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Introduction. Recently the study of the propagation of a plane shock wave
moving into a quiet atmosphere, and leaving a ronisentropic disturbance behind
it, has been reduced [G] to the solution of a Problem of Cauchy for a Monge-
Ampére equation of the type

(1) t—s24+ A =0, A= X(x)Y(y).

The present paper is devoted to a study of the Problem of Cauchy for this
partial differential equation with a view to later applications to shock propaga-

tion.

In the first section we determine those functions X (x), Y (y) for which (1)
has intermediate integrals. A summary of the results will be found in the seven

cases in Theorem 1.

The linearization (without approximation) of the seven equations found in
$1 is carried out in § 2 with results summarized in Theorem 2. The individual

results (particularly on cases 3, 5) are of interest for the applications in mind.

The solution of the Problem of Cauchy is taken up in §3 and reduced to
the solution of the Problem of Cauchy for linear partial differential equations.

A summary of the results will be found in Theorem 3.

1. Intermediate integrals. In this section we investigate the intermediate
integrals of (1).

If either X or Y is zero, or both are constant, then A = const., and (1) has
intermediate integrals [ 3, pp. 154-155]

g-Arx=¢(p+Ay), ¢+ Arx=1y(p-2Ary),
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166 M. H. MARTIN

involving arbitrary functions. These simple cases will be excluded in our search

for functions X, ¥ for which (1) has intermediate integrals.

According to classical theory [3, p.58], based on the differential systems

dz — pdx — gdy = 0, dz — pdx — qdy = 0,
(2) dp + Ady =0, (27) dp — My =0,
dg — Adx= 0, dq + Adx= 0,

for the two families of characteristic strips, (1) will have an intermediate

integral
Vx, ¥, z, p, ¢) = const.

if, and only if, V is a simultaneous solution either of

i
<

Vi + pVz + AV =0, Vi + pVe = AV,
(3) or of (37)
Vy + qVz = AV, =0, Vy + qVy + AV, =

I
(=]

Any solution of the first equation in (3) must have the form
V=F(u v,y,p)y, u=2-—-px, v=g-XY, X =_/Xa’x,.
and will be a solution of the second equation if and only if

(4) 2XYF, = X YE, + X, - (YE, = Y'F,)) + £y + vy =

|
<

is an identity in the independent variables x, u, v, y, p.

The manifolds

(5) M: Fy=xX, Fp=X Fy=2X,F, =1,
N: Gy=YE, Gy == YF, Gy = YF, = Y'Fy, G4 = F, + voF,,

are at most one and four dimensional, respectively, with the bilinear condition
Fi.G, + FaGy + F365 + F,6G, =0

imposed on them, in view of (4). For this condition to hold, it is necessary
and sufficient ! that MCS,,, NCT,,, where S,,, T, are linear orthogonal subspaces

defined by

1This follows as a special case of a general theorem which will be proved elsewhere

{71



MONGE-AMPERE DIFFERENTIAL EQUATION r — s2 + A% = 0 167

4
Spt ZbkaFa=O (k=1, -, n);
a=1
4
Tp: D ainG,=0 (i=1,ee0,m; m+n=4),
a=1

the matrices

A=lla,ll, B=Ilp,1,

having ranks m, n, respectively. The linear subspaces S,,, T, are orthogonal
if, and only if, the composite matrix C formed by taking the m rows of A followed
by the n rows of B has the following property; the m-rowed minors in A are all
proportional to their complimentary minors in B, the indices of the columns of
A followed by the indices of the columns of B forming an even permutation of
1, 2, 3, 4.

There are fives cases to consider as m =0, 1, 2, 3, 4.

I. m =0, n=4. This case does not arise, as it requires

whereas actually Fy =1 in (5).

II. m=1, n=23. Here

4

o F, Fy Fy

Sl:__—=—=—=——; [322(11(16(1:0,
an ayg a3 a4 a=1

and T; is a hyperplane with S, the normal to S; at the origin. From (5) the
equations of S; imply that X, X; are both constant and therefore X = 0, A = 0,

an excluded case.

. m = 2, n = 2. Here

4 4
Spr 2 by Fo=0 (k=1,2); Tp: 3 a, G =0 (i=1,2)
a=1

a=1

are linear orthogonal two-spaces, and
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A1 Ays A Ags A4y Az
Bag By, Bys B4 Bis B’

where A;j, B;j denote the determinants formed from the ith and jth columns of
A, B. From (5) the equations of S, yield simultaneous equations

(byyx + b)) X + bisXy + by = 0, (byyx + bp)X + by Xy + by =0,

for X, X{, so that
B, A Bayx + By
C Buax+ Byy ' Bax+ By

the case in which all B;;, except By,, are zero being rejected, since it implies
X = 0. When the second equation is differentiated, two simultaneous equations

result for X which can subsist only if X = const.

