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Introduction

The existence of certain mathematical entities is sometimes proved without
providing any means to construct these entities. In some cases a constructive
proof is found later; there are other cases where not only has no constructive
proof been found, but, furthermore, it is generally suspected that no constructive
proof can be found. This is especially the case for several existence theorems
which are proved using the axiom of choice. For instance, all known proofs of
the existence of a nonmeasurable set use the axiom of choice, and most mathe-

maticians suspect that a constructive proof cannot be found.

There is a similar situation in Boolean algebra with regard to the existence
of certain maximal dual ideals. There are two types of maximal dual ideals,
the atomic ones and the nonatomic ones. While the existence of atomic maximal
dual ideals can be proved without the use of the axiom of choice, all known
proofs of the existence of nonatomic maximal dual ideals use the axiom of
choice or an equivalent axiom. This leads to the conjecture that the atomic
maximal dual ideals are in a certain sense constructive, while the nonatomic
ones are not. The nature of this conjecture is, however, not clear, since no
definition of a constructive dual ideal in a Boolean algebra is generally ac-

cepted.

We shall restrict our attention to two Boolean algebras whose elements are
sets of nonnegative integers. (Qur purpose is to propose two definitions for a
constructive dual ideal in these Boolean algebras based on the concept of a
recursive function, and to investigate the constructivity of the maximal dual

ideals in these Boolean algebras using each of these iwo definitions.

A collection of nonnegative integers is called a set, a collection of sets is
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called a class. Nonnegative integers and functions are denoted by small Latin

letters, sets by small Greek letters, and classes by capital Latin letters. The

Boolean operations are denoted by ““+7° for addition, ““x’’, *“+”’, or juxtaposi-

tion for multiplication, ‘‘’’” for complementation, and ‘“C’’ for inclusion.
P ’ P ’

Proper inclusion between classes is denoted by “g”.
NOTATIONS:
I = the class of all sets,
i(n) by the class of all sets not containing n,
L(n) by the class of all sets containing n,

[ ; the class of all recursively enumerable (r.e.) sets,

I = the class of all recursive sets.

In the following, B is a subclass of V which is a Loolean algebra relative to
+ and x.
DEFINITION. The nonempty subclass I of B is called an ideal in B if:
1) a,BEl Hu+ LET
2) a€LBEB—DapLEL

DEFINITION, The nonempty subclass / of B is called a dual ideal in B if:
D a,pEl —oupB€El;
2) «€LBEB—>u+ BEL

DEFINITION. The ideal or dual ideal / in B is called proper if I < B. A M
(maximal ideal) in B is a proper ideal in B which is not properly included in a

proper ideal in 5. Similarly we define a MDI (maximal dual ideal) in B.

It is readily verified (without the use of the axiom of choice) that ¥ (n). B
is aMlin B and L(n).B a MDI in B for every value of n.

DEFINITION. The Ml (or MDI) M in B is called atomic if there exists an
n such that M = W (n). B (resp. M= L(n).B).

The Boolean algebras which we shall consider are [V, +,x] and [ £, +,x].

DEFINITION. The subclass S of F is recursively enumerable (r.e.) if
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either S is empty, or S consists only of the empty set, or there exists a recursive
function f(m, n) such that a nonempty set & belongs to S if and only if there

exists an m such that & is the range of {(m, n).

DeFINITION, The dnal ideal [ in & (or ") is constructive in the first sense

if I (resp. [.1)is r.e.

DeriniTioN, The dual ideal [/ in £ (or V) is constructive in the second
sense if there exists a r.e. subclass S of £ (resp. /) such that / consists of

all sets in % (resp. 1) which include a set of 5.
We now state thie main results of this paper.

THEOREM A. According to each of the two definitions of a constructive
dual ideal in L or V the following is true: a VDI M in I. or V' is constructive if

and only if it is atomic.

THEOREWM B. In the Boolean algebra L the two definitions are equivalent,
but in the Boolean algebra V' constructivity in the second sense is stronger than

constructivity in the first sense.

