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ON THE SINGULARITIES OF TAYLOR SERIES
WITH RECIPROCAL COEFFICIENTS

SHMUEL AGMON

1. Introduction. Let

(1.1) f(z) = Y a,2"

n=0

be a Taylor series with a nonvanishing radius of convergence and such that

a, # 0. Put

(1-1’) f_1(2)= Z 2_'7
n=0 a,

n

and suppose that the latter series also has a positive radius of convergence.
Now f_ (z) can be considered as the inverse of f(z) under the Hadamard “‘multi-
plication’’ of series, and it is natural to inquire into the existence of a simple
relation between the singularities of the two functions. This problem was treated
by Soula [3], who discovered such a relation for the singularities of the two

series on their circles of convergence. His result is as follows:

THEOREM S. Let f(z) and f_ (z) be defined by (1.1) and (1.1°), where

a, is real, a, # 0, and where, furthermore,

(1.2) lim |a,|Y™ = 1.

nsoo

(Thus the unit circle is the circle of convergence for both series.) If z=1 is
the only singularity of f(z) on the unit circle then either the unit circle is a cut
for {.,(z), or f. (z) also has z =1 as its only singularity on the unit circle.

Moreover, in the latter case we have:

(1) lim(an/a'n+1)= 1;
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432 SHMUEL AGMON

(ii) z=1 is a singularity “without contact”’ (with the unit circle) for both
functions f(z) and f_ (z). That is, there exist & > 0 and ¢, with 0 < ¢ < n/2,
such that f(z) and f  (z) are analytic in the sector

0<lz=1}<8, ¢ <larg(z-1)| < 7.

We remark that if the radius of convergence of f(z) is 1 (which is no loss
of generality) then it is not difficult to see that one cannot expect to have a
dependence even between the singularities of the two series on their circles of
convergence unless the radius of convergence of f | (z) is also 1. Thus (1.2)
is a necessary restriction. Also it seems that the condition that f(z) should
have only one singular point, say z =1, on its circle of convergence is essen-
tial for the simple character of the resuit. However, the condition on the reality
of the coefficients in Soula’s theorem is superfluous. All that is needed in
Soula’s proof when the coefficients are complex is the use of Lemma 5 of this

paper. In what follows we shall refer to this more general result as Theorem S.

We propose in this paper to obtain a relation between the singularities of
f(z) and - (z) outside the unit circle. To this end it is necessary to have
some information on the location of the singularities of f(z) outside the unit
circle. We shall impose on f(z) the somewhat restrictive condition that it be
holomorphic in the whole plane cut along the line 1 < x < . With this con-
dition, however, we shall derive a surprisingly simple result concerning the

location of the singularities of f  (z) in the whole plane.

2. Preliminary considerations. We collect in this section the definitions
and lemmas which we shall need in the proof of our main result. Some of these

lemmas are well-known theorems.

DEFINITION. Let f(z) be given in the neighborhood of the origin by the
Taylor series (1.1). The star of holomorphy of f(z) (Mittag-Leffler star) is
defined as the domain composed of all segments te'?, 0 < t < p(6), where
p(G)eiH is the first singularity of f(z) on the ray tel? (0 <t < w) when
f(z) is continued analytically along this ray. The function p(0) shall be called
the star-function and shall be defined by periodicity for all values of 0.

It follows readily from the definition that p(6) is a lower semicontinuous

function, and as such it attains its lower bound in any finite interval.

LEMMA 1. (Hadamard’s multiplication theorem for stars [1, p.300]). Let



TAYLOR SERIES WITH RECIPROCAL COEFFICIENTS 433

(2.1) f(z) =Y apz" and g(z) =3 bpz"
n=0 n=0

have the radii of convergence Ry and Ry, respectively, and star-functions pf(ﬁ)
and Py (6). Put

(2.2) h(z) =[f, gl = Y a,b,2".

n=0

Then h(z) converges for |z| < RfRg and can be continued analytically along
the segment te'? 0 <t <r(0), forany 0 < 6 < 2n, where

r(6) = min pf(u) pg(@—-u).

o<u<2m

The following is a simple lemma on the separation of singularities of an

analytic function.

ILEMMA 2. Let f(z) be an analytic function in the neighborhood of the
origin where it has the Taylor development (1.1), and let p(8) be its star-
function. Then, given 0, and 0,, 0 < 0, < 0, < 2m, and € > 0, there exist
two analytic functions g (z) and g,(z) with developments

(==} (=]
g‘(z)= > apz" gy(z) = ) ap2",
n=0 n=0

such that

(i) f(2) = g (2) + g,(2);
(ii) the star-function p(0) of gi(z) satisfy

pE(0) = p(0) and p&(0) = o for 6; < 0 < 6,,
(2.3) pE(0) = o and p&(0) = p(0) for 0, < 0 < 6; + 27,

pf(6;) > p(6;) ~ € fori,j=1,2.

We shall indicate an easy proof of Lemma 2. Let C be a star-shaped recti-

fiable Jordan curve enclosing the origin, contained in the star of holomorphy of
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f(z), and whose defining function R = R(9) (0 < 6 < 27) satisfies

R(6;) > p(8;) - ¢ (i=1,2).

Let C, be the part of C in the sector 8, < 0 < 6,, and C, the complementary
part of C. Then by Cauchy’s theorem we have

0

-2z

()
2 (-2

1

(2.4) f(z) = 5

.
e
I

¢

27i 1

3

-~
(9}

I
I

1
d _
¢+ 2ni fC

T

g, (z) + g (2).

It follows now readily that the functions g (z) and g, (z) satisfy the conditions

of Lemma 2.

The following two lemmas are known. (For example, see [ 2, p. 103, Th. 11T ],
where the lemmas are generalized to Dirichlet series ). We remark, however, that
we make a trivial addition (without proof) to the lemmas by not assuming the

angle in question to be symmetric with respect to the positive axis.

LEMMA 3. Let
flz) = 3 a,z"
n=0

be a Taylor series having the unit circle for its circle of convergence. Suppose
that f(z) can be continued analytically in a domain Da/@ whose boundary is

composed of the two spirals:

expl(tan 1)0] (0 <0< 6,),

©
i

and

p =expl(tan 8) (27 -60)] (6, <0< 2n),

where 0 < &, B < n/2 and 6y = (27 tan B)/(tan & +tan B), and where
z =pei‘9. Then, given 0 < 0.’ < o and 0 < B’ < B, there exists an ‘‘interpo-
lation function’’ G (u), analytic in the angle -8’ < arg u < &', such that

(2.5) G(n) = a, (n=0,1,...),

and
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G
(2.5%) lim sup M <0,
il

uniformly in —B° < arg u < o’.
The next lemma is a kind of converse of L.emma 3.

LEMMA 3% Let G(u) be an analytic function of exponential type in the infi-
nite sector —f3 < arg u < o, |u| > Ry (0 <&, B < #/2) satisfying (2.5%). Let

flz) = X G(n)z".

n > RO
Then f(z) can be continued analytically in the domain Da,[ﬁ .
We shall prove now the following lemma.

LEMMA 4. Let G(u) be an analytic function of exponential type in the
angle —f3 <arg u < & (0 < o, B <a/2). Put

log | G (ret?)

(2.6) T, (0) = lim sup (—gl-—_l) .

7 r=oo r
Suppose that

T (0) < Q sin 6 for 0 < 0 < a,
(i)

T (0) <= Q, sin 0 for -3 < 6 <0,
where Q; > 0,Q, > 0 and Q; + O, < 27, and that

(ii) G(n) =0 for n=0,1, 0+

Let ¢* and B* (0 < o, B* < n/2) be defined by

2 - (Q, +Q,)

tan 0¥ = ,
Oy cot B+(27-0,) cot &

(2.7)
277“‘(91 +Qz)

(27 =Qy) cot B+Q, cot &

tan B* =

Then we have T,(0) < 0 for-f3* < 0 < o*, and, in particular,
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(2.8) C(u) = 0(e7?u,
uniformly in any angle =8* < — B < argu < 0. < &* for some 5= 8(at, B) > O.
Proof. Put

G(u)

sin mu

(2.9) F(u) =

It is easily seen that I'(u) is analytic and of exponential type in the angle
-8B < arg u < a. Let T,(0) be the *“type function” (2.6) of F(u). It follows
from (i) and (2.9) that

Tp(a) < (Q = @) sin o and T (-pB) < (Q, - #) sin B.

Applying a well-known result of Phragmén and Lindelsf [ 5, p.183 1], we deduce

from the last two inequalities that
(2.10) T-(0) < A cos 0 + Bsinf,
where 4 and 5 are the solutions of
Acos & + Bsin« = (Q; - 7)sinda,
Acos 8- Bsin 8 = (&, - 7)sin 8.
That is:

Q+ €y - 27 (Q, —7)cot B-(Q, —7) cot &
(2.107) A= ——o B =
cot ¢l + cot B cot ¢l + cot 3

Hence, from (2.9), (2.10), and (2.107), we get
(221) To(0) < Acos 0+ Bsin 0+ |sind| (=B <8 <u).

The assertion of the lemma now follows from (2.11) if we note that the right
side of (2.11) is a continuous negative function for —* < 6 < a*., (We also
make use of the well-known fact that an analytic function of exponential type
satisfying (2.11) also satisfies

G(u) = Oexpl|u| (A cos 8+ (B +n)sinf + €)])

uniformly in the angle.)
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Finally, we shall need the following lemma which is a generalization of a
lemma due to Soula [ 3, p.381. Tt is stated in a somewhat more general form than
is needed for our purpose here; however, the lemma in this form is required for

the completion of Soula’s theorem (Theorem S) mentioned in <.

LEMMA 5. Let h(z) be an analytic function in the infinite sector |z | > R,,

larg z| < o < 7/2, where it satisfies

Rih(n)} :
(i) lim ——— = (n being an integer);
=00 n

(i1) there exists a nonnegative, continuous, and increasing function 5(6),

0 <0<, with8(0) = 0, such that
Rih(reid)} < 15(160]) |sin 0! + €1r,

for any € > G, r > ry(¢) large enough, and | 6| < . Then

L
(2.12) lim ( m): 0,

oo | 2

uniformly in any sector larg z| < G’ < o, |z] > Ay.
Proof. We shall make use of the well-known inequality
21z (4(R) = 4(0))
(2.13) [ f(z) = f(O)] < 2] ,

R—‘Zl

where f(z) is analytic for |z| < R, and

A(R) = max !Y%{f(z)}.
z}=R

We shall first show that

(2.14) lim {A(n + <Y =h{n)} =0,

n=o0

uniformly for £ in any bounded set. Indeed, choose 7 such that 0 <75 < &, and
let |7] < C.letn+z= re'? be a point inside the circle of radius £ =n sin 7
and center z = n inscribed inside the angle |arg z| < 7. On account of (ii),

taking ¢ = 8(7) sin 7 and n large enough, we have
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(2.15) Rih(ref€)} < 25(n)sinnr < 25(n)sing(l +sing)n
< (45(n) sinyin.

Applying (2.13) to f(z)=h(n+ z) for z=¢, R =n sin 5, and using (2.15),

we get

hne &)= hn)| ¢ SLEL1(40(n) sin )+ [ R 1AGn)H1]

n sin g~ ||
8C sin 7 6(7) 2C h
P sin 77 6(7) N 2 B (n) .
sinp - C/n sin n— C/n n

Sending n to infinity and using (i), we find that
limsup |A(n+{) - h(n)| < 8C 8(y),

uniformly for |{| < C. Letting n tend to zero, and recalling that 5(0) =0,

we arrive at (2.14 ). In what follows we shall need only the weaker result

h(x)
(2.16) lim ( ): 0 (x real),

X =00 X

which follows in an obvious way from (2.14).

We next show that 4 (z }/z is bounded in every sector
larg z| < o’ < o, 2] > Ry

This will be established if we prove that #(z)/z is bounded uniformly in the
circles Cg: |z = &] < € sin o (£ large enough). Now, as before, for ¢ positive

and large enough, and for z such that | z| < & sin 0., we have
RE{r(E+2)) < (48 () sin o) €.
Applying (2.13), for | z| < ¢ sin & we find

85 (o) sin o sin « . 2 sin o’

lh(é+2)-h()] < [R{R(O],

" A s+ = N
sin O — sin o’ sin O — sin o’

from which we get that

(2.17) |h(E+ 2)] < G E+ C, |R(D],
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where C; and C, are constants depending only on « and &”. We have only to
divide (2.17) by £ + z and use (2.16) in order to obtain the uniform bounded-
ness of A( &+ 2)/(E+z) for|z| < Esin & (£ — ), and therefore the bound-
edness of A(z)/z in any interior sector. To complete the lemma we apply a
well-known result of Phragmen and Lindelsf by which the boundedness and
(2.16) imply (2.12). We also note that by successive applications of the last
lemma it follows that the result still holds if the angle containing the posi-

tive axis is not supposcd to be symmetric,
3. The main theorem. We pass now to our main result:

THEOREM 1. Let f(z) be an analytic function in the whole plane cut along
the line 1 < x < . Suppose that the coefficients of its Taylor expansion (1.1)
are different from zero and satisfy (1.2). Let f  (z) be the “‘inverse” series
defined by (1.1%), and denote by p_ () its star-function (Def. §2). Then there
exist two numbers o, 3, with 0 <o < n/2 and 0 < 8 < n/2, such that for any
0 < 0 < 27 we have

(3.1) p_l(ﬂ) = min {e(ta" a)e, e(tan 'B)(ZW-G)},

and (trivially) p_ (0) = 1.

The theorem states, in other words, that the star of holomorphy of f (z)

consists in general of the two logarithmic spirals:

p. (0) = exp[(tan ¢.)6] for 0 < 6 < ¢,

and
p. (0) = expl(tan B) (27— 6)] for ¥ < 6 < 27,
where ¢ is given by

, 27 tan ﬁ
(3-1 ) l/j I ———
tan O + tan (3
(We shall treat 6 = 0 separately in order to account for the case where either
o or 3 is equal to /2, in which case we agree that the product of a positive

number and infinity is infinity.)

It is possible to distinguish the following cases which correspond to limiting
values of o and B: (i) & =0 or 8= 0. In this case we have p_l(ﬁ)z 1, and the
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unit circle is a cut for f_ (2); this is a particular case of Theorem S.

(ii) 0 < & < 7/2 and 0 < B < 7/2. In this case the star of holomorphy of
f.,(z) is the domain Dyp (introduced in Lemma 3), whose boundary consists of

the two spirals (3.17°); this domain is also the region of existence of f_l(z)

(iii) 0 <« < /2 while 8= n/2. In this case all the points of the spiral
p=expl(tan x)8] (0 < 0 < 27) are singularities. (However, this does not
exclude the possibility of analytic continuation through the segment 1 < x <
exp [ (tan «)27].)

(iv) o =n/2 while 0 < 8 < #/2. This case is similar to the preceding one;
the only difference is that the roles of o and 8 are interchanged.

(v) =B =n/2. In this case f_l(z) has the properties of f(z), and is ana-
lytic in the whole plane cut along 1 < x < .

Proof of Theorem 1. Since f(z) satisfies the conditions of Theorem S, it
follows that our results will go beyond those of Soula only when z =1 is the
only singularity of f_ (z) on the unit circle, and when it is, furthermore, “‘with-
out contact’’. We shall assume in what follows that this is indeed the case.
Now, the proof of the theorem is somewhat long and will be divided into two

parts.

Part 1. Let us define o, B, with 0 < «< #/2 and 0 < 8 < 7/2, by the

relations

log p_,(h)
tan (. = lim sup =—————
(3.2) h—+o0 h
log p_, (=#)
t = li —_—
W=l T

We shall establish in this part of the proof that:

(a) The interval 0 < € < 27 can be divided into two disjoint intervals /, and
1,, where [; is the interval 0 < 0 < w or 0 < 0 < w, and I, is the interval
® < 0 <27 or w< @ < 27 (one of the intervals can consist of a single point},
such that p_ () is increasing in /; and decreasing in [,, and such that further-
more, the equality p_ (6;)=p_,(6,) for 6; < 6,, 6, and 6, both in to the same
interval, can hold only if p_ (0) = w for 6, < 6 < 6,.

(b) The following inequalities hold:
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(3.3) logp_‘(ﬂ‘))z (tan &)@ in I,

logp_l((f)g_ (tan 2) (27~ 8) in 1,.

Now, both (a) and (b) are consequences of the following inequality which

we shall establish later:
(3.4) p_l((}) > min {p_l(el) p_1(0~ A, ), p_l(ﬁz) p. (60— 92)} ,

where 0 < 6; < § < 6, < 2. Indeed, it is easily seen that (a) will be proved if
we can show that the minimum of p_ (6) in an interval 0 < 0, < 6 < 6, <27
is attained only at one of the end-points. To establish this let us assume, by
way of contradiction, that the minimum is attained at a certain inner point 4.
Using now (3.4) for 6 = 6, and using the fact that both p_l(g— 6,) and p_ (6,~

0) are greater than one, we get the absurdity

p. (0) > min{p_,(f’l), p-l(Oz)} Zegiagez p.,(6) = p_ (6).

This proves (a). We note also that from (a) follows that the points where

p.,(0) = o constitute one interval.

Let us now establish (b). We shall limit ourselves to proving the first in-
equality; the second will follow in a similar fashion. It is clear from the above
that it is enough to prove the first inequality (3.3) for 6 which is interior to /;
and such that p_, (x) is finite for 0 < x < 6 + ¢, € being a small positive number
depending on 6 (if no such ¢ exists, then p_ (6)=co for 6 €1, 0+0, and
the inequality is satisfied with o = 7/2). L.et now A > 0 be such that 6+
2h € 1, and let us apply (3.4) to 6,(=)6, 6(=) 60+ h and 6,(=) 0 + 2h. We get

p. (6+h) > min {p_l(o) o, (h), p. (0+2h) p_l(-—h)}.

Since p_ (~h) > Land p_ (0 + 2h) > p_(0+ k), we obviously must have
p_1(9+h) > p.,(0)p_ (R).

Passing to logarithms, from the last inequality we get

log p_l(GJrh) — log p_l(e)
(3.5) lim sup > tan O,
h—+0 h
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where o was defined by (3.2). But, since log p_l(ﬁ) is an increasing function
in I, its derivative exists almost everywhere in I}, the largest sub-interval of
I where p_ (0) is finite. Making use of (3.5), we see that almost everywhere

in I}, we have
(3.6) {logp_l(ﬂ)]'z tan C.

We now employ a simple inequality applicable to any nondecreasing function

g(x) [s, pp. 361, 373 1:

g(b) — gla) > Lb g'(x)dx,

where the integral is taken in the Lebesgue sense. When applying this to the
function log p_, (#) — (tan @)0 in [6,, 6,], using (3.6), we conclude that
log p_ (0) - (tan ®)0 is nondecreasing in If, and a fortiori in the interval
I;. The desired first inequality (3.3) now follows if we note that log p_ (0) -
(tan )0 vanishes for 9 = 0.

We still have to establish (3.4). Let 6, and 6, satisfy 0 < 6, < 6, < 2=,
and let € be an arbitrary positive number. By L.emma 2 there exist two analytic

functions g (z) and gz(z), with star-functions pf(@) and p&(0), such that

f,(2) = g (2) + g,(2),

and such that the corresponding star-functions satisfy the relations (2.3). Now

the Hadamard multiplication of the two ‘‘inverse’ functions f(z) and f_ (z)

is the “‘unit’’ function 1/(1 - z), so that if we define
(3.7) hi(z) = [f(2), g,(2)] and h,(z) = [f(2), g,(2)],

we get

1
Tl [f(2), f_l(Z)] = [f(2), g,(2) + g,(2)]

-2

= [f(2), g,(2)] + [f(2), g,(2)] = hy(2) + hy(2).

Let us now denote by pf(@) and pi’(@) the star-functions of 4,(z) and %,(z).

It follows again from (3.7) and Hadamard’s multiplication theorem, since f(z)
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is analytic in the whole plane cut along 1 < x < o, that
(3.8) pf(6) > p8(0) and ph(8) > pB(6).

Using properties (2.3 ) of pig(()), we see that

(3.9) pM0) = @ for 0, <0< 0, + 2n,

pf(f')) = for 6; <0< 0,.

(In other words, 4,(z) and %,(z) are analytic in the angles 6, < arg z < 9, +
27 and 0; < arg z < 6, respectively.) We also find that

(3.10) PO > p (6;) —€ (iyj=1,2).

Moreover, since h;(z) and A,(z) add to 1/(1 - z), a function having its only

singularity at z = 1, we conclude that

(3.11) pM6) = w0 for 6, <0< 6,.

Let us consider now the Hadamard multiplication of f_l(z) and h(z}. Clearly,

we have

(3.12) [f,(2), iy(2)]) = [f (2), [f(2), g,(2)]]

-2

1 .
= [[f,(2), f(2)], g,(2)] = [1—— ,gl(z)} =g, (z).

Using once more Hadamard’s theorem, taking into account (3.9)=(3.12) for
pf(()), and also remembering that plg(f)) =p.,(0) for B; < 0 < 8,, we obtain

p.,(0) = pE () > min {h(6)p,(6~6)),0}(6) . (0-0,))

> min {(p_,(6,) = €)p_, (806, (p. (6,) = )p_ (0-5,)].

We now have only to send € in the last inequality to zero in order to arrive at
the desired result (3.4).

Part 1I. It follows from Part I that if « and B are defined by (3.2), then

(3.13) log p_,(60) > min { (tan «)#6, (tan B) (27— 0)}.
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Theorem 1 will, therefore, be established if we show that (3.13) is actually an
equality. Now, we may assume that ¢ and 8 are not both equal to 7/2. For,
if this were the case, then we would have p_ (6) =  for 0 < 6§ < 27, and the
theorem would be proved. In what follows we shall assume that the theorem is
false and that (3.13) is a strict inequality for a certain 6 = 6,. This we shall
show will lead to a contradiction. Now, from the lower semicontinuity of p_ ()
it follows that if we do not have everywhere equality in (3.13), then for in-
finitely many points we have a strict inequality. This allows us to assume that
0, differs from i, where ¢ is defined by (3.1”). There is also no loss of gener-

ality in assuming 0 < 6, < i, since otherwise we have only to replace f(z)

and f (z) by f(Z) and f (Z), respectively. We first note that in the interval

Lo, y)
(tan ®)6 < (tan B) (27 - 6),

and hence there exists & > 0 small enough that

log p_l(Go) > (tan &) 6 + 8.

We shall now define the domain D = D(c, f3, 6,, 5) as the set of points z = re’?
satisfying

logr < (tan )@ for 0 < 0 < 6,
(3.14)

log r < min {(tan &) 6 + 5, (tan B) (27 — 6)} for 6, < 0 < 27.

Let us denote by R(6) the star-function corresponding to the boundary of D.
We claim that

(3.15) R(0) < p_,(6).

Indeed, this is obvious from the definition of D and from (3.13) so long as

0<06< 6, If <0< 2m then we have to distinguish between two cases:

(i) O belongs to the interval /; introduced in Part I; then both 6, and 6(0, <
6) belong to /;, and since we have established before that log p_, (6) - (tan ®) 6

is an increasing function in /;, we have

log p_,(0) — (tan 0)6 > log p_ (6p) ~ (tan &)y > 3,

so that
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log p_,(0) > (tan ) 0+ & > log R(6).
(ii) 6 € I,. In this case we see from (3.14) and (3.3) that
R(8) < expl(tan B) (27~ 0)] < p_,(0).
This establishes (3.15).

I.et now 7% 6% 6’ be such that 0 < 87 < 8, 6, < 0°< ¢y and 0 < §” < §,

where (3%, 60’ and 6 are chosen so near to 3, §,, and zero, respectively, that
(3.16) (tan B°) (27— 0°) > (tan &) O’ + 8”.
Let € and €; be two small positive numbers, and let
D* = D*(« - €, B% 6% 6% €,)
be the domain defined by:
logr < [tan(at ~€)]6 for 0 < 6 < 67,
(3.17) log r < min {[tan (ot — €)16+ 8%, (tan B*) (2m - 0)} for 6 < 6 < 2m,
log |[z=1| > €.

Because of (3.15) it is clear that f (z) is analytic in the closure of D*. Let
C* be the boundary of //*, and set

dz
-(1 Ju 2
[ (oyetios e 2

4

| -

(3.18) G(u) =

[N}

me

where the determination of log z is chosen in the following manner: let ® be the

argument corresponding to the vertex }' of C* where the two spirals

log r=[tan(x —€)]0+8" and logr = (tan B) (27 - 0)
intersect, that is

27 tan B°~ 6°

(3.19) " tan (& — €) + tan B’

Then we choose — (27 — ®) < arg z < D. It is readily seen that G(u) is an entire
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function of exponential type. Furthermore, for €; small enough, G(u) is in-
dependent of €,. That is, if we change only €, and leave the other parameters
in the definition of C* fixed, then the value of the integral (3.18) will remain
unchanged. This follows easily from Cauchy’s theorem if we note that the curves
so obtained all have the same vertex V. Finally, if n is a nonnegative integer,

then from (3.18) and (1.1°) we obtain

1
G(n) = —-

n

We shall now study the growth of G(u) more closely. For this purpose let

us put
u=|u|ei
and
(3.20) Ap(z) = (arg z) sin ¢ — (log | z|) cos ¢ .
From (3.18) we get
(3.21) log |G(u)]| < |u| max Ag(2) + K,

where K is a constant.

Now, the curve C* is composed of five analytic arcs,
5
cr=Y G,
i=1

on each of which we shall evaluate the maximum of A¢(z ).

(i) On C,, the arc of circle
lz=1}=¢€,n, < argz < 7,,

since 7, and 7, tend to zero with €,, we have

(3.22) |Ap(z)] < [arg z]| |sin ¢| + [log |z]|| |cos ¢|

< 2mmax (g, 7,) + log(1+ € ) =1n,,
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where 7, tends to zero with €,.

(ii) On C,, the spiral arc

log |z] = (arg z) tan (a — €) for 5, < argz < 07,

we have

{3.23) A¢(z)= (arg z) sin ¢ (1 — cot ¢ tan{& — €)).
Hence

(3.24) max Ag(2) < O for —gg é < 0.

On the other hand, if 0 < ¢* < #/2 is defined by

4

(3.25) tan ¢* = tan (% - €) + Y = tan (0 - €) + p*,

we get from (3.23) and (3.25), for 0 < ¢ < ¢*,

(3.26)  max Ay(z) < 6" sin ¢ (1~ cot ¢* tan (ot — €)

Z€C2
tan (ot — €)
= 6" sin ¢ {1 ~ ———————| = Q* sin ¢,
tan (X — €) + p*
where we put
0 u*
(3.27) Q* = L

tan (Gt — €) + p*

(iii) On C;, the segment
expli0°t], where 0" tan (0t —€) < ¢ < 8" tan(ct — €) + 8*

we obtain the same inequalities as in the preceding case.

(iv) On C,, the spiral
log |z| = 6"+ (arg z)tan(a~€), 0 < argz < @,

we have

447
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arg z

A¢(z)=(argz)sin¢(1—cotq§[tan(0€—€)+ > }),

from which, using (3.25), we get

w
3.2 A < 0 for — =< < *.
(3.28) znexac)i #(z) < 0 for 5 < ¢ < ¢

(v) Finally, on Cg, the spiral

log [z] = ~(arg z) tan B", - (27~ @) < argz < - 7,
we have

Ay(z) = (arg z) sin ¢ (1 + cot ¢ tan B°),
from which it follows that

(3.29) max Ay(z) < 0 for —B7< ¢ < /2.
zZ€Cq

By combining the inequalities (3.22)—(3.29), we conclude that

max Ag(z) < max(n, Q* sin ¢) for 0 < ¢ < %,
zeC*

(3.30)
max Ag(z) < g, for —B"< ¢ < 0.

ZEC*

But 3 tends to zero with €;, while Q* and G(z) are independent of €,. This,
with (3.30) and (3.21), implies that the type-function (2.6) of G(u) satisfies

Te(p) < Q*sin ¢ for 0 < ¢ < ¥,
(3.31)
T(p) < 0 for —B"< ¢ < 0.

Now, let y be a number such that max{a — €, 8%} < y < 7/2. Since f(z) is
analytic in the whole plane cut along the half-line 1 < x < o, there exists
by Lemma 3 an analytic function F(u) of exponential type in the angle |arg u| <
y, such that

(3.32) F(n) = a, (n=0,1,..4),
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and

(3.33) T,(¢) < 0 for [¢] <.
Let us put

(3.34) H(u) = F(u) G(u)-1.

Then # (u) is analytic and of exponential type in the angle ~ B° < arg u < ¢*.
Furthermore, because of {3.31)=(3.34), the following relations hold:

(1) H(n)=0 (n=0717"')1
(ii) Ty(¢) < Q*sin ¢ for 0 < ¢ < %,
and

Ty(¢) < 0 for —B°< ¢ < 0.

Thus H(u) satisfies the conditions of Lemma 4 with Q, = Q*, Q, =0, & = ¢*
and 8 = B”. Applying this lemma, we conclude that // (u) tends uniformly to zero
in any angle interior to the angle dgxpgx: — B* < arg u < a*, where o* and

B* (0 < a* < 7/2,0 < B* < 7/2) are defined by

27 — Q*
Q* cot B’ + 27 cot ¢p*

tan 0* =

(3.35)

tan 3% = 2n - 97 = tan f8°.
(27 = Q*) cot B*

From the last property, and from (3.34), it follows in particular that F(z) can
}fve only a finite number of zeros in any angle interior to Ay xg«. Let now o,
B satisfy 0 < o < ¢* and 9 < 8 < 3%, and let R, be large enough so that
F(u) # 0 in the sector

S, ~B < agu<d, ful> Ry

In this sector any determination of log F'(u) is analytic and satisfies, because

of (3.32), (3.33), and (1.2), the conditions of Lemma 5. Hence
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log | F(u)]
m —=

lul ’

(3.36)

uniformly in any sector interior to EZ,'B;RO. Let us put F_;(u)=1/F(u). Then

F.,(u) is analytic in Ea:ERo and satisfies

1
(i) F.(n) = — for n > Ry,

an

log | F-y(u)]
(ii) lim ——u =0

o]l ] '

uniformly in any sector interior to ZE'ERO. We can now apply Lemma 3°, and

conclude that

n

T e 2O

n >Ry n >Ry ap
is analytic in the domain Dg, 5 bounded by the two spirals
r=expl(tana)8] for 0< 6 < ¢,

and

r= expl(tan B) (27— 0)] for ¢ < 6 < 2w,

where ¢ is the expression (3.17) with bars. Obviously the function £, (z) will
be analytic in the same region. Moreover, since ¢ and 8 can be chosen as
near as we please to &* and 3%, respectively, it follows that f_l(z) is analytic

in Dy» g*. This gives us, in particular, the inequality
log p_,(6) > (tan &*)6 for 0 < 6 < ¢*,

where * is the expression (3.1°) with asterisks. The last inequality and (3.2)
lead to the inequality

(3.37) tan 00 > tan O*.

Now, from (3.27), (3.35), and (3.25) we find that
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20 — Q*

(3.38) tan o* =
Q* cot B’ + 27 cot p*

0°u*
tan (00 — €) + p*
0 u* 2m

4

—_—cot B+ —
tan (& — €) + p* tan (ot — €) + p*

2m tan (0t — €) + p* [ 27 - 6]
27+ 0%p* cot B°

p*[ 27 — 6°— 6’ tan (x — €) cot ']
27 + 67 u* cot B’

tan (0t — €) +

I

Combining (3.37) with (3.38), and sending € to zero, we get

, tan oL + tan 37
tan 8°

o + 0%y, cot B°

27 — 0O

(3.39) tan 0L > tan O+ p

where, by (3.25), we have p, = 8%/®, > 0, and where @, is given by

27 tan B7 - 8°

tan O + tan 3° )

Q

Since from (3.16) we also have
0’ (tan o +tan 8°) < 2w tan B°,

we find that the last term in (3.39) is positive. This, however, leads us to
tan & > tan o (0 < & < @/2), an absurdity. Thus the assumption that (3.13)
is not always an equality leads to a contradiction. This establishes the theo-

reme.

4. Some further results. In Theorem 1 the existence only of the constants
o and B was proved. More careful analysis leads to the following more explicit
result concerning the constants. Let y be a number such that 0 < y < #/2, and
let F), (u) be any interpolation function of f( z) defined in the angle |arg u| < y.
(Thus Fy(u) is of exponential type in the angle, verifying there (3.32) and
(3.33)). Then we have:
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(i) The unit circle is a cut for f.,(z) if, and only if, the positive axis is a
direction of condensation of zeros for ., (u). (That is, any angle |arg u| < €

contains infinitely many zeros of F,, (u).)

(ii) If the positive axis is not a direction of condensation of zeros, then let
the two numbers ¢*(y) and ¢~ (y) be defined in the following way: 0 < ¢+ < y
is such that Fy(u) has only a finite number of zeros in any angle 0 < arg u <
¢t — ¢, and infinitely many zeros in any angle 0 < arg u < ¢*+ €. (We put
¢* =y if F,(u) has a finite number of zeros in any angle 0 < arg u < y ~ €.)
Similarly we define ¢~ (0 < ¢~ < y) by the property that F. (u) has a finite
number of zeros in any angle —¢~+ € < arg u < 0 and infinitely many zeros
in ~¢~— € < arg u < 0. Then, if ¢* < y, the constant & of Theorem 1 is the
number ¢* just defined. Similarly, if ¢~ < y we have B8 = ¢~. Furthermore, if

¥, is an increasing sequence such that y, — /2, then we always have
o= lim ¢*(y ), B = lim ¢ (y,).
n=oo n=o0
We shall omit here the proof of this result.

In Theorem 1 it was assumed that f(z) is analytic in the whole plane cut
along the line 1 < x < . Suppose now that we know only that f(z) has the
point z = 1 as its only singularity on the unit circle, and that it is, furthermore,
semi-isolated. That is, there exists p > 1 such that f(z) is analytic in the
region bounded by the circle | z| = p and the segment 1 < x < p. It was shown
by Pdlya [ 4, p.738] that in this case the singularities of f(z) can be ‘‘sepa-

rated’’ in the following way:
f(z) = f*z) + f*(z) = > at a® + 2 a¥* 2",

where f*(z) is analytic in the whole plane cut along 1 < x < o while f**(z)

is analytic in the circle | z| < p. Obviously, we have a, = a} + a}* with

a;x;*!l/n -

1
lim sup ‘ —_
p

Now, if the sequence {a,} satisfies (1.2), it is easily seen that {aX} also

satisfies (1.2). There is also no loss of generality in assuming a; # 0. From

*k

1 1 1 an
E3

* * % *
ap + ap ap a, ay
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it follows that

, 11 |n
limsup | — - - < pt
an an

Hence, if we put
f¥(z) =Y, —1 z"
-1 - a: ’

we find that f (z) — f%(z) is analytic in |z| < p. Applying Theorem 1 to

f_*l(z ), we arrive at the following conclusion:

THEOREM 2. Let f(z) be analytic in the domain bounded by the circle
lz] < p (p > 1) and the segment 1 < x < p. Let (1.1) be the Taylor expansion
of f(z)in |z| < 1, where a, # 0 and where (1.2) is satisfied. Let f,(z) be
the ‘‘inverse’’ function defined by (1.1°). Then either the unit circle is a cut
for f.,(2), or there exist two constants & and B (0 <o < 7/2 and 0 < B <
n/2), such that f_(z) can be continued analytically along any ray te'f, 0 <t<
r(0), where

r(0) = min{e(tana)g, e(tanﬁ)u’"-@), p} for 0 <6< 2n,
and
r(0)=1.

Furthermore, r(0)e®? is actually a singularity of f_ (2)if r(6) < p.

REFERENCES

1. L. Bieberbach, Lehrbuch der Funktionentheorie, vol. 2, Chelsea Publishing
Company, 1945.

2. V. Bernstein, Lecons sur les progrés récents de la théorie des séries de Dirichlet,
Gauthier Villars, Paris, 1933.

3. J. Soula, Sur les points singuliers des deux fonctions Za, z" et %2z"/a,, Bull.
Soc. Math. France 56 (1928), 33- 49,

4. G. Pdlya, Untersuchungen iiber Liicken und Singularititen von Potenzreihen, Ann.
of Math. 34 (1933), 731-777.

5. E. C. Titchmarsh, The theory of functions, Oxford University Press, Oxford,
Second Edition, 1939.

THE RICE INSTITUTE






A GENERALIZATION OF NORMED RINGS

RICHARD ARENS

1. Introduction. A normed ring is, as is well known, a linear algebra 4 over
the complex numbers or the real numbers with a norm having, besides the usual

properties of a norm, also the ‘‘ring’’ property

1.1. Ny I < (120l [y il

The generalization studied here is that instead of merely one norm defined
on A there is a family of them, each satisfying 1.1; but of course it is natural
to permit ||x|| = 0 even though x # 0, to which attention is drawn by prefixing
the word ‘pseudo.’

The theory can be briefly summed up by saying that a pseudo-ring-normed
algebra A is an ‘“‘inverse limit’’ of normed algebras. The main tool, which is
rather obvious, is the fact that for a given pseudo-norm V (we avoid the use of
the double bars since an additional symbol would still be needed to distinguish
the various pseudo-norms) those x for which V' (x)= 0 form a two-sided ideal
Zy, and that V can be used to define a norm in 4/Zy,. When 4 is complete some
questions, such as whether x has an inverse, can be reduced to the correspond-
ing question for the completion By of A/Zy . 1t is of course profitable to be able
to reduce questions to B}, because B} is a Banach algebra, while 4/Z; need
not be complete. However, it seems to be difficult to say in general what ques-
tions can be so reduced to the case of Banach algebras. (We have spent much
time vainly trying to discover whether the question of an element’s having a
right inverse in A is reducible to the same question for the various By.)

When a pseudo-ring-normed algebra 4 has a unit, then the latter may not be
an interior point of the set of regular elements, but inversion is nevertheless
continuous on the set of regular elements. On the other hand, there are many
dense proper ideals. We devote some time to the topologization of the space of
maximal, nondense (and hence closed), left ideals. From this a ‘‘structure
space’’ of the topologically significant primitive ideals can easily be obtained,

although we do not pursue the latter topic.

Received January 18, 1952.
Pacific J. Math. 2 (1952), 155-471
455
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In the commutative case, for each [ in L and x in 4, one can define x(1)to
be a complex number, just as for the normed case. There is given a sufficient
condition that the x( ) be continuous, and this leads directly to be a character-
ization, among pseudo-ring-normed linear algebras over the complex numbers, of
the space of continuous functions on a locally compact paracompact Hausdorff
space.

Except for the part having to do with the paracompactness, which depends on
the existence of a “/locally-finite partition of unity,”” this paper was presented
to the American Mathematical Society in November, 1946 (Bull. Amer. Math. Soc.
Abstract 53-1-93). A forthcoming memoir of the American Mathematical Society,
being prepared independently by Dr. Ernest Michael [16], on the subject of

generalizations of normed rings, will treat many of these topics in greater detail.

2. Pseudo-valuations and pseudo-norms. A pseudo-valuation in a ring 4 is

a nonnegative real-valued function V satisfying
Vie+y) < V(x)+ V(y), Vixy) < V(x)V(y), V(-x)=V(x), V(0)=0,

If A is a linear algebra over the field K (the real or complex numbers), and we

have
Virx) = [ Vix)

as well as the other properties, we call V a pseudo-ring-norm. In a topological
ring we shall call a pseudo-valuation continuous if the set on which V(x) < e
is open for each real e.

We shall call a ring 4 pseudo-valuated if there is a family U of pseudo-
valuations such that ¥ (x) =0 for all ¥ in U only if x = 0. It is not hard to see
that A becomes a topological ring if the various translations of the sets on
which ¥ (x) < e, where e is real and V ranges through U, are taken as a sub-
base [14] for open sets. A pseudo-valuated ring 4 is called complete when it is
complete with respect to the uniform structure defined by the various relations
V(ix—y) <e.

2.1. THEOREM. Let U be a neighborhood of 0 in a topological linear alge-
bra A. Then there is a continuous pseudo-ring-norm, V, such that U contains
the set on which V(x) < 1 if and only if U is convex and UU lies in U.

We leave the proof to the reader, except that we give a formula for V' when
U is given:

V(x) = sup infir; r> 0, x € ArU}
PAET
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3. Quasi-inversion. In a ring A4, y is a right quasi-inverse of an element x if
x+y+xy=0

[cf. 12, 11], and x is a left quasi-inverse of y.
The methods of normed rings can be adapted to establish the following con-

tinuity property of quasi-inversion.

3.1. THEOREM. Let R be the set of elements having right quasi-inverses
in a pseudo-valuated ring A. Let y be a left quasi-inverse of a limit point z of

R. For each x in R, select a right quasi-inverse x* of x. Then

3.2. y = lim x’.

x— 2z, xER

Proof. The expressions to be written down will seem to involve the assump-
tion that A has a unity element 1. However, such equations as we shall write
down can always be freed of this assumption by expansion and cancellation.

Now by hypothesis we have,
(1+y)(1 +2z)=1 and (}+x)(1+x’)=1
forx in R. l.et u=z —x and v = x*~ y. Then
lT+z+u)(1+y+v)=1.

Multiplying this on the left by 1 + y we obtain

3.3. v="(1+y)uw + (1 + y)u(l +y).

Let V be a pseudo-valuation. Since

VI(L+y)uw)=V(u+yu) < V(u)+ V() V(u)=(1+V(y))V(u),

we get

V(w) < (L+ VDV () V() +(1+V(y))? V().
If V(u)— 0, then presently

Viu) < (1+V(y)),

and then
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V(v) < L+ V(y))2V(u) (1= (1+ V(yDV(u))?;

this shows that V(v) — 0.

Since, in 3.1, 1 + x tends to 1+ z and 1 + x” tends to 1 + vy, the continuity
of multiplication shows that (1 +x) (1 + x”) tends to (1 + z) (1 +v), so that
y is also a right quasi-inverse of z. For the sake of clarity we reformulate this

result for the special case of a pseudo-valuated ring with unity element.

3.4. COROLLARY. If z is a left regular limit of right regular elements,

then z is also right regular, and right inversion is continuous at z.

A topological ring in which inversion is not continuous at 1, and which is

(consequently ) not pseudo-valuated, is L* [2, p.629].

4. Expansions for quasi-inverses. With the hypotheses of 3.1, not only is
right quasi-inversion continuous at z, it is analytic, in a sense which we shall

not further define.

4.1. THEOREM. Let the hypothesis and notation of 3.2 be assumed. For

each x in R and each n, let

n
Y (x) = X ((1+y)(z=%)) (L+y)-1.
i=0
Then for any pseudo-valuation V and any x in R such that

V(ix—=2z) < (1+V(y))},

we have

lim V(yn(x)—x') =0,

n— o0
Proof. Using u and v as in the proof of 3.2, we rewrite 3.3 as
4.2, (1-(l+y)u)(L+x)=1+7.

Let v, =y (%)~ x" Substituting here the expansion for y (x), multiplying by
(1 =(1+9)u) on the left, and using 4.2, we obtain

vp=(1+y)uv, - ((L+y)u)™ (1 +y).
If
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V(w) <r < (1+V(y))?t,

it follows readily that
(1=r)V(v) < (1+V(y)"* V(u)"*,

from which the conclusion follows.

REMARK. The infinite series obtained by setting n = ® in y_ is of no use
in showing the existence of right-quasi-inverses even when A is complete, as
is done in the theory of Banach algebras. The reason is that a formal power
product series in A has something like a radius of convergence for each V, and

if these are not bounded away from O then the series may not converge in 4.

5. Direct operators. l.et L be an abelian group, and suppose there are de-

fined in L a number of real-valued functions P such that

P(x)>0,P(0)=0, P(x~y) <P(x)+P(y).

A special case of this are the ‘‘pseudo-norms’” of convex topological linear
spaces [cf. 15]. Let © be any set of such P’s defined in L. Then an endo-
morphism o of L into itself will be called b-direct if for every P in P and each
positive e there is a positive d such that P(x) < d implies P(ct x) < e. The
implication of this requirement evidently depends on the size of the family P.
For example, if L is a convex topological linear space, and P is the class of
all continuous pseudo-norms in L, then a b-direct linear operator in L is neces-
sarily a scalar multiple of the identity.

There is another application of the idea of direct operators which we mention
in passing. Let L be a Banach space, and let € be a Boolean ring (with unit)

of projections in L. For E in £, we can define a pseudo-ring-norm P by

Pe(x) = ||Ex

The result we wish to state is the following.

5.1. THEOREM. A bounded operator & in L is direct with respect to the
pseudo-norms Pg if and only if WE = E« for all E in €.

Proof. For each E in £, we have

Eax|| < Cg [|Ex]].
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Now let x= (1~ E)y. Then
HEa(L-E)y|| < Cg [|E(1-E)yl|| =0

for all y, or Eo = EoE. Similarly (1 -E)x=(1~E)x(1-E). Expanding
this and comparing with the former yields Eat = « £, as desired.

