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SPECTRAL THEORY II. RESOLUTIONS OF THE IDENTITY

NELSON DUNFORD

Introduction

In attempting to extend elementary divisor theory to the case of a linear

operator on a complex Banach space one is naturally led to a consideration of

the various equivalent definitions of the multiplicity ι^(λ) of a complex number

λ as a root of the minimal equation of a finite matrix T. Of the numerous equiva-

lent definitions of this integer we have found only one which seems to have

some virtue when applied to the infinite dimensional case. That one is as fol-

lows: v{λ) is the smallest positive integer or zero for which

l < f _ λ r ( λ ) \(ξ-τrι\

is bounded for ξ near λ. Thus the rate of growth of the resolvent

T(ξ) = (ξ- TTι

for ξ near λ determines v(λ). In this paper we consider the problem of deter-

mining conditions on the rate of growth and the mean rate of growth of the re-

solvent which are necessary and sufficient for a complete reduction of a linear

operator on a complex Banach space. What is to be meant by a "complete"

reduction? There are several apparent meanings that might be given to the no-

tion of the resolution of the identity for an operator, all reducing to the clas-

sical one in the case of a finite matrix. For example, are we to require that Eσ be

defined for all Borel sets σ or for σ in some sufficiently large subalgebra; should

it be countably or just finitely additive; should it be bounded or not? All prob-

lems are legitimate and in this paper we have chosen the most restrictive of

all the obvious interpretations. Consequently the conditions found on T(ζ) are

restrictive and the corresponding class of operators is small. On the other hand,

such operators have many important properties not shared by operators outside

this class. Other meanings for the notion of resolution of the identity will be
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560 NELSON DUNFORD

considered in another report.

Before stating what is to be meant by a resolution of the identity for T, let

us recall that if T is a linear operator in the finite dimensional linear vector

space X over the field of complex numbers, and Πj(λ —λj)v* (λ; distinct)

is its minimal polynomial, then there are projections E\i with

Eχ.X = [x\(T-λi)viχ = 0 ]

and such that

If, for a Borel set σ in the complex plane, Eσ is defined to be the sum of those

Eχ. for which λj d σ, then Eσ is a resolution of the identity for T in the sense

that it has the properties ( i ) below:

E £ s = E . , £ , = / - £ , TE = E T
Co CO C C C C

Eσ% is completely additive in σ, x C X

the spectrum of T when considered as an operator in EX is contained

in σ, the closure of o.

If, for a given linear operator T in a complex Banach space, there exists a

family Eσ (σ a Borel set) of operators in X satisfying ( i ) , then Eσ is called

a resolution of the identity for T. Such operators will be called spectral oper-

ators. If T is a spectral operator its resolution of the identity is unique, and

operators f(T) corresponding to scalar functions analytic and single valued on

the spectrum σ{T) are given by the formula

where the integral exists as a Riemann integral in the uniform topology of oper-

ators and the series is convergent in the uniform topology of operators.

The main problem is, however, to determine when T is a spectral operator.

We have endeavored to state conditions on the rate of growth and the mean rate

of growth of the resolvent

T(ξ) = (ξ- TT1
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which are sufficient and in some cases necessary and sufficient for the exis-

tence of a resolution of the identity. In order to do this, we have had to restrict

ourselves to the case where the spectrum σ{T) lies in a sufficiently smooth

Jordan curve. To describe briefly in this introduction the nature of the results

obtained in this direction, suppose that T has its spectrum in the interval [0, l ] .

The underlying assumption is then that for each λ £ [0, l] there is a positive

integer v(λ) and a positive number M(λ) such that

(iii) \ μ v ( λ ) Π λ + iμ)\ < M(λ), 0 < | μ | < 1 .

This alone is far from sufficient to ensure that T is a spectral operator, even

in case

v ( λ ) = M(λ) = 1.

An obvious necessary condition may be stated in terms of the following notion

of residue. Let C be a rectifiable Jordan curve contained in the set where

x* T{ξ)x is analytic. Let σ be the set of all singularities of x* T(ξ)x which

are inside C. Then

(x*,x)σ = J - Γx*T(ξ)xdξ
2πι c

is called a residue of x*T{ξ)x. It is clear that if T has a resolution of the

identity then

(#*, x)σ = x*Eσx,

and hence

(iv) | U * , * ) σ | < K-l**| \χ\, xCX, χ*CX*.

ConditiDns (i i i) and (iv) are very nearly sufficient to ensure that T is a spec-

tral operator. In reflexive spaces they are sufficient. In general though there

are operators satisfying (i i i) and (iv) with

ι/(λ) = M(λ) = 1

and not possessing a resolution of the identity. A final condition which in the

case of a weakly complete space X makes the set of ( i i i) , ( iv), (v) sufficient

for the existence of a resolution of the identity is the following. Let Mχ, Nχ be

zeros and the range of (Γ — λ) , respectively. The condition is:
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(v) For every λ in a set dense in [0, 1] , Mχ + Nχ is dense in X.

In case ι/(λ) = 1, the condition ( iv) may be stated in the equivalent form:

( i v ) ' l . u . b . / l \x* { T(λ + iμ) - T(λ - iμ)\x\dλ < oo.
0<μ<l °

Unless v{λ)-l the condition ( i v ) ' is more restrictive than ( iv) . However

there is a condition analogous to ( i v ) ' which is equivalent to ( iv) . It may be

stated in terms of a decomposition of the resolvent. It turns out that for a spec-

tral T there are two operators U(ζ) and V{ζ) such that

T(ξ) = U{ξ) + V{ξ)

and such that x*V(ξ)x is the derivative of a single valued analytic function

at every point ζ where x*T(ζ)x is analytic, and U{ζ) satisfies the condition

( i v ) ' The condition (iv) may be replaced by:

( i v ) " The resolvent T(ζ) has a decomposition as described above.

In any one of the following situations the conditions ( i i i) and (iv) (or

( i v ) ' or ( i v ) " ) are sufficient for the existence of a resolution of the identity

since in these cases (v) will automatically be satisfied:

( a ) The union of the resolvent set and the continuous spectrum is dense on

[ 0 , 1 ] ,

(b) There is no interval of positive length consisting entirely of points in the

point spectrum of the adjoint.

( c ) X is reflexive.

(d) T is completely continuous.

Let d{ξ) be the distance from ζ to the spectrum σ(T); then a condition

more restrictive than ( i i i ) is

( i i i ) ' \ d m ( ξ ) T ( ξ ) \ < M, n e a r σ ( T ) .

T h i s c o n d i t i o n i s n e c e s s a r y and s u f f i c i e n t for the s i m p l i f i c a t i o n of ( i i ) to

mΊ f^(λ)

( i i ) ' / ( Π = Σ fσ(τ) !—— (T-λrdEλ.

T h u s , in a w e a k l y c o m p l e t e s p a c e , ( i i i ) ' , ( i v ) , ( v ) imply t h a t T i s a s p e c t r a l
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operator satisfying ( i i ) ' In a reflexive space, ( i i i ) ' and (iv) are equivalent

to the statement that T is a spectral operator satisfying ( i i ) '

In case X is not weakly complete, the above statements remain valid pro-

viding the notion of the resolution of the identity is weakened in the following

manner. Instead of requiring that Eσ be defined for all Borel sets, we demand

that it be defined and countably additive on the Boolean algebra determined by

the real intervals. This enables one to define the integral occurring in ( i i ) '

Thus in this extended sense we may say that for an arbitrary complex Banach

space the conditions ( i i i ) ' , ( iv), (v) imply that T is a spectral operator satis-

fying (i i) ' .

Although this is the second in a series of articles on spectral theory, not

much knowledge of the contents of the first [l] paper is assumed or used. We

collect here the terminology, notation, and results from that paper that are used

in the present one. An admissible domain is an open set bounded by a finite

number of rectifiable Jordan curves. It is called a T-admissible domain in case

its boundary is contained in the resolvent set p(T) of T. The class of complex

valued functions analytic and single valued on some T-admissible domain con-

taining the spectrum σ(T) is denoted by F(T) or F(σ(T)). For / ζlF(T),

the operator f(T) is defined by the formula

f(T) = / f(λ)T(λ)dλ,
2πi c

where C is the boundary of some Γ-admissible domain containing the spectrum

of T. The mapping, given by the above formula, of the algebra of analytic func-

tions into an algebra of operators is a homomorphism which assigns the oper-

ators /, T to the functions 1, λ, respectively.

I. Operators with nondense spectra and preliminary lemmas

In this section we consider an operator T whose spectrum σ(T) is nondense

in the complex plane. Two conditions concerning the singularities of the ana-

lytic function (ζ— T)~ιx are introduced (these are 1.7 and 1.14 below). As we

show later, these are necessary conditions for the existence of a resolution

of the identity regardless of the operator T or the character of the space X. The

main purpose of § 1 is to show how near these two conditions come to being

sufficient. Later, in § 2, we shall determine the meaning of these two conditions

in terms of the rate of growth and the mean rate of growth of the resolvent T{ξ)

for ξ near the spectrum. The basic assumption for § 1 is then:

1.1 . A S S U M P T I O N . The spectrum σ(T) of T is nondense in the complex
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plane.

This means that the resolvent set p(T) of T is dense in the plane. The

chief purpose of this assumption is to prove the following lemma which asserts

that the analytic function (ζ — T)"ιx is single valued; if this fact is already

known then Assumption 1.1 may easily, in most of what follows, be discarded.

Since 1.1 is the underlying assumption for practically all of § 1, it will not be

explicitly stated in the lemmas to follow. The other assumptions 1.7 and 1.14,

and others in § 2, will however be indicated parenthetically when they are used.

1.2. LEMMA. For each x ζL X the analytic function T(ξ)x defined on p(T)

has a unique maximal single valued analytic extension.

Let /, g be two vector-valued analytic functions defined on open s e t s D(f),

D(g), respect ively. We suppose that D(f)D(g) D ρ(T) and that

/ ( £ ) = T(ξ)x-giξ) for ξ€p(T).

Let <f0 £ D(f) D(g). By 1.1, there is a sequence of points ξR £ p(T) with

ξn—» ζQ, and so f(ζQ)= g(ζQ). Thus, if p(x) is the union of all open sets

containing p(T) upon which T(ξ)x has an analytic extension, we have uniquely

defined upon p(x) an analytic extension of T{ξ)x.

1.3. DEFINITIONS. By x(ζ) we shall mean the unique maximal single

valued analytic extension of T(ξ)x whose existence is established in 1.2.

The symbol p(x) will be used for the domain of definition of x{ζ), and the

symbol σ(x) will be used for the set of singularities of x{ξ). Thus σ{x) is

the complement of p ( x ) , and ρ(x) D p(T), σ(x) C σ(T).

1.4. DEFINITION. By [x] we shall mean the smallest closed linear mani-

fold containing all of the vectors T{ξ)x, ξ £ p( Γ) .

1.5. LEMMA. For every x £ X we have:

1.5.1. x C[x];

1.5.2. f(T) [x] C [ % ] , fCF(σ(T));

1 . 5 . 3 . x(ξ)C ίx], ξ Cp(x);

1.5.4. [y] C [%], y £ [%].

Let C be a large circle such that

x= — f T(ξ)xdξCίχ];
2πi c
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t h i s p r o v e s 1 .5 .1 . L e t y £ [x] a n d / £ F {σ{T)). S i n c e y may be a p p r o x i m a t e d

by s u m s of the form 2 , Cίy T(ξj)x, f(T)y may be a p p r o x i m a t e d by s u m s of t h e

form

Σ«,r<f,>fli ),- Σα,.J- L!ψψl it,
Δπi A ς • — ς

w h e r e Γ i s c h o s e n , i n t h e d o m a i n o f r e g u l a r i t y o f /, t o i n c l u d e σ{T) a n d e x -

c l u d e t h e p o i n t s ξj. T h u s / ( T ) y £ [x], a n d 1 . 5 . 2 i s p r o v e d . N e x t l e t ξQ £ p(x)

a n d , u s i n g ( 1 . 1 ) , c h o o s e a s e q u e n c e ξn £ p(T) w i t h ξn—> ξ . T h u s

and since [x] is closed we have x(ζQ) C [ # ] . Finally if γ £ [%] we have,

by 1.5.2, T(ξ)yC [x], ξ Cρ(T), and thus [y] C [*]• This completes the

proof of 1.5.