I. Preliminaries

1. NoTATIONS:
0 = the empty set
i pty s
€ ;f the set of all nonnegative integers,
{ngs nys eeey = the set consisting of ng, nys <=5 ny,
[0igy Clys woes O.k] ; the class consisting of %y, Uys =+, Oy s
O = the empty class
o ply ’
P = the class of all sets which have a finite or empty complement,
d
( = the class of all sets which are finite or empty,
d
R =P+ Q’
df

D= FE-R.
df
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2. The following statements are readily verified: P is a dual ideal in V, O
is an ideal in V, and neither P nor (J is maximal in V; R is a subalgebra of ¥ in
which 7 is a MDI and ¢ a MI. If / is any ideal in ¥, then 0 € I, and I is proper

if and only if ¢ ¢ I. Dually, if [ is any dual ideal in V, then € € [, and ! is
proper if and only if © ¢ I8

DeErFINITION. The subset K of the Boolean algebra B is called a product

system if K is closed under the product operation.

One of the important theorems in Boolean algebra is: if K is a product system
not containing the null element, then K is included in at least one MDI [ 4, pp.
21, 22; this proof uses Zorn’s lemmal. We shall refer to this theorem as “‘the
theorem of the product system.”” It can be proved that the ideal or dual ideal /
in B is maximal if and only if, for any o € B, [ contains exactly one of the two
sets 0 and &" The dual ideal / in B is therefore maximal if and only if B -/
(i.e., the complement of I relative to B) consists exactly of the complements
of the elements in I. Thus [ is a MDI in B if and only if B —1is a Ml in B.

The existence of MDI’s follows from the existence of MI’s by the duality
principle. The existence of MI’s (often called prime ideals) is proved by Tarski
[71, Stone [ 6], and Frink [1]. These proofs are existence proofs; each of them

uses the axiom of choice in one of its forms.

A dual ideal / in V is called an extension of P in V if it includes P; [ is
called a proper extension of P in V if [ < V and a maximal extension of P in
V if it is a MDI. An ideal / in V is called an extension of ¢ in V if it includes
O; I is called a proper extension of () in V if I C V, and a maximal extension
of ¢ in V if it is a MI, The following theorem is well known: a Ml in V is
nonatomic if and only if it is an extension of ¢ in V. Dually: @ MDI in V is
nonatomic if and only if it is an extension of P in V. The expression ‘‘non-
atomic MDI in V’? is therefore synonymous with the expression ‘‘maximal ex-
tension of P in V.”” Atomic MDI’s in V exist, since L(n) is a MDI for every n;
the existence of nonatomic MDI’s in V follows from the fact that we can apply
the theorem of the product system to P, since P is a product system not con-
taining 0. This proof of the existence of nonatomic MDI’s in V is based on the
theorem of the product system, hence on Zorn’s lemma. No proof of this fact is

known which does not use one of the forms of the axiom of choice.

A proper extension of P in V' cannot contain a figite set, because P contains
the complement of every finite set. Since every atomic MDI in V' contains finite

sets, we see that a M) in V is nonatomic if and only if it contains only infinite

IThis is an immediate consequence of a theorem proved by Tarski [8, p. 57, Satz 3.6].
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sets.

3. We suppose the reader familiar with the following concepts: an effective
(or effectively computable) function [ 3], arecursive function [ 2], a recursively
enumerable (r.e) set, and a recursive set | 3]. We shall assume that a function
is effective if and only if it is recursive. The following six theorems can be
found in Post [ 3, pp. 290-292]:

1) Ekvery recursive set is r.e. 2) There exist r.e. sets which are not recursive.
3) 4 set is recursive if and only if it and its complement are r.e. 4) The sum
or product of two r.e. sets is r.e. 5) lLvery set which is finite or empty or
whose complement is finite or empty is recursive. 6) Fvery infinite r.e. set has

an infinite recursive subset.

