = A^^x.

Then

0 = £ σ i ( / - . 4 σ i ) = (l-Aσι )Eσγ
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Similarly,

Aσχ = Eσι Aσi - Eσι.

Since Aσx and Eσx are both countably additive on B and coincide for closed

sets σ, they must coincide for all σ C B. We shall now show that if T has a

resolution of the identity Ee9 and σ is closed, then Eσx = x if and only if

σ(x) C σ. Let σ be closed and £ σ % = x. Since σ(Xσ) C σ, the function

T(ξ)Eσx= T(ξ)x

a n a l y t i c on p(T) h a s an a n a l y t i c e x t e n s i o n to σ'. T h u s p(x) D σ ' , σ(Λ ) C σ.

C o n v e r s e l y , l e t CΓ(Λ ) C σ, where σ i s c l o s e d . L e t σn be c l o s e d , σ^ C σn+ί — >

α ' , s o t h a t

x = Eσx + E£x - Eσx + Eσ*x = Eσx + lim Eσnx.

Since σnσ(T) and σ are disjoint, closed, and σnσ(T) is bounded, there is an

admissible contour Cn surrounding σnσ(T) and excluding σ. Also, since

we have

-'- ^7 ί. <^*><ί'«-^r

However, since σ(x) C σ, the function Λ ( ^ ) is analytic on and within Cn.

Thus

Eσnx = 0 and x - Eσx.

In this proof we have used the equality

n = Eσnx(ξ),

which is clear from 1.2 since both functions are analytic extensions of

on p( T). We shall next show that σ(Eσx) C 'σσ(x) for every σ C B and x C X.

Since σ ί ^ ) C σ7, it is clear that σ(Eσx) C "σ. Since
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for ξCp(T),

we have p(Eσx) 3 p{x), σ(Eσx) C σ(x). Thus σ(Eσx) C Ίjσ{x). The neces-

sity of 1.7 follows immediately from ( i ) . Next we shall show the necessity of

1.14. As pointed out in 1.36 ( i i ) it follows from the principle of uniform bound-

edness that

sup I Ee I = K < oo.
eβ B

L e t σ=σ(x), σχ = σ ( y ) be d i s j o i n t . T h e n , by ( i ) , Eσx = x; a n d , by ( i i ) a n d

1.12, Eσy = 0. T h u s

| * | = \ E σ ( x + y ) | < K \ x + y \ .

Finally we prove the necessity of 1.39. Let σ be a circle and its interior.

Let σn be closed and σn C σn + t —» σ'. Then Eσx + £ α % —>%. Since

σ(£σ%) C σσ(%) and σ(Eσnx) C σnσ(Λ) C σ'σU),

we see that σ is an s3 set

II. Operators whose spectra lie in a rectifiable Jordan curve

In order to apply the final lemma of § 1 we find it necessary to restrict

further the nature of the spectrum σ(T). Later we shall be interested in specific

cases where the spectrum lies either in a straight line segment or in a circle,

and these two cases may be treated simultaneously by restricting the spectrum

in the manner described in the next paragraph. When this is done and a rate of

growth is imposed upon the resolvent (Assumption 2.1), it is possible to give

conditions, of a nature much more applicable than those of the preceding lemma,

which will ensure the existence of a resolution of the identity. This may be

accomplished in a variety of ways, and some of the sets of conditions given

are necessary as well as sufficient.

Throughout § 2 it is assumed that the spectrum σ(T) is contained in a

closed rectifiable Jordan curve Γ o . In order to be able to manipulate in a fairly

simple fashion the analytical operations involved, we suppose further that

Γ o is embedded in a one parameter family Γ g ( ~ δ 0 <C δ < δ 0 , 0 < So < 1/2) of

closed rectifiable Jordan curves, with Γ§ interior to Γ§ for - δ 0 <̂  8ί < δ 2 <̂

δ Q . The curve Γg is defined by a function

ξ = ξ(λ, δ ) , - 1 < λ < 1, with £ ( - 1 , δ) = ξ{I, δ ) .
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We suppose that the parameter δ has been chosen in such a way that | δ | is the

distance measured along the arc <f(λ, δ) from the point ζiλ, 0) to the point

ζ(λ9 δ), and that the arcs ζiλ, δ), — δ 0 <^ δ <_ δ 0 , for different values of λ, do

not intersect. Finally we suppose that for each δ €- [—δo,δo] the point ζ(λ, δ)

traces, as λ increases from — 1 to +1, the curve Γg in a counterclockwise di-

rection.

2.1. ASSUMPTION. The spectrum σ(T) of T is contained in the rectifiahle

Jordan curve Γ o described above, and the rate of growth of the resolvent T(ξ)

for ζ *= ζ(λ, δ) near the spectrum is restricted by the condition

l i m s u p \3v{λ)T(ξ)\ < oo, - 1 < λ < 1 ,
8-»o ~

where v(λ) is a nonnegative function defined for - 1 <. λ <̂  1.

Since the function v(λ) may be increased without destroying the above

property, and since δ 0 < 1/2, every operator T satisfying 2.1 has an index

function ι^(λ) according to the following definition.

2.2. DEFINITION. Any nonnegative integer-valued function v(λ) satisfying

the condition

δ 0 ,

will be called an index function for J .

It might be pointed out that if ϊ^(λ) is defined only on the set A C [—1, l ]

consisting of all those λ for which <f(λ, 0) G σ(T), and the above inequality

is valid for λ £ A, then T has an index function. It is not assumed that ι^(λ)

is bounded, and it is erroneous to conclude that T has a bounded index function

providing ϊ^(λ) is bounded on A. Elementary operators exist for which every

index function is unbounded and at the same time every index function is bound-

ed on A.

2.3. LEMMA. (Assumption 2.1.) There is an index function v{λ) for T with

the property that every interval of positive length contains an interval of posi-

tive length upon which v{λ) is constant.

Let Δ be a closed subinterval of [ — 1, 1 ]. Let Δ r t be the set of all λ G Δ

such that

| δ π T(ξ)\ < 1, 0 < | δ | < δ 0 .
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Since for fixed δ ̂  0 the point ξ = ξ(λ, δ), and thus T(ξ), is continuous in

λ, it follows that ΔΛ is closed. By 2.1 we see that Δ « UΔn, and thus the

desired conclusion follows from the category theorem of Baire.

2.4. LEMMA, (Assumption 2.1.) Let v(λ) be an index function for T: 0 <

δ <̂  δ o ; λ t , λ2 C [-1, 1]; ^ = ζ(λl9 0), <f2 5= ξ(λ2, 0) distinct points of Γo

cm</ î i = vίλi ), ι̂ 2 = ̂ (λ 2 ). ί/βί C(λ!, λ2 ) &e ίAe rectifiable contour {oriented

counterclockwise) composed of the following four arcs. There are two cases:

If λχ < λ2 the arcs are

ξ(λί9 μ\ - δ < μ < δ; ξ(λ2, μ\ - δ < μ < δ;

<f(λ, δ), λt < λ < λ 2 ; αwrf ^ ( λ , - δ ) , λx < λ < λ 2 ;

whereas if λ2 < λ t we wse ίAe arcs

<f(λi, μ), - δ < μ < δ; ^(λ 2 , μ), - δ < μ < δ;

f (λ, δ), λ ^ ( λ 2 , λ j ; and ξ(λ, δ),

Lei P ( ^ ) 0€ a polynomial in ξ. Then

/ ( λ , λ 2 ) = J _ / P(ξ)(ξ~ξι)
Vι(ξ-ξ2)

V2 T(ξ)dξ

2πι ClΛι,Λ2)

exists as a Riemann integral, is independent of δ, and has the properties

lim / ( λ p λ ^ - O , σ ί/Ui , λ2)%) C [ξx, ξ2],

G<|λ2-λ1)-*0

where [ζί9 ^ ^ i S ^ e closed subarc of ΓΘ consisting of all points of Γo which

are inside or on the contour C{λί9 λ2 ).

The integrand is defined and continuous at every point of the contour C ( λ 1 ,

λ2 ) except at the points ξx and ζ2. Since v ( λ ) is an index function for J, the

integrand is bounded on the curve C ( λ 1 , λ 2 ) . Hence / ( λ ι , λ 2 ) exists. It is

clearly independent of δ since the integrand has its only singularities on the

curve Γ o . Now let λ t < λ2 so that C(λl9 λ2 ) consists of the arcs AB, BC, CD,

DA, where A, B, C, D are given by the complex numbers

ξ(λ2, -8), ξ(Xlf - δ ) , ξ(λιt 8), ξ(λ2, 8).

Let
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K = U . b . \P(ξ)\, e C Γ S ( ) ; K δ = l u b. \T(ξ)\, ξ€Γ$.

Let 0 < 6 < δ 0 , 8 = β/2, and let y e be such that for 0 < λ2 — λĵ  < y€ we have

the lengths of the arcs AB, CD, and ξγ ξ2 (on Γ o ) all less than 8 and also

less than e/K(8). Then the integrand f(ξ) defining ϊ(λl9 λ2 ) for ξ= ξ(λ, μ)

satisfies

\ f ( ξ ) \ <K\ξ-ξ2\
v* | μ | * > \ T { ξ ) \ <K \ξ-ξ2\

V\ ξCBC.

Since, for ζ £ BC, we have

I ξ- ξ2 I < I & - ξι I + I ξι - ξ\ < δ + μ < 2δ < 1,

it follows that for ζ C BC, and likewise for ζ ζL DA, we have the bound

\fU)\ < κ .

For ζ on AB or CD, we have

\f(ξ)\ <κκs \ξ-ξ1\
v> \ξ-ξXι <κκs.

Thus if 0 < λ2 - λ t < γe , then

\I(\lt λ a ) | < — [4δK + 2KKS e/Ks] = 2Ke/π.
2 77

Now let % £ - Z , η €L p (T), and 7/ outside of C ί A ^ λ 2 )• Then

T ( η ) l ( λ ι , λ 2 ) x

2πι c(λi,λ2)

2ni ' "c{λϊ,λ2

ί - ί i ) (^~^ 2 ) ( T ? - ^ ) T(ξ)xdξ,
i fc(λ,,λa)

a n d t h e l a s t i n t e g r a l g i v e s a n a n a l y t i c e x t e n s i o n o f T ( η ) I(\l9 λ 2 ) x f o r a l l

η o u t s i d e C ( λ 1 , λ 2 ) .
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2 5. LEMMA. (Assumption 2.1.) The operator T satisfies the conditions

1.1 and 1.7.

Condition 1.1 clearly is satisfied since a rectifiable Jordan curve is non-

dense in the plane. To prove 1.7, let σ be a closed subset of the spectrum,

xn £ [cr], xn —> x. We make an indirect proof by supposing that there is a point

ξ £ σ{x)σ'. According to the Heine-Borel theorem there are closed disjoint

subarcs Δ l f , Δp of Γo with σ C Δ = Δt u u Δp and ξ £ Δ'. Let

- 1 < λί < μx < λ2 < μ2 < . . . <λ p < μp < 1

be such that the arc Δy, (/ = 1, . • , p) is defined by ζ(λ9 0), λy <_ λ <̂  μy. Let

Cj - C(λj, μj) as defined in 2.4. Since xn(ζ) has its singularities in the set

Δ, we see that

p

•L v ς - £ , ) vς-ς,-) ^^vς ας = 0,

where

and C is any contour of the form C— C(\l9 λ2 ) providing [λί9 λ 2 ] is disjoint

with Δ. Since, by 2.4,

we have,

p f ί Π

Since the convergence, as n—>oo, of the integrands on the right side of the

above equality is bounded, we may in this equation replace xn by x and conclude

from 2.4 and 1.6 that
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σ / ή ( Γ - ς ) v ( λ y ) ( T - ζ . ) v < ^ x \ C Δ .

The desired contradiction will be obtained as soon as we show that the above

inclusion implies that σ(x) C Δ . But this implication follows immediately by

induction from the statement

σ ( z ) C σ ( ( ξ - T ) z ) u ( ξ ) ,

which is verified as follows. Since

T ( μ ) z = ( ξ - μTl \ T ( μ ) { ξ - T ) z - z \ , μ + ξ,

any p o i n t μ other t h a n μ = ζ t o w h i c h T(μ) {ζ — T)z h a s an a n a l y t i c e x t e n s i o n

m u s t be in p ( z ); t h a t i s ,

p ( ( ξ - T ) z ) C p ( z ) u ( ξ ) .

Thus

σ((ξ- T)z)D σ(z) n (ξ)\

2 . 6 . LEMMA. {Assumption 2 .1.) L e i v ( λ ) 6e a n mc/ex function for T. For

every complex number ζ and every nonnegative integer n, define

! " = £ ί(T - ξ)n x = 0 ] , 31" = (T - ξ)nX.
ς x ζ

Then for ξ = ξ(λ, 0) we have

Let <ft = ^(λ, δ); then

Now assume, for the purpose of induction, that (the preceeding identity is the

case when / = 1)

= ( ξ - ξ ι v τ { ξ x ) + ( ξ - ξ , ) H + ( ξ - ξ ι r 2 ( ξ - T)
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Multiplying this by ζ — T, we have

(ξ- τy+ι τ(ξι) = (ξ-ξ,)'

and hence

( * ) ( ξ - τ y +

,) + n + (ξ-ξ,)'-1 (ξ

- ξt)(ξ- τyι + (ξ

- TV

N o w in ( * ) p u t / = i ^ ( λ ) , a n d o p e r a t e on a v e c t o r x G SJt^' ' + ι . We g e t

T(ξt)x

-1x+ {ξ- TV(λ)x.

