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1. Introduction. A straight line-segment (the basis of the fundamental entity
of classical vector analysis) is perhaps the simplest nontrivial example of a
continuous flat space. Furthermore, it seems that, from an elementary point of
view, a higher space should be regarded as completely flat only if it is composed
of these elementary flat spaces (strokes) in such a way that the vector Ap join-
ing any two points of the higher space lies entirely in that space. A criterion of
similar spirit is the requirement that no such Aj have a component normal to the
space. Since we prefer to regard a plane patch with a concavity in the boundary
curve as being “completely flat’’, we adopt ( for heuristic purposes) the second
test. Either view leads quite naturally to the investigation of certain immersed
spaces Ry from the standpoint of the various derivatives of the radius vector
since these local quantities determine Aj. With regard to the space Ry, we as-

sume that it is a Riemannian space defined vectorially by means of the equation
2 _ 9l N
p=P(x’x2’°",x )s

with 3 the radius-vector from an origin in an enveloping classical vector-space
to a generic point of Ry. The function 3 (x) is assumed to be such that A} can
be determined by a Taylor’s expansion. Obviously, the term completely flat as
used here is applicable to straight lines and planes but not to certain intrinsi-
cally flat spaces (i.e., flat in the sense that the Riemann-Christoffel tensor
vanishes), such as curved lines and cylinders. The basic datum here is the
Euclidean vector-space with it directed strokes which can be used to test lines

and other immersed spaces for complete flatness.

Since AP is determined by the various derivatives of § at the point of issue
of Ap, it is obvious that complete flatness or deviation therefrom will show up
in the derivatives of p. These vector derivatives may have components normal
to Ry and hence, in this case, do not belong to Ry in a strong sense.How-
ever, by forming certain dot products, they can be converted to scalar functions

which may more appropriately by assigned to the immersed space. Among these
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products are extensors which contain such important quantities as the metric
tensor and the Christoffel symbols and therefore seem worthy of study. Accord-
ingly, we have taken as the primary purpose of this paper the investigation of
the geometrical, algebraic, and differential properties of certain extensors which

are immediately derivable from the derivatives of 3.

In developing these extensors, we shall not restrict our attention entirely to
curves and a single parameter, but instead consider two- dimensional spreads
involving two parameters. Kawaguchi has already introduced a highly satis-
factory theory of extensors based on several parameters [ 8]. However, to secure
more unity in the present paper, we shall deviate from Kawaguchi’s notation and
designate partial derivatives of certain base letters by means of “matrix primes”.
A description of this notation and a brief account of the theory of matrix exten-
sors sufficient for applications in this paper will be presented in the next two

sections.

2. Notation. The symbolism to be employed in the present paper is essen-
tially that used in preceding works on the subject (see { 9] and [ 1-6]), except
that Greek indices will be used both to denote integers, 0 to M, as before, and
to denote matrices. To illustrate, if the coordinate variables x® are made func-
tions of a single parameter ¢, the usual case, then as before {9 and x2( will
be used interchangeably to denote d*x%/dt%, while Xﬁ; and XZ“‘: will represent
ax(f’)’/ax(a)a and 8x(a)a/c9x(p)r, respectively--indices a, b, ¢, -++ at the first
of the alphabet indicate coordinate system x, while r, s, ¢, --+ are to be corre-
lated to system %. However, if the x® are functions of two parameters u and v,

(a)a a(a)

and o represents the matrix (2, 3), for example, then x and x will each

stand for 9°x%/9%u 3 v. Here the first element 2 in the matrix prime (2, 3) in-
dicates the order of differentiation with respect to the first parameter, etc. Simi-
larly, if @ and p have the matrix values (G, G.;) and (py, p,), respectively,

then XE;;;Z is to be interpreted as the partial derivative of xla)a

Lo (a)a

with respect to
as before, except that x now represents the result of differentiating x?
partially o, times with respect to the first parameter u and ¢, times with respect

(o)r

to v, while x'©”" is to be interpreted similarly. Evidently,

HDa(B) _ y(a+fla

with the symbol + indicating matrix addition. Summations, on repeated lower case
Greek indices, unless the contrary is indicated, will be from zero to M in the
case of one parameter, and over the set of matrices (&;, &,) with &, ranging
from 0 to M, and a, from 0 to M,. In addition, ‘‘matrix binomial coefficients”
(%), G=C(oy, uy)y B =0(By B,), will be used to denote the product of the
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binomial coefficients obtained from columns in the symbol (Z), i.e., by defini-

tion,
(5) = (5D (5.

3. Matrix extensors. The foundation for the theory of matrix extensors is of
course the transformation equation which relates the components in one system
(x) to those in another system (%). This equation, which is exemplified by the
relationship

ag _ proxae xos
(3.1) Tﬁb re X X,Bb ,
is formally equivalent to that of tensor and extensor analysis. The essential
points of difference are that the Greek indices now represent matrices, and the

coordinate variables have been made functions of two or more parameters™.