1.6. LEMMA. For x, y ζL X we have

σ(x + γ) C σ(x) u

and for ξ £ p(%) p(y) we have

x{ξ) + y(ξ) = (x +

On the open s e t p(x) p(y), t h e funct ion x(ζ) + y(ζ) i s an a n a l y t i c ex-

t e n s i o n of

x + y), ξCp{T).

T h u s p { x + y ) D p ( x ) p ( y ) , a n d f o r ζ ζ i p { x ) p ( y ) w e h a v e , b y 1 . 2 ,

X(ξ) + y(ξ) = (X + y) {ξ).

The second assumption which is needed in most of § 1 is:

1.7. ASSUMPTION. // σ is a closed set of complex numbers, then the set

[σ] of all vectors x with σ(x) C σ is also closed.

1.8. LEMMA. (Assumption 1.7.) // σ is a closed set of complex numbers,

then [σ] is a closed linear manifold, T[σ] C [σ], and the spectrum of T when

considered as an operator in [σ] is contained in σ.

That [σ] is a closed linear manifold follows from 1.6 and 1.7. Since
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Tx{μ) = T{μ)Tx,

for μ in p ( T) we have p(x) C p(Tx) or σ(Tx) C σ(x), and thus Γ [ σ ] C [ σ ].

Now let Λ; £ [σ] , f C σ ' (the complement of σ in the whole plane ), ζR £ p{ J ) ,

and f —> f. Since for μ £ p (T) we have

it follows that p{x) C p ( T ( ^ ) x ) and thus Γ ( ^ ) Λ ; C [σ]. Since

and [σ] is closed, we have x(ζ) £ [σ]. Thus, since

(f- T)x{O-x,

it follows that

( ^ - T)[σ] = [ σ ] .

To see that ξ — T is one-to-one on [σ], suppose that

(ξ - T)y = 0, y C M .

Then

y(\) = _ L _ and σ(y) C (£) n σ = φ ,
v λ — ς )

the void set. This means that y ( λ ) is analytic for all λ and thus that y - 0.

Plence, if ξ £ σ ' then f — Γ is a one-to-one map of [ σ ] into all of itself.

1.9. LEMMA. (Assumption 1.7.) For every pair σu σ2 of disjoint closed

sets, there is a constant K(σί9 σ2) such that

\x(ξ)\ < K{σltσ3) \x\, ξ € σ l t xC\.o3].

By 1.8, o^ is contained in the resolvent set of T when considered as an

operator in [σ 2 ]• Since x(ζ) is the value of this resolvent at the point ξ £ σ\

when operating on x £ [σ 2 ], the present lemma follows from the preceeding one.

1.10. LEMMA. (Assumption 1.7.) For every x £ X we have T[x] C [%],

and when T is regarded as an operator in the space [x] it has σ(x) for its
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spectrum and p(x) for its resolvent set.

It was proved in 1.5.2 that T[x] C [x]. Let pι be the resolvent set of T a s

an operator in [ # ] . Using 1.5.2 again, we readily show that p(T) C p and

since T(ξ)x is analytic on p l ( s ince x £ [x~\9 by 1.5.1), we have p χ C p{x).

We shall now show that for every y £ [ x ] we have ρ(y) 3 p ( # ) , which means

that for every y £ [%] the function T(ξ)y defined for ξ £ p ( T ) has an ana-

lytic extension to p{x). Elements of the form

L . T { ξ . ) x , ξ. € P ( T )

are dense in [x], and for such y we have, for μ £ p( T),

T{μ)y = ΣαT(^.) T(μ)x.

Thus T(μ)y has the analytic extension 2*QL.T{ξ. )x{μ), μ £ p(x)9 and so,

for y of the form (*), we have p(y) 3 p ( # ) , σ(y) C σ(x). Let y £ [%], and

let yn be a sequence of vectors of the form (*) with yn —> y. Since yn - ym has

the form (*), we have σ{yn - ym ) C σ(%) Let /V be a neighborhood whose

closure N C p{x), so that /V and σ(x) are closed disjoint sets. By 1.9, then,

\yniξ) - ym(ξ)\ = \(yn-ym)(ξ)\ <K(N,σ(x)) \yn-ym\-^o

uniformly for ζ £ /V. The function

= lim

is analytic on /V, and for every ζ £ p(T)N we have

= l im yn(ξ) = lim ( f - TTι yn=(ξ- TTιy.

Hence f(ξ) = y(ξ), ξ £ /V, and p ( y ) 3 p U ) . Final ly we let ̂  £ p(x) and

show that ξ - T is a one-to-one map of [ # ] into all of itself. Let y £ [%]; then

since f £ p(χ) C p ( y ) we have, by 1.5.3 and 1.5.4, y(ζQ) £ [ y l C [ Λ ] .

Since

(ξ- T)y(ξ) = y

for f £ p ( Γ ) , this same equation must hold for ζ £ p ( y ) ; in particular,
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Thus (ξ - T)[x]~ [ x ] . To see that ξ - T is a one-to-one map on [ x ] , let

y £ [*] and (ξQ - T)γ = 0. For large ξ, we have the expansion

hence T (ξ) y = y/ (ξ — ξ^). Thus if y ^ 0 we have σ (y) consisting of the single

point ζ C pix) C p ( y ) , a contradiction since p(y) and σ ( y ) are disjoint.

Thus it has been proved that for every ζ G. ρ{x) the operator <f — T is a one-to-

one map of [ x ] into all of itself, and hence p(x) C pχ C p ( x ) .

1.11. LEMMA. (Assumption 1.7.) //y C lx] then σ(y) C σ(#).

T h i s w a s p r o v e d ( i n t h e f o r m ρ(y) D p ( ^ ) ) d u r i n g t h e c o u r s e o f t h e p r o o f

of L e m m a 1 . 1 0 .

1 . 1 2 . LEMMA. [Assumption 1.7.) The set σ(x) is void if and only if x = 0.

If x = 0 it follows from Definition 1.3 that cr(x) is void. Conversely, if

σ(x) is void then by (7) the spectrum of T as an operator in the space [x] is

void. This, according to Taylor's result [3], implies that [x] consists of the

zero vector alone. Hence x = 0.

1.13. LEMMA. (Assumption 1.7.) Let σ be a set of complex numbers, and

σ' its complement. If x + y = xi + yl9 where σ(x), σ(xi) C σ and σ ( y ) , σ(γx ) C

σ '9 then x — xί, y = y i .

The sets

σγ = σ(x) u σ(xx), σ2 = σ ( y ) u σ ( y χ )

a r e b o u n d e d , c l o s e d , a n d d i s j o i n t . S i n c e , b y 1 . 6 , σ(x + y) C σγ u σ 2 , t h e r e i s

a n a d m i s s i b l e c o n t o u r C c o n t a i n i n g σί a n d e x c l u d i n g σ2 w h i c h l i e s i n p(x + y ) .

T h u s

2πι

Since y(<f) is regular in the closed domain bounded by C, the second integral

on the right side of the above equality is zero. Since σ(x) is contained within

the domain bounded by C we see, from 1.10, that the first integral on the right

of the above equality is equal to x Hence
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2m c

and similarly

Thus x - xγ , y = y t .

In most of what follows we shall need besides Assumption 1.7 the fol-

lowing:

1.14. ASSUMPTION. There is a constant K, depending only upon T, such

that for every pair x, γ of vectors with σ(x), σ(y) disjoint we have

\x\ < K\x + y\.

1.15. DEFINITION. By sί we shall mean the family of all sets σ with the

property that vectors of the form x + y with σ(x) C σ, σ(y) C σ ' are dense in

X. Clearly, if σ £ sχ then the complement σ ' £ sv

1.16. LEMMA. {Assumptions 1.7, 1.14.) For σ £ sχ there is one and only

one bounded projection Eσ on X with the properties Eσx = x if σ{x) C σ;

Eσχ— 0 if σ{x) C σ'. This projection has the further properties that

Eσ + Eσ.= I, EσEσ, = 0, \Eσ\ < K.

Vectors of the form z = x + y with σ{x) C σ, σ{y) C σ ' are dense in X In

view of 1.13 it is permissible to define, on this dense se t , Eσz = x. From 1.14

it follows that | Eσz | <_ K\z\. Now if

zι = xχ + yχ with σ(%j ) C σ, a ( y t ) C σ ' ,

then

* + * ! = * + * ! + y + y t ,

and, by 1.6, σ(% + % t ) C σ, σ ( y + y t ) C σ ' . Thus

Eσ\z + Zγ) = Δ ^ + Eσzl9

and £ σ is additive and continuous on a dense linear set. Thus Eσz is uniquely
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defined for z £ X by the requirements that Eσz is continuous in z. For elements

z of the original dense set we have

E z = Eσx = Λ; = £crZ, where z = % + y, α ( x ) C σ, σ(y) C σ ' .

Thus 2?£ = Eσ It is also clear that

EσEσ, = 0 and £ σ + £ σ , = /.

If Aσ is another bounded projection with the properties

Aσx - x if σ{x) C σ and /icr% = 0 if σ(%) C σ ' ,

then for z - x + y, where CΓ(Λ ) C σ, σ ( y ) C σ' we have i4σz = x - Eσ z, and

hence Aσz - Eσz for every z C Z.

1 . 1 7 . L E M M A . (Assumptions 1 .7 , 1 . 1 4 . ) If σ C s t and f €. F ( σ ( T ) ) , then

f(T)Eσ = £ σ /(Π.

Let z = x + y, σ(x) C σ, σ(y) C σ' Then

By 1.5.1 and 1.5.2, f(T)xC [x]; and by 1.11, σ(f(T)x) C σ{x) C σ. Simi-

larly, σ(/( T)γ) C σ ( y ) C σ ' . So

Eσf{T)z = /(Γ)* = f{T)Eσz.

Since the vectors z are dense, the lemma is proved.

1.18. LEMMA. (Assumptions 1.7, 1.14.) We have σ(Eσx) C σ(x), σ C sί9

χ£X.

We have, by 1.17,

σx = EσT(ξ)x, ξCp(T),

and hence the analytic function T(ξ)Eσx has the analytic extension Eσx(ξ)

for ξ C p(x). Thus p(Eσx) D p(%) and σC^Λ;) C σ(Λ ).

1.19. D E F I N I T I O N . For σ C s t , define Z σ = ^ σ Z .

1.20. DEFINITION. If M is a closed linear manifold in X for which TM C Λί,

we use the symbol σ(M) for the spectrum of T when considered as an operator

in M9 and the symbol p(M) for the resolvent set of T as an operator in M.
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1.21. THEOREM. (Assumptions 1.7, 1.14.) // σ C sl9 then TXσ C Xσ and

σ(Xσ) C σ, where σ is the closure of σ.

It follows from 1.17 that TXσ C Xσ. Let ξ (jL σ. We shall first show that

ζ- T i s o n e - t o - o n e o n Xσ I f x G Xσ, ( ξ - T ) x = 0, t h e n x ( λ ) = x / ( λ - ξ )

since for all large λ we have

(T - £)n

Since x €L Xσ, we have x - Eσx; and since x(λ) is everywhere regular except

possibly at the point ξ C σ', we have σ ( # ) C σ', from which it follows that

Eσx - 0. Thus f- Γ is one-to-one on Xσ. We next show that (ζ- T)Xσ= Xσ.

Let

x C Xσ and Λ;Λ + yn —> Λ:, σ{xn) C σ, σ(yΛ ) C σ ' .

Then

x = Eσx = lim Eσ(xn + γn ) = lim £O-%re = lim xn.
n n n

Let yn = Λπ ( f ) , so that

Jn~ Jm = Xn(O ~ « m ( f ) = (%„ - %m ) ( f ) ,

and hence, by 1.9,

I Jn - Jm I < # i I Λ/i - ΛJm I —> 0 .

