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AN OPERATIONAL CALCULUS FOR OPERATORS WITH
SPECTRUM IN A STRIP

WIiLLIAM G. BADE

1. Introduction. I.et X be a complex Banach space, and 7 be a closed dis-
tributive operator whose domain and range are in X. We suppose the spectrum

o (T) of T does not cover the whole plane, and write
(M~-T)! = Ry (T)

for A€ (7). In the case that 7 is bounded, N. Dunford [2] and A. E. Taylor

[13] have defined an operational calculus for 7 by the formula

1

1.1 T) =
(1.1) (1) 5

/Cf(A)RA(T)dA,

where f is analytic on o(7), and C is a suitable bounded contour enclosing
(7). Such functions f form an algebra, and the mapping f— f(7) is a homo-

morphism of this algebra into the algebra of bounded operators on A.

When T is assumed to be closed but not bounded, the problem of developing
an operational calculus for 7 meets with the difficulties that the domain D(7)
is a proper subspace, and o(7) is in general unbounded. A modification of

(1.1),

1
(1.2) fT) = fle)] + — JAGSENEIIS

has been used by Taylor [ 14] when f is analytic on ¢(7) and at infinity. Here
C is a bounded contour enclosing the singnlarities of f. Although most of the
theory for the bounded case may be carried over, the class of functions [ is

restricted; and polynomials in 7, being unbounded operators, need a separate

Received June 13, 1952, This paper is a revised version of the author’s doctoral
dissertation submitted to the University of California, Los Angeles. He wishes to thank
Professor Angus E. Taylor for constant help and encouragement.
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258 WILLIAM G. BADE

treatment.

In this paper we consider the case that 0(7) lies in a strip S of finite
width, and |

This is a common sitnation for differential operators (for example, T = d/dt in

Ry (1) || is bounded outside any strip containing S in its interior.

Lp(—=,a), p> 1). These assumptions enable us to define an operator cor-
responding to any function analytic and of finite order in a strip containing S.
The operator [(7) is bounded or unbounded depending on the growth behavior
of . In this it resembles the operational calculus for unbounded self-adjoint

operators in Hilbert space ([ 8], [ 12]), and in fact reduces to it in this case.

In $52-4 the calculus is constructed from a postulated set of conditions
on 1 and K, (7). If { is absolutely integrable in a strip containing S, the oper-

ator f(7) is defined by a variant of formula (1.1),

1
(1) = z_/r FOVR, (T A,
ml

where [ is an infinite contour running up one side of S and down the other. If
f is of order n — 2, roughly speaking, then f(7)x is defined for x in the sub-

space
Pa(T) = (x|, Tay ooy 1" € D(T))
by the formula

(ol-T) [ [ (T)x
f(1)x = : . A,
2ni I (6 = AP

where ¢ is any point exterior to I'. }F.quivalently,

et Wy 1 [ fOR(DT]
/.('1')%:2['Y 71x+——'-/i_____id)\-

i=o ! 2mi *1 AT

The usual koniomorphism rules hold, and the results are consistent with those

of Taylor. A closed extension of f(7) is obtained which coincides with the

Stone-von Neumann operator in the case of self-adjoint 7 in Hilbert space.

In $5 we assume a further growth condition on | Ry (T)][| near o(7), and
investigate operators corresponding to bilateral transforms. This section is
largely a reformulation for our situation of results of Hille [ 3, Chap. 15] for an

operational calculus for the case that ¢(7T) is confined to a half plane and f is
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a one-sided transform. In $ 7 we prove a theorem on the construction of inverses

of such operators by limits of polynomials in 7.

As an application we take T the operation of differentiation in the spaces

Cand L, (1 <p < ) on the real line and the unit circle. For the case of the

line where ¢(7T) is the imaginary axis, if
o0 =7 X G(erae

converges absolutely in a strip containing o (T ), then

[(T)x(t) = f_°° C(&)x (1 - &) de.

Consider the Stieltjes transform

@ (t) = }- /:: sech —j—x(t—rf)df,

m

for which f(A) = [cos #A]"!. Writing

3] )\'2
cosn)\:ﬂ l- ¥,
k=

) (k~1/2)?

we see from the inversion theorem of $ 7 that

n 1 d2
(1.3) li - ——— — | ¢() = x(2),
nl—ronoo E ( (k—1/2)2 dt2)¢ X

where convergence is in the norm topology of any of the spaces mentioned.