If we let 8 —> 0, then ξx —> ζ; and sinc^ 8 measures the arc ζζί9 we have

\U- ξι)

This shows that * C l ^ ( λ ) . Thus

J r m V(λ)

and hence

Wpλ> = Vξ, n > i/(λ).

Using (*) again except now with x arbitrary, we may write

\ζ — J- ) x - \ζ - ί ) i \ξι)x + U\o),

where 0(8) is a vector which approaches zero with 8, Thus

and
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2.7. DEFINITION. (Assumption 2.1.) Let v(λ) be an index function for T.

As shown in 2.6, the manifolds Έiϊ™ and 31!?™ are independent of the index

fi (λ) Th ll h f h d d S 3function v(λ) . They will henceforth be designated by the symbols SL , 31 ,

respectively.

Of the three principal conditions of Lemma 1.38, namely 1.7, 1.14, and 1.39,

the condition 1.7 has already been shown (by 2.5) to be a consequence of 2.1.

Neither one of the other two conditions is a consequence of 2.1 alone, and we

concentrate our attention now on restating 1.39 in a more applicable form. The

following assumption 2.8, which may be used to replace 1.39, turns out to be

necessary as well as sufficient. It has the disadvantage of not always being

easily applicable. It should be noted, however, that in the case of operators

with only continuous spectra it is trivially satisfied. Or more generally, if every

subarc of Γo contains points either in the resolvent set or in the continuous

spectrum then 2.8 is automatically satisfied.

2.8. ASSUMPTION. (See Assumption 2.1.) For every ζ in a dense set on

3ΪL. + 31*. is dense in X.

2.9. LEMMA. {Assumptions 2.1, 1.14.) The set of points ξ on the curve

Γ o for which ϊ l . ?L ^ 0 is nondense on Γ o . Moreover, 3ΪL 31^ = 0 for every

ζ, interior to a subarc of Γ o upon which some index function is constant. For

such ξ, the set W^ θ 31^ is closed. Thus if 2.8 is satisfied then

X,

for every ζ in a set dense on Γo

In view of 2.3, the first statement is a consequence of the second. Ac-

cordingly, let v(λ) be an index function which is constant on the interval

[ λ l f λ2 ], and let ξ = ξ{λ, 0) where λ t < λ < λ2 . Let

0), ς = ξ(μn,O),

where

λ i < λΛ < λ < μn < λ2 and λn —>λ, μn —
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Take P (ξ) = 1 in 2.4, so that

Thus, it is seen from 2.4 that the vector {T - ξ)2v'x is the limit of vectors

xn = /(μ n , λn)x and £ C p ( * r c ) Thus 2.6 and 2.7 show that every vector

x G JL is the limit of a sequence I xn \ with £ G p (*„ ). Now if x G 1^ 3 ^ we

have ( ϋΓ - £ ) v Λ; = 0, and hence σ(x) C ( £ ) . If f C p f ί t J and xn —> x, then

ξC pi-x^l a n ( l , by 1.14,

| * | < K \x - * J - ^ 0 , * = 0, and Wξ fίξ = 0.

Finally we show that 5BL θ Jl^ is closed. Let

*n + 7n —>2» where xn C 1^, yΛ G ^ .

Since yn - ym C Sft̂  , there are vectors α Λ m with

I yΛ ~ 7m - ttnm I < (nrn)'1, ξ G p ( α Λ m ) .

By 1.14, then,

\xn - xm\ < & \xn ~ xm ~ unm I < K H xn ~ ^m + Jn ~ Jm I + U m ) " M — > 0 .

2.10. LEMMA. (Assumptions 2.1, 1.14, 2.8.) For every pair ξ9 ξ of distinct

points in a set dense on Γ o we have

and 31 ξ 3lξ is the closure of the manifold ( T - ^ ) v ( T — ί ) v i I , where

v = i^(λ), v t = v ( λ t ), ^ = f (λ, 0), ξχ = ^ ( λ i , 0), arec? v ( λ ) is an index function

for T.

For every ξ in a se t Γ dense on Γ o we have, by 2.9, projections A- and

^ ' with

Aξ + ^ = /, ^ Y = fflf , 4 ' ^ = 31 .

Since for μ G p{T), we have Γ ( μ ) ϊ l f C ftξ and ^ ( μ ) ! ^ C Έξ$ it follows

that Γ(μ)/4^Λ; = A^ J(μ)%, and thus p ( * ) C p W*. % ). Since
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(T -ξ/1 A = 0,

we have σ{Aξ x) C (ξ ), and hence ξ C ρ(Aξ x) C p(A A^^x). Since

σ(A^y) C iξ), we have y €- X; then A^ Aξ^ = 0 by 1.12 and 2.5. Similarly

AξχAξ = 0. Thus

/ = (Aξ + ^ ) ( ^ + ^ ) = Aξ + ^ + ^ ^ ,

and this proves the first statement of the lemma. Now let x G 5ft/ ίft^1 , so that

% = ( T - £ ) v y , y = i . y + A ' y, x = A* x.
ςi g l g l

By 2.7 there are vectors vn with (T - ζ ) ι vn —> At y and

x= lim ( Γ - ^ ) v [ / ί , y + ( Γ - ξYι vn],
n ςι ι

* = 4 ' * = lim ( Γ - £ ) V ( Γ - ^ ) V l ^

Thus 5ft̂  ίft^1 as well as its closure 5ft̂  5ft/r is contained in the closure

( Γ - ^ ) v (T - ξx)
VιX.

Obviously {T - ξ)v ( Γ - ^ ) ι X C 5ft̂  5ft̂  , and so the proof is complete.

2.11. THEOREM. (Assumptions 1.14, 2.1, 2.8.) Every Borel set is measur-

able T; and if X is weakly complete then T has a resolution of the identity.

Let - l < C ί < β < y < δ < l , and choose λlf λ2> μί9 μ2 so that

α < λι < λ 2 < βf γ < μx < μ2 < δ ,

and such that there is an index function ϊ^(λ) which is constant on the intervals

[λ l f λ2 ], [μi, μ2 l This is possible in view of 2.3. Since an index function

may be increased without destroying the property of being an index function, we

shall suppose that v(λ) has the constant value v on both of the intervals

[λl9 λ 2 ] , [μι$ μ 2 ] . Let
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ξι = £ ( λ l f 0), ξ2 = ξ(λ2, 0), ^ = ξ(μι, 0), ζ2 = £ ( μ 2 , 0 ) ,

and

Then for appropriate choices of the polynomial P {ζ) in 2.4 we have

f(T) = / ( λ l f λ 2 ) + Πμl9 μ2) + /(μ 2 , λx ) + /(λ 2 , μ t ) .

By 2.10 there are points λ, μ with λ t < λ < λ 2 , μ1 < μ < μ 2 , and such that for

f = ξ(K 0), C = ξ(μ, 0) we have

(*) ! ^ θ l ζ Φ Si ftζ = /Y.

Now if we let λx —> λ, λ2 —> λ, μ t —> μ, μ2 —> μ then by 2.4 we have

/ ( λ l f λ a ) — * 0 , I(μl9 μ 2 ) — > 0 ,

and

( Γ - ξ)2v (T - ^ ) 2 ^ = lim f(T)x = lim {/(μ2, λx)x + /(λ 2 , μ t ) x l .

Also, by 2.4, we have σ ( / ( μ 2 , λ t )%) C [ ^ , ^ ] and σ ( / ( λ 2 , μ t )x) C [ξ2, ζχ ],

where, for two points ξ'= ξ{λ% 0), ξ" = f (λ% 0) on Γ o, the symbol [ξ'f ξ" ]

means the closed subarc of Γ o defined by ξ (λ, 0), λ ' < λ < λ " , if λ ' < λ ' ' and

closed subarc <f(λ, 0), λ ^ ( λ " , λ ' ) , if λ" < λ ' .

Since 2 v ( λ ) is also an index function, it is seen from 2.10 that 3^ 9L is

the closure of ( T - ξ)2v (T - ζ)2vX, and hence every vector in 9L ?l. is

the limit of a sequence of vectors of the form x + y with σ(x) C [ξ, ζ]9 σ(y) C

[f, ζY. Since σ ( Λ ) C (^) if x € Wξ, we have, from 1.6 and (*) above, the

fact that every vector in X is the limit of a sequence of vectors of the form

x + y with σ(x) C [ξ, ζ]9 σ(y) C [ξ, ζY. This shows that [ξ, ζ] is an sx set

for T (see Definition 1.15). The above argument shows also that [ ζ, ξ] is an

s t set for T. We shall next show that σ = [^, ^] is an s2 set for T. If the in-

tervals ( α , β) and ( α , 8) that we started with above are replaced by the in-

tervals ( λ - 1/rc, λ) and (μ, μ + 1/n), we see that there are points λn9 μn, with

λ - l/n < λn < λ, μ < μn < μ + 1/n, such that σn s [^ , ^ ], where
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is an sι set. Now let

y=(T- ξ)2v (T - ζ)2vx, yn = (T - ξ)v (T - ξn)
v (T-ζ)v (T-ζnVx,

so that yn —» y, and for appropriate choices of P (ζ) in 2.4 we have

ϊn = Πλn, λ)x + I(λ, μ)x + I(μ, μn)x + I(μn9 λn)x.

Thus by 2.4 we may write

y = /(λ, μ)x + I(μn, λn)x + zn, where zn —> 0.

Now from 2.4, 2.5, and 1.16 we see that

EσI(λ, μ) = /(λ, μ), EσI(μn9 λn) = 0,

EσnI(λ, μ) = 0, EσJ(μn9 λn) = I{μn, λn )

and since | £ σ ^ | _< 7( we may write y = Eσy + Eσ y + vn where vn —> 0. Since

y is an arbitrary point in the manifold (T - ξ)2v (T - ζ)2vX whose closure is

31., ?L , and since

\Eσ +EσJ<2K,

we have

y = E y + lim £ σ v

for every y C 3^ ?lζ. For x G i Φ t we have σ(%) C σ; and so, by 1.16,

we have Eσx = x, Eσnx = 0. Hence, it follows from (*) that

( ** ) x = Eσ x + lim £ σ %, x C Z ,
σ

Now 2.5 and 1.22 show that σ(Eσx) C σσ(x), σ(Eσ x) C σ^σ(Λ ) C σ'σ(x),

so that σ is an s 2 set. The same argument shows that [ζ , ζ ] = σn is an s 2 set

and hence (**) shows that σ is an s 3 set for T. Thus we have proved that if

- l < ^ α < β < y < δ < l there are points λ, μ with α < λ < β, γ < μ < δ,

such that σ = [<f(λ, 0), £(μ, 0) ] is an s3 set. This clearly implies the state-

ment 1.39; hence every Borel set is measurable T. Theorem 2.11 then follows

from 1.38.
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III. The operational calculus

3.1. DEFINITION OF / f(λ)dE^. In what follows we shall be concerned

with an integral, J / (λ) dEχ, where Ee is the resolution of the identity for an

operator T. The functions / to be integrated are either scalar- or operator-valued;

they will always be continuous, so that the Riemann integral will suffice.

Although the applications to be made are to operators satisfying the preceding

restrictions, it seems desirable to word the definitions and elementary properties

of Jf(λ)dEχ in terms of an arbitrary operator T on an arbitrary space X subject

to the single restriction that T has a resolution of the identity. Since σ(T) is

bounded, it may for any 8 > 0 be partitioned into disjoint, nonvoid Borel sets

Δ l f , Δ n whose diameters are less than δ. The norm | π \ of such a partition-

ing π = ( Δ ι ? , ΔΛ ) is I 77 I = max/ diam Δ;. If for a scalar- or operator-valued

function /defined on σ(T) we have the sums 2*π f(λi)E/±. converging, as

I π I —» 0, to a limit independent of the choice of λ,; £ Δj, the function / is

said to be integrable. Of course the convergence of 2^-π /(λj) Ef\ki as | π | —>0

may be in the weak, strong, or uniform topology of operators; but for the func-

tions we shall integrate, it is always in the uniform topology of operators, so

we need not concern ourselves here with the other cases. The integral is de-

fined by

J S lim

I 77" I —» 0 π

and for any Borel set σ in the plane we define J f(λ)dE\ to be Eσjf(λ)dEy

3.2. LEMMA. // for each e in a Borel algebra β there is a bounded linear

operator Ae in the space X such that x*Aex is countably additive on β for each

x £ X, x* £ X*, then there is a constant v{A) such that

2 I x*Ae.x I < v (A ) I x I I x* I, e, e ; void for i φ /, et £ β.
i

Let π ~ \ βj } be a finite or enumerable sequence of disjoint elements in β.