Let y = lim yw , so that
n

x = lim xn = lim (ξ - T)yn = (^ - Γ ) y .

It remains to be shown that y C Z ^ . Since ξ €1 p(xn), we see from 1.5.3 that

y n = χ n ( O C[χn]9

and thus 1.11 gives σ(yn ) C σ(xn ) C σ. Thus yΛ = ̂ CTyw C Xσ and y G /f̂ .

We have shown that if ζ ψ- σ then ξ- T is a one-to-one map of ^ σ into all of

itself; that is, σ{Xσ) C σ,

1.22 . L E M M A . (Assumptions 1.7, 1 .14.) If σ C slf then σ(Eσx) C σrσ(x)
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for every x ζl X.

In view of 1.18 it will suffice to show that σ{Eσx) C σ. From 1.21 it fol-

lows that ρ{Eσx) D ~σ\ and thus σ(Eσx) C σ".

1.23. DEFINITION. The symbol s2 will be used for the family of all sets

σ having the following property. For every x £ X and every € > 0 there are

v e c t o r s xl9 x[ wi th σ(xι) C σ(x)σ, σ{x[) C σ(x)σ' a n d \xx + x[ - x\ < 6.

1.24. LEMMA. The family s2 is a Boolean algebra and s2 C s x .

That s2 C sί is clear from the definition of these c l a s s e s . Let σ ι , σ2 £ s 2 ,

x £ X and € > 0. We then have

x = % + x[ + ω x , σ ί ^ j ) C σ{x)σx j σ(x[) C σίΛ ίσx ' , IwJ < e / 2 ;

Λ;^ = %2 + Λ?2 + W2 > σ ( Λ ; 2 ) c ^ ( ^ 1 ) ^ 2 , σ ( x 2 ) C σ(x[)σ2 , I M2 I < 6 / 2 ;

Using 1.6 we see that

σ{xx + x2) C σ(xι) u CΓ(Λ;2) C ( σ ( % ) σ ι ) u ( σ ( % f ) σ 2 )

C (σ(x)σϊ)v {σ(x)σ2)

= σ ( x ) (σί u σ2 ) ,

and

σ(x2) C σ{x[)σ2 C σ(x)σ( σ2 - σ(x) (σx u σ2 )'•

Thus σλ u σ2 £ s 2 . It is clear from 1.23 that s2 is closed under complementa-

tion and that the void set and the whole plane are in s2. Thus s2 is closed

under crosscut; that is, σί σ2 £ s2 if σlf σ2 £ s2, and s2 is a Boolean algebra.

1.25. THEOREM. (Assumptions 1.7, 1.14.) On the Boolean algebra s2 the

projections Eσ have the following properties:

Eσ\ u £ σ 2 = Eσι u σ2 ' E°Ί Eσ2 = E(Tι σ2 ' E'σ = £ σ ' ;

~ /, £ A = 0, where φ is ίΛe void set.
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If the projections Eσ9 σ €1 s2 are ordered in the usual fashion (that is,

Eσχ C Eσi means Eσ2 Eσχ = Eσγ or equivalently Xσγ C Xσ2) then, by defi-

nition, Eσι u Eσ2 is the smallest projection containing Eσ^ and Eσ2 It may be

given by the formula

This formula is readily derived from the relation

E°Ί E(T2 = Eσ2 E σ ι *

which of course will be established as soon as we have shown that

F F - F

Now l e t x C X9 e > 0, σ 1 ? σ 2 C s2 We h a v e

% = xγ + χ[ + u, x[ = x2 + ^2 + ^ , Λ;t = y 2

 + 72* + w9

where \u\ 9 \v\ 9 | M; | < e , and

σ(xι) C σ(x)σl9 σ(x[) C σ(x)σ{,

σ{x2) C σ{x[)σ2 C σ{x)σ{ σ2 C (σί σ2)',

σ(χ2) C σfxpσj C σ(x)σ( σ2 C (σt u σ2 ) ' C (σt σ2 ) ' ,

σ(y2 ) C a(%t )σ2 C σ{x)σι σ2 ,

σ(y2 ) C σ(xί)σ2 C σ(x)σισ2 C (σt σ2)^σι .

P l a c e -z = y 2 + y 2 + %2 + ̂ 2% y = w + f + w;, so that % = z + y and \y\ < 3 e .

Remembering that Eσx = x for every Λ; with σ(x) C σ and Eσx - 0 iί σ(x) C σ ' ,

we see from the above inclusion relations that

Eσx f = Ϊ2 + 72 » £ σ 2 ^ = 7 2 + %2 >

E<*2 E σ l Z = ^ σ l E(J2 Z = ^ σ l σ 2 Z = ?2 '

(E

σι + Eσ2 - Eσx

 Eσ2 ) z = y2 + y2 + x2 = Eσγ u ^ z .

Hence
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\(Eσι Eσ2 - Eσχ σ2 ) χ I = I (Eσι Eσ2 - Eσισ2)y\<

Since e is independent of x9 we have

F F - F - F F

Also,

| ( ( £ σ i u £ σ 2 ) ~ EσιΌσ2)x I < 4K \y\ < UK e,

so that £C Γ l u Eσ2 = Eσ u σ . The remaining conclusions have been proved

in 1.16.

1.26. DEFINITION. (Assumptions 1.7, 1.14.) The symbol s3 will be used

for those sets σ v-s , for which there exist closed sets μ , v KL sΊ with

vn C σ, μn C σ', n = l , 2 , --- a n d

x - l im {Ev + Eu )xy x £ X.
n n n

1.27. LEMMA. (Assumptions 1.7, 1.14.) The family s3 is a Boolean algebra

and 5 3 C $2

If σ C s 3 and μ^, ^ are as in 1.26, then by 1.22 we have

σ(EVjιx) C vn σ(x) C σ σ(x), σ(Eμnx) C μn σ(x) C σ ' σ(x),

and so α C s2; that is, s 3 C 5 2 . It is clear that s3 is closed under comple-

mentation; hence, in order to show that s3 is a Boolean algebra, it will suffice

to show that it is closed under the operation of forming unions. Let σl9 σ2 £ s3

and v(i9 n), μ{i, n), {i = 1, 2; n = 1, 2, ) be closed s 2 sets with v{i, n) C

σit μ(i, n) C σ/ (i = 1, 2) and

) ( i = 1 ,2) .

Then

x
=

 E
v(l,n)

x + E
μ(l,n)

X + u
»'

Thus

£
^'

 X
"

E
μU,n)

X + E
*[

 B
»
 a n d £

μ( 1, B)
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This last fact shows that the sequence vn defined by the next equation has the

property that vn —> 0:

Eι x — E t \E i x -\- E / E x \- v
μ{l,n) v\2,n) μ\\,n) μ{2, n) μ{l, n) n '

Upon substituting the above expression for E / γo into the formula defining

un, we see by using 1.25 that

x = EVγι x + Eμn x + un + vn ,

where

v n = v ( l , Λ ) U v ( 2 , n ) μ ( l , n ) a n d μ = μ { 2 , n ) μ ( l , n ) .

Since i/n, μn are closed s2 sets (by 1.24) with vn C σ t u σ 2, and μrt C σ[ σ2 -

(σ t u σ2 )', it follows that σχ u o2 is an s 3 set, and the lemma is established.

1.28. LEMMA. (Assumptions 1.7, 1.14.) Let σ £ s3, x €. X, e > 0.

there are sets μ, v 61 s2 with μ open, v closed, μ D σ D v, and such that

I Eωx I < e, ω C μ - v, ω C s 2 ;

\LjσX — Cjσ^X\ <. t , μ J Gγ J I/, (Jj ζ._ 5 2 .

Since σ is an s3 set, there are closed sets v, μ' C s2 with

v C σ , μ ' C σ ' , % = £VΛ;-I- E μ*x + u, and | α | < e.

Then

[ ^ /v- ^ ^ji __ E u\ K. K. ζ.

Let ω C μ — v, ω €L s2 . Then

this proves the first conclusion. Now

and since σ — σσχ C μ — v, σγ — σσί C μ — ι̂ , the second conclusion follows

from the first conclusion.
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1 . 2 9 L E M M Λ (Assumption 1 . 7 , 1 . 1 4 . ) // σmy σ C s 3 ; σm C σm + x ( m =

1, 2, ); and σm —> σ then Eσ x —> E^x, x C X.

Let x C X, e > 0 be arbitrary. Let en > 0 and Σ Γ = i e π < 6 Using 1.28,

pick open sets μn G s 2 with μn 3 σΛ and

I Eωx I < €Λ , ω C μ R - σ n , ω C s 2 .

We shall now show that

n
(*) F Ύ I <r V ^ ω C (μi +•••+ μ j - σn, ω

The statement (*) is true for n = 1. Assume that it is true for n and let

so that

ω«= ω [ ( μ ι + + μ^) - σΛ ] + ω ( μ π + 1 -

and ω = ωx + ω2 , where

ω t = ω [ ( μ t + ••• + μn) - σn ] (μ α + ι - σn + ι)', ω 2 =

By our induction assumption we have

n
I 7-1 V *

\Πjω\x ^ ZJ βj>

and since ω 2 C μ^+ j — crn + 1 we have

Since ω t and ω2 are disjoint, it follows that

71+1

\ F r\ <r \ F r\ + \ F *• I <r V

this proves (*) . Now let ξn - μγ + + μn, so that ^ is open, increasing with

n, ξ D σn, and [ £ ω % | < e for every ωC s2 with ω C ^ n - σn. Using 1.28, let
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μ, v £ s2i μ open, v closed, μ 3 o 3 v, and \Eσx — Eσ x\ < 6 for every

σχ £ s2 with μ 3 σt 3 ι/. We have

μ 3 U ξm μ D μ \J σm = μ σ 3 σ 3 y.

Since v is closed, there is an integer k0 such that

k
μ 3 U ξm μ = ^ μ 3 v , (A: > &0 ) .

m = l

Thus

and since ^ μ - σ̂ . C ^ - σ^ we have, from (*) ,

Hence

this proves the lemma.

1.30. THEOREM. (Assumptions 1.7, 1.14.) For each x £ Z ίAe seί function

Eσx is countably additive on the Boolean algebra s 3 .

The conclusion of the theorem means that if σ, σn £ s 3 , σn σm is void for

n £ m, σ — U °̂ σn, then

Eσ x =
re

The lemma is an immediate consequence of 1.25, 1.27, and 1.29.

1.31. DEFINITION. By a Borel algebra of sets we shall mean a Boolean

algebra of sets which is closed under the operation of taking denumerable
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1.32. DEFINITION. The smallest Borel algebra of sets containing the

Boolean algebra s 3 will be called the family of sets measurable T and will be

denoted by m(T).

In part of what follows we shall assume:

1.33. ASSUMPTION. The space X is weakly complete.

1.34. THEOREM. (Assumptions 1.7, 1.14, 1.33.) The function Ee defined

on s3 to the set of bounded projections on X has a unique extension to m(T)

with the properties [the first of which ensures uniqueness):

(i) Eex is countably additive on m(T)9 x £ X;

( i i ) \ E e I < K, e £ m ( T ) ;

( i i i ) Eeι

Ee2 = Eeγ e2> e 1 , e 2 £ m ( Γ ) ;

( i v ) E e χ u e 2 = E e ι u £ β 2 , e ί 9 e 2 G m ( T ) ;

( v ) £e ' = Ee.9 Eσ(τ) = /, £φ = 0, e G m{T), φ void;

(vi) f(T)Ee = Eef(T\ e Cm(T), f€F(σ(T)).

For point s e t s en, e we mean by en —» e or \\n\n en = e that

e = Π U e n = U Π e n ,
m=l n=m m=l ^=m

and we recall that if

then

α u

We define a transfinite sequence of Boolean algebras / 3 0 , βl9 ••• a s follows:

/3Q = 5 3 and ̂ Sα cons i s t s of all e such that there exis ts a sequence

y< a

with en —» e. Thus m(T) - Uγ<ωβγ9 where ω is the first ordinal whose cardi-

nal is that of a nonenumerable class. For each x C X and #* £ Z there is,

according to a well-known theorem of Hahn, a uniquely defined countably
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additive numerical set function m (e, x, x*) on m ( T) such that

m (e, x9 x*) = x*Eex9 e G s 3 = /30, x £ ί , x* G Z * .