This example is typical of a class of inversion theorems for which the theorem

of $7 gives a uniform treatment. Inversion formulas of this sort have been proved
by different methods for L,(~c, ) by Pollard [9] and for C[~cc, oc) by Widder
[16] (see Hirschman and Widder [4, S5, 6 and 7] for extensive re=ults on the

corresponding local problem). The case p # 2 does not seem to have been con-

sidered before. Our method also applies to inversion of transforms
™
[Tn@nt-oae

in the corresponding spaces on the circle.
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2. Construction of the calculus. l.et 7 be a closed operator whose domain

U(T) is a prescribed subspace. We suppose:
A. ‘ihe spectrum o (7)) lies in the vertical strip
-y <0<y ()\=0+i’r,0§)v'<oc).
3. The resolvent 1\')\( T) = (M =T)! satisfies

AN (D<M (), [al > 0>yt

The strip containing o(7) is taken to be vertical merely for convenience.
The symbol p(7) will denote the resolvent set, and [X] the set of bounded
linear operators mapping X into itself. We shall need the following known re-

sults:
(a) As T is closed, &, (7)is in [X]for A€ p(T) [14, p.1101.
(b) If 2,(T) are the subspaces defined by
Lo(T) = X, Bp(T) = (x| 2 Ty oev s T" ' €D (1)) (n>1),
then for any polynomial
P(A) = agA\* + a A" e 4 g, (ag # 0),
the corresponding operator P ( T) with domain £/,( 1) is closed, and [ 14, p. 202 1.
Ry(TYP(T)x = P(T)Ry(T)x
(¢) ¥ x€ U,(T), and « is any complex number, then
no(Toanix  (T=al)" Ry (T)x

(2.1) Ry (T) = > — - ,
A i=o (A= o)*! (A=)t

and for any'm and n, R;’: (T) maps D,(T) one-to-one onto Dy 4,(7T) [ 14, p. 204-
205 1.

We shall also need the following elementary consequence of the definition

10ne may show through the Phragmen-Lindelf theorem (the proof in [15, p. 177]
holds for operator-valued functions) that B is implied by the apparently much weaker

condition HR)\(T)H =0(eF' 7, <1
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of a closed operator.

LEMMmA 2.1. Let K be closed with domain D, and let
I, €1X] (o1, 2.,
with

Ax = lim [, x

n —oo

defined for each x € X, If x € D, and
y, Kx = KH,x
for each n, then lix C D and KHx = HK«x.

Our procedure for assigning operators f(7) to functions f(A) will be a
variant of the contour integral approach of lunford and Taylor. It will be con-
venient to set up the correspondence first for a particular class of functions

and use this class to treat less restrictive cases.
DEFINITION 2.1. We denote by L (0, y) the class of functions [ satisfying:
(a) fis analytic in a strip —r < o < r, r > y (r may vary with f).

(b) As7 — tw, f(o+i7) — 0 uniformly with respect to o, --r; < 0 < 1y

forany r; <r.
(c) fmlf(o+iT)ldT<m (=r<o<r)h

The class £ (0, y) is an algebra, although strictly speaking not an algebra
of functions, since the functions f do not have a common domain. To get con-

dition (c) for products, we note that if f€ Lo, y)s f(o+i7T) is bounded in
7 for fixed o (=r <o <r). Thus if |f (o +i7)| <M (o fixed),

foo lf,lo+iT) fylo+iT)] < M fm |f,(o+iT)|dT < 0.

[Yor convenience we adopt a convention with regard to contour integrals. If
f is analytic in ~r < o < r, where r > y, the symbol [';(w) will denote a con-
tour composed of the two parallel line segments o= t¢, —~w <7 < w, where

y < ¢ < r; the positive sense along 0 = ¢ will be upward, and that along o0 =—-¢
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downward. The symbol I, will denote the contour obtained by letting & — .
We now define operators corresponding to functions in L (0, y).

DEFINTION 2.2. For f€ £(0, y), we set
1
2.2 T = a— R .
(2.2) f(T)x 53 _/;_‘C f()\)PA(T)xd)\

This formula defines an operator in [ X], the integral converging absolutely
and uniformly in x. It is easily seen to be independent of ¢ except for the re-

striction y < ¢ < r.
TueoreM 2.1. If f, g € £ (0, y), then
(a) (f+g)(T)=f(T)+g(T),
(b) (f)(T)=f(T)g(T).

Proof. Statement (a) is obvious. To prove (b) let f and g both satisfy the
the conditions of Definition 2.1 in the strip [~r. 7], and let ¢ and ¢’ be chosen

so that y < ¢ < ¢’ < r. Using the functional equation
(2.3) Ry (T) = R, (T) = (p = MRy (T)R,(T),

we see readily that f(7)g(T) is given by the expression

“—/ f()\)/\A(T)d)\_/ g(u)

1 1 (»)
.4 g(WR, (T)d;t——_/ ) X .