The following statements follow immediately from these six theorems. An in-
finite r.e. set is recursive if and only if it is the range of a strictly increasing
recursive function; a nonempty r.e. set is recursive if and only if it is the range
of a monotone increasing recursive function; £ g F; I and F are closed under
addition and multiplication; £ is closed under complementation, but F not; RCE,
and, since the set of all even nonnegative integers belongs to £ ~ R, we see that
K < E; E is a subalgebra of V but F is not; [ is, however, a distributive lattice
with a null element (namely o) and a one element (namely €); £ and F are clear-
ly denumerable, since they are both infinite and there are only denumerably many
€6 1799

recursive functions. Section 1.2 remains valid if we replace ‘“‘V’’ by and

“L(n)” by “L(n) . E”.

4. The definitions of a primitive recursive and of a partial recursive function

can be found in Kleene [ 2, pp. 42, 50, 511.

DEFINITION., Let #(y) stand for: y has the property 7. Then:

Min y[7(y)], in case (Ey){a(y)],

pyt m(y)} =
undefined, in case N(Ey)[n(y)].

Kleene proved [2, p.53] that any partial recursive function f(x;, +++, x,)

can be expressed in normal form,i.e., in the form
f(xly ceey xn) = l[,uy{h(x19 ety Xp,y y) = 0}]7

where 1(x) and h(x, +++, x,4,) are primitive recursive. From now on we con-

sider a partial recursive function as given if it is given in normal form.
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DErFINITION. Let
f(x) = lpylh(x, y) = 011,

where [(x) and 4(x, y) are primitive recursive. The steps in the computation

of f (k) are now defined as follows:

step 0 ;f computation of % (£, 0),
step 1 = computation of A(k, 1),
: i

ad infinitum in case ~(Ey)[Ah(/k, y) = 01,
I (Ey)lh(h y)=0] and m = pyth(k, y)= 01, then:
step m (last step) d=f computation of A(k, m) and of f (k) =1(m).

MOTATION. [ €k;n) = step n in the computation of f (%), provided this

step exists.

PDEFINITION. let f(x) be a partial recursive function defined at x =0,
let s, be one less than the number of steps required for the computation of

f{n), in case f(x) is defined for x < n. Let X be the sequence
FC0;0), eeey f€0; 502, fFCLOY, ooey, [, s, 2,00, ...

where it is understood that “‘f {r,0>, f<r,1>” is only followed by three
points, in case f(x) is not recursive and r is the smallest value at which f(x)

is not defined. The sequence = is defined in terms of X as follows:

replace “f €C0; 02,7 -, “f (1, s, = 1) by f(0),
replace ““f {138, 0,7 «oe, “ 12,5, - 12" by [(1),
replace ““f€2;5,),7 vov, “f{3,5; =127 by f(2), ete.

Then f(n) cZ’ the (n+1)5" clement of 3.

AEMARK. The bar operation maps every partial recursive function which
is defined at x = 0 on a recursive function in such a way that the range of f (x)
equals the range of [ (x), in case [(x) is recursive, while the range of f(x)

is finite, in case [ (x) is not recursive.

DEFINITION. Let f(x) be a recursive function. Then

§ f¥(n) if f(n+1) < [*(n),
¥(0) = f(0), f*(n+1) =
df gl fln+1) if f(n+1)> f*(n)
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REvARK, The star operation maps every recursive function on a monotone
increasing recursive function and every monotone increasing recursive function

on itself.

T 1.1. 1) There exists a recursive function f (x) of n and x such that
every nonempty, r.e. set is the range of at least one recursive function occurring
intf (x)}

2) There exists a recursive function ey(x) of n and x which is
monotone increasing for every n, such that every nonempty, recursive set is the

range of at least one recursive function occurring in { e,(x)}.