We accordingly place
X=a#0, X =ay +ax (ay, a = const.),
in (4), which implies two simultaneous partial differential equations

2YF, = Y'F, = 0, (v+aY)Fy —agY'Fy + Fy —aYF, =0,
for F. It ¥ # 0, the general solution of the first is
L=—#0.

F=G(r,y,p)y, r=2v+Lu, 7

and the result

1
(—rL - aOY') G + Gy ~ aYGy + u(L' ~

of substituting this in the second leads to

1
(—rL-aoY')G, + Gy —a¥G, = 03 G, =0 or 2L - L% =0,

linder the alternative G, = 0, we arrive at an obvious intermediate integral

V=p+aY = const.,, Y =/Ydy,

(6)



M()NGE-‘\MPI‘ERE DIFFERENTIAL EQUATION rt — 82 +)\2 =0 169
valid for any function Y (y); with the second alternative, necessarily
Y=b(y—y0)'2 (b, y, = const.),
and we have two intermediate integrals
p — ab(y - yo)—l = const., (y -y )r+ 2agb(y~ yo)'1 = const.,
the first of which repeats (6), with the second becoming

abx
px+q(y—yo)—z - = const.
Y=Y,

in the original variables. If the first is multiplied by an arbitrary constant x,,

and subtracted from the second, a more symmetric form

X —xg

plx—x9) + qgly-y,)—2z—ab = const.

Y =%,
results for the second.

With ab =%k, for A=k(y —yo)_2 equation (1) consequently has the inter-

mediate integrals

x—xo k
p(x—xo)+q(y—}’0)—z—]f =‘7L/’(P— )>
Y =%, Y=,
x——xo IL
p(x—x0)+q(y—y9-—2+k = ¢(P+ )s
Y =%, Y =%

involving arbitrary functions ¢, i, the second intermediate integral arising from

(3.

IV. m=3, n=1. Here

and T, is the normal to the hyperplane S; at the origin. From (5) the functions

X, Y, F must meet the conditions
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, YF, - YFp YF,-Y'F, Fy + vk,
(byx + by )Xy + b3 Xy + by =0, = = = s
by by, bys biy

and we begin with the case
(i) by # 0.
There is no loss in generality if we write
by = 1, by ==xg, bz =—m by =-uag,

to put the above equations in the form

(x —x0)A; = mX; —ay =0,

29 Fy = Fp =0, (m+ 1)Fy = LE, =0, (v+ayY)F,+F =0,
where we recall L = Y’/Y. We find

X:ao(x—xo)—l (m=0); X=a(x—-x,)""' (a=const., m# 0),

from the first of these equations. The last three are simultaneous equations for

Y, F. Any solution of the first must have the form
F=G(r,v,y), r=u+xgp,
which, substituted in the remaining two, yields simultaneous equations for G:

(m+1)6, - LGy =0, (v+agY)G+Gy=0.

Hm=-1, either G, = 0 to imply G = const., or L = 0 to imply

X=a(x~x,)% Y=0b AN=k(x-xy)?% k=ab,

and the existence of intermediate integrals

Y =%, k
plx—xg)+qly—y))—z+k =¢(<7+ ),

X —Xg

Y=Y k
plx—x)+qly~y)—z~k =¢(q— )

X = Xg
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analogous to those found in Il

If m # ~ 1, for the general solution
G=H(s,y), s=(m+1)v+Lr,

of the first equation for G to yield a solution of the second, requires that the

identity

[s +ao(m+ D) YILHs + (m+ D)Hy +r[(m+ 1)L~ L?1Hs = 0
hold. For H # const. this implies

(m+ 1)L =L%=0, [s +ag(m+ D)YILHUg + (m+ 1)Hy, =0,

the first of which yields

b

Y= o (b, y, = const.),
(y_yo)m+l
so that the second becomes
s agb(m+1)
H, - + Hg =0.

y-—yo ()”"}’O)m+2

This yields the intermediate integrals

agh(m+1)

(y-yo)s——= const. (m #£0),
m(y —y)"

(y-—yo)s + agb log (y—yo) = const. (m=0),

or, in the original variables, the intermediate integrals *

21f we write the intermediate integral for m # 0 in the form p (x — x¢ ) + q(y — Yo )—z—
kn(r'/"— 1) = const., r=(x—x5)/(y=v¢), n=1/m, and let n —> oo, this intermediate

integral approaches the one for m = 0, in view of

lim n(r/"=1) = logr,

n-s00

for which see [ 4, pp. 139-140].
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kog% = %0\"
;)(x—x0)+q(y—y0)—z———-( ) = const. (m £ 0),
m \y~y,
k% =x\"
p(x—xo)+q(y—y0)—z+—( ) = const. (m £ 0),
m\y-y,
X~ %
plx—x0) + qly—y,) ~ 2z~ k log = const. (m =0),
Y -9,
X — Xg
plx—x0) + g(y-y) — z + k log = const. (m=0),
of (1) for
(x_x )m-l
ek — (k=ab, m#0),
(y_yo)m+l
(x -z )"
A=k — (k = agh, m =0),
Y-,
the second arising from (37).
The next case to consider is
(ii) by =0, by, #0.
Here F = F (v, y, p), and we can write
by =1, bjg=—m by =c,

so that X, Y, F satisfy the equations

X, ~mX, + ¢ =0, Fy + cYF, = 0, LF, + mF, = 0.