+
2w "l 2mi T, A=p
Since ¢ < ¢’,
1 (\) 1 (p)
— f—d 0, / Al dp = g(A).
2mi YT, p—-A 2ai YTgr p—=A

Formula (b) now follows.

THEOREM 2.2. Let f€ L(0,y), x €D,(T), and P(T) be a polynomial in
T of degree n. Then f(T)x € D,(T), and
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P(T)f(T)x = f[(T)YP(T)x.

Proof. For fixed m let w(i, m) (i=1,2,...) be a sequence of partitions

of the contour I', (m) whose meshes go to zero as i — . Setting

Himxzz )f()‘/:)(’\k‘)‘k-l)RAk(T)x’

(i, m
we have

P(T)H;px = Hip P(T)x

for each i. Now letting i — w, we see from [.emma 2.1 that

1
H x = — ( )f(/\)KA(T)xa’ACI)n(T),

m 2mi I,
and
P x = H P(T)x.
We now apply the lemma again as m — «.
We note also the following useful consequence of (2.3).
LEvma 2.2, Let fE€ L (0, y)and |R ()| > c. Then
N (T)x

1
f(T) f(T)x = f dx.
' [ = b~

To assign operators to functions with less restrictive growth properties than
those of £ (0, y), we must overcome the problem of the convergence of the in-
tegral in (2.2). As motivation, suppose that fC oC(O, y) and x € U, (T). Then,
by the Lemma 2.2,

FOV R (T)x
R™M T 1 = — —_— A,
RAT)(T)x 2 T

or, by use of Theorem 2.2,

/ fONRNT) (6] = T)'x
: dA.

1
T)x = —
fil)x = I, (@ —A)"

The convergence-producing factor in the denominator suggests the following

development.
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DerinitioN 2.3, Foreachn > 0, let
Slnyy) = (f1 fO)(a=AY" € L(0, y) for |[R(a)] > y),

and let £ (o, y) = U::=o C(n, ¥).

The definition of £ (n, y) does not depend on «, since if f € L (n, y) for
one ¢ it is in for any other with | R (&)| > y. We note that

"(3(09 )/) c ‘Q(]-a )’) Coeens
(w, y) is an algebra.

Tueorewm 2.3. If f, g €L(n, y), then af + Bg € L(n, y) If fEL(m, y)
and g Cﬂ(n, y), then fng(r’ +n, y)

We omit the proof, which follows from the fact £ (0, y) is an algebra.

DEFINITION 2.4. For f€ L£(n, y), and x in D,(T), we choose & such
that | K ()| >y, and define

/ f(A)llfA(T)(QI—T)nx

(2.4) f(T)x = dX\

2mi I‘C (Q; —_ )\)”
where ¢ < |H ().
To show that this definition is independent of «, let f€ L(n, yv), n > 1,

x € Up(T), and | R ()], | R(B)] > e. By Lemma 2.2,

nan
a

dA

. FONR, (TY (B = T
[ A
27 Y1, (B=A)"

dA

. / FOOVR, (TR = T)x

27 “Te (B=M)"(a = A"

dA

1 / f(/\)f\i/\('/')/\’g(Y)(ﬁ[—T)"x
2mi V1% (= A

dA.

1 / fOORN(T) (ol = T)'x

27 l‘c (Q__.)\)n
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Since R;’(T) has an inverse,

dAX.

. / FOORMTY (el = T ) /f(m’:,\('/)(,w_'/)"x
T

dA =
2mi "I (o —A)" 2mi “le (="

We remark also that when x € .. (n, v}, it is also in « (2 + 1, v¥ and if
x € Dn+1(7 ), Lemma 2.2 shows that formula 2.1 for both n and n+ 1 yields

the same operator.

THEORENM 2.4, Let [€ i (m, y), ¢ € (n, y), and x € Ly, 1). Then
g(T)x €D,(T), and f(T)g(T)x = (fg)(T)x.

Proof. We note that

[z EL(man, y) and g( /€L, 1)

by Theorems 2.2 and 2.3. Now if we write
RN = fOO) (=A™, k(M) =g(A) (=AY and "™ (i) o
then, by Theorems 2.1 and 2.2,
f(TYg(T)x = h(T)(al=T)" k (T)(cd =7 1"
= (al=T)"™ ™ h(TYk(T)x

= (ol =T)™" (hk)(T)x = (fg)(T)x.