We first show that for every x G X and e G m(T) there is a unique vector

xe ζL X such that

x*xe = m (e, x, x*), x* ζl X .

This is true for e G /3 0 . Assume that it is true for e G Uy < α βy and let e G β α ,

en G U y < α βy , en —> e. Then

Since X is weakly complete, there is a vector xe with

x*xe — m ( e, x, x*), x* G X .

This last equation shows that xe is independent of the sequence en—»e and

also is uniquely defined. Next consider the statements:

\ m ( e 9 x , x * ) I <_ K \ x \ I x * I

m (e, αx, x*) - dm (e, x, x*), α scalar.

These relations hold for e G βQ9 and since τn(e, x, x*) is continuous on m(T)

in the topology en —» e it is seen by induction that they hold for any e G m(T).

They show that for fixed e G m(T) the vector x e is linear and continuous in

x; that is, for e G m(T) there is a bounded linear operator Ee on X with £ e x =

x e . Hence we have

x*£ e x = m (e, x, x*), \Ee\ <^ K, e G m ( Γ), x G Z, x* G Z * .

The uniqueness of Ee follows from the uniqueness of m (e, x, x*) asserted by

Hahn's theorem. That Eex is countably additive on m(E) in the strong topology

of operators and not merely in the weak topology follows from a theorem of

Orlicz concerning weakly complete spaces. Banach has restated the theorem of

Orlicz in a form to hold on any Banach space and it reads as follows [2]:

ORLICZ-BANACH THEOREM. // all the partial sums of 2*xn converge

weakly to an element, then the series 2-*xn is unconditionally convergent.
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The countable additivity of Eex is a corollary. For let

enem = Φ J n ^ m, en £ m ( T), e = U en .
n-l

For every set π of integers, let

π € π

Then we have the weak series convergence:

n en

Thus, according to the Orlicz-Banach theorem, 2*E6nx converges uncondition-

ally in the strong vector topology. The sum is, of course, Eex since

x*Eex = Σ x * £ e n « , x* C X*.

T h u s w e h a v e p r o v e d s t a t e m e n t s ( i ) a n d ( i i ) . S t a t e m e n t ( i i i ) h o l d s for e 1

e 2 C β0. We s u p p o s e t h a t

EaEb = Eab, a, b C U βy ,
y < a

and let

a, bn G U βy with bn —> b C βa.
y< α

Then

= m(ό, x, x*Ea) - lim (ό^, Λ;, Λ;*£α ) = lim % * £ a ^ %

= lim x^Eab^x - lim m(abn, x, x*) - m(ab9 x9 %*) =

Thus

£a£fc = £a5 for a C U βγ , b C βa.
y< a

Next choose
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an C U βγ with an —> a C βa.
y<a

Then

x*EaEyx - m(a, E^x, x*) = lim m(an, E^x, %*) = lim x*

= lim x*Eanbx = lim m(anb9 x, x*) = m(ab, x, x*) = x*Ea\)x .
n n

This proves ( i i i ) . Statements (v) and (vi) are readily proved by induction,

and (iv) follows from (i i i) and (v) .

1.35. DEFINITION. If for each e £ 5 , the Borel sets in the complex plane,

there is a bounded linear operator Ee on X, then the function Ee on B to the

ring of operators on X is called a resolution of the identity in case Ee* = / — Ee9

^ e i ^ e 2 ~ ^ e i e 2 ^OΓ e > e * ' e2 ^~ ^ ' a n c ^ x * ^ e % is countably additive on B for
every Λ; £ Z, x* £ Z .

1.36. LEMMA, A resolution of the identity has the further properties

( i ) Eex is countably additive on B, x ζL X

( i i ) s u p \Ee\ < oo
e e B

(i i i) EeιEe2 = £ e i e 2 , £ e i u e 2 = £ e i u £ β 2 , e 1 ? e2 C β

(iv) EQ — Ee*, EΛ — 0, Ep = /, e \L B, φ voiί/, p = ίAe whole plane.

Statement ( i ) follows from the Orlicz-Banach theorem, and ( i i ) from the

principle of uniform boundedness. EA = 0 since Ee is additive in e; hence

/ = EX — Ep. The second part of ( i i i) follows from the first part and (iv ).

1.37. DEFINITION. A resolution of the identity Ee is called a resolution

of the identity for the linear operator T in case

TEe = EeT and σ(EeX) C 7, e € B.

1.38. LEMMA. Let X be weakly complete, and let T be a bounded linear

operator in X whose spectrum is nondense. Then T has a resolution of the

identity if and only if it satisfies the conditions 1.7, 1.14 and:

1.39. For every complex number λ and every e > 0 there is an s3 set of

diameter < e and containing λ as an interior point.

Furthermore, when T has a resolution of the identity Ee it is unique and has
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the following properties:

( i ) if σ is closed, then Eσx — x if and only if σ(x) C σ;

(i i) σ(Eσx) C oO(x\ σ C B, x C X.

To prove the sufficiency of the conditions it is, in view of 1.34, sufficient

to show that σ(Xe) C e, e C B, where Xe = EeX. Let ξ be a complex number

not in eσ(T), and with each λ G eσ(T) associate an s 3 set σ\ whose diameter

is less than 1/2 the distance from ξ to e~σ{T) and such that λ is in the in-

terior of σ .̂ A finite number σl9 ••• , σn of these sets Ov covers e~σ(T), and

since s 3 is a Boolean algebra the set σ= U?= 1 σt £ s 3 . Since s 3 C s t , we see

from 1.21 that σ(Xσ) C σ. But since

^β = EeEσ{τ) = Eeσ(τ) C £ - σ ( τ ) C Eσ ,

we have Xe C Z σ Since f 0 σ7 and σ ( Z σ ) C σ7, the operator ξ - T is one-to-

one on Λ^ to all of Xσ, and hence likewise on the invariant subspace Xe . Thus

ξCp(Xe), (Tσ(T)V C p(Xe), JDJa(T) D σ(Λβ).

It will now be shown that if T has a resolution of the identity Ee, then it is

unique. Let Λe also be a resolution of the identity for 7\ Let σ, σί be disjoint

closed sets of complex numbers. Since σ(Eσ^X) C σv the function T(ζ) Eσ^x

analytic on p(T) has an analytic extension to σt'* Hence also the function

T(ξ)ΛσEσιx = AσT(ξ)Eσιx

analytic on p(T) has an analytic extension to σ[. Since σ(AσX) C σ, the

function T(ζ) AσEσ x has an analytic extension to σ ' Thus

p(ΛσEσ x) D (j[ u α ' = ( σ 1 σ ) / = the whole plane;

that is, σ ί ^ f i ^ Λ ) is void. By 1.12 we have AσEσχ = 0. Likewise Eσχ Aσ= 0.

Now there are closed sets σΛ C σn + ί —>σf, and hence Aσnx —> ^σ-^ = A^^x.

Then

0 = £ σ i ( / - . 4 σ i ) = (l-Aσι )Eσγ
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Similarly,

Aσχ = Eσι Aσi - Eσι.

Since Aσx and Eσx are both countably additive on B and coincide for closed

sets σ, they must coincide for all σ C B. We shall now show that if T has a

resolution of the identity Ee9 and σ is closed, then Eσx = x if and only if

σ(x) C σ. Let σ be closed and £ σ % = x. Since σ(Xσ) C σ, the function

T(ξ)Eσx= T(ξ)x

a n a l y t i c on p(T) h a s an a n a l y t i c e x t e n s i o n to σ'. T h u s p(x) D σ ' , σ(Λ ) C σ.

C o n v e r s e l y , l e t CΓ(Λ ) C σ, where σ i s c l o s e d . L e t σn be c l o s e d , σ^ C σn+ί — >

α ' , s o t h a t

x = Eσx + E£x - Eσx + Eσ*x = Eσx + lim Eσnx.

Since σnσ(T) and σ are disjoint, closed, and σnσ(T) is bounded, there is an

admissible contour Cn surrounding σnσ(T) and excluding σ. Also, since

we have

-'- ^7 ί. <^*><ί'«-^r

However, since σ(x) C σ, the function Λ ( ^ ) is analytic on and within Cn.

Thus

Eσnx = 0 and x - Eσx.

In this proof we have used the equality

n = Eσnx(ξ),

which is clear from 1.2 since both functions are analytic extensions of

on p( T). We shall next show that σ(Eσx) C 'σσ(x) for every σ C B and x C X.

Since σ ί ^ ) C σ7, it is clear that σ(Eσx) C "σ. Since
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for ξCp(T),

we have p(Eσx) 3 p{x), σ(Eσx) C σ(x). Thus σ(Eσx) C Ίjσ{x). The neces-

sity of 1.7 follows immediately from ( i ) . Next we shall show the necessity of

1.14. As pointed out in 1.36 ( i i ) it follows from the principle of uniform bound-

edness that

sup I Ee I = K < oo.
eβ B

L e t σ=σ(x), σχ = σ ( y ) be d i s j o i n t . T h e n , by ( i ) , Eσx = x; a n d , by ( i i ) a n d

1.12, Eσy = 0. T h u s

| * | = \ E σ ( x + y ) | < K \ x + y \ .

Finally we prove the necessity of 1.39. Let σ be a circle and its interior.

Let σn be closed and σn C σn + t —» σ'. Then Eσx + £ α % —>%. Since

σ(£σ%) C σσ(%) and σ(Eσnx) C σnσ(Λ) C σ'σU),

we see that σ is an s3 set

II. Operators whose spectra lie in a rectifiable Jordan curve

In order to apply the final lemma of § 1 we find it necessary to restrict

further the nature of the spectrum σ(T). Later we shall be interested in specific

cases where the spectrum lies either in a straight line segment or in a circle,

and these two cases may be treated simultaneously by restricting the spectrum

in the manner described in the next paragraph. When this is done and a rate of

growth is imposed upon the resolvent (Assumption 2.1), it is possible to give

conditions, of a nature much more applicable than those of the preceding lemma,

which will ensure the existence of a resolution of the identity. This may be

accomplished in a variety of ways, and some of the sets of conditions given

are necessary as well as sufficient.

Throughout § 2 it is assumed that the spectrum σ(T) is contained in a

closed rectifiable Jordan curve Γ o . In order to be able to manipulate in a fairly

simple fashion the analytical operations involved, we suppose further that

Γ o is embedded in a one parameter family Γ g ( ~ δ 0 <C δ < δ 0 , 0 < So < 1/2) of

closed rectifiable Jordan curves, with Γ§ interior to Γ§ for - δ 0 <̂  8ί < δ 2 <̂

δ Q . The curve Γg is defined by a function

ξ = ξ(λ, δ ) , - 1 < λ < 1, with £ ( - 1 , δ) = ξ{I, δ ) .
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We suppose that the parameter δ has been chosen in such a way that | δ | is the

distance measured along the arc <f(λ, δ) from the point ζiλ, 0) to the point

ζ(λ9 δ), and that the arcs ζiλ, δ), — δ 0 <^ δ <_ δ 0 , for different values of λ, do

not intersect. Finally we suppose that for each δ €- [—δo,δo] the point ζ(λ, δ)

traces, as λ increases from — 1 to +1, the curve Γg in a counterclockwise di-

rection.

2.1. ASSUMPTION. The spectrum σ(T) of T is contained in the rectifiahle

Jordan curve Γ o described above, and the rate of growth of the resolvent T(ξ)

for ζ *= ζ(λ, δ) near the spectrum is restricted by the condition

l i m s u p \3v{λ)T(ξ)\ < oo, - 1 < λ < 1 ,
8-»o ~

where v(λ) is a nonnegative function defined for - 1 <. λ <̂  1.