Since m = 0 implies X = const., treated in Ill, we assume m # 0, and obtain

X = ge™™ (@ = const.)

from the first equation. From the second equation we get
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F = G(r,v) with r = p - Yy,
and for this to satisfy the third, necessarily L = n = const., so that we have

Y = be™ (b = const.),

and the intermediate integral nr — mv = const.; or, in the original variables,

np — mqg + ke™*e™ = const.,, np ~ mq — ke™* ™ = const.,
are intermediate integrals of (1) for
A= ke™e™ (k=ab).

The last possibility is
(iii) by = by, = 0, by # 0.
Here X; = const., so X = 0, which has been excluded.

V. m=4, n=0., This requires G, = G, = G5 = G, = 0; if we exclude

Y = const., as previously treated, this can only arise if F' = const.

If we observe that the form of (1) is left invariant under the transformations

in the group
x'=x =%, Y=y —y; x'=y y' =x; x"=kx, y'=ly,
the results of this section can be summed up in the theorem:
THEOREM 1. The Monge-Ampere equation

rt-s?+A2=0, A=X(x)Y(y),

has intermediate integrals only in the following cases:

A Intermediate Integrals
1. 0 qg=¢(p)
2. 1 g-x=¢(p+y), g+x=y(p-y)
3. Y(y)#£0 p + Y, =const., p-Y, = const., Y1=/Ydy,

x 1 x 1
4oy Px+qy—z——=¢(p——>, px+qy—2+—-=</f(p+—),
Yy Y Y Y
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5. (m £ 0) px+qy~z——<—) = const., px+qy—z+—(—) = const.,
Mt m\y m\y
X1 x x

6. —— px + gy — z — log — = const., px + qy — z + log — = const.,
Y y Y

7. e*e” p ~q+e* e = const., p-q-e*e’ = const.,

and in those which arise from these under translations, reflections in the line

y = x, and dilations in the (x, vy )-plane.

That each solution of the partial differential equation of first order repre-
sented by an intermediate integral is actually a solution of the appropriate
Monge-Ampere equation may be verified directly by differentiating the inter-
mediate integral partially with respect to x and y, and calculating rt — s%.

2. Linearization of the Monge-Ampére equation. The integration of (1) for
all cases except the first in Theorem 1 will be reduced to the integration of

linear partial differential equations of at most the second order and quadratures.

The differential system (2), (27) is replaced by an apparently over-de-

termined system

2~ pxg = 9y = 0, z,—px, = qy,= 0,
(7) Pg +)\yB=O, p, — Ay,= 0, A=A(x, v, 2, p, q),
q]@ - )\xﬁ = 0, q, + }\xa= 0,

of six equations for five unknown functions
(8) % =x (&, 18)’ Yy =y(0(, B)r z =z (&, B)s p = P(o‘r B)a q= q(C(, 6)7

of the characteristic variables? o, 8. Actually, if one supposes that the quantity

4 = z, = px, = qy,

vanishes along a curve C drawn on a solution surface S defined parametrically

by the first three equations in (8), provided the curves ¢ = const. on S cut C,

3The idea of introducing the characteristic variables a, 8 as independent variables
to replace the characteristic differential system (2) by the system of partial differential
equations (7 ) has been ascribed to Hans Lewy in a footnote on p.327 of [ 1], According
to Goursat [ 3, pp.106-116], the idea goes back to Ampére. Lewy was the first to use
them, however, in the proof of the existence and uniqueness of the solution to Cauchy’s
problem when intermediate integrals do not exist,
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it is easy to show that 4 = 0 on S; for the remaining equations in (7) imply

{1, pp.329-330] A,B = 0, and therefore, since 4 =0 on C, it vanishes every-

where on S.

If A\=A(x,v,p, q), the four equations in the last two rows of (7) form a

determined system for the unknown functions «, v, p, ¢ of &, 8. Corresponding to

any solution
(9) x:x(C(,ﬁ), y.:y(a’B)’ P=p(o‘7ﬁ)’ q=‘7(01’6)
of this system, the first row in (7) yields

2

(10) z=/%{—(%)ada+(%)ﬁd/3]=z(a,B),

when x4, ¥o, %, yg are eliminated with the aid of the remaining equations.