Ve are led to another formula for f(7) in the following way. Suppose first

that f € £(0, y) and x € D, (7). Then in the integral (2.2) we may substitute

et g, R(T) T
Ry(T)x = 3

- +
o Al+1 PN
1=

to obtain 2

2 A formula of this type for n= 2 is used by Hille [3, p.239].
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n-1 (i) i FOIMR(T) T
f(0) T’ 1 A
T)x = E .
f()x i=o 0! * 2mi ‘/I;c AT dA

This formula has meaning when f € L (n, y) instead of £ (0, y), and we shall

establish it. In fact we prove more generally:

TueorREM 2.5. Let f€ L(n,y) and x €D, (T). If |R(a)| < ¢, then

dX.

n-1 (i) T—al): FOR, (THYT —al)%
(2.5) f(T)x= 5 o) (T—ol)x 1 ./1; )\(/\ .
c -

=0

i! 271

Proof. We suppose first that | R ()| > y, and choose ¢’ such that y < ¢’<
| B ()| < c. Then

| FOORNTI(T = al)™
f(ry=— /. d
2mi Icl ()\—O()n

dA,

1 / f()\)RA(T)(T—-O‘J)nx
¢ (A=)

where C is a small circle described counterclockwise enclosing & and not inter-

secting I'; or I'; . Substituting from (2.1) in the second integral, we have

1 /f(A)R,\(T)(T—al)”di
2mt  vC (A=)

1 (Al | f(x) i
- — R, (T IM(T ~al
- /Cfm A )xdmgo T /C(A_a)k (T~al)x

1) }
=1§> = (T - al)x.

This establishes (2.5) when | R («)| > y. However, the right side of (2.5) is
independent of & and analytic in . Thus (2.5) holds in the larger region.

The calculus developed above has the disadvantage that if P (A) is a poly-

nomial of degree n, and hence is at best in C(n+2, y), the operator corre-
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sponding to P (A) is defined only on D, 4,(T). We check that this operator is
really the formal polynomial in T in the typical case f(A) = A, For x in D;(7),

using the series formula, we have

1
(T)x =T —-_/ — dA,
f * x+277i I, 22

since f(0)=f""(0)=0. But

%) dT
A _<_2M(c)HT3xII/ _er
-00 02+,7—2

/‘ RA(T)TSx
Ie A2

(2.6)

20| Pl M (o)

C

The left side is independent of ¢, and must vanish since 1/ (¢ ) is nonincreasing.

In passing we note without proof some facts which we shall not need later.

If for x € D, (T) we write

n

Hxll, = 2 Tl

=0

then D,(T) with this norm is a Banach space X, and if f€L(n, y), the
operator f(7) defined on X to X is bounded. If D(T) is dense in X (a condi-
tion of §5), then D,,(T) is dense in X form > n.

3. Consistency with Taylor’s operators. For an arbitrary closed operator
with nonempty resolvent set, Taylor [ 14] has defined an operator corresponding
to any function f analytic on ¢ (7) and at infinity. In our situation, let us denote
by G(y) the class of functions whose singularities lie in bounded sets in the
two half-planes 0 < — y and 0 > y. If f€ ((y), and Q, and Q, are clockwise

contours in p (7 ) enclosing these sets, then Taylor’s formula defines

1
3. = | + —
(3.1) fT) = [+ — /

R dA.
o, g, (VD

This operator is bounded, and the correspondence f— f[T'] preserves sums

and products. In our theory, G (y) C £(2, y); and the corresponding operator
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f(T) are defined only on D,(T). We shall show that f[ 7] is an extension of
f(T). First we note the relationship between (4 (y) and the classes £ (n, y).

LevMA 3.1. Let fE€G(y). Then fE€ L (k, y) (k=0,1) if and only if

it has a zero of order at least 2 — k at infinity.

Proof. First let f€ £(0,y)nG(y), and let R be the radius of a circle

about the origin containing the singularities of f in its interior. Since clearly

f(w0) =0, we may write

A
/-(}\)=Z+g( )’
A A2

where g is analytic, and
lg (\)| < M for |A| > R.
Then if a # 0,

n dT
’

[o 11T faltog - u [

R 72
or

lim /R | FGT) | dT = oo,

n —oo

which contradicts Condition (C) of Definition 2.1. Thus f has a zero of order

two at infinity. The converse is clear. For the case k = 1, we use the foregoing
argument on f(A)(a — 1)L

TueorREM 3.1. Let fE€ L (0, y) nG(y). Then f(T) = f[T].