Continuing with the general discussion, let us suppose that L is a linear
space, and that ° is a fixed family of pseudo-norms. Let Dp(L), or more briefly
D(L), be the family of P-direct linear operators in L.

5.2. THEOREM. The family D(L) is a linear algebra with unit element, and
the Vp, where

VP(O() = sup P(O(x) ’
P(x)<1

form pseudo-ring-norms for D(L).
We shall omit the proof, which is easy.

For our purposes, a linear space L with a family P of pseudo-norms P shall

be called complete if
a) P(x)=0 for every P in P implies x = 0 and

b) whenever P (x, - x,) converges to O for some directed set x,, in L, and every
P in P, there is an x in L such that P (x, ~ x) converges to O for every P.

This definition obviously applies to ring-pseudo-normed linear algebras.
Concerning D(L) we may assert the following, again leaving the proof to the

reader.

5.3. THEOREM. If L is complete (with respect to the pseudo-norms P in
), then D(L) is complete with respect to the Vp.

The purpose of the preceding discussion is to make possible the following

statement.

5.4. THEOREM. Let A be a linear algebra with unit element and a family
U of pseudo-ring-norms such that V(1) =1 for each V in V. Then A is iso-
morphic, with preservation of pseudo-norms, to a subalgebra of D(B), where B
is A regarded as a pseudo-normed linear space with family U of distinguished

pseudo-norms.

For the proof of 5.4 we represent each x in 4 by the operator that sends y in-
to xy.
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6. Completeness of kernel quotients. Let A be a ring with a family U of

pseudo-valuations, and suppose Vi, «++ , ¥, belong to U. Then
V(x) = max (Vi{x), «eo, Vp(x))

defines a pseudo-valuation in A. Those x with V(x) =0 form a two-sided ideal
Zy, a kernel ideal of A (with respect to U). We could have limited our attention
to the case n=1 by assuming that V € U whenever Vy, -« , V, € U, but it
is convenient not to assume this. The quotient ring Ay = A/Z} is a kernel
quotient, and V may be defined in it in an obvious way.

When V is a pseudo-ring-norm, 4y, is a normed ring.

The canonical homomorphism of 4 onto Ay is continuous when the topology
described in §2 is used in 4, and that defined by V is used in 4} . The com-
pletion in that topology of Ay will be denoted by Ay and called a completed
kernel quotient. In the ring-pseudo-norm case, the completed kernel quotients
are all Banach algebras.

We shall now give several examples to show that we have no right to suppose
that 4, is complete even when A4 is. In these examples, which are algebras 4
of complex-valued continuous functions f on various spaces X, we presuppose
pseudo-ring-norms of the following type. Let ¥ be a class of compact sets whose
interiors cover X. For each K in ¥ let Vg (f) be the maximum of | f(¢)] for ¢
in K (the topology in 4 is then the k-topology, and X necessarily is locally

compact).

6.1. THEOREM. Let T be completely regular, and let C(T) be the ring of
continuous functions on T. Then C(T) is complete, and each C( T)VK is com-

plete.

6.2. THEOREM. Let H(D) be the holomorphic functions on an open set D
in the plane. Then H(D) is complete; but if K has at least one limit point,
then H(D)VK is not complete.

6.3. THEOREM. Let BC(R,) be the ring of bounded continuous functions
on the real line. Then BC (R, ) is not complete, but each BC(Ry )y, is complete.

In 6.1, C(T) is well-known to be complete [1]; Z, consists of those
functions which vanish on K, and so C(T)y, is naturally isomorphic to a sub-
algebra of C(K). By consideration of the Stone-Cech compactification, or
otherwise, one can extend any function continuous on K to all of T (as a matter
of fact, without increase of bound). Hence the subalgebra in question is all of

C(K) which is complete in its norm.
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Morera’s theorem shows that (D) is closed in C(D), and so it is complete.
Again 1(D)y, is isomorphic to a subalgebra S of C(K). (Of course Zg con-
tains only 0.) This subalgebra is not closed, however, for we can select an
analytic function f holomorphic on K but with a singularity somewhere on D. It
is the uniform limit of polynomials on K and hence a limit of S in C(K), whence
S is not closed. We emphasize that this example shows that Z;, may be 0 alone,
while the topology of Ay is not the same as that of 4.

Finally, BC(R,) is not complete since it is dense in C(R,); but each
BC(R,)yy is complete for the very reasons given for 6.1.

7. Right inverses. In a later section we want to show that each maximal
ideal of a commutative complete pseudo-valuated ring 4 is a ‘‘divisor’’ of some
kernel ideal Zy. The following theorem together with Gelfand’s principle yields
this result. It obviously implies that, if 4 is complete, an element x which has
a (two-sided) quasi-inverse in each A}, (the completion of 4}) has a quasi-
inverse in A, since a two-sided quasi-inverse is a unique right quasi-inverse.

’ in 7.1, since there

We have not been able to drop the requirement of ‘“‘unique’
seem to be difficulties in combining the various right inverses which are sup-
posed to exist. If it should be in fact impossible to prove 7.1 without the word
““unique,”” then this would be the first indication of a serious divergence be-
tween the theory of pseudo-valuated rings and that of normed rings, after which
it is patterned.

After Theorem 7.1, we present a theorem like 7.1 in which the word *‘unique”’
is omitted, but there are other hypotheses which are by no means always ful-

filled.

7.1. THEOREM. Let x be an element of a complete pseudo-valuated ring A.
Then x has a unique right quasi-inverse in A if and only if its image in each

completed kernel quotient has a unique right quasi-inverse there.

Proof: There is no loss in generality here in supposing the class U of

pseudo-valuations to contain

V(x) = max (Vi(x), ++o, Vp(x))

when it contains V, ..., V,. Let X, be the image of x in the kernel quotient

Ay, and let Yy be the right quasi-inverse of X in Ay. For each positive in-

teger n, one can find an element y,, in A such that its image Y, in Ay is
’ \n

close to Yy :

V(YV,n" YV) < l/n.
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The index-pairs V,n on these Yy, ™Ay be partially ordered by setting (U, m) <
(V, n) whenever m < n, and U(z) < V(z) for all z in A (this latter we ab-
breviate U < V). When U < V, we have Z;, C Zy; moreover we have a natural
mapping (of bound 1) of 4} into 4y, and hence we can act as if an element
originally introduced as belonging to A} (such as Yy ) also belongs to Ay. As
a matter of fact, with this convention, we have Y, = Yy when U < V because
Y, is clearly a right quasi-inverse of Xy in Ay, and this was supposed to be
unique. Making use of this fact, we shall show that {yv’n} forms a Cauchy
system. Let U belong to U, and suppose V, W > U. Then

U(yV,m_yW,n) = U(Yv,m’ YW,n)

< U(YV,m— Yu) + U(YU“ YW,n)

1 1
S—+—.
m n

Because of the assumption made at the outset about max (V,, V,) belonging
to U with ¥, and V,, the indices form a directed set; and the Yy, , form a Cauchy
directed system, which must converge to a y in A since 4 is complete. A calcu-

lation similar to that just performed shows that
Vixy + x +y) =0

for all V, whence y is a right quasi-inverse for x, as desired. This proves 7.1.

Let A be a pseudo-valuated ring, and suppose that for each V in U there is

selected an element uy of 4 such that

7.2. for each W in U there is a finite set Uy such that W{(uy) # 0 only for
those V which belong to Uy, and W (uy) < 1;

7.3. W(y —Zyuv) = 0, the sum being extended over all V in Uy ;
7.4. for a fixed V, we have W (uy) # 0 only when W belongs to Uy, .

Then we shall call uy a locally finite partition of unity.

The partial sums of the series Euy clearly form a Cauchy system, so that
when 4 is complete‘ the existence of a locally finite partition of unity ensures
the existence of a unity element, and makes it possible to talk about inverses
rather than quasi-inverses.

We can exhibit nontrivial examples of such partitions.

7.5. THEOREM. Let C(X) be the ring of continuous complex-valued func-

tions on a locally compact, paracompact | see 8] Hausdorff space 1. Then a
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family P of pseudo-norms can be defined in C(T) so that the ring D(C(T)) of
direct operators in C(T) pseudo-normed as in 5.2, possesses a locally finite

partition of unity, and is complete.

Proof. According to the hypothesis we can obtain a neighborhood-finite
family { G} of open sets which cover X and whose closures are compact.

Using Theorem 6 of [8] and the method of Bourbaki (partition continue de
Punite’) we construct a family of continuous real-valued nonnegative functions
f» where f.(¢) # 0 only for x in G and ch(t) = 1. As pseudo-norms in C(T),
take

Pe(f) = sup [f(2)].

te G

The topology thus obtained is the k-topology, in which C(T) is complete, and
hence D(C(T)) is complete. The operators uy defined by uy(f) = ff, where
V= VpG (see 5.2), are surely direct. Now let G, H belong to { G}, and let V, W
be Vpg, Vpy respectively. Then W (uy) # 0 only if # is one of the finitely many
sets of { G} which meet the compact closure of G, and only if G is one of the
finitely many sets of G which meet the closure of H. Except for details, this

proves 7.5.

7.6. THEOREM. Let x be an element of a complete pseudo-valuated ring
A possessing a locally finite partition of unity. Then x has a right inverse in
A if and only if its image in each completed kernel quotient has a right inverse
there.

Proof. We adopt the notation of 7.2-7.4. We do not suppose that the class
U here is closed under the maximum formation mentioned in the proof of 7.1,
because this would require a complicated reformulation of 7.4. For each V in
U, define V,(z)=max W(z) for all ¥ in Uy, and suppose V itself to be ad-
joined to Up. Let Ay, be the image of x in A—Vl, and let Yy be a right inverse
of Xy, in Ay . Select Y, n in 4 so that if Yy , is its image in 4y, then for

n=1,2, ..., we have

7.7. (Vi(x) + 1) V((Yy , - Tp) <2771,
By the local finiteness, y, = ZVyV Uy converges. Let W belong to Uy. Then

W(yn+1 - yn) < zW(yV,mH - yV,n) W (uy).

Since this sum needs to be extended only over the ¥ in Uy, and since then W
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lies in Uy so that W < V|, we have from 7.7 that the left member is less than
2°" times the number of elements in Uy. Hence the sequence of ¥, is Cauchy

and converges to some y in A. Now

Wxy~1) = lim W(xy, - 1),

and

R Z(xyv’n “Duy,
so that
7.8. Wixy, - 1) < ZW(xyV’n—l),

where this sum needs to be extended only over the ¥ in Up. But then in each

case W belongs to Uy, and so W < ¥, and
W(xyV,n - 1) < Vl(xyv’n -1) = Vl(le’ YV,n - XVl YV)

< KO V(Yy o= V) <2770,

Since 7.8 involves only a fixed finite number of terms of this sort, we conclude

that W (xy, - 1) tends to 0, whence xy = 1 as desired.

8. Ideals. In topological rings, naturally the closed ideals play a more
important part than the others. Much of the success of Banach algebras is due
to the fact that maximal (that is, maximally proper) ideals are closed. The same
is true for pseudo-valuated rings with only a finite set of pseudo-valuations.
However, it is not true in general. For example, if in the case of the ring in
6.1, when T is not compact, the ideal of functions each vanishing outside some
compact set is swelled (by Zorn’s lemma) to a maximal ideal M, then this ideal
is certainly not closed. For every closed ideal in C(7) can easily be shown
to consist of all functions vanishing at a suitable point of T, and for each ¢ of
T there is an f in M which is not zero there. This ideal is consequently dense
in C(T).

Our idea is to reduce certain parts of the ideal theory (and at some future
time, of the representation theory) of pseudo-valuated rings to that of the com-
pleted kernel quotients, in which some of the techniques of Banach algebras

can be applied. For terms used below but not defined, see [ 11].

8.1. THEOREM. In a pseudo-valuated ring, every nondense left and/or

regular and/or two-sided ideal L is contained in a closed left and/or regular
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and/or two-sided ideal N which contains a kernel ideal.

Proof. Let L be a nondense ideal. Then there is a u in 4, a V in U, and a
positive e, such that V(u —x) < e implies x ¢ L. Let M be the sum of L and
the kernel ideal Zj. Let x € M. Then x=y+z, y € L, and z € Z;,. Now

e<V(u-y)=V(u-x+z) < V(u-x),

whence u does not belong to the closure N of M. Hence N is the desired ideal.
However, if L is regular with relative right unit v, we must show that there is
a relative right unit modulo N. But v itself can obviously be chosen for this

purpose.

8.2. COROLLARY. Every nondense maximal (two-sided) or maximal left
ideal is closed and contains a kernel ideal.

9. An abstract approach to structure spaces. We note that the ideas of Stone
and Jacobson can be generalized to topologizing suitable subsets of partially
ordered systems. In what follows one may think of { as the class of ideals of a
ring, O, the two-sided ideals, and L, the maximal left ideals.

Let { be a partially ordered set, & a subset of { which forms a complete
lattice with greatest element 4, and { an arbitrary subset of {. We want to de-
fine a closure operation in £. For M C £, let

(M) =supla; a €, a < L for every [ in M}.
For a in O, let
u(a)={Ll; LEL, L > al.
One can easily verify that
9.1. u(sup a,) = Nu(ay).

For M ¢ £, the closure I shall be ut (7).
The next three propositions, whose proofs are omitted, mention all the clo-

sure axioms needed for a topological (7-) space; A is the void set:
9.2. A = A if and only if A has no upper bound in L.
9.3. Mch cn impliesﬁcﬁ;and‘?ﬁ::ﬁ.

9.4. (MuN) C Dy holds generally in £ provided for each U in L, the in-
equality [ > a A b implies L > a or 1> 5.
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9.5. THEOREM. If the conditions of 9.4 and 9.2 are satisfied, L becomes

a T-space.

As remarked by Jacobson, { need not be a T,-space, nor a T,-space even
y ’ 1°Sp ’ 2-Sp
when it is a 7 -space. As a matter of fact, it need not even be a T,-space,

but this defect is smaller than the other two, for it may be °

‘removed’’ by a
process of identification.

These spaces L often have compaciness properties.

9.6. THEOREM. The set u(a) is compact if and only if given a, in O with
a, > a such that every finite collection has an upper bound in L, then the en-

tire collection has an upper bound in L.

10. Application to rings. Now let 4 be a ring and let J be the class of tvio-

sided ideals. Let L be a class of ideals of 4 each of which is either

10.1. prime and proper,
10.2. maximal left, or
10.3. primitive.

Then the condition of 9.4 holds (case 10.3 was considered by Jacobson, and
the others are obvious), and L becomes a space of 9.5.

The special case in which £ consists of the maximal left ideals is interest-
ing. It is fairly easy to see that 1({ [}) is always primitive and that we thus
obtain an open continuous mapping on Jacobson’s structure space.

In topological rings, £ may be chosen to contain only closed ideals, while
O may be chosen as before. This does not adversely affect the fulfillment of
the closure axioms, but naturally when the class of ideals in L is restricted,
limit points are lost and compactness is affected. Indeed, even when 4 is com-
mutative and has a unit, £ may be noncompact (see 8.1). Hence we prove the

following about pseudo-valuated rings.

10.4. THEOREM. Let £ be the class of nondense maximal left ideals, and
S the two-sided ideals, of a pseudo-valuated ring A. Let a be a regular member

of S, and let Zy be a kernel ideal. Then u(a) nu(Zy) is compact.

Proof. Without loss of generality (see 9.1) we may suppose a > Zy, and
thus u(a) C u(Zy, ). Now let a, D a. Suppose that for oty, +++, &, there is
an [ in £ containing the ag; fori=1, ..., n. Let B=4/a, pseudo-valuated by
means of V. Since a is regular, B has a unit, and | does not map onto B. The

multiplicative properties of I/ ensure that the closure of the image of [ is also
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an ideal in the comgletion B. Thus the images of Qg s e=+, Gg, generate a
proper left ideal in B. Hence, by the argument of Banach algebras (cf. [11]),
the images of the a, all fall into one (closed) maximal left ideal of B. The
inverse image of this in A provides a bound for the a,, and so 9.6 applies,
finishing the proof.

As in an earlier section, we can go further with the assumption of a locally

finite partition of unity.

10.5. LEMMA. Let £, &, and A be as in 10.4. Let A have a locally finite
partition of unity, {uy}. Let Gy be the (open) complement of u(ay), where
ay is the two-sided ideal generated by uy. Then Gy does not meet u(Zy) for
W not in Uy.

Proof. Clearly uy € Zy when W € U}, Hence ay C Zy, and so
ulay) D u(Zy),
from which the conclusion follows.

10.6. THEOREM. Let £, O, 4, and Gy be as in 10.5. Then each Gy has
a compact closure in £, and the Gy form a star-finite open covering of L, which

is consequently a paracompact® locally compact space.

Proof. By 8.2, the u(Zy ) cover {, and so Gy, must be contained in the
union of those finitely many w(Zy ) for which ¥ belongs to Uy, and this union
is compact by 10.4. (Recall that 4 has a unit.) Now suppose that Gy and Gy in-
tersect in a nonvoid set. They must intersect in a point of some u(Zy ), whence
U €Uy, Uc Uy, For V fixed, this rules out all but a finite set of possibilities
for W. This shows that the Gy form a star-finite system. Now let [ belong to
L. Then for some ¥V, we have uy ¢ L; for otherwise we would have 1 € [ since
the latter is closed. Then ! € Gy. Hence the Gy cover £, and £ is therefore
locally compact.

Now let an arbitrary open covering C of £ be given. For each V select a
finite number of these open sets to cover Gy, and cut these sets down so that
they lie in the union of those Gy which meet Gy. The class of sets so obtained
is easily seen to form a neighborhood finite refinement of C. This completes the
proof of 10.6.

11. Characterization of the ring of continuous functions. We are now in a
position to characterize the ring 4 = C(7, K) (K is here the complex field),

*In the generalized sense obtained by removing the stipulation of Hausdorff separa-
tion from Dieudonné’s definition.
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where 7 is a locally compact, paracompact Hausdorff space, as a pseudo-ring-

normed ring in which the topology is that of the A-topology. From 7.5 we say
about C(X, K) that

11.1. it has a locally finite partition of unity; and moreover, if x* is defined
by x*(¢) = x(¢t), then

11.2. it has a semilinear operation * such that (Ax + yz)* = Ax* 4+ z¥y*,

*%

x** = x, and

11.3. V(xx*) > ky V(x) V(x*), where ky is some positive number, for each

Vin U.
In C(X, K), all the &y, = 1.
The main theorem is a converse of these observations.

11.4. THEOREM. A commutative complete pseudo-ring-normed linear algebra
A over the complex numbers K satisfying 11.1, 11.2, 11.3 is equivalent to a
C(T, K), where T is a locally compact, paracompact llausdorff space which is
homeomorphic to the space L of closed maximal ideals of A, topologized as in

10.6.

Proof. Since each closed maximal ideal contains some Zy, the corresponding
residue class ring is a normed field, which must be the field of complex numbers
K. For L in £, define x({)=a if x—a-1 belongs to L. Now Ay is isomorphic
to a subset of C(Xy, K) by Theorem 1 of [4], which is essentially the Gelfand-

Neumark lemma. It follows that

11.5. ELT(x) < sup o [x(D)] < Vix), #*(1) = x(1).
Leu(Zy)

Let p,, p,, -+ be a sequence of ordinary polynomials with real coefficients

such that
Ip,(a) = [af] <277

for a any real number with |a@| < m. These can be constructed by Weierstrass’
approximation theorem. It follows from 11.5 that if x = x* in 4, then p  (x) is
a Cauchy system, and for the limit y we surely have |x( L)| = y (L) for each [ in
L. Denote this y by |x]|.

We must now establish that x( ) is continuous on £. Let [ € L. Since 4

has a unit we may suppose that x([)=0. We may also suppose that x = x*.
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From the possibility of taking absolute values, it follows that
y=1-|x[+|1-]|x]l

belongs to A4, and it has the value 2 at [. Now let a be the principal ideal
generated by y, and suppose m € u(a). Then y(m) =0, so that m # L. Sup-
pose that |x(m)| > 1 for some m in L. Then y(m)=0, or m € u(a). Hence
the complement of u(a) is a neighborhood of L on which the absolute value of
value of x( ) is less than 1. In view of the possibility of scalar multiplication,
this shows that x( ) is continuous.

We next show that the topology of 4 is the same as the k-topology for the
corresponding functions. If ¥ is a compact subset of {, it is contained in fi-
nitely many of the Gy of 10.6, and by 10.5 it is contained in the union of some
finite class of U(Z} )’s. Hence convergence in all pseudo-norms implies uniform
convergence on ¥ by 11.5, hence in the k-topology. The other way around is
simpler, depending on 11.5 and the fact that each u(Z} ) is compact. An appli-
cation of a generalized form [5, p.765] of Kakutani’s method for the Stone-
Weierstrass theorem completes the proof of 11.4.

One could go on to generalize the numerous variations of the Gelfand -
Neumark lemma involving only real scalars, or quaternions, and so on, but the
method of reducing these questions to the corresponding case of normed rings
is now clear. The purpose of the partition of unity is of course to enable one
to disclose the topology of A as the k-topology, and thus has no nontrivial

é

counterpart in the ‘‘normed’’ theory. If that part of the previous proof which in-

volves the Gy is ignored, we obtain the following:

11.6. THEOREM. A commutative complete pseudo-ring-normed linear algebra
A, with unit over the complex numbers satisfying 11.2 and 11.3, is isomorphic
toa C(T, K), where T is a completely regular space homeomorphic to the space
of closed maximal ideals, and such that the topology of A corresponds to some

topology in C(T, K) which has at most the open sets of the k-topology.

This result, while perhaps more easily applicable, is not ‘“a characterization
of those C(7, K) with a topology ¢ < k,’” since such C(T, K) do not need to
be complete. In [6, p.234] there is exhibited a space T in which all compact
sets are finite (although not always open as the next sentence in that paper
should have said). Consequently, the completion of the space C(T, K) in any
topology ¢ which is < % includes discontinuous functions.

When 11.3 does not hold, we have no way of knowing that the functions x( )

are continuous on ; in fact, even in the norm case they are sometimes not
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continuous (cf. Gelfand and Silov). Of course, one can force them to be con-
tinuous by abandoning the topology in L and introducing a new one ad hoc, de-
fining just enough sets to be open so that they are continuous. The result is a

completely regular space, and in it we can make this statement:

11.7. THEOREM. Let A be a commutative complete pseudo-normed linear
algebra over the complex or real numbers. For each x in A, define a function

x( ) on the space of closed maximal regular ideals. Then x has a quasi-inverse

in A if and only if x(1) # - 1 for each  in L.
The proof follows from the preceding remarks, Theorem 7.1, and 8.2.
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INTERSECTION THEORY FOR CYCLES
OF AN ALGEBRAIC VARIETY

I. BArsoTTI

Introduction. For a number of years intersection theory represented one of
the most debated subjects in the field of algebraic geometry; also one of the
main reasons for seeing in the whole structure of algebraic geometry an inherent
flimsiness which even discouraged the study of this branch of mathematics. This
situation came to an end when the methods of algebra began to be successfully
applied to geometry, mainly by van der Waerden and Zariski; in the specific case
of intersection theory, a completely general and rigorous treatment of the subject
was given by Chevalley [ 3] in 1945. This rebuilding of algebraic geometry on
firm fonndations has often taken a form quite different from what the classical
works would have led cne to expect. Thus it is rot surprising that Chevalley’s
solution of the problem has no evident link with the methods that, according to
the suggestions of the classical geometers, should have been used in order to
define the intersection multiplicity (for a sketch of these methods and sug-
gestions see, for instance, [ 4]); rather, it is linked to the analytical approach,
and it is therefore a strictly “local’ theory, thus having the advantage of pro-
viding an intersection multiplicity also for algebroid varieties. The method by
A. Weil [ 5] is another example of local theory.

The classical approach to the problem is illustrated in the introduction to [2]
(see ““first approach’”), and carried out in the present paper. After an introduc-
tion dealing with algebraic correspondences (§1) we study in $2 a particular
algebraic system related to any given cycle 3 of a projective space, namely the
system consisting of all the cycles obtained from 3 by projective transformations
of the ambient space, plus the “‘limit cycles’” which must be added in order to
complete the algebraic system (and which would correspond to the degenerate
projective transformations). This system, called the homographic system of 3,
is used in $3 to obtain the principal results, namely L.emma 3.1 and Theorem
3.2. The wording of these results, as of the other results of $3, is complicated

by the fact that we do not restrict ourselves to varieties over an algebraically
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closed field, or to varieties in the sense of [ 5]; the gist of them, however, is
the following:

Given the irreducible cycles 9, 3 of a projective space, let 3 be the “ge-
neric” element of the homographic system of 3, and let P be an isolated com-
ponent (of the right dimension) of the intersection of the varieties § and 3. Then
the number of those intersections of the varieties § and % which approach P
wher. 3 approaches 3 is, by definition, the intersection multiplicity of § and 3
at P; this number does not change if 3 is allowed to vary in any ‘‘admissible”
algebraic system rather than in its homographic system; and finally, the number
is the same when 3 varies in any algebraic system, provided that then we al-
ready count each intersection of § and 3 with a certain multiplicity, to be com-
puted by means of an “admissible” system. Also, the same number is obtained

if 9, or both § and 3, are allowed to vary.

The fact that we allow our varieties to be defined over an arbitrary field is
not just a refinement of debatable usefulness, but a plain necessity: in fact, the
general element of an algebraic system is never defined over an algebraically

closed field (unless the system consists of just one element).

This definition takes care of the intersection of cycles of a projective space;
the next step (carried out in $5) is the extension of the definition and of the
related results to the cycles of an arbitrary (irreducible) variety V. Should it be
possible to find, for any given cycle 3 of V, an algebraic system of cycles of V,
containing 3, and playing the same role as the homographic system, then the
theory on V would not differ from the theory on a projective space; more gener-
ally, it would be enough to find another cycle £ which does not contain the inter-
section U in which we are interested, and such that 3 + £ is contained in such
a general algebraic system. Now, it is well known that this is not the case in
general, but that one very wide class of cycles 3 through U which fulfill the
condition is the set of the cycles of ¥ which are locally (at U/) intersections of
V and of a cycle of the ambient space; and this, in turn, is always the case if
U is simple on ¥ and the ground field is algebraically closed. As a conse-
quence, we define the intersection multiplicity of ) and 3 at U on V only for the
case in which § and 3 are intersections, at U, of V with cycles Y, Z of the
ambient space S; for this case the algebraic system containing 3 + & (with ¢ not
passing through U) which can be used in order to define the intersection multi-
plicity is the system of the intersections of V with the elements of the homo-
graphic system of 3; it is not even necessary, however, to consider this system:
since the intersection of § and 3 in S is already defined, the multiplicity of U
in this intersection can be assumed to be, by definition, the multiplicity of U in

the intersection of § and 3 on V. This is an outline of the content of §5, but
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one more detail needs to be mentioned here: it may happen, a priori at least,
that although 3 is not an intersection at U, it becomes such by a suitable bi-
rational transformation of ¥ which is regular at U; this is taken into account
after Theorem 5.9. Finally, since we are using rational cycles, it must be re-
marked that such cases as the vertex of a quadric cone are naturally taken care
of by the theory: aline 3 through the vertex U of a quadric cone V is the inter-
section at U of V with the cycle 3/2 of the 3-space containing I, 3 being the
tangent plane to V along 3.

Bezout’s theorem is proved in §4 by means of one of the usual geometric
methods, namely by letting the two cycles degenerate completely into cycles
consisting of linear varieties only; other proofs of a more algebraic nature would
display the relations of Bezout’s theorem to that property of the divisors which
is called the “‘product formula’ by number theorists; the present proof, however,
offers the advantage of being extremely simple.

The main advantage of the present geometrical theory of intersections is the

€

fact that it can readily be applied to problems “in the large’ ; although through-
out this paper the local intersection number is stressed, the theory finds easy
and immediate application to the construction of the algebraic system determined
by two cycles over any connected component of their intersection which happens
to have a dimension larger than expected; in particular, the characteristic system
of an irreducible subvariety of a variety and its virtual degree could easily be
established. These topics, however, would find their natural place in a paper

dealing with algebraic equivalence.

1. Preliminary results. We shall use the same definitions and notations as in
[ 1] and [2], paying attention to the fact that some of the definitions or notations
of [ 1] have been modified in [2]. A few additional modifications or generaliza-
tions will be explained now. In [ 1] “cycle’” meant “‘integral effective cycle”
(that is, with positive integers as coefficients); in [ 2] it meant ‘‘rational ef-
fective cycle’’; it shall now mean ‘‘rational (effective or virtual) cycle’’. More

precisely, a cycle is an expression of the form

n
3= 2 aV,,

i=1

where n > 1, the a;’s are nonzero rational numbers, and the V;’s are mutually dis-
tinct irreducible pseudosubvarieties of a pseudovariety over a field; 3 is unmixed
if all the V;’s have the same dimension (called the dimension of the cycle). The
set of s-dimensional cycles becomes an additive group by addition of the zero

cycle 0 = OV for any s-dimensional irreducible pseudosubvariety V. The above
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expression Z,:= L @i V; is called the minimal representation of 3; any expression
OV is a minimal representation of 0. If V is an s-dimensional ireducible pseudo-
subvariety, the multiplicity of V in 3 is zero if V # V; for each { or if 3 = 0,
and equals a; if V = V;. The cycle 3 is irreducible if n = a; = 1. The identifi-
cation, used in [1] and [2], of an irreducible cycle 3 = 1V with the irreducible
pseudovariety V is no longer valid. If Z?:l a; V; is the minimal representation
of the cycle 3 # 0, then each V; is called a component variety of 3, and each
1V; is a component of 3 the cycle § whose minimal representation is E;n:l b; W;
is part of 3 if m<n, and if it is possible to establish a 1 — 1 correspondence
j — i(j) such that ay = b]., Vi(j) = W for j = 1,+-+, m; the only part of 0
is 0.

If U is a subvariety of a projective space S over %, two cycles §, 3 of §

whose minimal representations are

n m
b= a; Viy 3= b ¥
i=1 j=1

are said to coincide locally at U if either (1) no component of U is a subvariety
of any V; of of any Wj, or (2) if, say, V|, +-+, ¥V, and W;, --. , Ws are the com-
ponent varieties of § and 3 respectively which contain some component of U,

thenr=s,V; = W, fori=1,.+.- ,r,and a; = b; fori =1, «++ , r; the cycle
r s
Z a; V; = E bj W]'
=1 j=1

in case (2), or the cycle 0 in case (1), is called the U-part of 3 (or of 9); the
radical rad 3 of 3 is the join of the component varieties of 3 if 3 # 0, and is the
empty variety if 3 = 0.

An algebraic correspondence is a cycle, not a pseudovariety. In the expres-
sions [D; V, G1,{D; V,G1,(D; V,G), D[G], D(G), Alv], A(v), the symbols
D and A are cycles, while the expressions themselves are pseudovarieties. In
the expressions {D; V, G}, {D; V, GV, D{G}, D{GY*, Af{v}, Atv}™, D and A
are cycles, and so are the expressions themselves. In the expressions e(D*/D;
V, G), e(D*/D; V, G)*, D is a cycle, D* a pseudovariety. In the expressions
ord 3, deg 3, red 3, 3 can be either a cycle or a variety; in the expressions ins 3,
exp 3, h(3), 3 can be either an irreducible cycle or an irreducible pseudovariety.

It is thus evident that if §, 3 are cycles, then rad 9 n rad 3 is the variety
which is the intersection of the varieties rad § and rad 3 (point-set theoretic),

while § n 3 has not been defined so far; and when it will be defined, it will be a
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cycle, not a variety.

Let V, F be varieties over k, F' being irreducible, and let D be an unmixed
algebraic correspondence between F and V, every component of which operates
on the whole F; let G be an irreducible subvariety of F, D* an irreducible com-
ponent of [D; V, G1. The symbol e(D*/D; V, G)* has been defined (when it
exists) in [2] under the assumption that ' and ./ be irreducible. We shall extend
it now to a more general case. Let D be unmixed, and let D = zi a; D; be its
minimal representation. Let v be a valuation of k(F') over %, of the same dimen-
sion as G over k, and whose center on F is G; let {x')} be the h.g.p. (homo-
geneous general point) of D;, and denote by C;(v) the complete set of exten-
sions of v to k£ (D;) with respect to {x)} (see [2, $3]). Assume dim D* =
dim D — dim F + dim G, and call n;(v) the number (> 0) of elements of C;(v)

whose center on D; is D*, If
zi a; n; (v)ins D;[F] (ord D*[G])!
does not depend on v, this number will be denoted by
e (D*/D; V, G)* = e(D*/D; G, V) .

Clearly, if D’ is another unmixed algebraic correspondence between F and V,
having the same dimension as D, and if e (D*/D; V, G)* and e(D*/D%; V, G)*
both exist, then e (D*/aD + bD"; V, G)* exists and equals

ae(D*/D; V, G)* + be(D*/D% V, G)*

for any pair of rational numbers a, b. As a consequence of statement 5 of Theor-
em 3.1 of [ 2], we have the result: if vij(j =1, 2, ... ) are the distinct elements

of C;(v) whose center on iJ; is D*, then
D e(D*/D;V, G = Zi], oLl s DI LKy, E(D*)1[Ky: (G)IE

If D* has the dimension dim D — dim F + dim G, but it is not a component of
[D; ¥, G1, then we set, by definition, e (D*/D; V, G)* = 0. This is in accord-
ance with (1), since in this case no element of any C;(v) has the center D* on D.

According to [2], instead of saying that e(D*/D; V, GY* = o, we shall also
say that « is the multiplicity of D* in {D; V, G}*, even if {D; V, G}* does not

[

exist; this will be extended to the other expressions, like “3is part of {D; V,
G }*” and similar ones.

Let Zi a; V; be the minimal representation of an unmixed cycle 9 over k. If
K is an extension of k, and Vij (j =1,2,...) are the distinct components of

(V;)g» the extension of § over K has been defined in [2] to be
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XDK = Zij a; exp V;(exp Vij)_l Vi/',

the exponent of V;; being independent of j. This had the advantage that ¥, , b =
¥i,y 9k, and that deg = deg Dy - We shall often need, however, to consider
the cycle

5’ = zij a; ins Vi (ins Vi;)7' Vs

this, as remarked in [2, $1] is an alternate definition of the extension of a
cycle. The cycle §” shall be called the modified extension of % over K, and no
special symbol will be used to denote it. We have ord §” = ord 9. Let finally §
be a cycle over K. We say that ¥ is a partial extension of § over K if §) = Zi 9,

where each component variety of ¥, is a component of (¥;),, and a; ord V; =

ord Y,

Lemma 1.1. Let D, D*, F, V, G, k have the same meanings as in formula
(1). Let F be birationally equivalent to F, and such that if G is any irreducible
subvariety of F which corresponds to G, and which has the same dimension as
G, then Q(G/F) C Q(G'/F’). Let D be the algebraic correspondence between
F’and V such that D'{ F'}* = D{F}*; for each G’ let D%, D}, « -+ be the pseudo-
varieties which correspond to D* and such that ll);k operates on G', and assume
F’to be such that e (D?/D “V,G")* exists for each G’ and each i. Then e(D*/D;
V, G)* exists if and only if

a = e(D¥D%V, G)* ord (1D7) [G]

i
does not depend on G*; that is, if and only if Zi e(D?/D'; V, G D} isa
partial extension of a fixed multiple of 1D* over k(G*) for any G". In such case,

we have

e(D*/D; V,G)* = olord (1D*) [GD L.

Proof. The proof of this lemma is an immediate application of (1), since the

varieties G’ are the centers on F’ of the valuations v of formula (1).

COROLLARY. Maintain the notations of Lemma 1.1, and let { ('} be a set of
parameters of Q) (G/F); then {(} is a set of parameters of each {)(D*/D;). If
e(D*/D; V, G)* exists, it equals

2, i e (Q(D*/D;); ) e(Q(G/F); )71

Proof. In Lemma 1.1 choose for F’ a normal associate to F, so that each
e(D;‘/lD;; V, G*)* exists (by statement 1 of Theorem 5.3 of [2]) and equals
e(Q(D;‘/D;); 2) e(Q(G*Y/F?%); ¢)'. As a consequence of the lemma we then

have
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e(D*/D; V, 6)" = X ai e(QUDI/DD; ) e(QUETF); )™ x

ord(w;.*)[c’J (ord(1D*)[G] !

for any G’. There are finitely many varieties G’ in this case, and we shall denote
them by G;, G;, «+., while the D;"s which operate on Gr:l shall be denoted by
Dfnj(j =1,2,..+). We have:

e(D*/D; ¥, 6) X e(Q(G,/F); O Lk(G,): k(6)] ord (10%) [6]
=2, %X, e (Q(D},/D)); &) ord (1D} ) (67 11k(GL): k(G)],
or also
e(D*/D; V, 60" X e(Q(G, /F); ) Lh(G,): k()]
= X, a E,-m e (QD}. /D) s &) Lk(Dy ) k(D¥)].
Now, by Lemma 2.2 of [ 2], we have
> QG /F O LG, ) k(6] = e(Q(G/F); )
and
2, e(QUDR/DN s O LR(DL): k(D] = e (QD*/D); ),
Q.E.D.

We now maintain the same notations, and assume that V is irreducible and
that each component of I, as well as 1D*, operates on the whole V. In this case
e(D*/D; V, G)* does not actually depend on D, but depends only on D{ V' }*, by
the above corollary, since Q(D*/D;) contains k(¥ ). Accordingly, if A denotes
D{V}* and A* denotes (1D*) [ V1, we shall denote e(D*/D; V, G)* also by
e (A*/A)*. We remark that A* can be described as a component of the inter-
section of rad A and G (y) such that 1A* operates on the whole G. Let A%,
A:, «-- be components of rad A n Gp(y) such that each 1AT operates on the
whole G. If o; = e(A’:/A )* exists for each i, we shall say that Zi oy AT is part
of the intersection G* n A of G" with A, G’ being the modified extension of 16
over k (V). Notice that the symbol n now links two cycles, so that no confusion
may arise with rad A n rad G’ This notation, as will appear later, is in agree-

ment with the general intersection theory.

LEMMA 1.2. Let K be an algebraic function field over k, A an algebraic
correspondence between K and an irreducible variety F over k, every component
of which operates on the whole F. Let K’ be an algebraic function field over k
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containing K, and A’ the modified extension of A over K’. Let G be an irreducible
subvariety of F, Z and Z’ the modified extensions of 1G over K and K’ respec-
tively. Let A* be a component of rad A n rad Z, such that 1A* operates on the
whole G, and let Af(i =1, 2, +++) be the distinct components of A%.; then each
A:‘ is a component of rad A’ n rad Z*, and each 1A:f= operates on the whole G.
The multiplicity e (A*/A)* exists if and only if e(s\?/& V¥ exists for some i, in
which case this exists and is the sume for each i. If this is the case, then the

modified extension \*”of e (N*/AY* \* over K*is part of Z* n A",

Proof. Obviously each A? is a component of rad A’ n rad Z’, and dim A* =
dim A:‘ for each i. Therefore, if A* has the dimension dim A + dim G — dim F, so
does A;'.‘, and conversely., The contention which needs to be proved is the last
one. Now, if K’ is purely transcendental over K, also this contention becomes
obvious, since in such a case there is exactly one A;.k. We shall therefore assume
K’ to be an algebraic extension of K. Again, a well-known artifice makes it
possible to prove the last contention if it is known that it holds true for each K’
which is normal over K. Hence we restrict our attention further to the case in
which K’ is normal over K (the word “normal’’ does not imply separability).

Under these assumptions, let v be a valuation of £ (F) over %k of dimension
equal to dim G, and whose center on F is G. Clearly we may further assume A
to be irreducible. Let then w be an extension of v to A (rad \), having the
center A* on rad A; let Ai’ (i=1,2,+..) be the component varieties of A", and
let w’ be an extension of w to K'(A;), whose center on A: will therefore be,
say, AT. Each automorphism o of the Galois group @ of K’ over K can be in-
terpreted, in a natural way, as an operator which transforms, isomorphically and
transitively, the fields K“( Ai') into each other. Then ow’ has a meaning, and
when o ranges in G, ow’ ranges among all the extensions of w to K“(A]), for
each i, while the centers of these range among all the A¥. As a consequence,
[Towe: I'y] and [Kypp»: K, 1 are the same for each o. The ramification theory

gives then
(r,,. 0, 11K, K, 1= [K(A7): K(rad A)] mtal,

n being the number of distinct extensions of w to K'(A:) whose center on A7 is
AT, and m being the number of distinct UAT which are subvarieties of AY. Now,
let 0.(w) be the sum of all the expressions [1"y»»: ') ] [Kyert [\"(/\T)] when
w*” ranges over the distinct extensions of w to K“(A/) whose center on A is
A’:, and i =1, 2, +«+ . If m” denotes the number of distinct Ai'vwhich contain A’:,

from what precedes we obtain

o(w) = nm'[rw,: Fw] [Kw,3 K'(At)]
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= m [KCA]): K(rad A)] m™ (K, : K(A®)TLK(AY): K(A™)]7!.
Now, there is the relation

m x number of distinet A7 = m’ x number of distinct A7;
that is,

m’m™' = red A red AT (red A7 red A*)7};
on the other hand,
[K*(AT): K(A*)] = ord AT[K": K] (ord A¥)7,

and likewise for [K*(A]): K (rad A)]. Hence

a(w) = ins A7 ins A*(ins A ins AT)7V[K, : K(A™)].

If we denote by B(v) the right side of formula (1), which would equal
e(A*/A )* if it were independent of v when C(v/F) = G, and by y(v) the simi-

lar expression for e (A’;/A *)*, then we have the relation:
y(v) = X ins Ains A7 a(w) [Ty s 1 1IK, : £(G)]7!

ins A*(ins AT)™ X (T, T 1K, : K(A*)][K,: k(G)]™!

ins A* (ins A";)—l B(v),

where w ranges over all the extensions of v to K(rad A) whose center on rad A
is A*. This proves that y (v) is independent of v if and only if B(v) has the

same property, and, because of (1), also proves all the statements of Lemma 1.2.

Q.E.D.

THEOREM 1.1. Let D be an unmixed algebraic correspondence between the
irreducible variety F over k and the variety V over k, every component of which
operates on the whole F. Let P and G be irreducible subvarieties of F, P also
being a subvariety of &, and let D’ be a component of [D; V, P such that
e(D?/D; V, P)* exists. Let DT, DZ, ««- be the components of [ D; V, G| which
contain D’ then

dimD’: =dimD - dim F + dim G.

Assume e(Df/l); V, G)* to exist for each i, and set
. % %
D¥ - Zi e(DT/D, vV, G) Di .
Then e(D’/D*; V, P)* exists and equals e(D*/D; V, P)*,

Proof. If r = dim Df, then we have dim D’ > r — dim G + dim P. Since
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dim D’ = dim D ~ dim F + dim P, it follows that r < dim D — dim F + dim G, and
therefore the equal sign must hold. This proves the statement concerning the
dimension. We shall give a proof of the main result under the assumption that D
is irreducible; the proof in the general case would proceed exactly in the same
way.

Let v be a valuation of 4(F) over %, of dimension equal to dim G, whose
center of F is G, and let w{ be a valuation of K,, over k, of dimension equal to
dim P, which compounded with v gives a valuation of £(F), of dimension equal
to dim P, and whose center on F is P. Let u be the valuation of £(G) C K, in-
duced by w1, and let w], wj;, +++ be the distinct extensions of u to K,. Denote
by w; the valuation of £ (F) which is compounded of v and wi', so that C(w;/F)=
P. For each i, let v;;, v;,,+ -+ be the distinct extensions of v to % (rad D) having

the center Dj.( on rad [, and let u, , u;,, - be the distinct extensions of u to

i2’
k(l)j) having the center D’ on D’;. For given i, j, r, [, let wl’ijrs (s=1,2, %)
be the distinct extensions of u,_ to KUij which induce w; in K,, and call Wyiirs
the valuation of k£ (rad D) compounded of v, and wl'i - For a given [, the Wiirs
are all the distinct extensions of w, to k (rad D) which have the center D“on D;

therefore formula (1) gives

(ry

e(D/D; P, V) Ky i k(P)] = 2 iirs

1T VIKy? 1 k(DND];
4 lijrs

ijrs
now,

[Ty O I EE B A 'yl ([ :le’]i

lijrs. { ij lijrs
so that
e(D/D; P, V)* [le, : K, 1 [Ky: E(P)] [Fw; 1Ty

= Z [Fvij 2K [Fw;ijrs : Fuir] [I—‘uir: ul [le'ijrs t Ky 1%

ijrs ir
[Kuir: k(D*)].
We now sum with respect to I, and use the formulas
Zl [Kuw;: Kl [Towr: Dyl = [Ky: 6(G)]
and

3, Kt K V0w, 10y 1 = Ky 2 k(DD],

lijrs jrs ir

obtaining
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e(D/D; P, VY [Ky: k(P)] [Ky: k(G)]
= X, ([0 Tl [Ky s kDD (F, [Ty Tl [Ky B (DD
This proves Theorem 1.1, since
e (D}/D; G, V)" [Kyt k(6)] = F.[Ty i Ty ) [Ky, : k(D)) Q.E.D.