For each x £ X, x* £ X , define Uπ(x, #*) as the point in the complex Banach

space *tι (the space of absolutely convergent sequences) given by the sequence

\x*Ae.x\ (if the sequence { e, \ is finite we extend it to an infinite sequence

by taking en to be the void set for all large n). For fixed x, π, the function

Uπ(x, #*) is additive, homogeneous, and closed; hence V^ix, x*) is continuous

in #*. Similarly, Uπ(x, x*) is continuous in x for fixed #*, π. Thus for each

77, Uπ{x, x*) is simultaneously continuous in x, %*. Since the numerical function
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x*Aex is countably additive on /3, we have

(*) sup \Uπ(x9 x*)\ < oo, x £ X, x* £ X*
77

Let Zn be the set of points (x, x*) in the Cartesian product space Z = X x X*9

where | Uπ(x, x*)\ <^n for every π. Since Uπ(x, x*) is continuous in (x, x*)9

Zn is closed. From (*) we have Z = U Zn, and so the Baire catagory theorem

gives an integer n0, a point (xθ9 x*) £ Z, and an r0 > 0, such that

uπ v x, x ) I \ no > ^J I % *o I ^ Γo» I % ~" o I °"

Now if y £ X, y* £ Z , and | y | , | y* | < r0 , we have

^TT' J 7 / ~ ^TΓV^O 7> %

O 7 ' ~ uπ^xo 7> ^Q /

= Uπ(xOf x* - y*) + Vπ(xQ9x*)f

a n d I Uπ(y, y") < 4 n o . T h u s if ι^(^l) = 5rc o /r^ , w e h a v e

| £ / w ( y , y * ) | < *U)\y\ \y*\.

3 . 3 . L E M M A . Every continuous scalar function f on σ(T) is integrable, and

< m a x \f(λ)\v(E)9

λβσ{T)

<^ sup I /(λ) I v (E ) ,
λeσ

where v(E) is the constant of 3.2. Also if (X is an arbitrary parameter and

/(θί, λ ) is continuous for λ £ σ(T) uniformly with respect to (X, then the sums

2*77- /(CC, λi)Efc. for a partition π - ( Δ j , , Δ Λ ) , λ t £ Δ t , converge, as

I 771 —> 0, uniformly with respect to (X.

For two partitions TΓ = ( Δt , , Δ^ ), π' = (Δ [, , Δ^ ) of σ ( Γ), and for

λj £ Δj, λy'£ Δy (i = 1, , 7i, 7 = 1, , m), we have

m n m

:7λi)E^. - Σ f(&f λf)EΔ'j = Σ Σ f /(α» λj) - /(α, λpl^ΔjΔ/
7 = 1 i=i /=1
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If for 6 > 0, δ{β) > 0 is chosen so that

I /(cc, λ) - /(oc, λ') I < e for I λ - λ'| < δ(e),

we have, by 3.2,

Γ f(a,λi)EA. - £ /(α,λ/)£Δ. e « ( £ ) , α , | π |, \π'\ < δ(e)

/(α,λ t )£Δ. < max | / ( d , λ ) |

and

< sup
λβcr

this proves the lemma.

WΊiile in our final results the only operator-valued functions we shall have

to integrate are of the form ( Γ ~ λ / ) Λ / ( λ ) , where / is a scalar function, it

will, during the course of the proofs to follow, be necessary to integrate func-

tions in a more extensive class. Accordingly, we consider functions of the fol-

lowing type. Let Z)t be an open set containing the closure D of an admissible

open set D 3 σ(T). Let C be the boundary of D. Let /(&, λ) be a scalar func-

tion defined for (X C Di9 λ C σ( Γ), continuous similtaneously in both vari-

ables over their respective ranges, and analytic for CC £ Dx uniformly with

respect to λ G σ( T); that is,

/(α + 77, λ) - / ( α , λ) <J/(α,λ)

uniformly with respect to λ £ σ(T). Because the continuity in λ is uniform

with respect to α on C, the operator-valued function

f(T,λ) — jΓ
2firi c

depends continuously on λ. It is this type of continuous operator-valued func-

tion defined by a scalar function /(θC, λ) whose singularities in Ot stay uniformly
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away from σ(T) as λ varies over σ(T) that we shall be integrating. For the

sake of brevity we shall call functions /(α, λ) of the above type T-uniform.

3.4. LEMMA. Let /(α, λ) be T-uniform. Then f(T, λ) is integrable, and

for every Borel set σ we have

ff(T,λ)dEχ = — f (ff(0L9λ)dEλ)T{0L)d0L.
σ Λ 2πi C σ A

Let π = (Δj , , Δn), λ( C Δj, be a partition of σ( Γ). Then

Σf(T, λ,)EA = Σ ( - i - / /(α, λ^
j ' j \ Zπi c

) Γ(α)</α.

The desired results follow from 3.3.

3.5. LEMMA. Let /(α, λ), g(α, λ) be T-uniform. Then f(&, λ)g(α, λ) is

T-uniform, and for a partition π = ( Δ j , , Δ Λ ) of σ(T) and points λy, λy' C Δy

we have

, λ,) g( Γ, λ / ) £ Δ . = //( Γ, λ)
77 -* 0

It is clear that there is a common domain of uniform analyticity. Let C be

its boundary. For 6 > 0, fix 8 > 0 such for every pair λ, λ ' G σ ί T ) with

I λ — λ ' | < 8 we have

| / ( α , λ ) t g ( α , λ ' ) - g ( α , λ ) ] | < e, α C C.

From 3.2, if I π\ < 8 then

Σ / ( α , λ, ) [ g ( α , λ/) - g ( α , λ t ) ] £ Δ / | < e v ( £ ) , α G C.
7T

Now

/( Γ, λy) g( Γ, λ/) = /( T, λy ) g( T, λy) + /( T, λy ) [g(T, λ/] - g( 7, λy)]

and
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i-r fτ(a)da (Σ/(α,λ7 )tg(α,λ/)- g(α, λ, )] £Δ, )|

« (e/2τr)(max | Γ ( α ) | ) (length C) v ( £ ) .

Thus in order to prove the lemma, it suffices to show that

lim Σ/( T, λj) g( T, λj)EA. = //( T, λ) g( T, λ)dEλ .

(Note that if λy £ Δy and not merely in Δy, there is nothing left to prove.) But

this is clear since the function /( Γ, λ ) g ( Γ, λ) is continuous in λ.

3.6. LEMMA. // / is integrable (sealer- or operator-valued) and U is a

bounded linear operator in X which commutes with Ee, e £ B9 then Uf is in-

tegrable and

Uff(k)dEλ = fUf(λ)dEλ, σCB.
cr cr

The proof is clear from the definitions.

3.7. T H E O R E M . Let X be arbitrary and T a bounded linear operator in X

with the resolution of the identity Ee. For any closed set of points p £ p(T)9

we have

(1 -λ)n

n=o"(£-X)"+ 1

where the sum converges in the uniform topology of operators and uniformly

with respect to ζ £ p .

In view of the elementary identity

*=o (£-λ) n + 1 (ξ-λ)P+ι

and 3.6, we have
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- T) Σ f- J
n = o ( £ -

Now let δ = the distance from p to σ( T). This is positive s ince o(T) is,,bounded

and closed. Break o(T) into disjoint measurable parts Δ t , ••• , Δ Λ of which

the diameters satisfy

diameter Δy <̂  δ / 4 (/ = 1, , n).

Let Cj be a circle of diameter 8/2 containing Δy in its interior, so that

| ( α - λ ) ( ^ - λ Γ 1 | < 1/2, ξ C P , λCAj, a C q .

Let Ta (Δy) be the resolvent of T when considered as an operator in X/^- Since

.) C Δy and

we have, from 3.3,

(T-λ)P

(ξ-λ)p

dEλ

2nι

l r c
J TΛΔΛdvi JA

2πi Cj ' Δ y

(α-λ)P
dEλ

< _ m a x |Γα(Δy)| v(E)/2P, ξCp.
2π aec)

Since J = J. + + JA , we have

p (T-λ)n

Σ J
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uniformly for ξ G p. This proves the theorem.

3.8. DEFINITION. An operator is called a spectral operator if it has a

resolution of the identity.

3.9. THEOREM. If T is a bounded spectral operator, the resolution of the

the identity Ee is unique, and for every f G F (T) we have

oo Λn) <χ\

/ ( D - Σ ί^-r- (Γ-λ)* dEλ>

where the integral exists as a Riemann integral in the uniform topology of

operators and the sum converges in the uniform topology of operators.

We shall first show uniqueness. Let Ae, Ee be resolutions of the identity

for T. Let σlf σ2 be disjoint and each consist of a circle and its interior. Let

Tι{ξ) be the resolvent of T when considered as an operator on E^ X. Let

T2 (ξ) be the resolvent of T when considered as an operator in Aσ2 X. Then

for ξ £ σi9 Tι(ξ)Eσι Aσi is a bounded linear operator in X and analytic

for ξ Gσf* Likewise for ξ C σ ,̂ EσιT
2{ξ) Aσ2 is a bounded linear operator

in X and analytic for ξ C o^ Let ζ G (σί u σ2 )'. Since ζ— T commutes with

Eσχ, we have

{ξ- T)EσιT
2(ξ)Aσ2 = £ σ i Aσ2,

and operating on the left with Tι(ξ) we have

Eσι THξ)Aσ2 = T'(ξ)Eσχ Aσ2.

If f{ξ) is defined to be

f{ξ)-Eσι THξ)Aσ2 = Tι(ξ)Eσι Aσ2, ξC(σι uσ2Y

= £ σ j T2(ξ)Aσ2, ξCσι

= Tι(ξ)EσιAσ2, ξCσ2,

then f is an entire function. Since for large ξ, we have

/ ( £ ) = T(ξ)Eσι Aσ2->0 as 1̂ 1 —» oo.
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it follows that f(ζ) = O and Eσι Aσ2 = 0. By symmetry, Aσ Eσ = 0. Let σn,

(τι= 3, 4, •••) be the set of those points of σ(T) whose distance from σx is

>̂  1/n. Let δ l f ••• , δp(n) each consist of a circle and its interior and be such

that the set δn - Uδj is disjoint with σx and covers σn. Then, since Eσ A${ = 0,

we have A$t C Eσ* X and

AσnX c A&nX = (UASi) X = U U 8 . Z ) C Eσ'X .

Hence

But Aσn% —* Aσ*x, x C X , and so

Eσι A^ = 0, Eσι Aσι = Eσι

Also, since A§t Eσ^ - 0, we have Eσ X C A$fX and

Thus

Hn Eσχ = £ σ i , A$n Eσχ = 0, A;χ Eσι = 0,

and therefore

Eσι = £ σ

By symmetry,

From this it readily follows that Aσ- Eσ for any Borel set σ. Now let / G F(T).

Let C be an admissible contour upon which / i s analytic and such that

2πι c

Now, by 3.7, we have
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-λ)n {ξ-λTn ι dEλ,
n=0

and the series converges in the uniform topology of operators and uniformly for

ξ € C. So

π=o

Since

,. (T-λ)n
(n

it follows from 3.3, that the Riemann sums approximating

f(T-λ)n (ξ-λT"-1 dEχ

converge uniformly with respect to ξ G C.

Hence

0 0 f ^ ( λ )
= Σ ί1—^ (T~λ)n dEλ.

n

From this point on we shall again restrict our attention to the case of an

operator T whose spectrum lies in a rectifiable Jordan curve Γo and whose re-

solvent satisfies the growth condition 2.1. It will be convenient to state the

condition 1.14 in terms of residues as defined in the following:

3.10. DEFINITION. Let σ(x), σ(x*x) be the sets of singularities of the

functions x (ξ) = (ζ- T)~ιx9 x*x(ξ), respectively. Let σ be open and closed

in σ(x), and

where C is a rectifiable Jordan curve containing σ in its interior and having

σ{x)σ' in its exterior. Then the vector xσ is called the σ - residue of x(ζ)
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Similarly if σ is open and closed in σ(x*x) then the scalar

(χ*χ)σ = -L jΓ x*χ(ξ)dξ
2πi c

is called the σ - residue of x*x(ξ).

With this terminology, condition 1.14 asserts the existence of a constant

K such that \χσ\ < K \x\.

3.11. THEOREM. Let X be weakly complete, and let T be a bounded linear

operator in X whose spectrum lies in the rectifiable Jordan curve Γ o and whose

resolvent is restricted in its growth by Assumption 2.1. Then T is a spectral

operator and satisfies the equation

™ An)

n=0 n'

providing:

( i ) (The density condition.) For every ξ in a set dense on Γ o ϋ ^ + % is

dense in X.

( i i ) (The boundedness condition.) There is a constant K such that all resi-

dues xσ satisfy the inequality

\xσ\ < K \x\9 x €1 X.

This theorem is an immediate corollary of 2.11 and 3.8.

Conditions will now be given which are of a nature more applicable than

( i ) and ( i i ) of 3.11 and which are sufficient (and in some cases necessary) to

imply ( i ) and ( i i ) . We shall begin with a brief analysis of some conditions

which are sufficient to imply the density condition ( ί ) .

3.12. THEOREM. The operator T of Theorem 3.11 satisfies the density

condition ( i ) of that theorem in case any one of the following is true:

( i ) Every subarc (of positive length) of Γ o contains points either in the

continuous spectrum or in the resolvent set.

( i i ) No subarc (of positive length) of Γ o consists entirely of points in the
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point spectrum of the adjoint T of T.

(i i i) The space X is reflexive and v(λ) = 1 is an index function for T.

(iv) The space X is reflexive and the adjoint T satisfies the boundedness

condition ( i i ) of 3.11.

(v) The operator T is completely continuous.