Proof. Let K be a large circle of radius r centered at zero, and let ¢ be

chosen (¢ > y) so that the singularities of f lie interior to K but exterior to

I'.. Let
I (w) (w = \W)

denote that part of Iy cut off by K, and let S be the two arcs of K (described
counterclockwise ) which lie exterior to I';. In formula (4.1), for f[ 7] we may
take
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Q+Q,=85 + . (w).
Now, by Lemma 3.1,

Lf(D)] = 02

for large values of A. Also by Condition B of ¢ 2, HR/\(T)H is bounded if
|o| > c¢. Thus

Il /Sf(x)l»zh(f)dw = 0(})
As

lim I, (w) = I,

the theorem is proved.
CorOLLARY 3.1. If f€G(y), then
flTlx = f(T)x
for x in D (T).
Proof. Let
g(A) = f(A) (o —A)2,
Then
€ L(0,)nG(y) and glT1 = g(T).
But (see [14, p.2031)
f(TYx = (al=T)2g(T) = (cI-T)YglT]=(LT].
Similarly one shows if f € L (1, y) nG(y) then
F(T)x = ([ T)x

forx in D(T).

4. A closed extension of [(T). Let { be in L(n, y), but not in L (n -1, y).
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The operator f(T), defined on D,(T), need not in general be closed on this
domain. However, we can describe an extended domain on which it will be

closed. As before, we set
R(A) = f(A) (= A", | R()]| >y,
and write
f(T)x = (al = T)* h(T)x.
DEFINITION 4.1. We define
D(F (1)) = (x| h(T)x € D(T)),
and define
F(Tyx = (al=T)h(T)x

for x in D(F(T)).
Since h € £(0, y), Du(T) C D(f(T)) by Theorem 2.2. The inclusion may

be proper. We shall need a lemma.

LEmMA 4.1. Let f in G(y) have a zero of order n (but not n+1) at in-
finity. Then x € Dy (T) (m > 0) if and only if fIT 1x € Dpyn(T).

Proof. Necessity is proved by Taylor [14, p.203]. To prove sufficiency
first suppose that n = 0, i.e., f(c) # 0, and that

fIT 1x €D, (T).

If x € Dk(T), where 0 < k < m, then

1
= —_ MR dA
fUT Jx f(oo)x+2”i ‘/5;1*‘92][( ) A(T)x

= f(o)x + ALT Ix,

where A (X) = f(A) - f(cw). As h has a zero at infinity, [T 1x € D, (T) by
the first half of the lemma. But as k < m,

fIT1x€ED,, (T) C Du(T),

k+1
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and hence x € D, (T). By repeating the argument, we see that x € D, (7).
Ifn > 1 and

LT lx €Dpyn (T),
we set
g(A) = (e =2)"f(X)
and note that
fIT1x = RE(T)glT lx.
As R™(T) maps Dy +(T) one-to-one onto Dy (T),

glT1x €D, (T).

But since g(w) # 0, x € U,,(T) by the case n =0 just proved.

THEOREM 4.1. The subspace D(f( T)) is independent of &, and F( T) with
domain D (F( T)) is a closed extension of f(T).

Proof. Tf |R(a)|, |R(B)| > y» « # B we denote by D, (f(T)), Dg(f(T)),

hys and hg the respective domains and functions f(A) (¢—=A)™ and f(X)(B=A)T"
Then

P (X)hg(X)
ho (M) =hg(N) = ————— = g(M)hg(X),
(a=A)"

where P is a polynomial of degree n — 1. The function g is in G (y), and g[ 7]
carries D, (T) into itself (in fact into D, 4+, (7)) by the lemma. Since

(ghg)(T) = g[ T 1hg(T)
(apply Rg(T) to both sides),
ho(T) = hg(T) + g[ T Thg(T)
and

Da(F(T)) € D (F(T)).
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Symmetry gives the reverse. Now fixing ¢. and associated 4 (), let

x, € B(f(T)) (n=1,2, .-

and suppose
lim x,, = x, and lim fN(T)xm= Yo+
Then

lim A (T)xp, = A (T)x,,

),

as h(T) is continuous. As h(T)me D,(T), and (l = T)" is closed on

Dp(T), h(T)xg € Dy(T); ive. xg € D(f(T)), and

N(T)xo

(=T h(T)xy = ¥
When

n

f(}\)=2 ai)\i (an%o)’

i=0
the operator {(T) is the formal polynomial in T. For if

(XY = fA) (o= 1) (+2)

then k€ (4(y), with a zero of order exactly two at infinity. By Lemma 4.1,

RIT 1x (=h(T)x) € Dpyy(T)
if and only if x € D,(7). Hence
D,(T) = L(F(T)).
If x € D,(T),

R™2(T)[(T)x = h[T1x = R**(T) 3 a; T'x,

=0

SO

F(T) = 2 aiTi.
=0
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By similar reasoning one shows that fN( T)=fl[T]for fE€G(y).