Proof. 1) XKleene proved [2, p.58] the existence of a partial recursive
function of two variables, say g (x), such that every partial recursive function
of one variable occurs at least once in {gn(x)}. There clearly exists a recur-
sive function a(n) such that {ga(n)(x)} contains all functions in {gn(x)}

which are defined at x = 0. Let

fn(x) C;f ga(n)(x);

then f (x) satisfies the requirements.
2) Let

en(x) d=f fH(x),

where f (x) is the function described in part 1); then {e,(x)} is a sequence
of monotone increasing recursive functions. If % is a nonempty recursive set
there exists a monotone increasing recursive function, say e(x), ranging over
n; it follows that 'e(x) occurs in {fn(x)§, hence e*(x), i.e. e(x), occurs in

{en(x) 1. Since the range of e(x) is n, e,(x) satisfies the requirements.

5. The diagonal procedure used in the proof of the following theorem is our

main tool in the investigation of the constructivity of MDI’s in £ and V.

T 1.2. Let S be a nonempty, finite or denumerable class of infinite sets.
Then there exist nondenumerably many sets y such that both y and y’ are in-

finite and neither y nor y* includes any set of S.

Proof. We order the sets of S in an infinite sequence O, Gy, +++ . I S is
finite this can be done by repeating one of its sets infinitely many times in the

sequence. let @, , a, ,++- be an enumeration without repetitions of «,; this
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sequence is called row & for purposes of presentation we shall call the set

y a f3-set if both y and y” are infinite, while neither y nor y” includes any set

of S. Let
Co = Ggo»
dy = agy,
¢y = the first element in row 1 which is > Max (¢g, 4,),

the second such element in row 1,

B

the first element in row 2 which is > Max (¢g, dy, ¢, 4, ),

RS

the second such element in row 2, etc.

&

Suppose

d:f fco, Cppoerdy 8 d:f {do, dyy oo 3

then we observe: both y and & are infinite, y and & are disjoint, both y and
& have at least one element in common with every row. Thus y” is infinite,
since y”D> & and & infinite; moreover each of the two statements y D %,
y’D a, is false for every n. We conclude that y is a B-set. If Yo» 2 V) are
(3-sets we can prove the existence of a f-set y,, different from y, for i=
0, «++, k by applying the same diagonal procedure to y s =+« ¥ Cljy 05 oo
It follows that the number of 8-sets is not finite. If there were only denumerably
many (3-sets, they could be ordered in a sequence, say {8, }; by applying our
diagonal procedure to U oo 80, U, 51, .+« we would obtain a B-set § such that

S # 8n for every n. The number of 8-sets is therefore nondenumerable.

6. The following theorem, which deals with the relation between dual ideals

in V and dual ideals in E, can easily be verified by the reader.

T1.3. 1) Any dual ideal in V intersects E in a dual ideal in E.
2) Any MDI in V intersects £ in a MDI in E.
3) IfMis aMDIin V, then the MDI M « £ in E is atomic if and only

if M is atomic.

7. SUMMARY. Though our paper is primarily concerned with the constructi-

vity of dual ideals in £ and V, we have included some theorems about dual
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ideals in £ and V which may be interesting for their own sake. In < I we shall
discuss whether several important subclasses of F are r.e. and prove Theorem A
in so far as it deals with constructivity in the first sense. An extension / of P
in £ (or V) is called simple if there exists a set & in £ (resp. in V) such that
I is the intersection of all extensions of P in £ (resp. in V) which contain «.
In § I simple extensions of P in £ and V are studied, and a second proof is
given of the fact that a nonatomic MBI in £ (or V) is not constructive in the
first sense. An extension of P in £ (or ) is called semisimple if it can be
expressed as a finite or denumerable sum of simple extensions of P in £ (resp.
V). In $1V semisimple extensions of P in L and V are discussed, Theorem A
is proved in so far as it deals with constructivity in the second sense, and the

relation between the two types of constructivity is investigated (Theorem B).

II. Recursively enumerable classes

1. Both the following definitions for a ‘“‘constructive set’” seem reasonable:

1) ““The set o is constructive, if there exists an effective method which
enables us to decide in a finite number of steps for any given nonnegative in-
teger n whether or not n belongs to «.”” This is in the spirit of Kronecker who
required of a definition that it should include an effective criterion which per-
mits us to determine for any given object whether or not it satisfies the condi-

tions specified in the definition.