The first statement is obvious since if ξ is in either the resolvent set or

the continuous spectrum we have 31 ξ = X. The second statement is equally clear

since it is seen from the Hahn-Banach theorem that ζ is in the point spectrum

of the adjoint if and only if 3iξ £ ^ Next, if ( i i i) holds, let

ξ - ( λ , δ ) , ξ0 = ξ(λ,O),

so that

\(ξ- ξ0) τ{ξ)\ < \sτ{ξ)\ < l .

N o w

ξ0 - T) = ξ-ξQ - ( ξ - ξ 0 ) 2 T ( ξ ) ,

and hence

( * ) lim ( f - ξQ) T{ξ) (ξ - Γ ) = 0 .

Now let x be an arbitrary vector in X. Since X i s reflexive, the se t

( ξ - ξ0) τ{ξ)χ, o < δ < δ 0 ,

is weakly compact, and there is a vector y ζL X and a sequence 8n —> 0 such

that for ξR = ζ(λ, 3n) we have

<$» - & T(ξn)x^y weakly.

The equation (*) shows that y C % Q . To see that x - y C % 0 , let * * % 0 = 0.

Then

x*(ξ-ξo)T{ξ)-x*,
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and so % * ( % - y ) = 0. Hence 38^Q + 3l^Q - X. To prove the fourth statement

we note first that, s ince σ(T) - σ(T ) and \ T (ξ)\ - \ T (ξ) |, the adjoint T

sat is f ies 2.1, and any index function v{\) for T is a l so an index function for

T . By 2.9, then, Mξ (T ) ϊίξ ( T ) = 0 f or ξ interior to any interval upon which

an index function is constant . Such ξ are by 2.3 dense on Γ o . Let ξ be such a

point on Γ o , and let

It will suffice to prove that x* = 0. Since x*ϊίξ = 0, we have #* £ 3B̂  ( T ).

To see that x* £ ϊίξ ( T ) (which will prove x* = 0), it will suffice, since X is

reflexive, to show that x*x0 - 0 for every x0 with 31 ξ ( T )x0 = 0, that is, for

every x0 with

yHξ-TYx0 = 0, y*C y*.

But such an x0 is in 33!^, and so x*x0 ~ 0. The final statement ( v ) follows from

the fact that the spectrum of a completely continuous operator is at most de-

numerable.

N. B. As the above proof shows, the condition that X be reflexive ( in ( i v ) )

may be replaced by the statement that, for ξ in a dense se t on Γ o , the manifold

flξ ( T ) i s regularly closed. Also in ( i i i ) the condition of reflexivity may be

replaced by the assumption that the se t of vectors (ζ — ζQ) T(ξ)x, 0 < δ < δ 0 ,

is weakly compact.

3.13. THEOREM. Let X be a reflexive space and T a bounded linear oper-

ator in X whose spectrum lies in the rectifiable Jordan curve Γ o and whose

resolvent satisfies the growth condition 2.1. Then T is a spectral operator and

satisfies the equation

An) £

fCF(T),

if and only if there is a constant K such that all the residues {x*x)σ satisfy

the inequality.

The residue condition is clearly necessary since
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(x*x)σ = x*Eσx.

To see that it is sufficient we note first that it implies the condition ( i i ) of

Theorem 3.11. Since X is reflexive, the residue (#*, x)σ is equal to the residue

(x**f x*)σ calculated for the adjoint 7* (here ΛΓ**Λ;* = x*x, x* G X*) and so

the residue condition of 3.13 implies that the adjoint T satisfies ( i i ) of 3.11.

The present theorem then follows from 3.11 and 3.12 ( iv).

We now turn our attention to stating the requirement (of 3.11 or 3.13) that

the residues be bounded, in a form which, in some instances, is more readily

applied.

3.14. THEOREM. Let ζ— £ ( λ , δ) have continuous first partial derivatives,

and let ξ"= ξ(λ, - δ ) . Then the residues (%*, x)σ and xσ will have a bound of

the form K\x\ \ x* | in case

l . u . b . J [ + 1 | * * [ r ( f ) — - Π O — \ x \ d λ < M\x\ \ x * \ .
0 < o < OQ

Let 0 < λj < \j <^ 1, let Cj = C (λj, λj) be as in 2.4, and let C be the set

Cy, (/= 1, ••• n). Suppose that C lies in the domain of analyticity of x*x(ξ).

Then

where 1(8) is a sum of integrals Jx*x{ξ)dξ taken along the arcs ξ(λy, μ),

/f μ), - δ < μ < δ. Thus l i m δ _ 0 / ( δ ) = 0, and

lim sup I J x*x(ξ)dξ\
δ-o c

dλ < M \x\
o < δ < δ 0

The condition of 3.13 is far from necessary, and is not satisfied by the

resolvent Ί (ξ) if its rate of growth for ξ near σ(T) is not that of the inverse

of the distance from ζ to σ(T), To avoid this objection a similar condition, as

is evident from the above proof, may be stated.
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3.15. THEOREM. Let T(ξ)= f/(f)+ V(ξ), where x*V{ξ)x is the deriva-

tive of a single valued analytic function at each point ξ where x*T{ς)x is

analytic. Then the residues (x*, x*)σ and xσ will have a bound of the forms

K\x\ I x* I provided that U (ξ) satisfies the condition o/3.14.

Operators of finite type

As is to be expected from the analogy with the elementary divisor theory

for a finite matrix, certain spectral operators should satisfy the formula

m-i An) /£\

/ ( Γ ) = Σ / f 7 Λ —r^iT~ξ)ndEξ, fCF(T).
σ{T) nl

One might expect this to be true if the spectrum σ(T) is nowhere dense and if

the resolvent T(ξ) has for ξ near σ(T) the same rate of growth as

[diS(ξ,σ(T)]-m.

We have been able to prove t h i s only in the c a s e where σ(T) i s r e s t r i c t e d to

lie in a suf f ic ient ly smooth J o r d a n c u r v e .

We shall assume throughout the following discussion that the function

defining the net described in 2.1 has continuous second partial derivatives. The

purpose of this assumption is to assure that the length of the contour C(λί9 λ2)

of 2.4 is at most Kδ, provided that λ t < λ 2 and δ = λ2 - λ t . Also the diameter

of C (λ i, λ2 ) is at most Kδ for δ = λ2 — λ ί .

3.16. LEMMA. (Assumption 2.1.) Let d{ξ) be the distance from ξ to the

spectrum σ(T). If \dm {ξ) T (ξ)\ is bounded for ξ near σ ( T), then

Jσ{τ)f(T,ξ) {T-ξΫm dEξ =0

for every T-uniform /((X, ζ).

We may and shall assume that v(λ) = m is an index function for T, so that

| s m τ{ξ)\ < l , o < | δ | < δ 0 , λ C [ - 1 , l ] .

Let λ t < λ 2 , λ 2 - λ t < δ 0 . Let C(λίJ λ 2 ) be the contour defined in 2.4 with

δ = λ 2 ~ λχ Let Δ be the closed subarc of Γ o defined by ζ(λ, 0 ) , λι <_ λ <_ λ 2 .
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L e t I(λχ9 λ 2 ) b e t h e i n t e g r a l d e f i n e d in 2 .4 wi th vγ = v2 - m a n d P(ξ)= 1.

L e t λ n < λ ί 9 λ 2 < μn, λn—• λ ^ μn—> λ 2 . By 2 .4 , we h a v e I ( λ n 9 λί)—>0,

' U 2 , μn)—»° A l s o , by 2 . 4 , 1.39 ( i i ) , 2 . 5 , a n d 1.12, we h a v e E& I(μn,λn) = 0 .

H ξj-ξUj O) ( / = 1 , 2 ) , t h e n

(T-ξ^iT-ξ^™ = / ( λ n , λ 1 ) + 7 ( λ ι , λ 2 ) + / ( λ 2 , μ π ) + / ( μ Λ , λ π ) ;

a n d s o we h a v e

E^iT-ξ^ (T-ξ2)
m = £ Δ / ( λ p λ 2 ) .

B u t b y 2 . 4 , w e h a v e σ ( / ( λ t , A 2 ) # ) C Δ ; h e n c e b y 1 . 3 9 ( i ) i t i s s e e n t h a t

λ2) = EhKλ^ λ2). Thus

Now, since δ = λ 2 - λlf there are constants Kl9 K2 such that

<λ <λ2

< KV89

and

length C(λl9 λ 2 ) <̂  K28.

It follows from the definition of I(λl9 λ2) therefore that

(t) l f λ 2 ) | <

Let the interval [ -1 , 1 ] be partitioned into n intervals [λy-i, λy] each of length

2/n9 and let Δy be the corresponding subarcs of Γ o with end points ζj-Uξj.

Statements ( * ) and ("f ) then give

Σ
7 = 1

Hence, by 3.5, we have

dEξ = 0.
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3.17. LEMMA. Under the hypothesis α/3.16, we have

{T -ξ)

where (ζ) is the set consisting of the single point ζ.

From 3.16, we get

(T - ξ)2m E{ξ) = E{ξ) fσ(τ)(T- μ)2m dEμ = 0.
( τ )

Thus

2m-i

T(a)E(ξ)= Σ

has a pole of order < 2m at OC = ξ. Since | dm (α) Γ (α) | is bounded for α near

ξ, the pole must be of order <̂  m; that is, ( T - <f ) m £(£) = 0.

3.18. LEMMA. Under the hypothesis of 3.16, we have

fσ(τ)f(T,ξ) (T-ξ)> dEξ = 0, /> m

for every T-uniform function f(θL, ξ).

For ξ= ξ(λ, 0) G Γo and 0 < | δ | < SOf let ξ% = ^ ( λ , δ ) . Then

Now assume for the purposes of induction (the above equality is the case / a= 1,)

that

Multiplying by (ζ — T), we have
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i+ = (ξ-T)i (ξ-T) Π £ g ) = (ξ-T)i[(ξ-ξs)T{ξ&)

+ + {ξ-ξi) (ξ-τy-1 + (ξ-τy

Hence

f(τ,ξ) [(ξ-τy+ι τ(ξs)~ (ξ-τy]

-f(τ,ξ)

Thus we may state:

( * ) If for some / = 1, 2, we have

- 0, 0 < | δ | < S o ,

then

hm J f(T, ξ) (ξ- ξBV
 ι T{ξh)dEξ = -

δ-»o σ

Now let 0 < I 8i\ < 80t (i = 1, 2, . • • , m). By 3.16, then,

/ / x f(T, ξ) (T-ξ)2m T(ξ, ) T(ξ, ) . . . T(ξ. )dEε = 0 .

To this equation we may apply ( * ) with 8 = 8l9 and with f(Tf ξ) replaced by

f(T,ξ) T(ξh). . T(ξSm). Thus,

Since

)\ < K\8ι\
m,
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the integrand on the right side of the preceeding equation approaches zero with

δι and uniformly with respect to ξ C σ( T). Thus

fffiτ) f(T,ξ) (ξ-T)2™-1 T(ξS2)... T(ξhm)dEξ = 0 .

A repetition of this process clearly yields the desired result:

X ( r )/(Γ, £) (ξ-TVdEξ = 0, /> m.

3 19. DEFINITION, Let m be a positive integer. A spectral operator T is

said to be of type m in case

m~ι * f(n) (()

/<Γ>- Σ frw—jϊ-w-ξrdEt
71=0

f o r e v e r y / s i n g l e v a l u e d a n d a n a l y t i c o n σ(T), t h a t i s , f o r / £_ F(T).

Let us recall that for the case in hand (that is, i^(λ) = m is an index func-

tion), the manifolds Wξ9 3lξ are respectively the zeros and the closure of

the range (T — ζ)m Then if d(ζ) is the distance from ζ to the spectrum σ( T)

we may state:

3.20. THEOREM. // X is weakly complete, T will be a spectral operator

and of type m providing

( i ) dm(ξ) T(ξ) is bounded for ξ near σ(T),

( i i ) for ζ in a set dense in Γ o the manifold We + 5ft̂  is dense in X,

( i i i ) all residues xσ have a bound of the form K \x\.

This theorem follows immediately from 3.11 and 3.18.

N. B. 1. As before, the condition ( i i ) is automatically satisfied if T enjoys

any one of the properties listed in 3.12. Also ( i i i) is satisfied if the resolvent

T(ξ) satisfies the mean rate of growth condition of 3.14 or 3.15.

N. B. 2. In case X is not weakly complete it is still true that E^ is defined

for every closed subarc of Γo (see proof of 2.11), and E/± is completely additive9

in the strong topology of operators, on the Boolean algebra determined by such

arcs. Thus the integral
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may be defined and the operational calculus developed even though Ee may not

be defined as an operator in X for every Borel set e.

An immediate corollary is (see 3.13):

3.21. THEOREM. // X is reflexive, then T will be a spectral operator of

type m if and only if

( i ) dm{ξ) T(ξ) is bounded for ξ near σ(T),

( i i ) all residues (x*, x ) σ have a bound of the form K \ x \ \x*\.
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ON ANALYTIC CHARACTERISTIC FUNCTIONS

EUGENE LUKACS AND OTTO SZA'SZ

1. Introduction. In this paper we discuss certain properties of characteristic

functions. Theorem 1 gives a sufficient condition on the characteristic function

of a distribution in order that the moments of the distribution should exist. The

existence of the moments is usually proven under the assumption that the charac-

teristic function is differentiable [ 4 ] . The condition of Theorem 1 is somewhat

more general and the proof shorter and more elementary. The remaining theorems

deal with analytic characteristic functions, and again some known results are

proved in a simple manner. Some applications are discussed; in particular, it is

shown that an analytic characteristic function of an infinitely divisible law can

have no zeros inside its strip of convergence. This property is used to construct

an example where an infinitely divisible law (the Laplace distribution) is fac-

tored into two noninfinitely divisible factors.