It is hardly worth mentioning that if w is a valuation of £ (F) compounded of

a valuation v of £ (F') and a valuation u of K, then

Afwi* = (Afo}*) {ul™;

the proof of this fact is an immediate consequence of the obvious relation
Afwl = (A{v}) {ul. Another result which will be used later is the following:
If A is an algebraic correspondence between the algebraic function field K over
k and the variety V over k, let £’ be an extension of &, K’ a composite of K and
k’ over k (that is, the quotient field of the homomorphic image of K x %k’ over k&
modulo one of its prime ideals), A’ the modified extension of A over K’, so that
A’ is an algebraic correspondence between K’ and V’=V,,. If v is a valuation
of K over k, v” any extension of v to K’ over k’, then A’} v’}* is the modified
extension of A{v}* over K,-. This fact also is derived from the analogous result
concerning A{v}, namely: if A’= Ay, then A’{ v’} is the extension of A{v}

over K.
Finally, the extension of the meaning of e (D*/D; V, G)* to the case in

which D is reducible, and in particular the corollary to Lemma 1.1, affords a
generalization of the reduction theorem (Theorem 5.4 of [2]) in the following

sense:

THEOREM. 1.2. In the statement of Theorem 4.2 of [2], let us replace the
assumption of the existence of {D; Vj, W; V* and { D4 Wi, W; }* by the following

assumption:
e(D/D; Vi, Wi)* exists for each h, i,
and if
D = ¥ e (DY/D; v;, Wi)* DIV,

then e (U/DY, Wi, W; )* exists for each i. Let us replace, moreover, the as-
sumption that D is irreducible by the assumption that D is unmixed. Then
e U/D(l); Wj, W;)* does not depend on i.

2. The homographic system. An irreducible algebraic system € of integral
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effective cycles is in one-to-one correspondence with the irreducible variety G =
G () (see [1]); therefore we shall apply to € the language adapted to varieties.
For instance, if G is a variety over k, we shall write £(€) in place of k(G),
M(C) in place of #(G) (this denotes the set of the places of G; see [1]); the
cycle A = A(C) shall be referred to as the general element or general cycle of
<.

A linear variety is an irreducible variety L over a field k£ such that ord L = 1,
or, equivalently, such that deg L = 1. From the definition of order or degree [1,
$2;2, $11, it appears that an r-dimensional irreducible subvariety V of the pro-
jective space S =S, (k) is linear if and only if @(V/k[X]) has a basis con-
sisting of linear (i.e. of degree 1) forms in the X’s { X} being the h.g.p. of S;
and a minimal basis will consist then of n-r linear forms. After an obvious identi-
fication, it also follows that a linear variety is a projective space. A linear
cycle is an irreducible cycle whose radical is a linear variety.

Let S be an n-dimensional projective space over k, { x} its h.g.p., and let X
denote the one-column matrix (xg, +++ , x, ), while U = (u,-,-) is a square matrix
of order n + 1 with elements in k. Set X“= UX, and let x/, .-, %, be the ele-
ments of the one-column matrix X’; let U be the homomorphic mapping of £[x]
such that Va=a if a € k, Vx; =x/ (i =0,+++,n); if det U#0, VU is an auto-
morphism and transforms in an obvious way an ideal of k[x] into an ideal of
k[x], a subvariety of S into a subvariety of S, and a cycle of S into a cycle of
S. U will be called the matrix of U; two U's whose matrices have proportional
elements have the same effect on homogeneous ideals, subvarieties, and cycles,
and shall be identified; v is called a nondegenerate homography of S. If 3 is a
cycle of S, then VL3 is called a homographic transform of 3.

Maintaining the same notations, assume the u,-l-’s to be indeterminates; then
V is a nondegenerate homography of S, (k(z)), and will be referred to as the
general homography of S. Set K’=k(u), so that K”.is homogeneous for the set
{ug0s *++ s unn}; let K be the subfield of K’ consisting of all the homogeneous
elements of degree zero of K*. If 3 is an unmixed cycle of S, set "= U3k s then
3 is a cycle of S, », and it is the extension over K”of a cycle 8 of S, . Clearly 3
is an unmixed algebraic correspondence between K and S, and is called the gen-
eral homographic transform of 3. Assume 3 to be integral and effective; if k is
the algebraic closure of &, and 3, 3 are the extensions of 3, 3 over ky K re-
spectively, then 3 is related to 3as 3 is to 3, and the set 9 of the cycles Siv},
where v ranges over the places of K over k, is an algebraic system of tycles

on' S, called the homographic system of 3.

1 Note that, according to [1]or[2], a cycle on S means a cycle of the extension of S
over the algebraic closure of k.
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LEMMA 2.1. The homographic system of %is the smallest algebraic system

of cycles on S containing all the homographic transforms of 3.

Proof. Set K= KZE, and let v € M([z). Let ugy be such that v(ui]' ugé) >0
for every i, j. Let ¢ be the homomorphic mapping of R, whose kernel is §,,, and
set u,'j(v) = o(uij ug(l, ); since ug, is not necessarily the only u,s such that
U(uij urg ) > 0 for each i, j, the set {uij(v)} is determined but for a nonzero
factor in k. Let U(v) be the matrix obtained after replacing, in U, each u;; by
the corresponding ui/-(v): if det U(v) # 0, then U(v) is the matrix of a non-
degenerate homography v(wv). These notations will be used throughout this
section.

We contend that v(v) 3= g{v}, and this will completely prove the lemma.
Let (¢, y) be a determination of Wt,y3 =W¢, y3 (see [1, $21); denote by Y
the one-column matrix (yg, *++ , -+, ), 7 being the dimension of 3, and by T the
matrix (Li]- ), so that ¥ = TX; vcan be extended in a natural way to Z(z, u, x ),

and we have
VY = W(TX) = T(uX) = TUX =(tT) X = T(TX) = 1Y,

where by T we denote the automorphism of Z(t, u, x) over —l;(u, x) such that
TT = TU. If v has the previous meaning, T (v) and T(v) will be related to T, T,
vas U(v), V(v) are to U, v, v. If 3is irreducible, set

b = p(rad 3/k[x]) K" (¢) [2],
where K’ = K’k; we have, by definition,
Gt y) K (D Iyl = pa K (&) yl,
hence
G (e, vy) K (&) [vy] = vh a K(2) [Ly].

Applying T7!, and using the fact that Uy = Ty, we obtain

(T, y) K () [yl = v a K7(0) [y],

which proves that ¢/( T7! ¢, y) is a determination of ‘I’,,y 3% hence (771 (v) ¢,

y) is a determination of Wy 3{ v}. But, since
T M) = (o)7L,

we see in like manner that /( T7'(v), y) is a determination of ‘I’t’y v(v)3z. It
is thus proved that V(v) 3 = B{v}if 3is irreducible. If 3 is not irreducible, the

same relation is easily established as a consequence of its validity for irre-
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ducible cycles, Q.E.D.

LEMMA 2.2. The homographic system of 3 contains the homographic system
of each of its cycles.

Proof. Let $ be the homographic system of 3, and let 3, € 9, so that
q’z,y 3 = o ( T Hw) b, y)

(but for a proportionality coefficient) for some v € M(E); here T ! (v)ti]' has
to be interpreted as the i j-th element of the matrix TU™? (v),which has a mean-
ing even if det U(v) =0. Let 3{, 3, be obtained from 3, as 3, B are from 3;

we have
Wy B = (T (0) T ).
For any v” € M(K) we have therefore
W,y Aot = v (T7H0) T 6 y).

Now, there exists a place v € M(K) such that
T o) T )T = T (v T,
so that
¥, Sil07h = (T ) 6 y) = Wy Blo”,
or 8,{v’} = 8{v”}, Q.E.D.

LEmMMA 2.3. Let 3 be an unmixed integral effective cycle of S =S, (k), and
let B be the general homographic transform of 3. Set G = (}8 (see [ 1], Lemma
4.2); let A be the algebraic correspondence between G and S induced by 3 ac-
cording to Lemma 4.2 of [1], and set Z =Dy . Let k be the algebraic closure of
k, and let P be a point of G such that (Z{P})} is a homographic transform of
3. Then G is analytically irreducible at P.

Proof. Let § be the homographic system of 3, and set G = G($); then G
is a component of the extension of G over the algebraic closure k of k. Assume
the lemma to be true when £ is algebralcally closed. In this case, G is ana-
lytically irreducible at each P € G such that P is the image point of a homo-
graphic transform of 3 = 3;~ Let P be the point mentioned in the lemma, R =
Q(P/G), P the image (on G) of (Z{P Y, R = Q(P/G) If m= §B(P/G) m=

§B(P/G) we have that mk is a primary ideal of Rk belonging to m n R/c, and
that m" n R C m!, where ] — o when & —» . Therefore the topology induced
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in R by the R-topology is the R-topology, so that the completion R’ of R is a
subring of the completion R of R. Since, by assumption, R’ is an integral do-
main, so is R that is, G is analytically irreducible at P. This shows that it is
enough to prove the statement under the further assumption that £ be algebrai-
cally closed.

Under this assumption, let 3" be a homographic transform of 3, and set P =
P(3),P’=P(3"), sothat 3=Z{P}, 3°=Z{P’}. Let K have the previous usual
meaning. For each v, € # (K) whose center on G is P “ we have det U(v,) #0;
let 7 be the automorphism of k(u) over k such that 7 U = U"" (v, ) U. We have,
for v € M(K):

Wiy Rfrv) = ¢ (T mv) t,¥).

Now,
T =TU, T 'T=TU",
T ao) T=TU  (av) =Tz U™") (v} =TU (v) U™ (vg)
=T (v) T Hwy) T,
so that

-

Wi,y Birvt = (T () T (v )'t, y)
On the other hand, as we have already seen, ¥; ,, U (v, ) B{v} is obtained from
Yy Blol = ¢ (17H(0) 4, y)
by replacing { ¢} with { T (v, ) ¢}, so that

Wy, U(ve) Blod = (T (0) T (vg) 1 y) = ¥,y Blavl.
It follows that

Birvl = v(vy) Bivi,

and this proves that C(7v/G) depends only on C(v/G). Then the same is true
for C(v/77' C) and C(v/G). Let H be the smallest subfield of K containing 4 (G)
and 771 (k(G)) =" k(7' G); the embedding of k(G) and k(7 ' G )in H gives an
irreducible algebraic correspondence C between G and 7 !G, and the above-
proved property shows that C has the same dimension as G, and that % ( rad C)is
purely inseparable over (G ). Besides, if P =P{3} € G, then C[P] is the
point 7 *P’of 7 ' G, and P = C[# ' P’]. Now, by Lemma 2.1, P’ can be chosen

in such a way that G is analytically irreducible at P’, and therefore » "' G is
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analytically irreducible at # ' P“ Let G* be a normal associate to G, C* the
irreducible algebraic correspondence between 7 ! G and G* generated by the em-
bedding of k(7 *G) and &k (G*) in H. Should G be not analytically irreducible at
P, C*[a'P’] would contain two distinct points, which is impossible by
Theorem 4.1 of [1]. Bence G is analytically irreducible at P. By Lemma 2.1,
however, we can choose for P the image of any cycle 3 of § whose homo-
graphic system is §, Q.F.D.

TueoRrEM 2.1. Maintain the same notation as in Lemma 2.3. If V is an ir-
reducible subvariety of S, then Z{V} exists, and each component of the total
transform { Z; V, G operates on the whole V.

Proof. Let D be a component of { Z; ¥, G1, P a point of V on which 1D oper-

ates, and assume

dimD > dimZ - dimS + dim V.
If then D’ is a component of [D; P, G], we have
dimD’> dimD ~dim V > dim Z - dim S,

and D’ belongs to (Z; P, G). If, therefore, we show that each component of [Z ;
P, G] has dimension equal to dim Z — dim S, it is also proved that each com-
ponent of { Z; V, G] has dimension equal to dim Z — dim S + dim V, and that as a
consequence Z{ V' } exists, because V is simple on S (see statement f of Lemma
4.2 of [1]). In order to show that {Z; P, G] has the pure dimension dim Z -
dim S, we proceed as follows: let & be the algebraic closure of %, and let 3 be
the general homographic transform of 3; let K have the usual meaning, and set
K = KE, §= SI?’ %= 3 let G, Z be related to gas G, Z are to 3, so that G is
a component of the extension of G over k. Let P, P,, -+ be the components of
P;; we have a__C [Z, Pi’ G] for some i if and only if there exists a Q € [Z; P,
G] such that Q is a component of QE Therefore [Z; P, G] has the pure dimen-
sion dim Z — dim S if and only if each [Z; P;, G] has the same property. As a
consequence, it is sufficient to prove the statement under the further assumption
that k is algebraically closed. Under this assumption, let P*€ S, and let 7 be
a non-degenerate homography of S such that 7P = P’ Let M be the matrix of =,
so that 7 X = MX (X being the one-column matrix (xq, -+, x,)). Let o be the
automorphism of k(u) over k& such that 0 U = MU. Then it is possible to prove
(by the same method used in the proof of Lemma 2.3) the following: if v € M(K)
and P € rad (R{v}), then P’ € rad (B{oc 'v}); in other words, Z[ P‘] is the
total transform of ¢ * Z[ P] in the algebraic correspondence C (between o 16

and G) generated by the embedding of £(G) and k(o™'G) in K. Now, C is the
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same as the algebraic correspondence C used in the proof of Lemma 2.3, con-
cerning which it was proved that it does not have fundamental points either on G
or on ¢ 'G. Therefore C has no fundamental variety either on G or on ¢ 'G.
Since P’ can be chosen in such a way that Z[P’] has the pure dimension
dim Z — dim S, it follows that Z[P] also has the pure dimension dim Z — dim S,
as asserted.,

Suppose that a component D of { Z; V, G] operates on W C V, so that it is
also a component of [ Z; W, G 1. From the above proof it follows that

dmD =dimZ — dim S + dimW < dimZ - dim S + dim I/,
a contradiction, Q.E.D.

We say that a cycle or a subvariety 3 of S is degenerate if each component

of 3 is a linear cycle or subvariety.

LEMMA 2.4. The homographic system of an unmixed cycle of S =S, (k) con-

tains some degenerate cycle.

Proof. We may assume k to be algebraically closed, since we are dealing
with an algebraic system. In view of Lemma 2.2, the statement is true if it is
true when 3 is irreducible. Therefore we assume 3 to be irreducible. Set r =
dim 3, and let F be a linear subvariety of S such that rad 3 n F consists of
finitely many points; we also require F to have dimension n — r. Such an F cer-
tainly exists, because by repeated application of the theorem according to which
each minimal prime of a principal ideal is maximal dimensional, one can easily
establish that the intersection of rad 3 with a linear subvariety of S of dimension
s has dimension >r + s — n, and that there exists some s-dimensional linear sub-
variety of S whose intersection with rad 3 has the pure dimension r+s —n if
this number is not negative.

Let {x} be the h.g.p. of S, and let I,, -+-, I, be the linear forms in the x’s
forming a basis of @ (F/k[x]). The system of equations I; =0(; =1, ¢+ ,r)
can be solved for r among the x’s, say x,-r+;5 -*+ , %, and the solution is

written in the form
n-r
Xj = ) Geptr, Xj (ap,q €k i=n—-r+1,:-+,n).

j=o

Let U’ be the square matrix
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1 0 -

0 ..

0 1 0
2y,0° ay,n-r 0

Gr, g * °* ar, n~r 0 « . 0

of order n + 1. Let v € M(K) be such that U(v) = U’ and set
b= p(rad 3/k[x]).

Let T be the projective space over k whose h.g.p. is {u}, and set

ul. = u.. u !
ij = Wijlgo

so that v is at finite distance for {u’}. If {p,(x), p,(x), -+ } is a basis of },

set

x; = z}. u;j Xy
and let O be the radical of the ideal of [ x, 2’] whose basis is
tp, (27, p, (x7), e .

If D=g(9), then 1D is an algebraic correspondence between T and S, and it

differs from Z = D8 T at most for components which do not operate on the whole

T. Set
P =C(u/T), a=C(v/klu’]),

and let o be the homomorphic mapping of k[x, u’] whose kernel is qk[x, u”].
Then {ox} is the h.g.p. of F, and {p(ox")} is the basis of an ideal of k[x]
whose radical is @((1D)[P1/k[x]). However, since {ox“} is the h.g.p. of F,
{p(ox7)} is also the basis of an ideal of k[, -++ , x,-r] whose radical R is
w(rad 3 n F/k[xq, +++, xp-;1); therefore R is purely 0-dimensional. Also, &
can be extended to an ideal Rk{x] of k{x], and

Relx] = ((1D) [P1/k[x]).

Now, Rk[x] is purely r-dimensional; besides, each minimal prime of ®, being

a O-dimensional ideal of 5[ x4, +++ , x,~,], has a basis consisting of linear forms
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in the x’s with coefficients in %k, and the same must be true of each minimal
prime of Rk[x]. This proves that (1D)[P] is a degenerate r-dimensional va-
riety. Since Z[P] C (1D)[P], and since each component of Z[P] has dimen-
sion > r, this also proves that (1) Z[ P] is purely r-dimensional, and (2) Z[P]
is degenerate. I'rom (1), and from the fact that T is locally normal at P, fol-
lows that Z[ P] = 3[v], so that (2) implies that 3[ v], which is the radical of a
cycle of the homographic system of 3, is degenerate, Q.E.D,

LEMMA 2.5. Maintain the notations of Theorem 2.1, and assume k to be al-
gebraically closed, and 3 to be irreducible. Then Z[ V] is irreducible.

Proof. Since, by Theorem 2.1, Z{ V'} exists, and so does Z{P}if P € V, by
Theorem 1.1 we have that (Z{V}) { P} exists, and that it is enough to prove
the lemma under the additional assumption that V' is a point. Besides, the same
argument used in the proof of Theorem 2.1 shows that Z[ P] is either irreducible
for each P € G, or reducible for each P € G. Set D = DS,T’ T having the same
meaning as in the proof of Liemma 2.4. In order to prove that Z[P] is irreduci-
ble, it is enough to prove that D[P] is irreducible for some (hence for each)
P € S. Let W be the subvariety of T consisting of the centers on T of those
v € M(T) for which det U(v) = 0. We shall show first that if it is true that
DIP] has only one component outside W for P € S, then it is also true that
D[ P] is irreducible. In fact, let ¥ be the prime algei)raic system of cycles of
T whose general element is D{S} (after extending it over £(S)). If D[P] is
reducible for each P € S, then ¥ is not simple; according to Theorem 5.4 of [ 1],
U is then composed with a simple algebraic system 2’ and an involution J on
G(2%’); A’ contains cycles which have no component variety on W (because not
every element of ¥ has the radical in W), and 3 contains cycles which have no
component variety in any one given proper subvariety of G (‘). Therefore U
contains cycles which have no component variety in W, and this proves that for

some (hence for each) P € S, D[P] is irreducible, as claimed.

For any point Q € T — W we shall write v(Q) instead of V(v), v € M(T),
C(v/T):Q. Then D{P]1=(D[P] n W) consists of the Q € T ~W such that
V H(Q)E rad 3. Let § be the general homographic transform of P constructed
with the general~homography v ! (rather than v), and set E = D T then
VHQ)P=E[Qlif QET-W, sothat D[P]-(D[P] nW)=L-(L aW),
where L is the subvariety of T on which E[rad 3] operates. If we prove that
£[rad 3] is irreducible, it will follow that L is irreducible, as desired. Now,
the same argument used at the beginning of this proof shows that £[rad 31
is irreducible if E[P“] is irreducible for some (hence for each) P* € S, or also
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if E[P’] has only one component outside W for a P* € S, say P’= P. But this
is obviously true, since the set of the Q € T — W for which V™' (Q)P = P, that
is, for which U({ )P = P, is a linear variety less its intersection with #, Q.E.D.

THEOREM 2.2. Notations as in Theorem 2.1. Set n =dim S, r = dim 2, s =
dim V. If r + s —n > 0, then each component of [ Z; V, G] operates on the whole

G, V arad 3is not empty, and each of its components has dimension >r+ s — n.

Proof. The proof of this result, like that of Theorem 2.1, is readily reduced
to the case in which % is algebraically closed and 3 is irreducible. In this case,
according to Lemma 2.5, D =[Z; V, G] is irreducible, and, by Theorem 2.1, D =
{Z; V, G1. If P is a point of G such that Z{P } = 3%, then V nrad 3°=(1D)[P]
by Theorem 2.1. Set d = dim D, and let F be the irreducible subvariety of G on
which 1D operates. Then d =r + m — n + s, where m = dim G. Therefore,
(1D) LP]is empty if P ¢ I, while if P € F each component of (1) [P],
hence of V' n rad 3, has dimension >r+ s ~n +m—dim F. By Lemma 2.4, the
homographic system § of 3 contains some degenerate cycle 3", and therefore, by
Lemma 2.2, it contains the homographic system $’ of 3”. According to the first
part of the proof of Lemma 2.4, $ contains some cycle 3, such that V' n rad 3,

is nonempty and has pure dimension r + s ~ n. If Py € G is such that 3, =
Z{ Py}, it follows that P, € F and that

r+s—-n+m—-dimF <r+s-n,

that is, that dim F = m, F = G. Hence 1D operates on the whole G, as claimed,
and each component of (1D)[P], for any P, has dimension >r +s —n, Q.E.D.

3. Intersection of cycles of a projective space. In this section S denotes an
n-dimensional projective space over k.

If §, 3 are unmixed cycles of S, of dimensions r, s respectively, such that
r+s~n>0, then a component V of rad 3 nrad 9 is said to be a component
variety of 3 n Y orof H n 3ifdimV=r+s—n.

Let %, 3 be unmixed integral effective cycles of S, of dimensions r, s re-
spectively; assume V to be a component variety of § n 3, and let § = Zi a; b,
be the minimal representation of 9. Let 3 be the general homographic transform
of 3, G = (;8, Z the algebraic correspondence between %£(G) and S induced by
3 according to Lemma 4.2 of [1]. Let P be the (unique) point of G such that
Z{P}= 3. Then P is arational point, so that  x P is irreducible, and ¥/ x P is
a pseudosubvariety of {Z; b;, G] for some i; Theorems 2.1 and 2.2 imply then
that V x P is a component of [{Z; 9;, G}; 9;, P] for some i. Now assume Z =
Z]. ¢ Z]. to be a minimal representation of Z, and let 3,, 3,, +++ be the distinct
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component varieties of 3. Then each 3; x P is component of exactly one [1Z};
S, P, say[1Z;(;); S, P1; and if some Zj is such that [1Z}; S, P] has more than
one component, say 3, and 3,, then A(3,) = A(3,). This being established,
set c;" =c; h( 3, ) (h((lZ]) [G1))7Y, i being such that j(i) = j; set also z*

Z ¥z, "Then we have Z#{P{* = Z{P | = 3. By Theorem 2.1, {Z*; b;, c;*

exxsts for each i. Since G is analytically irreducible at P by Lemma 2.3,

a, =e(V x P/{Z% 9, G¥5 9, P}*

exists for each i by Theorem 5.3 of [2]. The number Z}. a; O(]. is denoted by i (V,
9 n 3, S) and called the intersection multiplicity of 9 with 3 at V on S. We set
i(V,% n3S)=0ifdim V=r+ s —nbut V is not a subvariety of rad 9 n rad 3.

If each component V; of rad § nrad 3 has the dimension r + s —n, we set
9 n 3:2}.1}(1/].,9 n 3,S)V].;

9 n 3 is called the intersection of 9 with 3 on S (although S does not appear,
at this stage, in the symbol 9§ n 3). Evidently, if i(V, %, n 3, S) andi(V, 9, n
%, S) both exist and have the same dimension, then i (V, (9, + 9,) n 3, S) also
exists, and equals Z] (v, 59] n S

A cycle B of S whose minimal representation is & = >, W is said to be a
part of § n 3 (whether § n 3 exists or not) if (1) each W is a component variety
of H n 3, and (2) ej = i(Wj, 9 n 3, S). The same cycle QB is said to coincide lo-
cally at U with 9 n 3 (U being a subvariety of S) if (1) each W; which contains
some component of U is a component variety of 9§ n 3, (2) each component of
rad § n rad 3 which contains some component of U coincides with some W;, and
() ej=i(W;, 9 n 3, S) for each ; which contains some component of U. Also,
9 n 3 is said to exist locally at U if i(V, 9 n 3, S) exists for each component
V of rad § n rad 3 which contains some component of U; the local part of § n 3
at U is z]- i(Xj, 9 n 3, S) Xj, where X; ranges among all the components of

rad ) n rad 3 each of which contains some component of U.

LEMMA 3.1. Let 9, 3 be unmixed integral effective cycles of S =Sp(k),of
dimensions r, s respectively. If r+s —n>0, let V be a component variety of
9 n 3. Let 0 be an unmixed algebraic correspondence between an algebraic func-
tion field K over k and S, such that the set N(8) of the v € M(K) for which
0{v}* is the modified extension of 3 over Ky, is nonempty. If 9" is the modified
extension of 9 over K, let A; (j=1,2,+++) be the component varieties of " n 0,

and set

A6 = ZIL(A]’ 5" n Q,SK)A]--
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If v € N(6), then a partial extension of i(V, 9 n 3, S) V over K, is part of
Agivl*.

Proof. The statement is clearly true if it is true when 9 is irreducible; ac-
cordingly, we shall assume % to be irreducible, and put Y =rad §.

In order to avoid lengthy repetitions, we shall say that the set { K, 0} is “ad-
missible” if (1) every component of 0 operates on the whole S, (2) N(8) is not
empty, and (3) each component of rad § n Yx has dimension r + s — n and oper-
ates on the whole Y. And we shall say that an admissible set { K, 0} is “satis-

factory” if the following statement is true: Set
- * .

then, for each v € N (@), a partial extension of i(V, 9§ n 3, S) V over K, is
part of [gfvl®.

Step 1. Let 3 be the general homographic transform of 3, G = Gq, K =k(G),
6’ the algebraic correspondence between K and S induced by 3 according to

Lemma 4.2 of [1]. If 9’ = Zi a].' 0]. is the minimal representation of 6, set

D; =Dy

and let P € G be such that Z/ a].' Dj{P } = 3. Set

a; = a].'h( 31') (h(ﬁj))—l,

3; being any component variety of D; { P }; finally, put
0 = zi ¢; Gj .

Then clearly { X, 6} is admissible by Theorems 2.1, 2.2, and N (6) is the set of
the v € M (K) whose center on G is P. If ' =I'g and C = Dp (. then by defini-

tion we have
i(V,9 n 3,5)=e(VxP/C;Y,P)

if v € N(0), by formula (1) and by the corollary to Theorem 5.1 of [ 2] it follows
that I'{ v}" is & partial extension of C{P }*, and therefore { K, 0} is satisfactory.

This is the contention of Step 1.

Step 2. Let K* be an algebraic function field over K, ¢* the modified exten-
sion of 6 over K*. By means of Lemma 1.2 it is a simple matter to prove that
{K*, 6%} is admissible if and only if {K, 0} is admissible; in this case, N(6%)

consists of the extensions to K* of the elements of N(6); and clearly, if { K*,
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0*} and {K, @} are admissible, then {K*, 0*} is satisfactory if and only if
{tK, 6} is such.

Step 3. We work again with two sets { K, 0} and { K*, 0}, on which we make
the following assumptions: (1) if G = Gy, G* = G, then K = k(G), K* = k(G*);
(2) {K, 0} is (admissible and) satisfactory; (3) if Z = Do, ¢» Z* = Dgx, ¢ *, then
GC G* and Z ={Z*%; S, G}*. We wish to prove that { K*, §*} is admissible and
satisfactory.

Clearly each component of 6* operates on the whole S. If N = N(0), N* =
N(6%),let v € N, and let w be a valuation of K* whose dimension equals dim G,
and such that C(w/G*) = G. Then any valuation of K* compounded of w and of
an extension of v to K, belongs to N*, so that N* is nonempty. Let Cj‘ be a
component of { Z*; ¥, G*] such that IC;‘ operates on the whole G*, and let Y’
be the subvariety of ¥ on which 1C7 operates. Since (1 Cr) [G*] is a component
of Z*[G*1 n Yk, by Theorem 2.2 it has dimension > r + s — n, so that dim C;‘ >
r+s —n+dim G*. Let Cj be a component of { 1C:‘; Y, G1, so that

dimC}.ZdimC?—dimG*+dimGZr+s—n+dimG.

Since Cj is also a pseudosubvariety of {Z; Y, G], and since 1 C; operates on the
whole G, by assumption C]- is also a pseudosubvariety of [ Z; ¥, G], and there-
fore

dimC]. <r+s-n+dimG.
This proves that
dimC].=r+s—-n+dimG;

hence C; is a component of [Z; ¥, G] and 1(; operates on the whole G; there-
fore 1C; operates on the whole Y, and the same must be true of ICf. As a con-
sequence, { K*, 6*} is admissible. We remark that we have also proved that G is
not fundamental for IC:{ .

Let now G’* be a normal associate to G*, and call G’ an irreducible sub-

variety of G** which corresponds to G in the birational correspondence between

G* and G**. Set

*
Z’ =D9*’Gl*.

If C:* is any component of {Z°*; Y, G**], and if 1Cl'.* operates on the whole

G**, since { K*, 0™} is admissible and 35 is normal we have that e(C]f*/Z'*-

Y, G’*)* exists. Set

C'* - zi e(C;*/Z'*, Y, Gl*)* Cl*.

2
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Then I™ = 'gs equals C**{G**}*. Set also Z°={Z**; S, G’}*, so that Z°{ G’}*
is the modified extension of Z{G }* over £(G*). Since G is not fundamental for
1 Cf (as previously remarked), G* is not fundamental for C**, and G** is locally
normal at G’. Hence, by Theorem 4.1 of [1], C’={C’*; Y, G’}* exists. The
component varieties Cl'. of C’ are those components A of {Z% Y, G’] such that
14 operates on the whole G % but then C’.', Z**, Y, G’ can replace respectively
U,D,W,, W, in Theorem 1,2, and the result is that C * equals the cycle obtained
from[Z% Y, G’] in the same way as C’* is obtained from [Z°*; Y, G**].
Let C be obtained in the same way from [ Z; Y, G1; then

r=T,=C{G},

and, by Lemma 1.2, C*{ G’}* is the modified extension of T" over k£ (G*).

If v* € N* and P = C(v*/G*), then Z*{ P }* is the modified extension of 3
over k(P ); therefore P € G; hence P’ = C(v*/G**) belongs to one of the irre-
ducible subvarieties of G** (say G”) which correspond to G. Since C’{ G’}* is
the modified extension of I" over £(G’), and because of formula (1), there are
components V; (j=1,2y+++) of ¥V x P such that e(Vj/C'; Y, P°)* exists, and
such that

iV, 9 n3,5)ordV = Zje(V]./C'; Y, P*)* ord(le){P'}*.

Hence each V; is a component of [C**; Y, P’], and e(V]-/C'*; T, P’)* exists
since G** is normal ( see Theorem 5.3 of [ 2]). But then Theorem 1.1 yields

e(V}./C'*; Y, P)* = e(V]./C'; Y, P*Y~.
As a consequence, a partial extension of

r%k ’ , )k
eV, /¢ Y, PO (V) { P

(which is also a partial extension of i(V, 9 n 3, S)V) over Ky is part of

™ { v* }*. This means that { K*, §*} is satisfactory, as announced.

Step 4. If {K, 6} is the set given in the statement of Lemma 3.1, let 6 be

the general homographic transform of 3, and set

K’ = k(... ,ui/, u;;,.-.),

the u;;’s playing the usual role in the definition of 6” Let K*, 6* be obtained

from K, 6 as K’; 6” are from k, 3, and by means of the same u;;’s. Set also

G =Ggey G* = Gou, K = k(G), K = k(G"),

1
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and let 6, 07 be the algebraic correspondences between respectively, K, KT,
and S of which A% " are modified extensions over respectively, K’ and K*.

If v € N = N(0) and w is the unique extension of v over K, since 6{v}*
is the modified extension of 3 over K, it follows that 0*{w}™ is the modified
extension of 0° over K,. This also means that G C G*, and that Z, ={Zf

S, G1*, where we have set

*
Z, = Del,c’ Z) = De;,c*‘
By Step 1, {K,, 0,1} is satisfactory; since {KT, 0’:} has been shown to be re-
lated to { K, 6} as { K*, 6"} is related to { K, 0} in Step 3, it follows that {K’:,
6’:} is satisfactory. Step 2 implies then that { K*, §* } is satisfactory.

Step 5. Let K, 6, K*, 6*, N have the same meanings as in Step 4, and set
N* = N(6*), T* = Lo

Let w be a valuation of K* over K such that uij(w) =0 if i #j, uj;(w) =1, and
Ky =K. If v € N, let v* be the place of K* over & which is compounded of w
and v, so that v* € N*. Since { K*, 6} is satisfactory by Step 4, a modified ex-
tension of i (V, Y n 3, S) V over K , =K, is part of

C*{o* P = (M {wl®) {o}*,

Since w is a place of K* over K, and K, = K, and since 6* is the general homo-
graphic transform of 6, the following statement is true by definition: If A; is a
component variety of 5" n @, then i(A;, 9"n 6, Sx) A; is part of 0*fwl*. As a
consequence, A = A, is part of I'{w}*, and its component varieties are all the
components of rad 9” nrad 0 of dimension r + s —n. If }, is a component of the
extension of V over K,, and if A’ is a component variety of ['*{w}* such that

(1A {v}* has V, as a component variety, certainly
dim A’ =dim V, =71+ s = n;

that is, A’ is a component variety of A. This proves that (I"* {w}*) {v}* and
Atvl* coincide locally at V;; hence a partial extension of i(V, 9 n 3,5)V
over K, is part of Afv }*, Q.k£.D.

REMARK 1. Maintaining the same notations, by comparing Steps 3 and 5 we
see that if { K, 0} is admissible, then Iy = A, and {K, 6} is satisfactory.

REMARK 2. Remark 1 shows that the use of the word “intersection” and of
the symbol n in Lemma 1.2 agrees with the present definition of intersection of

cycles.
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REMARK 3. Remark 1 also shows that in defining the intersection § a 3,
any admissible set { K, 6} can be used in place of the set { K, 0} of Step 1 of the
proof of Lemma 3.1. Step 1 itself shows that admissible sets do exist.

THEOREM 3.1. If b,, 9, are r-dimensional cycles of S, and 3,, %, are s-

dimensional cycles of S, and V is a component variety of
(9, + 9,) n (3, + 32)s
then
iV, (9 + 9,) 0 (3y + 32),8) = 2, i(V, 9 0 3, 5).

Proof. (See Remark 4 at the end of this proof). Assume 9]., 3]. (j=1,2) to
be integral effective cycles. By definition,

PV, (by + 9y) n (3y + 32),8) = 2, i(V, 9, n (3 + 3,),5).
Hence it is enough to prove that if § denotes either o, then
l(V$ 9 n(%l n %2)75) = ZJI/(V, 9 n 3]"5)-

Now, let ¢; be the general homographic transform of 3j» and set

-1
K= hCereyugugl,ees).

Then 6, + 6, is the general homographic transform of 3, + 3,. In the notations

of Lemma 3.1 and its proof,

¥

N = N(91 + 92) = N(el) n N(az)y
and
{K, (9]-} (j=1,2), {K, 0, + 0,}
are satisfactory, We also have
Fel +62 = Fgl + F@z,

so that Lemma 3.1 itself and Remark 3 imply
iV, 90 (3 +3,),5) = 2]. i(V,9 n 3;,5), QED.

REMARK 4. So far, Theorem 3.1 has a meaning only if 9;s 3 (j=1,2) are
integral effective cycles. This particular case is sufficient, however, to give a

meaning to i(V, H n 3, S) when 9, 3 are rational virtual cycles: in fact, for
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some integer m it is true that

mY =9 — 9, my = 3; - 2,,

where 9;, 3; (j=1, 2) are integral effective cycles; Theorem 3.1 shows that
the number

m i(V,9, n 31,8) =iV, 9, n 3,,5)

—i(V,9, n 3,,5) +i(V, 5, n 3, 5)]

depends only on ¥, ©, 3. This number will be denoted by i(V, % n 3, S) and
called the intersection multiplicity of § with % at V on S; all the other notations
and definitions concerning § n 3 are extended likewise. With this definition it
is easily proved that Theorem 3.1 remains true in general. As a matter of fact,
Lemma 3.1 itself remains true after removing the assumption that § and 3 are in-

tegral effective cycles.

Let 3 be an unmixed r-dimensional cycle of an irreducible n- dimensional va-
riety U over k, and let V be an irreducible subvariety of U of dimension <r, R =
Q(V/U); let 3 = Zi b, 3; be the minimal representation of 3, and set p, =
%’3(3i/U) n R for each i such that R C Q( 3i/U) (that is, such that V C 3;).
We say that 3 is a complete intersection at V on U if there exists a subset { {}
of a set of parameters of R such that (1) the bi’s are all the distinct minimal

primes of the ideal of R whose basis is {Cl, SPRER }, and (2) we have
b, = e(Rpi; 2) = e(Q(3,/0); ¢)

for each i for which p; exists. Any such set {{} is called a set of representa-
tives of 3 at V on U. Also, {{} is assumed to consist of units of R if V ¢ rad 3.
A complete intersection at V obviously coincides, locally at V, with an integral

effective cycle.

LEMMA 3.2. Maintain the notations of Lemma 3.1; assume 3 to be irreduci-
ble, and Y to be a complete intersection at V on S. Let {{} be a set of repre-
sentatives of 9 at V on S, and set p=P(rad 3/S) n Q(V/S). If o is the homo-
morphic mapping of Q(V/S) whose kernel is Y, then {ol} is a set of parameters
of Q(V/rad 3), and i(V, 9 n 3,5)=e(Q(V/rad 3); a{).

Proof. Let 0 be the general homographic transform of 3,

K= k(oo u.. u”l, eer),

ij Y02
T the projective space whose h.g.p. is { u}, P the point of T at which u;; = 0 for

i #j, ujj=1. Let {n} be aregular set of parameters of Q (P/T). Set Z = D6’, P
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and let § = Z]. a; 13]. be the minimal representation of §. Set G = {Z; 9js T*.
If Cji (I=1, 2, .-+ ) are the component varieties of Cj, then from the corollary
to Lemma 1.1 follows that

C; = 2, e(Q(C;y/rad 2); ) e(Q(9,/8)% O €.
According to Lemma 3.1 and its proof, we also have, by Theorem 3.1:
i(V,9n3,8) = Z]. aje(V x P/Cjs %, P)
= 21 a;e(QUV x P/C;p)i ) e(Q(P/T); 7)1 e(Q(Cpy/rad 2); {)
x e(Q(9;/8); ).
Since a; = e(Q(9;/S); ¢), this also gives
i(Vy9n 3 8S)= ij e(Q(V x P/Cy)im) e(Q(C;/rad 2); £).

The ideals %(le/rad Z) n Q(V x P/rad Z) are all the minimal primes of the
ideal of Q(V x P/rad Z) whose basis is { (' }; therefore the associativity formu-
la (Theorem 2.1 of [21) gives

i(V,9 n 3,5)=e(Q(V x P/rad Z), ¢, 7).

The only minimal prime of the ideal of Q(V x P/rad Z) whose basis is {7} is
the ideal P(rad 3 x P/rad Z) n Q(V x P/rad Z), and

e(Q(rad 3 x P/rad Z); 5) = e(rad 3 x P/rad Z; S, P)* = 1;

therefore, if T denotes the homomorphic mapping of Q(V x P/rad Z) whose

kernel is said prime, the associativity formula gives
i(V,9 n 3, S)=e(@Q(V x P/rad 3 x P; T{) = e(Q(V/rad 3); 0¢), Q.E.D.

Notice that the fact expressed in Lemma 3.2 is the basic reason for which

l—‘g = AG when 0 is admissible (see Remark 1 and the proof of Lemma 3.1).

LemMA 3.3. Let 9, 3 be unmixed cycles of S, and let V be a component
variety of 9 n 3. Let A be the general homographic transform of 9,

K = k(.-., u,i.u,—1 ...),

j “o00?

rd

v any place of K over k such that Ky =k, u;jj(v)=0if i#j, ujy(v)=1If 3
is the modified extension of 3 over K, and Aj (j=1, 2, +++) are all the com-

ponent varieties of A n 3, set
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A= Z].i(A].,A n 2,,SK)A]..
Theni(V, 9 n 3,5)V is part of A{v}*.

Proof. Assume first § and 3 to be integral effective cycles. Let ut'] be the
reciprocal element of u;; in the matrix U = (u;j); if {X 1 is the h.g.p. of S, leto

be the non-degenerate homography of S, such that
oX, = EJ. uji Uy, X]..

Then o A is the modified extension 9’ of 9 over K, and § = ¢ 3 is the general
homographic transform of 2. If A; is a component variety of A n 3’, then 0 A; is

a component variety of §* n 6, and
i(Aj, An 3, Sy) = i(oA]., 5" n 0, 5,).

If

1
l/,(...,u,,uo,.-.,z’ y) = lIJt,yA,

ij 7o

} as T is constructed from {u..} in $2, then

. rd
and T is constructed from {”ij' U, i

by § 2 we have
\pt,y(UA) = 1,[/( ey uij u;;’ sy T—lt’ )’)-

If we replace here each ujj by uij(v), we obtain

¥, (oA toF) = glu (0),6,9) = ¥, (Aol

y

which goes to show that

(o) {v}* = Afw}*.

Buti(V, % n 3,S) V is part of (¢ A) {v}* by Lemma 3.1, so that it is also part
of A{v}*, as asserted.
If § or 3 are not integral effective cycles, the proof of Lemma 3.3 is easily

derived from the above special case, Q.E.D.

THEOREM 3.2. Let K be an algebraic function field over k, A and 0 two un-
mixed algebraic correspondences between K and S, of dimensions r, s respec=
tively. Let 9, 3 be two cycles of S such that the set N of the v € M(K) for
which A{v}*, 0{v* are the modified extensions over K, of 9, 3 respectively is
nonempty. Let V be a component variety of 9 n 3, and let Aj (j=1, 2, ) be

all the component varieties of 0 n A; set
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o = i(A, 008,50, A=2 dA.

Then the set { Aj} is nonempty, and, for each v € N, a partial extension of i(V,
3 n 9,5) over K, is part of Afv}*.

THEOREM 3.3. If 9, 3 are unmixed cycles of S, and V is a component vari-
ety of % n 3, then

i(V,9n 3,5 =i(V,3nH,5).

Proof. Theorems 3.2 and 3.3 will be proved together in a number of steps.
We shall prove them under the additional assumption that §, 3 are integral ef-

fective cycles. The transition to the general case is obvious.

Step 1. In the notation of Theorem 3.2, let & be the algebraic closure of k in
K, and let K’ be a field isomorphic to K over k% then the direct product K x K’
over k” is an integral domain. Let £ be the quotient field of K x K”. Let A”be a
“copy” of A over K’ Given a v € N, select elements x, » + +y 2, € K such
that (1) K = k“(x), (2) £ Tx) C Ry, (3) if p=C(v/k’[x]), then k'[x];3 contains

all the coefficients of

‘Pt’y 0 € K[t yl,

after one of these has been made equal to 1, and (4) k'[x];3 contains all the co-
efficients of

¥, A €Ki, yl,

after one of these has been made equal to 1.

Let x:, ooy, xr’n be the elements of K which correspond to C AR in
the isomorphism between K and K. Then E = k*(x, x*). The ideal $ of k[ x, x"]
whose basis is {x{ — %y, *++, %y ~ %y} is prime; let u be any valuation of £
over k whose center on £”[x, x“] is ¥, and whose dimension over # equals
dim P/k = transc K/k. Then u is a place of £ over K. Let A* be the modified
extension of A’ over K: then we see that A*{ 4 }* is the modified extension of
A over K. Let A* be obtained from A* and 6 as Ag (in Lemma 3.1) is obtained
from @ and 9. Then, by Lemma 3.1, a partial extension of A over K, is part of

A*{ul®,
Step 2. Let k”[z] be the integral closure of k[, x”], and let v be the
place of K’ which corresponds to v in the isomorphism between K and K”. Set

q=C(v7k’[x°]), and let Q be the minimal prime of qk’[x, x°]. Denote by v*

the place of E over k which is compounded of » and of an extension of v to K.
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Then Q ¢ C(v*/k’[x, x°1), and therefore some minimal prime 87 of Qk’[z] is
contained in C(v*/k’[z]). We select a place w of E over K whose center on
k’[z] is Q’ then there exists a place w* of E over k& whose center on k[ z] is
C(v*/k’[z]), and which is compounded of w and of some place v, of K, over

k. 1f v, is the place of K over k induced by v;, we have
C(w*/k" %, x"1) = C(u*/k" [x, x°1),
hence
Cloo/k’[x1) = C(w*/k"[%]) = C(v*/k"[x]) = C(v/k’[x]).

