STRUCTURED THEOREMS FOR RELATIVELY COMPLEMENTED LATTICES

JACK E. McLAUGHLIN
STRUCTURED THEOREMS FOR RELATIVELY COMPLEMENTED LATTICES

J. E. McLAUGHLIN

Introduction. In a previous paper [3] a study was made of the projectivities between the points of a simple relatively complemented lattice of finite dimension. It was shown that for a given dimension there is an upper bound for the number of transposes required to establish the projectivities between the points. The examples given in which this upper bound is attained have a particularly simple structure—they are closely related to a direct union. We shall prove here some general structure theorems for relatively complemented lattices and then apply these to the case of maximal projectivities.

The notation will be that of [3]. The lattice L to which we refer is always relatively complemented.

1. Structure Theorems. Our arguments depend heavily upon the simplicity or indecomposability [2] of L, and it is convenient to have the following characterization of a direct union:

Theorem 1.1. If L has dimension n, and a, b are two elements of L, then $L \cong a/z \lor b/z$ if and only if

1. $\rho(a) + \rho(b) < n$, and
2. $p \subseteq a$ if and only if $p \nsubseteq b$ for all points $p \in L$.

Proof. Certainly if $L \cong a/z \lor b/z$, conditions (1) and (2) will hold. Suppose (1) and (2) hold in L. We shall proceed by induction on n. The theorem is true when $n = 1, 2$. Suppose it is true for all lattices of dimension less than n, but $L \not\cong a/z \lor b/z$.

It is clear that

$$x = (a \cap x) \cup (b \cap x)$$

for all $x \in L$. Consider the mapping

Received March 31, 1952.

Pacific J. Math. 3 (1953), 197-208
\[x \rightarrow \sigma x = (a \cap x, b \cap x) \in a/z \vee b/z. \]

Now \(x \geq y \) if and only if

\[a \cap x \geq a \cap y \text{ and } b \cap x \geq b \cap y; \]

and the latter occurs if and only if \(\sigma x \geq \sigma y \). Hence \(L \) is isomorphic, as a partially ordered set, to a subset of \(a/z \vee b/z \), where

\[\sigma u = (a, b), \quad \sigma z = (z, z). \]

These remarks show that if any two elements \(a, b \) of \(L \) satisfy (2), we must have

\[\rho(a) + \rho(b) \geq n. \]

If \(L \not\subseteq a/z \vee b/z \), there are points \(p \subseteq a \) and \(q \subseteq b \) such that \(p/z \not\subseteq P_2 \cdot q/z \). Hence there is a maximal element \(m \) such that \(m \not\subseteq p, m \not\subseteq q \). Then \(s_1 \) and \(s_2 \) exist with

\[a > s_1 \geq m \cap a, \quad b > s_2 \geq m \cap b. \]

Furthermore,

\[a \cup s_2 = b \cup s_1 = u. \]

Let \(u = x_0 > x_1 > \cdots > x_{n-1} > x_n = z \) be a complete chain in \(L \). This chain maps onto

\[\sigma u = (a, b) > \sigma x_1 > \cdots > \sigma x_{n-1} > \sigma x_n = (z, z). \]

Either (i) \(\sigma x_1 = (a, t_2) \), where \(b > t_2 \), or (ii) \(\sigma x_1 = (t_1, b) \), where \(a > t_1 \). Suppose the former is true. The points of \(x_1 \) are in either \(a \) or \(t_2 \), but not both. Then \(a \) and \(t_2 \) satisfy (2) in \(x_1/z \), and since

\[\rho(x_1) = n - 1, \]

we have

\[\rho(a) + \rho(t_2) \geq n - 1. \]

But

\[\rho(a) + \rho(b) \leq n, \quad \text{so } \rho(t_2) = \rho(b) - 1. \]

Then by the induction hypothesis, \(x_1/z \cong a/z \vee t_2/z \). This gives the exist-
ence of a chain from \(s_1 \) through \(a \) to \(u \) of length \(1 + \rho(b) - 1 + 1 \), or \(\rho(b) + 1 \).

By Lemma 3.6 of [3], there is a chain from \(b \) to \(z \) of length at least \(\rho(b) + 1 \), which is a contradiction. A similar contradiction arises if \(\sigma x_1 = (t_1, b) \).

Therefore \(L \cong a/z \lor b/z \), and thus the theorem is proved.

The following theorem gives more information about the quotient lattices \(a^k_p/z \) introduced in Lemma 3.5 of [3].