Since the function v(λ) may be increased without destroying the above

property, and since δ 0 < 1/2, every operator T satisfying 2.1 has an index

function ι^(λ) according to the following definition.

2.2. DEFINITION. Any nonnegative integer-valued function v(λ) satisfying

the condition

δ 0 ,

will be called an index function for J .

It might be pointed out that if ϊ^(λ) is defined only on the set A C [—1, l ]

consisting of all those λ for which <f(λ, 0) G σ(T), and the above inequality

is valid for λ £ A, then T has an index function. It is not assumed that ι^(λ)

is bounded, and it is erroneous to conclude that T has a bounded index function

providing ϊ^(λ) is bounded on A. Elementary operators exist for which every

index function is unbounded and at the same time every index function is bound-

ed on A.

2.3. LEMMA. (Assumption 2.1.) There is an index function v{λ) for T with

the property that every interval of positive length contains an interval of posi-

tive length upon which v{λ) is constant.

Let Δ be a closed subinterval of [ — 1, 1 ]. Let Δ r t be the set of all λ G Δ

such that

| δ π T(ξ)\ < 1, 0 < | δ | < δ 0 .
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Since for fixed δ ̂  0 the point ξ = ξ(λ, δ), and thus T(ξ), is continuous in

λ, it follows that ΔΛ is closed. By 2.1 we see that Δ « UΔn, and thus the

desired conclusion follows from the category theorem of Baire.

2.4. LEMMA, (Assumption 2.1.) Let v(λ) be an index function for T: 0 <

δ <̂  δ o ; λ t , λ2 C [-1, 1]; ^ = ζ(λl9 0), <f2 5= ξ(λ2, 0) distinct points of Γo

cm</ î i = vίλi ), ι̂ 2 = ̂ (λ 2 ). ί/βί C(λ!, λ2 ) &e ίAe rectifiable contour {oriented

counterclockwise) composed of the following four arcs. There are two cases:

If λχ < λ2 the arcs are

ξ(λί9 μ\ - δ < μ < δ; ξ(λ2, μ\ - δ < μ < δ;

<f(λ, δ), λt < λ < λ 2 ; αwrf ^ ( λ , - δ ) , λx < λ < λ 2 ;

whereas if λ2 < λ t we wse ίAe arcs

<f(λi, μ), - δ < μ < δ; ^(λ 2 , μ), - δ < μ < δ;

f (λ, δ), λ ^ ( λ 2 , λ j ; and ξ(λ, δ),

Lei P ( ^ ) 0€ a polynomial in ξ. Then

/ ( λ , λ 2 ) = J _ / P(ξ)(ξ~ξι)
Vι(ξ-ξ2)

V2 T(ξ)dξ

2πι ClΛι,Λ2)

exists as a Riemann integral, is independent of δ, and has the properties

lim / ( λ p λ ^ - O , σ ί/Ui , λ2)%) C [ξx, ξ2],

G<|λ2-λ1)-*0

where [ζί9 ^ ^ i S ^ e closed subarc of ΓΘ consisting of all points of Γo which

are inside or on the contour C{λί9 λ2 ).

The integrand is defined and continuous at every point of the contour C ( λ 1 ,

λ2 ) except at the points ξx and ζ2. Since v ( λ ) is an index function for J, the

integrand is bounded on the curve C ( λ 1 , λ 2 ) . Hence / ( λ ι , λ 2 ) exists. It is

clearly independent of δ since the integrand has its only singularities on the

curve Γ o . Now let λ t < λ2 so that C(λl9 λ2 ) consists of the arcs AB, BC, CD,

DA, where A, B, C, D are given by the complex numbers

ξ(λ2, -8), ξ(Xlf - δ ) , ξ(λιt 8), ξ(λ2, 8).

Let
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K = U . b . \P(ξ)\, e C Γ S ( ) ; K δ = l u b. \T(ξ)\, ξ€Γ$.

Let 0 < 6 < δ 0 , 8 = β/2, and let y e be such that for 0 < λ2 — λĵ  < y€ we have

the lengths of the arcs AB, CD, and ξγ ξ2 (on Γ o ) all less than 8 and also

less than e/K(8). Then the integrand f(ξ) defining ϊ(λl9 λ2 ) for ξ= ξ(λ, μ)

satisfies

\ f ( ξ ) \ <K\ξ-ξ2\
v* | μ | * > \ T { ξ ) \ <K \ξ-ξ2\

V\ ξCBC.

Since, for ζ £ BC, we have

I ξ- ξ2 I < I & - ξι I + I ξι - ξ\ < δ + μ < 2δ < 1,

it follows that for ζ C BC, and likewise for ζ ζL DA, we have the bound

\fU)\ < κ .

For ζ on AB or CD, we have

\f(ξ)\ <κκs \ξ-ξ1\
v> \ξ-ξXι <κκs.

Thus if 0 < λ2 - λ t < γe , then

\I(\lt λ a ) | < — [4δK + 2KKS e/Ks] = 2Ke/π.
2 77

Now let % £ - Z , η €L p (T), and 7/ outside of C ί A ^ λ 2 )• Then

T ( η ) l ( λ ι , λ 2 ) x

2πι c(λi,λ2)

2ni ' "c{λϊ,λ2

ί - ί i ) (^~^ 2 ) ( T ? - ^ ) T(ξ)xdξ,
i fc(λ,,λa)

a n d t h e l a s t i n t e g r a l g i v e s a n a n a l y t i c e x t e n s i o n o f T ( η ) I(\l9 λ 2 ) x f o r a l l

η o u t s i d e C ( λ 1 , λ 2 ) .
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2 5. LEMMA. (Assumption 2.1.) The operator T satisfies the conditions

1.1 and 1.7.

Condition 1.1 clearly is satisfied since a rectifiable Jordan curve is non-

dense in the plane. To prove 1.7, let σ be a closed subset of the spectrum,

xn £ [cr], xn —> x. We make an indirect proof by supposing that there is a point

ξ £ σ{x)σ'. According to the Heine-Borel theorem there are closed disjoint

subarcs Δ l f , Δp of Γo with σ C Δ = Δt u u Δp and ξ £ Δ'. Let

- 1 < λί < μx < λ2 < μ2 < . . . <λ p < μp < 1

be such that the arc Δy, (/ = 1, . • , p) is defined by ζ(λ9 0), λy <_ λ <̂  μy. Let

Cj - C(λj, μj) as defined in 2.4. Since xn(ζ) has its singularities in the set

Δ, we see that

p

•L v ς - £ , ) vς-ς,-) ^^vς ας = 0,

where

and C is any contour of the form C— C(\l9 λ2 ) providing [λί9 λ 2 ] is disjoint

with Δ. Since, by 2.4,

we have,

p f ί Π

Since the convergence, as n—>oo, of the integrands on the right side of the

above equality is bounded, we may in this equation replace xn by x and conclude

from 2.4 and 1.6 that
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σ / ή ( Γ - ς ) v ( λ y ) ( T - ζ . ) v < ^ x \ C Δ .

The desired contradiction will be obtained as soon as we show that the above

inclusion implies that σ(x) C Δ . But this implication follows immediately by

induction from the statement

σ ( z ) C σ ( ( ξ - T ) z ) u ( ξ ) ,

which is verified as follows. Since

T ( μ ) z = ( ξ - μTl \ T ( μ ) { ξ - T ) z - z \ , μ + ξ,

any p o i n t μ other t h a n μ = ζ t o w h i c h T(μ) {ζ — T)z h a s an a n a l y t i c e x t e n s i o n

m u s t be in p ( z ); t h a t i s ,

p ( ( ξ - T ) z ) C p ( z ) u ( ξ ) .

Thus

σ((ξ- T)z)D σ(z) n (ξ)\

2 . 6 . LEMMA. {Assumption 2 .1.) L e i v ( λ ) 6e a n mc/ex function for T. For

every complex number ζ and every nonnegative integer n, define

! " = £ ί(T - ξ)n x = 0 ] , 31" = (T - ξ)nX.
ς x ζ

Then for ξ = ξ(λ, 0) we have

Let <ft = ^(λ, δ); then

Now assume, for the purpose of induction, that (the preceeding identity is the

case when / = 1)

= ( ξ - ξ ι v τ { ξ x ) + ( ξ - ξ , ) H + ( ξ - ξ ι r 2 ( ξ - T)
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Multiplying this by ζ — T, we have

(ξ- τy+ι τ(ξι) = (ξ-ξ,)'

and hence

( * ) ( ξ - τ y +

,) + n + (ξ-ξ,)'-1 (ξ

- ξt)(ξ- τyι + (ξ

- TV

N o w in ( * ) p u t / = i ^ ( λ ) , a n d o p e r a t e on a v e c t o r x G SJt^' ' + ι . We g e t

T(ξt)x

-1x+ {ξ- TV(λ)x.

If we let 8 —> 0, then ξx —> ζ; and sinc^ 8 measures the arc ζζί9 we have

\U- ξι)

This shows that * C l ^ ( λ ) . Thus

J r m V(λ)

and hence

Wpλ> = Vξ, n > i/(λ).

Using (*) again except now with x arbitrary, we may write

\ζ — J- ) x - \ζ - ί ) i \ξι)x + U\o),

where 0(8) is a vector which approaches zero with 8, Thus

and
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2.7. DEFINITION. (Assumption 2.1.) Let v(λ) be an index function for T.

As shown in 2.6, the manifolds Έiϊ™ and 31!?™ are independent of the index

fi (λ) Th ll h f h d d S 3function v(λ) . They will henceforth be designated by the symbols SL , 31 ,

respectively.

Of the three principal conditions of Lemma 1.38, namely 1.7, 1.14, and 1.39,

the condition 1.7 has already been shown (by 2.5) to be a consequence of 2.1.

Neither one of the other two conditions is a consequence of 2.1 alone, and we

concentrate our attention now on restating 1.39 in a more applicable form. The

following assumption 2.8, which may be used to replace 1.39, turns out to be

necessary as well as sufficient. It has the disadvantage of not always being

easily applicable. It should be noted, however, that in the case of operators

with only continuous spectra it is trivially satisfied. Or more generally, if every

subarc of Γo contains points either in the resolvent set or in the continuous

spectrum then 2.8 is automatically satisfied.

2.8. ASSUMPTION. (See Assumption 2.1.) For every ζ in a dense set on

3ΪL. + 31*. is dense in X.

2.9. LEMMA. {Assumptions 2.1, 1.14.) The set of points ξ on the curve

Γ o for which ϊ l . ?L ^ 0 is nondense on Γ o . Moreover, 3ΪL 31^ = 0 for every

ζ, interior to a subarc of Γ o upon which some index function is constant. For

such ξ, the set W^ θ 31^ is closed. Thus if 2.8 is satisfied then

X,

for every ζ in a set dense on Γo

In view of 2.3, the first statement is a consequence of the second. Ac-

cordingly, let v(λ) be an index function which is constant on the interval

[ λ l f λ2 ], and let ξ = ξ{λ, 0) where λ t < λ < λ2 . Let

0), ς = ξ(μn,O),

where

λ i < λΛ < λ < μn < λ2 and λn —>λ, μn —
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Take P (ξ) = 1 in 2.4, so that

Thus, it is seen from 2.4 that the vector {T - ξ)2v'x is the limit of vectors

xn = /(μ n , λn)x and £ C p ( * r c ) Thus 2.6 and 2.7 show that every vector

x G JL is the limit of a sequence I xn \ with £ G p (*„ ). Now if x G 1^ 3 ^ we

have ( ϋΓ - £ ) v Λ; = 0, and hence σ(x) C ( £ ) . If f C p f ί t J and xn —> x, then

ξC pi-x^l a n ( l , by 1.14,

| * | < K \x - * J - ^ 0 , * = 0, and Wξ fίξ = 0.

Finally we show that 5BL θ Jl^ is closed. Let

*n + 7n —>2» where xn C 1^, yΛ G ^ .

Since yn - ym C Sft̂  , there are vectors α Λ m with

I yΛ ~ 7m - ttnm I < (nrn)'1, ξ G p ( α Λ m ) .