As a consequence, because of the choice of {x}, vy and v have, on Gg and G,

the same centers; since v € N, we deduce that v, € N. We also have
Clw/k’[x°]) = Q% n k’[x7] = q = CloVk’[x"]);

therefore, since v € N, it follows that A*{w }* is the modified extension of §
over K,,. Let A be obtained from 6, 9’ (= modified extension of 9 over K) as
Ap (in Lemma 3.1) is obtained from Y, § respectively. Now we can replace, in
Lemma 3.1 9 by 6, 3 by 9%, 6 by A*, Ag by A*, and the result is that a partial

extension of A’ over Ky, is part of A*{w }*.

Step 3. We now make the assumption that a partial extension of i(V, 3 n 9,
S)V over K”o is part of A’{ v, }1*. Since we also have that

A w1 = (AMw*) {o, P

is the modified extension of A’{ v, }" over K, x» we deduce that a partial exten-
sion of i(V, 3 n 9,S) V over KUl is part of A*fw* I,
Let F be the irreducible variety over £ “ whose n.h.g.p. is { z}; set

L=D $ = C(w*/F) = C(v*/F),

A*F?
and let U be the subvariety of S on which L operates. Since F is normal, for any
component C of [L; U, P] of dimension r + s ~ n the number e(C/L; U, P)*

exists. The previous result shows that among the C’s there are pseudosubvarie-
ties Vi of Sk’ x F such that (le J[{P] is a component of Vk(P); and it also
shows that if

Vo=, e(V;/L; U, PY (17 [P,

then a partial extension of i (V, 3 n 9, S) V over k(P ) is part of V"
The concluding statement of Step 1 shows that a partial extension of A{v}*

over K , is part of A*{o* ¥ If V” is the part of Afv}* whose component varie-
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ties are components of the extension of V over K,,, this also means that a partial
extension of V' over K, coincides with a partial extension of V/“over K ,, and
therefore also with a partial extension of ;((V, 3n 9, S) V over K, - But then
V* itself is a partial extension of i(V, 3 n Y, S) V over K, and this proves
that Theorem 3.2 is true if the assumption made at the beginning of Step 3 is

true.

Step 4. We now apply the content of Steps 1, 2, 3, to the following case:

assume %, 3 to be irreducible; let §” be the general homographic transform of 3,

H=k(eee, u.. -1, );

ij Loor
let A’ be the general homographic transform of ©, constructed with an inde-

pendent set { u{,} of indeterminates, and set

H’ = k(... , u?’. u"1 ...);

ij ~00?
set

-1 ’ -1
K_k(...,uiiuoo’...,...,uiiu,oo, ),

and let A, 0 be the modified extensions of A’ 6 over K. We select placesp,
p’of H, H’ over k such that

Kp = Kp, =k, ui].(p) = u‘.'].(p') =0ifi#ju;(p)=ul(p)=1.
We further select for v the place of K over k& which is compounded of the unique
extension p* of p over H* and of p”. In this case the set {x} can be selected to

coincide with the set

{... u u--l e cee u'-u'—l .--}
> %ij Too? ’ > %ij Yoo ?

(see Step 1), and k* = k. Besides, k[, x*] is integrally closed, so that {z} =
{x, x°} (see Step 2). The fact that k[z] = k[x, x°] implies that we can select
vy = v in Step 2. Hence we can replace, in Lemma 3.3, S by S,,,, 9 by the modi-
fied extension 3” of 3 over H’ 3 by the modified extension 9 of § over H5 K
by K, v by p*, A by 6, A by A, V by the extension V* of V over H’, and Lemma
3.3 yields that i (V*, 3" n 9", S,.) V” is part of A"{p* }*. Now, from the defi-

nition of intersection multiplicity follows that

i(V” 3 n 9”5, =i(V,3n9,5);
therefore i (¥, 3 n 9, S) V is part of

(AEp* ) (7} = Afol* = Afob*.
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Hence, in this particular case, the assumption made at the beginning of Step 3 is
true, and therefore, by Step 3, i(V, 3 n 9, S) V is part of Afv}*. If A; is any
component variety of A, then 1A;, considered as an algebraic correspondence
between K and Sy» operates on the whole rad 0’ (see Remark 1), while, con-
sidered as an algebraic correspondence between K and S+, 1 A; operates on the
whole rad A% If { ¢}, {5} are sets of regular parameters of Q(rad 0'/SH) and
Q(rad A/S, -) respectively, it follows that §, A are complete intersections at
Aj on Sy, and that { {}, 1 5} are sets of representatives of 6, A, respectively, on

SK . Set

R = Q(A;/Sy).
If o, T are the homomorphic mappings of R whose kernels are 8 (rad A/SK) n R
and P (rad 6/5, ) n R respectively, Lemma 3.2 implies that
i(Aj, 6 n A, SK) =e(oR;0(),
and this equals e (R; ¢, 8) by the associativity formula (Theorem 2.1 of [2]);

therefore, again by the associativity formula and Lemma 3.2, we have
i(Aj, 0 n A Sp)=e(R; ¢, 8) =e(TR; T8) = i(Aj, A n6,5S,).

This shows that A is unaffected when A, ¢ are interchanged, that is, when 9, 3
are interchanged; hence i(V, 9 n 3, S) V is also part of A{v}*, and this
amounts to saying that

i(Vy9n 3,8 =iV, 3n9,S).

Theorem 3.3 is thus completely proved when % and 3 are irreducible, and there-

fore also when they are not irreducible, because of Theorem 3.1.

Step 5. We go back to the general case considered in Steps 1, 2, 3, and prove
that the assumption made at the beginning of Step 3 is always true. According to
Theorem 3.3, proved in Step 4, the equality

i(A7, 0 0 9% S) = i(A7, 9" 0 6, 5,)

is true for any component variety A of A’ Therefore we can replace, in Lemma
3.1, 9 by b, 3 by 3, 0 by 6, Ag by A’, and the result is that a partial extension
of

i(V,9n03,8)V=iV,3a9h,S)V

over K, is part of A’ v, }*, since, as it was proved in Step 2, v, € N. This
completes the proof of Theorem 3.2, Q.E.D.
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THEOREM 3.4. Let T, %, 3 be three unmixed cycles of S=S,(k), of di-

mensions r, s, t respectively such that
r+s+t-2n>0;

let V be a component of tad £ nrad § n rad 3 of dimensionr+s +t—2n. Let
Uy, Uy, « o+ be the components of rad £ n rad Y which contain V, and let W,,
W,y «++ be the components of rad 9 n rad 3 which contain V. Then

dime=r+s—n,diij=s+t—n,
so that

U= Zji(U]., €n 9, S)U; and W= Z].i(W/., bn 3 S)W,

exist. Moreover,
iV, enaW,S)=i(V,Un 3>S5).

This number shall be denoted by i(V, £ a § a 3, S), and a similar notation

will be used when more that three cycles are involved.

Proof. We may assume, by Theorem 3.1, ¢, 9, 3 to be irreducible. Let X,
@’, 8’ be the general homographic transforms of ¥, Y, 3, respectively, con-

structed with three independent sets of indeterminates’f uij } {v,-]-}, {wii }, and

set
- ~1
H = k(“"”i] ggstoe ) J = k(. ]vo;"“)’ L = k(”"wijwoo’ al),
-1 -1 -1
K—_—.k(.-.,u] 00’...’...’1)1'] 00’...’...’wi],w00,.-.).

Let X, 9), 8 be the modified extensions of X g)’, R’ respectively over K. Then
(Xnd)nBand X n(Y n B) exist. Let { £}, {5}, { {} be sets of regular parame-
ters of Q(rad 3€'/S ), Q(rad @'/S ), Q(rad 8'/5 ) respectively IfA is any
component variety of A = X n ), lA operates on the whole rad X" and the whole
rad 9’ so that X and §) are complete intersections at Aj on Sy, and { £}, {5} are
their sets of representatives at Aj on S, . Therefore, by Lemma 3.2, Theorem

3.3, and the associativity formula (Theorem 2.1 of [ 2]), we have
i(A]., X a3, Sg) = e(Q(Aj/SK); &)

If T, is a component variety of I"= A n 3, this also shows that A is a complete
intersection at I; on S, and that {& nlis a set of representatives of A at I,

on SK; since 3 is also a complete intersection at I'; on SK’ and { £} is a set of
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representatives of 3 at I'; on Sy, the same argument gives

i(rlyA n 8’SK) = e(Q(Fl/SK); f’n’ 4)'

If now A =% n 3, we can prove by the same method that

(T, X aA, S)=e(QUI/S ) &0, 0,
so that A n 3= X nA. Let now v be a place of K over k such that,

ui].(v) = vi].(v) =w. (v) =0 if { # j’uii(v) = vii(v) =w..(v)=1,K =k.

ij il v

Theorem 3.2 implies that U is part of A{v}*, and therefore also that i (V, U n 3,
S)V is part of I'{ v}*; for the same reason, i(V, znW,S)V is part of I'{ovl¥,
Q.E.D.

4. Further properties of the intersection multiplicity in a projective space.

Throughout this section, S will be an n-dimensional projective space over the

field k.

THEOREM 4.1. If £, 9 are unmixed integral effective cycles of S, and V is

a component variety of £n 9, then i (V, £ n 9, S) is a positive integer.
Proof. In the proof of Theorem 3.4 it has been shown that
L(A], X n g), SK ) = E(Q(A]/SK ); 'f’ 77)’

so that A is an integral effective cycle. But then i(V, xnf, S) is an integer
because it is the multiplicity of V in A{v}* (v having the same meaning as

in the proof of Theorem 3.4), Q.E.D.

From Lemma 3.2, Theorems 3.2 and 3.4, and Lemma 2.3 of [2], it is now
possible to see that a cycle 3 is a complete intersection at V on S, and has the
set of representatives { £} at V on S, if and only if 3 coincides locally at V with

©, nT, n-+., where g; is the (n — 1)-dimensional cycle

here vy (j=1,2,«++) are all the discrete normalized valuations of £ (S) over k

of rank 1 and dimension n — 1 such that v (él) > 0.

THEOREM 4.2. Let 9, 3 be unmixed cycles of S of dimensions r, s such
that r +s —n>0; let V be a component variety of 9 n 3. Let k’ be an extension
of k, and 9’y 3" the modified extensions of 9, 3 over k’. Then each component

Vj of Visis a component variety of %* n 3, and
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2iV, 903,50,
is the modified extension overk’of i(V, 9 n 3,S) V.

Proof. The first assertion is evidently true. In order to prove the second
statement, let 3, 8* be the general homographic transforms of 9, 3 respec-

tively, constructed with two independent sets of indeterminates § uij {vi]' }. Set

= s e -1 LA e e —l LR
K = k( s Uy oo , » Vij Yoo ),

and let 9, B be the modified extensions of §*, 8* respectively over K. Then
A = @ n 3 exists, and if v is a place of K over k such that

Ky = Fkyuij(v) = vij(v) =0 if {#j,u;(v)=05v)=1,

then i(V, Hn 3, S) V is part of A{v}* by Theorem 3.2. Now let @', 8', K’ be
obtained from 9%, 3’ as ¥, 3, K are from 9, 3; then §)’, }” are the modified ex-
tensions of §), 8 respectively over K% If A’= 9" n R, assume for a moment A*
to be the modified extension of A over k. If v” is any extension of v to K’ over
k’ such that K, = k*, then A’{v’}* is the modified extension of A{v}* over k*,

and therefore
2 iVu 9 3,807,

is the modified extension over £*of i(V, 9 n 3, S)V, as claimed. We conclude
that the theorem is true if it is true when applied to $), %, or also, a fortiori, if it
is true under the additional assumption that §, 3 are complete intersections at V.
This, in turn, is equivalent, by Lemma 3.2, to the following assertion: Let 4 be
an irreducible subvariety of S, { £} a set of parameters of R = Q(A4/S); let A’ be
the modified extension of 14 over k%, A, +++, 4, its component varieties,

and set
R = Q(4;/5,.).
Then
A7 =2, e(Ris Q) e(R; )7 45,

Now, if £’ is an algebraic function field over k the proof of this statement is
implicitly contained in the proof of Lemma 1.2; otherwise, it can be obtained by

a well-known limiting process, Q.E.D.

THEOREM 4.3 (BEzouT’s THEOREM). Let Y, 3 be unmixed cycles of S
such that Y n 3 exists. Then



INTERSECTION THEORY FOR CYCLES OF AN ALGEBRAIC VARIETY 509

ord (9 n 3) = (ord 9) (ord 3).

Proof. By Theorem 3.1, we may assume without loss of generality that 9 and
% are irreducible; and, by Theorem 4.2, we may assume % to be algebraically
closed. Let 9), 8, K, A have the same meanings as in the proof of Theorem 4.2.
Then

ord (§ n 3) = ord A.

Since k is algebraically closed, ) and X are the modified extensions over K of
the general elements of the homographic systems ©, & of §, 3 respectively. Ac-
cording to Lemma 2.4, § and & contain two degenerate cycles 9% 3’ and there-
fore they contain the homographic systems 7, 8 of §’, 3* respectively (Lemma
2.2). Two cycles B”, 3” of 85', R’, respectively, can be found in such a way
that 9 n 3” exists; we have then that §” n 3" = Afv}* for some v € M(K)

(Theorem 3.2), and therefore

ord (§” n 3™) = ord A

ord (H n 3).

Ifr=ord 9, s = ord 3, we have
r S
b” - z 19;’ %” = Z 1%1,
i=1 i=1

the 9,’s and 3,’s being linear varieties. Lemma 3.2 gives that for each i, j the
intersection 19, n lgi is an irreducible cycle whose radical is a linear variety.

Hence Theorem 3.1 implies that ord (9 n 3) =rs, Q.E.D.

THEOREM 4.4 (CRITERION FOR SIMPLE INTERSECTIONS). Let Y, 3 be
irreducible cycles of S, of dimensions r, s respectively such thatr+s~n>0.
Let V be a component of rad 9 nrad 3. Then the following four statements are

equivalent:
(1) i(V, 9n 3,S) exists and equals 1;
(2) let { X} be the h.g.p. of S; let
{fi (X)), f,(X),-+-} and g (X), g, (X)), ---}

be bases of p(rad 9/S) and @ (rad 3/S) respectively. Let {x} be the
h.g.p. of V. Then the Jacobian matrix ] (f(X), g(X); X, t) acquires the
rank 2n —r — s when { X } is replaced by {x}. Here {t} is a p-independent
basis of k over kP if p is the characteristic of k;
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(3) there are regular sets of parameters {{}, {n} of Q(rad 3/S), ¢ (rad 5/S)
respectively such that { {, n} is a regular set of parameters of Q(V/S);

(4) @(V/S) is an isolated primary component of

wlrad 9/S) + p(rad 3/S).

If ins V =1, then J(f(X), g(X); X, t) in Statement 2 can be replaced by
J(f(X), g(X); X).

Proof. Let J), B, A, K have the same meaning as in the proof of Theorem 4.2.
Let S;, S, be the projective spaces whose h.g.p. are {u}, { v} respectively. Set

- - *
Ri= 8155 Z=Dgp ¥ =Dy g 27 = D0 ¥* = D,
and let P, Q be points of S;, S, such that
Y¥{PY =9, Z*{Q} = 3
set also G = P x ). Then the ideal whose basis is the set of the
Fi(X,u)= fi(ees, Z]- uy u;; X, eed)

has

p(radY/k[X,...,ui.u— cee g eee v v b eel])

1
j o0’ ij Yoo’
as an isolated primary component, and the ideal whose basis is the set of the
-1
GL(X, ’U) = gi(coo ) E] ‘Ul]. vOO X]’ --.)

has

@(rad Z/E[X, coe yu u ly oo, oen "1 ])

ij “o0’ ’ vij Yoo?

as an isolated primary component. If assertion 1 is true, then only one com-
ponent A”.of A has the property that L’=rad D+ g contains V x G; besides,
rad A’ has in A the multiplicity 1. Therefore, by Lemma 3.2, { Fy, Fy, «++, Gy,
G, +++} is the basis of an ideal of which

@ULYELX, wee s uuly eenyeen v 071, 0en])

)
ij Yoo ij “00’

is an isolated primary component. Since

i(V,9n 3,5)=e(V xG/1L%S, R)¥,
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and since upon replacing the ui].’s, v, ’s by their values at G the F;(X, u),
Gi(X, v) are replaced by the f;(X), g; (X), Theorem 5.6 of [ 2] or its corollary
implies that Statement 2 is true.

Assume now Statement 2 to be true; then Theorem 10 of [ 6] implies that
Statement 3 is true. Finally, if Statement 3 is true, then § and 3 are complete
intersections at V/ on S, and Lemma 3.2, together with Theorem 2.1 of [ 2], yields
the result that Statement 1 is true. Statement 4 is clearly a consequence of
Statement 3, and it implies Statement 2, Q.1.D.

CoroLLARY. With notations as in Theorem 4.4, if
i(V, 9 n 3»S) =1,
then V is simple on rad 9 and rad 3.

Proof. This is a consequence of Statement 3 of the theorem and of a well-

known result on regular local rings, Q.E.D.

5. Intersection of cycles of an algebraic irreducible variety. Let J be an ir-
reducible variety over the field %, U a subvariety of V, S the ambient space
of V. By this expression we mean to express the fact that if { X} is the h.g.p. of
S, then the h.g.p. {x} of V' is a homomorphic image of { X }; of course S is not the
only projective space of which V is a subvariety. Let 3 be an unmixed cycle of
V. We say that 3 is a section of V at U if there exists an unmixed cycle 3 of
S such that 1 ¥ n 3 and 3 coincide locally at U. We shall develop in this section
a theory of intersections of cycles of V which will be valid when the cycles are
sections of V at some U; before we do so, however, it is important to show that

this is the case under the customary conditions. Namely, we have:

THEOREM 5.1. Let V be an irreducible variety over the algebraically closed
field k, S the ambient space of V, U a nonempty irreducible subvariety of V,
simple on V, 3 an irreducible cycle of V; then there exists an irreducible cycle

A

5 of S such that 1V n 3 coincides with 3 locally at V.

Proof. Since, by Theorem 3 of [6], each U simple on V' contains a point P
simple on V, the theorem will be proved in general if it is proved under the as-
sumption that U is a point. Let {x} be a n.h.g.p. of V for which U is a finite
distance, R = Q(U/V). If

m=dimS, n = dimV, r = dim 3,

let {yl, cee, yn} be a set of regular parameters of R contained in k[x]; then
Y,» ***» ¥, are algebraically independent over k. Let F' be the projective space
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over k whose n.h.g.p. is { y}, and set
U’ = p((U/klx]) nklyD), Z7= p(p(rad 3/k[x]) n k[y]).

Then U’ is a point, and dim Z’<r. The embedding of £k{y] in k[x] gives an ir-
reducible algebraic correspondence D between F and V, such that rad D is bi-
rationally equivalent to ¥ in a birational correspondence which is regular® at
finite distance; we shall therefore denote subvarieties of ¥ and D which corres-
pond to each other with the same symbol. Since Q(U/F) contains a set of regu-

lar parameters of R, from the corrollary to Lemma 1.1 we obtain
e(U/D; U% V)* = 1.

Let Z be a component of [D; Z*, V] containing U; then Theorem 1.1 implies that
dim Z = dim Z*% since among the Z’s there is one which contains rad 3, and
which therefore has dimension > r, we conclude that dim Z “=r, so that dim Z = r

for each Z. Now, by Theorem 1.1, we have
1=e(U/D;U,V)* = e(U/ZZ e(Z/D; 25, VI*x Z; U% V)*,

Since Z* is simple on F, according to a remark preceding Theorem 5.5 of [2] we
have that each e(Z/D; Z’, V)* is an integer; we cannot state that e(U/1Z; U,
V)* exists for each Z; however, according to Lemma 1.1, we may operate in the
following way: Replace, in Lemma 1.1, D, D*, V, F, G, k respectively by

X, e(Z/D;s 2 VY 2,0, V, 25 U &,y
and select correspondingly Z*, G* D", UT, U:, «++ to replace F4 G’ D/ D’:,

D*

2?

<+ in Lemma 1.1; impose upon Z* the additional condition that{lD].’; v,
G’}* exists for each component variety Dl.' of D% for each Z, set

®(Z) = Z]. e(U;/D}3 V, 6" ord (1UF) (61,
where [ is such that
(1D}) {Z* ) = (12)tzZy.

Since § 1Dl'; V, G’}* exists, and A( U;'-< ) =1, we deduce that a(Z) is an integer.
The & of Lemma 1.1 is given by

« =2, e(Z/D; 2%V a(Z),

and therefore. since ord U = 1 in this case, Lemma 1.1 itself gives that

27 is regular at U if for each U’ = T(U) it is true that Q(U/V )= Q(U’/V"); in this

Y .
case U’ is unique.
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1= e(U/2, e(Z/D; 25 V)X 23V, UN* = X, e(Z/D; 25 V)* «(Z).

Since we have seen that each e(Z/D; Z% V)* and each o(Z) is an integer, it
follows that there is exactly one Z, namely rad 3, and that e(Z/D; Z%, V)* = 1.

Now, the set {y} can be identified with a subset of k[ X], { X} being the
n.h.g.p. of S which corresponds to { x }. Set

B =1p(p(Z7kly]) K[X]),

so that 3 is an irreducible cycle of S of dimension r + m — n. The fact that the
only Z is rad 3 means that rad 3 is the only component of ¥/ nrad 3 containing

U; since
r=n+dim 8 - m,

we also have that rad 3 is a component variety of 1V n 3. Finally, since
e(Z/D; 25, V) =1,

a regular set of parameters of Q (Z/F) is a regular set of parameters of Q (Z/V),
and this means that g (rad 3/4£[ X])is an isolated primary component of

@ (V/ELXY) + p(rad B/E[X]).

This, in turn, by Statement 4 of Theorem 4.4 shows that i(rad 3, 1V n 3, S) =
1, Q.E.D.

Let V be an irreducible n-dimensional variety over the (arbitrary) field %, and
let 9, 3 be unmixed cycles of V' of dimension r, s respectively; if U is an ir-
reducible subvariety of rad § nrad 3, we say that U is a component variety of
(9n 3, V)ifdim U =r+s—n.If 3 is a section of V at U, let 8 be an unmixed
cycle of the m-dimensional ambient space S of ¥/, such that 3 coincides locally
at U with 3n 1V. If U is also a subvariety of rad 9, then it is a subvariety of
rad § n rad 8. Since

dim 3 =s +m - n,
by Theorem 2.2 we have
dimU >r+s —n.

Assume U to have exactly the dimension r+s -~ n, so that it is a component
variety of (9 n 3, V) and of H n 3. Assume also 9 to be a section of V at U,
and let ) be related to § as 3 is to 3. The number i (U, § n 3, S) exists, and
by Theorem 3.4 it equals
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iU, Y nlVa3,8)=i(U,Y) n3S).
This proves that
i(U, 9n 8,S)=i(U,@n % S)

does not depend on the choice of ), 3, but depends only on U, Y, 3, V; accord-
ingly, it will be denoted by i (U, % n 3, V). We shall put i (U, Y n 3, V) =0 if
dimU=r+s—nbu U ¢ rad § nrad 3. A generalization of the meaning of this
symbol will be given after Theorem 5.9; the remark following Theorem 5.9 con-
tains comments on the validity of most results of this section for the generalized

symbol. Theorem 3.3 yields:

i(U, 90 3,V)=i(U,9n 3,8 =i(U,8n9,5)=i(U,3nY,V);
that is, we have the following result:
THEOREM 5.2 (COMMUTATIVITY LAW). If one of the symbols
(U, 903, V),il(lU,3n9,V)
has a meaning, the other also has a meaning, and their values are equal.

The number i (U, 9 n 3, V) is called the intersection multiplicity of % and
3 at Uon V. Assume that §, 3 are such that each component U; of rad 9 nrad 3
is a component variety of (9 n 3, V), and that i(Uj, Hn 3, V) is defined for
eachj; in this case we shall set

(903 V) =2 i(Usbdn 3 V)U;

the cycle (9 n 3, V) is called the intersection of % and 3 on V. The locutions
““to be part of (9 n 3, V)’, “to coincide locally at ... with (9 n 3, V)"’ “to
exist locally at ...’ and ‘‘the local part of (§ n 3, V) at .. ”” shall have a
meaning even if (9 n 3, V) does not exist, in exactly the same way as the simi-
lar locutions in ¢ 3 have a meaning even if § n3 does not exist. Obviously, in
the special case in which ¥ = S, the symbols i (U, $ n 3, S) as defined here or
in § 3 have the same meaning; accordingly, the symbol § n 3 of $3 shall be de-
noted from now on by (§ n 3, S).

From Theorem 4.2 we obtain:

THEOREM 5.3. Let V be an irreducible variety over ky, 9 and 3 two unmixed
cycles of V such that

dim § + dim 3~ dim ¥V > 0,
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and let T be a part of (9 n 3, V). Let k’ be an extension of k; V' the extension
of V over k% x%, v’, 3”7 the modified extensions of v, Y, 3 respectively over

k* Assume V' to be irreducible. Then insV (ins V) 'a’is part of (9" n 3, V7).
From the definition, and from Theorem 3.1, we obtain:

THEOREM 5.4 (DISTRIBUTIVITY LAW). If U, 19]., 3ys V are such that i(U,
?)j n 35 V) has a meaning for j, L =1, 2, and if

dim § = dim 9, dim 3, = dim 3,0

then

iU, (9, + 9) n (3,+ 3,0 V)

has a meaning and equals

2

Y (v, b n 3 V).
=1

THEOREM 5.5 (ASSOCIATIVITY LAW). Let T, 9, 3 be three unmixed cycles
of the n-dimensional irreducible variety V over k, of dimensions r, s, t respec-
tively. Let U be a component of rad £ nrad § nrad 3 of dimensions r + s+t — 2n;
assume T, 9, 3 to be sections of V at U; let &%, Y be the local parts, at U, of
(xnb, V), (9n 3, V) respectively. Then i (U, £°n 3, V) and i(U, tn 35 V)
exist and are equal. Their common value is denoted by i(U, znfn3, V), and

a similar notation is used when more than three cycles are involved.

Proof. Let X, ), 3 be unmixed cycles of S (the ambient space of V) such
that x, Y, 3 coincide locally at U with (X n1V,S), (9 nlV,S), (5 nlV,S)
respectively. Then (X n ), S) and () n B, S) exist locally at U; let %", 8° be
the local parts of (X nJ), S), (9 n B, S), respectively, at U. Theorem 3.4 im-
plies that

i(U, X" n2,8)=i(U, en8,9);

on the other hand, again by Theorem 3.4, (X¥°n 1V, S) coincides locally at U
with (X n 9, S), and therefore with (£ n 9, V) and with g% this proves that

i(U, X" n 3,8) =i(U, ¢’ n V).

In the same way we obtain

iU,z n 8,8)=i(U,2n 35V), QE.D.
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THEOREM 5.0 (TRANSITIVITY LAW). Let V be an irreducible variety over
k, W an irreducible subvariety of V. Let %, 3 be unmixed cycles of W, and U a
component variety of (9n 3, W). Let §), 3 be unmixed cycles of V such that
() n 1W, V), (8 n 1W, V) exist locally at U and coincide at U with 9, 3
respectively. Then () n B, V) exists locally at U; let X be the local part of
(ODnB,V)at U. Then (Xn1W, V) and (9 n 3, W) both locally exist and coin-
cide at U.

Proof. Let 9*, 8 be unmixed cycles of the ambient space S of V such that
(9* alV,S), (B8*alV,S) coincide locally at U with J), 3 respectively. Then
(9*nlW, S), (B*alW, S) coincide locally at U with 9, 3 respectively by
definition. Let X* be the local part of (@* n 8%, S) at U; X* exists because
the dimensions fulfill the correct relations. Then (X* n1V, S) coincides local-
ly at U with X, so that (X*n 1W, S) coincides locally at U with (X n1W, V).
On the other hand, (& n3, ) coincides locally at U with (§*a 3% a1l, S),
Q.E.D..

Theorem 5.6 also shows that in the definition of i (U, 9 n 3, V), the ambient

space S could be replaced by any space S containing V' as a subvariety.

THEOREM 5.7 (LAW OF THE CONSERVATION OF THE NUMBER). Let A
be an irreducible variety over k, and K an algebraic function field over k; let
B be an irreducible algebraic correspondence between K and A, and let X, ?) be
unmixed cycles of rad B. Let v € M(K) be such that K, =k, and that Bi{vi* is

irreducible, say 8 {v Y = 1V, where V is an irreducible variety over k. Set
L= X{v}*a t) = @{U}*,

so that T, 9 are unmixed cycles of V; let U be a component variety of (£ n 9,
V). Among the components of rad X nrad ), let U; (j =1, 2, +++) be those such
that rad (1 ﬂj) {v}* contains U; then

dimﬂi=dimX+dim@—dim%

for each j. Assume X, I to be sections of rad Bat U; v, u+e.. Then (1) o =
i(ll/-, X n, rad B) exists for each js so that U = E]. O(]. ll]. exists, (2) U is a
component variety-of each (111,') {v}*, and 3) i (U, £n 9, V) exists and equals
the multiplicity of U in U{v}*.

Proof. We need to prove only the last statement, since the others are an
immediate consequence of the relations between the dimensions. Let © be the

ambient space of B, X" an unmixed cycle of & such that (X" B, ©) and X coin-
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cide locally at U, u U, u--+. Then U coincides locally at each U; with (X"n Y,
2} by definition. Let S = Gf v}* be the ambient space of V; the application of
Theorem 3.2 to the two algebraic correspondences X', B between K and S proves
that (X{ o} n 1V, S) coincides locally with £ at U. The same theorem, applied
to X" and 9, yields the result that (X¥tv}* n b, S) coincides locally at U with
U{v}*; therefore U{v}* coincides locally at U with (x n 9, V), Q.1.D.

THEOREM 5.8. Let V be an n-dimensional irreducible variety over k, © an
r-dimensional irreducible cycle of V, U an irreducible subvariety of rad %, 3 an
s-dimensional cycle of V which is a complete intersection at U on V, and such
that

r+s —n=dim?U.

Assume 9 to be a section of V at U. Let { {} be a set of representatives of ¥ at
UonV, and set

p=R(rad 9/V) n QU/V).

If o is the homomorphic mapping of QCU/V) whose kernel is b, then o} is a
set of parameters of Q(U/rad 9), and i (U, 9 n 3, V) exists and equals

e(Q(U/rad 9); o).

Proof. If {x} is a n.h.g.p. of V for which U is at finite distance, we may
assume é’}. € k[x] for each j. Let { X} be the correspondent n.h.g.p. of the ambi-
ent space S of V, T the homomorphic mapping of k[ X'] onto 4[x] such that X =
xj. Let zj (j=1, 2,+++) be elements of k[ X] such that Tzj= Cj; then the set
{z} is a subset of a set of parameters of Q(U/S), and, if m = dim S, there exists
a cycle B of S, of dimension s + m — n, such that 3 is a complete intersection at
U on S, and has { z} as a set of representatives at U on S. Therefore, by Lemma
3.2, 3 coincides locally at U with (3 n 1V, S), so that i (U, 9 n 3, V) exists
and coincides with i (U, % n 3, S) locally at U; this, in turn, by Lemma 3.2,
equals e (Q (U/rad b); 0Tz}, Q.F.D.

THEOREM 5.9 (RELATIVE INVARIANCE OF THE INTERSECTION MULTI-
PLICITY). Let ¥V, V’be irreducible varieties over k, T a birational correspond-
ence between V and V*; let Y, 3 be unmixed cycles of V, U a component variety
of (9 n3, V) such that i(U, 9a 3, V) exists. Assume T to be regular®at U, so
that T is also regular at each component variety %; of Y containing U and at
each component variety 3; of 3 containing U. Let aj, by be the multiplicities of

9j, 31, respectively, in 9, 3; set
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U= T(U), 9]' = T(bj)’ 3 = T( 31)9 b= Z] a]. bja 3 = zl bl 3;'
Then if i(U% 9" n 35V ") exists it equalsi(U, § n 3, V).
The cycle 9”is called a transform of § at U in (or with respect to) T.

Proof. By considering the composite variety of VV and V*, we may clearly
reduce the proof to the following simpler case: There exists a n.h.g.p. {x} of
V for which U is a finite distance, and there exist elements x:, x;, s EE(Y)
such that {x, x’} is a n.h.g.p. of V'’ for which U’ is a finite distance. In this
case let S be the ambient space of V/, and let { X} be the n.h.g.p. of S corre-
sponding to { x}; if S” is similarly related to ¥’, we may assume that a n.h.g.p.
of S” has the form { X, X”{ { X"} being a set of indeterminates. The correspond-

ence between }” and V is now visualized as a “projection’ of V¥ on S C S".

If A (resp. A”) is an irreducible subvariety of S (resp. of V*) containing U
(resp. U’), whose n.h.g.p. is { £} (resp. { & £°}), we shall denote by A* the

irreducible subvariety of S” whose n.h.g.p. is { &, X’}; therefore we have
A* n S =4 (resp. 4* n V' = A4").
This correspondence generates in an obvious way a correspondence
B3— 3" (resp. 3" —3%)

among cycles. Now, let 3 be a cycle of S such that (17 n 3, S) coincides
locally at U with 3; then

i(U’i)n 3’: V)=L(U7i)n 895)

by definition. Theorem 4.4 readily shows that §, 8, 1V coincide, respectively,
with (g% n 1S, 5, (8% a 1S, S), (1V* a 1S, $*) locally at U, and then an

immediate application of Theorem 5.6 yields that
i(U, 9038 8)=i(U" ¢ n 8% 359,

In like manner, we obtain that 3* coincides locally at U* with (3% all*, S9),

and therefore also that
i(U*, 9% 0 B%,87) = i(U*, 9° n 35, 7).

We now wish to show that 17 *is a complete intersection on V'* at each irre-
ducible subvariety 4 of ¥* which contains U’ (and which is therefore regular
for the birational correspondence between V and ¥ *). Let in fact A be the trans-

form of A’ in V; since
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QA/V) = QAYV),

there exists ap € klx] — p(A/k[x]) such that pxj' € k[x] for each j. We also
have p € kl{x, X1 - p(A/k[x, X’]), and therefore

X/ =%l =p T (pX] = x)) € QA7)

for each j. The set {++«+, X’ ~x7,.+.} is a regular set of parameters of
Q(V*/V*), hence a subset of a set of parameters of Q (4 */V*), hence also a set
of representatives of 1V “at 4”on V¥, as announced.

This being established, we apply Theorem 5.8 to the varieties V*, U’ and
and the irreducible cycles 1V 1U*, obtaining the result that i (U% 1U* n 177,

V*) exists and equals
g(Q(U’/U*); ess X]’_ f]’, cas ),
where we have denoted by { &, £’ the n.h.g.p. of U* but, as before,
(oo X7 = o]
is a regular set of parameters of Q(U*%/U*), and therefore

(LU n 1V, V*)=10U"

Likewise, we obtain that (t* n1}*, I'*) and (3* n1F%, V*) coincide locally at
U’ with 9% 3" respectively. Now, Theorem 5.6 applied to V*, V*, 9%, 3, U% 9¥,

3" yields the result that (9" n 3% V*) exists locally at U’ and coincides locally
at [/ with

GCU*, 9" a 35, VU a 1V V).
In view of the previous equalities, this amounts to saying that
(U9 n 3,V =i(U, 9n 3, V), QKD

Theorem 5.9 implies that i (U, % n3, V) depends only on Q(U/V), on the
quotient ringsin V of those component varieties of §, 3 which contain ¢/, and on
the multiplicities of such component varieties in §, 3 respectively. Accord-
ingly, in the notations of Theorem 5.9, if 9%, 3’ are not both sections of V" at
U’ but i (U, 9 n 3, V) exists, we shall define i(U% 9" n 3%, VV*) to be equal to
i(U, 9n 3, V); Theorem 5.9 itself shows that this is a good difinition, that is,
that it is independent of the choice of VV’. This enables us to define i (U, 9 n 3,

V') also when V is an irreducible pseudovariety (see [ 1]), since each irreduci-
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ble pseudovariety is regularly equivalent to an irreducible variety. The question
is now raised as to whether all the results of this section remain true for the
present extended definition of the meaning of the symbol i (U, 9n 3, V). The

answer is as follows:

REMARK. Theorems 5.2 to 5.9 remain true after we replace the word “va-
iety” by the word “pseudovariety’’, and the sentence "’y is a section of V at
U” (or a logically equivalent one) by the sentence ‘‘there exists an irreducible
variety V'’ birationally equivalent to V in a correspondence T which is regular
at each component of U, such that a transform of Y at U in T is a section of V*
at '(U)” (or by a logically equivalent one). The question is not even raised,
however, when U is simple on V and the ground field is algebraically closed
(see Theorem 5.1).

A comparison between Theorem 5.8 and the corollary to Lemma 1.1 shows
the a posteriori connection between the theory of intersections and the theory

of algebraic correspondences, namely:

THEOREM 5.10. Let D be an unmixed algebraic correspondence between
the irreducible variety F over k and the projective space S over k, and assume
each component of D to operate on the whole F. Let G be an irreducible sub-
variety of F, D* a component of [D; S, G1. Then if

e(D*/D; S, G)* and i(D*,D n 1(S x G),S x F)
both exist, they are equal.
From Theorems 5.1, 4.1, and 4.4 we obtain:

THEOREM 5.11. Let U be a simple irreducible subvariety of the irreducible
variety V over the algebraically closed field k. If 9, 3 are irreducible cycles of
V such that U is a component variety of (9 n 3, V), then i(U, 9 n 3, V) exists
and is a positive integer. A necessary and sufficient condition in order that

i(U,9n3,V)=1
is that  (U/V) be an isolated primary component of

wlrad §/V) + @(rad 3/V).

Let finally U, V be irreducible subvarieties of a projective space S over an
‘copy’
S% M a component variety of (10U n1V, S). Let A be the identical algebraic

correspondence between S and S”, and set

é b

algebraically closed field /4; let S”be a of S over k, U’ a copy of Uin
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My =LA M,8°0, 0, =1A; U, S7], Vy =[A; 0,57

['rom the results of the present section, the following equalities are easily es-

tablished:
1O x V) =(1(U"%xS) n 1(S"x V),S x S%;

1U, = (A n1(U"xS),S xS, 1V, =(An 1(VxS,SxS,
L'(M,lUn1V,S)=i(MA,lUA anA,radA)

L'(MA,A n1(U xS) nl(VxS8,S5 xS

I

Il

i(My, & 0 1(U" % V), S x §),

and this, by Theorem 5.8, proves that our definition of intersection multiplici-
ties coincides with the one given in [3] for the case of algebraic varieties,

when the latter is defined.
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TWO EXISTENCE THEOREMS FOR SYSTEMS
OF LINEAR INEQUALITIES

Leonarp M. BLuMENTHAL

1. Introduction. In a previous paper [ 1], the writer initiated the development
of the theory of linear inequalities by means of metric methods. This program is
continued in the present note to obtain existence theorems for the solutions of
two types of (finite) homogeneous systems of inequalities; existence criteria
for such systems, different from those established in this paper, are given in the

fundamental work of Theodore Viotzkin [ 4]; see also [ 3].

If A denotes an m x n matrix of real elements, and x a column matrix of n
indeterminates, then the matrix Ax gives rise to the two systems of m homogene-

ous linear inequalities in n unknowns,

(1) Ax > 0
and
(2) Ax > 0,

where the notation > 0 is interpreted to demand that at least one of the left mem-
bers in (1) be positive. In this note necessary and sufficient conditions are
found in order that these systems have a solution, which is nontrivial in the
case of system (2). These conditions are expressed in terms of the signs of cer-
tain minors of the symmetric positive semi-definite matrix of order m formed upon
multiplying the matrix 4 by its transpose A7. They follow easily from a lemma
concerning the distribution of n + 2 points of the convexly metrized unit n-sphere

Sp; this lemma is stated without proof in [ 2].

2. The Lemma. Let py, py, -+, pp+; be n + 2 points of the S, and denote
the geodesic distance of p;, pj by p;p;; that is, p;p; is the length of a shorter

great circle arc that joins p; and p;. Denoting the determinant

‘COSPin\ (i j=0,1,¢ece,n+ 1)
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A(po,pl, Tt Pn+l)’
we recall the well-known result that
A(Po, Pyroee ,Pnﬂ) =0,
while each principal minor of the determinant is nonnegative. If, moreover, a
principal minor satisfies

A(pio’ pil’ crey P’:k) ?é 0,

then the points p; , p;,,+++, p;, are contained irreducibly in a k-dimensional
(great) hypersphere S;, and conversely. Clearly each (m + 1)-tuple of such a

set of k + 1 points is contained irreducibly in an Sp.
LEMMma. If
Pos P>t s P Py & Sy
with
Alpyspys=esp,) #0,

then (i) the points pys pys +++ 5 p,_, determine uniquely an (n ~ 1)-dimensional
great hypersphere S, _y, and (ii) the points pp, pn41 lie on the same or on oppo-
site sides of the hypersphere S, -, if and only if the cofactor [ cos p,p, +;] of
the element cos p,pp+1 in A(pgs p1s =*+ 5 Pn+1) be negative or positive, respec-

tively.

Proof. Since A(pgs p1s *+*» Pn) # 0 (and consequently is positive), the
points py, pys *++ » pn are irreducibly contained in S,, and so py, pys =+ 5 ppr-y
are irreducibly contained in a great hypersphere S;_;(pg, p1s *+*» pp-1) which

they determine uniquely.

Let s be any element of S;,, s #pgs P1s *** » Pne NOW
(1) A(pO,Pl,"':pn_l) A(Po,Ply"':pn,S)
= Apyspys+orspy) Apgypyseesp,_ps) =lcosp s]?,

and the vanishing of A(po, Pis *** s Pns S), together with the nonvanishing of
A(pgs P1s *** » pn ), implies that [ cos p,s] =0 if and only if
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A(po’ ply sy pﬂ-l’ S) = 0;

that is, if and only if s € S,_1(pg>P1s ***» Pr-1) -

It follows at once that if p, q are any elements of S, which are on the same

side of Sp_y (pos p1s*** s pn-1)s then
sgn [ cos pnp] = sgn [ cos pnq],

where [ cos p, pl, [ cos p, q] are cofactors of the indicated elements in the de-
terminants A(pg, pys =+ 5 Pns P)s Alpgs P1s *** » Pns q), respectively. For in
the contrary case, the continuous function [ cos p,s] changes sign for s = p and
s =g, and consequently it vanishes for some point of the geodesic (shorter) arc
joining p and ¢. But by the above, this point belongs to S,,—; (pgs p1s *** s Pn)s
and so p, ¢ are on opposite sides of this great hypersphere, contrary to assump-

tion.

If, therefore, p, and p,,,, are on the same side of S,_; (py, p1, *+* s pn-1),
then

sgn[cospnpn“] = sgn[cospnpn] = — sgn L\(po,pl, ,pn),

and consequently [ cos p, pp41] < 0.

Suppose, now, that p, and p,,, are on opposite sides of

Sn_l(PO, ply ceey Pn_l),

and denote the reflection of p, in this hypersphere by p,*. Then p,*, p,,, are
on the same side of the hypersphere, and so

sgn [cosp, Pp+,] = sgnlcosp p *1.
From the vanishing of A(pgy, pys *** 5 pn»> pp*) and the relations
P, Pp* = P; Py, (i=0,1,00,n - 1),

which follow from the definition of p,*, (1) yields
[ cos pnpn*] =1 A(Po, Pypstecs pn)-

To determine the sign, we have, first,
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1 cosp,p, **°* cos p, p,
cos p p, 1 cosp, p,
[Cospnpn*]_______ . . DR .

cosp p,_, €OSp, p,_, *°° 1 cosp,_,p,

* * 4 *
cos p, p, cos p, p, cos p. p,

Taking account of the relations p;p,* =p;p, (i=0,1,+++, n~1), and writing
the determinant as the sum of two determinants whose last rows are cos pgpp,
COS Py Pns ***y COSPp—1Pns 1 and 0, 0, +«« , 0, cos p, pp* — 1, respectively, we

easily obtain
(@ [cosp,p,*]
== AMpgspyseeespy) + (L=cosp p*) Alpgspyeeesp, )
Then clearly
[cospnpn*] = A(po, PPERE ,pn) >0,
for if the negative sign were valid, substitution in (2) would give
(1 =cosp, p,*) A(p,sp,seessp, ) =0.
But

ACpyspyseerspyy) #0

because py, py, <+« , pp-y are irreducibly contained in S,_;, while, since p ,

Pis *** s Pn-1s Pn are irreducibly contained in S, p,,¢ Sn=1(PosP1s*** s Prn-1)s
and so p, is distinct from its reflection p,* in that hypersphere; that is,

1 -cosp, p,*#0.

Hence if p,, pp,, are on opposite sides of S, _; (pgy Pys*** s Pn-1), then
[cos pppr+11> 0. To complete the proof, it suffices to observe that if

[005pnp 140

n+l1

then p,, 4+, ¢ Su-1(pos P1s» ***» Pn-1). This is evident upon substituting p,, ,, for
sin(1).
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COROLLARY. Let py, pys *++ s Pn+1 be pairwise distinct points of S,, no
n + 1 of which are in a great hypersphere. If €;; =1 or =1 according as p; and p;j

are on opposite sides or on the same side, respectively, of the great hypersphere

Snt(Por s s Picpp Py " s Pjop Py * ' Pty

(i’j=0’19"'9n+1;iiéj)

and €;=1(i=0,1, ¢, n+ 1), then the matrix (€ij)(i,j=0, l,eeey,n+1)

has rank 1.