Theorem 1.2. Let \(L \) be simple of dimension \(n > 1 \). If \(p \) is any point and \(k \) is a nonnegative integer such that \(k < \lfloor (n + 1)/2 \rfloor \), then \(a^k_p/z \) has dimension at least \(2k + 1 \).

Proof. The theorem is true when \(k = 0 \). Suppose it is true for all \(k \) less than the one in which we are interested. Then \(a^{k-1}_p \) has dimension at least \(2k - 1 \), and \(a^k_p \geq a^{k-1}_p \). If \(a^k_p = u \), we are through, so assume \(u \supset a^k_p \). Then there is a point \(s \in L \) with \(s \nleq a^k_p \), but \(s/z \lor t/z \) for some \(t \in C^k_p \). Hence there is a maximal element \(m \) such that \(m \nleq s \), \(m \nleq a^k_p \). Since \(s \in C^k_p \), we have \(m \supset a^{k-1}_p \). Therefore \(a^k_p \supset a^{k-1}_p \), and the dimension of \(a^k_p/z \) is at least \(2k \).

Suppose \(\dim(a^k_p/z) = 2k \). Let \(b \) be the join of all points of \(L \) which are not in \(a^k_p \). All of these points are in \(x^k_p = \cap M^k_p \), where

\[
M^k_p = \{ m \in L \mid u > m \nleq a^{k-1}_p \}.
\]

(See proof of Lemma 3.5 of [3].) Hence \(x^k_p \supset b \) and \(b \cap a^k_p = z \). The latter follows from the assumption \(\dim(a^k_p/z) = 2k \), since, by Theorem 3.1 of [3] for any point \(q \) we would have \(q \subseteq a^k_p \) if and only if \(q \in C^k_p \). On the other hand, it is shown, in the proof of Lemma 3.5 of [3], that \(q \in C^k_p \) if and only if \(q \nleq x^k_p \).

Since \(L \) is simple, there exists an \(x \) such that

\[
u > x, x \nleq a^k_p, x \nleq b.
\]

But \(x \nleq b \) implies \(x \supset a^{k-1}_p \). Then

\[
x = a^{k-1}_p \lor (b \land x), \text{ and } u = b \lor x = a^{k-1}_p \lor b.
\]

Hence if \(u > m \) we have \(m \supset a^{k-1}_p \), if and only if \(m \nleq b \). Therefore \(a^k_p \), \(a^{k-1}_p \), and \(b \) satisfy the conditions of Lemma 3.6 of [3], and there exists a chain of length at least \(2k \) from \(u \) to \(b \). Then

\[
\rho(b) \leq n - 2k, \text{ so } \rho(a^k_p) + \rho(b) \leq n.
\]

But by Theorem 1.1 we would have \(L = a^k_p/z \lor b/z \), contrary to the simplicity of \(L \). Therefore \(\rho(a^k_p) > 2k + 1 \) for all \(k < \lfloor (n + 1)/2 \rfloor \).
Let \(\mathfrak{B} \) denote the partially ordered subset of \(L \) consisting of \(u \), the maximal elements, the points, and \(z \). Let \(\mathfrak{B}_v \) be the normal completion of \(\mathfrak{B} \). Consider the mapping \(A \rightarrow \bigcup A \) from \(\mathfrak{B}_v \) into \(L \). (\(A \) is a normally closed subset of \(L \).) If \(A \supseteq B \), then \(\bigcup A \supseteq \bigcup B \). Suppose \(\bigcup A \supseteq \bigcup B \); then \(x \in A^* \) implies \(x \supseteq a \), all \(a \in A \) implies \(x \supseteq \bigcup A \), so \(x \supseteq \bigcup B \), and hence \(x \supseteq b \) all \(b \in B \) and \(x \in B^* \); therefore \(A^* \subseteq B^* \), so \((A^*)_* \supseteq (B^*)_* \), or \(A \supseteq B \). Thus the mapping is order preserving both ways.