2. An existence theorem. Let F(x) be a probability distribution, that is, a

never-decreasing, right-continuous function such that F(-co) = 0 and F ( + oo) = 1.

The Fourier transform of F(x), that is, the function

(1.1) φ(t) = Γ+O° eitxdF(x),

is called the characteristic function of the distribution F{x), The characteristic

function exists for real values of t for any distribution, but the integral (1.1)

does not always exist for complex t. This paper deals mostly with characteristic

functions which are analytic in a neighborhood of the origin.

For an arbitrary function / ( y ) , we denote in the following the first difference

by

; ί) = Δ/(y; t) = f(γ + t) - f(y - t),

and define the higher differences by
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for k - 1, 2, It can then easily be shown that

k=o

I n p a r t i c u l a r , f o r t h e f u n c t i o n f (y) = eιm^ w e h a v e

ΔJ(y; ί) = eimy{eimt-e-imt)n = e i sin mt]n.

We first prove two lemmas.

LEMMA l Let φ(t) be the characteristic function of a probability distribu-

tion F(x), and let Δ2/c</>(0; t)/(2t)2k be the 2kth difference quotient of φ(t)

at the origin. Assume that

lim inf
(2

< oo.

Then the 2kth moment m ^ of the distribution F (x) exists, as do all the moments

mr of order r < 2k.

LEMMA 2. Under the assumptions of Lemma 1, the derivatives φ ( t ) exist

for all t and for r = 1, 2, , 2k and

φ ( r ) ( ί ) = ir J Γ ^ ~ xreitxdF(x).

Moreover, \ώ{2r)(t)\ < | φ 2 r \ 0 ) | = m2r for r = 1, 2, , k.

Proof. The assumption of Lemma 1 means that there is a constant U < oo

such that

(1.2) lim inf
ί - o (2ί)

2k
= M.

From (1.1) it is seen that for

φ(y) =

we have
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sin

and

(2t)2k

We see therefore from (1.2) that

c M

M
m Γ + o o sιnxt\2k

= hm inf / dF(x),
t->0 -βo \ t I

and hence that

2/c

x2k dF(x)

for any finite α. It follows then that the 2λ*h moment

m 2k Λoo

e x i s t s and t h a t M >_ w ^ L e t n e x t r be a p o s i t i v e i n t e g e r s u c h t h a t r < k; t h e n

, andχ2k > x

2 r [{ \ x

2

2 k

\x\
dF(x) > S x2rdF{x),

\\x\

s o t h a t the m o m e n t s of even order m2r [ r = 1, 2, ••• , (A — l ) ] e x i s t a l s o . More-

over ,

for any α and b. This shows that the absolute moments of odd order not exceed-

ing 2/c, and therefore also the moments m2r i (r = 1, 2, , h), exist. This

proves Lemma 1.

From the existence of the moments mΓ (r = 1, 2, , 2k) we see immediate-

ly that J xτ eιtx dF(x) exists and converges absolutely and uniformly for

all real t and r < 2k. It follows then from a well-known theorem (see for instance
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[2, pp. 67-68]) that all derivatives exist and are obtained by differentiating

under the integral sign. This proves Lemma 2.

From Lemma 1 and 2 we obtain immediately:

THEOREM 1. Let φ(t) be the characteristic function of a distribution

F(x), and assume that, for an infinite sequence of even integers \ 2n^ },

(1.3) lim inf
ί)

= Mk

is finite {not necessarily bounded) for k — 1, 2, . Then all the moments mΓ of

the distribution F(x) exist; and φ(t) can be differentiated for all real t any

number of times, with

φ(r\t) = iτ f*°° xΓ eitx dF(x).
- oo

COROLLARY 1. // all the derivatives of the characteristic function exist

at the origin, then all the moments of the distribution exist.

This corollary was proved by R. Fortet [ 4 ] ; it is also stated in some text

books of probability [2, 5], as well as in a paper by P. Levy [ 7 ] . Theorem 1 is

somewhat more general; the proof given here is similar to the proof indicated for

the corollary by H. Crame'r [2, p. 89].

3. Analytic characteristic functions. From now on we assume that the

characteristic function φ(t) coincides with an analytic function in some neigh-

borhood of the origin. Then the assumptions of the corollary are satisfied, all

the moments exist, and the characteristic function has the expansion

oc ik mk

(2.D φ(z) = ]Γ — r χk f o r 1*1 < P »

where p > 0 is the radius of convergence of the series.

We write

for the even part of φ ( z ) , and
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for the odd part of φ{z), then the two series

oo I — I

(2.2)

*«,<*>- Σ

M * > - Σ

l2k

(2k)\

•2/c-l
mΊk-l

2 A;

,2/c-l

converge also in circles about the origin. Denote the radii of convergence of

these series by p and p

If we denote the A th absolute moment of F (x) by

and observe that

we see that

(2.3)
n2k-ι

(2A- 1)!

This shows that

1)! " 2 (2k)\
(24)

Pi > Po >

\k-2

( 2 A - 2 ) !

l con-We see further from (2.3) and β2ιί = m

2/ί that the series 2l,Γ=o βk z I

verges for I z I < pQ. From Lemma 2 we see, for any real ξ, that

\ φ { 2 k ) ( ξ ) \ < m , .

Hence if we denote the radius of convergence of the Taylor series of φQ(z)

around ξ by pQ(ζ), then

> P O ( O ) = p0.



6 2 0 EUGENE LUKACS AND OTTO SZA'SZ

Similarly it follows from

\Φ{2kml)(ξ)\<β2k.ι

and (2.3 ) that

PSO > P / O ) = Pι> P

We have thus shown that the Taylor ser ies of φ (z) and also that of φ (z)

around ξ converge in circles of radii at leas t equal to p. The same i s therefore

true for the expansion of φ(z) around ξ; thus we conclude that the function

φ(z) i s analytic at leas t in the strip

- p <&(z) < + p .

The analyticity of φ(z) in a horizontal strip follows also from a result of

R. P . Boas [ 1 ] . Boas showed that the Fourier-Stieltjes transform of a bounded

and never-decreasing function is analytic in a horizontal strip provided that it

is analytic in a neighborhood of the origin.

We show next that the representation of the characterist ic function by the

Fourier integral ( l l ) is valid in the strip - p < $(2:) <*+ p .

We saw above that the se r ie s Z^V = Q \y\V βv/v\ converges for | y | < p. Clear-

r + A \x\vdF(x) = / _ + '

V=0 *" f = 0

for any A. There fore the in tegra l J e>^ > dF(x) e x i s t s , and h e n c e the i n t e -

gral f eιzx dF(x) i s convergent w h e n e v e r | e l z % | < e l ^ * ' , where z = ζ+ iy.

T h u s for any ζ and | y \ < p the in tegra l i s convergent . T h i s i n t e g r a l i s an ana-

l y t i c function in i t s s t r ip of c o n v e r g e n c e and a g r e e s with φ{z) for r e a l z; there-

fore it must agree with φ{z) a l s o for complex v a l u e s z - ζ + iy p rov ided

\y\ < P .

We are now in a position to formulate our main result.

THEOREM 2. If a characteristic function φ{z) is analytic in a neighborhood

of the origin, then it is also analytic in a horizontal strip and can be represented

in this strip by a Fourier integral. Either this strip is the whole plane, or it has

one or two horizontal boundary lines. The purely imaginary points on the boundary
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of the strip of convergence (if it is not the whole plane) are singular points of

φ(z).

The first part of Theorem 2 was established above; we have to prove the

statement concerning the singular points of φ ( z ) .

The integral

φ(z) = Γ°° eizxdF(x)

c o n v e r g e s in a s t r i p - (X < <ϋ(z) < + β, w h e r e OL > p a n d β > p, a n d i s a n a l y t i c

i n s i d e t h i s s t r i p . T o carry out t h e proof c o n c e r n i n g t h e s i n g u l a r p o i n t s of φ(z),

we u s e t h e d e c o m p o s i t i o n

f eizxdF(x) + f0^ eizxdF(x) = ̂ ( z ) + C2(z) (say).

Now ^ ( z ) and &2(z) are Laplace integrals, convergent in the half-planes

SX z) > - α and cSLC z) < β, respectively. Let z = iw; then iz - - w. If z - ζ + iy,

then w = - i ζ + y thus

EAiw) = Γ e'wx dF(x) ^ Φ(w)
1 JQ

is convergent for K(tυ) > - α .

It is known that the Laplace transform

g(s) = fo°° e stdG(t)

of a monotonic function G(t) has a singularity at the real point of its axis of

convergence. For a proof the reader is referred to [9, p. 58]. This theorem is

similar to well-known theorems in power series and Dirichlet series. From the

fact that F(x) is nondecreasing we conclude therefore that — CC is a singular

point of Φ(tt ). Thus — ΐOC is a singular point of φ(z). In the same way it is

also seen that iβ is a singular point of φ(z ).

Theorem 2 was stated without proof in a recent paper by D. Dugue' [ 3 ] , and

is indicated in a footnote of an earlier paper by P. LeVy [ 7 ] .

An immediate consequence of the preceding result is this:

COROLLARY 2. Λ necessary condition that a function analytic in some
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neighborhood of the origin be a characteristic function is that in either half-plane

the singularity nearest to the real axis be located on the imaginary axis.

4. Applications. In the following we discuss some applications of our new

results.

The corollary to Theorem 2 can sometimes be used to decide whether the

the quotient of two characteristic functions is again a characteristic function.

We illustrate this by an example. Let

-1

and

with a2 > b2 > 0. It is easy to see that both these functions are characteristic

functions. Their quotient

Φ2(t)

satisfies the elementary necessary conditions for characteristic functions,

namely φ(-t) - φ(t), φ(0) = 1, | <£ ( £) | <_ 1 for real t. However, the condition

of the corollary to Theorem 2 is violated since φ(t) has no singularity on the

imaginary axis while it has a pair of conjugate complex poles ±b — ia Therefore

φ(t) can not be a characteristic function.

Theorem 2 can also be used to establish the following property of analytic

characteristic functions.

THEOREM 3. Let φ{z) be an analytic characteristic function. Then for any

horizontal line in the strip, the function φ(z) and its derivatives φr \z) all

attain their absolute maxima on the imaginary axis.

Proof. By Theorem 2 we have

φ{z) = f+°° eixz dF(x)

in the strip of convergence. Let z — ia + η then
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m a x \ φ ( i a + η)\ < J J ° e ' a x dF(x) =
- OO < T)< OO

- OO

This result is due to Dugue' [ 3 ] .

We also obtain:

COROLLARY 3. An analytic characteristic function has no zeros on the

segment of the imaginary axis inside the strip of analyticity. The zeros and the

singular points of φ{z) are located symmetrically with respect to the imaginary

axis.

The first part of the corollary follows immediately from Theorem 3; we obtain

the statement about the location of the zeros and singularit ies of φ(z) if we

observe that the functional relation

φ(z) = φ(-z)

holds not only in the strip of convergence of the Fourier integral but in the

entire domain of regularity of φ{z).

An important theorem on analytic characteristic functions is due to P. Levy

[6] and D. Raikov [ β l :

T H E O R E M O F L E V Y A N D R A I K O V . L e t φ ( t ) be an analytic characteristic

function, and assume that φ { t ) — φ ( t ) φ ( t ) , where φ {t) and φ ( t ) are both

characteristic functions. Then the factors φ ( t ) and φ ( t ) are also analytic

functions, and their representations as Fourier integrals converge at least in

the strip of convergence of φ ( t ) .

This theorem was originally proven by P. Le'vy [6; 7] only for entire charac-

teristic functions; a simple proof may be found in [3]

From the foregoing theorem we easily deduce:

THEOREM 4 Let φ(t) be the characteristic function of an infinitely divis-

ble law, and assume that φ(t) is an analytic function. Then φ(t) has no zeros

inside its strip of convergence.

If φ(z) is the characteris t ic function of an infinitely divisible law, then the

function \.φ{z)~\ι'n must be a characterist ic function for any n, and a l so a

factor of φ(z). If furthermore φ{z) is a lso assumed to be analyt ic, then, by the

Le'vy-Raikov theorem, [φ(z)]ι/n must be analytic at leas t in the strip of con-

vergence of φ ( z ). If φ ( z ) were to have a zero at some point z0, then [ φ ( z ) ] ι / n
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would have a singularity at z0 for sufficiently large n, which is impossible.

We can use Theorem 4 in the construction of an example which shows that

an infinitely divisible law can be obtained as the product of two noninfinitely

divisible laws. Let

v = a + ib .

A s i m p l e c o m p u t a t i o n s h o w s t h a t ώ(t) i s a c h a r a c t e r i s t i c f u n c t i o n if

b > 2yJ~2 a.