REMARK. In a manner similar to that employed above, companion theorems
that characterize in a purely metric way the sides of hyperplanes in n-dimen-
sional euclidean and hyperbolic spaces that are determined by a given set of n
points may be obtained. We state the euclidean theorem, which may be exploited
to obtain existence theorems for systems of linear inequalities in much the same

way as the lemma just proved will be used in the next section.

THEOREM 1. Let py, pys *++» pn+1 be n + 2 points of euclidean n-space E,
with pyy pys =+ » pn trreducibly contained in E,. Then py, pys +++ 5 pn-y deter-
mine a unique hyperplane E, _;, and p,, p, +, are on the same side or on opposite

sides of this hyperplane if and only if
sgn p,p2,,] = (< 1" or (<11,

respectively, where [ p, p? +,1 denotes the cofactor of p, p# 4+, in the determinant

0 1 1 .o 1
1 0 pop12 e popfzn
D(po’pl""’pnn): 1 P0P12 0 = pPrs

.

2 2
1 PoPn+y PiPp4r °°° 0

We observe, moreover, that for py, py, «++» py irreducibly contained in £, it

may be shown that
[pn—lpi]
-1 -1 2
=("1)n 2" [(n'_l)‘] V(PO,""Pn_Z’ Pn_l) V(Poaply"'!Pn_za Pn)

X COS i (PO’ Ply ceey, Pn_2: Pn_1: pn)’
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where [p,_, p,?] is the cofactor of p,_;pp? in D(pgs Pys ++* » pr)sV is the vol-
ume of the (n — 1)-dimensional simplex determined by the points indicated, and
X(po» P1s *** s Pn-2: Pn-1» Pn) denotes the “dihedral” angle with (n — 2)-
dimensional edge E,_,(pgs pys **+ » Pn—,) of the simplex with vertices p,,
P1s*** s Pn-1s> Pn-

Hence [p,-1py®]1 =0 if and only if ¥ (po,pys+++spn-2t Pn-1> Pn) = 7/2, and
sgn [p,_,pn?]1=(=1)"""1if and only if the dihedral angle is acute.

It is, perhaps, worth pointing out that Theorem 1 yields a purely metric char-
acterization of a nondegenerate simplex (interior and boundary) of E,. For if
Pos P1s *** » Pn are the vertices of such a simplex, a point p of £, evidently be-
longs to its interior or boundary if and only if p and p; are not on opposite sides
of the hyperplane E,_;(pgs *++ s Pi=1sPi+1s *** s Pn) (i =0, 1, <+« n); that is,
according to the theorem, if and only if

sgn[pl.pz] = (“‘l)n or 0 (i=0, 1,00 ’n)’

where [p; p2] is the cofactor of p; p? in the determinant D (pg, pys +** » Prs P )-

Since a point of E, is contained in the convex extension of a k-tuple of £,
(not of E,_,) if and only if it belongs to the simplex determined by some n + 1
points of the k-tuple, the above observation yields a metric characterization of

such convex extensions.

3. The theorems. We are now in position to prove the two existence theorems.

THEOREM 2. Let Ax > 0 be a system of m linear inequalities in n inde-
terminates with rank r + 1, and let B denote the determinant of the matrix AAT.
The system has a solution if and only if a shifting of rows and corresponding

columns of A exists such that
(i) the upper left principal minor M of B of order r + 1 does not vanish,

(ii) each minor of B formed from M by replacing its last row with that part of
the j-th row of B contained in the first r + 1 columns (j=r+ 2,7+ 3, +++,m) is
positive or zero.

Proof. Each row of A gives, after normalization, a point of the unit n-sphere
Sp» and since the rank of A is r + 1 it follows that the m “row points’ are con-
tained irreducibly in an r-dimensional hypersphere S, of the S,. Denoting by p;
the point corresponding to the i-th row of 4 (i =1, 2, ---, m) after a shifting of
rows and columns of 4 in conformity with the hypotheses has been carried out,
we see that p;, pyy *++ 5 pry pr+1 lie irreducibly in S, and that p, py, ++«, pr
determine a unique (r — 1)-dimensional great hypersphere S;—; (py, pys ***» pr)-



TWO EXISTENCE THEOREMS FOR SYSTEMS OF LINEAR INEQUALITIES 529

Now the cofactor [ cos p;4;pj] of the element cos p,4;p; in the vanishing
determinant A(py, pyy =+ s Prets p]') (j=r+2,7r+3, -++,m) has the sign oppo-
site to that of the minor of that element which, in turn, has the same sign as the

minor of B described in hypothesis (ii). Hence
[COSp,+1P]-]§0 (j=r+2,¢c0,m)

and so, by the lemma, each of the points p,4,, pr4zs *++ 5 pm lies on the same

side of S;_ (py, pys ==+ 5 pr) s pr4q, or is contained in that hypersphere.

Hence the m points are contained in a hemi-S, with at least one of the m
points, p ., not on the S;_; forming its “rim”’. The center of this hemi-S, is
evidently a solution of the system of inequalities, and so the conditions stated
in the theorem are sufficient. We have, indeed, found that the S, itself contains a

solution of the system.

To extablish the necessity, we remark that if the system has a solution in
Sn, then it has a solution in the S; containing the m points py, pyy =+« , py, irre-
ducibly. For if p € S;; which is a solution of the system, then p is the center of
a hemi-S, which contains p,, p,, +++, p and has at least one of these points,
say, pm, in its interior. But if the S; has no solution of the system, the ( spheri-
cal ) convex extension of the m-tuple is the whole S;, which must be contained in
the hemi-S,, on which the m points lie. But this is impossible since the point

pm* diametral to p,, lies in the S; but it clearly does not belong to the hemi-S,.

If, therefore, the system has a solution, there is a point of the S; containing
P1> P2s *** » pm which is the center of a hemi-S, that contains p;, py; =+ pm>»
with at least one of these points in its interior. It is easily seen that any such
hemi-S, may be rotated so as to retain this property and have some r of the m
points, say py, py, *++ prs on the S;_; forming its rim. If p,;4, is in the interior
of the hemi-S, so obtained, then clearly each of the remaining points is either on
its rim or on the same side of the rim as p,,;. Invoking, now, the lemma, we see

that the conditions of the theorem are satisfied.

REMARK. The direction-cosines of the normal to the hyperplane E, deter-
mined by the points p;, p,, +++, p, (and the origin) give a solution of the system
of inequalities; but since these numbers are found by evaluating determinants, a
solution method based on the theorem is probably not suitable for computing

machines.

THEOREM 3. Let Ax > 0 be a system of m linear inequalities in n indeter-

minates. The system possesses a nontrivial solution if and only if whenever the
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rank of A equals n, a shifting of rows and corresponding columns of the deter-
minant B of AAT exists such that (i) the nth order upper left principal minor M
of B is not zero, while (ii) each nth order minor of B obtained from M by re-
placing the last row of M with that part of the j-th row contained in the first n

columns of B is positive or zero for j =n+1,n+ 2, «++, m.

Proof. The rank of A is, of course, at most n; and if it is less than n then
the m row points lie in an £,_, containing the origin, the coefficients of which
annul all the members of the system of inequalities and hence form a solution.

If the rank of A equals n then the row points are not contained in any £, -,
passing through the origin, and so the system has a nontrivial solution if and
only if the system Ax > 0 has a solution; that is (by virtue of Theorem 3), if and
only if conditions (i) and (ii) are satisfied.
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TRANSLATION INVARIANT MEASURE OVER SEPARABLE
HILBERT SPACE AND OTHER
TRANSLATION SPACES

F.H. BROWNELL

1. Introduction. We consider the problem of defining a nontrivial, transla-
tion-invariant Borel measure over real separable Hilbert space. As noted by
Loewner [ 4], this is not possible; but instead of relinquishing as he does the
real number system for a non-Archimedean ordered field for the values of a
““measure,”” we shall consider several topological subspaces of Hilbert space
arising frequently in analysis. These are locally compact; and using either the
Kolmogoroff stochastic processes construction [ 2], or else following the Haar
measure construction [ 1] or { 5], we can get a nontrivial, essentially translation-
invariant Borel measure. However, since the special subspaces considered are
not groups under translation, and do not even contain a group germ, the usual
Haar measure construction must be modified in a special fashion, and the pre-
cise translation invariance obtained is somewhat restrictive. Actually we carry
through this modified Haar measure construction for the more general situation
of a locally compact translation space, which is defined as an appropriate sub-
space of an Abelian topological group. The results are collected in a summary
at the end.

2. Formulation of the problem. l.et

Ly =1x ={xd | Y (%)% < +@, %, real,
n=1

the square summable real sequences and thus the real separable Hilbert space
prototype. Since 4, is a subset of R, the countably infinite Cartesian product
of the real line (~c, ), we have available on 4, as well as the £, norm metric
topology also the product topology defined relatively from Re. Under these two

topologies we shall consider the {,-subsets
X ={x C/ﬁz l |2n | < A(n) for all ni,
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Y=1x€ 4 | X |%1% < f(n) forall n},

j=n

where f(n) and A(n) are specified functions defined over the integers n > 1
with values real or +o having £#(r) > 0 and f(r) > f(rn+1) > 0.

Let Z = X or Y; we want to define the Borel class of subsets of Z. The open
intervals of Z are defined relatively from the elementary open intervals of R,
and so we can define 3, as the o-algebra of subsets of Z generated by the open

intervals, [3, as that generated by the product-topology open sets, 3, by the

metric spheris, and B, by the metricly open sets. Actually B, = B, = B; = B,,
and will be denoted by B and called the class of Borel subsets of Z. To see
this we note first by using the rationals that R, and hence Z has a countable
basis of open intervals, so B, = B,. Similarly B; = B,, since 4, and hence Z is
a separable metric space and thus has a countable basis of spheres. Since any
product-topology open set is clearly open metricly, B, C B,. Now it is easy to

see that any closed sphere
S=tx€Z | [|lx-vyll < p}

is actually closed in the product topology. Since any open sphere is a countable
union of closed ones, B, C B,. Thus B, = B, makes B, =B, =8B,=18,, as

desired.

Define
[A+u] ={x € Ry ' (x—-u) € A}

for u € R, and for any subset 4 of R.. We note that u € Z and 4 C Z do not
always make [A +u] C Z if Z # 4,. However, if A € B and v € Ry then
[A+ulnZ € B, For

J={A|[4+ulnzZ €8}

is easily seen to be a g-algebra containing the intervals of Z, so B =18, C &,

which gives the result.

Our problem is to find a Borel measure ¢, that is, a nonnegative extended
real set function defined and countably additive over B, which is nontrivial
(Condition I) and translation-invariant (Condition II or II”) according to a speci-

fied topology.

CoNDITION L. #(Z) > 0 and ¢(¥) < +o for some nonempty V' open in
the specified topology;
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ConDITION Il (4 +ul) = p(A)if A € B, u € 4,, and [4 +u] C Z;

Conpition 1% a) ¢([4+ul) = p(A)if 4 € B, u €4, 4 C V, where
Vand [V + u] are both open subsets of Z.

b) p([Ad+ulnZ) < ¢(A)if u € 4, and both 4 and
[A+ul nZ are open subsets of Z.

Condition II clearly implies I1’, and hence is a stronger requirement.

3. Negative results. We shall start with a few preliminary lemmas. First

define
S(Z’ X, P) = {y €7z ‘ Hx—-y H < P*:
the p-radius open Z-sphere about x.

LEMMA 1. For any real r > 0 there exists no nonnegative, finitely additive

set function ¢ over the Borel subsets of
Z=Y=5(4,00),
satisfying 117, (or thus 1l also), under the metric topology such that
0 < ¢(S(4y,0,p)) <+w for 0 <p < re
Proof. Let
p% = {px;} € S(4,,0,r)

by defining px; = 0 if j # p and pxp =r/2 for integer p > 1. Let

1
Vp = b({z,px, Zr),

so that V, C S(4,, 0, r); and Vpnly= ¢ for p # g follows from

V2 -1
2

1

Hy=y"1l > I\px—qxl\—z(zr)= r>0

fory € V, and y” € V,. But I1” under the metric topology makes

$(Vp) = qs(s({z, 0, i—r)) =b
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with 0 < b < +w. Thus

N
Sy 0,1)> U ¥,
p=1

and finite additivity of ¢ yields the contradiction

N
0<Nb= 3 (V)< (5(4;,0, 1)) < +o0
p=1

for arbitrary integer N. Thus such ¢ cannot exist.

LEmMmA 2. If

0 < inf h(n) for Z=X,

nt
or if

0< inf f(n) for Z=Y,

no>t

then for any x € Z and p > O there exists some z € Z and p’ > 0 such that
S(4yy 2z, p%) Cc S(Z, %, p).

Proof. For the given x € Z choose some N > 1 so that
) 1 2

Z (x])2 < (-3— P) ’

j=N+1

possible since x € 4,. Define

y’= (yly""7yN) = P(}’)CEN

as the projection of €, onto Fuclidean N space Ey. Clearly P(Z) is a convex
set with a nonvoid interior in Ey including the origin; so we can find an interior

point z” on the line-segment from x“= P(x) to the origin so that
N 2
1
> (zn—xn)2<(—p> .
n=1 3

Define z € 4, so that z”= P (z) by taking z, =0 for n > N + 1. Thus
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N 0 1/2 p)
nx—z\\=[z<zn—xn>2+ y l V2.

Let

by = inf h(n) > 0 for Z = X,

n>t
or

1/2
59 = [ inf f(n) >0 for Y.

n>t
Now if Z = X, by choosing p* > 0 so that p** < b, and
S(Ey, 2%, p"") C P(2),
as we may since z” € int P (Z), we get
S(4y 2, p”) C Z.

If Z=Y, then z° € int P(Z) makes

N
Y ()% < f(n)
j=n

for 1 <n < N, so here we choose 0 < p”* < b, and

N 1/2
p” < minN [f(n)]l/z—[Z(Zj)z .
j=n

1< n<

Thus

] 1/2 N 1/2
l (yf’z] < ly -zl [ Z<z;>2] <f(r)forl <n <N,
j=n j

j=n

and

-] 1/2
> ()’]-)2] <|ly=-z]| <by < f(n) forn>N+1,
j=n

535
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makes S(4,, z, p**) cY=2
Thus

yields
S(/gb z,p’) < Z nS(/ﬁb Xy P) = S(Z, %, P)

as desired, since

-vZ

ly—z]) < Y2,

makes
Hx=yll < Hy=zll + llx=zll <p
because ||x~ z|| < (\/2/3)p.
THEOREM 3. If

0 < lim inf A(n) with Z =X,

n-— oo
or if

0 < liminf f(n) with Z=Y,

n-—oo

then there exists no Borel measure ¢ on such Z which is nontrivial (1) and

translation-invariant (11*) under the norm-metric topology.
Proof. Set

b, = inf h(n) if Z=X,

n>1
or

by = [inf f(n) V2 5t Z=Y;

n st

thus clearly b, > 0 is required by hypothesis. Obviously



TRANSLATION INVARIANT MEASURE OVER SEPARABLE HILBERT SPACE 537
S(Z,0,p) =S4, 0,p)
for 0 < p < by, so the metricly open set
S(Z, %, p) = [S(4,, 0, p) +x1nZ=[S(Z,0,p) + x] nZ

for such p. Hence if ¢ exists, then ¢(S(Z, x, p)) < ¢(S(Z, 0, p)) by Con-
dition II’b) for x € 4,, 0 < p < b,

Now set
b, = inff{all p > 0 such that ¢(S(Z, 0, p)) > 0},

so ¢(S(Z,0,p)) > 0 for p> by, and =0 for 0 < p < by if b; > 0. Actually
b, = 0. For if not set &= (min by, b,/2); then Z, being separable, is a count-
able union of spheres of radius p < 6. But such spheres have

#(S(Z, x, p)) < $(S(Z, 0, p)) =0,

implying ¢(Z)=0 by countable additivity, which contradicts Condition I.
Thus b; = 0 and ¢ (S(Z, 0, p)) > O forall p > 0.

We want to show that ¢(S(Z, 0,7)) < +o for some r > 0. By Condition I
under the metric topology and Lemma 2 it is clear that there exists some r > 0

and z € Z such that
S(4,, z,7) C Z and é(S(4yy 2, 7)) < +00.

Since S(4,, z, r) C Z, it is easily seen for either X =Z or Y = Z that we must

have r < b,, and hence
Z 2S(4,0,r)=S(Z,0,r).

Thus [S(Z, 0,r)+z] = S(4,, z, ), an open subset of Z, so Condition II’a)

makes
$(S(Z,0,1)) = p(S(Hy, 2, 7)) < +o0.
Thus
0 < $(S(Z,0,p)) <+

with S(Z, 0, p)=S('€2, 0, p) for 0 < p < r for some r, 0 < r < by, which is
impossible by Lemma 1. Thus the stated ¢ cannot exist.
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We also easily get the following considerably weaker result for the product
topology.

THEOREM 4. If {n l h(n)=+w} is an infinite set, then there exists no
Borel measure ¢ on X which is nontrivial (1) and translation-invariant (11°)

under the product topology.

Proof. Liet V be any nonempty open interval of X. It is clear that by trans-
lating along each of the finite set of coordinates given in the definition of the
interval ¥, we can find a finite or countable set of ,x € 4, such that

[V 4+px]C X and X = U [V+px].
p=t
Also Condition 1I’a) makes ¢(V + px) = (V) if ¢ exists. Thus ¢(X) > 0
for nontriviality yields by countable additivity (V) > 0 for any open intervall

V£ o,

Now Condition I under the product topology implies that some open interval
Vo, # Phas ¢(Vy) < +, so 0 < ¢(Vy) < +w. Since V, is defined in terms
of only a finite number of coordinates, and {n ‘ fi{n) =+l is infinite, there
must exist some p so that x € V, imposes no restriction on the pth coordinate
of x. Let

W0={y€V0||yp|<1}.

a nonvoid open X interval, so ¢(Wy) > 0. Let 0zj =0 if j #ps ozp=1, so
clearly {[Wy + m ¢z]} form a disjoint union of sets C V, for different integer

m, with
d([Wy + mozl) = (W)
by Condition 11’a). Thus
E (W) = ( E LW, + moz]) < ¢(Vy) < +oo,
m=1 m=1
which is a contradiction. Thus ¢ cannot exist.

We remark that 4, = X by taking A(n) = +®, so Theorems 3 and 4 show that
there exists no Borel measure ¢ on 4, which is nontrivial and translation-

invariant under either the norm metric or product topologies.
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4. Positive results via Kolmogoroff. We want to give conditions under which
an invariant measure does exist on X or Y, getting a converse of Theorem 3. For
X we shall use the construction of Kolmogoroff [2, p.27] of a probability mea-
sure P over real product spaces, in our case R,. Here we need a family Q of
real set functions, each member in,... ,nj being nonnegative and countably
additive over the intervals of Ej, with coordinates indexed n,, ..., n,, and
having Op, ..., 0, (E,) = 1. The family @ is assumed to satisfy Kolmogoroff’s
two consistency conditions:

in,..,, n, (-'CC, + 003 az, b2; cee ak’ bk)=()n2’..‘,nk(0.2, b2; cee g ak, bk)’

in,"',nk(al’ bl; Tt G bk) = in',--',nk'(al’ bx; e ay, by ),

- 1?
resulting P has P (1) = Q(I) if the interval [ is the cylinder set by neres of
the interval [ of E,, P being the Borel-Hopf extension [1, p.54] of @ from the

intervals to the Borel sets.

where n/=n;, a/=a;, b/=b. for n/, ..., n; a reordering of n, -+-, n,.. The

THEOREM 5. [f

o]

Z [A(n)]? < +

n=N+1

for some finite N, then for X the product and metric topologies coincide, X being
locally compact; there exists a Borel measure ¢ whick is nontrivial (1) and
translation-invariant (I1) on X; and such a measure is unique up to constant

factors.

Proof. The stated condition on h(n) makes the equivalence of the topo-
logies over X obvious, as well as local compactness. Let X*, {5, and R% be
defined like X, 4,, and R., except only with coordinates of n > N+ 1, so
clearly

X =4, x X,

where A is an interval of E,. Construct the Borel measure P* on R by the

Kolmogoroff construction from
k

Q, -'-,nk(al’ b1;"';ak’ bk) = H

1’

Zh(n]) E(n]’ aj, b]),

j=t
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where E(n, a, b) is the length, possibly zero, of the interval of intersection of
[-A(n), A(n)] and [a, b]. This Q-function family has in’ oo, (E)=1,
has @ countably additive since it is a multiple of £ dimensional Lebesque mea-

sure, and satisfies Kolmogoroff’s consistency conditions as needed.

Let

V,=tx € RS | |xpl > A(p)}

open in R%; clearly

~ 1
P* / = I — —_ -_ = .
(Vp)=0Q(Vp) 7 r) LE(p, —oc, =k (p))+ E(p, k(p),+®)] =0

Now
X' ={x€ 45 | || < h(n) for n> N+1};

and the given condition on % (n) makes it possible to replace {5 by R, in this

formula, so that

X' =RS- U Vs
p=N+1

which is in the Borel family B* of RZ. Thus P*(X") = P*(R.) =1 follows
from P‘*(VP)= 0, and X’ is thick in RS (see [1, p.741). Hence P(4 nX") =
P*(A) defines P uniquely over sets A nX’, 4 € B*, which form the Borel
family B of X’, so P is a Borel probability measure on X’ with P (I nX’) =

().

Of pp is N-dimensional Lebesque measure, ¢ =y x P is a Borel measure

on 4y x X =X Also
$X) = py (4,) >0,
and we obtain
$(B x X*) = py (B) < +w

for open bounded £, intervals B C A, by using P(X’) =1, and thus ¢ is non-
trivial (/) on X.
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We want to show ¢ to be translation-invariant (II) on X. If W is any X-
interval, then W = X n I with I an Rec-interval, and if u € 4,, set

Bp ={x € Ry ‘ \xpl < h(p)}i,

n
c,,=1n( n [Bp—-u])nX,
p

=1

and
D, =[l+ulnXn|l N [Bp+u] ,
p=1
so that
d(WnlX-ul)=p(Unl[X-ulnX)= lim ¢(C,;)
and

S(IW+ulaX)=¢(Il+ulnXalX+u]) = lim (D).

n— oo

Now the first n coordinate edges of D, are those of C,, translated by the cor-
responding u coordinates, Thus taking n > the greatest of the finite number of
coordinate indices involved in /, from ¢ = p, x P and P(X’n J) = O(J) we get
é(C,) = ¢(D,), both being the product of a normalization factor and the first
n coordinate edge lengths. Thus we have

d(WalX=ul)= lim ¢(Cy) = lim ¢(Dy) = ¢([W+ulnX),

n— oo n— oo

as desired.

Now let [4 + u]l C X be given for some Borel subset 4 of X. If {W;} is a

countable disjoint X-interval family covering 4, then also
ACUWnlX-ul)C UW.
13 13

Since

¢(A4) = inf [2; 6]
ACu W

i
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as the unique DBorel-Hopf extension [1, p.54] of ¢ from the intervals to the

Borel sets, we have

il

¢ (A4) ACinUf Wi(zigb(Win[X-u]))

i

il

inf (Z;6(W; +ulnX))> ([4+ ul)

ACu W
i

from
d (W n[X=ul])= ¢([W, + ulnX).

Thus ¢(4) > ¢([A4 +ul), and symmetrically ([A +ul) > ¢(4), so that
¢(A) = ¢([A + ul) for Condition II of translation-invariance.

Finally for the uniqueness of ¢ it is easy to see by division of intervals
into large numbers of equal subintervals that any nontrivial, translation-invari-
ant ¢ will have ¢ (), I being an interval of X, proportional to the length of each
of the edges of /. By our definition of iy and Q, this makes y(I)=K¢(I),
with 0 < K < +o and K independent of I. The extension to all Borel sets
thus gives y(4) = K¢ (A), A € B, as desired.

5. Haar measure and translation spaces. For the space Y our positive
result is a complete converse of Theorem 3. We shall get the result by con-
sidering a considerably more general situation. Let the Hausdorff space R be

an Abelian topological group, and as before define

(A+u]l ={x€ R | (x~u) € 4}

under R-group addition for 4 C R and u € R. Consider a fixed closed subset
Z of R, which becomes a Hausdorff space under the relative topology from R,
but not in general a group under R-group addition. Such a space containing the
zero of R is said to be a translation space if it satisfies the following con-

dition:

i) If V is any open subset of Z containing zero, then Z is covered by the
open interiors in Z of the sets of the collection { Z n[V + u] \ u € RI.

LEMMA 6. X is a translation space for R =4, under the metric topology.

Proof. Let V be the given neighborhood of zero, so that we have some

small p > 0 with S(Z, 0, p) C V. Then for any given z € Z = X we will find
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u € Z and p” > 0 so that

S(Z,z, p") CZna[5(2,0,p) +ulCZnalV+ul,

which makes z € int (Zn[V +u]) for Condition i). First since the given
z € 4,, we can find finite N so that

E’: ,\1/2 1
Zn <'§p,

and then define u € Z =X by u, =z, for1 <n < Nand u; =0 forn > N. Then

set
1
p’= min(ap, h(n) for n=1, 2,---,N)> 0,
so any x € S(Z, z, p*) has
, 1
le—ull < llx=z1 + 1z =ull < p" + =p < p.

Any such x also has
|%n ~un| = |2, ~ 2p| < p’ _<_h(n)
for 1 <n <N, and

|xp = up| = lxnl < h(n)

for n > N, so that x € [S(Z, 0, p) + u]. Thus
S(Z, z, p*) C ZnlS(Z, 0, p) + ul,

as desired.
LEMMA 7. Y is a translation space for R =4, under the metric topology.

Proof. 1f V is the given neighborhood of zero in Z =Y, we can find p > 0
with p? < f(1) and S(Z, 0, p) C V. Now either p? < f(n) for all n, or else
by the definition of Y there is a unique finite N with

f(N) > p2> f(N+1).
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In the first case for the given z € Z we take u = z, and since now S(Y, 0, p) =
S(4;, 0, p) by p? < f(n), we have

S(Z, z, p) = Z n[S(4,, 0,p)+ul C ZalV+ul

for z € int (Z alV + u]) as desired for Condition i).

In the second case for the given z € Z = Y we define u € Z by u, = z, for

1 <n<N,andu,=0forn > N. In this case also we have
S(Z, u, p) = ZnlS(Z,0,p) + ul.

For the left side clearly includes the right side, while if y € S(Z, u, p), then

forl1 < n <N we have
> (% = u].)2 <X (y]. - u]-)2 < p? < f(n).
j=n j=1

For n > N we have

I

(yj—uj)2= y]-2 < f(n),
j=n

so that
y € ZnlS(Z,0,p) + ul,
and hence
S(Z,u, p) C ZalS(Z,0,p) + ul
for equality. Finally since z € S(Z, u p) by
) 1/2
12 = ul ( > ) < VT <5
j=N+1
we have
2 €5(Z,u,p) CZalV+ul,

so that



TRANSLATION INVARIANT MEASURE OVER SEPARABLE HILBERT SPACE 545

z € int(ZalV+ul),
S(Z, u, p) being open, for Condition i).

Thus X and Y are special translation spaces, so the result we shall obtain
for translation spaces applies to them. For the general translation space Z we
define the Borel class B as the o-algebra generated by the open subsets of Z,
given by the relative topology from R. For a Borel measure ¢ defined over B we
note that Condition I of nontriviality and II” of translation-invariance still make
perfect sense in this more general context, if u € 4, in II” is replaced by
u € R. We shall now establish that a locally compact translation space does
possess something like a Haar measure, that is a nontrivial, translation-in-

variant, regular Borel measure. First we need a few more lemmas.

LEMMA 8. If V C W are both open subsets of the translation space Z and
if (W+ulnZ is open in Z for some u € R, then so also is [V +ul nZ.

Proof. Since Z is a translation space, it is closed in R, so Z-W and Z -~V
are both closed in R as well as in Z. Since open and closed subsets of the
topological group R remain such under translation, B=[(Z ~-W)+u]n Z and
C=[(Z-V)+ulnZ are both closed in R, and hence in Z. Defining 4 =
(R-1Z +ul) nZ, we have

AuB=Z-([W+ulnZ),

known closed in Z, so that A — 4 C B must follow. We obtain B C C from V C W,
and this makes 4 — 4 C C; thus Z-([V+ulnZ)=A4uC is closed in Z, or
[V +ulnZ is open, as desired.

Let[B+Cl={x+y | x € Band y € C} and B'={x1—x€B} for the

following lemma.

LEMMA 9. If the translation space Z has compact subsets B and C with
B nC = ¢, then there exists some Z-neighborhood V of zero so that

[B+V1nlC+ V] =,

Moreover, both [V +z1nB # & and [V+z]1nC £ ¢ are not simultaneously
possible for any z € R.

Proof. Since B and C are compact subsets of Z, they are also such of the

topological group R. Thus there exists an R-neighborhood W of zero so that
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[B+WlalC+W1l=9.

Hence V=27 nW, so V" C W, gives the first result. If [V + z] nB # ¢ and
[V+2z1nC #¢, then z€ [B+V 1n[C+V 1=¢, a contradiction, which

gives the last.

Following Halmos [1, p.252], if B and C are subsets of the translation

space Z, we let (C:B) denote the least cardinal (thus Mo or an integer > 0)
of sets P of z € R such that

Cc U [B+z].
ZEP

LeEmMMA 10. If C is a compact subset of the translation space Z and V is

an open Z-subset containing zero, then (C:V) < +cc.

Proof. By Condition i) we have

Cc U int (ZnalV+ ul)),

u€R
an open covering of compact C. Thus there exists a finite set A of such u with

Cc U mm(ZnlV+ullc U [V +ul,
u€Ad u€A

and hence

(C:V) < (card 4) < +0.

This lemma is the only place where Condition i) is used to get our following

main result on the existence of a Ilaar measure.

THEOREM 11. If Z is a locally compact translation space, then there exists

a regular Borel measure ¢ on Z which is nontrivial (1) and translation-invariant

(1)

Proof. Since Z is locally compact, it possesses a neighborhood V; of zero
such that ¥, is compact, so 0 < (V,:¥) < +a for any other Z-neighborhood
V of zero, by Lemma 10. Also clearly

(C:V) < (C: W) (V=) < (C:Wy) (Vy: V),

so we may define
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Ap(C) = (V,: VYL (C: V)

and have

0< X(C) < (C:V)) <+

for any compact subset C of Z and any Z-neighborhood V of zero. Following
Halmos [1, pp.254-256], we construct a content A from A,. Let Q be the
Cartesian product of the bounded closed intervals [0, (C:V,)] over all com-
pact subsets C of Z; Q is compact by Tychonoff’s theorem, and each A, € Q.
Setting

A(V)=1{), | WC V, W a Z-neighborhood of zero},

we see that {) contains by compactness some \ € n, A(V), the intersection
being over all Z-neighborhoods ¥ of zero. As in [1], this function A(C) de-
fined over compact Z-subsets C is a content; that is, for sibsets B, C, and D

compact we have

0< A (C)<A(B) <+
if C C B, and

A(CuD) < X(C) + A(D)

with equality if C nD =¢ by use of Lemma 9. Also A(¥,) =1 since M (7)) =1
for any V. For translation invariance we note that if [C + z] C Z for a compact
Z-subset C and z € R, then [C + z] is also compact, since translation by z
is a homeomorphism of R onto R; ([C+z]:V)=(C:V), obviously; and thus
A ([C+2]1) =2, (C) for any neighborhood ¥ makes A([C + z1)=A(C).

Let W be any subset of Z, define the inner content
Ax (W) = sup A (C)
over compact C C W, and for any subset £ define

¢(E) = inf A (W)

over open Z subsets W D E. Restricting ¢ to B, we see that ¢ is a regular
Borel measure on Z; ¢ is nontrivial (1) by

HZ)> (V) > AM(Vy) =1 and (V) < A(T)) =1,



548 F. H. BROWNELL

(see [1, 53 C and E, p.2341).

It remains only to show that ¢ is translation-invariant (II”). First
M (LW + z]) = A (W)

for z € R and any Z-subset W having [W + z] C Z. For then compact C C W
has [C + z] C Z and compact, so A([C +z]) = A(C) and thus A ([W + z]) >
A (W). The opposite inequality follows symmetrically to give the result, since
any compact C* C [W +z] has C=[C = z] compact with

CCWCZand A(C)=A(C).

Now if V is an open Z-subset then ¢ (V)= A« (V) since A« is monotone.
Thus If V and [V +ulnZ are both open in Z, and u € R, then W C V and
(W+ul=[V+ulnZ, where W=[(1V +u]lnZ)=u] so that

d(LV+ulaZ) = MW +ul = M (W) <X (V) = $(V)

for part b) of Condition II”,

For part a), assume 4 € B, u € R, and 4 C V,, where V, and [V, + u]
are both open Z-subsets. Then for any open Z-subset V O 4, Lemma 8 with
V'=VnaV, and W =V, both open makes [ ¥ n¥, + u] open also, and we note
that

[Ad+u) CIVaVy+ul C[Vo+ulCZ.

Hence
M([VaVy+ul) = AV aly)
makes
¢(A)= 1nf )\*(V)’—- mf )\*(VﬂVo)
open VDA open V2OA
= inf )\*([VnVO+u])Z inf MW)=¢([4 +ul).
open VD A open W_D_[A+u]

Symmetrically, ¢([A4 +ul) > ¢(A4) gives ¢ ([A+ul)=¢4(A4) for our result.

Presumably results similar to Theorem 11 are true for similar subspaces of
non-Abelian topological groups. We have considered only the Abelian case for

simplicity and because the interesting examples in analysis are Abelian.
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COROLLARY 12. If

liminf f(n) = 0O,

n-— oo
then the space Y is locally compact under coincident metric and product to-

pologies, and Y possesses a regular Borel measure nontrivial (1) and translation

invariant (I1”) under this topology.

Proof. The coincidence of the topologies and local compactness of Y is

trivial from f(n) {0; and Lemma 7 and Theorem 11 give the rest.

6. Another translation space example. In addition to X and Y, we want to
give another example of a translation space, still with R = 4,. Let

Zl=[x€/€2 | > 2% (x)2 < M]
n=1

for some fixed real r > 0 and M > 0, so that clearly Z, is actually compact.
Such a space would arise by using Fourier analysis on L,-function-spaces in
which the rth derivative was subjected to a fixed bound in norm. We shall now
show that Z, is a translation space, though our proof seems unnecessarily

long.
LEMMA 13. Ifu € Z, has up =0 for n > N for some finite N, and
1/2

N
Z n2r (un)z

n=1

O8N

pN" <

for some p > 0, then
Z,nl[S(Z,0,p)+ul =5S(Z,,u p)
open in Z,.
Proof. We only need to show that
S(Z,,u,p) CZ, al[S(Z, 0, p) + ul,

the opposite inclusion being obvious. Consider any z € S(Z,, u, p); we need
only show (z—u) € Z,. Here ||z~u|| < p, so

N

S 02 (zp— up)? < N¥ 02,

n=1
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and thus from

n=1

1 N 1/2
erSE‘Z n2r(un)2}

we obtain, by Minkowski’s inequality,

N 1/2 N 1/2
0<[z nzr(un)zl - pN < Z nzr(zn)Z] .

n=1 n=1

Thus u, =0 forn > N and z € Z, yields

o0 N 00
z n2r(zn_un)2 - Z nzr(zn"un)z + E n2r (zn)2
n=1 n=1 n=N+1

o0 N
<p2N2r+ Z nzr(zn)z— Z nzr(zn)z

n=1 n=1

2

A

n=1

N 1/2 N 1/2
{1 ] e £ ] e

n=1 n=1

N 1/2
p? N”+M-(l z n2r(un)2] -pN

Thus we have shown that

o0

n? (zp —up)? < M,

—

n:
so (z-u) € Z, as desired.

THEOREM 14. Z, satisfies Condition i), and hence is a compact transla-

tion space possessing a Haar measure in the sense of Theorem 11.

Proof. We merely need to verify Condition i) for Z;. Thus given any open
Z,-subset V containing zero and any z € Z,, we shall find some u € Z; and
p > 0 sothat S(Z,,0,p) C V and
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€ Z,alS(Z,,0,p) +ul =S(Z,,u,p)

open in Z,, which makes z € int (Z, n[V +ul), as desired. Here we need
consider only z # 0, since u=0 makes 0 € V=int (Z, nlV + u]) for the

result if z = 0. Since z # 0, we may choose N sufficiently large so that
oo -1 o0
,8= Z n2r(zn)2 Z n2r(zn)2
n=1 n=N+1
has 0 < 8 <1/5, and so that
—< p,
2NT

for some Py such that S(Z,, 0, '01) C V. Let

1 N
pe— | T NG
v\ 2,
so
v
p < %T <p, and S(Z,,0,p) C V.

Define u € Z, by u, = z, for 1 <n <N and u, =0 for n > N. By Lemma 13,

we have
Z,alS(Z,,0,p) + ul =S(Z,,u,p)

open in Z,. Finally to complete the proof we have z € S(Z,, u, p), for

le=ull?= 3 <zn>25i( > n2'<zn>2)

n=N+1 N”

n=N+1
£ 3 n¥(z,)? PR R 3 ¥ (z,)?
N \n=1 NZT 4 n=1

l N
= Z n2r(zn)2 =P29
(2N")2 \n=1
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or ||z ~-ul| < p, as desired, since 8 < (1 - )/4 from 0 < B8 < 1/5.
7. Summary of results. We have discussed here the translation spaces
X={x€ 4, | |x] < h(n)}

and

Y=(x€4,| ¥ xt < f(n)d,
j=n

and also

Zy={x €4, | X n? (%) < M}

n=1

in $6, all being subspaces of real separable Iilbert space. For X under the
metric topology we have found (Theorem 3) that there exists no nontrivial,

translation-invariant (I or II”) Borel measure if

lim inf A(n) > 0;

n — oo

under the product topology we have the same conclusion if £(n) =+ infinitely

often ( Theorem 4). If

Y [h(n)]? < +o,

which is equivalent to local compactness, then under the metric topology X has
a nontrivial, translation-invariant (II) Borel measure which is unique up to

constant factors (Theorem 5). For Y under the metric topology

lim inf f(nr) = 0,

n — oo

or thus f(n) V0, is equivalent to local compactness, and necessary and suf-
ficient for the existence of a nontrivial, translation-invariant (II“) Borel mea-
sure (Theorem 3 and Corollary 12). Also we found (Theorem 12) that any
locally compact translation space possesses a nontrivial, translation-invariant
(I1”) Borel measure; thus so does Z, (Theorem 14).

It is clear from the foregoing results that local compactness is in general
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the crucial condition for the existence of a nontrivial, translation-invariant
Borel measure. This is well known for topological groups [ 5, p. 144}, and con-
jectured for spaces with a group germ (a neighborhood of zero in which group
addition is always possible). llowever, it is to be noted that neither X nor Y,
when locally compact, nor Z; has a group germ. Thus our results seem to be
new, and the concept of a translation-space a fruitful one. In fact the idea of a
group germ cannot lead to anything here; for it is not difficult to see that any
convex metric subspace of 4,, which is locally compact and contains a group
germ under {,-vector-addition, must be finite dimensional, hence a subspace of
L and thus trivial. In connection with local compactness it should be noted
that our results are not complete for X; here if Zc’c[h(n)]2 =+ o the space is
not locally compact under the metric topology and presumably no nontrivial,
invariant Borel measure exists. We could only show this if

lim inf A(n) > O,

n— o0

which assumes more.

The construction of an invariant measure on subspaces of real separable
Hilbert space suggests an attempt to carmry over vector analysis from Ky. In
particular, in a later paper the author investigates the relationship between
4,-vector-differentiation [ 6, p.72] and Fourier transforms over X. Here X is a
modification of Jessen’s torus space [3] and can be made into a group, so

standard Fourier theory applies [ 7 or 51
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ON A PAPER OF NIVEN AND ZUCKERMAN

J. W. S. CassELS

1. Introduction. Let ‘digit’ mean an integer in the range 0 < a < 10. For
digits ay, @y, +o oy ar; byy byy oo+, bs (s > 1) and integer m, denote by

R, (a,,+eeya, b ,ee, b))

the number of solutions of

bn =al,bn+l S az,---,bn”_l = a, (0<n<n+r<s;n=mmodr),
so that
(1) Ong(al,---,ar;bl,---,bs)§s—r+l.
Suppose that
Xy Xy e

is an infinite sequence of digits. It has been shown [ 2] that if

1 r
(2) lim Y Rylay,eeesa5x 000, xy) =107

N — 00
m=1

for all integers r and digits a,, ++- , a;, then

‘ o1
(3) lim —Rm(al’...’ar;xl’...’xN)=r_l 10—r

N — o0
for all integers r, m, and digits a,, -+, a,. A possibly simpler proof is as

follows.

2. Proof. Let €> 0 and digits a;, +++ , a, be given. The simple argument of

Hardy-Wright [ 1] shows that if the integer s is fixed large enough, then

Received April 10, 1952.
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-r+1
(4) Max |R (a , -, a,; bx""’bs)—i—'rT- <els—r+1)
© H r 10

except for at most €10° sets of digits b,, +++ , bs. ( ‘Exceptional’ sets.) Thus,
by (2) with b;, ++-, bg for a;, +++ , a,, the number of exceptional sets
(5) x

0 Xer1? " 0 Fpps -y (1<e<N=-s+1)

is at most 2 €N for all large enough N.
On the other hand,

(6) (S_'r+1) Rm(al’...’ar;xl’.."xN)
differs from

N-~-s+1
(7) z Rm—t+l(al’...’ar;xt’..' x )

P Vtes—1
t=1

by at most 252, since each solution of

al =xn, 0,2 =xn+l,

e @ =%, (s<n<N-s;n=mmodr)
contributes exactly s —r + 1 both to (6) and to (7). Hence, using the estimate
(3) for the at most 2€N exceptional sets (5), and the estimate (4) for the

others, we have

N-s+1
r1o’

Rm(al’...,ar; xl’... ,xN) -

2s?

+ e(N-s+1)+ 2€eN,
s—r+1

and so

< 3e.

1
i . -1 90T
lim sup TV-Rm(al,---,a,, %yeeeymy) =710

Since € is arbitrarily small, this proves (3) as required.
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SPECTRAL THEORY II. RESOLUTIONS OF THE IDENTITY

NELSON DUNFORD

Introduction

In attempting to extend elementary divisor theory to the case of a linear
operator on a complex Banach space one is naturally led to a consideration of
the various equivalent definitions of the multiplicity v¥(A) of a complex number
A as a root of the minimal equation of a finite matrix 7. Of the numerous equiva-
lent definitions of this integer we have found only one which seems to have
some virtue when applied to the infinite dimensional case. That one is as fol-

lows: v(A) is the smallest positive integer or zero for which

[E- A"V | (£-T)1)

is bounded for ¢ near A. Thus the rate of growth of the resolvent

T(E) = (=T

for £ near A determines v(A). In this paper we consider the problem of deter-
mining conditions on the rate of growth and the mean rate of growth of the re-
solvent which are necessary and sufficient for a complete reduction of a linear
operator on a complex Banach space. What is to be meant by a ‘“‘complete”
reduction? There are several apparent meanings that might be given to the no-
tion of the resolution of the identity for an operator, all reducing to the clas-
sical one in the case of a finite matrix. For example, are we to require that £, be
defined for all Borel sets o or for ¢ in some sufficiently large subalgebra; should
it be countably or just finitely additive; should it be bounded or not? All prob-
lems are legitimate and in this paper we have chosen the most restrictive of
all the obvious interpretations. Consequently the conditions found on T (&) are
restrictive and the corresponding class of operators is small. On the other hand,
such operators have many important properties not shared by operators outside

this class. Other meanings for the notion of resolution of the identity will be

Received January 2, 1951. The research contained in this paper was done under
contract N7onr-448 with, and reported to, the Office of Naval Research during the period
between September 1, 1947, and May 1, 1948.
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considered in another report.

Before stating what is to be meant by a resolution of the identity for 7, let
us recall that if T is a linear operator in the finite dimensional linear vector
space X over the field of complex numbers, and II; (A ~\;)* (A; distinct)

is its minimal polynomial, then there are projections £); with

Ex, X = [=|(T = X)"ix = 0]

and such that

I=E)\1+"'+E)\k’

If, for a Borel set o in the complex plane, E, is defined to be the sum of those
E) , for which A; € o, then E, is a resolution of the identity for T in the sense
that it has the properties (i) below:

EE =E,, E,=I-E, TE =ET

(i) { E xis completely additive in 0, x € X

the spectrum of T when considered as an operator in £_X is contained

in o, the closure of o.