2) ‘““The set o is constructive if ¢ is either empty, or finite, or an infinite
set which can be effectively generated in a sequence {a,} of different ele-

ments.”’

The first definition amounts to ‘“¢. is constructive if ¢ is recursive’’ and
the second one to ‘“a is constructive if & is r.e.”” Since £ C F, we see that
the second definition is weaker than the first. If we use either “o0 € £’ or

’ it seems natural to define

“« € I’ as a definition for ‘‘a is constructive,’
the constructivity of a (possibly nondenumerable) class S of sets by some
suitable property of S« £ (resp. S F). In this way we are led to the problem
of finding properties of a constructive character for subclasses of £ and sub-

classes of F.

2. DEFINITION. The characteristic function char, (n) of a set & is de-
fined by

1 for n € «,
char, (n) =
df |0 for n §ZO(.
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DEFINITION. The class K is called characteristically recursively enumer-
able (ch.r.e.) if it is a subclass of £ which either is empty or has the property
that there exists a recursive function k(m, n) such that the set & belongs to

K if and only if there exists an m such that chary (n) = & (m, n).
NoTATION. K = Char k(m, n).

For the definition of a r.e. subclass of I we refer to the introduction. If
o ¢ S and f(m, n) is related to S as described in this definition, we say that

f(m, n) recursively enumerates S.
NoTATION. S=Enum f(m, n).
DEFINITION. S’ is the class over which o’ ranges if ¢ ranges over S.

DEFINITION. The sequence {S;} of nonempty r.e. classes which do not

contain o is called r.e., if there exists a recursive function [ (/, m, n) such that
Sl = Enum (I, m, n)
for every [.
The following theorem can easily be verified.

T 2.1. 1) The sum of a finite number of ch.r.e. classes is ch.r.e.
2) The subclass K of E is chur.e. if and only if K* is ch.r.e.
3) Every chur.e. class is r.e.
4) The sum of a finite number of r.e. classes is r.e.

5) The sum of a r.e. sequence of r.e. classes is r.e.

3. T2.2. 1) The classes P and Q are both ch.r.e. and r.e.
2) The class F is r.e.

3) The class E is r.e., but not ch.r.e.

Proof. 1) We shall first prove that Q is ch.r.e. Let n be any nonnegative
integer, and suppose S;q, Spy» +++ 5 Spr, is the finite sequence of zeros and

ones such that

;
no=spo 2% + sy - 21+...+smn .,

This means that n is written as s,, S, _ +++ s, in the dual number system.
n n-1
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Observe that n uniquely determines this finite sequence, and that Spr, = 0 for

n =0, while s, =1 forn > 0. Let

®, = the infinite sequence Sko Sk

/fdf l...sk’_ 000 ««.,

k

and suppose g(k, n) is the (n+ 1)%" element in b5 q(k, n) is clearly a re-
cursive function, and (¢ = Char ¢(k, n). It follows that () is ch.r.e. Then P is

ch.r.e., since P = (J*. It is easy to see that
¢ - 1lol = Char ¢g*(k, n),
where

q*(k, n) dzf g(k+1,n);

thus ¢ —[ o] is ch.r.e., and both ¢ —[ o] and ¢ are r.e. The class P is r.e.,

because it is ch.r.e.
2) Let f (x) be the recursive function mentioned in T 1.1.1. Then

F —{o]=FEnum fn(x),

and both ¥ — [ 0] and F are r.e.

3) let e,(x) be the recursive function mentioned in T 1.1.2. Then
E ~{o] = Enum e,(x),

and both &£ — [ 0] and £ are r.e. To prove that £ is not ch.r.e., suppose c(m, n)
is a recursive function such that £ = Char ¢(m, n), and suppose y,_ is the set

with ¢ (m, n) as its characteristic function. Let

0 for c(n,n)=1,
d(n) =
11 for c(n, n)=0,

and let & be the set with d(n) as its characteristic function. Then 8 € E, since
d(n) is recursive and & # y,_ for every m, because m Cym'5+ym5'. The

assumption that E is ch.r.e. leads therefore, to a contradiction.