Suppose \(a \in L \), \(a \neq u \), \(a \neq z \). Set

\[
P(a) \equiv \{ p \in \mathfrak{B} \mid a \supseteq p > z \},
\]

\[
M(a) \equiv \{ m \in \mathfrak{B} \mid u > m \supseteq a \}.
\]

Now \(x \supseteq p \), all \(p \in P(a) \), if and only if \(x \supseteq a \), so \(M(a) \subseteq (P(a))^* \). Also \(P(a) \subseteq (P(a))^* \). Suppose \(y \in (P(a))^* \); then \(y \subseteq x \), all \(x \in P(a)^* \) implies \(y \subseteq m \), all \(m \in M(a) \) implies \(y \subseteq a \). Suppose \(a' \supseteq y \), all \(y \in (P(a))^* \); then \(a' \supseteq p \), all \(p \in P(a) \) implies \(a' \supseteq a \), so \(a = \bigcup (P(a))^* \). If \(a = u \), then \(a = \bigcup (u) \); if \(a = z \) then \(a = \bigcup (z) \). (Here \((x) \) denotes the principal ideal generated by \(x \).) Hence each \(a \in L \) has an inverse image under the above mapping, and \(\mathfrak{B}_v \cong L \); see [2]. This proves the following:

Theorem 1.3. The structure of \(L \) is completely determined by the structure of \(\mathfrak{B} \).

Remark. From the nature of the proof it is seen that the above theorem will be true for any lattice each of whose elements is a join of points and the meet of maximal elements.

2. **Lattices with maximal projectivities.** In this section we shall study simple lattices of odd dimension in which there occurs a maximal projectivity. We shall show that these lattices are quite close to a direct union in the sense that their structure can be completely described in terms of sublattices. Throughout this section \(L \) will be a simple lattice of dimension \(2n + 1 \), and \(p, q \) are two points in \(L \) such that \(p/z \) \(P \) \(q/z \) requires \(2n + 2 \) transposes. Then we have:

Theorem 2.1. If \(k \leq n \), the following statements are true:

1. \(\rho(a_p^k) = 2k + 1, \rho(a_q^{n-k}) = 2n - 2k + 1; \)
2. \(x_p^k = a_q^{n-k}, x_q^{n-k} = a_p^k; \)
3. \(a_p^k/z \) has a maximal projectivity if and only if \(a_q^{n-k}/z \) has a maximal projectivity;
(4) if \(a^k_p / z \) has a maximal projectivity then \(a^k_p \cap a^{n-k}_q = r > z \), otherwise \(a^k_p \cap a^{n-k}_q = z \).

Proof. Note that \(s \in C_q^{n-k} \) implies \(s \notin C_p \) implies \(s \subseteq x_p \) implies \(a^{n-k}_q \subseteq x_p \). Suppose there is a maximal element \(m \) such that \(m \supseteq a^{k-1}_p, m \supseteq x_p^k \). If \(m/z \) is simple, we contradict the assumption of a maximal projectivity between \(p/z \) and \(q/z \), since \(\rho(m) \leq 2n \). Write

\[
m/z = L_1 \lor L_2 \lor \cdots \lor L_\nu,
\]

where the \(L_i \) are simple nontrivial quotient lattices, and \(\nu > 1 \). Now \(a^{n-k}_q/z \) and \(a^{k-1}_p/z \) are both simple; if they are in the same \(L_i \), we again contradict our maximal projectivity assumption. Hence they are in different components and we must have

\[
\rho(a^{k-1}_p) + \rho(a^{n-k}_q) \leq 2n.
\]

By Theorem 1.2,

\[
\rho(a^{k-1}_p) \geq 2k - 1; \quad \rho(a^{n-k}_q) \geq 2n - 2k + 1.
\]

Therefore

\[
\rho(a^{n-k}_q) = 2n - 2k + 1.
\]

The elements \(a^{k-1}_p \) and \(a^{n-k}_q \) are in different \(L_i \), so

\[
\rho(a^{k-1}_p \cup a^{n-k}_q) = \rho(a^{k-1}_p) + \rho(a^{n-k}_q) \geq 2n,
\]

and hence

\[
m = a^{k-1}_p \cup a^{n-k}_q \quad \text{or} \quad m/z = a^{k-1}_p/z \lor a^{n-k}_q/z.
\]

Now let \(s > z, s \subseteq x_p^k \). Then \(s \notin C_p \), \(s \notin C_q \). But \(m \supseteq x_p^k \), so \(m \supseteq s \), and therefore \(s \subseteq a^{n-k}_q \). This shows that \(x_p^k \subseteq a^{n-k}_q \), and hence \(x_p^k = a^{n-k}_q \). Thus we have shown that if \(a^{k-1}_p \cup x_p^k \neq u \), then \(x_p^k = a^{n-k}_q \) and \(\rho(a^{n-k}_q) = 2n - 2k + 1 \).