We now identify T(T) in the case that X is a Hilbert space and 4 =—i T
is self-adjoint [8, p.44]. If {E_ } (~w < 7 < ) is the resolution of / as-
sociated with 4, D (4) = D(T) is the set of x for which

lim foo Tek(T)dETx

f —o0

exists, where e, (7) is one if —k < 7 < k and zero otherwise. If F(7) is con-

tinuous, we define U as the set of x for which

F(A)x = lim f°° F(T)e, (T)dE,x

k— o0

exists. The operator /' (4) is normal, and hence closed on D. We write
D =D(A") if F(T) = T,

Taking F(7) = f(iT), we easily see that f(T)=F(4) when fE€ L(0, y)
(here y=0) and that D(A™) =D, (T). Now let f €L (n, y),

h(A) = f(AN)(a=A)" |[R()| >0, and H(T)=h(iT).

If
R(T)x € D, (T),
that is
H(A)x € D(A™) = D((al - i A",
then

lin [T Fr)e (M) dE,x

g — o0

= lim /M (a0 —i7)" e (T)dE, '/-w H(y)dEux

k— 00

exists and x € Dy.. The argument may be reversed. Thus
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D, = D(f(T))

and

~

F(A) = (al=iAYH(A) = («] = T)*h(T) = f(T).

5. Operators corresponding to bilateral transforms. A class of operators of
particular interest in applications is the set corresponding to the subclass
U(y) € £(2, y) of absolutely convergent bilateral Laplace-Stieltjes transforms
f_: eE dB(€). By a well-known theorem of Hamburger [17, p. 2651, any func-
tion in £(0, y) is in U (y). While functions in (0, y) yield bounded operators,
functions from U(y) may yield unbounded operators in the absence of addi-
tional assumptions on T and Ry (7). In this section and throughout the rest of

the paper we shall assume

B ||Ry (D] <

lol-y "’
(5.1)
C: D(T) is densein X,3

which will ensure boundedness. The results here are essentially due to Hille;
in his book [3, Chap. 15] be constructs a calculus for operators with spectrum
in the left half-plane, the class of functions being one-sided transforms converg-
ing absolutely in a half-plane containing the spectrum. The details of the con-
struction in our case will differ sufficiently to justify giving an outline of the

development. We take the following result from Hille.

THEOREM 5.1. [3, p.307, 3221, If T is a closed operator satisfying A, B,
and C, the formulas

1 r+ioo
— (c,1)_/rf MR (Txdh (€5 0),

7 -j oo

(5.2) J(&x =1 « (&=0),

1 -r=i 00
—_ - AE
— G [m_m MR, (T)xdX (€< 0),

3Condition C implies D,(T) is dense for n> 1. For if A € p(T), D,(T) = R)n\'l(T)D(T)
is dense in R} (T) X = D,(T), and thus by a repetition of the argument is dense in D(7),
and hence in )5( It will follow from Theorem 5.1 [ 3, p. 228] that Dy, (T) = n‘;“:l D, (T) is

also dense.
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where x € X, r > y, define a group of bounded operators O (&), —w < & < w0,

where

3+ ) = 3EBG), 15O < elélr;

S(&) is strongly continuous in &, and, for each x € D (T),

8 -
i T
f——*O §
Ry (T) has the representation
fw e D (&)xdé (0 >y),
0
Ry (T)x =
0 -)\f
(5.3) —f e S (E)wdé (0 <=y),

x € X, the integrals converging absolutely.

The operator O (&) will prove to be f(T) for f(X) = M,

Let ¥ denote the vector space of complex-valued functions B satisfying:

(a) P is normalized and of bounded variation on (-, ).
(b) [3(—oc)=lim§__m B(&) = 0.
(c) There is an r > y (r depending on f3), such that [ e M dB (&)

converges absolutely for —r < o < r.
We denote by ¥, the subclass of ¥ of B continuous at zero and write
‘p+=(B‘B€‘PC, B(§)=0, 550)!
Y= (B BEY, B(£) = BO), 0< ).

If u denotes the function

o

(£<0),

u(é) = (£ =0),

|1 (0< &),
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then each 8 € ¥ has a unique representation

B=B,+ B +[B(0+) - B(0-)]u,

where B, € W,, B € ¥_. The latter functions are given by

B,(€) = B(&) = B(0+) (0< &)

and

B.(&) = B(&) (& <0),
and S(0~) otherwise.

DEFINITION 5.1. A function f is in U(y) if and only if

F(0) =/_°° N B8,

where B € W. It is in ((y) if and only if f € U(y) and B is absolutely con-

tinuous.