To obtain a simple example of a matrix extensor, let the coordinate variables
x% be made functions of the parameters u and v, and let f be a function of the
x(a)a, with ¢ running through the set of matrices (., «,) for which &; and «,
have ranges 0 to i/, and 0 to #{,, respectively. If we denote by f the function of

(a)a

the %’s obtained by replacing each of the variables x in f by its value in

terms of the barred coordinates as determined by the coordinate transformations

x* = x%(%), ' = x"(x),

and take Tas the X mate of f, then we have an instance of an absolute invariant,
and may write f = f. Differentiating the left member directly with respect to x(@)a
and the right member through the xP) as intermediate variables, we obtain

(3.2) I D

; sor “aa
Hence, as in the one-parameter case, f.aa is an extensor.
A successive application of the matrix differentiators (M, 0) and (0, #,) to

a product of two functions F and G with application of the Le1bn1tz rule of differ

entiation gives

M
(My,0)] (05 M3) 'ow (@y,0) ~(My-ay,0)| (0sMy)
(FG) 1 ] - Z ( 1) F 1 G 1
(ll=0 al
2 S (ay,0))(0,a2) [ (M;-a,,0))(0Mp=a)
S x o Iy () (gmer) ,

oy =0 a3 =0

1 An incomplete study of matrix extensors by H. V. Craig and a subsequent check by
J. C. Evans has shown that most of the properties of the one-parameter extensors carry
over without formal change to the multiple-parameter case.
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or

M
(3.3) (FG)M) = 5> (M) plo) gli-a),

a=0

and the form of the Leibnitz rule for the differentiation of a product is the same

as in the one-parameter case.

Similarly, the commutation-reduction formula,
(M) _ (M «(M-A4) )
(3.4«) Fja.a_'(a)Fa ’ /1=O\:(O.l, <"2)9

may be established by following the procedure used in the one-parameter case.

See [ 1, p. 457 and 3, p. 215]. Consequently, we have
g = aa A (A~P) -
(35) K20 () XCUP) a0, 00, P=p=(pyp,)-

It now becomes immediately obvious that if ¥ is a contravariant tensor then

Va(a)

is a matrix extensor, for

(a a = a(a- aa
(3.6) peted = (pr X))@ o 57 (8 prle yelep) o prle) yea,
p=0

4. The fundamental metric extensors. Given the Riemannian space % intro-
duced in the first section, there are at least three methods for generating exten-
sors having the property that they contain among their components the funda-

mental metric tensor and the associated two-index components of connection,

la c] (=[ab, c] x*") and {2} (=12} x®),
quantities which are derivable from the radius vector 5. Because of the obvious
and well-known metrical properties of the g's, and the fact that the Christoffel
symbols are involved in the equations for geodesics and the equipollent dis-
placement of vectors, matters baving direct metrical implications, it seems ap-
propriate to refer to these extensors collectively as metric extensors. The com-
ponents of two of these extensors are of the nature of higher order components
of connection; and we shall distinguish between them, for reasons which will be
presented later, by referring to them as the direct and alternating components of

connection.

The direct connection extensor gl;a. As a preliminary to the development of

the direct extensor gga, let us note that the part of Ag which belongs to the com-
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pletely flat tangent space Ty is given by the invariant expression

b
5B - 303, By = 5 B = 6 B

9-‘)
up S ab >
9xb’

and that Ap may be written in the form
N =B ,  7

in which ¥ is normal to T}V in the sense that

To establish this last relaticnship, it suffices to multiply the preceding equation
by 2%, and note that p° . ?)b = 52. See [ 3, p. 202-203]. In order for our space to
be completely flat in the sense of the foregoing definition, it is necessary and
sufficient that ¥ =0 for all Ap’s, which means of course that the quantities
Ap - zb constitute a complete set of components for Aj. Expanding Ap in a power
series, and noting that

a-l—)?(M)

B(M+l) - 5(;1211) x(a)rl)a’ ?7;

ax(a)a
we see that, whether RN is flat or not,

[ tM+1
(4.1) Y RTAEED VR U A
M=0

(M+ 1)

Hence if we adopt:

DEFINITION 4.1. gga = B(fg . b,

then we may assert:

THEOREM 4.1. If P and @ are any two points of R, Ap their joining vector,

and C is any analytic parameterized arc joining P and Q, then
(1.2) AZ - Bb _ Z gb x*(@)a