Then also φ( — t) is a characteristic function, as is

1
φ(t) = φ ( t ) φ ( - t ) = .

t2

The characterist ic functions φ(t) and φ(-t) are analytic characteris t ic func-

tions with zeros in their str ip of convergence: hence they are not character is t ic

functions of infinitely divisible laws. Their product φ(t) is the characterist ic

function of the Laplace distribution, which is known to be infinitely divis ible.
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EVALUATION OF AN INTEGRAL OCCURRING IN

SERVOMECHANISM THEORY

W. A. MERSMAN

1. Introduction. In the study of dynamical systems in general, and servo-

mechanisms in particular, it is often required to determine the (constant) co-

efficients in a linear, ordinary, differential equation in such a way as to mini-

mize an integral involving the square of the difference between the solution of

the equation and a known function. The latter may be given in either analytical

or numerical form. In the design of a servomechanism the known function is the

"input"; the solution of the equation is the "output"; and the coefficients of

the equation are the circuit constants to be determined. A similar problem arises

in the study of aircraft flight records, in which the known function is any of the

dynamic variables used to describe the motion, and the coefficients are the so-

called aerodynamic derivatives, the determination of which is the purpose of

the flight.

Mathematically similar problems also arise in the analysis of a mixture of

radioactive substances or of bacteria. The known function is, say, the total

weight of the mixture as a function of time, and the unknown coefficients are

the relative weights of the different substances initially present.

All such problems can be solved by the method of least squares, and the

procedure always leads, at a certain stage, to the evaluation of an integral of

a particular type. This integral has been studied by R. S. Phillips L 3, Chap. 7,

§7.9] , who has given a procedure for its evaluation and a short table of results.

The purpose of the present note is to derive a simple, explicit formula for this

integral.

2, Evaluation of the integral. The integral to be evaluated is

(1) / = I ax,
2πi J'ooi h(x)h(-x)

where
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= Σ Mn-k)

A:=o
k> ak r e a l ^ °

There is no loss of generality in restr ict ing g(x) to contain only even powers,

s ince odd powers would make no contribution to the value of the integral. It is

assumed that the zeros of h(x) are all dist inct and have their real parts nega-

tive. Then the integration can be performed immediately by means of the theory

of res idues [ 4, Chap. 6 ] , and the resul t is

(2) = Σ

where Λ^ is the residue of the integrand at x^, and h{x^ ) = 0. This expression

can be evaluated in terms of the coefficients g^ and a^ by starting with the

obvious identity

Clearing fractions gives

1

h(x)h(-x) ~χ \ x " x

k

1

(3)
h(x) h(-x)

h{-x) + h{x)

Since x^ is a zero of h(x), the quantity h (x)/(x - x^ ) is a polynomial; in fact,

/=o

Substitution in (3) gives an identity between two polynomials. Equating coef-

ficients of like powers of x gives a set of simultaneous, linear, algebraic e-

quations for the ,4 :̂
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( 4 ) Σ <X/* ( / = 1 , 2 , . . . 9 n ) ,

where

aIk \i xk ( Z , k = 1 , 2 , . . . Λ ) ,

ί = Σ Z , ΐ = 1, 2 , n ) ,

r> — ^ 7 t _ 1 O λ

dμ = (- 1) } α. . (/, i = 1, 2, ««« , n ) ,

with the convention that α̂ , = 0 if k < 0 or k > n. With |(X^ | for the determinant

with n rows and rc columns having 0,^ in the Zth row and A th column, the rule

for multiplying determinants [ 1, Chap. 8] gives

Now,

\n

- O n

lk \dji

0

0

CLr\

.. o

.. o

.. o

±α0

and

1 1

- Vn,
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where Vn is the well-known Vandermonde determinant.

Hence, writing Cn = | Cj. |, we have

In equation (4), write ^ = (-1)™ g^/2 for convenience, and subtract βj

from both sides. Recalling equation (2), we see that the resulting system can

be put in the form

(5)

/ - Σ h = o

ft'+ Σ «χ/jfc - ft > ( 1 < I < n ) ,

a system of n + 1 equations in the n + 1 unknowns /, Λl9 A2, , An that can

be solved directly for /. First consider the-determinant, D, of the coefficients in

the left members of (5) :

D =

1 -1

βι au~

Hn ^nl Hn

- 1

-βn .

Adding the first column to each of the succeeding columns immediately gives

the result

- C 1 Ϊ Λ

Now Vn £ 0, since all the zeros, x^, of h(x) were assumed to be distinct; and

Cn does not vanish, since it is precisely the Hurwitz determinant [2, p. 163]

of the polynomial h(x), all the roots of which lie in the left half-plane. Hence

D ^ 0, and the system (5) can be solved for / directly by Cramer's rule [ 1 ,

Chap. 8]
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DI =

0 - 1

βi α u - / 3 !

βn

- 1

- β2

- βn

Again adding the first column to each succeeding column gives

o - l . . . - l

j 8 i o c u ••• a ϊ n

β2

βn

By the definition of d£y, this can be factored twice to give

DI

M

α 0

0

βi

β2

•

1

c π

c 2 l

.

o . . .
c 1 2 . . .

c 2 2 ...

(
c

c

<

βn

where

M

1 0

0 rf

0 d.

11

21

1

0

0

0

1

xι

. . 0

• 1

• x

,n-\
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< Cn Vn I-
- 1

632

Thus,

βi Ci2 . . . C,

βl ^2 2 ' * ^ 2

•
•
βn Q2 ' " " Cm

The relation β^ = (-1)" g /̂2 gives, finally, the desired formula:

where

= | c . y | (1 < ί, /, n ),

i f 7 =

ij if / > 1 ,

Since / is a continuous function of the coefficients of h(x), and hence of the

zeros, equation (6) remains true when two zeros coincide.
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CAPACITY, VIRTUAL MASS, AND GENERALIZED SYMMETRIZATION

L. E. P A Y N E AND A L E X A N D E R W E I N S T E I N

1. Introduction. A body of revolution B can be symmetrized with respect to

its axis of symmetry in a number of ways. One of these is the Schwarz sym-

metrization, which preserves the volume of B. Another is the Steiner symmetri-

zation of the meridian section of B, which preserves the area of this section but

in general decreases the volume. The influence of the Schwarz symmetrization

on the capacity has been investigated by G. Polya and G. Szegό*, [ l ] . More re-

cently P. R. Garabedian and D. C. Spencer [2] discussed the same question for

the virtual mass of bodies of revolution. In the present paper we shall study by

a different and simpler method the behavior of the capacity and virtual mass

under a more general type of symmetrization, which includes the Schwarz and

Steiner symmetrizations as particular cases.

2. Definitions. Let the (x, y)-plane be the meridian plane of B, the %-axis

being the axis of symmetry. The part of the meridian section of B which lies in

the upper half plane γ >_ 0 is denoted by D. The complement of D in the half

plane is designated as E. We assume that D is simply connected and that E is

a connected domain. The boundary of D consists in general of a segment of

the %-axis and a line L. We exclude the case where L is a closed curve and

lies entirely above the %-axis, as is the case in which B is a torus. We assume

L to have at most a finite number ot angular points.

We shall use in this paper some recent results of axially symmetric potential

theory in n-dimensional space. This theory which is of mathematical interest

in itself will be used here mainly as a tool to obtain results for bodies of revo-

lution in three dimensions.

Let us henceforth consider our (x, y)-plane as the meridian plane of a body

of revolution B[n] in τι-dimensions, n — 3, 4, 5, . We assume that jδ[ra] has

the same meridian section D as our three-dimensional body B - J5[3]. All quanti-

ties considered hereafter are defined in the meridian plane and therefore are

functions of x and y only. Actually we shall never use B [n] but only its meridian

section.

Received March 5, 1952. This research was conducted under the sponsorship of the
Office of Naval Research.
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Let ψ(x, y) be an axially symmetric potential function defined for y >_ 0

and let ψ(x, y) be the corresponding stream function. We have then the gener-

alized Stokes-Beltrami equations

(1) y™ ίt =ίt, y» * ?! =_ ίt.
dx dy ' dy dx

To emphasize the dependence of φ and ψ on n we shall often use the notations

φ [n ] a n d ψ [n].

T h e v o l u m e F [ A I ] o f B[n] i s g i v e n b y

(2) V[n) = ωnml JJ γn'2 dxdy,
D

w h e r e ωh = 2πh/2 /Γ {h/2). We i n t r o d u c e t h e c a p a c i t y C[n] of B[n] b y t h e

f o r m u l a

(3) CM = JJ yn'2 (grad<^[^])2 dxdy,

where φ[n] is a potential which assumes the value unity on L and vanishes as

{x2 + y 2 ) " ( n " 2 ) / 2 at infinity. It is obvious that (3) reduces to the classical

definition of the capacity for n — 3.

We define also the virtual mass M[n] of B[n] by the formula

(4) M[n] = ωn.ι j j y"^n' (grad ^[rc] ) 2 dxdy.

E

The function ψ[n} in (4) assumes the value yn'ι/(n - 1) on L and vanishes at

infinity like yn~x (x2 + y2)~n/2. Our definition of the virtual mass generalizes

that of P. R. Garabedian and D. C. Spencer [2]

3. The correspondence principle and the fundamental formula. We use here

a relationship due to A. Weinstein [4],

( 5 ) φ[n] = yn'1 (n - I ) ' 1 φ[n + 2).

This equation shows that to each stream function ψ[n] corresponds a well-

defined potential φ[n + 2] In particular to the stream function ψ\n] in formula

(4) corresponds a potential φ[n + 2] which assumes the value unity on L and

vanishes as (x2 + y2)"7l//2 at infinity. In other words c£[rc + 2] is the electro-

static potential of B[n + 2 ] . The substitution of (5) into (4) leads after an
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elementary integration by parts to the fundamental formula

(6) M [ n } + V [ n ] = „ " / * \ { n - 1 ) Γ ( - + l \ \ C [ n + 2 ] ,

which we shall employ here in the study of the behavior of M[n].

4. Generalized symmetrization. A line x = constant, y >_ 0, intersects L in

m points yχ{x) > 72 ( % ) > 73 (χ) > ••• > 7 m ( % ) > 0. The number of inter-

sect ions m usually depends on x. Let us consider the line Lq defined by the

equation

(7) yHx) = Σ (-D^"1 #(*),

where q is a positive constant not necessarily an integer. The body of revolution

Bg[n] with section Dg defined by its profile Lg is said to be obtained by a

symmetrization Sg. Let us note that $n-ι can be considered as a Schwarz sym-

metrization of B[n]. On the other hand, under 5 t the meridian profile of B[n]

undergoes a Steiner symmetrization. Our main results are embodied in the follow-

ing theorems:

I. V[n] does not increase under Sq for 0 < q <_ n - 1 and does not de-

crease under 5^ for q >_ n - 1. In particular, V[n] remains invariant under Sn.1.

II. C [ Λ ] does not increase under Sg for 0 < q < n — 1.

III. M[n] does not increase under Sg for n - 1 < q < n + 1.

Let us observe that by (6) Theorem III follows immediately from I and II. In

order to prove Theorems I and II we shall first establish some useful inequali-

ties.

5. Fundamental inequalities. Let yx > y2 > > ym > 0 an& let q and s

be two positive numbers. We have then

( 8 )

To prove the second inequality of (8) let us observe that it is sufficient to

show that

<
Γ m

Σ

l/(^+s)

<

k=l
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( 9 ) 7+s

Let us put y? — a, and (q + s )/q = r > 1. Then we need only show that

(10) α j + ar

2 + . . . + ar

m < (aι + a2 + . . . + am )r.

But this is a classical inequality [ 5 , p. 32]. As to the first part* of (8) we give

here a proof communicated to us by H. F. Weinberger [ 7 ] . This inequality does

not seem to be mentioned in the available literature. Using again the notations

in (10) and putting

(11) F{al9 a2, ... , am) =

k=\

a[ -

we have to prove that, for aι > a2 > > am > 0 and r > 1,

(12) F(al9 a2, . . . , am ) > 0 .

This inequality is obviously true for m = 1 and follows immediately if m = 2 from

inequality (10). Let us therefore assume that (12) holds if we replace m by

m — 2; this is equivalent to assuming the inequality

(13)

We have also

F(a2, a2, α 3, . . . , am) >_ 0.

ι( 1 4 ) F (al9 a2, . . . , am ) = F(a2, a2, a3, . . . , am ) + f ι daι .

But from (11) we observe that

(15)
1 dF

Σ (-
r-ί

which shows that dF/daι is nonnegative. Since the same holds by assumption

for F (a2, α 2, α 3, , α m ) w e obtain at once the required inequality (12).

*R. Bellman has pointed out that this inequality holds more generally with yr re-
placed by an arbitrary continuous convex function fiy) defined for y >_ 0.
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6. The effect of the generalized symmetrization on V[n~\. It follows immedi-

ately from (2) that

(16) y* dx,

where the integral is taken over the interval ((X, β) bounded by the greatest

and smallest values of x on L. Let us apply the syrnmetrization Sg defined by

(7). The volume F^frc] is then given by

(17) Vqln]-ωnmχ ( I . - 1 Γ 1 ΓΦ Σ <-
n-l/q

dx.