If, for a given linear operator T in a complex Banach space, there exists a
family E, (o a Borel set) of operators in X satisfying (i), then E, is called
a resolution of the identity for T. Such operators will be called spectral oper-
ators. If T is a spectral operator its resolution of the identity is unique, and
operators f(T) corresponding to scalar functions analytic and single valued on

the spectrum o(7T) are given by the formula

o0 (n) A
(ii) fir =3 fU(T)f—Y(——) (T - M) dE)y
n=0 e

where the integral exists as a Riemann integral in the uniform topology of oper-
ators and the series is convergent in the uniform topology of operators.

The main problem is, however, to determine when T is a spectral operator.
We have endeavored to state conditions on the rate of growth and the mean rate

of growth of the resolvent

() =(£-1T)"
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which are sufficient and in some cases necessary and sufficient for the exis-
tence of a resolution of the identity. In order to do this, we have had to restrict
ourselves to the case where the spectrum o(7) lies in a sufficiently smooth
Jordan curve. To describe briefly in this introduction the nature of the results
obtained in this direction, suppose that T has its spectrum in the interval [0, 1].
The underlying assumption is then that for each A € [0, 1] there is a positive
integer v (A) and a positive number M () such that

(iii) LA T(x+ ip)] < M(A),  0< |p| <1,

This alone is far from sufficient to ensure that T is a spectral operator, even

in case
v(A) = M(A) =1,

An obvious necessary condition may be stated in terms of the following notion
of residue. Let C be a rectifiable Jordan curve contained in the set where
x* T(&)x is analytic. Let o be the set of all singularities of x* T(&)x which

are inside C. Then

1

(x*, x), =
7 2m

‘/'C‘x*T(f)xdf
is called a residue of x*T(&)x. It is clear that if T has a resolution of the

identity then
(x*, %), = «*E x,
and hence

(iv) [(x*, %), < K|z*| |x|, x € X, «* € X*.

Condiiions (iii) and (iv) are very nearly sufficient to ensure that T is a spec-
tral operator. In reflexive spaces they are sufficient. In general though there

are operators satisfying (iii) and (iv) with
v(A) = M(\) =1

and not possessing a resolution of the identity. A final condition which in the
case of a weakly complete space X makes the set of (iii), (iv), (v) sufficient

for the existence of a resolution of the identity is the following. Let My, Ny be
yw )

zeros and the range of (7 — A , respectively. The condition is:
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(v) For every A in a set dense in [0, 1], My + N) is dense in X.

In case v(A) =1, the condition (iv) may be stated in the equivalent form:

(iv)” Lab  [* 2% (T (A + ip) = T(A ~ ip)} x| dA < .

o<u<i

Unless v(A)=1 the condition (iv)’ is more restrictive than (iv). However
there is a condition analogous to (iv)” which is equivalent to (iv). It may be
stated in terms of a decomposition of the resolvent. It turns out that for a spec-
tral T there are two operators U () and V (£) such that

T(£) = U8 + V(&)

and such that x*V (&) x is the derivative of a single valued analytic function
at every point ¢ where x*T (£)x is analytic, and U(¢) satisfies the condition
(iv)’. The condition (iv) may be replaced by:

(iv)”  The resolvent T(¢) has a decomposition as described above.

In any one of the following situations the conditions (iii) and (iv) (or
(iv)’ or (iv)”) are sufficient for the existence of a resolution of the identity

since in these cases (v) will automatically be satisfieds

(a) The union of the resolvent set and the continuous spectrum is dense on

(o, 11

(b) There is no interval of positive length consisting entirely of points in the

point spectrum of the adjoint.
(c) X is reflexive.

(d) T is completely continuous.

Let d(&) be the distance from & to the spectrum o(7); then a condition

more restrictive than (iii) is

(iii)” |d™ (&) T(&)| < M, near o(T).

This condition is necessary and sufficient for the simplification of (ii) to

m=-1 (n) A
(i)’ (=% Lo f_ﬁﬁ (T - A)"dBy, .
n=0 :

Thus, in a weakly complete space, (iii)’, (iv), (v) imply that T is a spectral



SPECTRAL THEORY II. RESOLUTIONS OF ‘THE IDENTITY 563

operator satisfying (ii)’. In a reflexive space, (iii)” and (iv) are equivalent
to the statement that T is a spectral operator satisfying (ii)".

In case X is not weakly complete, the above statements remain valid pro-
viding the notion of the resolution of the identity is weakened in the following
manner. Instead of requiring that £, be defined for all Borel sets, we demand
that it be defined and countably additive on the Boolean algebra determined by
the real intervals. This enables one to define the integral occurring in (ii)’
Thus in this extended sense we may say that for an arbitrary complex Banach
space the conditions (iii)’, (iv), (v) imply that T is a spectral operator satis-

fying (ii)%

Although this is the second in a series of articles on spectral theory, not
much knowledge of the contents of the first [1] paper is assumed or used. We
collect here the terminology, notation, and results from that paper that are used
in the present one. An admissible domain is an open set bounded by a finite
number of rectifiable Jordan curves. It is called a T-admissible domain in case
its boundary is contained in the resolvent set p(7T) of T. The class of complex
valued functions analytic and single valued on some T-admissible domain con-
taining the spectrum o(7) is denoted by F(T) or F(o(T)). For f € F(T),
the operator f(7T) is defined by the formula

1
f(T) = P fc fO)TA)dr,

i

where C is the boundary of some T-admissible domain containing the spectrum
of T. The mapping, given by the above formula, of the algebra of analytic func-
tions into an algebra of operators is a homomorphism which assigns the oper-

ators I, T to the functions 1, A, respectively.

1. Operators with nondense spectra and preliminary lemmas

In this section we consider an operator I whose spectrum ¢ (T) is nondense
in the complex plane. Two conditions concerning the singularities of the ana-
lytic function (&~ T) 'x are introduced (these are 1.7 and 1.14 below). As we
show later, these are necessary conditions for the existence of a resolution
of the identity regardless of the operator T or the character of the space X. The
main purpose of $1 is to show how near these two conditions come to being
sufficient. Later, in § 2, we shall determine the meaning of these two conditions
in terms of the rate of growth and the mean rate of growth of the resolvent T(¢)

for & near the spectrum. The basic assumption for §1 is then:

1.1. AssuMPTION. The spectrum o(T) of T is nondense in the complex
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plane.

This means that the resolvent set p(7T) of T is dense in the plane. The
chief purpose of this assumption is to prove the following lemma which asserts
that the analytic function (- T) 'x is single valued; if this fact is already
known then Assumption 1.1 may easily, in most of what follows, be discarded.
Since 1.1 is the underlying assumption for practically all of §1, it will not be
explicitly stated in the lemmas to follow. The other assumptions 1.7 and 1.14,

and others in § 2, will however be indicated parenthetically when they are used.

1.2. LEMMA. For each x € X the analytic function T (&)x defined on p(T)

has a unique maximal single valued analytic extension.

Let f, g be two vector-valued analytic functions defined on open sets D(f),
D(g), respectively. We suppose that D(f)D(g) D p(T) and that

f(&) = T(¢) x = g(&) for £EE€ p(T).

Let £ € D(f) D(g). By 1.1, there is a sequence of points & € p(T) with
rfn—-—) fo, and so f( fo)= g(rfo ). Thus, if p(x) is the union of all open sets
containing p (T) upon which 7 (£)x has an analytic extension, we have uniquely

defined upon p (x) an analytic extension of T (¢)x.

1.3. DEFINITIONS. By x(¢£) we shall mean the unique maximal single
valued analytic extension of T(&)x whose existence is established in 1.2.
The symbol p(x) will be used for the domain of definition of x(&), and the
symbol o(x) will be used for the set of singularities of x(£). Thus o(x) is
the complement of p(x), and p(x) D p(T), 0(x) C a(T).

1.4. DEFINITION. By [x] we shall mean the smallest closed linear mani-
fold containing all of the vectors T(&)x, & € p(T).

1.5. LEMMA. For every x € X we have:
1.5.1. x € [x];

1.5.2. f(T) [x]1cClx], fEF(a(T));
1.5.3. x(&) € [x], £ €p(x);

1.54. [yl clx], y € [x].

Let C be a large circle such that

1
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this proves 1.5.1. Let y € [x] and f € F(o(T)). Since y may be approximated
by sums of the form ZO(]' T(&)x, f(T)y may be approximated by sums of the

form

1 a7

2o T(EV(T)x = 2o i e
-

¢,

where I" is chosen, in the domain of regularity of f, to include ¢(T) and ex-
clude the points &. Thus f(T)y € [x], and 1.5.2 is proved. Next let £ € p(x)
and, using (1.1), choose a sequence fn € p(T) with fn — fo . Thus

T(fn)x —x (&),

and since [x] is closed we have x(fo)C [x]. Finally if y € [x] we have,
by 1.5.2, T(&)y € [x], £ € p(T), and thus [y] C [x]. This completes the
proof of 1.5.

1.6. LEMMA. For x, y € X we have
olx +y) Col(x) uoaly),
and for ¢ € p(x) p(y) we have
x (&) + ¥y (&) = (x + y) (6).

On the open set p(x) p(y), the function x(£) + y(£) is an analytic ex-

tension of

T(EHx + T(Ey = T(E) (x +y), & E€p(T).
Thus p(x+7y) D p(x) p(y), and for & € p(x) p(y) we have, by 1.2,
x(&) + y(&) = (x + y) (£).
The second assumption which is needed in most of $1 is:

1.7. ASSUMPTION, If 0 is a closed set of complex numbers, then the set

Lo] of all vectors x with o(x) C o is also closed.

1.8. LEMMA. (Assumption 1.7.) If 0 is a closed set of complex numbers,
then [o] is a closed linear manifold, Tlol C o], and the spectrum of T when

considered as an operator in [ o] is contained in o.

That [o] is a closed linear manifold follows from 1.6 and 1.7. Since
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Tx(p) = T(p) Tx,

for yin p(T) we have p(x) C p(Tx) or 6(Tx) C o(x), and thus T[o] C [ol
Now let x € [o], £ € o (the complement of o in the whole plane ), fn Ep(T),
and ¢ — &, Since for € p(T) we have

T(wx = (&, - DT T(E)x,
it follows that p(x) C p(T(& )x) and thus T(&,)x € [o]. Since
T(&))x = x(£)— x(£)

and [o] is closed, we have x(¢) € [o]. Thus, since
(¢~ T)x(€) = x,
it follows that
(£-T)lol =lol.
To see that ¢ — T is one-to-one on [0 ], suppose that
(6 -T)y=0,y €lol.

Then

y

oD and o(y) C (£) no = ¢ s

y(A) =

the void set. This means that y () is analytic for all X and thus that y = 0.

Hence, if £ € o’ then £~ T is a one-to-one map of [o] into all of itself.
1.9. LEMMA. (Assumption 1.7.) For every pair o,, o, of disjoint closed

sets, there is a constant K (o, 0, ) such that

[x(§)| < K(oy,0,) ||, £ €0y, x € Lo, ],

By 1.8, o, is contained in the resolvent set of 7 when considered as an
operator in [0, ]. Since x (&) is the value of this resolvent at the point £ € oy

when operating on x € [0, ], the present lemma follows from the preceeding one.

1.10. LEMMA. (Assumption 1.7.) For every x € X we have T[x] C [x],

and when T is regarded as an operator in the space [x] it has o(x) for its
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spectrum and p(x) for its resolvent set.

It was proved in 1.5.2 that T[x] C [x]. Let p, be the resolvent set of T as
an operator in [x]. Using 1.5.2 again, we readily show that p(T) C p,; and
since T (&)« is analytic on p, (since x € [x], by 1.5.1), we have p, Cplx)
We shall now show that for every y € [x] we have p(y) D p(x), which means
that for every y € [x] the function T (&)y defined for £ € p(T) has an ana-

lytic extension to p(x). Elements of the form
(*) y = ZaT(&)x, & € p(T)
are dense in [x], and for such y we have, for u € p(T),

T(u)y = ZajT(fj) T(u)x.

Thus 7 (u)y has the analytic extension ZCX].T(f].)x(p), p € p(x), and so,
for y of the form (*), we have p(y) D p(x), o(y) C o(x). Let y € [x], and
let y, be a sequence of vectors of the form (*) with y, — y. Since y, —y, has
the form (*), we have o(y, -y ) C o(x). Let N be a neighborhood whose
closure N C p(x), so that N and o(x) are closed disjoint sets. By 1.9, then,

17,(6) = 3, (O = [(y, = y,) ()] < K(N,0(x)) |y, -y, —0
uniformly for & € N. The function

f(€) = lim y (&)
is analytic on N, and for every £ € p(T)N we have
f(€) = lim y (&) = lim (£ - T)'lyn =(&-TYly.

Hence f(£)=y (&), €N, and p(y) D p(x). Finally we let { € p(x) and
show that £ ~ T is a one-to-one map of [x] into all of itself. Let y € [x]; then
since fo € p(x) C p(y) we have, by 1.5.3 and 1.5.4, y(ffo) € [yl clxl.

Since

(E-T)y(&) =y
for £ € p(T), this same equation must hold for & € p(y); in particular,

(-fo -Dy())=y.
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Thus (fo ~T)[x]1=[x]. To see that fo -~ T is a one-to-one map on [x], let
y € [x]and (§{ ~ T)y = 0. For large £, we have the expansion

o (T—¢)"
T(E) = Y ——————;
n=o (é—_é-o)rﬁl

hence T (&) y=y/(&- fo). Thus if y #£ 0 we have o(y) consisting of the single
point & € p(x) C p(y), a contradiction since p(y) and o(y) are disjoint.
Thus it has been proved that for every ¢ € p(x) the operator £ — T is a one-to-
one map of [x] into all of itself, and hence p(x) C p, C p(x).

1.11. LEMMA. (Assumption 1.7.) If y € [x] then o(y) C a(x).

This was proved (in the form p(y) D p(x)) during the course of the proof
of Lemma 1.10.

1.12. LEMMA. (Assumption 1.7.) The set o(x) is void if and only if x = 0.

If x=0 it follows from Definition 1.3 that o(x) is void. Conversely, if
o(x) is void then by (7) the spectrum of T as an operator in the space [x] is
void. This, according to Taylor’s result [3], implies that [x] consists of the

zero vector alone. Hence x = 0,

1.13. LEMMA. (Assumption 1.7.) Let o be a set of complex numbers, and
o’ its complement. If x + y = x, + v,, where 0(x), 0(x,) Coando(y), a(y,)C

o’, then x = x;, y = y,.

The sets

)

op = 0(x)u alx;), 0 = o(y)u aly,
are bounded, closed, and disjoint. Since, by 1.6, o(x+y) C 0, v 0,, there is

an admissible contour C containing o, and excluding 0, which lies in p(x + y).

Thus

1

2mi

1 1
fc (x + y) (£)dE = — fc x (&) dE + — fcy(g)dg

Since y (&) is regular in the closed domain bounded by C, the second integral
on the right side of the above equality is zero. Since o(x) is contained within
the domain bounded by C we see, from 1.10, that the first integral on the right

of the above equality is equal to x. Hence
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1
_— f (x +y) (£)dé = «,
2m “C

and similarly

1
5o ey (O =

Thus x =x;, ¥ =¥;.

In most of what follows we shall need besides Assumption 1.7 the fol-

lowing:

1.14. ASSuMPTION. There is a constant K, depending only upon T, such

that for every pair x, y of vectors with o(x), o(y) disjoint we have
lx| < Klx + y].

1.15. DEFINITION. By s, we shall mean the family of all sets o with the
property that vectors of the form x +y with o(x) C g, 0(y) C ¢” are dense in

X. Clearly, if ¢ € s, then the complement ¢” € s,.

1.16. LEMMA. (Assumptions 1.7, 1.14.) For o € s, there is one and only
one bounded projection F, on X with the properties E,x=x if o(x) C o}

E,x=0if 6(x) C 0. This projection has the further properties that
E(7 + Eo-l =1, EU.EO_I = 0, IEO'I < K.

Vectors of the form z = x + ¥ with o(x) C o, 6{y) C o’ are dense in X. In
view of 1.13 it is permissible to define, on this dense set, £,z = x. From 1.14
it follows that |E,z| < K|z |. Now if

zp =%, + y, with o(x,) Co, a(y) Co’,
then
ZHZ=X+% +Y + Y,
and, by 1.6, 0(x + x,) C o, oy +y,) C ¢”. Thus
E(z + z) =Ez+ k z,

and E, is additive and continuous on a dense linear set. Thus E_z is uniquely
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defined for z € X by the requirements that £, z is continuous in z. For elements

z of the original dense set we have
E;z =FE,x=x=EFE,z, where z =x +y, o(x) Co, o(y) Co”.

Thus £? = E,. It is also clear that
E,Egr =0 and E, + E,r = 1.
If A, is another bounded projection with the properties
Ayx = x if o(x) Co and A, x =0 if o(x) Co”’,

then for z=x +y, where 0(x) C 0, o(y) C 0" we have A z=x=FE_ 2z, and
hence A,z = E, z for every z € X.

1.17. LEMMA. (Assumptions 1.7, 1.14.) If 0 € s, and f € F(o(T)), then
f(TYE, = E, f(T).

letz=x+7y,0(x) Co, o(y) Co’. Then
f(TYz = f(T)x + f(T)y.

By 1.5.1 and 1.5.2, f(T)x € [x]; and by 1.11, o (f(T)x) C 0(x) C o. Simi-
larly, o (f(T)y) C a(y) C 0”. So

E f(T)z = f(T)x = f(T)E, z.

Since the vectors z are dense, the lemma is proved.

1.18. LEMMA. (Assumptions 1.7, 1.14.) We have o(E,x) C o(x), 0 € sy,
x € X.

We have, by 1.17,
T(§)Egx = E;T(E)x, & €p(T),

and hence the analytic function T (¢£)E, x has the analytic extension E, x (&)
for £ € p(x). Thus p(E,x) D p(x)and o (E,x) C olx).

1.19. DEFINITION. Foro € s,, define X, = E_X.

1.20. DEFINITION. If M is a closed linear manifold in X for which TM C M,
we use the symbol o (M) for the spectrum of T when considered as an operator

in M, and the symbol p (M) for the resolvent set of T as an operator in M.
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1.21. THEOREM. (Assumptions 1.7, 1.14.) If 0 € s, then TX, C X, and

o0(X,) C o, where o is the closure of .

It follows from 1.17 that TX, C X,. Let rf¢'5. We shall first show that
¢~ T is one-to-one on X,. If x € X, (£-T)x =0, then x(A) =x/(A= &)

since for all large A we have
> (r=46"
-y o9
n=0 (X - &)t

Since x € X, , we have x = E, x; and since x(\) is everywhere regular except
possibly at the point & € o, we have o(x) C o, from which it follows that
E,x=0. Thus £~ T is one-to-one on X,. We next show that (£~ T)X, = X,.
Let

x € X, and x, + ¥, — %, o(x,) Co, a(y,) Co”.
Then

x = Esx =lim E,(x, + y,) = lim Egx, = lim x,.
n n n

Let y, = %, (&), so that
Yo = ¥Ym = % (&) = %, (&) = (5, = ) (&),
and hence, by 1.9,
|yn = ym| < Ki |2 ~ 2 | — 0.
Lety = linm ¥n s so that
x = li,in xp = lim (& = Ty, = (£ =T)y.
It remains to be shown that y € X, . Since & € p(x,), we see from 1.5.3 that
Yo = % (&) € [x,1,
and thus 1.11 gives o(y,) C 0(x,) C 0. Thus y, = E_y, € X, and y € X,.

We have shown that if & ¢ o then £~ T is a one-to-one map of X, into all of
itself; that is, o (X,) C 0.

1.22. LEMMA. (Assumptions 1.7, 1.14.) If 0 € s,, then o(E_x) C 0 o(x)
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for every x € X.

In view of 1.18 it will suffice to show that o (£, x) C o. From 1.21 it fol-
lows that p(E_,x) D ¢, and thus o (£, x) C 0.

1.23. DEFINITION. The symbol s, will be used for the family of all sets
o having the following property. For every x € X and every € > O there are

vectors x;, x{ with o(x,) C o(x)o, o(x{) Co(x)o’ and |x; +x{ — x| < &
1.24. LEMMA. The family s, is a Boolean algebra and s, C sq.

That s, C s, is clear from the definition of these classes. Let a;, 0, € s,,
x € X and € > 0. We then have
X =% +x{ + uy, 0(x,) Colx)oy, o(x{) Calx)of, |u| < e€/2;
x{ = %y + %5 + Uy, 0(x,) Colx{)o,, o(x]) Col(x{)oy, |uy| < €/2;
X=Xy o+ Xy F Xy + Uy + Uy,
Using 1.6 we see that
o(x; + %) Col(xy)u o(xy) Clo(x)oy)u (a(x])oy)
C(o(x)ay)u (o(x)ay)
=0a(x) (o, u 0y),
and
o(x;) Col(x{)o, Colx)of of = 0(x) (0, ua,)"

Thus o, v o, c s,. It is clear from 1.23 that s, is closed under complementa-
tion and that the void set and the whole plane are in s,. Thus s, is closed

under crosscut; that is, 0, 0, € s, if 0;, 0, € s,, and s, is a Boolean algebra.

1.25. THEOREM. (Assumptions 1.7, 1.14.) On the Boolean algebra s, the

projections E, have the following properties:

: X , -
Eol u Ecrz = Ecrl U oy Eal E02 = Eal oy ES = Ey*

Eomy=1, E¢ = 0, where q) is the void set.
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If the projections E,, o € s, are ordered in the usual fashion (that is,
Ly CE,, means E, E, = L, or equivalently X, C X, ) then, by defi-
nition, £, v E,, is the smallest projection containing £, and £, . It may be

given by the formula

Eg v By, = Ey + By — E, E, .

This formula is readily derived from the relation
Ey Es, = Eg) Es
which of course will be established as soon as we have shown that
E(T1 Esy=Eg o
Now let x € X, € > 0, 0y, 0, € s,. We have
X=Xy b Xy F U, XN =Xy ok Xy AV, Xy =Yy o+ Yy o+ W,
where |u]|, |v|, |w] < €, and
o(x,) Co(x)oy, o(x])Co(x)of,
o(x,) Col(x{)o, Colx)of 0, C (0 0,)7,
o(xy) Co(x{)o; Colx)of{ a5 C(oy voy) C(0,0,),
aly,) Col(x,)o, Col(x)oy0,,
o(y;) Co(x;)o; Colx)oy 0] C (o) 0y)%0,.

Place z=y, +y; +x, +%x5, y=u+v+w, so that x=z+y and |y| < 3e.
Remembering that £, x = x for every x with 0(x) Coand E,x=0if o(x) C o”,

we see from the above inclusion relations that
PR
Eolf=Y2 + Y2 Eaz Z =Yy + Xy,
bcrz EtTl z = Ecrl Eoz z = bcrlcr2 2 =Y,

(Eg, + Eg, - EolEoz)z =yt Y, % =By o,z

Hence
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[ (Egy £y = Eq) oy )% = [(Eq, Eo, = Eo 0,)y| < 3K(K+1)e.
Since € is independent of x, we have

E, E, =E E_ E

oy Foy o1 0y = Loy Bgy -
Also,
!((Ec,1 UEs,) = Egiuo,)x | <4K |y| <12K €,

so that £, v £, = Eg uo, - The remaining conclusions have been proved

in 1.16.

1.26. DEFINITION. (Assumptions 1.7, 1.14.) The symbol s; will be used
for those sets o €:sl for which there exist closed sets p , Vn€ s, with

v, Co, p, C o’y n=1,2,.++ and
x=lim (B, + E, )x, x € X.
n
1.27. LEMMA. (Assumptions 1.7, 1.14.) The family s; is a Boolean algebra
and s3 C sy,
If o €s; and H,s V, are as in 1.26, then by 1.22 we have

o(E, x) Cy, o(x) Coo(x), o(E, x) Cp, olx) Co”alx),

and so o € s, that is, s; C s,. It is clear that s; is closed under comple-
mentation; hence, in order to show that s; is a Boolean algebra, it will suffice
to show that it is closed under the operation of forming unions. Let o, 0, € s3
and v(i, n), p(i, n),(i=1,2; n=1,2,.-.) be closed s, sets with v(i, n) C
;5 pli, n) C oi' (i=1, 2) and

x = lim (Ev(i’n)-pE“(i’n))x (i =1,2).

n

Then

x = Ev(l,n)x + E#(l,n)x + u,, and u, —0.

Thus

Egf x = E“(l,n)x + Eyf up  and E}L(l,n)x ——)Egl' x.
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This last fact shows that the sequence v, defined by the next equation has the
property that v, — 0:

E

p(1,n)* =

E x + E X + vy

v (2, n)Eu(l,n) /J.(Z,n)E;L(l,n)

Upon substituting the above expression for Eu( x into the formula defining

1, n)
u,, we see by using 1.25 that

x=FEy x+ E, x+ u; + vp,
where
v = v(l,n)u v(2,n) p(1,n) and p, = p(2,n) p(l,n).

Since vy, py are closed s, sets (by 1.24) with v, C 0y v 0y, and p, C 0f 05 =

(0, uo,)’ it follows that o, u 0, is an s; set, and the lemma is established.

1.28. LEMMA. (Assumptions 1.7, 1.14.) Let 0 € s5, x € X, € > 0. Then

there are sets p, v € s, with p open, v closed, p O o O v, and such that
|E,x| < €, oCp—v, € sy
{Eyx — Ele[ <€ pdo dDv oy € s5.
Since o is an s, set, there are closed sets v, p” € s, with
vCo, p’Co’% x=EFEyux + E ex + u,and |u| < €.
Then
|Ex - Eyx| = [Eu| < Ke.
letwCpu- v, ® €s,. Then
|Epx| = |EgEy-vx| = [E,(E, ~ E)x| < K?e;
this proves the first conclusion. Now
Ey—Ey =Esoo, + Egoy = Egp-ooy = E = Eoeoo,

ooy - Eal-oal ’

and since 0—-00, C p—-v, 0, —0o0o; C p—v, the second conclusion follows

from the first conclusion.
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1.29. LEMMA. (Assumption 1.7, 1.14.) If 0p, 0 € s35 05 C apeq(m=
1,2, «.:); and 0, — 0; then Eomx —E %, x € X.

Let x € X, € > 0 be arbitrary. Let €, > 0 and X%y €n < & Using 1.28,

n=1
pick open sets p, € s, with y, D o, and

\Epx| < €py @ Cpp — 0, 0 € s,
We shall now show that
n
(*) |Epx| <Y 6]-,60C(}L1 Foeeod Up) —0p, 0 € sy,
j=1
The statement (*) is true for n = 1. Assume that it is true for n and let
@ C (py +ove+ pinty) = On4ys 0 € sy,
so that
o=ol(p +eor+p) = 0] + 0lpgey = 0p4y)

and v = w; + @,, where

oy =ol(pg+eee+pg) - 00 ) (ne1 = 0p+1)"s @3 = @ (pne1 = Onsy)e
By our induction assumption we have
n
|Ew1x| < z E].,
j=t
and since w, C fip+1 — 0p4; we have

‘Ea)z‘x! < €p+r-

Since w; and w, are disjoint, it follows that

nt1
|Epx| < [Ew x| + |Eyy x| < > €3
j=1

this proves (*). Now let & =u +«-+p, so that ¢, is open, increasing with
n, fn D o,, and [Eyx| < € for every 0 € s, with o C ¢, — on. Using 1.28, let
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g, v € s,, p open, v closed, p D 0 D v, and ]Eax—-EalxI < € for every
o, € s, with g D oy D v. We have
[~

p> U & pdp U op=podagdvr.

m=1 m=1
Since v is closed, there is an integer k, such that
k
g2 Ufm#=‘fkl’-3’/s (k> ko).
m=1
Thus

|Egx — E #x\<€, (k> ko)

k

and since fk p—o C 'fk — 0, we have, from (*),

\Efklbx - Eakxl = |E

£yt < © (k=1,2++2).

Hence
IEUx—Ec,kx] < €, (k > ky);

this proves the lemma.

1.30. THEOREM. (Assumptions 1.7, 1.14.) For each x € X the set function

E_x is countably additive on the Boolean algebra s,.

The conclusion of the theorem means that if o, o, € s;, 0, 0, is void for

n#m,o= UT oy, then

E Es x = E x.
n
n=1
The lemma is an immediate consequence of 1.25, 1.27, and 1.29.

1.31. DEFINITION. By a Borel algebra of sets we shall mean a Boolean
algebra of sets which is closed under the operation of taking denumerable

unions.
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1.32. DEFINITION. The smallest Borel algebra of sets containing the
Boolean algebra s; will be called the family of sets measurable T and will be

denoted by m(T).
In part of what follows we shall assume:
1.33. AssuMPTION. The space X is weakly complete.

1.34. THEOREM. (Assumptions 1.7, 1.14, 1.33.) The function E, defined
on s; to the set of bounded projections on X has a unique extension to m(T)

with the properties (the first of which ensures uniqueness):
(i) Eex is countably additive on m(T), x € X;

(ii) |Ee| < K, e €m(T);
(iii) Ee,Ee) = Eo e)r €1, €, € m(T);

(V) Ee ye, = Ee, v Eep €, ey € m(T);

(v) E; =E,
(vi) f(THYE,

A}

, Ecr(T) =1, Eq) =0,e € m(T), ¢ void;
E f(T), e Cm(T), f €CF(a(T)).

[l

For point sets e,, e we mean by e; — e or lim, e, = e that

00 00 00 00
e= M U e = U n €n»
m=1 n=m m=1 n=m

and we recall that if
a, —a, by — b
then

apb, — ab, a, v b, —a u b, af —a’.

We define a transfinite sequence of Boolean algebras B, B, +++ as follows:

B, = s3 and B, consists of all e such that there exists a sequence

e, € U B'y

Yea

with e, — e. Thus m(7T) = U, B, where w is the first ordinal whose cardi-
nal is that of a nonenumerable class. For each x € X and x* € X* there is,

according to a well-known theorem of Hahn, a uniquely defined countably
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additive numerical set function m(e, x, x*) on m(7T) such that
m(e, %, x*) = x*E,x, e € s, = B, x € X, x* € X*.

We first show that for every x € X and e € m(T) there is a unique vector
x, € X such that

x*x, = m(e, x, x*), x* € X*,

This is true for e € B,. Assume that it is true for e € Uyca By and let e € By,
en, € UycaBys en — e. Then

x¥xg = m(ey,, x, x*) —> m(e, x, x*), x* € X*,

Since X is weakly complete, there is a vector x, with
x*x, = m(e, x, x¥), x* € X*,

This last equation shows that x, is independent of the sequence e, —e and

also is uniquely defined. Next consider the statements:
|m(e, %, x*)| < K|x| |«x*];
m(e, x; + %5, x*) = m(e, %y, x*) + m(e, x5, x*);
m(e, 0x, x*) = am(e, x, x*), o scalar.

These relations hold for e € Bo» and since m (e, x, x*) is continuous on m{7T)
in the topology e, —» e it is seen by induction that they hold for any e € m(T).
They show that for fixed e € m(T) the vector %, is linear and continuous in
x; that is, for e € m(T) there is a bounded linear operator £, on X with E,x =

xo. Hence we have

E,| < K, e € m(T), x € X, x* € X*,

x¥E.x = m(e, x, x*),

The uniqueness of E. follows from the uniqueness of m(e, x, x*) asserted by
Hahn’s theorem. That E.x is countably additive on m (E) in the strong topology
of operators and not merely in the weak topology follows from a theorem of
Orlicz concerning weakly complete spaces. Banach has restated the theorem of

Orlicz in a form to hold on any Banach space and it reads as follows [2]:

ORrRLICZ-BANACH THEOREM. If all the partial sums of an converge

weakly to an element, then the series an is unconditionally convergent.
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The countable additivity of E.x is a corollary. For let
€nem = ¢: n # m, €p Cm(T), e= U e,.
n=1

For every set 7 of integers, let

Then we have the weak series convergence:

> Ee x =Ee x.

nem

Thus, according to the Orlicz-Banach theorem, zEenx converges uncondition-

ally in the strong vector topology. The sum is, of course, E,x since
x*Eox = Zx*Ee x, x* € X*.
n

Thus we have proved statements (i) and (ii). Statement (iii) holds for e,,
e, € By. We suppose that

EaEb =Eab’ a, b € U B’y’

y<a

and let

a,bp € U B, with b, — b€ B,.
y<a

Then

x*E Epx = m (b, x, x*Eq ) = lim (b, x, x*E;) = lim x*EaEbnx
n n

= lim x*Egp x = lim m(ab,, x, x*) = m(ab, x, x*) = x*E px.
n n

Thus

EsEp = Egp for « € U B, b€ B,.
y<a

Next choose
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a, € U B, with a, — a € 8,.
y<a

Then

x*E Epx

m(a, Epx, x*) = lim m(a,, Epx, x*) = lim x*Eanbe
n n

i

lim x*E; px = lim m(a,b, x, x*) = m{ab, x, x*) = x*E px .
n n

This proves (iii). Statements (v) and (vi) are readily proved by induction,

and (iv) follows from (iii) and (v).

1.35. DEFINITION. If for each e € B, the Borel sets in the complex plane,
there is a bounded linear operator £, on X, then the function £, on B to the
ring of operators on X is called a resolution of the identity in case Egr =1~ Eg,
Le ke, =Ec e, for e, ey, e € B, and x*E,x is countably additive on B for
every x € X, x* € X*,

1.36. LEMMA. A resolution of the identity has the further properties
(i) E.x is countably additive on B, x € X;

(ii) sup |E.| < w03
e€B

(iii) EelEez = Eeleza Eelu ey = Eel v Eeza €15 € € B;
(iv) El=E.., E¢ =0, Ey, =1 e € B, q) void, p = the whole plane.
Statement (i) follows from the Orlicz-Banach theorem, and (ii) from the

principle of uniform boundedness. E4 = O since E. is additive in e; hence

I= bc't = Ep. The second part of (iii) follows from the first part and (iv).

1.37. DEFINITION. A resolution of the identity £, is called a resolution

of the identity for the linear operator T in case
TE, = E,T and o(E.,X) Ce, e € B.

1.38. LEMMA. Let X be weakly complete, and let T be a bounded linear
operator in X whose spectrum is nondense. Then T has a resolution of the
identity if and only if it satisfies the conditions 1.7, 1.14 and:

1.39. For every complex number X and every € > 0 there is an s; set of
diameter < € and containing A as an interior point.

Furthermore, when T has a resolution of the identity E. it is unique and has
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the following properties:
(i) if o is closed, then E,x = x if and only if o(x) C o}

(ii) o(E,x) Coo(x), o € B, x € X.

To prove the sufficiency of the conditions it is, in view of 1.34, sufficient
to show that 0(X,) C e, e € B, where X, = E,X. Let ¢ be a complex number
not in eo (T), and with each A € eo(T) associate an s; set oy whose diameter
is less than 1/2 the distance from & to eo(T) and such that A is in the in-
terior of %) A finite number o, «-- , g, of these sets o, covers eo(T), and
since s; is a Boolean algebra the set o= U'_, o; € s3. Since s; C s;, we see
from 1.21 that o(X,) C o. But since

we have X, C X,. Since ¢ ¢ o and 6(X,) C o, the operator £ ~ T is one-to-

one on X, to all of X, and hence likewise on the invariant subspace X, . Thus
EE€ p(X,), (ea(T)) Cpl(Xe), €D ea(T)Do(X,).

It will now be shown that if T has a resolution of the identity £,, then it is
unique. Let 4, also be a resolution of the identity for T. Let o, 0, be disjoint
closed sets of complex numbers. Since o (£, X) C oy, the function T({) £, x

analytic on p(7) has an analytic extension to o/. Hence also the function
T(¢) Ao By x = A, T(E) by x

analytic on p(7T) has an analytic extension to o{. Since o(4,X) C o, the

function T (&) Ay E, % has an analytic extension to 0”. Thus
p(dgEy x) D ofuo’ = (0,0)’ = the whole plane;

that is, O(AaEalx) is void. By 1.12 we have 4, E; = 0. Likewise £, A4, =0.

Now there are closed sets 0, C o0,4; —> 0{, and hence A, x — Agjx = AJ x.
n ntl 1 on oy oy
Then
0=4A,, E;x=E; Ay x —E, Af x = AJ Ey x

On oy oy oy

0=, (I—4,) = (I=A, VE, , By = Eg Ay = Ag E

1 oy oy oy 7oyt
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Similarly,

A, =E, A, =E

1 oy oy or°

Since A, x and E_x are both countably additive on B and coincide for closed
sets 0, they must coincide for all ¢ € B. We shall now show that if T has a
resolution of the identity £., and o is closed, then £ x = x if and only if

o(x) C 0. Let o be closed and £, x = x. Since 0 (X, ) C o, the function
T(EYE,x = T(E)x

analytic on p(T) has an analytic extension to 0’ Thus p(x) D ¢’ o(x) C 0.
Conversely, let 0(x) C o, where o is closed. Let 0, be closed, o, C 0,41 —

o’, so that
x=FEyx + Efx = E;x + Egox = Egx + lim E; x.
n

Since o, 0(7T) and ¢ are disjoint, closed, and o, 6(T) is bounded, there is an

admissible contour C, surrounding ¢, 0 (7T) and excluding 0. Also, since
0(Xy ) Coy0(T),

we have

-~ 1 1
Eoyp = o= J. (Bpx) (£)de = —— [ E, x(&)de.

2ni
However, since o(x) C o, the function x(¢) is analytic on and within C,.
Thus

E,. x=0 and x = E x.

on
In this proof we have used the equality
(Eo, %) (&) = £, x(£),
which is clear from 1.2 since both functions are analytic extensions of
T(& Ey x = E,, T(E)x

on p (T). We shall next show that o (E,x) C oo(x) for every o € Bandx € X.

Since o(X,) C o, it is clear that o(E,x) C o. Since
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(Eox) (&) = E,x(&) for £ € p(T),

we have p(E x) D p(x), 0(Eyx) C 0(x). Thus 0(E,x) C go(x). The neces-
sity of 1.7 follows immediately from (i). Next we shall show the necessity of
1.14. As pointed out in 1.36 (ii) it follows from the principle of uniform bound-

edness that

sup |Ee| = K < .
e€EB

Let 0=0(x), 0, = o(y) be disjoint. Then, by (i), £,x = x; and, by (ii) and
1.12, E,y = 0. Thus

|%| = [Ex(x + )| <Klx+ y].

Finally we prove the necessity of 1.39. Let o be a circle and its interior.

Let o, be closed and 0, C 0,4, — 0% Then £, x + E, x —> x. Since
0(Eyx) Coo(x) and o(E; x) Coya(x) C o%o(x),

we see that o is an s; set.

II. Operators whose spectra lie in a rectifiable Jordan curve

In order to apply the final lemma of $1 we find it necessary to restrict
further the nature of the spectrum o ( 7'). Later we shall be interested in specific
cases where the spectrum lies either in a straight line segment or in a circle,
and these two cases may be treated simultaneously by restricting the spectrum
in the manner described in the next paragraph. When this is done and a rate of
growth is imposed upon the resolvent (Assumption 2.1), it is possible to give
conditions, of a nature much more applicable than those of the preceding lemma,
which will ensure the existence of a resolution of the identity. This may be
accomplished in a variety of ways, and some of the sets of conditions given
are necessary as well as sufficient.

Throughout $2 it is assumed that the spectrum o(7T) is contained in a
closed rectifiable Jordan curve I'j. In order to be able to manipulate in a fairly
simple fashion the analytical operations involved, we suppose further that
I'y is embedded in a one parameter family I's(-8; < & < 8, 0 < §, < 1/2) of
closed rectifiable Jordan curves, with I's, interior to I's, for =8, < 8; < 8, <
8o+ The curve I'y is defined by a function

é- = f()\’ 8), ~1 S_ A ,<_ 11 with é("lr 8) = é:(]-p 8)-
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We suppose that the parameter & has been chosen in such a way that | 8] is the
distance measured along the arc £(\, §) from the point £(X, 0) to the point
&(X, 8), and that the ares £(), 8), -8, < 6 < 8, for different values of A, do
not intersect. Finally we suppose that for each 6 € [-85,80] the point £(A, &)
traces, as A increases from —1 to +1, the curve Iy in a counterclockwise di-

rection.

2.1. ASSUMPTION. The spectrum o(T) of T is contained in the rectifiable
Jordan curve 1"y described above, and the rate of growth of the resolvent T (§)
for &= E(A, 8) near the spectrum is restricted by the condition

lim sup 16"V T(&) <0, ~1 <A<,
— 0

where v(A) is a nonnegative function defined for ~1 < A < 1.

Since the function v(A) may be increased without destroying the above
property, and since 8, < 1/2, every operator T satisfying 2.1 has an index

function v(A) according to the following definition.

2.2. DEFINITION. Any nonnegative integer-valued function v(A) satisfying

the condition
16¥N) T(6)] <1, 0< 8] <8, AE [-1,1],
will be called an index function for T.

It might be pointed out that if v(A) is defined only on the set A C [-1,1]
consisting of all those A for which £(A, 0) € o(T), and the above inequality
is valid for A € A, then T has an index function. It is not assumed that v(\)
is bounded, and it is erroneous to conclude that T has a bounded index function
providing v(A) is bounded on A. Elementary operators exist for which every

index function is unbounded and at the same time every index function is bound-

ed on A.

2.3. LEMMA. (Assumption 2.1.) There is an index function v(A) for T with
the property that every interval of positive length contains an interval of posi-

tive length upon which v(A) is constant.

Let A be a closed subinterval of [-1, 1]. Let A, be the set of all X € A
such that

[8" T(£)] <1, 0<|8] <&y.
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Since for fixed & # O the point & = £(), 8), and thus T (¢), is continuous in
A, it follows that A, is closed. By 2.1 we see that A = UA,, and thus the

desired conclusion follows from the category theorem of Baire.

2.4. LEMMA. (Assumption 2.1.) Let v()A) be an index function for T: 0 <
8 < 8g; Ay Ay €[-1,11 & =E(Xy, 0), &, =E(N,, 0) distinet points of Ty ;
and vy =v(A;), vy =v(Xy). Let C(A;, \,) be the rectifiable contour (oriented
counterclockwise) composed of the following four arcs. There are two cases:
If My < X\, the arcs are

f()\p#)y_BS#Sa; 6(/\2’#)!—85_#587
E B, A <X < Ays and E(A =8), Ay <A < Ay
whereas if A, < A, we use the arcs

EMpyp)y —8<p<8; EAypp), -8<p<d;
EOG8), AL (0, A5 and £ 8), AE (Mg A,).
Let P(&) be a polynomial in &. Then

1 v v
I(A ) = — fon,m P(E)(E-E)M (=60 T(&)d¢

271 C

exists as a Riemann integral, is independent of 8, and has the properties

lim (A, Ay) =0, a(I(Xg, A)x) C L&, &1,
0<l)\2—/\11-—40

where [ £,, &, is the closed subarc of Ty consisting of all points of I'y which

are inside or on the contour C(\;, ;).

The integrand is defined and continuous at every point of the contour C (A,
A, ) except at the points &; and &,. Since v(X) is an index function for T, the
integrand is bounded on the curve C(XA;, A,). Hence I(A, A,) exists. It is
clearly independent of & since the integrand has its only singularities on the
curve ['y. Now let A, < A, so that C(X,, A, ) consists of the arcs AB, BC, CD,
DA, where 4, B, C, D are given by the complex numbers

f()\z,“‘a), f()\l,—5), é_(Al, 8), f(h2, 8).

Let
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K = Lub. |P(E), £ E€ Fso; Ks = Lub. |T(&)|, € €Ty,
Let 0 < € < §,, 6 = €/2, and let y. be such that for 0 < A, — A; < y. we have
the lengths of the arcs 4B, CD, and &, &, (on [Ty ) all less than § and also
less than €/K(§). Then the integrand f(¢&) defining I(A;, A,) for &= E(A, 1)

satisfies
O] <KIE-&172 1wl I T(O) <K [E-4]1"2, £ €BC.
Since, for & € BC, we have

[E-&1 <& -G+ |66l <d+p28<,
it follows that for & € BC, and likewise for £ € DA, we have the bound

[f(O] < K.

For & on AB or CD, we have
[f(E)] < KKs | €~ &1 €~ & 1™ <KKs.
Thus if 0 < A, — Ay < ye, then
1
11Xy X)) < o [46K + 2KKs €/ Ks) = 2Ke/m.
7
Now let x € X, n € p(T), and 7 outside of C (A, A, ). Then
T(n) (Mg Ap)x

1 v N
s Lo, PO E=ED (6= (- &7 T(&)xdt

271 C

1 v v -
pom Tpw Lo PO (E=ED™ (6-6)" (-6t

1 ) )
omi f(Al,Az) P(E)(E=-&) 1 (E=-8)72 (n=&VT T(E)xde,

T 9gi C

and the last integral gives an analytic extension of T(n) I(A{, A, )x for all
n outside C (A, A,).
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2.5. LEMMA. (Assumption 2.1.) The operator T satisfies the conditions
1.1 and 1.7.

