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CAPACITY, VIRTUAL MASS, AND GENERALIZED SYMMETRIZATION

L. E. P A Y N E AND A L E X A N D E R W E I N S T E I N

1. Introduction. A body of revolution B can be symmetrized with respect to

its axis of symmetry in a number of ways. One of these is the Schwarz sym-

metrization, which preserves the volume of B. Another is the Steiner symmetri-

zation of the meridian section of B, which preserves the area of this section but

in general decreases the volume. The influence of the Schwarz symmetrization

on the capacity has been investigated by G. Polya and G. Szegό*, [ l ] . More re-

cently P. R. Garabedian and D. C. Spencer [2] discussed the same question for

the virtual mass of bodies of revolution. In the present paper we shall study by

a different and simpler method the behavior of the capacity and virtual mass

under a more general type of symmetrization, which includes the Schwarz and

Steiner symmetrizations as particular cases.

2. Definitions. Let the (x, y)-plane be the meridian plane of B, the %-axis

being the axis of symmetry. The part of the meridian section of B which lies in

the upper half plane γ >_ 0 is denoted by D. The complement of D in the half

plane is designated as E. We assume that D is simply connected and that E is

a connected domain. The boundary of D consists in general of a segment of

the %-axis and a line L. We exclude the case where L is a closed curve and

lies entirely above the %-axis, as is the case in which B is a torus. We assume

L to have at most a finite number ot angular points.

We shall use in this paper some recent results of axially symmetric potential

theory in n-dimensional space. This theory which is of mathematical interest

in itself will be used here mainly as a tool to obtain results for bodies of revo-

lution in three dimensions.

Let us henceforth consider our (x, y)-plane as the meridian plane of a body

of revolution B[n] in τι-dimensions, n — 3, 4, 5, . We assume that jδ[ra] has

the same meridian section D as our three-dimensional body B - J5[3]. All quanti-

ties considered hereafter are defined in the meridian plane and therefore are

functions of x and y only. Actually we shall never use B [n] but only its meridian

section.
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Let ψ(x, y) be an axially symmetric potential function defined for y >_ 0

and let ψ(x, y) be the corresponding stream function. We have then the gener-

alized Stokes-Beltrami equations

(1) y™ ίt =ίt, y» * ?! =_ ίt.
dx dy ' dy dx

To emphasize the dependence of φ and ψ on n we shall often use the notations

φ [n ] a n d ψ [n].

T h e v o l u m e F [ A I ] o f B[n] i s g i v e n b y

(2) V[n) = ωnml JJ γn'2 dxdy,
D

w h e r e ωh = 2πh/2 /Γ {h/2). We i n t r o d u c e t h e c a p a c i t y C[n] of B[n] b y t h e

f o r m u l a

(3) CM = JJ yn'2 (grad<^[^])2 dxdy,

where φ[n] is a potential which assumes the value unity on L and vanishes as

{x2 + y 2 ) " ( n " 2 ) / 2 at infinity. It is obvious that (3) reduces to the classical

definition of the capacity for n — 3.

We define also the virtual mass M[n] of B[n] by the formula

(4) M[n] = ωn.ι j j y"^n' (grad ^[rc] ) 2 dxdy.

E

The function ψ[n} in (4) assumes the value yn'ι/(n - 1) on L and vanishes at

infinity like yn~x (x2 + y2)~n/2. Our definition of the virtual mass generalizes

that of P. R. Garabedian and D. C. Spencer [2]

3. The correspondence principle and the fundamental formula. We use here

a relationship due to A. Weinstein [4],

( 5 ) φ[n] = yn'1 (n - I ) ' 1 φ[n + 2).

This equation shows that to each stream function ψ[n] corresponds a well-

defined potential φ[n + 2] In particular to the stream function ψ\n] in formula

(4) corresponds a potential φ[n + 2] which assumes the value unity on L and

vanishes as (x2 + y2)"7l//2 at infinity. In other words c£[rc + 2] is the electro-

static potential of B[n + 2 ] . The substitution of (5) into (4) leads after an
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elementary integration by parts to the fundamental formula

(6) M [ n } + V [ n ] = „ " / * \ { n - 1 ) Γ ( - + l \ \ C [ n + 2 ] ,

which we shall employ here in the study of the behavior of M[n].