T 2.3. Let S be a nonempty, finite or denumerable, r.e. subclass of F ~ (.
If a recursive function s(m, n) is given which enumerates S, we can construct

a set n € D such that neither n nor y° includes any set of S.
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Proof. 1f o, is the range of s(m, n), S consists exactly of all sets occur-
ring at least once in the sequence oy, 0, +++ . For every m we can effectively
find a recursive enumeration without repetitions of o,,. The diagonal procedure
used in the proof of T 1.2 becomes effective when applied to the sequence

Ggs 05 +»+ 4 since s (m, n) is recursive.
CorOLLARY 1. [fD C S C F~(,Sisnotr.e.
COROLLARY 2. The classes U, U+ P, F —= R, F — (J are not r.e.

4, Consider the following question: “‘If ¥ is a MDI in £ (or V'), what do we
know about: 1) the characteristic recursive enumerability of ¥ (resp. M« E)?

2) the recursive enumerability of M (resp. M« F)?”’
T24. IfMis aMDlin E (or V), then M (resp. M - £) is not ch.r.e.

Proof. Note that every MDI in V intersects £ in a MDI in E; it therefore
suffices to prove that a MDI in £ is not ch.r.e. Let 4 be a MBI in £. Suppose
M were ch.r.e.; then M = E — M would also be ch.r.e., by T 2.1.2. This would
imply that £ =M+ (£~ M) is churee., by T 2.1.1; this is, however, false by
T 2.2.3. Thus # is not ch.r.e.

T 2.5 IfMis any MDl in £ (or V') then:
a) if M is atomic, then M (resp. M« ) is r.e.;

b) if M is nonatomic, then M (resp. ¥ « F) is notr.e.

Proof. a) let M be an atomic MDI in £, say M = L (k). E. Suppose e(m, n)

is a recursive enumeration of £ — [ o]. We define

e{(m,n—1) for n > 0,
alm, n) =

1Lk for n=0.

It is now easy to verify that a(m, n) is a recursive enumeration of L(%) . E.
Using a recursive enumeration of F — [ o], we can similarly prove that an atomic

MDI in V intersects F in ar.e. class.

b) Let M be a nonatomic MDI in V. This implies that M C V — Q as we
observed at the end of $1.2. Thus M« F C F — (. Clearly M . F is nonempty.
If M. F were r.e. there would by T 2.3 exist a set 7 € D such that n, n’ ¢ M. F;
this would imply that 7, n* ¢ M, since 1, n° € F. This is, however, impossible

because a MDI contains exactly one of any two complementary sets. It follows
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that M.} is not r.e. If M is a nonatomic MDI in £ we know ¥ =M.E C £ -Q C

F - Q, and we can give a similar proof of the fact that ¥ is not r.e.

Let / be a dual ideal in £ (or V). Then we see from T 2.4 and T 2.5 that
the definition ““/ is constructive if I (resp. I-E) is ch.r.e.’” is less satisfactory
than ‘I is constructive if I (resp. I+ F) is r.e.”” For any MDI in £ or V (atomic
or nonatomic ) would be nonconstructive according to the former definition, while
according to the latter definition a MDI would be constructive if and only if it
is atomic. A dual ideal in £ (or V) is called constructive in the first sense if
{ (resp. I+ F) is r.e. Theorem T 2.5 is therefore identical to the part of Theorem

A which deals with constructivity in the first sense.