Consequently

q

(1) = — Aza, (—) = AZ,E (A = )\/P2)7
P /g Plg

so that z (&, B) is a solution of the linear equation

A,B A,
+ —z +—2z

(11) -
fap T 9N " TN B

the function A (c, ) depending, in general, on the selection of the solution

(9).

It is worth noting that z (0, 8) is a solution of the linear equation (11) for

A=A, ¥, py q), i.e., this result is not restricted to the special form A =

X(x)Y{(y).

The treatment of the various cases will be based on the following lemma.

LEMMA. The integration of the system

vy~ Kug= 0, v + rku =0, k= k(0= A,

is equivalent to the integration of either one of the pair of conjugate [ 5] linear

equations
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K’ K’
L = - - = M - - =
(w) Uyg o (ua u/B) 0, M(v) Ua’8+2;< (va vﬁ) 0

If ulv] is a solution of L (u)=0[M(v)=0], its conjugate function v[ul may
be obtained by quadratures.

We begin with:

Case 1. Here (1) is the equation for the developable surfaces, and its

integration is well known.

Case 2. Instead of (7) we have

(12) 2p= pxg— qy; = 0, z, = px ~ qy, = 0,
p+y =« p-y=25
qﬁ_x,6=0’ q, +%,= 0.

From the intermediate integrals

pty==0, p-ys= BO, % g ,Bo = const.,
we obtain solutions
(13) z = Uyx —xy + G(y), z = Bx +xy + Gly),

involving an arbitrary function G (y).

The integration of the system in the third row of (12) is equivalent to the

integration of either of the linear equations
L(x)zxaﬁ=0, Aﬁ'(q):qaﬂz O,

and for (9) we find the formulas of Goursat [ 3, pp. 154-155]

1 1 1 1
x=§[l//(ﬁ)~¢'(0()], y=5(o<—[3), p=-2—(c<+B), q=—2-[q§'(<‘/.)+ ¢ (B ],

where ¢(at), () are arbitrary functions. Carrying out the quadratures in (10)
yields

1 1
(15) z=Z(a+B)[l//(B)—¢'(a)]+§[qﬁ(o¢)—¢(6)],
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a solution*, containing two arbitrary functions, of

2+ z
a

I B
af o+ 0

=0,

to which (11 ) reduces.

The solutions (13) are not contained among the .solutions (14), (15). For
example, for the first solution in (13) the sum p + y is constant over the entire
solution surface; but for a solution (14), (15), while the sum p +y = o is
constant along each characteristic ¢ = const., it varies from one characteristic

to another.

Case 3. System (7) is replaced by

(16) zﬁ—pxﬁ—qy[a:O, z —px, ~qy,=0,
p+Y, =, p-Y =6 (Y1=/Ydy)
qﬂ-—YxlB=0, q,+ Yxa=0,

The intermediate integrals yield solutions
(17) z=O(0x——le+G(y), z=Box+Y1x+G(y)

~ontaining an arbitrary function G (y).

To obtain other solutions we observe that

Y, ==(a-p),

ISR

and consequently Y is a function « of ¢~ . In view of the lemma, (9) becomes
1
(18) X=x(0(,B), }’=)’(O(“B), P=E(Q+B), q=q(%ﬁ),

where x [g] is any solution of the linear equation L(x)=0 [M(g)=0], and g
[x] is determined by quadratures. From (10) the function z is obtained by carry-

ing out the quadratures.

(19) z=§f(a—iﬁ)—2 |_(af5)a do.+(o(zﬁ)ﬁdﬁ’]= 2 (0 B),

4This redﬁces to the partial differential equation £ (-1, —1) of Euler-Darboux when
B is replaced by —p. See [2, pp.54-70].




178 M. H. MARTIN
and is a solution of the linear equation

(20) K’ 1 ) (K’ 1 ) 0
Z o= + +|— - — = 0.
B (2K o+ 0 “a 2K o+ ‘s

Case 4. This is a special case of the above in which

a B qa—q/B
%op p— =0, M(q):qaﬁ+

L(x) =

are the Fnler-Darboux eanations £ (1, 1), £(~1, 1) respectively, and it is
possible to give [2, p.64] explicit formulas for (18), (19):

(18 =2 2 B g e (B (e )+ e )
x*a_B’}’*B—arp—z + ’q—Z -U ¢+lfj +§¢'"‘/’y
Lo ¢y
19 == f- ) - ’
(19%) z 20(—3(¢ U9 Py

containing arbitrary functions ¢(ct), ;(f3), with (20) becoming

20 28

(207 z - z o+ z,=0.
a3 w2 - 32 R B2 B
Case 5. System (7) becomes
(21) 25~ pxg =~ q¥s = 0, 2, = px, = 7Y, = 0,
xm-l xm-l
p'8+y’"+ly/3= 0, Poa™ "t Ya™
Mol LMot
%-F"f‘)’ Tt o= 0-
From the intermediate integrals
1 /x\" 1 /x\"
(22) px+qy—z——(—) = Uo, px+qy—2+—<—) =By
m\y m\y

we obtain solutions
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m m

;
(23) z=xG(r) = — - U, z=xG(r)+—~B0 (r=x/y),
m m
containing an arbitrary function G(r).