Suppose \(a^{k-1}_p \cup x_p^k = u \). Then for each maximal element \(m, m \supseteq a^{k-1}_p \) if and only if \(m \supseteq x_p^k \). We have \(\rho(a^{k-1}_p) \geq 2k - 1 \), so \(\dim(u/a^{k-1}_p) \leq 2n - 2k + 1 \). Since \(L \) is simple, \(\dim(u/x_p^k) \geq 2k \), by Theorem 1.1. Hence \(\rho(x_p^k) \leq 2n - 2k + 1 \). But \(x_p^k \supseteq a^{n-k}_q \), and \(\rho(a^{n-k}_q) \geq 2n - 2k + 1 \). Hence, in all cases, \(x_p^k = a^{n-k}_q \) and \(\rho(a^{n-k}_q) = 2n - 2k + 1 \). By a similar argument, \(x_q^{n-k} = a^{k}_p \) and \(\rho(a^{k}_p) = 2k + 1 \). This demonstrates (1) and (2).
Suppose $r > z$, $r \subseteq a^k_p$ such that $r/\sharp P\ P/\sharp$ requires $2k + 2$ transposes. Now $r \nsubseteq C^k_p$ implies $r \subseteq x^k_p = a^{n-k}_p$. Furthermore, $r \subseteq a^k_p = x^k_q$ implies $r \nsubseteq C^k_q$ implies that $r/\sharp P\ q/\sharp$ requires $2n - 2k + 2$ transposes. The argument is symmetric in p and q, and this proves (3).

Suppose $s > z$ and $s/\sharp P\ P/\sharp$ requires $2n + 2$ transposes. Then $x^p_s = a^0_s = s = a^0_q = q$, so there is at most one point q such that $p/\sharp P\ q/\sharp$ requires $2n + 2$ transposes. This shows that the r in the preceding paragraph, if it exists, is unique, and we have (4).

We are now in a position to characterize the maximal elements of L in terms of the structure of a^k_p/\sharp and a^{n-k}_q/\sharp. When we know these maximal elements, we will know the structure of L, by Theorem 1.3. First we prove two useful lemmas.

Lemma 2.1. There is a chain of length $2n + 1$ through a^k_p.

Suppose $a^k_p \cup a^{n-k-1}_q = u$. Then the maximal elements of L are in two disjoint classes—those containing a^k_p and those containing a^{n-k-1}_q; and by Theorem 1.1,
\[
\dim (u/a^k_p) + \dim (u/a^{n-k-1}_q) > 2n + 1.
\]

But
\[
\dim (u/a^k_p) \leq 2n + 1 - (2k + 1);
\]
\[
\dim (u/a^{n-k-1}_q) \leq 2n + 1 - (2n - 2k - 1).
\]

Hence $\dim (u/a^k_p) = 2n - 2k$.

Suppose $u > m \geq a^k_p \cup a^{n-k-1}_q$. Now m/\sharp is not simple, since $\rho (m) \leq 2n$ and $m \not\supseteq p, m \not\supseteq q$. Suppose
\[
m/\sharp = L_1 \lor L_2 \lor \ldots \lor L_\nu,
\]
where $\nu > 1$. Then a^k_p/\sharp and a^{n-k-1}_q/\sharp are in different components and again there is a chain from a^k_p to u of length at least $2n - 2k$ since $\rho (a^{n-k-1}_q) = 2n - 2k - 1$. This proves the lemma.

Lemma 2.2. If $s > z$, $a \not\supseteq s$, $b \not\supseteq s$, but $a \cup b \supseteq s$, then there are points $s_1 \subseteq a$, $s_2 \subset b$ such that $s_1/\sharp P_s/s$ and $s_2/\sharp P_s/s$.

Let $s \cup b > x \supseteq b$, and let x' be a relative complement of $s \cup b$ in $a \cup b/\sharp x$ such that $a \cup b > x'$. Then $x'/\sharp a, x'/\sharp s$; hence $x'/\sharp s_1$, for some point $s_1 \subseteq a$. Therefore $s/\sharp T a \cup b/\sharp x' T s_1/\sharp$. Similarly we can show the existence of s_2.
proving the lemma.

Lemma 2.3. The following relation holds: \(\dim(a^k/p^{k-1}) = 2 \).