III. Simple extensions of P

1. The only proper extensions of P in V, of which we have discussed whether
they intersect F in a r.e. class, are P itself and maximal extensions of P in
V; P intersects F in a r.e. class, namely in P itself, and any maximal extension
of P in V intersects /' in a class which is not r.e. A solution of the problem:
“Which extensions of P in V intersect F in a r.e. class?’’ might increase our
understanding of maximal extensions of P in V. If it would turn out that no
proper extension of P in V which properly includes P intersects F in a r.e.
class, the fact that maximal extensions of P in V do not intersect F in a r.e.
class would not reveal much about their nature. If the collection of proper ex-
tensions of P in V which properly include P, would, however, consist of two
nonempty subcollections: those which do intersect F in a r.e. class and those
which do not, we might get a better insight into the nonconstructive character
of maximal extensions of P in V by studying these two subcollections. The
¢S and IV are an attempt to determine which proper extensions of P in V
properly including P intersect F in a r.e. class. The analogous problem for

extensions of P in F is also considered.

2. DEFINITION. &= f3 = («f’+a’BEQ), ie., o= if « and B
differ by at most a finite number of elements. We shall read this: “‘o and B

are congruent.”’
DEFINITION. (&) is the class of all sets congruent to ¢.
DEFINITION. o) + B> = (u+ B, > x (B> = Lup),

df df
(a>’ = <u’).
df

It is easy to see that these definitions are unique and that the equivalence
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classes defined by the congruence relation in V form a Boolean algebra with

respect to +, %, *, which has @ as its null element and P as its one element.
DEFINITION, vin) = {0, 1, .0, nl.
d

DEFINITION. 3 almost includes ¢ (or & is almost included in f3), ab-
breviated 8 alin «, if a3’ € ¢, i.e., if 3 contains all but at most a finite

number of elements of ¢.?

DEFINITION. Alin S is the class of all sets which almost include a set
of S.

Obviously, Balin & «» ¢ + 8= 8 <> there exists an n such that 32 & - v(n)
<> there exists a set 6 & Q such that § C « and 8 D « - 8. Also,

o= <> {c alin 8 and B alin . }.

The alin relation is clearly a generalization of the inclusion relation. It is
reflexive and transitive; it is, however, not a partial ordering relation, since it

is not antisymmetric. For if
o =10,2,3,4,..-} and B =1{1,2,3,4,.-.}

then o alin 8 and B alin «, while « # B. If B, alin &, and 3, alin t,, then
B, + B, alin a, + ¢, and B, B, alin o &, Also B alin « if and only if 0”alin
B’ Any set 8 almost includes any finite or empty set; a finite or empty set
B almost includes a set ¢« if and only if & is finite or empty. Alin S = V when-
ever S contains a finite set, and Alin / =/ for any extension [ of P in V. Hf S
consists of a finite number of sets, say Ugs + 2= 5 Oy We shall denote Alin S by

Alin(ao, oo, an).

3. Let I be a dual ideal in the Boolean algebra B. Any dual ideal in B which
includes [ is called an extension of I in B. If S C B, we shall denote the inter-
section of all extensions of / in B which include S by /,(S). In case S consists
of a finite number of elements, say «y, +++, & , we shall denote IB(S) by

IB(QO, ceey C{n). IB(S) is obviously the smallest extension of [ in B which

includes S. Also
IB(C() =[pa + vl
where p ranges over [ and y over B.

2This relation was studied by Sierpinski [5].
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DEFINITION. The extension [ of the dual ideal / in B is called a simple
extension of I in B, if there exists an element ¢ € B such that [1 =IB(O().

Evidently Py(o)=Alin « for any « € V, and Pp(&)=£ « Alin o for any
o € E. Let I be a simple extension of P in V; every set ¢ € } such that
[=Py(a) is called a generator of I. A necessary and sufficient condition that
o and 3 are generators of the same simple extension of P in } is ¢ = . This
means that a simple extension of P in V uniquely determines its generator
modulo (). The following statements are easily verified: Py (&) = P if and only
if «€P; Py(a)=V if and only if o €Q; P < Py () C V if and only if
o ¢ R.

T 3.1. 1) Every proper extension of P in V is included in at least one

maximal extension of P in V.

2) If B does not almost include «, there exists a simple extension
I of P in V such that « € I, B ¢ I, and a maximal extension M of P in V such
that o € M, B §f_ m.?