To obtain other solutions, we observe from Theorem 1 that

m

x m 1
(24) (—) == (B-a), pr+gy-z=c(a+p),
y 2 2

and use the first of these equations to eliminate x from the second row, y from

the third row of (21), to replace these rows by

1-1/m

0 1 m( )
’ = =l -« ’
A [2 P ]

I

(25) Pg~ Ky ’7/3=0’ Pyt Ky M,

1+1/m

1 m
0, £==, x, =[5(B—oo] .

(26) qﬁ+'<2 fﬁz 0, q,~ K, fa

In view of the lemma, the integration of (25) is equivalent to the integration of

either one of

A
(n, =ng)=0, Mlp)=p, 5+ -

L = -
(27) (77) Waﬁ o B

_B (pa"PB)=Ov

1
(4 ==(1-1/m)),
2
and the integration of (26) to the integration of either one of

B B
(28) L(§)= faﬁ - -OTB (fa—t’fﬁ):(), M((I)= an + O(Té (qa—qﬁ)=0,

(B = -;—(1 +1/m)),

all of which are Euler-Darboux equations of the type E (%, k). A solution (9)
of the last two rows of (21) may be obtained by starting with either (25) or
(26). To fix the ideas, let p = p (&, B), ¥ = y (&, B) be any solution of (25). The
first equation in (24) yields &= £(a, B), with ¢ = ¢ (o, B) determined by quad-

ratures from (26). Finally we obtain z = z (&, 8) from the second equation in
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(24). Thus the integration of (1) is reduced to the integration of any one of the
linear equations (27), (28) followed by quadratures.

For m = 1 this case reduces to the preceding one; and (27), (28) simplify

to

L(n)=na,8=0, M(p)=Pa,8=0;

éa_é:@ qa~q5_

=O, 1‘/{ =q, 0-
0B W)t TTp

L(é:):{:aﬁ"

By carrying out the process outlined above we find a solution containing two

arbitrary functions

il - (¢4, g2 (am B )~ S )
X = == 9 = e -+ s = — -— —_—— P ,
¢r_¢/’y ¢/_¢' p 2¢ q 4 ¢+(/1 2¢ '7[/
with
g-y 1
ol

to which (187), (19”) reduce under the change of parameter
a=¢(@, B=Y(B); a=g¢ W, B=¢(B),
provided one observes that
p=ag’ (@~ ¢, y=pBYRB - p).

Case 6. System (7) is the same as (21) for m = 0, but the intermediate
integrals (22) are replaced by

X x
px + qy —z ~ log—=0o, px+qy -z +log—=p,
y ¥

with the solutions

(29) z=xG(r)-logr— o, z=xG(r)+logr-f3 (r=x/y),

in place of (23), and the relations
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x 1 1
log —==(B-a), px+gqy~-z=—(u+p),
y 2 2

replacing (24). The quantities «,, «, in (25), (26) are now

N VES - e(ﬁ-a)/z’

K1 K2

and instead of the Euler-Darboux equations (27), (28) we find linear equations

with constant coefficients

1 1
L(n)= T~ g (n,=n5) =0, M(p)= paIB+Z(pa—- pg) =0,
(30)

| 1 . L
L(E) =&t (8= 8 =0, M(g)=q5- 2(g,=qp) = 0.

Once a solution of any one of these has been obtained, the integration of (1)

proceeds as in the previous case.

Case 7. The intermediate integrals are
p-q+e‘ed =g, p-q-e’el=p,
and have the solutions
(31) z=G(r)—xe + tox, z=GC(r)+xe’ +Bx, r=x+y.

In place of (24) we find
1 1
(32) x+vy=log 5(0(-—3), p—q:E(a+ﬁ)’
and (25), (26) are replaced by

(33) = &Y= 0, Pt Ky, =0, x =-(B-0),

2o | =

(O('_B)’

| =

(34) 95— K, %g =0, g, +«

x =0, «k =
a

2 2

so that instead of (27), (28) we obtain Euler-Darboux equations of the special,
forms [ 2, pp.69-70] E (+ 1/2, £1/2), specifically
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1/2 1/2
(35) L(y):yaﬁ—m (ya_y[j’):o’ M(p):pa/g+ &—_—B—(pa'—pﬁ)=0,
1/2

1/2
(x, - xﬁ) =0, Mgl=gqz+ —— (qa—qﬁ)=0-

L(x):xaﬁ— o-p

“—f

Starting with a solution of any one of these, say p = p(&, 3), one determines
g =g (c, B) from (32) and calculates the functions x = x (¢, B), y =y (&, 8) by
quadratures based on (33), (34). A final quadrature (10) then yields z=z ( &, B).