For since \(L \) is simple there is a maximal \(m_0 \) such that \(m_0 \uparrow a_p^k \), \(m_0 \uparrow a_q^{n-k} \). Then \(m_0 \geq a_p^{k-1} \), \(m_0 \geq a_q^{n-k-1} \). Assume \(a_p^k > a_p^{k-1} \). Then \(m_0 \cap a_p^k = a_p^{k-1} \). Set \(w = a_q^{n-k} \cap m_0 \). Then \(y \) exists such that \(a_q^{n-k} > y \geq w \). Since \(m_0 = a_p^{k-1} \cup w \), we have \(u = a_p^{k-1} \cup y = w \cup a_p^k \). Since there is a chain of length \(2k \) from \(a_q^{n-k} \) to \(u \), there exists a maximal \(m \) such that \(m \uparrow a_q^{n-k} \) and such that there exists a chain of length at least \(2k \) from \(m \) to \(y \). Now \(m \uparrow a_p^k \) since \(a_p^k \cup y = u \). But \(m \geq a_p^{k-1} \) and \(m/z = a_p^{k-1}/z \lor y/z \) in contradiction with the length of the chain from \(y \) to \(m \). Hence \(a^k \uparrow a_p^{k-1} \), and we must have \(\dim(a_p^k/a_p^{k-1}) = 2 \).

Corollary. The following relation holds:

\[\dim(a_q^{n-k}/a_q^{n-k-1}) = 2. \]

This follows by symmetry.

3. **Maximal elements when** \(a_p^k \cap a_q^{n-k} \neq z \). The following theorem gives the possibilities for maximal elements when \(a_p^k/z \) and \(a_q^{n-k}/z \) each have a maximal projectivity. We assume throughout that \(1 \leq k \leq n - 1 \).

Theorem 3.1. Let \(a_p^k \cap a_q^{n-k} = r > z \), and let \(u > m \). If \(m \geq r \), either

(1) \(m \geq a_p^k \) and \(a_q^{n-k} > m \cap a_q^{n-k} \),

or

(2) \(a_p^k > m \cap a_p^k \) and \(m \geq a_q^{n-k} \).

If \(m \not\geq r \), then \(a_p^k > a_p^k \cap m \) and \(a_q^{n-k} > a_q^{n-k} \cap m \).

Proof. Let \(u > m \geq r \), and suppose \(m \not\downarrow a_p^k \), \(m \not\downarrow a_q^{n-k} \). Then \(m \geq a_p^{k-1} \), and \(m \geq a_q^{n-k-1} \), for otherwise we would not have a maximal projectivity in \(L \). For the same reason, we have \(r \not\downarrow a_p^{k-1} \), \(r \not\downarrow a_q^{n-k-1} \). Then since

\[\rho(a_p^{k-1}) = 2k - 1, \quad \rho(a_p^k) = 2k + 1, \]

\[\rho(a_q^{n-k-1}) = 2n - 2k - 1, \quad \rho(a_q^{n-k}) = 2n - 2k + 1, \]

we must have

\[a_p^k > m \cap a_p^k = r \cup a_p^{k-1} \] and \(a_q^{n-k} > m \cap a_q^{n-k} = r \cup a_q^{n-k-1} \).

Hence
\[m = (r \cup a_p^{k-1}) \cup (r \cup a_q^{n-k-1}) \text{ and } u = a_p^k \cup m = a_p^k \cup a_q^{n-k-1}. \]

Similarly, \(u = a_q^{n-k} \cup a_p^{k-1} \).

By Lemma 2.1, there is a chain from \(a_p^k \) to \(u \) of length \(2n - 2k \). Since \(L \) is relatively complemented, it is easy to see that \(v \) exists such that \(u > v, v \cap a_p^k = r \cap a_p^{k-1} \), and there is a chain from \(r \cup a_p^{k-1} \) to \(v \) of length at least \(2n - 2k \).

There is an \(s \in C_p^k \) such that \(s \subseteq u \cap a_p^{k-1} \cup r \). Hence \(s \subseteq v \), and this implies \(v \supseteq a_q^{n-k-1} \). Therefore \(v \supseteq m \) and \(v = m \). Then by Theorem 1.1,

\[m / z = a_p^{k-1} \cup r / z \vee a_q^{n-k-1} / z; \]

but this contradicts the existence of a chain from \(a_p^{k-1} \cup r \) to \(m \) of length \(2n - 2k \). Hence we must have either \(m \supseteq a_p^k \), or \(m \supseteq a_q^{n-k} \).