We write f=f, + .+ [(0+) — B(0-)] corresponding to the decompo-

sition above, and note that
o0 A
) L= [0 Map e Lo [T ape.

Thus f, and f_ are analytic for o < r and 0 > —r respectively.

THEOREM 5.2. If f € U(y), then the bounded operator fi T} defined by

(5.5) fmx=f_°° 5(-&)x dB(&) (x € X)

is also given by

1 r+i oo
(5.6) fIThx = — (c,1>-/ (M) Ry (T)xdx

mi -7 00

1 “r=g oo
s — (61 = [T fOORy (D,

2mi r+ioo
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Moreover,

1 r+ioo
ftlix= 1 B-oxdp, (&) - — €0~ [T Ry (D,

r=i co

R 1 rei oo
f_{T§x=/0 5(-£)xdf(£) = — (c,n-f_mw £LOOR, (T)xdhs
and if B =u, f{T}x = x, the two integrals of (5.6) each yield x/2. If x € D,(T),
f{TYx=f(T)x in the sense of $2.

We sketch the proof. Consider the first integral of (5.6). After substituting
from (5.3) and (5.5), and interchanging the order of integration, we may express

the partial integral

—[° [1 . @] flreinR,,, (Txdr

27 w

(5.7) - [T et ot ap s [ e v o) ()

o0

+ [(B0+) = B(0-)] v(0, w),

where
v(f,w)=f°° v () - 2sin’o(¢ ~ «)/2du
e w(é-a)?
and
e’ S (-a)x <0
v(a) = { x/2 e o),
’ (0 < «).

The classical theorem on the Fejer integral holds for vector-valued functions

(See [3, p. 4‘9])0 ThuS

lim v(f, ) = v(«f)

n —oo

for each ¢ and, in fact, uniformly in any bounded interval of continuity of v (£).
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Since 3, and f3_ are continuous at zero, one shows easily that the first integral

on the right of (5.7) vanishes in the limit, and

1 rioo 0 [B(0+)~B(0-)]
G- [T R (Dx = [° B om i _ .

[8(0+)-B(0-)]
X .

= fiT}x + 5

The second integral of (5.6) yields f, { T}x + [8(0+)~ 8(0-)]x, and the sum
of the two is f{T }x.

Finally, when x € L, (T) we may substitute
o 5 Ry(T)T%
)\( )x = X + F + —T—

in (5.6). Calculation of residues yields

1 f()\)R)\(T)sz
f{T}x=f(O)x+f’(0)Tx+——'f ———d\ = f(T)x.
2mi "I 22

It follows from the foregoing theorem that S(E) is T} for f(N) = e)‘f.
If [1, f2 (3 U(y), one shows easily [ 3, p.309] that

G T = [ B(812d008) = [UTI], 1 TI,
where
o) = [T &= nap, .
We also note that

e [ el e,

and if x € D,(T), fEVU(y) then f{T}x €D,(T). The proof of the latter
follows that of Theorem 2.2.

6. A class of kernels. We shall denote by Qo(y) those functions in G (y)
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(see $3) which vanish of infinity. Any f in Qo (y) is in G (y), i.e., is an ab-
solutely convergent bilateral Laplace transform. Our purpose is to characterize

the kernels G (&) for which
= [T 6@ ag, 1€6,0).

For this we shall need certain well-known results.

An entire function F is said to be of exponential type & if

‘mia_x [F(z)]| = O(e(8+€)r)

for every positive € and no negative €. Polya has shown [ 11, p.585] that there
is a one-to-one correspondence between entire functions of exponential type

and functions analytic at infinity as follows: If

an

(6.1) fy =3 (Ial > ©)
n=0

)\n+l

where C is the natural radius of convergence, then
= [T e P,
0

where F is the entire function

> an'fn
(6.2) F(§) =2 ——
n=o °

F is of exponential type C. Conversely, F determines f. Further let K be the

set of singularities of f, and

k(¢) = max R(xe i®)
AEK

be its support function. The function

— rel?
h(¢) = lim M

r— oo r
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is called the indicator of F as it measures the growth of F in the direction ¢.

Polya shows that k(¢) = A (=¢).

THEOREM 6.1. A function f is in qo(y) if and only if it is of the form

f(A)=f_°° MG (E)dé,

where

F (&) (0<¢é< ),
G(&) =
F (¢) (~0 < £<0),

and F_ and F_are entire functions of exponential type satisfying

|F+(§)|=0(658+), 8, <=-y, as £ —+w,
|F_(€)] = 0(658.), 5 >y, as {—~w.