By 1.14, then,

\xn - xm\ < & \xn ~ xm ~ unm I < K H xn ~ ^m + Jn ~ Jm I + U m ) " M — > 0 .

2.10. LEMMA. (Assumptions 2.1, 1.14, 2.8.) For every pair ξ9 ξ of distinct

points in a set dense on Γ o we have

and 31 ξ 3lξ is the closure of the manifold ( T - ^ ) v ( T — ί ) v i I , where

v = i^(λ), v t = v ( λ t ), ^ = f (λ, 0), ξχ = ^ ( λ i , 0), arec? v ( λ ) is an index function

for T.

For every ξ in a se t Γ dense on Γ o we have, by 2.9, projections A- and

^ ' with

Aξ + ^ = /, ^ Y = fflf , 4 ' ^ = 31 .

Since for μ G p{T), we have Γ ( μ ) ϊ l f C ftξ and ^ ( μ ) ! ^ C Έξ$ it follows

that Γ(μ)/4^Λ; = A^ J(μ)%, and thus p ( * ) C p W*. % ). Since
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(T -ξ/1 A = 0,

we have σ{Aξ x) C (ξ ), and hence ξ C ρ(Aξ x) C p(A A^^x). Since

σ(A^y) C iξ), we have y €- X; then A^ Aξ^ = 0 by 1.12 and 2.5. Similarly

AξχAξ = 0. Thus

/ = (Aξ + ^ ) ( ^ + ^ ) = Aξ + ^ + ^ ^ ,

and this proves the first statement of the lemma. Now let x G 5ft/ ίft^1 , so that

% = ( T - £ ) v y , y = i . y + A ' y, x = A* x.
ςi g l g l

By 2.7 there are vectors vn with (T - ζ ) ι vn —> At y and

x= lim ( Γ - ^ ) v [ / ί , y + ( Γ - ξYι vn],
n ςι ι

* = 4 ' * = lim ( Γ - £ ) V ( Γ - ^ ) V l ^

Thus 5ft̂  ίft^1 as well as its closure 5ft̂  5ft/r is contained in the closure

( Γ - ^ ) v (T - ξx)
VιX.

Obviously {T - ξ)v ( Γ - ^ ) ι X C 5ft̂  5ft̂  , and so the proof is complete.

2.11. THEOREM. (Assumptions 1.14, 2.1, 2.8.) Every Borel set is measur-

able T; and if X is weakly complete then T has a resolution of the identity.

Let - l < C ί < β < y < δ < l , and choose λlf λ2> μί9 μ2 so that

α < λι < λ 2 < βf γ < μx < μ2 < δ ,

and such that there is an index function ϊ^(λ) which is constant on the intervals

[λ l f λ2 ], [μi, μ2 l This is possible in view of 2.3. Since an index function

may be increased without destroying the property of being an index function, we

shall suppose that v(λ) has the constant value v on both of the intervals

[λl9 λ 2 ] , [μι$ μ 2 ] . Let
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ξι = £ ( λ l f 0), ξ2 = ξ(λ2, 0), ^ = ξ(μι, 0), ζ2 = £ ( μ 2 , 0 ) ,

and

Then for appropriate choices of the polynomial P {ζ) in 2.4 we have

f(T) = / ( λ l f λ 2 ) + Πμl9 μ2) + /(μ 2 , λx ) + /(λ 2 , μ t ) .

By 2.10 there are points λ, μ with λ t < λ < λ 2 , μ1 < μ < μ 2 , and such that for

f = ξ(K 0), C = ξ(μ, 0) we have

(*) ! ^ θ l ζ Φ Si ftζ = /Y.

Now if we let λx —> λ, λ2 —> λ, μ t —> μ, μ2 —> μ then by 2.4 we have

/ ( λ l f λ a ) — * 0 , I(μl9 μ 2 ) — > 0 ,

and

( Γ - ξ)2v (T - ^ ) 2 ^ = lim f(T)x = lim {/(μ2, λx)x + /(λ 2 , μ t ) x l .

Also, by 2.4, we have σ ( / ( μ 2 , λ t )%) C [ ^ , ^ ] and σ ( / ( λ 2 , μ t )x) C [ξ2, ζχ ],

where, for two points ξ'= ξ{λ% 0), ξ" = f (λ% 0) on Γ o, the symbol [ξ'f ξ" ]

means the closed subarc of Γ o defined by ξ (λ, 0), λ ' < λ < λ " , if λ ' < λ ' ' and

closed subarc <f(λ, 0), λ ^ ( λ " , λ ' ) , if λ" < λ ' .

Since 2 v ( λ ) is also an index function, it is seen from 2.10 that 3^ 9L is

the closure of ( T - ξ)2v (T - ζ)2vX, and hence every vector in 9L ?l. is

the limit of a sequence of vectors of the form x + y with σ(x) C [ξ, ζ]9 σ(y) C

[f, ζY. Since σ ( Λ ) C (^) if x € Wξ, we have, from 1.6 and (*) above, the

fact that every vector in X is the limit of a sequence of vectors of the form

x + y with σ(x) C [ξ, ζ]9 σ(y) C [ξ, ζY. This shows that [ξ, ζ] is an sx set

for T (see Definition 1.15). The above argument shows also that [ ζ, ξ] is an

s t set for T. We shall next show that σ = [^, ^] is an s2 set for T. If the in-

tervals ( α , β) and ( α , 8) that we started with above are replaced by the in-

tervals ( λ - 1/rc, λ) and (μ, μ + 1/n), we see that there are points λn9 μn, with

λ - l/n < λn < λ, μ < μn < μ + 1/n, such that σn s [^ , ^ ], where
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is an sι set. Now let

y=(T- ξ)2v (T - ζ)2vx, yn = (T - ξ)v (T - ξn)
v (T-ζ)v (T-ζnVx,

so that yn —» y, and for appropriate choices of P (ζ) in 2.4 we have

ϊn = Πλn, λ)x + I(λ, μ)x + I(μ, μn)x + I(μn9 λn)x.

Thus by 2.4 we may write

y = /(λ, μ)x + I(μn, λn)x + zn, where zn —> 0.

Now from 2.4, 2.5, and 1.16 we see that

EσI(λ, μ) = /(λ, μ), EσI(μn9 λn) = 0,

EσnI(λ, μ) = 0, EσJ(μn9 λn) = I{μn, λn )

and since | £ σ ^ | _< 7( we may write y = Eσy + Eσ y + vn where vn —> 0. Since

y is an arbitrary point in the manifold (T - ξ)2v (T - ζ)2vX whose closure is

31., ?L , and since

\Eσ +EσJ<2K,

we have

y = E y + lim £ σ v

for every y C 3^ ?lζ. For x G i Φ t we have σ(%) C σ; and so, by 1.16,

we have Eσx = x, Eσnx = 0. Hence, it follows from (*) that

( ** ) x = Eσ x + lim £ σ %, x C Z ,
σ

Now 2.5 and 1.22 show that σ(Eσx) C σσ(x), σ(Eσ x) C σ^σ(Λ ) C σ'σ(x),

so that σ is an s 2 set. The same argument shows that [ζ , ζ ] = σn is an s 2 set

and hence (**) shows that σ is an s 3 set for T. Thus we have proved that if

- l < ^ α < β < y < δ < l there are points λ, μ with α < λ < β, γ < μ < δ,

such that σ = [<f(λ, 0), £(μ, 0) ] is an s3 set. This clearly implies the state-

ment 1.39; hence every Borel set is measurable T. Theorem 2.11 then follows

from 1.38.
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III. The operational calculus

3.1. DEFINITION OF / f(λ)dE^. In what follows we shall be concerned

with an integral, J / (λ) dEχ, where Ee is the resolution of the identity for an

operator T. The functions / to be integrated are either scalar- or operator-valued;

they will always be continuous, so that the Riemann integral will suffice.

Although the applications to be made are to operators satisfying the preceding

restrictions, it seems desirable to word the definitions and elementary properties

of Jf(λ)dEχ in terms of an arbitrary operator T on an arbitrary space X subject

to the single restriction that T has a resolution of the identity. Since σ(T) is

bounded, it may for any 8 > 0 be partitioned into disjoint, nonvoid Borel sets

Δ l f , Δ n whose diameters are less than δ. The norm | π \ of such a partition-

ing π = ( Δ ι ? , ΔΛ ) is I 77 I = max/ diam Δ;. If for a scalar- or operator-valued

function /defined on σ(T) we have the sums 2*π f(λi)E/±. converging, as

I π I —» 0, to a limit independent of the choice of λ,; £ Δj, the function / is

said to be integrable. Of course the convergence of 2^-π /(λj) Ef\ki as | π | —>0

may be in the weak, strong, or uniform topology of operators; but for the func-

tions we shall integrate, it is always in the uniform topology of operators, so

we need not concern ourselves here with the other cases. The integral is de-

fined by

J S lim

I 77" I —» 0 π

and for any Borel set σ in the plane we define J f(λ)dE\ to be Eσjf(λ)dEy

3.2. LEMMA. // for each e in a Borel algebra β there is a bounded linear

operator Ae in the space X such that x*Aex is countably additive on β for each

x £ X, x* £ X*, then there is a constant v{A) such that

2 I x*Ae.x I < v (A ) I x I I x* I, e, e ; void for i φ /, et £ β.
i

Let π ~ \ βj } be a finite or enumerable sequence of disjoint elements in β.

For each x £ X, x* £ X , define Uπ(x, #*) as the point in the complex Banach

space *tι (the space of absolutely convergent sequences) given by the sequence

\x*Ae.x\ (if the sequence { e, \ is finite we extend it to an infinite sequence

by taking en to be the void set for all large n). For fixed x, π, the function

Uπ(x, #*) is additive, homogeneous, and closed; hence V^ix, x*) is continuous

in #*. Similarly, Uπ(x, x*) is continuous in x for fixed #*, π. Thus for each

77, Uπ{x, x*) is simultaneously continuous in x, %*. Since the numerical function
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x*Aex is countably additive on /3, we have

(*) sup \Uπ(x9 x*)\ < oo, x £ X, x* £ X*
77

Let Zn be the set of points (x, x*) in the Cartesian product space Z = X x X*9

where | Uπ(x, x*)\ <^n for every π. Since Uπ(x, x*) is continuous in (x, x*)9

Zn is closed. From (*) we have Z = U Zn, and so the Baire catagory theorem

gives an integer n0, a point (xθ9 x*) £ Z, and an r0 > 0, such that

uπ v x, x ) I \ no > ^J I % *o I ^ Γo» I % ~" o I °"

Now if y £ X, y* £ Z , and | y | , | y* | < r0 , we have

^TT' J 7 / ~ ^TΓV^O 7> %

O 7 ' ~ uπ^xo 7> ^Q /

= Uπ(xOf x* - y*) + Vπ(xQ9x*)f

a n d I Uπ(y, y") < 4 n o . T h u s if ι^(^l) = 5rc o /r^ , w e h a v e

| £ / w ( y , y * ) | < *U)\y\ \y*\.

3 . 3 . L E M M A . Every continuous scalar function f on σ(T) is integrable, and

< m a x \f(λ)\v(E)9

λβσ{T)

<^ sup I /(λ) I v (E ) ,
λeσ

where v(E) is the constant of 3.2. Also if (X is an arbitrary parameter and

/(θί, λ ) is continuous for λ £ σ(T) uniformly with respect to (X, then the sums

2*77- /(CC, λi)Efc. for a partition π - ( Δ j , , Δ Λ ) , λ t £ Δ t , converge, as

I 771 —> 0, uniformly with respect to (X.

For two partitions TΓ = ( Δt , , Δ^ ), π' = (Δ [, , Δ^ ) of σ ( Γ), and for

λj £ Δj, λy'£ Δy (i = 1, , 7i, 7 = 1, , m), we have

m n m

:7λi)E^. - Σ f(&f λf)EΔ'j = Σ Σ f /(α» λj) - /(α, λpl^ΔjΔ/
7 = 1 i=i /=1
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If for 6 > 0, δ{β) > 0 is chosen so that

I /(cc, λ) - /(oc, λ') I < e for I λ - λ'| < δ(e),

we have, by 3.2,

Γ f(a,λi)EA. - £ /(α,λ/)£Δ. e « ( £ ) , α , | π |, \π'\ < δ(e)

/(α,λ t )£Δ. < max | / ( d , λ ) |

and

< sup
λβcr

this proves the lemma.