Suppose \(m \supseteq a_q^{n-k} \), but \(a_p^k > x \cap m \cap a_q^k \). Let \(y \) be a relative complement of \(x \) in \(a_p^k / a_p^k \cap m \). Then \(y > a_p^k \cap m \), since \(a_p^k > x \). Hence \(m \nsubseteq x \), \(m \nsubseteq y \), so

\[x \cup a_q^{n-k} = y \cup a_q^{n-k} = u. \]

Since

\[r(a_p^k) = r(a_p^{k-1}) + 2 \text{ and } r \cup a_p^{k-1} \supseteq a_p^{k-1}, \]

it follows that \(m \nsubseteq a_p^{k-1} \). Hence either \(x \nsubseteq a_p^{k-1} \) or \(y \nsubseteq a_p^{k-1} \). Suppose the latter is the case. Then there is an \(s \in C_p^{k-1} \) such that \(s \nsubseteq y \). But \(s \subseteq u = y \cup a_q^{n-k} \). Hence, by Lemma 2.2, \(s / z, P_{2n-2k+2} q / z \) and \(p / z, P_{2n} q / z \) are symmetric to our assumption of a maximal projectivity between \(p / z \) and \(q / z \). A similar contradiction arises if \(x \nsubseteq a_q^{k-1} \). Hence \(a_p^k > a_q^k \cap m \). The roles of \(p \) and \(q \) are symmetric, so if \(m \supseteq a_q^k \), then \(a_q^{n-k} > m \cap a_q^{n-k} \).

Now let \(u > m \nsubseteq r \). Since \(m \nsubseteq r \), we have \(m \supseteq a_p^{k-1} \) and \(m \supseteq a_q^{n-k-1} \). Suppose

\[a_p^k > x > a_p^{k-1} = a_p^k \cap m \text{ and } a_q^{n-k} > y > a_q^{n-k-1} = a_q^{n-k} \cap m. \]

Let \(x' \) be a relative complement of \(x \) in \(a_p^k / a_p^{k-1} \). Suppose \(x' \nsubseteq r \), and let \(x'' \) be a relative complement of \(a_p^k \) in \(u / x' \). Since \(a_p^k > x' \), we can assume \(u > x'' \). Now \(x'' \nsubseteq r \), so \(x'' \supseteq a_q^{n-k-1} \). Hence \(x'' = m \), contrary to \(a_p^{k-1} = m \cap a_p^k \). A similar contradiction arises if \(x \nsubseteq r \); and since \(a_p^{k-1} \nsubseteq r \), we must have \(a_p^k > m \cap a_p^k \).

Therefore either

\[a_p^k > m \cap a_p^k \text{ or } a_q^{n-k} > m \cap a_q^{n-k}. \]

Suppose
\[a^k_p > m \cap a^k_p > a^{k-1}_p \text{ but } a^{n-k}_q > y > a^{n-k-1}_q = m \cap a^{n-k}_q. \]

As before, \(v \) exists with \(u > v, v \cap a^k_p = m \cap a^k_p \), and there is a chain from \(m \cap a^k_p \) to \(v \) of length at least \(2n - 2k \). There is a point \(s \in C^k_p \) such that \(s \neq m \cap a^k_p \), and hence \(s \neq v \). Therefore \(v \supseteq a^{n-k-1}_q \), so \(v = m \). But \(m \neq z \), by Theorem 1.1, is equal to \(m \cap a^k_p / z \vee a^{n-k-1}_q / z \) in contradiction with the length of the chain from \(m \cap a^k_p \) to \(v = m \). Hence \(a^{n-k}_q > m \cap a^{n-k}_q \); and whenever \(u > m \uparrow r \), we have

\[a^k_p > m \cap a^k_p, a^{n-k}_p > m \cap a^{n-k}_q. \]

The converse of this theorem is not true; however we do have the following result:

Theorem 3.2. If \(a^k_p > x \supseteq r \), then \(u > x \cup a^{n-k}_q \), while if \(a^{n-k}_q > y \supseteq r \), then \(u > a^k_p \cup y \). If \(a^k_p > x \upharpoonright r \) and \(a^{n-k}_q > y \upharpoonright r \), then \(u > x \cup y \) if and only if for any points \(t \subseteq x, s \subseteq y \), we have \(t \cup s \upharpoonright r \).

Proof. Let \(a^k_p > x \supseteq r \), and let \(x' \) be a relative complement of \(a^k_p \) in \(u / x \) such that \(u > x' \). Then by Theorem 3.1 we have \(x \supseteq a^{n-k}_q \) and \(x' = x \cup a^{n-k}_q \). A similar argument shows that if \(a^{n-k}_q > y \supseteq r \), then \(u > a^k_p \cup y \).