The results obtained may be summarized in the theorem:

TuroreM 2. I henever the partial differential equation

rt—s2e A2 =0, XA=X(x)Y(y),

has intermediate integrals, its integration can be reduced to the integration of
linear partial differential equations of the first and second order, and quadra-

tures.

3. The Problem of Cauchy. In the Problem of Cauchy one requires a solution

z =z (x, v) of (1) such that along a prescribed curve (the carrier)
C: x=x(t), y:y(t),

in the (x, y)-plane, the partial derivatives p = zy, q = z, take preassigned

values (the Cauchy data)
Cirp=pt) g=qfs).
We begin with the simplest case.

Case 2, Here the Problem of Cauchy imposes the following conditions
o+ B=2p (1), a—PB=2y(t), () +y(B)=2q(t), ¢ (1) —J(B) =—2x(¢t),

on the arbitrary functions ¢(&), ¢(3) entering into the formulas (14) of Goursat.
These imply

a=p(t)+y (), B=p(t)—y(t); ¢ =q(t)-x(t), V(L) =q(t)+x(s),

of which the first pair determine a curve (the carrier)
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[:oa=a(@)=pE)+y(t), B=Bt)=p(t) -y (),

in the characteristic (¢, 3)-plane, the horizontal and vertical lines of which are

termed characteristic lines.
Provided® ¢ # 0, 3# 0 we can invert the equations defining I" to obtain
t=f(w), t=g(B),

and obtain the required functions ¢ (a), ¢»(B) in (14), up to arbitrarily additive

constants, by quadratures from

¢ () = g (f()) =2 (f(w)), ¢ (B)=q(g(B))+x(g(B)).

If " is a segment of a characteristic line, say of & = 0(y = const., the Cauchy

data C; cannot be taken arbitrarily, but must fulfill the conditions
p(e)+y(t)=0yq, g(t)—x(t)=k= const.,

so that up to the additive constant k, the carrier C prescribes the Cauchy data
C,. The first equation for I' fails to determine f(c), and ¢ () may accordingly
be taken arbitrarily in Goursat’s formulas, subject to the single condition
¢'(ty) = k. Due to the arbitrariness in ¢(at), the solution of the Problem of
Cauchy is not unique. In addition, the general solution (13) of the intermediate
integral p + y = 0 offers an additional solution, for we have ¢ + x = G’(y), and
if I' is not a point, y =y (t) # const., so that t=¢(y), and G(y) can be de-

termined from
G'(y)=q(t(y))+x(t(y))

up to an additive constant.

The carrier I" will be a point if, and only if, C, C; have the form
C: x=x(t),y= Y, = const., Ci:p = p, = const., q= q(t),

and therefore necessarily, as follows from (1) with A = 1,

g(t) + x(t) = k = const.
The solutions (13) of the intermediate integrals

P+y=0o=py+¥ys P=¥=By=Py~ ¥y

5We forego consideration of the difficult case in which a or /3 changes sign.
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offer solutions for these Preblems of Cauchy, containing an arbitrary function

G (y), provided (;'(yo) =k,

Case 3. The carrier I" in the characteristic plane is defined by
I'soa=a()=p(e)+ Y (y(e)), B=PB(t)=p(t) =Y, (y(2)).

By differentiating the first and fourth equations (18) with respect to ¢ we obtain
xao.{ + xB,6’= x, —-xacz + xﬁﬁz kg

Along an arc of I" for which ¢ # 0, ,874 0 these equations specify Cauchy
data
FE L
Xy= ———, Xg=

2 28

on the carrier I' for a Problem of Cauchy for the linear equation L (x) = 0. The
solution of this Problem of Cauchy can be effected by quadratures, once the
resolvent [ 5], a properly chosen two-parameter family of solutions of the con-
jugate equation M (g) =0, is known, and, up to an arbitrarily additive constant,

is unique.