4. Generalized symmetrization. A line x = constant, y >_ 0, intersects L in

m points yχ{x) > 72 ( % ) > 73 (χ) > ••• > 7 m ( % ) > 0. The number of inter-

sect ions m usually depends on x. Let us consider the line Lq defined by the

equation

(7) yHx) = Σ (-D^"1 #(*),

where q is a positive constant not necessarily an integer. The body of revolution

Bg[n] with section Dg defined by its profile Lg is said to be obtained by a

symmetrization Sg. Let us note that $n-ι can be considered as a Schwarz sym-

metrization of B[n]. On the other hand, under 5 t the meridian profile of B[n]

undergoes a Steiner symmetrization. Our main results are embodied in the follow-

ing theorems:

I. V[n] does not increase under Sq for 0 < q <_ n - 1 and does not de-

crease under 5^ for q >_ n - 1. In particular, V[n] remains invariant under Sn.1.

II. C [ Λ ] does not increase under Sg for 0 < q < n — 1.

III. M[n] does not increase under Sg for n - 1 < q < n + 1.

Let us observe that by (6) Theorem III follows immediately from I and II. In

order to prove Theorems I and II we shall first establish some useful inequali-

ties.

5. Fundamental inequalities. Let yx > y2 > > ym > 0 an& let q and s

be two positive numbers. We have then

( 8 )

To prove the second inequality of (8) let us observe that it is sufficient to

show that

<
Γ m

Σ

l/(^+s)

<

k=l
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( 9 ) 7+s

Let us put y? — a, and (q + s )/q = r > 1. Then we need only show that

(10) α j + ar

2 + . . . + ar

m < (aι + a2 + . . . + am )r.

But this is a classical inequality [ 5 , p. 32]. As to the first part* of (8) we give

here a proof communicated to us by H. F. Weinberger [ 7 ] . This inequality does

not seem to be mentioned in the available literature. Using again the notations

in (10) and putting

(11) F{al9 a2, ... , am) =

k=\

a[ -

we have to prove that, for aι > a2 > > am > 0 and r > 1,

(12) F(al9 a2, . . . , am ) > 0 .

This inequality is obviously true for m = 1 and follows immediately if m = 2 from

inequality (10). Let us therefore assume that (12) holds if we replace m by

m — 2; this is equivalent to assuming the inequality

(13)

We have also

F(a2, a2, α 3, . . . , am) >_ 0.

ι( 1 4 ) F (al9 a2, . . . , am ) = F(a2, a2, a3, . . . , am ) + f ι daι .

But from (11) we observe that

(15)
1 dF

Σ (-
r-ί

which shows that dF/daι is nonnegative. Since the same holds by assumption

for F (a2, α 2, α 3, , α m ) w e obtain at once the required inequality (12).

*R. Bellman has pointed out that this inequality holds more generally with yr re-
placed by an arbitrary continuous convex function fiy) defined for y >_ 0.
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6. The effect of the generalized symmetrization on V[n~\. It follows immedi-

ately from (2) that

(16) y* dx,

where the integral is taken over the interval ((X, β) bounded by the greatest

and smallest values of x on L. Let us apply the syrnmetrization Sg defined by

(7). The volume F^frc] is then given by

(17) Vqln]-ωnmχ ( I . - 1 Γ 1 ΓΦ Σ <-
n-l/q

dx.

By (8) we see that for g < n - 1 we have

( 1 8 ) Vq[n] < ωn_χ ( n - I f 1 j f Σ<-

On the other hand for f > n - 1 we have again by (8)

(19)

The formulas (18) and (19) establish the proof of Theorem 1 of § 4

7. T h e e f fect of g e n e r a l i z e d symmetr izat ion on C[n}. In s t u d y i n g the be-

havior of C[n] under the symmetrization Sq we shall generalize to a certain

extent the procedure given by Pόlya and Szegδ' for the Steiner symmetrization

[l, p. 182]. Let us introduce a Cartesian system (x, y, z) and consider a sur-

face z (x, y) defined in a large half circle A enclosing D. We assume z (x, γ) to

be a function positive throughout A and vanishing on the circular portion of its

boundary. The particular function z which we shall consider will assume a con-

stant positive value z0 in the subdomain D of A. This value will be the maximum

of z(x9 y) in A. We further assume that z{x, y) is analytic outside D. The sur-

face z = z(x, y) except for its flat portion may also be defined as a surface

y = y(x, z) in a certain domain G of the (x, z)— plane. However, y(x, z) may

not be a single-valued function of x and z. For this reason we must consider as

in [l] the surfaces y^ (x, z) (k = 1, 2, , m), where

yx(x9 z) > y2(x, z) > ••• > ym(x, z) > 0 .
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These surfaces taken together with the flat portion constitute the surface

z{x, y).