Suppose

\[a^k_p > x \upharpoonright r, a^{n-k}_q \supseteq y \upharpoonright r. \]

If

\[x \supseteq t > z \text{ and } y \supseteq s > z, \]

such that \(s \cup t \supseteq r \), then

\[x \cup y \supseteq r \text{ and } x \cup y = (x \cup r) \cup (y \cup r) = u. \]

Suppose \(x \cup y = u \). Since

\[x \upharpoonright r, y \upharpoonright r, \]

it follows that

\[x \supseteq a^{k-1}_p, y \supseteq a^{n-k-1}_q. \]

If \(x = a^{k-1}_p \) or \(y = a^{n-k-1}_q \), Lemma 2.2 tells us that \(r \in C^k_p \) or \(r \in C^{n-k}_q \). Hence

\[x > a^{k-1}_p \text{ and } y > a^{n-k-1}_q. \]

So points \(s \) and \(t \) exist such that \(x = t \cup a^{k-1}_p \) and \(y = s \cup a^{n-k-1}_q \). Therefore
and applying Lemma 2.2 twice we get $t \cup s \succeq r$. All that is required to finish the proof of the theorem is to show that if $u > m \succeq x \cup y$, then $m = x \cup y$. Suppose $m \succeq r$; then

$$m \succeq (x \cup r) \cup (y \cup r) = u.$$

So $m \not\succeq r$. Hence, by Theorem 3.1, $m = x_1 \cup y_1$, where

$$a_p^k > x_1 \not\succeq r \text{ and } a_q^{n-k} > y_1 \not\succeq r.$$

But this implies $x = x_1$, $y = y_1$, and $m = x \cup y$.

4. Maximal elements when $a_p^k \cap a_q^{n-k} = z$. Here as before we assume that $1 \leq k \leq n - 1$.

Theorem 4.1. If $u > m$ then m is one of the following three types:

1. $m \succeq a_p^k$, $a_q^{n-k} \succ a_q^{n-k-1}$, or dually;
2. $m \succeq a_p^k$, $a_q^{n-k} \cap m = a_q^{n-k-1}$, or dually;
3. $a_p^k > m \cap a_q^{n-k} \succeq a_p^{k-1}$, and $a_q^{n-k} > m \cap a_q^{n-k} \succeq a_q^{n-k-1}$.

Proof. Suppose

$$u > m \succeq a_p^k, \ m \not\succeq a_q^{n-k-1}, \text{ but } a_q^{n-k} > x \supset a_q^{n-k} \cap m.$$

Then not all elements of a_q^{n-k} / z covering $m \cap a_q^{n-k}$ will contain a_q^{n-k-1}. On the other hand,

$$m = (m \cap a_q^{n-k}) \cup a_p^k,$$

so for any point

$$s \subseteq a_q^{n-k}, \ s \not\succeq m \cap a_q^{n-k},$$

we have

$$s \cup (m \cap a_q^{n-k}) \cup a_p^k \succeq a_q^{n-k-1}.$$

Then by Lemma 2.2 we must have

$$s \cup (m \cap a_q^{n-k}) \supseteq a_q^{n-k-1},$$

counter to the above assertion. Therefore if
\[u > m \geq a_p^k \quad \text{and} \quad m \nmid a_q^{n-k-1}, \]

then \(a_q^{n-k} > m \cap a_q^{n-k} \).

Now suppose \(u > m \geq a_p^k \) and \(m \geq a_q^{n-k-1} \). If \(m/z \) is simple, we contradict our maximal projectivity assumption; but arguing as before on the direct split of \(m/z \), we see that

\[m/z = a_p^k/z \lor a_q^{n-k-1}/z, \]

and hence \(m \cap a_q^{n-k} = a_q^{n-k-1} \).

Finally suppose \(u > m \), but \(m \nmid a_p^k \), \(m \nmid a_q^{n-k} \). Then \(m \geq a_p^{k-1} \) and \(m \geq a_q^{n-k-1} \). Assume \(m \cap a_p^k = a_p^{k-1} \), and let \(a_p^k > x > a_p^{k-1} \), by Lemma 2.3. Let \(v \) be a relative complement of \(a_p^k \) in \(x/y \) such that \(u > v \). Since \(v \nmid a_p^k \), we have \(v \geq a_q^{n-k-1} \). Now \(v \neq m \), so \(a_q^{n-k} > m \cap a_q^{n-k} \). Then \(m' \) exists such that \(u > m' \), \(m' \nmid a_q^{n-k} \), and there is a chain from \(m \cap a_q^{n-k} \) to \(m' \) of length at least \(2k \). Since \(m' \nmid a_q^{n-k} \), it follows that \(m' \geq a_p^{k-1} \), and hence \(m' = m \). But \(m/z \) is not simple; \(a_p^{k-1} \) and \(a_q^{n-k} \cap m \) are in different components. This is contrary to the length of the above chain, since \(\rho(a_p^{k-1}) = 2k - 1 \). Hence we must have \(a_p^k > m \cap a_q^k \), and dually \(a_q^{n-k} > m \cap a_q^{n-k} \).