If I" is a segment of a characteristic line « = 0y, the Cauchy data C, C,

must meet the conditions
p(t)+ Y (y(t)) = ttg, q()=Y(y(2))x(2)=0,

so C implies C; up to an additive constant. The Cauchy data on I' reduce to

| =.

x

8= =g(ﬁ)

=

and fail to determine a unique solution to L (x) =0, so that the solution to the
original problem of Cauchy C, C, framed for (1) is likewise no longer unique.
In addition to this multiplicity of solutions, the general solution (17) of the
intermediate integral p + Y; = &, provides another, for if I" is not a point,

t = t(y), the arbitrary function G (y ) is determined by
G(y) = q(e(y)) + x(e(y)) Y(y)

up to an additive constant.
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The carrier I* will be a point if, and only if, C, C; have the form
C: x=x(t), y=y,=const,, Cy: p=p, =const., g=q(t),
and therefore necessarily, as follows from (1) with A = Y (y),
g(£) + Y(y)x(t) = k = const.
The solutions (17) of the intermediate integrals
p+Yi(y)=do=py+Yily)), p=Yi(y)=0,=p,=Yi(y),

offer solutions to these Problems of Cauchy containing an arbitrary function

G (y), provided G '(yo )=Fk.
Case 4. This case comes under Case 3, and also Case 5 for m = 1.
Case 5. IFor the carrier I" we have

m xm

1 1
Ir: O(=px+qy—z——(i) =C<(£),,8=px+qy—z+—(—) = B(¢),
m\y m\y

where
z =/(p;\.c +qy)dt=z(t).
Recalling that 7 = y™! we write

M0+ ngB=1> =m0+ mgB= P,

where k; is defined in (25).

As long as G # 0, B;é 0 these equations specify Cauchy data

n-K3'p n+Ki'p
M= > 77[3=—.—_9
T2k 23

on the carrier I for a Problem of Cauchy for the linear equation L (%) =0 in
(27). The resolvent of this equation is known [ 5, pp. 401-406 ], and the solution
of the Problem of Cauchy can be carried out by quadratures. The solution is

unique up to an arbitrarily additive constant.

If T is a segment of a characteristic line & = ¢y, the Cauchy data C, C;
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must meet the conditions

with C, determined by C up to translations. The Cauchy data

|=-

775 .=g(B)

@

are insufficient to determine a unique solution to L (5)= 0, and the solution of
the original problem of Cauchy again is no longer unique. The general solution
(23) of the first intermediate integral in (22) offers an additional solution,
provided the arbitrary function G (r) can be properly determined. This will be
possible, as long as r=r(t) # const. (C not a radial straight line), or, what

is equivalent, [" is not a point. Indeed, from (23) we determine G by integrating

Yy r?

the given functions y, ¢ of ¢t becoming functions of r, since t = ¢t (r).

For I" to be a point (&g, 3,) it is necessary and sufficient that

1 x m 1/m
Px+‘7)/‘z=k='2'(f/\o+,80), ;—=r0=[—2—(,80—0(0)] ,

conditions which are equivalent to the requirements

. . X
px + qy =0, —=rg,
y

on the Cauchy data C, C,. It is obvious from the very form of the intermediate
integrals (22) that any one of general solutions (23) meets the required con-

ditions.

The treatment of the remaining cases does not differ substantially from this

case and we may sum up our results as follows:

THEOREM 3. Whenever the partial differential equation
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- s24+A2=0C (A=X(x)Y(y))
has intermediate integrals
“lx, v, 2, Py q) = &, Blx, v, 2, p, 0) =B
the Problem of Cauchy
Cia=x(t), y=y(t);  Ci:p=pt), g=q(s),
for this partial differential equation defines a carrier

alx (), y(2), 2(e), p(2), g(£)) = ule),

-

4
«Q
i

Bla(),y (1), z(e), p(2), ¢()) =B (2),

™
I

in the characteristic plane, and reduces to a Problem of Cauchy with Cauchy

data on this carrier for a linear partial differential equation of the second order.

If 1" is a segment of one of the characteristic lines G = const., or 3 = const.,

or a point, the solution is not unique.

REFERENCES

1. R. Courant and D. Hilbert, Methoden der mathematischen Physik 11, Berlin, 1937.

2. G. Darboux, Lecons sur la théorie générale des surfaces, vol. 2, Second Edition,
Paris, 1915.

3. E. Goursat, Lecons sur Uintégration des Equations aux dérivées partielles du
second ordre a deux variables indépendantes, vol, 1, Paris, 1896,

4. G. H. Hardy, A course of pure mathematics, Sixth Edition, Cambridge, 1933.
5. M. H. Martin, The rectilinear motion of a gas, Amer. J. Math. 65 (1943), 396-398.

6. ——w—., The propagation of a plane shock into a quiet atmosphere, Canadian J.
Math. in press.

7o e———, A generalization of the method of separation of variables, J. Rat. Mech.
and Anal. in press.