That is, the quantities gl;a, which obviously are extensors have the property
that they determine (through contraction with the extensor x'(a)a) the coeffi-

cients in the fundamental power series (4.2). Thus they obviously play a basic
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role in the determination by means of curves in the imbedded space RN( intrinsic
determination) of the part of Ag that belongs to R, in the sense of belong-
uzg to the. tangenyt space T . As Zoted prevmus'ly (see [.3, pp. 279-2811), Zhe
8., contain the Kronecker delta 5, and the two-index Christoffel symbols {a i
Furthermore, the result of contracting gia with V@) for 2 -1 is I VP —the in-
trinsic derivative of 1’2, In general, if 3 denotes V® 7 , the vector with scalar
2

components 1'%, then our contraction /(% gl;a equals . b’b, which we recog-

nize as the scalar components of the part of 3M) which belongs to T . Thus we
see again that the extensor gb is involved in the intrinsic geometry of RN’ and
that, since, for ¥ = 1, I V° = 3) -Eb, there is justification in regarding
pala) gga as a kind of higher order intrinsic derivative. Since derivatives of g
may not belong to T, it is perhaps more appropriate to think of higher order

derivatives G(M)

as being computed ( see [ 7, p. 573]) directly from the values of
7 at a set of points converging to the given point instead of by a process of suc-

cessive differentiation.

The alternating connection extensor Lia. From the viewpoint of the envelop-
ing space, intrinsic differentiation in the usual sense is a process which applied
to the scalar components of a vector g (directed stroke) in TN yields the scalar
components of the part of ” which belongs to 7. The strict iteration of this
process consists in computing the components of the part of the derived vector
which belongs to T after each differentiation. Thus the steps in the iterated
process are as follows: given V¢ construct g,

o=ViB,,
differentiate 3, and compute 3°-3° (the components of the part of &* that belongs
to the space T ). The result is the intrinsic derivative, 1V®. The strict iteration
of this process consists in replacing the original VY with I V° and proceeding as
before. The extensor Lia (together with its mate L‘ga), which plays the role of
gi’a in this iterated process, is derivable from the extensor gia, M=1,bya
process called extensive differentiation. See [ 4, p.24-29]. This process in-
volves the nontensor component of gia (& =10) and generates the new quantities
by repeated application to the tensor components (¢ = 1), 32. These extensors

have been called the extended components of connection.

The extensors gia and Lia coincide in the ranks ¢.=J, =1 ~1; other
wise, for M > 1 they are distinct. The primary difference between their associ-
ated derivatives gsa ye(e) and LZ V) is that the former may be obtained by
first computing the derivative ( V® ﬁa)w) directly and then selecting the com-

ponents of the part that belongs to T, while the latter involves an alternation
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of the process of “‘priming’’ and ‘‘dotting’’ into the base vectors ])’b. It is for this
reason that we have adopted the terms direct and alternating to distinguish the

extensors of tiiis section.
Since

>(M) (M) —>-(M A)

yaa

and is thus the simplest extensor obtainable by priming the base vectors p

sala)

while is the simplest extensor obtainable by priming 3%, it seems that the

quantities gy defined by gp" a(a) - pp are in a sense the mate quantities of
g[;a obtainable by interchangmg the role of 3% and § . This immediately raises
the question of the construction of suitable extensors B0a b’ gaaﬁb for raising
and lowering doublet indices: a problem which introduces the third set of metric

extensors and to which we shall turn presently.

s>a(a)

2% and gb are included in the extensor p .

In passing, we note that both g;
>(M)
Pib
the structural viewpoint are the extensors g

denoted by g/Bb Other quantities which should be grouped with these from
aafib gnd 8aafb which are defined as
follows:

gaa,Bb - za(a) . zb(ﬁ) (M) | =(H)

DEFINITION 4.2 » 8aafb = Piag * Piab-

Thesc last two extensors contain the metric tensors g, and gab and the two-

index Christoffel symbols [ ab, c] x°

The interchange extensors. To complete the introduction of the metric exten-
sors, we return to the problem of the construction of the extensors to be used in
raising and lowering doublet indices (i. e., in interchanging contravariance and
covariance). We shall see presently that a satisfactory formulation is given by:

( M )gu(M-—A—B)

3 ~
o , gaa,\/ [AB] ,ab(A+B- 1/)

DEFINITION 4.3. Saagb =

;i:a,B:B.

The symbols (A‘,HB )s [‘4MB] are given in [5, p.334; see also p.335-336,
Theorems (2.1), (2.3)1.

The prime requirement of an interchange extensor is that it have a kind of
group property so that the successive raising and lowering (or vice versa) of a
given index leaves the extensor unaltered. This characteristic for the quantities

just defined is ensured by:
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THEOREM 4.2. g care - 57['3 8.

aa Bb 9
Proof. Expanding

I‘_
(0) (g, g2 T8,

d

i}

which is obviously equal to the right member in the relationship to be estab-
lished, we get

I'-B
g = (11;) Z (I‘ B) g((la) gac(I‘—B—a).
a=0

If we now replace . according to the relationship ¢ =} — .- B, subsequently

drop the bar, and then make use of the formula
(I IRy =14 M

there results the sum 2 aasb q* 7€, with summation on ¢ from ¥ —y to 3 - 3.