3) If o alin B, then Py(a) C Py(RB); if o alin B is true, but 3
alin o false, then Py () g Py(B).

4) A simple extension of P in V cannot be a maximal extension of

Pinl.

Proof. 1) Every proper extension of P in V is a product system not contain-

ing o; we can therefore apply the theorem of the product system.

2) «f’ € ¢, since B alin c is false. Let I=Py(af’); then I C Vs
furthermore o, B° € I, because o 3” € I. It follows that 8 ¢ I, since [ < v
and 3’ € I. Thus [ is a simple extension of P in V satisfying the requirements.

In view of 1), / is included in a maximal extension of P in V, say M. Conse-

quently o, B € M, hence S ¢M.

3) Any set which almost includes a set of I belongs itself to /, since indeed

Alin I = I. If o alin 8 then «€ Py (B), hence

Py(o) = Alin & C Py(B).

Now Py(a)=Py(B) would imply o = 3, hence B alin «. It follows that
Py (&) g Py (B), whenever ¢ alin 8 is true and 3 alin o false.

3The second part of T 3.12 was suggested by a result of Stone [6, p.105, Theo-
rem 64 1.
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4) Let I=Py(x); we may assume 0.5113, the theorem being trivial in
case & € R. We observe that there exists an infinite set 3 such that 3 C ¢ and
« -8 §Z (J, because o is infinite. But this implies that « alin (3 is true and
3 alin « false. Moreover, Py () < V, since f8 gZ Q. Thus Py () gpv(ﬁ) < Vs

this implies that Py (o) is not a maximal extension of P in V.

REMARK. All four parts of this theorem remain valid, if we replace “‘}”’
by “E”’ and assume «, 8 € E. In the proof of the third part we have to take a
recursive subset of o for 8. If a(n) is a strictly increasing recursive function

ranging over 0., we can take (3 as the range of a(2n).

4. Let I be a dual ideal in B, and suppose Ohys Oy = vy Gy € B. ltis easy
to verify that

IB(ao, o) = Ip(a, - o) and IB(C/.O, Ups oo s o:n)=IB(a0- Uyove O )

This means that adjunction of any finite number of elements of B to I leads to

the same result as adjunction of a certain single element of B to I. Clearly
Py (o, B) = Py(up).

Hence
Py(a, B) = Py(x)

if and only if 8 alin &, and Py () < Py (o, 3) if and only if B does not almost
include o. Similarly for Py () and Pg(&, 8) under the restriction «, 8 € E.

DEFINITION. ¢ alin™' 8 - B alin .
d

DEFINITION. Alin"! S is the class of all sets which are almost included

in a set of S.

Clearly
Alin"!' S = (Alin S)*, Alin S = (Alin"! S*)’,

Oy () = Alin™" o, ¢, (a) = (P, ()%, P (o) = (¢, ()"

By means of these relations the theory of simple extensions of a dual ideal in
a Boolean algebra can easily be dualized to a theory of simple extensions of an

ideal in a Boolean algebra. If, for example, / is an ideal in B and Chgs =y O € B,
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then
ToCogs eoes o) = Tplog +-ee+a).
From the fact that o = 3 if and only if ¢ alin 3 and 3 alin o follows:
Cod = P, (o). ¢y la).

5. We shall now discuss some theorems dealing with the relation between

simple extensions of P in £ or V' and r.e. classes.

DEFINITION. L(a) is the class of all sets which include & (note that
L({a) is a dual ideal for every «). The dual ideal I in £ (or V) is called
principal if there exists an « € £ (resp. & € V) such that I=F . L(«)
(resp. [ = L(u)); « is called the generator of I.

The principal dual ideals in V can be classified according to the nature of
their generators; we shall therefore discuss a classification of sets in V which

is relevant to the character of the class L (). F.
DEFINITION. fis a superset of ¢ if ¢ is a subset of S.

DEFINITION. o is called immune if it is infinite and has no subset in

I'—(J; o is called contraimmune if ¢’ is infinite and & has no superset in

F-_P,

DEFINITION. « is calle