WΊiile in our final results the only operator-valued functions we shall have

to integrate are of the form ( Γ ~ λ / ) Λ / ( λ ) , where / is a scalar function, it

will, during the course of the proofs to follow, be necessary to integrate func-

tions in a more extensive class. Accordingly, we consider functions of the fol-

lowing type. Let Z)t be an open set containing the closure D of an admissible

open set D 3 σ(T). Let C be the boundary of D. Let /(&, λ) be a scalar func-

tion defined for (X C Di9 λ C σ( Γ), continuous similtaneously in both vari-

ables over their respective ranges, and analytic for CC £ Dx uniformly with

respect to λ G σ( T); that is,

/(α + 77, λ) - / ( α , λ) <J/(α,λ)

uniformly with respect to λ £ σ(T). Because the continuity in λ is uniform

with respect to α on C, the operator-valued function

f(T,λ) — jΓ
2firi c

depends continuously on λ. It is this type of continuous operator-valued func-

tion defined by a scalar function /(θC, λ) whose singularities in Ot stay uniformly
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away from σ(T) as λ varies over σ(T) that we shall be integrating. For the

sake of brevity we shall call functions /(α, λ) of the above type T-uniform.

3.4. LEMMA. Let /(α, λ) be T-uniform. Then f(T, λ) is integrable, and

for every Borel set σ we have

ff(T,λ)dEχ = — f (ff(0L9λ)dEλ)T{0L)d0L.
σ Λ 2πi C σ A

Let π = (Δj , , Δn), λ( C Δj, be a partition of σ( Γ). Then

Σf(T, λ,)EA = Σ ( - i - / /(α, λ^
j ' j \ Zπi c

) Γ(α)</α.

The desired results follow from 3.3.

3.5. LEMMA. Let /(α, λ), g(α, λ) be T-uniform. Then f(&, λ)g(α, λ) is

T-uniform, and for a partition π = ( Δ j , , Δ Λ ) of σ(T) and points λy, λy' C Δy

we have

, λ,) g( Γ, λ / ) £ Δ . = //( Γ, λ)
77 -* 0

It is clear that there is a common domain of uniform analyticity. Let C be

its boundary. For 6 > 0, fix 8 > 0 such for every pair λ, λ ' G σ ί T ) with

I λ — λ ' | < 8 we have

| / ( α , λ ) t g ( α , λ ' ) - g ( α , λ ) ] | < e, α C C.

From 3.2, if I π\ < 8 then

Σ / ( α , λ, ) [ g ( α , λ/) - g ( α , λ t ) ] £ Δ / | < e v ( £ ) , α G C.
7T

Now

/( Γ, λy) g( Γ, λ/) = /( T, λy ) g( T, λy) + /( T, λy ) [g(T, λ/] - g( 7, λy)]

and
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i-r fτ(a)da (Σ/(α,λ7 )tg(α,λ/)- g(α, λ, )] £Δ, )|

« (e/2τr)(max | Γ ( α ) | ) (length C) v ( £ ) .

Thus in order to prove the lemma, it suffices to show that

lim Σ/( T, λj) g( T, λj)EA. = //( T, λ) g( T, λ)dEλ .

(Note that if λy £ Δy and not merely in Δy, there is nothing left to prove.) But

this is clear since the function /( Γ, λ ) g ( Γ, λ) is continuous in λ.

3.6. LEMMA. // / is integrable (sealer- or operator-valued) and U is a

bounded linear operator in X which commutes with Ee, e £ B9 then Uf is in-

tegrable and

Uff(k)dEλ = fUf(λ)dEλ, σCB.
cr cr

The proof is clear from the definitions.

3.7. T H E O R E M . Let X be arbitrary and T a bounded linear operator in X

with the resolution of the identity Ee. For any closed set of points p £ p(T)9

we have

(1 -λ)n

n=o"(£-X)"+ 1

where the sum converges in the uniform topology of operators and uniformly

with respect to ζ £ p .

In view of the elementary identity

*=o (£-λ) n + 1 (ξ-λ)P+ι

and 3.6, we have
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- T) Σ f- J
n = o ( £ -

Now let δ = the distance from p to σ( T). This is positive s ince o(T) is,,bounded

and closed. Break o(T) into disjoint measurable parts Δ t , ••• , Δ Λ of which

the diameters satisfy

diameter Δy <̂  δ / 4 (/ = 1, , n).

Let Cj be a circle of diameter 8/2 containing Δy in its interior, so that

| ( α - λ ) ( ^ - λ Γ 1 | < 1/2, ξ C P , λCAj, a C q .

Let Ta (Δy) be the resolvent of T when considered as an operator in X/^- Since

.) C Δy and

we have, from 3.3,

(T-λ)P

(ξ-λ)p

dEλ

2nι

l r c
J TΛΔΛdvi JA

2πi Cj ' Δ y

(α-λ)P
dEλ

< _ m a x |Γα(Δy)| v(E)/2P, ξCp.
2π aec)

Since J = J. + + JA , we have

p (T-λ)n

Σ J
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uniformly for ξ G p. This proves the theorem.

3.8. DEFINITION. An operator is called a spectral operator if it has a

resolution of the identity.

3.9. THEOREM. If T is a bounded spectral operator, the resolution of the

the identity Ee is unique, and for every f G F (T) we have

oo Λn) <χ\

/ ( D - Σ ί^-r- (Γ-λ)* dEλ>

where the integral exists as a Riemann integral in the uniform topology of

operators and the sum converges in the uniform topology of operators.

We shall first show uniqueness. Let Ae, Ee be resolutions of the identity

for T. Let σlf σ2 be disjoint and each consist of a circle and its interior. Let

Tι{ξ) be the resolvent of T when considered as an operator on E^ X. Let

T2 (ξ) be the resolvent of T when considered as an operator in Aσ2 X. Then

for ξ £ σi9 Tι(ξ)Eσι Aσi is a bounded linear operator in X and analytic

for ξ Gσf* Likewise for ξ C σ ,̂ EσιT
2{ξ) Aσ2 is a bounded linear operator

in X and analytic for ξ C o^ Let ζ G (σί u σ2 )'. Since ζ— T commutes with

Eσχ, we have

{ξ- T)EσιT
2(ξ)Aσ2 = £ σ i Aσ2,

and operating on the left with Tι(ξ) we have

Eσι THξ)Aσ2 = T'(ξ)Eσχ Aσ2.

If f{ξ) is defined to be

f{ξ)-Eσι THξ)Aσ2 = Tι(ξ)Eσι Aσ2, ξC(σι uσ2Y

= £ σ j T2(ξ)Aσ2, ξCσι

= Tι(ξ)EσιAσ2, ξCσ2,

then f is an entire function. Since for large ξ, we have

/ ( £ ) = T(ξ)Eσι Aσ2->0 as 1̂ 1 —» oo.



SPECTRAL THEORY II. RESOLUTIONS OF THE IDENTITY 603

it follows that f(ζ) = O and Eσι Aσ2 = 0. By symmetry, Aσ Eσ = 0. Let σn,

(τι= 3, 4, •••) be the set of those points of σ(T) whose distance from σx is

>̂  1/n. Let δ l f ••• , δp(n) each consist of a circle and its interior and be such

that the set δn - Uδj is disjoint with σx and covers σn. Then, since Eσ A${ = 0,

we have A$t C Eσ* X and

AσnX c A&nX = (UASi) X = U U 8 . Z ) C Eσ'X .

Hence

But Aσn% —* Aσ*x, x C X , and so

Eσι A^ = 0, Eσι Aσι = Eσι

Also, since A§t Eσ^ - 0, we have Eσ X C A$fX and

Thus

Hn Eσχ = £ σ i , A$n Eσχ = 0, A;χ Eσι = 0,

and therefore

Eσι = £ σ

By symmetry,

From this it readily follows that Aσ- Eσ for any Borel set σ. Now let / G F(T).

Let C be an admissible contour upon which / i s analytic and such that

2πι c

Now, by 3.7, we have
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-λ)n {ξ-λTn ι dEλ,
n=0

and the series converges in the uniform topology of operators and uniformly for

ξ € C. So

π=o

Since

,. (T-λ)n
(n

it follows from 3.3, that the Riemann sums approximating

f(T-λ)n (ξ-λT"-1 dEχ

converge uniformly with respect to ξ G C.

Hence

0 0 f ^ ( λ )
= Σ ί1—^ (T~λ)n dEλ.

n

From this point on we shall again restrict our attention to the case of an

operator T whose spectrum lies in a rectifiable Jordan curve Γo and whose re-

solvent satisfies the growth condition 2.1. It will be convenient to state the

condition 1.14 in terms of residues as defined in the following:

3.10. DEFINITION. Let σ(x), σ(x*x) be the sets of singularities of the

functions x (ξ) = (ζ- T)~ιx9 x*x(ξ), respectively. Let σ be open and closed

in σ(x), and

where C is a rectifiable Jordan curve containing σ in its interior and having

σ{x)σ' in its exterior. Then the vector xσ is called the σ - residue of x(ζ)
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Similarly if σ is open and closed in σ(x*x) then the scalar

(χ*χ)σ = -L jΓ x*χ(ξ)dξ
2πi c

is called the σ - residue of x*x(ξ).

With this terminology, condition 1.14 asserts the existence of a constant

K such that \χσ\ < K \x\.

3.11. THEOREM. Let X be weakly complete, and let T be a bounded linear

operator in X whose spectrum lies in the rectifiable Jordan curve Γ o and whose

resolvent is restricted in its growth by Assumption 2.1. Then T is a spectral

operator and satisfies the equation

™ An)

n=0 n'

providing:

( i ) (The density condition.) For every ξ in a set dense on Γ o ϋ ^ + % is

dense in X.

( i i ) (The boundedness condition.) There is a constant K such that all resi-

dues xσ satisfy the inequality

\xσ\ < K \x\9 x €1 X.

This theorem is an immediate corollary of 2.11 and 3.8.

Conditions will now be given which are of a nature more applicable than

( i ) and ( i i ) of 3.11 and which are sufficient (and in some cases necessary) to

imply ( i ) and ( i i ) . We shall begin with a brief analysis of some conditions

which are sufficient to imply the density condition ( ί ) .

3.12. THEOREM. The operator T of Theorem 3.11 satisfies the density

condition ( i ) of that theorem in case any one of the following is true:

( i ) Every subarc (of positive length) of Γ o contains points either in the

continuous spectrum or in the resolvent set.

( i i ) No subarc (of positive length) of Γ o consists entirely of points in the
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point spectrum of the adjoint T of T.

(i i i) The space X is reflexive and v(λ) = 1 is an index function for T.

(iv) The space X is reflexive and the adjoint T satisfies the boundedness

condition ( i i ) of 3.11.

(v) The operator T is completely continuous.

The first statement is obvious since if ξ is in either the resolvent set or

the continuous spectrum we have 31 ξ = X. The second statement is equally clear

since it is seen from the Hahn-Banach theorem that ζ is in the point spectrum

of the adjoint if and only if 3iξ £ ^ Next, if ( i i i) holds, let

ξ - ( λ , δ ) , ξ0 = ξ(λ,O),

so that

\(ξ- ξ0) τ{ξ)\ < \sτ{ξ)\ < l .

N o w

ξ0 - T) = ξ-ξQ - ( ξ - ξ 0 ) 2 T ( ξ ) ,

and hence

( * ) lim ( f - ξQ) T{ξ) (ξ - Γ ) = 0 .

Now let x be an arbitrary vector in X. Since X i s reflexive, the se t

( ξ - ξ0) τ{ξ)χ, o < δ < δ 0 ,

is weakly compact, and there is a vector y ζL X and a sequence 8n —> 0 such

that for ξR = ζ(λ, 3n) we have

<$» - & T(ξn)x^y weakly.