This range, however, may be changed to the regular range 0, 4!, since
& y g g g
( Ag) 0 for v.> ¥ - 5,
while
S a, Y] _ , 1o
()] =0 when a <} —y.

REMARK. The quantities g of Definition 4.3 are obviously symmetric in the
doublet indices; hence their order in Theorem 4.2 is not essential. Furthermore,
the excontravariant §’'s given in Definition 4.3 are the only symmetric quantities
that will satisfy this theorem if the choice of Sua8b has been fixed as in this
definition. To check this point, we may assume a separate set G sup 3bdd and
multiply G into the equation presented in Theorem 4.2. In the following section
we shall see that the script ¢'s have ideal properties relative to the other metric
extensors. They obviously contain the metric tensors gab and g_, among their

components.

5. Interchanges. We shall refer to any two extensors 1., T... which are

related in accordance with the equivalent equalities

oo oo Y YCeso
T.()“fl@b... = goe Tycﬁb---’ Taa,@b--- = Suaye T--,Bb---

as interchanges of each other. We shall now show that certain pairs of quantities

which are otherwise natural mates are pairs of interchanges. We may if we like
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regard the members of each pair as constituting different descriptions of the

same extensor.
Tweorem 5.1, If
qaa _ qa(a) M (M=-A)
A% = 4 and A .= (%) A, ,
then A%® and A are interchanges.
aa
Proof. For arbitrary quantities 12,

z (al’l'l[j) (gab)(M—a-,B) Aa(a) Bb(ﬁ) _ (gab Aa Bb)(M)
a, 8

_ M (M=B) pb(B) _ b(B)
= 2 () AR BEUE) =y B,

REMARK. The first equality of the foregoing chain tells us the meaning of
the invariant g .. Aa(a) Bb('g); this quantity is the Mth derivative of the dot
product of A% and B,

REMARK. The proof of this theorem is valid in case A represents a set of
directed strokes instead of a set of scalars. llence, _[)a(a) and ‘ﬁ(g; are inter-

changes, since

B(M) - (Z) 75(;(M—A)’ A= .

aa

THEOREM 5.2. The extensors gp® and gia are interchanges, as are the
quantities Baafb’ grahb of Definition 4.2.

Proof. We have

b _ =ob (M) _ bd > . 2e(y) _ . bd ve
gaa =P - p;aa =8 pPg * P 8’)’caa =8 gycaa 84 -

The proof of the second part is similar to the foregoing.

REMARK. The extensors 92a b’ 92¢B% ihemselves are obviously inter

changes because of the Kronecker delta relationship expressed by Theorem 4.2.

THEOREM 5.3. The two alternating components of connection Lsa and L3¢

constitute a pair of interchanges.

Proof. Irom the relationship
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~-M
aalb =& a, B fh 5b a+fB-M-8+a
e D DR Bl S Lg® Ly ,
8=0

which is a corollary of the independent proposition Theorem 6.3, we derive at
once by *‘wultiplying” by g, L(iu and extending the range of § to 0, /f, the
equality

. 2a R , 8 h sa+fB-M=-5- 8b
(5:2) gy 0 LS, = X A5 6 gy, L Lt

a, &

{a’f8§:( “ BY(M+A-=B)!
M, M+ A-8 (M1 AD ’

and since the coefficient { } vanishes when « <M + 5~ 3, the part of the right

member of our equality which involves ¢. may be written in the form

(RpL:a-(+0-)va o BI(li + A=B)!
h aa (NTAD

Here, as before, the capitals 5 and A have been introduced for /3 and § to empha-

size that these letters are not to be summed; and R stands for the symbolism

M

2 , CyiAog)
M+A-B7*
a=M+A-13

This abridgement is possible because the pattern of letters in the binomial coef-
ficient and at the base of the summation sign can be generated from the Greek
superscript &~ (M + A~ B). See [ 6, p.234]. We next note that according to
Theorem 7.1 the contracted product of the L’s vanishes excepting when § = 3, in
which case the contraction collapses to &} 57 or 55, and the factorial multiplier
reduces to unity. Thus the right member of (5.2) is equal to LdIBb, and the proof

is complete.

REMARK. The proof of this theorem points to the desirability for a study of
the contractions of our metric extensors—a matter which we shall consider

presently.

6. The derivatives of equipollent tensors. An immediately obvious but never-

theless useful minor proposition of tensor analysis asserts that if
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[ 1% =9,
then
T = TP (= L9), LY = {,2} x°°.

Furthermore, from the structure of the intrinsic derivative of a higher order ten-
sor, it is readily apparent that all derivatives of any equipollent tensor (I 7 =0)
are expressible as linear forms in the components of T with coefficients that are
built up of derivatives and products of L’s. The problem then arises of detemnin-
ing the composition of these coefficients. The resulting formulas are interesting
in themselves as constituting an application of the alternating components of
connection; in addition, they will be found useful in later developments--as a

matter of fact we have already employed one of them in the proof of Theorem 5.3.