Condition 1.1 clearly is satisfied since a rectifiable Jordan curve is non-
dense in the plane. To prove 1.7, let 0 be a closed subset of the spectrum,
xp € 0], x, — x. We make an indirect proof by supposing that there is a point
& € 0(x)o” According to the Heine-Borel theorem there are closed disjoint
subarcs Ay, «++, Ap of Iy with 0 C A = Ajueer uA, and £ € A% Let

=1L <A <pyp <Ay <py <eee <A <pp <1

be such that the arc Aj, (j=1, ..+, p) is defined by £(A, 0), Aj <A< pje Let
C]- = C(A;, ,u]-) as defined in 2.4. Since x,(¢) has its singularities in the set
A, we see that

L1167 (6= )" xporat - 0,

]=

-

where

fj = {:(/\ly 0)’ é] = 6(#], 0),

and C is any contour of the form C = C(X;, A,) providing [A;, A, ] is disjoint
with A. Since, by 2.4,

1 1
[()\j —-—, /\j) —0, 1<;Lj, B +;—)——-)0,

n

P v(\)) v(py)
H(T—fj) ’(T-—Cj) 7 xq

1 14 P v v
- T LI €= - )" e

j=1 T k=1

Since the convergence, as n —» w, of the integrands on the right side of the
above equality is bounded, we may in this equation replace x, by x and conclude

from 2.4 and 1.6 that
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o[ TT (T &)™ (1~ ¢)"% | ¢ a
-5 ,- ~
]=

The desired contradiction will be obtained as soon as we show that the above
inclusion implies that o(x) C A. But this implication follows immediately by

induction from the statement
g(z) Co((£-T)z) u (&),

which is verified as follows. Since

T(IL)Z = (f“ #)-1 {T([L) (f— T)z - Z}’ H® 74 é—;

any point p other than p = & to which T(p) (£ - T)z has an analytic extension

must be in p (z); that is,

p((&~T)z) Cpl(z) u (&).

Thus

o((£~T)z) D olz) n(&)

2.6. LEMMA. (Assumption 2.1.) Let v(A) be an index function for T. For

every complex number & and every nonnegative integer n, define
p G g g

i € (T -&"x =01, %g=(T—§)”X.

’fl_—_
Then for & = £(), 0) we have
pr® _mr, BN ST n s w0,
Let £ = £(&, 8); then

(E-T) T =(E~&) T+ 1.

Now assume, for the purpose of induction, that (the preceeding identity is the

case when j=1)
(E=TY T(E) = (E=EV T(&) + (E= ENVT 4 (E- EV2(E-T)

e+ (E= E)(E -T2 4 (¢ - TYL,
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Multiplying this by & — T, we have
(E=TYVT(E) = (- EV IE-ENTE) + 1T+ (6= EYH(E-T)
bt (E-E)(E-TY 4 (- TV,
and hence
(%) (&= TV T(E) = (- &V T(E) + (- &)
F(E=E)NE-T) 4 eee s (E=ED(E- TV 4+ (£~ TV,

Now in (*) put j = v(X), and operate on a vector x € ?H?g(’\)ﬂ. We get

0= (&= &MU T(EDx + (6= &)Wy

b (= EN(E=TYW gy (£ - 1) Wy,

If we let § — 0, then ¢, — ¢; and sinc® § measures the arc ¢&;, we have

e v(A)+1
v (M)+1 T(gl)(fiisfl

(&= &YW T(E)x| = < 6—0.

This shows that x € Wi;()\). Thus
v(A)+1 v(A)
Sﬂf C Wg, ,
and hence
?L’?;(M = ng , n>v(A).
Using (*) again except now with x arbitrary, we may write
({; _ T)v()\) x = ({: - T)V(}\)+l T(‘fl)x + 0(5)’

where O(8) is a vector which approaches zero with 8. Thus

vd) - T+ - YD)
?Rf c%Itf c?Itg ,

and so
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RN N2, 0> 0.

2.7. DEFINITION. (Assumption 2.1.) Let v(X) be an index function for 7.
As shown in 2.6, the manifolds ?HI;O‘) and ﬁg(’\) are independent of the index
function v(A). They will henceforth be designated by the symbols sz, %5,

respectively.

Of the three principal conditions of Lemma 1.38, namely 1.7, 1.14, and 1.39,
the condition 1.7 has already been shown (by 2.5) to be a consequence of 2.1.
Neither one of the other two conditions is a consequence of 2.1 alone, and we
concentrate our attention now on restating 1.39 in a more applicable form. The
following assumption 2.8, which may be used to replace 1.39, turns out to be
necessary as well as sufficient. It has the disadvantage of not always being
easily applicable. It should be noted, however, that in the case of operators
with only continuous spectra it is trivially satisfied. Or more generally, if every
subarc of T'y contains points either in the resolvent set or in the continuous

spectrum then 2.8 is automatically satisfied.

2.8. AssUMPTION. (See Assumption 2.1.) For every £ in a dense set on
Iy

W?f + §R§ is dense in X.

2.9. LEMMA. (Assumptions 2.1, 1.14.) The set of points & on the curve
Iy for which Wﬁg %5 # 0 is nondense on I'y. Moreover, Emf Sﬁf = 0 for every

&, interior to a subarc of Iy upon which some index function is constant. For

such &, the set fmé & Sﬁf is closed. Thus if 2.8 is satisfied then

1, 8%, - X,

for every & in a set dense on Iy .

In view of 2.3, the first statement is a consequence of the second. Ac-
cordingly, let v(A) be an index function which is constant on the interval

(A, Ay L, and let € = £(A, 0) where A} < A < X,. Let

v = V()\), é:n = é‘:()\n’ O)y én = ‘f(#n’ O)a

where

A <A <A< pn <A, and Ay — A, pp —A.
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Take P(&) = 1 in 2.4, so that

I(An, P-n) + I(P-n,, Aﬂ) = (T - gn)v (T - Cn)y-—-)(T _ é‘:)ZV.

Thus, it is seen from 2.4 that the vector (T — ¢)*¥x is the limit of vectors
%y = {ppy Ap)x and & € p(x,). Thus 2.6 and 2.7 show that every vector
x € %5 is the limit of a sequence {x,} with & € p(x,). Now if x € %Iﬁf %f we
have (7 — &)Y x =0, and hence o(x) C (). If £ € p(x,) and x, —> x, then
& € p(-x,); and, by 1.14,

x| <K |x - x,] —0, x =0, and ?1725 %g = 0.
Finally we show that Sﬂg ® %f is closed. Let
X + Yn —> 2, where x, € mg, yn € %5 .
Since v, — ym € %5 , there are vectors u,, with
[¥n = Ym = tnm | < (am )1, €€ p(uyy).

By 1.14, then,
|%n = xm| <K %5 = % = tpm | < K{{xp = %y + yp =y | + (nm) 1} —0.

2.10. LEMMA. (Assumptions 2.1, 1.14, 2.8.) For every pair §, & of distinct
points in a set dense on I'y we have

g NN - Y.
fmf@ %flea Ré, Rfl =X;
and Tg %51 is the closure of the manifold (T — &)Y (T ~ fl)yl X, where

v=v(X), v, =v(Xy), E=E(X, 0), rfl =E&(Ay, 0), and v(L) is an index function
for T.

For every £ in a set I' dense on Iy we have, by 2.9, projections Ag and

A§ with

Ap + AL =1, AX =0, , AZX =9,

Since for u € p(T), we have T(#)%g C %5 and T(;L)Wlf C ?D?f, it follows
that T(p)Aéx = Af I(p)x, and thus p(x) C p(Afx). Since
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(T - &) 4, =0,

&

we have O’(Aglx) C (fl), and hence pr(Aflx) C p(/lf Aglx). Since
O(Agy) C (&), we have y € X; then Af A51= 0 by 1.12 and 2.5. Similarly
Afl Ag = 0, Thus

L= (A + AD) Uy 4 AZ) = Ag + AL + AZ AL

. . 1Z
and this proves the first statement of the lemma. Now let x € mg Wfl , so that
1

_ — 14 - r - ,
x=(T f)y,y—Agly+A§1y,x_A§x.

1

By 2.7 there are vectors v, with (T — fl)vl vy, —-)Af' y and
1

K
i

lim (T = &) [d, y + (T - EN ],

8
I

A§1

x = lim (T - EV AT - £ v,.
Thus 7 %, as well as its closure 7, Mg is contained in the closure
(T - &Y (T - X,
Obviously (T = &)¥ (T = &)X C M, Nz, and so the proof is complete.

2.11. THEOREM. (Assumptions 1.14, 2.1, 2.8.) Every Borel set is measur-
able T; and if X is weakly complete then T has a resolution of the identity.

Let -1 <o < B <y<d<1, and choose Ay, Ay, pty, i, so that
O <A <Ay < B, y<p <py <59,

and such that there is an index function v (A) which is constant on the intervals
[A, A2l, [pis gy )e This is possible in view of 2.3. Since an index function
may be increased without destroying the property of being an index function, we
shall suppose that v(A) has the constant value v on both of the intervals

[Al’ )\2 ], [#1’ Ha ]. Let
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£ = £y 0), & = €0y, 0), & = E(py, 0), &, = Elpy, 0),
and
fl&) = (=&)Y (&= &)Y (£- )" (- L)7.
Then for appropriate choices of the polynomial P (&) in 2.4 we have
fOT) = T(Ag, Ay) + Ty py) + T(pgy Ayp) + T(Ny, py).

By 2.10 there are points A, g with A; < A < Ay, p; < p < p,, and such that for
E=E&(N0), ¢ = &(p 0) we have

(*) Smée}}?m;@%f Sftng.

Now if we let Ay — A, Ay — A, g —> 4, puy —> p then by 2.4 we have
I(Myy M) — 0, I(py, py) — 0,

and
(T = )Y (T - O)*x = lim f(T)x = lim {1(pgs Ay )x + 1(Ay, py)x}

Also, by 2.4, we have o (I(py, M )2) CLL, & Vand o (1(Xy, py)x) C L€, ¢ 1,
where, for two points &= £()%, 0), £ = (1%, 0) on Ty, the symbol [ &7, £}
means the closed subarc of 'y defined by £ (X, 0), A< A <A™, if A” < A" and
closed subarc £(X, 0), A & (A%, A”), if X" < A"

Since 2v()) is also an index function, it is seen from 2.10 that mg %C is
the closure of (T — £)2¥ (T - ¢)?*”X, and hence every vector in %g ?RC is
the limit of a sequence of vectors of the form x + y with o (x) C [£, {1, o(y) C
£, ¢1% Since o(x) C (&) if x € Sﬂ%, we have, from 1.6 and (*) above, the
fact that every vector in X is the limit of a sequence of vectors of the form
%+ 7y with o(x) C U, £}, a(y) C L& {1 This shows that [£, {] is ans; set
for T (see Definition 1.15). The above argument shows also that [, £] is an
s, set for T. We shall next show that o =[¢, {] is an s, set for T. If the in-
tervals (&, B) and (ct, 8) that we started with above are replaced by the in-
tervals (A ~1/n, 1) and (g, p+ 1/n), we see that there are points A, ,, with
A=1/n <A, <Ay p<p, <p+ 1/n, such that o, = [C:n, fn 1, where

€= g(ﬂmo), fn = ’f()\n! 0)’
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is an s; set. Now let
y = (T = AT - O yp = (T = OV (T = £ (T=OV (T-)x,
so that y, —» y, and for appropriate choices of P (&) in 2.4 we have
yp = T(Apy M + TN, ) + Ty pp)x + 1(pg Ay)x.
Thus by 2.4 we may write

y = (A p)x + Iy Ap)x + zp, where z, — 0.

Now from 2.4, 2.5, and 1.16 we see that

EU[()H IL) = I(A, /-L)’ EUI(ILn’ }‘n) =0,

Egn[()\, w) =0, Eo I(pns M) = T A )s

and since | E, | < K we may write y = £,y + E;_y + v, where v, — 0. Since
y is an arbitrary point in the manifold (7 - £)?¥ (T - ¢)?¥X whose closure is
9?5 %L , and since

|Eyx + Eg, | < 2K,

we have

y=FE y+ li;n E, y

for every y € Enf %C' For x € %g ® ?ch we have o(x) C o; and so, by 1.16,

we have E,x =x, E, x = 0. Hence, it follows from (*) that

(**) x = E;x + lim E, %, x € X,
n

Now 2.5 and 1.22 show that 6 (E,x) C 00(x), 0(£, %) C op0(x) C o7a(x),
so that 0 is an s, set. The same argument shows that [{ , { 1=0, is an s, set
and hence (**) shows that ¢ is an s; set for 7. Thus we have proved thatif
-1 < a< B <y <8< there are points A, u with & <A< B, y < p < 9,
such that o = [£(X, 0), £(p, 0)] is an s, set. This clearly implies the state-
ment 1.39; hence every Borel set is measurable 7. Theorem 2.11 then follows
from 1.38.
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IIl. The operational calculus

3.1. DEFINITION OF L f(A)dE, . In what follows we shall be concerned
with an integral, ff()\)dEA, where E. is the resolution of the identity for an
operator T. The functions fto be integrated are either scalar- or operator-valued;
they will always be continuous, so that the Riemann integral will suffice.
Although the applications to be made are to operators satisfying the preceding
restrictions, it seems desirable to word the definitions and elementary properties
of ff()\)dEA in terms of an arbitrary operator T on an arbitrary space X subject
to the single restriction that T has a resolution of the identity. Since o(7) is
bounded, it may for any & > 0 be partitioned into disjoint, nonvoid Borel sets
Ays +++ 4 A, whose diameters are less than 5. The norm | 7| of such a partition-
ing = (A, »++, A;) is | 7| = max; diam A;. If for a scalar- or operator-valued
function f defined on o(T) we have the sums Zﬂ f(N)EN, converging, as
|7| — 0, to a limit independent of the choice of A; € A;, the function f is
said to be integrable. Of course the convergence of pI fIM)EA; as |7] —0
may be in the weak, strong, or uniform topology of operators; but for the func-
tions we shall integrate, it is always in the uniform topology of operators, so
we need not concern ourselves here with the other cases. The integral is de-

fined by

SJIODVdE, = lim Y f(N)EA,;

l‘n‘ -0 7
and for any Borel set o in the plane we define jl;f()\)dEA to be Eoff()\)dlzx

3.2. LEMMA. If for each e in a Borel algebra B there is a bounded linear

operator A, in the space X such that x*A¢x is countably additive on 3 for each
x € X, x* € X*, then there is a constant v(A) such that

Z Ix*Ael.x| <v(d)|x| |x*], s void for i £j, ¢ € B.

1

Let 7=1{e;} be a finite or enumerable sequence of disjoint elements in SB.
For each x € X, x*€ X7, define U, (x, x*) as the point in the complex Banach
space 4, (the space of absolutely convergent sequences) given by the sequence
{x*4¢, %} (if the sequence {e;} is finite we extend it to an infinite sequence
by taking e, to be the void set for all large n). For fixed x, 7, the function
Uy (x, x*) is additive, homogeneous, and closed; hence U, (x, x*) is continuous
in x*, Similarly, U,(x, x*) is continuous in x for fixed x*, #. Thus for each

7y U,(x, x*) is simultaneously continuous in x, x*. Since the numerical function
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x*4x is countably additive on 3, we have

(*) sup | Uy(x, x*)| < o0, x € X, o € X*,

Let Z, be the set of points (x, x*) in the Cartesian product space Z = X x X*,
where | U, (x, x*)| < n for every n. Since U,(x, x*) is continuous in (x, x*),
Z, is closed. From (*) we have Z = UZ,, and so the Baire catagory theorem

gives an integer ng, a point (xg, x;‘) € Z, and an ry > 0, such that
| Un (%, 2¥) | < ngy my | = 20| < 1oy [2% — x| < 1.

Now if y € X, y*€ X*, and |y|, |y*| < r,, we have

Up(y, y*)

i

Un (%5 = 3, %5 = ¥*) = Up(xg — 3, x¥)

Un(xg, %5 = y*) + Upn(xg, x¥),

and | U,(y, y”) < 4ny.Thus if v(4) = Sno/ro2 , we have

| Unly, y*)| < w(4) [y] [y*].

3.3. LEMMA. Every continuous scalar function f on o(T) is integrable, and

IffODdE | < max  [f(M)|v(E),
A€o (T)

| [ fNV B | < sup [f(0)] v (E),

A€o

where v(E) is the constant of 3.2. Also if o is an arbitrary parameter and
flo, A) is continuous for A € o(T) uniformly with respect to O, then the sums
ZW fla, )‘i)EAi for a partition 7= (A;y +++, Ap)y, A € A;, converge, as
| 7| — 0, uniformly with respect to .

For two partitions 7= (A;, +++, Ap), #°=(A{, v, Ay) of ¢(T), and for
NE N, MEA (i=1,-00,m, j=1,.+.,m), we have

m

2 o, N)EA, = X flo, A EAs = > > ifla, A) - fla, AVYEA;AS -
i=1 =1 j=1

i=t
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If for € > 0, 6(€) > 0 is chosen so that

| flo, A) = flo, M) ] < € for |XA = A’ < &(e),

we have, by 3.2,

2 o, MEA, - Y flo, A VEN;| < € w(E), a, |n], |#] < 8(e)
i=1

=1

> fCa, M) EA; | < max  [f(a, M) ] v(E),
i=1

A€c(T)

and

E, Y fla, &) EQ,

=t

< sup |f(a, M) v(E);

Aeo

this proves the lemma.

While in our final results the only operator-valued functions we shall have
to integrate are of the form (T —~ AI)" f(A), where f is a scalar function, it
will, during the course of the proofs to follow, be necessary to integrate func-
tions in a more extensive class. Accordingly, we consider functions of the fol-
lowing type. Let D, be an open set containing the closure D of an admissible
open set D D o(T). Let C be the boundary of D. Let f(&, A) be a scalar func-
tion defined for o € D,, A € 0(T), continuous similtaneously in both vari-
ables over their respective ranges, and analytic for o € D, uniformly with
respect to A € o(T); that is,

flo + 9, 0) = flo, A) af(x, r)
—_ ——
n o

uniformly with respect to A € o(T). Because the continuity in A is uniform

with respect to & on C, the operator-valued function

(T, )) =

1
— fc floe, A) T(a) dat

depends continuously on A. It is this type of continuous operator-valued func-

tion defined by a scalar function f(&, A) whose singularities in o« stay uniformly
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away from o(7) as A varies over o(T) that we shall be integrating. For the
sake of brevity we shall call functions f(c, A) of the above type T-uniform.

3.4. LEMMA. Let f(ot, A) be T-uniform. Then f(T,N) is integrable, and

for every Borel set 0 we have

1
LT, N dEy = — L CL (o, M dE) T () da.

Let m= (A; ooy Ap), \; € A;, be a partition of o(T). Then

1
Zf(T, A EA; Z( fC f(a,,\,-)T(oc)da)EAj

i \2mi

1

2ni

.4 (Z f(a, )\')EAJ) T(o)do .
i

The desired results follow from 3.3.

3.5. LEMMA. Let f(a, M), g(oe, A) be T-uniform. Then f(ct, A)g(x, A) is
T-uniform, and for a partition w = (Aj, +++ , A,) of 0(T) and points Ajs A € A;
we have

lim X f(T, ;) g(T, \)Ep, = JFT, A g(T, M) dE), .

I‘IT‘—»O m
It is clear that there is a common domain of uniform analyticity. Let C be
its boundary. For € > 0, fix & > 0 such for every pair A, A\’ € o(T) with
|[XA = A’| < & we have
| fot, M) [gla, A7) = g, M| < €, a € C.
From 3.2, if |#| < & then

2 flon, M) g (o, A7) = g, MIEN | < € v(E), a €C.

Now

FT, A7) g(T, A = f(T, &) g(T, A) + f(T, ;) [g(T, \ 1= g(T, 1))

and
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| Z AT, A 6(T, X5) = g(T, A1 Ep |

2__ S T do (Zfta, \) [glo, A = gla, AT EN)

ml

= (6/277)(max !T(O()l) (length C) v(E).
a€C

Thus in order to prove the lemma, it suffices to show that

lim X f(T, &) g(T, A;)Ep, = Jr(T, N g(T, \)dEy .

(Note that if A € Aj and not merely in K]’, there is nothing left to prove.) But
this is clear since the function f(T, A) g(T, A} is continuous in A.

3.6. LEMMA. If [ is integrable (scaler- or operator-valued) and U is a
bounded linear operator in X which commutes with E,, e € B, then Uf is in-
tegrable and

UL fONEy = [ Uf(\)dEy, o €B.

The proof is clear from the definitions.

3.7. THEOREM. Let X be arbitrary and T a bounded linear operator in X
with the resolution of the identity E,. For any closed set of points p € p(T),

we have

-A)"
(f" T)-l = Z E)\ ’
n= of(f )‘)n-&l

where the sum converges in the uniform topology of operators and uniformly
with respect to £ € p.

In view of the elementary identity

P (T-))" (T-a)PHt
(6-T) S
n§0 (é‘__/\)n-!'l ({_-_)\)p'ﬂ.

and 3.6, we have
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P T-M)" T - \)P*!
P U L STVl
n=0 (£- )"t (£— \)PHL

Now let & = the distance from p to o (7). This is positive since 6 (T) is,bounded
and closed. Break o{(T) into disjoint measurable parts A, -+, A, of which

the diameters satisfy
diameter Aj < 5/4 (j=1,eee,n).
Let C; be a circle of diameter §/2 containing A; in its interior, so that
o= M (E=-AY <2, E€p, NEA;, a€C.

Let Ty (A;) be the resolvent of T when considered as an operator in XA Since

a(XA ) C A and

- 14
[s (_T__ﬂgugA X cXj, ,
i (£- )P !

we have, from 3.3,

- \)P
l‘& u dE)
T (E-A)P

— )P
I D CLY) T,(A;) dot| dEy
A; 27i C]' (f——)\)P

—~\)P

_ —fT(A)d J; W= g,
2mi T (E- 0P

< —1— max | T.(Aj)] v(E)/2P, £€ p.
27 a€Cj

Since f= .&l+---+ ‘&n, we have
_A)"

(& - T)z j dEy — |

=0 (‘f )\)n+1
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uniformly for & € p. This proves the theorem.

3.8. DEFINITION. An operator is called a spectral operator if it has a
resolution of the identity.

3.9. THEOREM. If T is a bounded spectral operator, the resolution of the
the identity E. is unique, and for every f € F(T) we have

f(n) (\)

(T = M) dEy,

(1) = Zf

where the integral exists as a Riemann integral in the uniform topology of

operators and the sum converges in the uniform topology of operators.

We shall first show uniqueness. Let 4., £, be resolutions of the identity
for T. Let o,, 0, be disjoint and each consist of a circle and its interior. Let
T' (&) be the resolvent of T when considered as an operator on Ey X. Let
T2(£) be the resolvent of T when considered as an operator in Ay, X. Then
for fg oy, TH(E) Ey Ay, is a bounded linear operator in X and analytic
for £ €o{. Likewise for & € o3, Ey, T2(¢) Ao, is a bounded linear operator
in X and analytic for £ € o;. Let £ € (0; u0,)" Since £~ T commutes with

Ey, , we have

(€ = T)Ey, T2 (&) Ay, = By, A,

1 o2

and operating on the left with 7! (¢) we have
Eq, T%(§) 4y, = T°(&) kg, 4q, -

If f(£) is defined to be

f(&) = Eqy T?(€) Ay, = TH(E) Ey 4syy € €(0y v 0y)”

Eg, T*(&) 4y, £ €0y

I

Tl(f)EO'l AO’2’ §€02’

then fis an entire function. Since for large £, we have

f(&) = T(&) Egl Aa2 — 0 as |&] — w.
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it follows that f(£) =0 and £, 4,, = 0. By symmetry, Ay, Eg, = 0. Let oy,
(n=3,4,+++) be the set of those points of 0(7T) whose distance from o, is
> 1/n. Let 6y, +«-, 3p(n) each consist of a circle and its interior and be such

that the set 8" = U§; is disjoint with o, and covers o,. Then, since E, A4s,=0,
we have A5, C E,7 X and

Ag X C A X = (Uds,) X = U(45,X) C EU{X .
1 1
Hence
Ec;l Aan =4,
But 4, x —)Ao,lix, x € X, and so
Ey Af =0, By Ay = Eg, .

Also, since A5, £, = 0, we have Ey X C Asz X and

EUIX C O(AS{X) = (OAgi')X = AL X.
1 13
Thus
AL E = E A E01=O,AJ1E01=O,AUXE01=E

§n Mo oy “isn oy

and therefore

Ey = Ay, Eq Eq, As, Ey, .
By symmetry,
Aoy = Aoy by, = Eg Ao = Ey .

From this it readily follows that A, = E_ for any Borel set o. Now let f € F(T).

Let C be an admissible contour upon which f is analytic and such that

— [ o1,

2mi

f(7) =

Now, by 3.7, we have
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T(&) = Y J(T = )" (& =A™ dE)
n=0

and the series converges in the uniform topology of operators and uniformly for

&€ C. So

(=Y — [ 1de (f(_T‘_)‘_)"- dEA).

n=0 2ni (f—)\)’”l

Since

T - 2" n (n-r)
A=A g, - > (")T’ [,
(f_A)n+l n=o r (E_A)n+l

it follows from 3.3, that the Riemann sums approximating

ST -0 (E-A)y™1 dEy

converge uniformly with respect to ¢ € C.

Hence

™ (A
f(T) = 2 ff D (1o dE), .

From this point on we shall again restrict our attention to the case of an
operator I whose spectrum lies in a rectifiable Jordan curve I'j and whose re-
solvent satisfies the growth condition 2.1. It will be convenient to state the

condition 1.14 in terms of residues as defined in the following:

3.10. DEFINITION. Let o(x), o(x*x) be the sets of singularities of the
functions x (&) = (&~ T) 'x, x*x (&), respectively. Let o be open and closed

in o(x), and

rp = — [ (&) de,

2ni

where C is a rectifiable Jordan curve containing ¢ in its interior and having

o(x)o’ in its exterior. Then the vector x, is called the o — residue of x (&),
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Similarly if o is open and closed in o (x*x) then the scalar
1
(x*x), = — f x*x (£)dE
27i C

is called the o — residue of x*x(&).

With this terminology, condition 1.14 asserts the existence of a constant

K such that |x,| < K |x].

3.11. THEOREM. Let X be weakly complete, and let T be a bounded linear
operator in X whose spectrum lies in the rectifiable Jordan curve I'y and whose
resolvent is restricted in its growth by Assumption 2.1. Then T is a spectral

operator and satisfies the equation

o £ (&) .
f(ry=3% fam —— (T-&VdE,, [ €F(T),
n=0

n!
providing:
(i) (The density condition.) For every & in a set dense on 'y Mg + Ng is
dense in X.

(ii) (The boundedness condition.) There is a constant K such that all resi-

dues x, satisfy the inequality

|| < K |x]|, x € X.

This theorem is an immediate corollary of 2.11 and 3.8.

Conditions will now be given which are of a nature more applicable than
(i) and (ii) of 3.11 and which are sufficient (and in some cases necessary ) to
imply (i) and (ii). We shall begin with a brief analysis of some conditions

which are sufficient to imply the density condition (i).

3.12. THEOREM. The operator T of Theorem 3.11 satisfies the density

condition (i) of that theorem in case any one of the following is true:

(i) Every subarc (of positive length) of Ty contains points either in the
continuous spectrum or in the resolvent set.

(ii)  No subarc (of positive length) of I'y consists entirely of points in the
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point spectrum of the adjoint T* of T.
(iii) The space X is reflexive and v(X) =1 is an index function for T.

(iv) The space X is reflexive and the adjoint T* satisfies the boundedness

condition (ii) of 3.11.
(v)  The operator T is completely continuous.
The first statement is obvious since if £ is in either the resolvent set or

the continuous spectrum we have iz = X. The second statement is equally clear

since it is seen from the Hahn-Banach theorem that ¢ is in the point spectrum

of the adjoint if and only if Rz # X. Next, if (iii) holds, let

§= (A’ 8)1 ‘fo = f(/\’ 0)’

so that
(&= &) T(O] < [8T(H] < 1.
Now
(E-E) T (& =TI = E= &~ (£- &) T(H),
and hence
(*) lim (&= &) T(&) (& - T)= 0.

50

Now let x be an arbitrary vector in X. Since X is reflexive, the set
(6= &) T(Ox 0<5<8,,

is weakly compact, and there is a vector y € X and a sequence 8, — 0 such

that for £ = £(N, 5,) we have

(&, ~ &) T(&) x—y weakly.

The equation (*) shows that y € gﬁfo' To see that x —y € %50, let x*mfo =0,
Then

(€ - £) T(&) = «*,
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and so x*(x ~y)=0. Hence Mg+ Ng, =X. To prove the fourth statement
we note first that, since ¢ (7) =0 (T*) and | T(&)| = | T*(£)], the adjoint T*
satisfies 2.1, and any index function v(A) for T is also an index function for
T*. By 2.9, then, Mg ( T*) Tig ( T*) = 0 for £ interior to any interval upon which
an index function is constant. Such ¢ are by 2.3 dense on [y, Let & be such a

point on I'y, and let

x*gﬁf =0= x*mg .

It will suffice to prove that x* = 0. Since x*%s =0, we have x* € ¥, (T*).
To see that x* € Ne (T*) (which will prove x* = 0), it will suffice, since X is
reflexive, to show that x*xy = 0 for every x, with W(f (T*)x0 = 0, that is, for

every x, with
y*(E~T)xy = 0, y* € Y™,

But such an x, is in Mg, and so x*x, = 0. The final statement (v) follows from
the fact that the spectrum of a completely continuous operator is at most de-

numerable.

N. B. As the above proof shows, the condition that X be reflexive (in (iv))
may be replaced by the statement that, for £ in a dense set on I', the manifold
Te ( T*) is regularly closed. Also in (iii) the condition of reflexivity may be
replaced by the assumption that the set of vectors (& - ‘fo YT (E)x, 0 < & < &,

is weakly compact.

3.13. THEOREM. Let X be a reflexive space and T a bounded linear oper-
ator in X whose spectrum lies in the rectifiable Jordan curve T'y and whose
resolvent satisfies the growth condition 2.1. Then T is a speciral operator and

satisfies the equation

0o (n)
f(ry =% f(,(T,-f—(Q(T*a"dEf, fEF(D),
n=o0

n!

if and only if there is a constant K such that all the residues (x*x), satisfy

the inequality.
[(x*, 2)o | < Klx| [#*].

The residue condition is clearly necessary since
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(x*x), = x*E_ x.

To see that it is sufficient we note first that it implies the condition (ii) of
Theorem 3.11. Since X is reflexive, the residue (x*, x), is equal to the residue
(x**, x*), calculated for the adjoint T* (here x**x* = x*x, x* € X*) and so
the residue condition of 3.13 implies that the adjoint T* satisfies (ii) of 3.11.
The present theorem then follows from 3.11 and 3.12 (iv).

We now turn our attention to stating the requirement {of 3.11 or 3.13) that
the residues be bounded, in a form which, in some instances, is more readily

applied.

3.14. THEOREM. Let &= &(M\, 8) have continuous first partial derivatives,
and let &= £(N, —8). Then the residues (x*, x), and x, will have a bound of

the form K| x| |x*| in case

9™

-aT]x\d)\ < Mix| |x*|.

d
Lub. [ u*[r(g) 5?;_ T(£)

0<8<3

Let 0 < A; < A;S_ 1, let C; = C(Aj, Af) be as in 2.4, and let C be the set
C; (j=1,+++n). Suppose that C lies in the domain of analyticity of x*x(£).
Then

. - (N 9§ ) 85']
[ xx(£de - p2 Iy x*{x(é) — (&) = fin s 10,

where /(8) is a sum of integrals fx*x(f)df taken along the ares £(Aj, p),
EMf, )y =8 < p < 8. Thus limg_,o /(8) = 0, and

lim sup | fC x*x (£)dE |
5—0

+1

< l.u.b.

dx < M x| |x*).
0<8< 3

~1

Gy <1,

The condition of 3.13 is far from necessary, and is not satisfied by the
resolvent T () if its rate of growth for & near o(T) is not that of the inverse
of the distance from £ to 0(T). To avoid this objection a similar condition, as

is evident from the above proof, may be stated.
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3.15. THEOREM. Let T(&) = U(&) + V(E), where x*V (£)x is the deriva-
tive of a single valued analytic function at each point & where x*T (&) x is
analytic. Then the residues (x*, x*), and x, will have a bound of the forms

K|x| |x*| provided that U(¢) satisfies the condition of 3.14.

Operators of finite type

As is to be expected from the analogy with the elementary divisor theory

for a finite matrix, certain spectral operators should satisfy the formula

m-1 f(n)(f)
f(ry=3 fgm —— (T - O"dEg, fEFT).
n=0 '

One might expect this to be true if the spectrum o (T) is nowhere dense and if

the resolvent T (&) has for & near o(7T) the same rate of growth as
ldis (&, o (THT™.
We have been able to prove this only in the case where o(T) is restricted to

lie in a sufficiently smooth Jordan curve.

We shall assume throughout the following discussion that the function £(X, 1)
defining the net described in 2.1 has continuous second partial derivatives. The
purpose of this assumption is to assure that the length of the contour C(A,, A,)
of 2.4 is at most K8, provided that A; < A, and §= A, — A;. Also the diameter
of C(A{, A,) is at most K& for 6=, — Ay,

3.16. LEMMA. (Assumption 2.1.) Let d(&) be the distance from & to the
spectrum o (T). If | d™ (&) T(€)| is bounded for & near o (T), then

2m »
Lo /(T 6 (T =™ dE = 0
for every T-uniform f(o, &).
We may and shall assume that ¥(A)=m is an index function for T, so that
|8™ T(eyl <1, 0<|8] <&, A€ [-1,1].

Let Ay <Ay, Ay =X, < 8. Let C(Ay, Ay) be the contour defined in 2.4 with
8 =Xz = Ay« Let A be the closed subarc of Iy defined by £(A, 0), A; < A < A,
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Let I(A;, A,) be the integral defined in 2.4 with v =v, =m and P(&)=1.
Let Ay < Ay, Az < iy Ay — Ay, pp — Ay By 2.4, we have (), ;) —0,
I(X\y, pp)— 0. Also, by 2.4, 1.39 (ii), 2.5, and 1.12, we have EA [(pp,A,) = 0.
If fj =&(X), 0) (j =1, 2), then

(T—fl)m(T~§2)’" =T(Apy M) + TN, X)) + Ty i) + 1 (pgs Ay)s
and so we have
EACT =€) (T~ &)™ = EATOA, A,).

But by 2.4, we have o(I(A;, A,)x) C A; hence by 1.39 (i) it is seen that
I(Ay Ay) = EAI(A{, Ay). Thus

(*) EACT = £ (T = €)™ = (0, Ay
Now, since 6 = A, — A, there are constants K, K, such that

max [ E(X, +8) = £(A, 0)] < K8,
AL <A <A,

and
length C(Ay, Ay) < K,6.
It follows from the definition of I(X,, A;) therefore that

(1) [T(As Ap)| < K 8™*E,

Let the interval [~1, 1] be partitioned into n intervals [Aj.;, A;] each of length
2/n, and let Aj be the corresponding subarcs of I'y with end points fj-l,fj.
Statements (*) and ({) then give

Ex fOT, &) (T= &)™ (T & ™ bp, | < Kon™.

Hence, by 3.5, we have

Loy F(T 6 (T =8O dEg = 0.
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3.17. LEMMA. Under the hypothesis of 3.16, we have

(T - & Eggy = 0,

where (&) is the set consisting of the single point .

From 3.16, we get

(T = &)™ E(gy = Eg) jg (T - p)*™ dE, = 0.

(1)

Thus

2m-1 (T - jE
T(O()E(f)= Z ————{:) (f)
j=o (o = EY*

has a pole of order < 2m at & = & Since |d™ (o) T ()| is bounded for & near
¢, the pole must be of order < m; that is, (T - &)™ E(g) = O.

3.18. LEMMA. Under the hypothesis of 3.16, we have

Lo (T 6 (T=&V dBg =0, j > m

for every T-uniform function f(a, £).

For é=&(X,0)E€ I'yand 0 < |8] < Oy, let .fs = &(A, 8). Then
(&=T) T(&) = (&= &) T(&) + 1.

Now assume for the purposes of induction (the above equality is the case j=1,)
that

(E- TV T(&) = (=&Y T(E) + (E= & 4 (E-E V2 (6-T)
b (E= &) (E=TY2 4+ (£-TY,

Multiplying by (£ - T), we have
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(E=TYM T(&) = (E=TY (§=T) T(&) = (£-TV (=& T(&) +1]
= =&V T(E) + (=&Y 4 (E- &V (6-T)
teeet (E=ED (E-TY 4 (=T,

Hence

(T, &) [(E=TV*Y T(&,) ~ (£~ TV]

= (T, &) [(E= &V T(&) + (E= &V ween 4 (E= &) (£- T,

Thus we may state:

(*) If for some j=1,2, -+ we have
Ly [T 6 (E=TY™ T(&) dEg =0, 0<[5] <5,

then

lim [ ) [T ) (6= &V T(E)dEe =~ [ [ f(T, ) (6= TV dEg

§—0

Now let 0 < | 8;] < 8y, (i=1,2, .-+, m). By 3.16, then,

S

[ gy [T ) (T= O™ T(& ) TUE ) e T(E, ) dEg = 0.

To this equation we may apply (*) with § = 8,, and with f(T, &) replaced by
f(Tr f) T(§82)°" T(é‘sm )o Thus,

lim o f(T,8) (E= & V2™ T(& ) een T(E; ) dEg

Sl—tO

== Ly F(T O (E=TY™E T(E ) e T(E g

Since

(6= &)™ T )] < K13, Im,
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the integrand on the right side of the preceeding equation approaches zero with
5, and uniformly with respect to £ € o(T). Thus

2m-1 _
Lomy FT 6 (E=TY™ 8 T(E ) eee T(E ) dEg = 0,
A repetition of this process clearly yields the desired result:
Lipy 11O (E=TV dEg =0, j>m.

3.19. DEFINITION. Let m be a positive integer. A spectral operator T is
said to be of type m in case

m-1 (n)( )
f(T =% famin!—f(T-f)" di
n=0

for every f single valued and analytic on o (T), that is, for f € F(T).

Let us recall that for the case in hand (that is, v(A) =m is an index func-
tion), the manifolds My, RNz are respectively the zeros and the closure of
the range (T - &)™, Then if d(¢) is the distance from ¢ to the spectrum o ( 7T)

we may state:

3.20. THEOREM. If X is weakly complete, T will be a spectral operator
and of type m providing
(i)  d™(&) T(¢) is bounded for & near o(T),
(i)  for £ ina set dense in Ty the manifold My + Nz is dense in X.

(iii) all residues x, have a bound of the form K | x| .
This theorem follows immediately from 3.11 and 3.18.

N. B. 1. As before, the condition (ii) is automatically satisfied if T enjoys
any one of the properties listed in 3.12. Also (iii) is satisfied if the resolvent
T(¢) satisfies the mean rate of growth condition of 3.14 or 3.15.

N. B. 2. In case X is not weakly complete it is still true that EA is defined
for every closed subarc of Iy (see proof of 2.11), and EA is completely additive,
in the strong topology of operators, on the Boolean algebra determined by such

arcs. Thus the integral
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f(n) (&)

o(T) n!

(T - & dig

may be defined and the operational calculus developed even though £, may not

be defined as an operator in X for every Borel set e.
An immediate corollary is (see 3.13):

3.21, THEOREM. If X is reflexive, then T will be a spectral operator of
type m if and only if

(i)  d™(€) T(€) is bounded for & near o(T),

(ii) all residues (x*, x), have a bound of the form K|x] Ix*] .
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ON ANALYTIC CHARACTERISTIC FUNCTIONS

FUGENE Lukacs AND OTTOo Sz4A’sz

1. Introduction. In this paper we discuss certain properties of characteristic
functions. Theorem 1 gives a sufficient condition on the characteristic function
of a distribution in order that the moments of the distribution should exist. The
existence of the moments is usually proven under the assumption that the charac-
teristic function is differentiable [4]. The condition of Theorem 1 is somewhat
more general and the proof shorter and more elementary. The remaining theorems
deal with analytic characteristic functions, and again some known results are
proved in a simple manner. Some applications are discussed; in particular, it is
shown that an analytic characteristic function of an infinitely divisible law can
have no zeros inside its strip of convergence. This property is used to construct
an example where an infinitely divisible law (the ILaplace distribution) is fac-

tored into two noninfinitely divisible factors.

2. An existence theorem. let F(x) be a probability distribution, that is, a
never-decreasing, right-continuous function such that £ (~w) =0 and F (+ ) = 1.

The Fourier transform of F (x), that is, the function
(1.1) b (1) = [ &M% aF (x),

is called the characteristic function of the distribution F (x). The characteristic
function exists for real values of ¢ for any distribution, but the integral (1.1)
does not always exist for complex t. This paper deals mostly with characteristic

functions which are analytic in a neighborhood of the origin.

For an arbitrary function f(y), we denote in the following the first difference

by
Afly; 8) = Af(y; 8) = f(y + t) - f(y - 1),
and define the higher differences by

Ay flyst) = AA f(y; 8)
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for k=1, 2, ... . It can then easily be shown that

Anfly; t) = f: (~1)k (Z) fly + (n = 2k)¢].
k=0
In particular, for the function f (y) = ¢/™ we have
Anfy; t) = ™Y (Mt _ e imiyn _ oimy[9; sin me]™.
We first prove two lemmas.

LEMMA 1. Let ¢ (t) be the characteristic function of a probability distribu-
tion F(x), and let Aypp(0; ¢)/(2¢)%* be the 2kth difference quotient of ¢ (1)
at the origin. Assume that
Az (05 2)

(2t)2k

lim inf

t— 00

Then the 2kth moment M, of the distribution F (x) exists, as do all the moments
m, of order r < 2k.

LEMMA 2. Under the assumptions of Lemma 1, the derivatives gﬁ(r)(t) exist
forall tand forr=1,2,+++,2k; and

g/)(r)(t) = f+°“ X eitx dF (x).

Moreover, [:;f')(zr)(t)! <| q5(2r)(0)] =my for r=1,2, 00,k

Proof. The assumption of Lemma 1 means that there is a constant ¥ < ®
such that

Azkgb(o; t)
(1.2) lim inf | ————|= M.
£-0 (2¢)2%k

From (1.1) it is seen that for

$(y) = [ % dF ()

we have
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A, ¢ (y; t) = ‘[;w e®Y [2i sin xt]%% dF (x)

and

A2k¢(0; t)

(25)2k

. 2k
Y (S":”) dF (x).

- 00

We see therefore from (1.2) that

o [sinxt\2F
M= liminf [° (S”’ ) dF (x),
t—0 -0
and hence that
L. +q [ sin xt 2k Y
M2 liminf ( t ) dF (x) = 1 27k dF (x)
— 0 -

for any finite a. It follows then that the 2kth moment

+ 00 2k
my = J o x*dF (%)
exists and that M > L Let next r be a positive integer such that r < k; then
x2% > %% if |x| > 1, and

s f 2k ar) > S xR (x),

m
2k 7] |x] >1
so that the moments of even order my, [r=1,2, ..., (k—-1)] exist also. More-

over,

1 1
L‘b | 2271 dF (x) < 3 Lb (22" + x272) dF (x) < > Lm, +m,

]

-2

for any a and b, This shows that the absolute moments of odd order not exceed-
ing 2k, and therefore also the moments my .y (r=1,2,+-., k), exist. This

proves Lemma 1.

From the existence of the moments m, (r=1, 2, ««., 2k) we see immediate-
+ 00 ;
ly that f x" e"* dF (x) exists and converges absolutely and uniformly for

all real t and r < 2k. It follows then from a well-known theorem (see for instance
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[2, pp.67-68]) that all derivatives exist and are obtained by differentiating

under the integral sign. This proves Lemma 2.
From Lemma 1 and 2 we obtain immediately:

THEOREM 1. Let ¢(t) be the characteristic function of a distribution

F(x), and assume that, for an infinite sequence of even integers { 2n; },

A2nk¢(0; t)
(1.3) lim inf | ——— | = M,
t—0 (Zt) g

is finite (not necessarily bounded) for k=1, 2, «--. Then all the moments m, of
the distribution F(x) exist; and ¢(t) can be differentiated for all real t any

number of times, with

¢(r)(t) = f+°° X eitx dF(x).
COROLLARY 1. If all the derivatives of the characteristic function exist

at the origin, then all the moments of the distribution exist.

This corollary was proved by R. Fortet [ 4]; it is also stated in some text
books of probability [2, 51, as well as in a paper by P. LeVy [ 7]. Theorem 1 is
somewhat more general; the proof given here is similar to the proof indicated for

the corollary by H. Cramer [ 2, p. 891.

3. Analytic characteristic functions. From now on we assume that the
characteristic function ¢(t) coincides with an analytic function in some neigh-
borhood of the origin. Then the assumptions of the corollary are satisfied, all

the moments exist, and the characteristic function has the expansion

.k
my,

(2.1) ¢(z) = kgo T zk for | z| < p,

where p > 0 is the radius of convergence of the series.