By (8) we see that for g < n - 1 we have

( 1 8 ) Vq[n] < ωn_χ ( n - I f 1 j f Σ<-

On the other hand for f > n - 1 we have again by (8)

(19)

The formulas (18) and (19) establish the proof of Theorem 1 of § 4

7. T h e e f fect of g e n e r a l i z e d symmetr izat ion on C[n}. In s t u d y i n g the be-

havior of C[n] under the symmetrization Sq we shall generalize to a certain

extent the procedure given by Pόlya and Szegδ' for the Steiner symmetrization

[l, p. 182]. Let us introduce a Cartesian system (x, y, z) and consider a sur-

face z (x, y) defined in a large half circle A enclosing D. We assume z (x, γ) to

be a function positive throughout A and vanishing on the circular portion of its

boundary. The particular function z which we shall consider will assume a con-

stant positive value z0 in the subdomain D of A. This value will be the maximum

of z(x9 y) in A. We further assume that z{x, y) is analytic outside D. The sur-

face z = z(x, y) except for its flat portion may also be defined as a surface

y = y(x, z) in a certain domain G of the (x, z)— plane. However, y(x, z) may

not be a single-valued function of x and z. For this reason we must consider as

in [l] the surfaces y^ (x, z) (k = 1, 2, , m), where

yx(x9 z) > y2(x, z) > ••• > ym(x, z) > 0 .
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These surfaces taken together with the flat portion constitute the surface

z{x, y).

Let us consider the integral

(20) = if Σ rΓ
2
(*' 1 +

dx dz

1/2

dx dz«

Let us first apply the symmetrization Sn_! by putting

(21) n-l

and consider the integral

(22) '. - JJ r.
1
"

3
1 +

We prove now that

(23)

,dx

/ > /*.

1/2

dx dz .

in fact by substituting (21) into (22} and computing όγ^/dx and r>'y* /c?z we ob-

tain the formula

(24) Jf Σ (- JL*I ! - k

^•V

A = ι

Σ (-I)*'1 JV 77
2 Ί 1/2

According to the inequality (8), /* will not diminish if we replace the first square

bracket in (24) by [ Σ ^ = i ^k'2^2' ^Pon aPplying t n e Minkowski inequality we

find that the integrand in 4 is not greater than the integrand in /; this proves

formula (23).

Let us observe that

25) / = y n - 2 f i + z2

x +
1 / 2

"'2 dxdy>
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the last integral being the contribution from the flat part of the z surface. We now

insert into (25) the expression z {xt y) = eΦ{x, y), e being a small positive

number and Φ satisfying the same conditions as z. This substitution yields

(26) / - JJ yn'2 dxdy + (e2/2) JJ yn'2 {Φ2

χ + Φ2 ) dxdy + O( e 4 ) .
A-D A

According to inequality (23), / does not increase under Sn^ι. The first integral

in (26) is obviously equal to the same integral taken over the symmetrized

domain A^ - D*f where A* = A. By letting e tend to zero we conclude in the

usual way [1] that the integral

does not increase under Snml. If we let the radius of the half circle bounding

A tend to infinity we obtain the same statement for a function Φ which vanishes

at infinity, providing that the integral converges. In particular if we take for

Φ a function which is equal to unity in D and equal to the electrostatic potential

φ[n] in E we find that C\n] does not increase under Snml

In order to prove that C[rc] does not increase under Sq for 0 < q <^ n — 1

let us observe that under Sq the line L bounding D[n] goes into a line Lq which

has by the inequalities (8) the following property: if qχ < q2 then the domain

Dg [n] bounded by Lq has no points outside the domain Dq [n] bounded by

Lq . We denote the capacities corresponding to these domains by Cq [n] and

Cq [ft], respectively. It is a well known property of the ordinary three-dimension-

al capacity that if one body contains another body the former has the larger

capacity. The proof of this statement is based essentially on the variational

definition of the capacity. The same property holds obviously for all values of

n. We therefore have Cq [n] < Cq [n]. In particular Cq[n] <^ ̂ . J ^ l ^ s w e

have already proved C Λ _ 1 [ Λ ] <̂  C[n] we obtain the result

( 2 7 ) Cq[n]<C[n], 0 < q < _ n - l ,

which concludes the proof of Theorem II of §4 . As already mentioned in > 4,

Theorem III follows immediately as a corollary of I and II.

8. Stεiner's Symmetrization of the meridian section with respect to the

r-axis. We shall consider briefly a symmetrization of the domain D with respect

to the y-axis defined by the classical equation
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m

(28) 2x = y

In a manner similar to that used in § 7 we find that FL^l remains invariant and

C [ n ] and M [ n ] do not increase under such a symmetrization

9. Concluding remarks. All results of § 4 can be extended to the case of

two dimensional bodies which are symmetric with respect to the %-axis. It should

be noted that these results hold for C [ 2 ] as long as the radius of A remains

finite. It has already been proven [l, 2] that C [ 2 ] and Λ/[2] do not increase

under Sι and also that C [ 3 ] and A/[3] do not increase under S2. These cases

are included in our Theorems II and III. We note also that formula (6) appears in

an equivalent form for n-2 and /ι = 3 in papers by G. I. Taylor [6] and M.

Schiffer and G. Szego"[3], where C [ 4 ] and C [ 5 ] are (up to a constant factor)

called dipole coefficients. No attempt was made in these papers to study the

behavior of the dipole coefficients under symmetrization. However, it was recog-

nized in [3] that they are increasing set functions, a fact which becomes almost

obvious in our theory of generalized electrostatics (see § 7). Finally let us

remark that in § 2 we have introduced the (x, y)-plane as the meridian plane of

an rc-dimensional space. But since all quantities are defined in terms of x and

y, the index n appearing in our formulas need not be restricted to integral values.

In fact it can easily be seen that all our formulas and results remain valid for

all real positive values of n greater than two. For such values of n our results

are mathematical statements about certain integrals such as K[nl, C[n], and

M[n] which are associated with the generalized Stokes-Beltrami equations.
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THE BOUNDEDNESS OF THE SOLUTIONS OF A
DIFFERENTIAL EQUATION IN THE COMPLEX DOMAIN

CHOY-TAK TAAM

1. Introduction. Let Q(z) be an analytic function of the complex variable z

in a domain. In the following we shall be concerned with the differential equa-

tion

(1) — + Q(z) W = 0 .
dz2

Only those solutions W ( z ) of (1) which are distinct from the trivial solution

( Ξ O ) shall be considered.

For a real-valued continuous solution y(x) 4 0 of the differential equation

d2y
(2) _ ! + f{χ) y = 0,

dx2

where f(x) is a real-valued piecewise continuous function of the real variable

x for 0 < x < oo, N. Levinson [l] has shown that the rapidity with which γ{x)

can grow, and the rapidity with which it can tend to zero, both depend on the

growth of GC(Λ ), where

(3) α U ) = fQ

X I / U ) -a\ dx,

and a is a real positive constant. More precisely, he showed that

(4) y U ) = θ ί e x p | - a~ι/2 OL(x)\j,

a n d t h a t if 0i{x) - 0{x) a s x — > oo, t h e n

( 5 ) l i r a s u p | v ( x ) | e x p — a~ι/2 O L { X ) \ > 0 .
x -* oc ' L 2 J

If there exists a positive constant a such that <X(x) converges as x—> oo, then

Received February 20, 1952. The author is grateful to Professor P.C. Hosenbloom for
some suggestions in this paper.

Pacific J. Math. 2 (1952), 643-654
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from (4) it follows that every solution y (x) of (2) is bounded as x—>oo. Levinson

also showed that (4) and (5) are the best possible results of their types*

Along any line of the z-plane, for instance the real axis, the differential

equation (1) has the form

d2W
(6) + Q{χ) W = 0 ,

dx

where x is real. Along a line, the growth of the solutions W (x) of (6) also

depends on the growth of a function similar to that in (3), and they also sεitisfy

two relations like (4) and (5)* These relations will be established in §2. From

these results, we can obtain sufficient conditions for the boundedness of the

solutions of (1) on a line, or on certain regions of the z-plane.

In §3 we shall investigate the asymptotic behavior of the solutions of (6)

when they are bounded. In §6 we shall give a relation of the boundedness of

the solutions of a self-adjoint differential equation of the third order and a dif-

ferential equation of the second order*

2. Growth of the solutions along the real axis. We now consider equation (6)

w h e r e x i s r e a l . L e t qx (x) and q2 (x) b e , r e s p e c t i v e l y , t h e r e a l and i m a g i n a r y

p a r t s of Q(x). If

( 7 ) φ ( x ) = fQ

X l \ a - q χ ( x ) \ + \ q 2 ( x ) \ ] d x ,

where a is a positive constant, then φ{x) determines not only how large a

solution ΪF(Λ ) of (6) can become, but also determines how small it can become.

These results are contained in the following two theorems.

THEOREM 1. / /

(a) W(x) is a solution of (6),

(b) φ(x) is defined as in (7),

then

(8) W(x) = () ' Λ ™ ' — - ~ 1 / 2 ^ ί v J l Ί / ' ί v 1 ! _ n L v . L . "1/2- α~1/2 φ(x)}\ W\x) = 0 ίexp [- α

An immediate consequence of this theorem is the following corollary.

COROLLARY 1.1. Every solution W(x) of the equation (6) and its derivative

W (x) are bounded as x —> co provided there exists a positive constant a such

that φ{x) converges as x —> co.

In Theorem 1 we cannot expect to replace φ(x) by a more symmetric form
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/ [\a - q ι ( x ) \ + | i - q 2 ( x ) \ ] d x ,

where 6 ^ 0 and is real, and a > 0. A counter-example is the differential equation

d2W
— T + ( l + ί) W = o,

ax

which has solutions unbounded as x—> oo.

THEOREM 2. / /

(a) W (x) is a solution of (6) ,

(b) φ(x) = 0{x) as x —> oo, where φ(x) is defined as in (7),

then

(9) lim sup \W(x)\ exp — a~ι/2 φ{x)\ > 0 .
x-* °° L2 J

C l e a r l y lim s u p | I F ( Λ ; ) | > 0 a s %—> oo if φ {x) i s convergent .

T h a t (8) and (9) are the b e s t p o s s i b l e r e s u l t s follows from the fact t h a t (4)

a n d (5) are the b e s t p o s s i b l e r e s u l t s .

We sha l l now prove Theorem 1 and 2.

Proof of Theorem 1. L e t the r e a l and imaginary p a r t s of a s o l u t i o n W (x) of

(6) be u{x) and v(x)9 r e s p e c t i v e l y . Separa t ing the rea l and imaginary part of

(6), we obta in

(10) M " + q γ ( x ) u - q 2 ( x ) v = 0 ,

(11) υ" + q2ix) u + qχ{x) v = 0 .

Suppose a > 0, and let

(12) H ( x ) = \ W ' { x ) \ 2 + a \ W { x ) \ 2 = u ' 2 ( x ) + v ' 2 { x ) + a [ u 2 { x ) + i ; 2 ( Λ ) ] .

Then using (10) and (11), we have

iτj

(13) = 2(M'M / / + t ' i ;") + 2a(uu' + υv')

dx

= 2 [α - ςrL (Λ; ) ] ( M M ' + vv') + 2q2(x) {u'v - uυ') .

Using the following inequalities,

2uW < a~ί/2{au2 + u ' 2 ) , 2 w < α ~ 1 / 2 ( α ί ; 2 + V2 ) ,



646 CHOY-TAK TAAM

2u'v <a~ϊ/2(u'2 +aυ2), 2uV < α " 1 / 2 ( v'2 + au2),

and (13), we see that

( 1 4 ) — < a~ι/2[\a - q ( x ) \ + \ q Λ x ) \ \ U ' 2 + V2 + au2 + a v 2 )
d x

= α " 1 / 2 ( | α - q ι ( x ) \ + \ q 2 ( x ) \ ) U.

Since // > 0, we have

Integrating (15) from 0 to x9 we obtain

(16) tl(x) < / / ( 0 ) e x p [ α " 1 / 2 φ(x)].

In view of the definition of H{x)9 the expression in (6) is equivalent to the two

in (8). This completes the proof of Theorem 1.

Proof of Theorem 2. In nuch the same way as in the proof of Theorem 1, it

is easy to show that

I — > - β " 1 / 2 [ | α - 9 ι ( x ) | + I < 7 2 U ) | ]
// dx

Consequently, we have

(17) H ( x ) = \ W ' ( x ) \ 2 + a \ W ( x ) \ 2 > C e x p [ - α " ι / 2 φ { x ) ] .

For each positive integer n, let xn> x^, x" be points in the interval n < x < n + 1

such that

I y'( # Λ ) I = max | ^ ( x ) | , I u'(x^) \ = min | z / ' ( % ) | , l ^ ' ί ^ ' ) ! = min | v'( x) \

in the interval n < x < n + 1. Integrating (10) from x^ to xn and (11) from x'ή to

xn, we obtain

n n Jχ^ I 2

< | u ' ( % ' ) | + I I^ 'CΛ;^ ) I f n ( \ q Λ χ ) \ + | ^ ( ^ ) | ) d x 9

( 1 9 ) υ>{xn) = v'(xp + /«" V-qΛx) u(x) - qAx) v(x)] dx
xn
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Since

\ W ' { x Λ ) \ < \ u ' { x H ) \ + \ v ' { x n ) \ ,

(18) and (19) yield

(20) \w(xn)\ < \w{x'n)\ + | ι W * ; ' ) |

+ 2\W(χn)\ fn

n+l ί\qι(χ)\ + \q2ix)\] dx.