As a preliminary, we list two needed recursion formulas:

—1.a’ -1 b
(6.]) L3a=L3 a -—L% tea , &> 0; Lgaz (ai;
) A+1 b
(6.2) L;a - M- A (L/c4+1-a + LA+1-a Llcy)’ A=t w< M L;m = 82'

i

These formulas were first found by A. Kawaguchi and later independently by one
of the present writers-- see [ 9, p. 105-108; 4, p. 21-29, 5, p.338-339]. They are
essentially rules for going from a given rank to a rank one step further removed
from tensor rank. In the case of a Greek superscript ¢, the tensor rank is that
for which ¢« has the minimum value zero, while in the case of a subscript the
tensor rank is given by the maximum value M. It will be helpful to bear in mind
that the operations involved are formally equivalent to intrinsic differentiation
except that (6.2) involves the quotient of two binomial coefficients , C,/, C .
Also, it should be noted that for a given «, Lfm depends on M, while LZ“ does

not.

The components of the tensors T appearing in the following theorems are to be
regarded as functions of ¢, the curve parameter of a parameterized arc C. The
existence of the necessary derivatives is of course to be assumed; and in cases
wherein the existence of a solution of the differential equations I T =0 is re-
quired, the L’s must be regarded as analytic functions of t. It should be bome in
mind that neither the intrinsic derivative nor the total derivative of T with re-
spect to t involves values of T off of C in their computation. Finally, as before,

we shall assign terms containing out-of-range indices the value zero.

THeoREM 6.1. If
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11T =0,
and
T%% denotes the extensor Ta(a),
then
rea _ b 120

Proof. The case & = 1 is obvious since
la _ _ Ja.
Lp® = - L%
accordingly, we proceed by induction. Differentiating
Ta.a - ']'C L(Z.a’

replacing 7¢ with — b LZ’ and subsequently applying equation (6.1), we obtain

successively
e A AR L S L0V Seb AT A S A

THEOREM 6.2. [f

I Ta =0,
and
Taa denotes (Z) T;(M°A), A=,
then
T b
Yaa = [b Laa'

Method of proof. This theorem may be established by means of the procedure

employed in the previous demonstration.
THEOREM 6.3. [f
179 <0,
and
TaapBb represents the extensor [AMB] Tab(A+B—M),

then
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M
b d 3 -8+ b
Ta (’Y)zTC 2 (’)é)LCaLg ,
§=o0

M
Taaﬁb - Tcd

» B Sa 7« A+B-M~8+b
M,S}Lc Ld :
5=0

Proof. Given any value of t, say t,, the components of T at t;, namely

T%(1,), may be expressed as a sum of products of pairs of contravariant vectors
at ty; thus

T (¢)) = A®B® + cepb ...

Here the symbols A%, Bb, etc., denote fixed real numbers in the coordinate

system at hand; and assuming that the L’s and the arc C are analytic, we may
define vector fields A%(¢), BY( t), etc., along C, such that

1A4%(¢t) =0, A“(to) = A%, etc.

The sum

A%(e) Bb(¢) + C(¢) Db (¢t) +

will then have the property that its intrinsic derivative vanishes, and that it
takes on the value T“b( ty) at t = t,. But the original equipollent tensor T2 has
these properties, and conversely it is uniquely determined by them. Consequently,

Tab

=l

A%(t) BY(t) + CO(e) DP(t) 4 ---.
To simplify the writing,
by 4¢ Bb.

we shall denote the entire sum in the preceding equation

Differentiating reb y times with respect to ¢, and subsequently employing
Theorem 6.1, we get

"
T7ab() - (49 BoY(») o Z (%) 4a(8) pb(y-98)
8$=9

Z (’g/) Lza Lg—ﬁ-b TCd.
8

To obtain the second equation of the theorem, we substitute 4 + B — ¥ for y and
multiply by the coefficient[] inf. M, sup. 4, B; thus
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Taa-Bb [4 B] Tab(A+B -M)y _ ch Z {A,B; Lga LA+B~M-—8-b.

M, S
5

@

Evidently, the range of summation on § may be taken to be 0 to M since the coef-

ficient vanishes whenever 5> 4 + B — 3. Whenever 4 + B < M, reasBb g zero;
Tcd

in this case the multiplier of has the value zero by virtue of our convention

regarding symbols hearing out-of-range indices.

REMARK. Since / g2 = 0, we may take 7% to he g%%; this special case is

the corollary cited in the proof of Theorem 3.3.

THEOREM 6.4, If

and

T%‘Z denotes (g) TZ(A_B),

then

(1%11) TZZ(P) _ '—"Ci R LS—(M—I")a Luéb ,

[TS’ab (A) (A "’_{B)'l 7k LA-WM-AFB) [ (unchanged indices omitted).