UNIVERSITY OF MARYLAND






PACIFIC JOURNAL OF

EDITORS

R. M. BORBINSON
University of California
Berkeley 4, California
E. BEwiTT

University of Washington
Seattle 5, Washington

MATHEMATICS

R. P. DiLworTH

California Institute of Technology
Pasadena 4, California

E. F. BECKENBACH

University of California
Los Angeles 24, California

ASSOCIATE EDITORS

H. BUSEMANN P. R. HALMOS
HERBERT FFDERER HEINZ HOPF
MARSHALL HALL R. D. JAMES

BORGE JESSEN
’
PAUL LEVY
,
GEORGE POLYA

J. J. STOKER
E. G. STRAUS
KOSAKU YOSIDA

SPONSORS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLQGY
UNIVERSITY OF CALIFORNIA, BERKELEY
UNIVERSITY OF CALIFORNIA, DAVIS
UNIVERSITY OF CALIFORNIA, LOS ANGELES
UNIVERSITY OF CALIFORNIA, SANTA BARBARA
UNIVERSITY OF NEVADA

OREGON STATE COLLEGE

UNIVERSITY OF OREGON

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD RESEARCH INSTITUTE
STANFORD UNIVERSITY

WASHINGTON STATE COLLEGE
UNIVERSITY OF WASHINGTON

* *

AMERICAN MATHEMATICAL SOCIETY
NATIONAL BUREAU OF STANDARDS,
INSTITUTE FOR NUMERICAL ANALYSIS

*

Vari-Type Composition by
Elaine Barth

Delores Wierman

With the cooperation of
E. F. Beckenbach
E. G. Straus

Printed in the United States of America by
Edwards Brothers, Inc., Ann Arbor, Michigan

UNIVERSITY OF CALIFORNIA PRESS * BERKELEY AND LOS ANGELES
COPYRIGHT 1953 BY PACIFIC JOURNAL OF MATHEMATICS



Pacific Journal of Mathematics

Vol. 3, No. 1 March, 1953

Herbert Busemann, Volume in terms of concurrent cross-sections . . ........ 1
L. Carlitz, Some special equations in a finite field . ....................... 13
Homer V. Craig and Billie Braden Townsend, On certain metric

EXIETISOFS « o o v ettt e e e e e e e e e et e e e 25
Philip J. Davis and Henry Pollak, Linear functionals and analytic

CONtinUAtion problems . .. ......... ..o i 47
Jacob C. E. Dekker, The constructivity of maximal dual ideals in certain

Boolean algebras . ............. ... . i 73
Harley M. Flanders, The norm function of an algebraic field extension ... .. 103
Marshall Hall, Subgroups of free products . .............................. 115
Israel (Yitzchak) Nathan Herstein, Finite multiplicative subgroups in

AIVISTION FIAGS « o o oo ettt e e ettt 121
Joseph Lawson Hodges, Jr. and Murray Rosenblatt, Recurrence-time

moments in random walks .. ....... .. ... . . 127
Alfred Horn, The normal completion of a subset of a complete lattice and

lattices of continuous functions ..............c.c..uueeiiieeeeennnnns 137
Fulton Koehler, Estimates for the errors in the Rayleigh-Ritz method. . . . ... 153
M. H. Martin, The Monge-Ampére partial differential equation

FE— 82 A A2 = 0 165

John E. Maxfield, Normal k-tuples .....................
Jack E. McLaughlin, Structured theorems for relatively co
lattices . .....oo o
William H. Mills, A system of quadratic Diophantine equ
T. S. Motzkin, Ernst Gabor Straus and F. A. Valentine, Th
Jarthest points ...
G. Power, Forces on the boundary of a dielectric. .. .....
Ralph Gordon Selfridge, Approximations with least maxi



http://dx.doi.org/10.2140/pjm.1953.3.1
http://dx.doi.org/10.2140/pjm.1953.3.13
http://dx.doi.org/10.2140/pjm.1953.3.25
http://dx.doi.org/10.2140/pjm.1953.3.25
http://dx.doi.org/10.2140/pjm.1953.3.47
http://dx.doi.org/10.2140/pjm.1953.3.47
http://dx.doi.org/10.2140/pjm.1953.3.73
http://dx.doi.org/10.2140/pjm.1953.3.73
http://dx.doi.org/10.2140/pjm.1953.3.103
http://dx.doi.org/10.2140/pjm.1953.3.115
http://dx.doi.org/10.2140/pjm.1953.3.121
http://dx.doi.org/10.2140/pjm.1953.3.121
http://dx.doi.org/10.2140/pjm.1953.3.127
http://dx.doi.org/10.2140/pjm.1953.3.127
http://dx.doi.org/10.2140/pjm.1953.3.137
http://dx.doi.org/10.2140/pjm.1953.3.137
http://dx.doi.org/10.2140/pjm.1953.3.153
http://dx.doi.org/10.2140/pjm.1953.3.189
http://dx.doi.org/10.2140/pjm.1953.3.197
http://dx.doi.org/10.2140/pjm.1953.3.197
http://dx.doi.org/10.2140/pjm.1953.3.209
http://dx.doi.org/10.2140/pjm.1953.3.221
http://dx.doi.org/10.2140/pjm.1953.3.221
http://dx.doi.org/10.2140/pjm.1953.3.233
http://dx.doi.org/10.2140/pjm.1953.3.247

	
	
	