Let us consider the integral

(20) = if Σ rΓ
2
(*' 1 +

dx dz

1/2

dx dz«

Let us first apply the symmetrization Sn_! by putting

(21) n-l

and consider the integral

(22) '. - JJ r.
1
"

3
1 +

We prove now that

(23)

,dx

/ > /*.

1/2

dx dz .

in fact by substituting (21) into (22} and computing όγ^/dx and r>'y* /c?z we ob-

tain the formula

(24) Jf Σ (- JL*I ! - k

^•V

A = ι

Σ (-I)*'1 JV 77
2 Ί 1/2

According to the inequality (8), /* will not diminish if we replace the first square

bracket in (24) by [ Σ ^ = i ^k'2^2' ^Pon aPplying t n e Minkowski inequality we

find that the integrand in 4 is not greater than the integrand in /; this proves

formula (23).

Let us observe that

25) / = y n - 2 f i + z2

x +
1 / 2

"'2 dxdy>
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the last integral being the contribution from the flat part of the z surface. We now

insert into (25) the expression z {xt y) = eΦ{x, y), e being a small positive

number and Φ satisfying the same conditions as z. This substitution yields

(26) / - JJ yn'2 dxdy + (e2/2) JJ yn'2 {Φ2

χ + Φ2 ) dxdy + O( e 4 ) .
A-D A

According to inequality (23), / does not increase under Sn^ι. The first integral

in (26) is obviously equal to the same integral taken over the symmetrized

domain A^ - D*f where A* = A. By letting e tend to zero we conclude in the

usual way [1] that the integral

does not increase under Snml. If we let the radius of the half circle bounding

A tend to infinity we obtain the same statement for a function Φ which vanishes

at infinity, providing that the integral converges. In particular if we take for

Φ a function which is equal to unity in D and equal to the electrostatic potential

φ[n] in E we find that C\n] does not increase under Snml

In order to prove that C[rc] does not increase under Sq for 0 < q <^ n — 1

let us observe that under Sq the line L bounding D[n] goes into a line Lq which

has by the inequalities (8) the following property: if qχ < q2 then the domain

Dg [n] bounded by Lq has no points outside the domain Dq [n] bounded by

Lq . We denote the capacities corresponding to these domains by Cq [n] and

Cq [ft], respectively. It is a well known property of the ordinary three-dimension-

al capacity that if one body contains another body the former has the larger

capacity. The proof of this statement is based essentially on the variational

definition of the capacity. The same property holds obviously for all values of

n. We therefore have Cq [n] < Cq [n]. In particular Cq[n] <^ ̂ . J ^ l ^ s w e

have already proved C Λ _ 1 [ Λ ] <̂  C[n] we obtain the result

( 2 7 ) Cq[n]<C[n], 0 < q < _ n - l ,

which concludes the proof of Theorem II of §4 . As already mentioned in > 4,

Theorem III follows immediately as a corollary of I and II.

8. Stεiner's Symmetrization of the meridian section with respect to the

r-axis. We shall consider briefly a symmetrization of the domain D with respect

to the y-axis defined by the classical equation
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m

(28) 2x = y

In a manner similar to that used in § 7 we find that FL^l remains invariant and

C [ n ] and M [ n ] do not increase under such a symmetrization

9. Concluding remarks. All results of § 4 can be extended to the case of

two dimensional bodies which are symmetric with respect to the %-axis. It should

be noted that these results hold for C [ 2 ] as long as the radius of A remains

finite. It has already been proven [l, 2] that C [ 2 ] and Λ/[2] do not increase

under Sι and also that C [ 3 ] and A/[3] do not increase under S2. These cases

are included in our Theorems II and III. We note also that formula (6) appears in

an equivalent form for n-2 and /ι = 3 in papers by G. I. Taylor [6] and M.

Schiffer and G. Szego"[3], where C [ 4 ] and C [ 5 ] are (up to a constant factor)

called dipole coefficients. No attempt was made in these papers to study the

behavior of the dipole coefficients under symmetrization. However, it was recog-

nized in [3] that they are increasing set functions, a fact which becomes almost

obvious in our theory of generalized electrostatics (see § 7). Finally let us

remark that in § 2 we have introduced the (x, y)-plane as the meridian plane of

an rc-dimensional space. But since all quantities are defined in terms of x and

y, the index n appearing in our formulas need not be restricted to integral values.

In fact it can easily be seen that all our formulas and results remain valid for

all real positive values of n greater than two. For such values of n our results

are mathematical statements about certain integrals such as K[nl, C[n], and

M[n] which are associated with the generalized Stokes-Beltrami equations.
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