Proof. We write 7y in the form A B, with the understanding that the latter
expression represents a sum of products of equipollent vectors. Differentiating
this symbolic product y times with respect to ¢, and writing Bé(g) in the form

(gf )t BM—B' b provides the relationship

T
TZ(]W) = (A¢ Bb)(l“) - Z (g) Aa(P—S) (ﬁg[)—l B
§=0

M=8+b

il

TCZ( M—ILPS(lLijgb

Replacing the binomial coefficients with the equivalent product (%) ! (M B I‘)’

and subsequently the dummy index § with ¥/ — 5, we obtain

3 - 73 ()7 R LW 1,

the first of the relations to be established. We next set I" =& —~ 3 and get
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T4 = Tg () (, Y) ™ R L L.

REMARK. Since

(3 M odeg) = IS (57 = 1 o

the preceding equation may be written in the form

M
aa _ Tpc A, 8 A+8-M-Bea 5d
(6.3) sy = Tg 2. tygl L L'y -
§=M-A+B

We note in passing that there is a pleasing regularity with regard to the
pattern of the Greek indices in the right member of (6.3), which may be de-
scribed as follows: (1) the positive indices on L, appear on top in {}, while the
negatives are on the bottom; (2) the summation is on the repeated index § in
L L, and starts at the zero of the total Greek superscript and ends at M. When-
ever such regularity liolds, we shall write the { } without indices and omit the

summation sign. Applying this convention, we rewrite (6.3) in the abridged form

(6.4) 5 = Tg U LErITMAe L,

THEOREM 6.5. IfIT p =0, and
a

Ty gy denotes (M) T:; H=4-B)

then

_ M-8, A+B +8 c d
Taa-,@b - Tcd ZS: { M,A, B § LM—S-a LA+B+8-b’

A=, B=8,68:01 M-u-~8.
Proof. As before, we express the tensor as a symbolic product, thus

T, =A B,.

We then differentiate y times with respect to ¢, and replace the resulting deriva-
tives of A and B by their values expressed as contractions with L (Theorem 6.2).
The result is the equality

e (y) Ty (M- M y-1 d
Taby =Tcd Z (s)(s)l (I‘-S) L;I—SoaLM—P+S-b'
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Finally, we set y = M — ¢. ~ 3, multiply by (AMB ), employ the numerical equality

() (5 (078 ()7t e AsBedy, m i,

and the theorem follows.

REMARK. Because of the arbitrariness of the numerical values of T at any
one point, we may conclude that the multipliers of 7 in the expressions for the
extensors 1%%° ﬁb, ]%‘z, Y'aa . 3b [ Theorems 6.3—6.5] are themselves extensors.

REMARK. In case / T vanishes, the L’s and certain semi-contractions ( con-
tractions on but one letter of a doublet index) serve to express T(t+ A) in terms
of 7(¢). To illustrate, if I T% = 0, then from Taylor’s theorem and Theorem 6.1,

we have at once

(h)*

(6.5) 19e+h) = T°(0) 3 L3° -

a

’ “: 0 to a.

In the Cartesian case,

L% = 5% 8
c

0 a

and, of course,
T(e+ h) = T%(1).

7. Contracted products. As a step in rounding out the theory of the metric
extensors, and as an implement for certain operations involving these extensors,
it is desirable to have a table of their contractions. Several of these contractions
yield Kronecker deltas, and thus provide the possibility in certain instances of
circumventing the restricting circumstance of the lack of a division process cor-

responding to multiplication with contraction.

‘i'he methods employed in constructing our tables of contractions are not
always direct. Consequently, it is necessary that we digress and consider at the
outset one or two preliminary matters. The first of these is a formula relating the
Lia associated with a given value of i/ with the corresponding L associated with
M — 0. This formula is a result of repeated application of the relation,

b b _
L* = (m/4) LY A=u,

~1ea’

(See[s, p. 338, equation 13.8].), in which the ¥ of L* exceeds that of L by one.
Thus if we denote by U the process of lowering by unity the values of M and « in
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b . .
L? , then we may write, successively,
aaq

M M(M=1)
Ls—UL=0—— U2 L =(My (o)t y2p,
" w(o=1) 27 2

Continuing, we see that the operator 0% is equivalent to ( g )T (%) e,

6 b _ (My-1 (Ay 7b ,
(7.1) UOLE =Myt L, A= .

lere it should be recalled that while Lsa is dependent on the valne of ¥ chosen,
L3% is not.