The equation (*) shows that y C % Q . To see that x - y C % 0 , let * * % 0 = 0.

Then

x*(ξ-ξo)T{ξ)-x*,
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and so % * ( % - y ) = 0. Hence 38^Q + 3l^Q - X. To prove the fourth statement

we note first that, s ince σ(T) - σ(T ) and \ T (ξ)\ - \ T (ξ) |, the adjoint T

sat is f ies 2.1, and any index function v{\) for T is a l so an index function for

T . By 2.9, then, Mξ (T ) ϊίξ ( T ) = 0 f or ξ interior to any interval upon which

an index function is constant . Such ξ are by 2.3 dense on Γ o . Let ξ be such a

point on Γ o , and let

It will suffice to prove that x* = 0. Since x*ϊίξ = 0, we have #* £ 3B̂  ( T ).

To see that x* £ ϊίξ ( T ) (which will prove x* = 0), it will suffice, since X is

reflexive, to show that x*x0 - 0 for every x0 with 31 ξ ( T )x0 = 0, that is, for

every x0 with

yHξ-TYx0 = 0, y*C y*.

But such an x0 is in 33!^, and so x*x0 ~ 0. The final statement ( v ) follows from

the fact that the spectrum of a completely continuous operator is at most de-

numerable.

N. B. As the above proof shows, the condition that X be reflexive ( in ( i v ) )

may be replaced by the statement that, for ξ in a dense se t on Γ o , the manifold

flξ ( T ) i s regularly closed. Also in ( i i i ) the condition of reflexivity may be

replaced by the assumption that the se t of vectors (ζ — ζQ) T(ξ)x, 0 < δ < δ 0 ,

is weakly compact.

3.13. THEOREM. Let X be a reflexive space and T a bounded linear oper-

ator in X whose spectrum lies in the rectifiable Jordan curve Γ o and whose

resolvent satisfies the growth condition 2.1. Then T is a spectral operator and

satisfies the equation

An) £

fCF(T),

if and only if there is a constant K such that all the residues {x*x)σ satisfy

the inequality.

The residue condition is clearly necessary since
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(x*x)σ = x*Eσx.

To see that it is sufficient we note first that it implies the condition ( i i ) of

Theorem 3.11. Since X is reflexive, the residue (#*, x)σ is equal to the residue

(x**f x*)σ calculated for the adjoint 7* (here ΛΓ**Λ;* = x*x, x* G X*) and so

the residue condition of 3.13 implies that the adjoint T satisfies ( i i ) of 3.11.

The present theorem then follows from 3.11 and 3.12 ( iv).

We now turn our attention to stating the requirement (of 3.11 or 3.13) that

the residues be bounded, in a form which, in some instances, is more readily

applied.

3.14. THEOREM. Let ζ— £ ( λ , δ) have continuous first partial derivatives,

and let ξ"= ξ(λ, - δ ) . Then the residues (%*, x)σ and xσ will have a bound of

the form K\x\ \ x* | in case

l . u . b . J [ + 1 | * * [ r ( f ) — - Π O — \ x \ d λ < M\x\ \ x * \ .
0 < o < OQ

Let 0 < λj < \j <^ 1, let Cj = C (λj, λj) be as in 2.4, and let C be the set

Cy, (/= 1, ••• n). Suppose that C lies in the domain of analyticity of x*x(ξ).

Then

where 1(8) is a sum of integrals Jx*x{ξ)dξ taken along the arcs ξ(λy, μ),

/f μ), - δ < μ < δ. Thus l i m δ _ 0 / ( δ ) = 0, and

lim sup I J x*x(ξ)dξ\
δ-o c

dλ < M \x\
o < δ < δ 0

The condition of 3.13 is far from necessary, and is not satisfied by the

resolvent Ί (ξ) if its rate of growth for ξ near σ(T) is not that of the inverse

of the distance from ζ to σ(T), To avoid this objection a similar condition, as

is evident from the above proof, may be stated.
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3.15. THEOREM. Let T(ξ)= f/(f)+ V(ξ), where x*V{ξ)x is the deriva-

tive of a single valued analytic function at each point ξ where x*T{ς)x is

analytic. Then the residues (x*, x*)σ and xσ will have a bound of the forms

K\x\ I x* I provided that U (ξ) satisfies the condition o/3.14.

Operators of finite type

As is to be expected from the analogy with the elementary divisor theory

for a finite matrix, certain spectral operators should satisfy the formula

m-i An) /£\

/ ( Γ ) = Σ / f 7 Λ —r^iT~ξ)ndEξ, fCF(T).
σ{T) nl

One might expect this to be true if the spectrum σ(T) is nowhere dense and if

the resolvent T(ξ) has for ξ near σ(T) the same rate of growth as

[diS(ξ,σ(T)]-m.

We have been able to prove t h i s only in the c a s e where σ(T) i s r e s t r i c t e d to

lie in a suf f ic ient ly smooth J o r d a n c u r v e .

We shall assume throughout the following discussion that the function

defining the net described in 2.1 has continuous second partial derivatives. The

purpose of this assumption is to assure that the length of the contour C(λί9 λ2)

of 2.4 is at most Kδ, provided that λ t < λ 2 and δ = λ2 - λ t . Also the diameter

of C (λ i, λ2 ) is at most Kδ for δ = λ2 — λ ί .

3.16. LEMMA. (Assumption 2.1.) Let d{ξ) be the distance from ξ to the

spectrum σ(T). If \dm {ξ) T (ξ)\ is bounded for ξ near σ ( T), then

Jσ{τ)f(T,ξ) {T-ξΫm dEξ =0

for every T-uniform /((X, ζ).

We may and shall assume that v(λ) = m is an index function for T, so that

| s m τ{ξ)\ < l , o < | δ | < δ 0 , λ C [ - 1 , l ] .

Let λ t < λ 2 , λ 2 - λ t < δ 0 . Let C(λίJ λ 2 ) be the contour defined in 2.4 with

δ = λ 2 ~ λχ Let Δ be the closed subarc of Γ o defined by ζ(λ, 0 ) , λι <_ λ <_ λ 2 .
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L e t I(λχ9 λ 2 ) b e t h e i n t e g r a l d e f i n e d in 2 .4 wi th vγ = v2 - m a n d P(ξ)= 1.

L e t λ n < λ ί 9 λ 2 < μn, λn—• λ ^ μn—> λ 2 . By 2 .4 , we h a v e I ( λ n 9 λί)—>0,

' U 2 , μn)—»° A l s o , by 2 . 4 , 1.39 ( i i ) , 2 . 5 , a n d 1.12, we h a v e E& I(μn,λn) = 0 .

H ξj-ξUj O) ( / = 1 , 2 ) , t h e n

(T-ξ^iT-ξ^™ = / ( λ n , λ 1 ) + 7 ( λ ι , λ 2 ) + / ( λ 2 , μ π ) + / ( μ Λ , λ π ) ;

a n d s o we h a v e

E^iT-ξ^ (T-ξ2)
m = £ Δ / ( λ p λ 2 ) .

B u t b y 2 . 4 , w e h a v e σ ( / ( λ t , A 2 ) # ) C Δ ; h e n c e b y 1 . 3 9 ( i ) i t i s s e e n t h a t

λ2) = EhKλ^ λ2). Thus

Now, since δ = λ 2 - λlf there are constants Kl9 K2 such that

<λ <λ2

< KV89

and

length C(λl9 λ 2 ) <̂  K28.

It follows from the definition of I(λl9 λ2) therefore that

(t) l f λ 2 ) | <

Let the interval [ -1 , 1 ] be partitioned into n intervals [λy-i, λy] each of length

2/n9 and let Δy be the corresponding subarcs of Γ o with end points ζj-Uξj.

Statements ( * ) and ("f ) then give

Σ
7 = 1

Hence, by 3.5, we have

dEξ = 0.
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3.17. LEMMA. Under the hypothesis α/3.16, we have

{T -ξ)

where (ζ) is the set consisting of the single point ζ.

From 3.16, we get

(T - ξ)2m E{ξ) = E{ξ) fσ(τ)(T- μ)2m dEμ = 0.
( τ )

Thus

2m-i

T(a)E(ξ)= Σ

has a pole of order < 2m at OC = ξ. Since | dm (α) Γ (α) | is bounded for α near

ξ, the pole must be of order <̂  m; that is, ( T - <f ) m £(£) = 0.

3.18. LEMMA. Under the hypothesis of 3.16, we have

fσ(τ)f(T,ξ) (T-ξ)> dEξ = 0, /> m

for every T-uniform function f(θL, ξ).

For ξ= ξ(λ, 0) G Γo and 0 < | δ | < SOf let ξ% = ^ ( λ , δ ) . Then

Now assume for the purposes of induction (the above equality is the case / a= 1,)

that

Multiplying by (ζ — T), we have
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i+ = (ξ-T)i (ξ-T) Π £ g ) = (ξ-T)i[(ξ-ξs)T{ξ&)

+ + {ξ-ξi) (ξ-τy-1 + (ξ-τy

Hence

f(τ,ξ) [(ξ-τy+ι τ(ξs)~ (ξ-τy]

-f(τ,ξ)

Thus we may state:

( * ) If for some / = 1, 2, we have

- 0, 0 < | δ | < S o ,

then

hm J f(T, ξ) (ξ- ξBV
 ι T{ξh)dEξ = -

δ-»o σ

Now let 0 < I 8i\ < 80t (i = 1, 2, . • • , m). By 3.16, then,

/ / x f(T, ξ) (T-ξ)2m T(ξ, ) T(ξ, ) . . . T(ξ. )dEε = 0 .

To this equation we may apply ( * ) with 8 = 8l9 and with f(Tf ξ) replaced by

f(T,ξ) T(ξh). . T(ξSm). Thus,

Since

)\ < K\8ι\
m,
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the integrand on the right side of the preceeding equation approaches zero with

δι and uniformly with respect to ξ C σ( T). Thus

fffiτ) f(T,ξ) (ξ-T)2™-1 T(ξS2)... T(ξhm)dEξ = 0 .

A repetition of this process clearly yields the desired result:

X ( r )/(Γ, £) (ξ-TVdEξ = 0, /> m.

3 19. DEFINITION, Let m be a positive integer. A spectral operator T is

said to be of type m in case

m~ι * f(n) (()

/<Γ>- Σ frw—jϊ-w-ξrdEt
71=0

f o r e v e r y / s i n g l e v a l u e d a n d a n a l y t i c o n σ(T), t h a t i s , f o r / £_ F(T).

Let us recall that for the case in hand (that is, i^(λ) = m is an index func-

tion), the manifolds Wξ9 3lξ are respectively the zeros and the closure of

the range (T — ζ)m Then if d(ζ) is the distance from ζ to the spectrum σ( T)

we may state:

3.20. THEOREM. // X is weakly complete, T will be a spectral operator

and of type m providing

( i ) dm(ξ) T(ξ) is bounded for ξ near σ(T),

( i i ) for ζ in a set dense in Γ o the manifold We + 5ft̂  is dense in X,

( i i i ) all residues xσ have a bound of the form K \x\.

This theorem follows immediately from 3.11 and 3.18.

N. B. 1. As before, the condition ( i i ) is automatically satisfied if T enjoys

any one of the properties listed in 3.12. Also ( i i i) is satisfied if the resolvent

T(ξ) satisfies the mean rate of growth condition of 3.14 or 3.15.

N. B. 2. In case X is not weakly complete it is still true that E^ is defined

for every closed subarc of Γo (see proof of 2.11), and E/± is completely additive9

in the strong topology of operators, on the Boolean algebra determined by such

arcs. Thus the integral
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may be defined and the operational calculus developed even though Ee may not

be defined as an operator in X for every Borel set e.

An immediate corollary is (see 3.13):

3.21. THEOREM. // X is reflexive, then T will be a spectral operator of

type m if and only if

( i ) dm{ξ) T(ξ) is bounded for ξ near σ(T),

( i i ) all residues (x*, x ) σ have a bound of the form K \ x \ \x*\.
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