Clearly either | u'(x' ) | = 0 or u'(x) does not change sign in n < x < n + 1. If

u'(x) does not change sign in n < x < n + 1, we have

(21) 2 max | n ( * ) | > \u(n + 1) - α ( n ) | = | / ^ + l u'(x) dx\ > \u'{x')\ .
n±x±n+ι n

Obviously (21) holds if | u'{x^) \ = 0. So (21) is always true. Hence

(22) 2\W(xn)\>2 max | u(x) | > | u'{x') | .
n <_ x £ n+ l

Similarly,

(23) 2 | 3 P U n ) | > | » ' ( < ) | .

Substitution of (22) and (23) into (20) yields

(24) \ V ' ( x n ) \ < \ W { x n ) \ 1 4 + 2 j Γ ^ ' t l ^ ί * ) ! + \ q 2 ( x ) \ ] d x l

Frora (17) and (24), we obtain

(25) \ W ( x n ) \ 2 ί ( 4 + 2 / Λ + 1 [ | ? . ( * ) | + \ q Λ x ) \ ) d x \ 2 + a ϊ

> C e x p [ - c Γ 1 / 2 φ{χn)].

Since φ( x) = O(x) asrc —> oo, it is easy to show that, for an infinite number oί

n,

/ π + 1 U ^ U ) ! + k 2 ( * ) | ] dx

is bounded. Thus for an infinite number of n, we have the inequality

(26) \W(xn)\2 e x p [ α " ι / 2 φ(xn)] > C,

for some positive constant Cx. Consequently (26) yields the result
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lim sup \W{x)\ exp — α " ι / 2 φ{x)\ > 0 .
x -*oc L 2 J

This completes the proof of Theorem 2.

3. Asymptotic behavior of the solutions. If φ(x) converges as x —> oo, the

solutions W(x) of (6) are not only bounded, but also resemble the solutions of

the differential equation

d2 w
(27) -t aW = 0 .

dx2

This result is proved in the following theorem.

T H E O R E M 3. //

(a) W (x ) is a solution of (6),

(b) φ(x), defined as in (7), converges as x—> oo,

then for some complex constants A and By

(28) l i m [ W ( x ) - {A s i n y j ϋ x + B c o s v ^ x ) } - U .
% —»ofc

Proof of Theorem 3 . L e t y {x) a n d γ^ (x) be two l i n e a r l y i n d e p e n d e n t s o -

l u t i o n s of the e q u a t i o n (27.) s u c h t h a t

(29) y^O) = 0, y i ' ( 0 ) = , l ; y i ( 0 ) = l , y 2 ' ( 0 ) = 0 .

Rewrite (6) in the form

d'2W
(30) + aW = \a-Q(x)] W.

dx2

T h e n a s o l u t i o n W (x) of (30) c a n be e x p r e s s e d a s

(31) W ( x ) = A 7 ι ( x ) + B y 2 ( x )

+ f~ [a- Q{t)} W ( t ) [ y 2 { x ) Y ι i t ) - Y ι ( x ) γ 2 ( t ) } d t

for some complex constants A and ii, where the integral is convergent since

φ{x) is convergent, W{x) is bounded, and

yίix) = α ~ l / 2 sin \[~a x, y2(x) = cos yf~ά x

(31) can be obtained by the method of variation of constants. Hence the absolute

value of the integral in (31) can be arbitrarily small if x is large enough. In other
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words,

lim {W(x) - [A yΛx) + B yΛx)]\ = 0.

X —» OO

This completes the proof.

Differentiating (31) clearly yields

l i m IW'(x) - [A v ' U ) + B y'(x)]\ = 0 .
X -»oo

4. Boundedness of the solutions in certain regions. In this section we shall

apply the results of Theorem 1 to obtain sufficient conditions for the bounded-

ness of the solutions of the equation (1) in certain regions of the z-plane.

Let R be the region

(32) z = x + iy, 0 < Λ; < oo, α < γ < β.

On a half line L(yQ ), z = x + iy , in R, the differential equation (1) becomes

d2W

(33) + Q(x + iyQ) W = 0 .
dx2

Denoting the real and imaginary part of Q(x + iy ) by ςr {x, y ) and q {x, y ) ,

respectively, we see that according to Theorem 1, the growth of a solution W(x)

of (1) on L (y ) depends on the growth of

(34) Φ(χ,yo) = fo

xί\a - ? 1 U , y 0 ) | + k 2 U y 0 ) | ] ώ ,

where a is a positive constant. If φ{x, y ) is convergent for some positive

constant α, then W {z) and W'(z) are bounded on L (yQ), and

l i m [W{x + iy ) - (A s i n \fa x + B c o s > / α x ) ] = 0
% - » o o

for some complex constants /4 and B. Let

(35) Φ U , y 0 ) = f X \ a - Q ( x + i y o ) \ d x .

Clearly the convergence of Φ{x9 y ) implies the convergence of φ{x, y ). Let

Φ(x, yQ ) be uniformly bounded in R in the sense that for each yQ ((X < yQ < β),

there exists a positive constant a such that sup a is finite and inf a is positive,

and Φ(x, yQ ) < /¥, M being some constant, for all x in 0 < x < oo and all yQ in
α < 7 < β; then by applying (16) on each L (y ), it is easy to see that W(z)

and W'(z) are bounded in R. If the condition that sup a is finite is removed,
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c l e a r l y we s t i l l h a v e W (z) bounded in R. T h i s p r o v e s the fol lowing t h e o r e m .

THEOREM 4. //

(a) R is a region defined as in (32),

(b) Φ(x, y ), defined as in (35), is uniformly bounded in R in the sense

defined above,

then each solution W(z) of (1) and its derivative W'(z) are bounded in R.

Consider another region /?,

(36) z = x + reiθ° , 0 < r < oo, α < x < β,

where θ0 is a real constant. On a half line L (x0 ), z = x0 + r exp (iθ0 ), in

R, the equation (1) reduces to

d2W
(37) + P(r,x0) W = 0 ,

dr2

w h e r e P(r9x0) = Q[xQ + r e x p (iθΌ)] e x p (2iθ0).

THEOREM 5. //

(a) R is a region defined as in (36),

(b) for each x0, (X < x0 < β, there exists a positive constant a such that

sup a is finite and inf a is positive and

f j \a - P ( r , x o ) \ dr <M,

M being some constant, for all r in 0 < r < oo and all x0 in (X < x < β ,

then each solution W (z) of (1) and its derivative W'{z) are bounded in R.

The proofs of this theorem and of the following Theorem 6 are similar to

that of Theorem 4.

Denote by S the sector

(38) z = reiθ, 0 < r < o o , a < θ < β.

On a fixed ray 0 - θ0 in S, equation (1) reduces to

(39) — + T(r,θ0) W = 0 ,
dr

where Γ ( r , 0O ) = Q(r exp(iθ0)) exp ( 2 £ 0 O ) . We have the following result .
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T H E O R E M 6. / /

(a) S is a region defined as in (38),

(b) for each ΘQ9 CC < θ0 < β, there exists a positive constant a such that

sup a is finite and inf a is positive and

f r \ a - Γ ( r , θ o ) \ dr < hi,

M being some constant, for all r in 0 < r < GO and all θ0 in Gί < 0 < β ,

then each solution W (z) of (1) and its derivative W'{z) are bounded in S.

5. Extension. Let C be an analytic curve [ 2, p. 702]

(40) x =-- f i t ) , y = g i t ) ,

where t is real. Along C the equation (1) has the form

d2 W AW

(41) - — + A ( t ) d± + B ( t ) IΓ = 0 .
dt2 dt

It is well known that equation (41) can be reduced to the form of (6). It follows

that our results apply to the solutions along a line or in regions bounded by

lines as well as to the solutions along an analytic curve or in regions bounded

by analytic curves.

6. A self-adjoint differential equation of the third order. Let Y (z) be a

solution of the self-adjoint differential equation

d2 Y dY 1 dQiz)
(42) + Qiz) — + « Y = 0 ,

^ 3 dz 2 dz

where Qiz) is analytic in a region R. Let If' ( z ) be a solution of

d2Ψ 1
(43) + - Q(z) W = 0 .

dz2 4

In Theorem 7 we shall prove that every solution Y ( z ) of (42) i s bounded in R

if and only if every solution Ψ/iz) of (43) is bounded in R. In fact the growth

of the solutions of (43) determines and is determined by the growth of the so-

lutions of (42).

THEOREM 7. Every solution Y(z) of (42) is bounded in R if and only if

every solution W ( z ) of (43) is bounded in R.

Proof. L e t Wtiz) and W2iz) be a n y t w o l i n e a r l y i n d e p e n d e n t s o l u t i o n s of
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( 4 3 ) . T h e t h e o r e m f o l l o w s from t h e f a c t t h a t W2

ι(z)f Wi{z) W2(z) a n d W2 ( z )

a r e t h r e e l i n e a r l y i n d e p e n d e n t s o l u t i o n s of ( 4 2 ) . T h a t W\{z), W{ (z) W2 (z ) a n d

ψ\(z) a r e s o l u t i o n s of ( 4 2 ) c a n b e v e r i f i e d b y s u b s t i t u t i o n . We n o w s h o w t h a t

t h e y a r e l i n e a r l y i n d e p e n d e n t . If A, B, C a r e c o n s t a n t s , a n d if

( 4 4 ) AW^iz) + BWι(z)W2(z) + CW2

2{z) Ξ 0 ,

then by factoring (44) we get

(45) [AWχ { z ) + b W 2 ( z ) ] ί c W i ( z ) + dW2 U ) ] = 0 ,

where α, 6, c and d depend on A9 B and C. Hence at least on the factors in (45)

iβ identically zero. It follows that either α = 6 = 0 o r c = ί / = 0. Consequently

A = B = C = 0. This completes the proof.

7. Added in proof. With the aid of the Phragme"n-Lindelόf theorems [ see 3],

the results o! § 4 can he greatly improved.

For example, let R be the region defined as in (32), with β - 0ί = πh~ι. Let

there be a positive constant a such that as x —> 00,

(46) φix,y) = O(ekx),

where k < h, uniformly for y in α < βf and that

(47) φ(x, 0C) = O ( l ) , 0 U , β ) = O Q ) .

Then, by Corollary 1.1, any solution W(z) ot ( 1 ) is bounded o n L ( α ) and on

L (β), fcind so is bounded on these l ines and on the segment x = 0 in R. From

( 4 6 ) and Theorem 1, we have

W(z) = 0{eMekX)

uniformly in y, where M i s some positive constant. By a theorem of Phragmen-

Lindelόf, W(z) i s then bounded in R. Similarly W'{z) is bounded in R.

U s i n g Theorem 3, from ( 4 7 ) , we see that

(48) W(z) - (Ax sin ai/2 z + Bx cos α 1 / 2 z)

tends to zero as z —» 00 on L ( OL ) for some constants Aί and S 1 # Similarly ( 4 8 )

tends to zero on L ( β ) if A x and B ι are replaced, respectively, by some con-

s t a n t s A2 and B2. Write

Fi(z) = Aι sin α 1 / 2 2 + β, cos α 1 / 2 2 , ( i = 1, 2 ) .
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Then

[ W ( z ) - f \ ( z ) } [ W { z ) - F 2 ( z ) ]

tends to zero as z —> oo on L ( α ) and on L (β ); and since it is bounded in il9

by another theorem of Phragmen-Lindelδf, it tends uniformly to zero as z —> oo.

Thus to any 6 there corresponds a segment z = x0 + iγ in R on which

(49) \ W ( z ) - F^z)] \ W ( z ) - F 2 ( z ) | < € .

At every point of this segment either

\ W ( z ) - F ι ( z ) \ < e1'2 o r \ W { z ) - F 2 ( z ) \ < e 1 / 2 ( o r b o t h ) ,

and we may suppose that the former inequality holds at γ — (X, the latter at y =

β; let y0 be the upper bound of values of y for which the former holds; then yQ

is either a point where the latter holds, or a limit of such points; hence, since

both factors on the left side of (49) are continuous, both inequalities hold at

y 0. At z — xQ + iy0, we then have

(50) \ F x ( z ) ~ F 2 ( z ) \ < \ W ( z ) - F x ( z ) \ f \ W ( z ) - F 2 ( z ) \ < 2 e i / 2 .

On the other hand, (49) holds on every segment z - %γ + iy if xγ is large enough,

and there is a point z = xί + iyx at which (50) holds. Consider an arbitary seg-

ment z — x2 + iy Since Fι (z ) — F2 ( z ) is a periodic function in x9 there is a

point on this segment at which (50) holds. But Fι(z) — F2(z) is continuous

and 6 is arbitary, so that Fι ( z ) - F2 ( z ) = 0 at some point on this segment, and

therefore on every segment. If these points have a limit-point inside l{ , then

Fι(z)-F2(z) in R; otherwise there is a segment on y = α or y = β in which

F l ( z ) - F 2 { z ) = 0 9 t h e n A x = A 2 , B x = B 2 , a n d h e n c e F x { z ) = F 2 ( z ) i n R .

Thus as z—> oo the function (48) tends to zero on L ( Cί ) and on L(/3), and

since it is bounded in /?, by a theorem of Phragmen-Lindelδf, it tends to zero

uniformly in α < y < β .

Similarly, as z —> oo, we see that

W'(z) - ai/2(Λί c o s α 1 / 2 z - Bx sin aί/2 z)

tends to zero uniformly in Ot < y < β .
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