As an application (which will be needed presently) of formula (7.1), we note
that the expressions as full range contractions for repeated intrinsic derivatives
may be transformed to reduced range contractions for a higher value of #. Thus
if we denote the order of the intrinsic derivative by ¥ — 4, the L’s involved in
the case of contravariant tensors are those associated with # — @, and may be
replaced by the L’s correlated to M if the summation index is written in the form
t - 0, instead of &, and formula (7.1) is applied. In order to express the associ-
ation of a quantity with M — ¢ (rather than with #), we shall write it with a su-
perior-, thus L™.. Now, with the notations and procedures indicated, the deriva-

tive IM~7 4b may be transformed as follows:

M-8 M

M-6 b qala) 7b- _ (a-6) 7 b-

I LD D LAl L 2:@ A= Lo
a=0 a=

a=0) 116 1b M= -6) 7b .
= 2o AMe? yf b (Mt g gates0) b

that is,
M M=6 4b (a-6) b
(7.2) (g1 A% = R A*® L., -
On the other hand, Lo;)a is independent of ¥, while
M < (M-4)
Baa[z(/l) Ba ]
follows the companion formula to (7.1), namely,
. e n M- A
(7.3) VB, = (T () B,

Consequently, the contraction expressing a higher order intrinsic derivative of a

covariant vector B, may be altered, thus:
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M-8 M
M-8 - - -8. M- ~ -6
! Bb = Z Baa L(l’;a = Z Ba—@-a LZ ¢ = (3) ' RBaa Lz ¢
a=0 a=6
or,
(7.4) (My M=% p, = kB, L3709,

Similarly, the full range contraction which yields a hicher order intrinsic de-
rivative of the mixed tensor 7% may be converted into a form involving one or
more reduced contractions. These expressions involving reduced contractions
can be used to evaluate the contractions of two L’s. Accordingly, we shall de-
velop one in detail. Starting with the intrinsic derivative of order ¥ — 0 expressed

as a full range contraction, namely,

M- TZ = Z ngc LZd L[;—c’ sum y, 8: Oto M -0,

we replace the dummy index y with y — §, making the new range for y from 6 to

M. The symbol L%’; must be replaced with Lz'_g. o» Which in turn may be written
U9 L%, or ()N (5) LG,

Thus we have the relationship

M-0
= My M-8 -9 8d
(7.5) (§) M7 1§ = 8}_:0 RTY79 ¢ Ly? LS .

With formulas (7.2), (7.4), (7.5) and Theorems 6.1, 6.2, 6.3 as a foundation,
we are now ready to consider certain of the contracted products of our metric ex-

tensors. Our first proposition of this series may be stated as follows:
-6 M oc
TurorEM 7.1 RLY™7"® L7 = 8y 87.
Proof. 1f A% is any equipollent vector, then, by Theorem 6.1,
Aa(a—e) - L(;‘@'a Ab.
Multiplication by ( g‘) and LZa with subsequent contraction yields
AP RLeEre pe = pgeletO) pe o (My M0 4¢ = Y 4c.

Since the values of 4% at ¢= t;, may be assigned arbitrarily, we conclude that if

6 £ M, then
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RL L =
When 0 = M, we have
RLL= 8g
and the theorem is established.

aa c M «c
CororraRY. Lj Le, = 5y 85 -

A formula similar to that of Theorem 7.1 holds for cross summations, as

witness:
THEOREM 7.2. RL?'Q"’ LZ 5M a

Proof. This theorem follows at once from Theorem 6.4 by taking TZ = 8Z and
replacing I" with ¥ ~ ¢

. aa y¢ _ oM sa
COROLLARY. L7% Ly, = 8, Op -

Evidently, we can derive companion theorems to Theorem 7.2 by taking 7eb

and T _, in Theorems 6.3 and 6.5 to be gab and g_,, respectively. Thus we have:
THEOREM 7.3, g%¢*Bb = ged 3 (28 LS“ LyA+B-M- 85 sum &:0,M;

M—S,A+B+5§ c L

%a. 86 = Bcd M, A, B M=8.a “a+B+s. b2

A=¢, B=g8, sum&: 0, M — & —- 3.

REMARK. These theorems relate the interchange extensors (script ¢’s) to

the altermating components of connection.

The contractions of the interchange extensors with the direct and alternating
components of connection, as we have seen, convert excontravariance to exco-
variance, and vice versa. Accordingly, we turn our attention to the direct com-
ponents of connection, and consider the contractions g L and g g. In order to
evaluate the former, we first observe that since the ;% constitute a set of quan-
tities (directed strokes) that transform contravariantly, their intrinsic deriva-
tives /3% also possess this property. Furthermore, these derivatives may be

computed by equations of the type (7.2), (7.4). Thus we may write

(M) M- €—>b R »>a(a-0) Lb
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and

[

M M=-6 i -6 M M «(M-A
()1 by =RDp, Ly where 3 denotes ﬁfa(z or () 3a( ),

Multiplication of these by B+ and 3¢+ respectively gives the following:
- n a~0 b My > M-8 b
THEOREM 7.4. Rgi " " L) = (%) 3, - 1"77 37,

a-fea _c My »c¢ M-8 >
RLy g, =) p1 Py

REMARK. The right members of the preceding equalities determine the
scalar components of the parts of the higher-order intrinsic derivatives of the
base vectors which belong to the tangent space T . In case 6 = M — 1, the con-
tractions reduce essentially to contractions of the L’s, and we conclude that

15% and l—ﬁa either vanish or are perpendicular to R .