Examples show that it is impossible from the structures of \(a_p^k/z \) and \(a_q^{n-k}/z \) to tell whether \(u > a_p^k \cup a_q^{n-k-1} \) or \(u = a_p^k \cup a_q^{n-k-1} \), and dually. However, for the other maximal elements we have:

Theorem 4.2. If

\[a_q^{n-k} > y \nmid a_q^{n-k-1}, \]

then \(u > y \cup a_p^k \), and dually. If

\[a_p^k > x \geq a_p^{k-1} \quad \text{and} \quad a_q^{n-k} > y \geq a_q^{n-k-1}, \]

then \(u > x \cup y \) if and only if for every pair of points \(s \subseteq x, t \subseteq y \) the lattice \(s \cup t/z \) is a Boolean algebra.

Proof. Suppose

\[a_q^{n-k} > y \geq a_q^{n-k-1} \quad \text{and} \quad u = a_p^k \cup y. \]

Then there is a point \(t \subseteq a_q^{n-k-1} \) such that \(t \nmid y \), \(t \nmid a_p^k \), but \(t \subseteq a_p^k \cup y \); and using Lemma 2.2 we obtain a contradiction of our maximal projectivity hypothesis. On the other hand, if \(u > m \geq a_p^k \cup y \), then by Theorem 4.1 we get \(m = a_p^k \cup y \).

Let \(a_p^k > x \geq a_p^{k-1} \) and \(a_q^{n-k} > y \geq a_q^{n-k-1} \). By Theorem 4.1, either \(u = x \cup y \)
or $u > x \cup y$. If $u = x \cup y$, there are points $s \subseteq x$, $t \subseteq y$ such that

$$t \cup a_{p}^{k-1} \cup s \cup a_{q}^{n-k-1} \geq a_{q}^{n-k}.$$

Then by Lemma 2.2, we have

$$t \cup s \cup a_{q}^{n-k-1} \geq a_{q}^{n-k};$$

thus $t \cup a_{q}^{n-k}/z$ is not a direct union, so there is another point $r \subseteq a_{p}^{k}$ such that $t \cup s \cup a_{q}^{n-k-1} \geq r$, and hence $t \cup s \geq r$. But this tells us that $t \cup s/z$ is not a Boolean algebra.

If $u > x \cup y$, we must have $x \cup y/z = x/z \lor y/z$, and the condition is satisfied.

Here again, then, save for the one exception, the structure of L is determined by the structure of sublattices and the relations between points.

References

The University of Michigan
Herbert Busemann, *Volume in terms of concurrent cross-sections* 1
L. Carlitz, *Some special equations in a finite field* 13
Homer V. Craig and Billie Braden Townsend, *On certain metric extendors* ... 25
Philip J. Davis and Henry Pollak, *Linear functionals and analytic continuation problems* .. 47
Jacob C. E. Dekker, *The constructivity of maximal dual ideals in certain Boolean algebras* ... 73
Harley M. Flanders, *The norm function of an algebraic field extension* . 103
Marshall Hall, *Subgroups of free products* .. 115
Israel (Yitzchak) Nathan Herstein, *Finite multiplicative subgroups in division rings* ... 121
Joseph Lawson Hodges, Jr. and Murray Rosenblatt, *Recurrence-time moments in random walks* .. 127
Alfred Horn, *The normal completion of a subset of a complete lattice and lattices of continuous functions* 137
Fulton Koehler, *Estimates for the errors in the Rayleigh-Ritz method* 153
M. H. Martin, *The Monge-Ampère partial differential equation* $rt - s^2 + \lambda^2 = 0$.. 165
John E. Maxfield, *Normal k-tuples* .. 189
Jack E. McLaughlin, *Structured theorems for relatively complemented lattices* ... 197
T. S. Motzkin, Ernst Gabor Straus and F. A. Valentine, *The number of farthest points* ... 221
G. Power, *Forces on the boundary of a dielectric* 233
Ralph Gordon Selfridge, *Approximations with least maximum error* 247