We write

1
$,(2) =E[¢(Z) + ¢p(=2)]

for the even part of ¢(z), and
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1
¢,(z) = 5—[96(2) - ¢(-2)]

for the odd part of ¢»(z), then the two series

) (—l)kmzk \
(]S (z) = Z P YEYES 22 3
° i (20!
(2.2)
o -2k—1m k .
- 2k-1
=X o (2 -1\

k=1

converge also in circles about the origin. Denote the radii of convergence of

these series by p, and p,.

If we denote the 4th absolute moment of F(x) by
+ 00
Bo= [ 7 Ix|"dF (),
and observe that

1
]x2k'l\ < E(x2k+x2k-2)’

we see that

(2.3) Mok -1 sz-x 1| ™ok (2) My k-2
» < < — ———
k-1 = (k-1 = 2|2k T2k - 2)!

This shows that

Py 2Py 2P

We see further from (2.3) and B, =m,, that the series Z})::O Bkzk/k! con-

verges for [ z| < p,. From Lemma 2 we see, for any real £, that

| 2P| < myy

Hence if we denote the radius of convergence of the Taylor series of ¢ (z)

around ¢ by p (&), then

(&) > py(0) =
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Similarly it follows from

|20 < B,
and (2.3) that
p, (&) > p (0) =p > p.

We have thus shown that the Taylor series of qSO(Z) and also that of qSl(z)
around ¢ converge in circles of radii at least equal to p. The same is therefore
true for the expansion of ¢(z) around &; thus we conclude that the function

¢(z) is analytic at least in the strip
—p <d(z) <+ p.

The analyticity of ¢(z) in a horizontal strip follows also from a result of
R. P. Boas [1]. Boas showed that the Fourier-Stieltjes transform of a bounded
and never-decreasing function is analytic in a horizontal strip provided that it

is analytic in a neighborhood of the origin.

We show next that the representation of the characteristic function by the

Fourier integral (1.1) is valid in the strip —p < d(z) <+ p.

We saw above that the series 2 y=o ly|" B,/v! converges for |y| < p. Clear-
ly,

iyl”

=) oo v

YA +A4  |yx
3 > 3 [ x1 R = [0 el dr ()
v=0 v=0
for any A. Therefore the integral f > olyx| dF (x) exists, and hence the inte-
gral f * ei** dF (x) is convergent ‘Whenever lei?¥| < elyxl, where z = { + 1y.
Thus for any ¢ and |y| < p the integral is convergent. This integral is an ana-
lytic function in its strip of convergence and agrees with ¢(z) for real z; there-
fore it must agree with ¢(z) also for complex values z = { + iy provided

Iyl <p.
We are now in a position to formulate our main result.

THEOREM 2. If a characteristic function ¢(z) is analytic in a neighborhood
of the origin, then it is also analytic in a horizontal strip and can be represented
in this strip by a Fourier integral. Either this strip is the whole plane, or it has

one or two horizontal boundary lines. The purely imaginary points on the boundary
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of the strip of convergence (if it is not the whole plane) are singular points of

¢(z).
The first part of Theorem 2 was established above; we have to prove the
statement concerning the singular points of ¢ (z).

The integral
$(z) = [1 e dF (x)

converges in a strip — &t <J(z) < + B, where & > p and 8 > p, and is analytic
inside this strip. To carry out the proof concerning the singular points of ¢(z),

we use the decomposition

$(z) = [T e dF (x) + [° ¥ dF(x) = £(2) + £(2) (say).

Now .Cl(z) and Sz(z) are Laplace integrals, convergent in the half-planes
d(z) >~ a and d(z) < B, respectively. Let z = jw; then iz = — w. If z =+ iy,
then w=-i{+ v; thus

El(iw) = fo"" e W JF (%) = ®(w)

is convergent for R(w) > -«.

It is known that the Laplace transform
g(s) = [T e™tdC (1)

of a monotonic function G (¢) has a singularity at the real point of its axis of
convergence. For a proof the reader is referred to [ 9, p.581. This theorem is
similar to well-known theorems in power series and Dirichlet series. From the
fact that F(x) is nondecreasing we conclude therefore that —ct is a singular
point of ®(w). Thus —ix is a singular point of ¢(z). In the same way it is

also seen that i is a singular point of ¢(z).

Theorem 2 was stated without proof in a recent paper by D. Dugue [3], and
is indicated in a footnote of an earlier paper by P. Levy [ 71].

An immediate consequence of the preceding result is this:

COROLLARY 2. A necessary condition that a function analytic in some
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neighborhood of the origin be a characteristic function is that in either half-plane

the singularity nearest to the real axis be located on the imaginary axis.

4. Applications. In the following we discuss some applications of our new

results.

The corollary to Theorem 2 can sometimes be used to decide whether the
the quotient of two characteristic functions is again a characteristic function.

We illustrate this by an example. Let

s = -2) - 25) (- 25)]

and
it ]!
d’g(l) =1l -= ’
a
with a? > b2 > 0. It is easy to see that both these functions are characteristic

functions. Their quotient

0

é(t) = W

satisfies the elementary necessary conditions for characteristic functions,
namely ¢ (~¢t) = ¢(2), $(0) =1, | ()| < 1 for real t. However, the condition
of the corollary to Theorem 2 is violated since ¢ (t) has no singularity on the
imaginary axis while it has a pair of conjugate complex poles +b ~ ia. Therefore

¢ (£) can not be a characteristic function.

Theorem 2 can also be used to establish the following property of analytic

characteristic functions.

THEOREM 3. Let ¢p(z) be an analytic characteristic function. Then for any
horizontal line in the strip, the function ¢(z) and its derivatives qS(k)(z) all

attain their absolute maxima on the imaginary axis.

Proof. By Theorem 2 we have

$lz) = [17 ex7 aF (x)

in the strip of convergence. let z = ia + n; then
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max |¢p(ia+7)| < f_:o e dF (x) = ¢(ia).

-0 <7<

This result is due to Dugue’ [31].

We also obtain:

COROLLARY 3. An analytic characteristic function has no zeros on the
segment of the imaginary axis inside the strip of analyticity. The zeros and the
singular points of ¢(z) are located symmetrically with respect to the imaginary

axis.

The first part of the corollary follows immediately from Theorem 3; we obtain
the statement about the location of the zeros and singularities of ¢ (z) if we

observe that the functional relation

$(z) = ¢(~2)

holds not only in the strip of convergence of the Fourier integral but in the

entire domain of regularity of ¢(z).

An important theorem on analytic characteristic functions is due to P. Lévy

[6] and D. Raikov [81:

THEOREM OF LEVY AND RA1KOV. Let ¢(t) be an analytic characteristic
function, and assume that ¢(t) = ¢ (t) b, (t), where ¢ (¢) and ¢ (¢) are both
characteristic functions. Then the factors ¢ (t) and ¢, (t) are also analytic
functions, and their representations as Fourier integrals converge at least in

the strip of convergence of ¢ (t).

This theorem was originally proven by P. Levy [6; 7] only for entire charac-

teristic functions; a simple proof may be found in {3].

From the foregoing theorem we easily deduce:

THEOREM 4. Let ¢ (t) be the characteristic function of an infinitely divis-
ble law, and assume that ¢ (¢) is an analytic function. Then ¢ (t) has no zeros

inside its strip of convergence.

If ¢(z) is the characteristic function of an infinitely divisible law, then the
function [¢(2z)1'/™ must be a characteristic function for any n, and also a
factor of ¢ (z). If furthermore ¢ (z) is also assumed to be analytic, then, by the
Levy-Raikov theorem, [ (z)]1'/™ must be analytic at least in the strip of con-

vergence of ¢ (z). If ¢(z) were to have a zero at some point z,, then [ (z)]1V"
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would have a singularity at z, for sufficiently large n, which is impossible.

We can use Theorem 4 in the construction of an example which shows that
an infinitely divisible law can be obtained as the product of two noninfinitely
divisible laws. Let

R (T Rt

A simple computation shows that & (t) is a characteristic function if
b> 22 a.

Then also ¢(—t) is a characteristic function, as is

U(e) = b(2) blmt) =

The characteristic functions ¢ (¢) and ¢(—¢) are analytic characteristic func-
tions with zeros in their strip of convergence: hence they are not characteristic
functions of infinitely divisible laws. Their product 1 (¢) is the characteristic

function of the Laplace distribution, which is known to be infinitely divisible.
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EVALUATION OF AN INTEGRAL OCCURRING IN
SERVOMECHANISM THEORY

W. A. MERSMAN

1. Introduction. In the study of dynamical systems in general, and servo-
mechanisms in particular, it is often required to determine the (constant) co-
efficients in a linear, ordinary, differential equation in such a way as to mini-
mize an integral involving the square of the difference between the solution of
the equation and a known function. The latter may be given in either analytical
or numerical form. In the design of a servomechanism the known function is the
“‘input”’; the solution of the equation is the ““output’’; and the coefficients of
the equation are the circuit constants to be determined. A similar problem arises
in the study of aircraft flight records, in which the known function is any of the
dynamic variables used to describe the motion, and the coefficients are the so-

called aerodynamic derivatives, the determination of which is the purpose of

the flight.

Mathematically similar problems also arise in the analysis of a mixture of
radioactive substances or of bacteria. The known function is, say, the total
weight of the mixture as a function of time, and the unknown coefficients are

the relative weights of the different substances initially present.

All such problems can be solved by the method of least squares, and the
procedure always leads, at a certain stage, to the evaluation of an integral of
a particular type. This integral has been studied by R. S. Phillips [ 3, Chap. 7,
$7.9], who has given a procedure for its evaluation and a short table of results.
The purpose of the present note is to derive a simple, explicit formula for this

integral.

2, Evaluation of the integral. The integral to be evaluated is

| = — —_— dx,
(1) 2mi S W) hem)

where
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n
glx) = Y g 220H),
k=1

n
h(x) = 2 a, x"'k, a, real, a; # 0.
k=0

There is no loss of generality in restricting g(x) to contain only even powers,
since odd powers would make no contribution to the value of the integral. It is
assumed that the zeros of A(x) are all distinct and have their real parts nega-
tive, Then the integration can be performed immediately by means of the theory
of residues [ 4, Chap. 61, and the result is

(2) 1= 3% 4,
k=1

where A is the residue of the integrand at x;, and h(x, ) = 0. This expression
can be evaluated in terms of the coefficients g, and a; by starting with the

obvious identity

g(x) . 1 1
— =Y 4, — - .
h(x) h(-x) /T xX-x  x+x

Clearing fractions gives

(3) glx) = z A,

Since x is a zero of & (x), the quantity A (x)/(x - x, ) is a polynomial; in fact,

3 n-1 ) i o
(x) = z X"l z a; xi'l .
X=X =0 i=o

Substitution in (3) gives an identity between two polynomials. Equating coef-
ficients of like powers of x gives a set of simultaneous, linear, algebraic e-

quations for the 4,:
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n
(4-) Z a’lkAk=(_1)n gl/2 (l=1’27°",n)1
k=1
where
n .
oy = z blixllt-l (Lk=1,2,+en),
i=1
n
bli= cljdji (l,i=1,2,+een),
j=1
clj=agl-]' ([, j=1,2,+4+,n),
dfi=("1)jaj-i (j’i=lv2""7”)’

with the convention that a; = 0 if £ < 0 or £ > n. With |, | for the determinant
with n rows and n columns having o, in the /th row and kth column, the rule

for multiplying determinants [ 1, Chap. 8] gives

-1
lalkl=lcli . dﬁl“xi .
Now,
—a 0 0 . 0
al ao 0 .
—-a2 —-al —ao .
ld;; | = . = (=1)n(nt1)/2 gn
tap.y fap.; tap.z -+ tag
and
1 1 eee 1
xl x2 LI xn
- 2
I E R
R TSR TS S £
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where V,, is the well-known Vandermonde determinant.

Hence, writing C,, = | ¢ |, we have
Loyl = (~Dme*d)/2 gn ey
In equation (4), write 8, =(~1)" g,/2 for convenience, and subtract B,

from both sides. Recalling equation (2), we see that the resulting system can

be put in the form

I~ z Ak =0
k=1
(5)
Bl + X (ay =~ B) 4, =By, (1< l<n),
k=1

a system of n + 1 equations in the n + 1 unknowns I, 4,, 4,, «--, A, that can
be solved directly for /. First consider thedeterminant, D, of the coefficients in
the left members of (5):

1 -1 -1
Bi Gy =B s Gin=fy

By Ga1 =By +++ Gan-Ps

Bn O(nl"'Bn cr e 0(nn_Bn

Adding the first column to each of the succeeding columns immediately gives
the result

. D=l = (=1)M0/2 00 C Y,

Now V, # 0, since all the zeros, x,, of h(x) were assumed to be distinct; and
C, does not vanish, since it is precisely the Hurwitz determinant [2, p.163]
of the polynomial % (x), all the roots of which lie in the left half-plane. Hence
D # 0, and the system (5) can be solved for I directly by Cramer’s rule [1,
Chap. 8]
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0 -1 “ .. -1
Bi %1y =B1 e Gip- By
By Uy =By e+ Gy =P,

. . LY

DI =

Bn OLnl—Bn cee ann"Bn

Again adding the first column to each succeeding column gives

0 -1 «o. -1
Br %1y e CGap

Ba %21 e+ Uan

DI =

Bn Upny =+ Gnn .

By the definition of «;j, this can be factored twice to give

M| B2 Cyy Chy vvv Cyp
Dl = —

where

1 o .. 0 1 0 ees O
0 du ce dln 0 *

Y- 0 21 2n 0 x, trt X
0 dp, dnn 0 Tt e Pt
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Thus,

1 Bl CIZ ¢ Cln
(—1)n(n+1)/2 A" CpVp l=— [ B, Cpy +++ Cip . (=1)n(nt)/2 al Vy

Qo

. . e o 0 .

. . « s o .

Bn an AR Cnn

The relation 3; = (=1)" g;/2 gives, finally, the desired formula:

(6) / 1 ool g(x)dx ("‘].)n'*’l Gn
= i i TR T e T
where
Gn=‘gijl, Cn=1ci]'l (1_<_i,f, n),

g if j=1
ij = %ai-p 8ij T
cij if j>1,
Since [ is a continuous function of the coefficients of 2 (x), and hence of the

zeros, equation (6) remains true when two zeros coincide.
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CAPACITY, VIRTUAL MASS, AND GENERALIZED SYMMETRIZATION

I.. E. PAYNE AND ALEXANDER WEINSTEIN

1. Introduction. A body of revolution B can be symmetrized with respect to
its axis of symmetry in a number of ways. One of these is the Schwarz sym-
metrization, which preserves the volume of B. Another is the Steiner symmetri-
zation of the meridian section of B, which preserves the area of this section but
in general decreases the volume. The influence of the Schwarz symmetrization
on the capacity has been investigated by G. Pdlya and G. Szegd, [1]. More re-
cently P. R. Garabedian and D. C. Spencer [2] discussed the same question for
the virtual mass of bodies of revolution. In the present paper we shall study by
a different and simpler method the behavior of the capacity and virtval mass
under a more general type of symmetrization, which includes the Schwarz and

Steiner symmetrizations as particular cases.

2. Definitions. leet the (x, y)-plane be the meridian plane of B, the x-axis
being the axis of symmetry. The part of the meridian section of B which lies in
the upper half plane ¥ > 0 is denoted by D. The complement of D in the half
plane is designated as E. We assume that D is simply connected and that £ is
a connected domain. The boundary of D consists in general of a segment of
the x-axis and a line L. We exclude the case where L is a closed curve and
lies entirely above the x-axis, as is the case in which B is a torus. We assume
L to have at most a finite number ot angular points.

We shall use in this paper some recent results of axially symmetric potential
theory in n-dimensional space. This theory which is of mathematical interest
in itself will be used here mainly as a tool to obtain results for bodies of revo-
lution in three dimensions.

Let us henceforth consider our (x, y )-plane as the meridian plane of a body
of revolution B[n] in n-dimensions, n =3, 4, 5, +++ . We assume that B[n] has
the same meridian section D as our three-dimensional body B = B[3]. All quanti-
ties considered hereafter are defined in the meridian plane and therefore are
functions of x and ¥ only. Actually we shall never use B[ n] but only its meridian

section.

Received March 5, 1952, This research was conducted under the sponsorship of the
Office of Naval Research.
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634 L. E. PAYNE AND ALEXANDER WEINSTEIN

Let ¢(x, y) be an axially symmetric potential function defined for y > 0
and let y/(x, ) be the corresponding stream function. We have then the gener-
alized Stokes-Beltrami equations

n-2 a—qﬁ - al/l n-2 (9(/:') a¢’

(1) —_ —_ - —

’

dx dy Y dy dx

To emphasize the dependence of ¢ and ¢y on n we shall often use the notations
¢inland ylinj.
The volume V[n] of Binl is given by

(2) Vinl = wnoy [§ ™2 dxdy,
D

where o, = 277h/2/11(h/2). We introduce the capacity C{nl of B{n] by the
formula
Wn-1

(3) Clal = §§ ™2 (grad p(n1)? dxdy,

Wn E

where ¢[n] is a potential which assumes the value unity on L and vanishes as
(22 +y2 y (=2)/2 5 infinity. It is obvious that (3) reduces to the classical
definition of the capacity for n = 3.

We define also the virtual mass M[n] of B{r] by the formula

(4) Min]l = op-q SS y-(n-z) (grad ¢ [n])? dxdy.
E

The function y/[n] in (4) assumes the value y""!/(n—1) on L and vanishes at
infinity like y"! (x2 + ¥y2)Y ™2, Qur definition of the virtual mass generalizes

that of P. R. Garabedian and D. C. Spencer [2].

3. The correspondence principle and the fundamental formula, We use here
a relationship due to A. Weinstein [4],

(5) Ylondi=y"1(n - 17" ¢ln + 2],

This equation shows that to each stream function y/[{n} corresponds a well-
defined potential ¢o{n + 21. In particular to the stream function ¢y[n] in formula
(4) corresponds a potential ¢[n + 2] which assumes the value unity on L and
vanishes as (x2% + y2)™/2

static potential of Bln + 2]. The substitution of (3) into (4) leads after an

at infinity. In other words ¢{n + 2] is the electro-
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elementary integration by parts to the fundamental formula
n -1
(6) Minl + Vin] = #*/2 [(n-—l)r(-2-+ 1)] Cln + 2],

which we shall employ here in the study of the behavior of ¥[n].

4. Generalized symmetrization. A line x = constant, ¥ > 0, intersects L in
m points y(x) > y,(x) > y3(x) > ««+> ¥y, (x) > 0. The number of inter-
sections m usually depends on x. Let us consider the line L, defined bythe

equation

(7) yi(x) = X (= 1FT ya(x),
k=1

where ¢ is a positive constant not necessarily an integer. The body of revolution
Bq[n] with section Dq defined by its profile Lq is said to be obtained by a
symmetrization Sg. Let us note that S,.; can be considered as a Schwarz sym-
metrization of B[n]. On the other hand, under S; the meridian profile of B{n]
undergoes a Steiner symmetrization. Qur main results are embodied in the follow-

ing theorems:

I. V[n] does not increase under S; for 0 < ¢ < n -1 and does not de-

crease under Sy for ¢ > n — 1. In particular, V'[n] remains invariant under S, ..

II. Clr] does not increase under Sq for0 < g<n-1.
. M{n] does not increase under S; forn -1 < ¢ < n+1.

Let us observe that by (6) Theorem III follows immediately from I and II. In
order to prove Theorems I and II we shall first establish some useful inequali-

ties.

5. Fundamental inequalities. Let y; > ¥, > ««-> y,; > 0 and let ¢ and s

be two positive numbers. We have then

1/q m 1/(g+s)
< Z (_l)k— 1 yg+s <

k=1 -

1/q

M=
=

(8) | X (~1)ky
k=1

>
n
-

To prove the second inequality of (8) let us observe that it is sufficient to
show that
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m 1/(q+s)

(9) > oy <Xy
k=1 k=1

1/9

Let us put yI = a, and (¢ +s)/qg=r > 1. Then we need only show that

(10) a:+a;+---+a < (ay + ay+eee+ap)

But this is a classical inequality [ 5, p.32]. As to the first part® of (8) we give
here a proof communicated to us by H. F. Weinberger [ 7]. This inequality does
not seem to be mentioned in the available literature. Using again the notations
in (10) and putting

r

m m
(11) Fay, ay, «+-, ap) = Z (—l)k'1 al: - z (_.1)}"1 a |,
k=1 k=1

we have to prove that, fora; > a; >+« > ap, > Oandr > 1,

(12) F(a1,a2""’am)20°

-

This inequality is obviously true for m = 1 and follows immediately if m = 2 from
inequality (10). Let us therefore assume that (12) holds if we replace m by

m — 2; this is equivalent to assuming the inequality
(13) F(a’2’ 112, a3""’am)?_0-

We have also

- oF
(14) F(ay, ay, oov,ap) = Fay, ay, ag, oov, ap ) + fal — da, .
02 aal

But from (11) we observe that

1 aF m r-1
(15) T =at - | Y (-1t a |,

k=1

which shows that dF/da; is nonnegative. Since the same holds by assumption

for F (a,, a,, a, +++, ay ) we obtain at once the required inequality (12).

"R. Bellman has pointed out that this inequality holds more generally with y" re-
placed by an arbitrary continuous convex function f(y) defined for y > 0.
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6. The effect of the generalized symmetrization on V'{n]. It follows immedi-
ately from (2) that

m
(16) Vil = o,y (n =300 [ (DRt ds,
k=1

where the integral is taken over the interval (¢, 8) bounded by the greatest
and smallest values of x on L. Let us apply the symmetrization S; defined by

(7). The volume V,[n] is then given by

5 m ne1/q
(17) Volnl = v, (n = 17" [ (- k1 yf dx.
k=1

By (8) we see that forqg < n — 1 we have
ﬁ m
(18)  Vglnl < o, (n=10" [ kz (= 1)F y2 | dx = Vinl.
=1

On the other hand for ¢ > n — 1 we have again by (8)

(19) W lnl > o, (n= 170 f7 13 (1t gt de = Vind.
k=1

The formulas (18) and (19) establish the proof of Theorem I of $ 4.

7. The effect of generalized symmetrization on C(n}. In studying the be-
havior of C[n] under the symmetrization Sq we shall generalize to a certain
extent the procedure given by Pélya and Szeg8 for the Steiner symmetrization
{1, p.182]. Let us introduce a Cartesian system (x, ¥, z) and consider a sur-
face z (x, y) defined in a large half circle A enclosing U. We assume z (x, y) to
be a function positive throughout A and vanishing on the circular portion of its
boundary. The particular function z which we shall consider will assume a con-
stant positive value z, in the subdomain D of A. This value will be the maximum
of z(x, y) in A. We further assume that z (x, y) is analytic outside D. The sur-
face z = z(x, y) except for its flat portion may also be defined as a surface
y=vy(x, z} in a certain domain G of the (x, z)— plane. However, y(x, z) may
not be a single-valued function of x and z. For this reason we must consider as

in {1] the surfaces y, (%, 2) (k=1,2, +++, m), where

yi(%,2) > yy(%,2) >eee> yp(x, 2) > 0.
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These surfaces taken together with the flat portion constitute the surface
z{x, y).

Let us consider the integral

m dy, \ 2 dy,\2{1/2
(20) I = SS Y i (x2) [1 + (—k) + (—k)] dx dz.

G k=1 0x dz

Let us first apply the symmetrization S,.; by putting
m

(21) D MG D
k=1

and consider the integral

ay* 2 (?y* 2 1/2
(22) I, = SS O+ —] +|— dxdz.

c ox Jz

We prove now that
(233 1> 1.

In fact by substituting (21) into {22} and computing dy, /dx and Jy, /dz we ob-

tain the formula

m 2(n-2}/(n-1) m (')yk a
eu 1= (] T kg | S g 2L
G k=1 k=1 dx

m Iy, 1211/
k-1 ,n-2
+ - — dxdz .

Z (-1) Yy Fp ] ] x

k=1
According to the inequality (8), I, will not diminish if we replace the first square
bracket in (24) by [ ", ¥77*1% Upon applying the Minkowski inequality we
find that the integrand in I, is not greater than the integrand in /; this proves
formula (23).

Let us observe that

(25) I = SS y "2 [l + 27+ zyzj 172 dxdy — SS y "% dx dy,
A ’ D
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the last integral being the contribution from the flat part of the z surface. We now
insert into (25) the expression z(a, y)=€®(x, y), € being a small positive

number and ® satisfying the same conditions as z. This substitution yields

(26) I= ff, y" 2 dxdy + (€2/2) {j y" (D2 + ®) dxdy + O(e*).

According to inequality (23), / does not increase under 5,.;. The first integral
in (26) is obviously equal to the same integral taken over the symmetrized
domain 4, - D,, where 4, = A. By letting € tend to zero we conclude in the

usual way [1] that the integral

27+ ®7) dxdy
A

does not increase under S,.;. If we let the radius of the half circle bounding
A tend to infinity we obtain the same statement for a function ® which vanishes
at infinity, providing that the integral converges. In particular if we take for
® a function which is equal to unity in D and equal to the electrostatic potential
¢lnl in E we find that C[n] does not increase under Sn-1s

In order to prove that C[n] does not increase under Sq for 0 < g <n-1
let us observe that under S; the line L bounding D{n} goes into a line Ly which
has by the inequalities (8) the following property: if ¢, < g, then the domain
Dq1 [n] bounded by qu has no points outside the domain qu [n] bounded by
qu. We denote the capacities corresponding to these domains by qu[n} and
qu[n], respectively. It is a well known property of the ordinary three-dimension-
al capacity that if one body contains another body the former has the larger
capacity. The proof of this statement is based essentially on the variational
definition of the capacity. The same property holds obviously for all values of
n. We therefore have qu[n] < qu[n]. In particular Cq{n] < Cn_l[n]. As we
have already proved C,_,[n] < Cln]we obtain the result

(27) Colnl < Clnl, 0<g<n-1,

which concludes the proof of Theorem Il of $4. As already mentioned in § 4,

Theorem IlI follows immediately as a corollary of I and II.

8. Steiner’s Symmetrization of the meridian section with respect te the
y-2xis. We shall consider briefly a symmetrization of the domain D with respect

to the y-axis defined by the classical equation
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(28) 2x = Z (= 1)k % .
k=1

In a manner similar to that used in &7 we find that ¥ |z ] remains invariant and

Cln) and M[n] do not increase under such a symmetrization.

9. Concluding remarks. All results of $4 can be extended to the case of
two dimensional bodies which are symmetric with respect to the x-axis. It should
be noted that these results hold for C[2] as long as the radius of 4 remains
finite. It has already been proven [1, 2] that C[2] and M[2] do not increase
under S; and also that C[3] and #[3] do not increase under S,. These cases
are included in our Theorems II and IIl. Ve note also that formula (6) appears in
an equivalent form for n =2 and n=3 in papers by G.I. Taylor |6] and M.
Schiffer and G. Szegd’[ 3], where C[4] and C[5] are (up to a constant factor)
called dipole coefficients. No attempt was made in these papers to study the
behavior of the dipole coefficients under symmetrization. However, it was recog-
nized in | 3] that they are increasing set functions, a fact which becomes almost
obvious in our theory of generalized electrostatics (see $7). Finally let us
remark that in §2 we have introduced the (x, y )-plane as the meridian plane of
an n-dimensional space. But since all quantities are defined in terms of x and
y, the index n appearing in our formulas need not be restricted to integral values.
In fact it can easily be seen that all our formulas and results remain valid for
all real positive values of n greater than two. For such values of n our results
are mathematical statements about certain integrals such as Vinl, Clnl, and

#{n] which are associated with the generalized Stokes-DBeltrami equations.
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THE BOUNDEDNESS OF THE SOLUTIONS OF A
DIFFERENTIAL EQUATION IN THE COMPLEX DOMAIN

CHOY-TAx TaawMm

1. Introduction. Let Q(z) be an analytic function of the complex variable z

in a domain. In the following we shall be concerned with the differential equa-

tion
42V

(1) — +Q(z) W =0.
dz?

Only those solutions W (z) of (1) which are distinct from the trivial solution

(=0) shall be considered.
For a real-valued continuous solution y (x) # 0 of the differential equation

2

(2) = + flx) y =0,
dx?

where f(x) is a real-valued piecewise continuous function of the real variable
x for 0 < x < o, N. Levinson [1] has shown that the rapidity with which y (x)
can grow, and the rapidity with which it can tend to zero, both depend on the

growth of o (x), where
(3) a(x) = jo" | f(x) - a]| dx,

and ¢ is a real positive constant. More precisely, he showed that
Lo

(4) y(x) = O (exp 3 a alx)],

and that if a(x) = O(x) as x — o, then

1
(5) lim sup |:y(x)l exp [3 a"1/2 (X(x)] > 0.

X — o<
If there exists a positive constant a such that a(x) converges as x — o, then

Received February 20, 1952. The author is grateful to Professor .C. Hosenbloom for
some suggestions in this paper.
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644 CHOY-TAK TAAM

from (4) it follows that every solution y (x) of (2) is bounded as x— . L.evinson
also showed that (4) and (5) are the best possible results of their types.

Along any line of the z-plane, for instance the real axis, the differential
equation (1) has the form

d2W ,
(6) — + () W =0,
x

where x is real. Along a line, the growth of the solutions ¥ (x) of (6) also
depends on the growth of a function similar to that in (3), and they also satisfy
two relations like (4) and (5). These relations will be established in $2. From

these results, we can obtain sufficient conditions for the boundedness of the
solutions of (1) on a line, or on certain regions of the z-plane.

In §3 we shall investigate the asymptotic behavior of the solutions of (6)
when they are bounded. In §6 we shall give a relation of the boundedness of
the solutions of a self-adjoint differential equation of the third order and a dif-

ferential equation of the second order.

2. Growth of the solutions along the real axis. We now consider equation (6)

where x is real. Let ¢, (x) and g, (x) be, respectively, the real and imaginary
parts of Q(x). If

@ $G) = [¥ e =g, (0] + 1g,(0)]] dx,
where a is a positive constant, then ¢(x) determines not only how large a

solution W (x) of (6) can become, but also determines how small it can become.

These results are contained in the following two theorems.
THEOREM 1. If

(a) W(x)is a solution of (6),
(b) ¢(x) is defined as in (7),

then

1 ’
8 W(x)=0 (exp [-2— aV2 (/)(x)]), V(x) = O(exp{% a 2 qﬁ(x)]).

An immediate consequence of this theorem is the following corollary.

CoroLLARY L.1. [very solution W(x) of the equation (6) and its derivative
4
W (x) are bounded as x — @ provided therc exists a positive constant a such

that ¢ (x) converges as x —> .

In Theorem 1 we cunnot expect to replace ¢ (x) by a more symmetric form



THE BOUNDEDNESS OF THE SOLUTIONS OF A DIFFERENTIAL EQUATION 645

‘/;x[la— q,(x)| + [b - q,(x) |1 dx,

where b # 0 and is real, and a > 0. A counter-example is the differential equation
-
— +(1+)W=0,
dx?
which has solutions unbounded as x — .

THEOREM 2. [If

(a) W(x) is a solution of (6),
(b) $(x) = 0(x) as x —> 0, where ¢(x) is defined as in (7),

then
. 1.
9) lim sup |W(x)| exp -2— a V% ¢(x)]| > 0.
x — 00

Clearly lim sup |V (x)| > 0 as x—> o0 if 4 (x) is convergent.
That (8) and (9) are the best possible results follows from the fact that (4)

and (5) are the best possible results.
We shall now prove Theorem 1 and 2.

Proof of Theorem 1. Let the real and imaginary parts of a solution W (x) of
(6) be u(x) and v(x), respectively. Separating the real and imaginary part of

(6), we obtain
(10) u” + g (x)u—-q,(x)v=0,

0.

]

(11 v+ q2(x) u + ql(x) v
Suppose a > 0, and let

(12) H(x) = | W ()2 + a|W(x)]? = u?(x) + v/ 2(x) + alu?(x) + v2(x)].

I

Then using (10) and (11), we have

dH

y) 2(urur + v'vr) + 2a(uu’ + vv’)
x

(13)

I

2la = q,(x)] (wu’ + w?) + 2¢,(x) (uv — w?).

I

Using the following inequalities,

~1/2

2uur < a V% (au? + u’?), 2vv7 < a (av? + v°?),
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2urv < a Vi u? + av?), 2uv’ < a Y2 (v ? + au?),
and (13), we see that
dH - 2 2 2 2
(14) — <a V%[ |a - q,(=)| + lg,(x) ] (ur? + v 4 au’® + av?)
x

=a V?(la - q x)] + [q,(x)]) L.

Since /i > 0, we have

1 dH
(15) 7 o Sa e - g, (] + (0]

Integrating (15) from 0 to x, we obtain
(16) Hx) < H(0) expla™? ¢(x)].

In view of the definition of //(x ), the expression in (6) is equivalent to the two

in (8). This completes the proof of Theorem 1.

Proof of Theorerm 2. In riuch the same way as in the proof of Theorem 1, it

is easy to show that

1 d/ - .
= — >-a ?a —q,(x)] + |g,(x) ]
T dx

Consequently, we have

an Hix) = |[W()]? + a|W(x)]? > Cexpl-—a™V2 ¢(x)].

For each positive integer n, let x,, %, x;;” be points in the interval n <x <n + |

such that
|5 (x, )] = max [¥(x)|, [udx)] =min [u(x)]|, [v/(x;)] = min|v(x)]

in the interval n < x < n + 1. Integrating (10) from x; to x, and (11) from x; to

x,, we obtain

(18) wx,) = urlxg) ¢ [371-g,(x) u(x) + g,(x) v(2)] dx
< lurle)] + W) L7 g (0] + g0 ]) dx,

(19) v(x,) = v () + f;f,n [-g,(x) ulx) - g, (x) v(x)] dx

n

nt1

|1,v(x':')] + {H/(xn)| ‘I;L [|ql(x)] + |q2(x)|] dx.

IN
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Since
[ (xg)]| < lur(xg)| + |07 (x,) 1,

(18) and (19) yield
(20) W) | < Jurxg) |+ Jor(]) ]
+ 2\ W (%) jn”“ (g, (x)] + | g, (x)|] dx.

Clearly either [u“(x”)| = 0 or u’(x) does not change sign inn < x < n + 1. If

u’(x) does not change sign inn < x < n + 1, we have

(21) 2 max lu(x)| > |lu(n+1) —uln)] = lfn+l wx) dx| > [ur(x))].
n<x<n+tl n
Obviously (21) holds if | u’(xr:)l = 0. So (21) is always true. Hence
(22) 2|{W(x)| > 2 max . lu(x)| > [u(x))].
n<x<nti
Similarly,
(23) 21 (xp) | > lv’(x,:')l-
Substitution of (22) and (23) into (20) yields
(24) W7 (xp)| < | W(xp)] 14+ 2 j’:nﬂ[lql(x)l + 1g,(x)]] dx}.

From (17) and (24), we obtain

25) (W) 12 Mg ()] + (g, (0)]) dx]? + al

> C exp[——a“l/2 A (xg) 1.

Since ¢p(x) = O(x) as x — o, it is easy to show that, for an infinite number ot

n,

j"“ (g, (x)]| + lq,(x)[] dx

n

is bounded. Thus for an infinite number of n, we have the inequality
(26) [ W (x,) ]2 expla™¥? p(x,)1 > €

for some positive constant C;. Consequently (26) yields the result
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1 .
lim sup | W (x)| exp 3 ° V2 p(x)] > 0.
X —0c
This completes the proof of Theorem 2.

4. Asymptotic behavior of the solutions. If &(x) converges as x — o, the
solutions W (x) of (6) are not only bounded, but also resemble the solutions of

the differential equation
d2 W

dx’

27

+aW = 0.

This result is proved in the following theorem.
THEOREM 3. [f

(a) W(x) is a solution of (6),

(b) (x), defined as in (7), converges as x —» w,
then for some complex constants A and B,

(28) lim [W(x) - (A sinya x + B cos\/a x)] = 0.

X — 0k

Proof of Theorem 3. Let y (x) and y, (x) be two linearly independent so-

lutions of the equation (27) such that
(29) Y, (0) =0, y7(0) =15 y,(0) =1, y,(0) = 0.
Rewrite (6) in the form

2y
(30) — +all =la-0Q)] W,
dx*

Then a solution ¥ (x ) of (30) can be expressed as
G F(x) =4 yl(x) + B yl(x)

+ ‘]:o la - G W) [y, (x) y,(2) =y, (x) y, ()] de

for some complex constants A and B, where the integral is convergent since

é(x) is convergent, W (x) is bounded, and
y, (x) = a V? sin a x, yz(x) = cos \/a x;

(31) can be obtained by the method of variation of constants. llence the absolute

value of the integral in (31) can be arbitrarily small if x is large enough. In other
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words,

lim {W(x) - [4 ¥, (%) + By, (x)1} = 0.

X — 00
This completes the proof.
Differentiating (31) clearly yields

lim {W (%) - [4 y/(x) + B y(x)1} = 0.

x — 00

4. Boundedness of the solutions in certain regions. In this section we shall
apply the results of Theorem 1 to obtain sufficient conditions for the bounded-
ness of the solutions of the equation (1) in certain regions of the z-plane.

Let R be the region

(32) z=x+1iy, O0<x<ow, a&<y<PpB.
On a half line L(yo ), 2 = x + ¥, in R, the differential equation (1) becomes

d*W

2

(33) +Q(x+iy0)W=0.

dx
Denoting the real and imaginary part of Q (x + iy ) by ¢, (x, y;) and ¢,(x,5,),
respectively, we see that according to Theorem 1, the growth of a solution W (x)

of (1) on L (yo) depends on the growth of

(34) d)(x,yo):fox[la—-ql(x,yo)l+|q2(x,y0)|] dx ,

where a is a positive constant. If ¢ (x, yo) is convergent for some positive
constant a, then W (z) and W’(z) are bounded on L (yo), and
lim [W(x + iy,) = (4 sin \/a x + B cos Va x)] =0

X — 00

for some complex constants 4 and B. Let
(35) (D(x,yo)=f0x|a-—Q(x+iy0)|dx.

Clearly the convergence of ®(x, y, ) implies the convergence of ¢ (x, y, ). Let
®(x, y, ) be uniformly bounded in R in the sense that for eachy (a <y, < B),
there exists a positive constant a such that sup a is finite and inf a is positive,
and @ (x, yo) < M, M being some constant, for all x in0 < x < ® and all y in
& <y < B; then by applying (16) on each L (y ), it is easy to see that W(z)
and W’(z) are bounded in R. If the condition that sup a is finite is removed,
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clearly we still have [I'(z) bounded in R. This proves the following theorem.
THEOREM 4. If

(a) R is aregion defined as in (32),
(b) P(x, Yo ), defined as in (35), is uniformly bounded in R in the sense
defined above,

then euch solution W (z) of (1) and its derivative W’ z) are bounded in .
Consider another region R,
%

(36) z=x+ret, 0<r<o &<x<B,

where 0, is a real constant. On a half line L(x,), z = x4 + r exp (if, ), in

R, the equation (1) reduces to
d2w

37 — + P(r,xq) W =0,
dr?

where P (r, xg) = Qlx, + 1 exp (i65)1 exp (2i6,).

THEOREM 5. If

(a) R is aregion defined as in (36),
(b) for each x4, & < xy < B, there exists a positive constant a such that

sup a is finite and inf a is positive and
LWa—Phwwlng,
M being some constant, for all rin 0 < r < wand all x, in & < x < 3,
then each solution W (z) of (1) and its derivative W*(z) are bounded in K.

The proofs of this theorem and of the following Theorem 6 are similar to
that of Theorem 4.
Denote by S the sector

(38) z = re'f, 0<r<o a<6<83.

On a fixed ray 6 = 6, in S, equation (1) reduces to

2
(39) VTG, e W =0,
dr?

where T'(r, 65) = Q(r exp(ify)) exp (2i6,). We have the following result.
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THEOREM 6. If

(a) Sis aregion defined as in (38),
(b) for each 04, o < 6, < B, there exists a positive constant a such that

sup a is finite and inf a is positive and
j(;r la = T(r, 6,)| dr < M,
M being some constant, for all rin 0 < r < wand all 6, in & < 6 < 73,
then each solution W(z) of (1) and its derivative W*(z) are bounded in S.
5. Extension. lLet C be an analytic curve [ 2, p. 702]
(40) x=f(t), v =g(t),

where ¢ is real. Along C the equation (1) has the form

4 W
(41) — +40) — L B(t) W =0.
de? dt

It is well known that equation (41) can be reduced to the form of (6). It follows
that our results apply to the solutions along a line or in regions bounded by
lines as well as to the solutions along an analytic curve or in regions bounded

by analytic curves.

6. A self-adjoint differential equation of the third order. Let Y (z) be a

solution of the self-adjoint differential equation

d2Y dY 1 d0(z)
(42) +Q(z) — + — ? Y =0,
dz3 dz 2  dz

where {)(z) is analytic in a region R. Let W (z) be a solution of

d2W 1
+ z Q(z) W = 0.

(43)

dz*
In Theorem 7 we shall prove that every solution Y (z) of (42) is bounded in R
if and only if every solution W(z) of (43) is bounded in R. In fact the growth
of the solutions of (43) determines and is determined by the growth of the so-
lutions of (42).

THEOREM 7. Every solution Y(z) of (42) is bounded in R if and only if
every solution W (z) of (43) is bounded in R.

Proof. Let W,(z) and ¥, (z) be any two linearly independent solutions of
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(43). The theorem follows from the fact that W2(z), W (z) W,(z) and W}(2)
are three linearly independent solutions of (42). That Wi(z), W, (z) W, (z) and
W2(z) are solutions of (42) can be verified by substitution. We now show that

they are linearly independent. If 4, B, C are constants, and if
(44) Ale(z)+BWl(z)W2(z)+CW§(Z)E0,
then by factoring (44) we get

(45) (AW, (2) + bW, (2)] [eW (2) + dW,(2)] =0,

where @, b, ¢ and d depend on 4, B and C. Hence at least on the factors in (43)
is identically zero. It follows that eithera = b = 0 or ¢ = d = 0. Consequently
A = B =C = 0. This completes the proof.

7. Added in proof. With the aid of the Phragmén-Lindelsf theorems [ see 3],
the results of $4 can be greatly improved.
For example, let R be the region defined as in (32), with 8 — « = mh~L Let

there be a positive constant a such that as x — o,

(46) ¢ (x, y) =0(ekx),

where & < h, uniformly for y in « < 3, and that

47 é(x, &) = 0(1), ¢(x,8) =0(1).

Then, by Corollary 1.1, any solution W (z) ot (1) is bounded on L (& ) and on
L (), and so is bounded on these lines and on the segment x = 0 in R. From

(46 ) and Theorem 1, we have

x

W(z) = 0(eMe™)

uniformly in y, where M is some positive constant. By a theorem of Phragmén-
Lindelsf, W (z) is then bounded in R. Similarly W’(z) is bounded in R.
Using Theorem 3, from (47), we see that

(48) W(z) - (A4, sina? z + B, cosa'/? z)

tends to zero as z — w on L (&) for some constants 4, and B,. Similarly (48)
tends to zero on L (3) if A, and B, are replaced, respectively, by some con-
stants 4, and 3,. Write

Fi(z) = A;sina? z + B; cosa'/? z, (i =1,2).
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Then

(W(z) = Fi(2))[W(2) = #,(2)]

tends to zero as z—> @ on L( & ) and on L (;3); and since it is bounded in i{,
by another theorem of Phragmén-Lindelst, it tends uniformly to zero as z — .

Thus to any € there corresponds a segment z = x, + iy in R on which
(49) [W(z) = F(2)] |W(2) - Fy(z)]| <e
At every point of this segment either
[W(z) = F (2)| < €2 or |W(z) = F,(z)| < €¥? (or both),

and we may suppose that the former inequality holds at y = «, the latter at y =
B; let y, be the upper bound of values of y for which the former holds; then y,
is either a point where the latter holds, or a limit of such points; hence, since
both factors on the left side of (49) are continuous, both inequalities hold at

Yo- At z = x5 + iy, we then have
(50) | Fi(z) = Fy(2)| < |W(z2) = Fy ()| + |[W(2) = Fy(2)| < 2€V/2,

On the other hand, (49) holds on every segment z = x, + iy if x; is large enough,
and there is a point z = x; + iy, at which (50) holds. Consider an arbitary seg-
ment z = x, + iy. Since F,(z) - F,(z) is a periodic function in x, there is a
point on this segment at which (50) holds. But F,(z) - F, (z) is continuous
and € is arbitary, so that F, (z) — F,(z) = 0 at some point on this segment, and
therefore on every segment. If these points have a limit-point inside R, then
F,(z)=F,(z) in R; otherwise there is a segment on y = & or y = 3 in which
Fi(z)-F,(z)=0, then A; =4,, B, =B,, and hence F,(z)=F,(z) in R.
Thus as z —> @ the function (48) tends to zero on L (&) and on L(f), and
since it is bounded in R, by a theorem of Phragmén-Lindelsf, it tends to zero
uniformly in & <y < 3.

Similarly, as z — @, we see that
W*(z) — aV/? (A, cosa'/? z — B, sina'/? z)

tends to zero uniformly in ot < y < 3.
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