This last property can be established directly by applying the operator ;- to
the following chain:

b

lza —)a'+ —ﬁb {bac§ xc' >a’ a

=39+ b» ‘_ »a’ —>b(—5a’ >

> >

PPy =P = Py
Thus the geometric meaning of /3% is that it is the part of 52" that does not be-
long to the tangent space T . Evidently, the set of directed strokes /5 trans-

forms contravariantly, while the /5% are covariant. In the case of a completely

flat space we have
>
lpa =0,
since in such space we have

Ap = (B zb)ato - AP
for Ag = p(P) - g(0) with, if we like, 0 fixed and P variable. Differentiating

this last equation with respect to x% and ¢ we get, successively,

b - > -
3a=(3bz)at0'pa and pa=(pb3
If we now evaluate 3" at 0, we obtain, on transposing, the conclusion /3 = 0. In

Pa P g Pg
general, /5 is the part of 5 that does not lie in T, . Furthermore we observe, in

passing, that in the case of a completely flat space all derivatives of the base
vectors lie in 7.

The interpretation of the contractions g}® g, , and g;% g°  may be obtained
readily by transforming the latter as follows:

8% 82 = P BV By BT =By - 50" - 0,
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with

My >+« (M~A
Paa = () B3,

Thus ¢3¢ gid is the scalar component of the part of the Mth derived dyad
(p° b’b)(‘w) that belongs to the space.

8. The tensor Dy .. The intrinsic derivatives based on the direct and alter-
nating extensors g and L coincide for 4/ zero or unity. [urthermore, they coin-
cide for all values ol M if the space is completely flat since in this latter case
all derivatives of the base vectors and therefore all derivatives of V* 3 _ lie in
the space. Accordingly, the difference between the second intrinsic derivatives
of V/® should lead to a distinction between completely flat spaces and other va-

rieties.

Instead of limiting our attention to the one-parameter case, it will perhaps be
more interesting to carry out the investigation for parameterized surfaces in R .
Consequently, we now set each of the variables x* of our immersed space
equal to a function x?(u, v) of two parameters. Thus the radius vector of our
enveloping Euclidean space is now a function of z and v through the x’s. Sym-

bolically,

3 = B[x(ua U)] .
The direct metric extensors g%b are defined formally as before:

- - > > > -B
&5y = B+ Bap Bap = Prgy = () B ¢7P).

The difference is that }/ and 3 now represent the matrices (Mx’ Mz)’ (Bl, ,82),
and the binomial symbol is the matrix binomial coefficient defined in $ 2.

The mixed second-order direct intrinsic derivative is given by the contraction
VPB) g8y, with M = (1 1), so that the range of 8 is (0 0), (0 1), (10),(1 1).
Evidently, since the Leibnitz rule for the differentiation of products holds for

“matrix primes’’, we may write, for all admissible matrices ¥,
ph(8) g%b = (VA zIBb) . 3% = (Vb —p>b)(M) . 3,

and conclude as before that the direct derivatives give the part of E(M), (3 =

ye 3a) that belong to the tangent space T .

In order to compute the alternating intrinsic derivative [°1 1% V%, we first

write

110 Vd - Vb(,B) g%b’ M = (10)’ - Vd(lo) + Vb b)d . —5;(10) - Ud
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and then

ot pa - pdld) gzgd’ W=(01), _ (Vrl(lo) + 10 3% . -5};(10))(0 1)
4 [pdtio) | opb Ed . 3};(10)] 2% . 36}(0 1)

_ e g%b’ M=(11), + Vb(ga(o 1, ;5;10) + -p>d . ?)b-(w) i 3501))

L N G I D e L VIR I Bul R UOROR

Consequently, if we denote the parenthesis by D35, we have
b(B) a _ pb .c(1o) .dlo1) pera
jotjtope _y gﬁb"v x x Dy

and this difference vanishes for all vectors V and all parameterized surfaces
only in case the tensor /),;C'; is zero.

2

This tensor? in one form or another and in particular certain of its associated

quantities occur in numerous places in the literature. The Riemann- Christoffel

tensor, for exanple, is a skew-symmetric part of 20, since chd a_ Ul;a..'c:a =
I‘)'..a
‘bed °

Summarizing this and our preceding results, we have the general conclusion

that the metric extensors do play a fundamental role in the geometry of the im-

mersed X ..
N

2 The present writers are indebted to Vaclav Hlavaty for historical information per-
taining to [) and its relata.
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