Proof. Let fCQO (y). Then we may write

1 fx) 1 (&)
d d
27i YQ, £-A ¢ 2mi YQ, E-A ¢

fA) =

= f(A) + f,(N),

where Q, and Q, are bounded clockwise contours lying in K(X) > y and
R (M) < - y, respectively, which enclose the sets of singularities of f which
are in these two half-planes. The functions f_ and f, are in go(y), and the de-

composition is unique. Then
(6.3) () = /0” AR (£)dE, ROV > e,

where F (£) is entire of type c,. Since the singularities of f, lie in R (A) <y,
k(m) = h(0) < -y,

and thus

|F(E)] = 0554y,
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where 6, < — y as £ —+ «c, and the integral (6.3) converges absolutely for
R(A) > - Ve

One shows that

L= [0 R,

where —F_(£) is the entire function associated with f_ by (6.1) and (6.2) by

setting
A=~ 12 g(u) = f_()\)$

as the singularities of g lie in R (p) < = y.

Conversely, if

f,(00) = /0‘” MO (£)dé,

where F, is an entire function of exponential type with the indicated order
property, f, is analytic at infinity and its singularities lie in R (X) < = y. The

case of _ is similar.

7. An inversion theorem. We now prove a result which, when T is the oper-
ator of differentiation in spaces of functions on the real line, will yield the

inversion of many common convolution transforms by differential operators of

infinite order (see (1.2) and (8.3)).
Let fbe in U(y) and [f{T}]"! exist. If 1/f is in £(m, y) for some m, the

calculus shows that
(FETYY = (fFDH(T).

When this is not the case, however, we can often construct the inverse as a
pointwise limit of polynomials or other operators. The idea is to find a sequence

{ by} of functions in (e, y) such that
hy(M) (M) —1

suitably near o (7). The functions A,(A)f(A) may be treated by the calculus,

and under proper conditions the sequence

(hnfI(T) = ho(T)f(T)
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should converge strongly to I. We shall call a sequence {4, } an inverting se-

quence for-f € U(y) if

(1) Ay(N)f(AN)EU(y) n=1,2, -+ with a common strip [-r,r] (> y)

of absolute convergence;

(2) lim A, (M f(M) =1 (-r<o<7);

n—oo

(3) for some integer & > 0,

lim /F IANF[1 = By (M F(M) ] [dX] = 0.

n—o r
Note that uniform boundedness of (1) f(\) implies (3) if & = 2.
LEmMA 7.1, If h € L(m, v) and fand hf are in U (y), then
(ROYT Y = R(T)fLT 3.

Proof. Given x in X we pick x; (i=1,2,+++,) in Dyp4,(T) converging
to x. Then f{T} x; and (hf) { T} x; converge to f{T} x; and (Af){ T} x; re-

spectively. Since for each i,
(WY = h(T)f{T}x = R(T)f{T}x;,
and A (T) is closed, the result follows.
THEOREM 7.1. If{h,} is an inverting sequence for f € U(y), then

lim }TH(T)f{fo=x

n— 0o

for each x in D, (T). The limit holds for all x in X if and only if the transforma-
tions (h,f) { T} are uniformly bounded.

Proof. For each n,

bl TYfATY = (o) T}

by the lemma. Now if x € Dk (T) we may write

ket ()0 T RO f(A)Ry (T) Thx
T)x = )
(hnf)(T)x E;, m i '/f"r N d

By condition (2), all terms in the summation go to zero except the first which
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converges to x. The last term by (3) converges to

dA.

1 / R/\(T)Tkx
27i "I} AE

But this integral vanishes by the argument to establish (2.6). Since D, (T) is
dense in X we conclude the last statement from the Banach-Steinhaus theorem

and the principle of uniform boundedness [3, p.251.
In applications we shall take £,(X) of the form p, (A) or ec")\ p,(X), where

p, is a polynomial and ¢, is real. In each case,
hn(T) = hn(T).

For the former this was proved at the end of §4. The latter case is left to the

reader.

8. Examples. An important application of the theory of the preceding sec-
tions is found by taking for T the operator of differentiation in certain spaces
of complex-valued functions defined on the boundary of the unit circle or on the
real line. Where functions in the spaces we consider are defined on the line,
the spectrum of T is the imaginary axis, whereas o(7) consists of the integral
points of the imaginary axis when the functions in the space are defined on the
circumference of the circle. For this reason we shall call these two groups of

spaces the continuous and discrete cases respectively.
Continuous:
l. Cl-oc, ®],
[|x]| = sup,|x(2)],
D(T) = (x|x"(¢) € Cl~x, 1)
2. Ly(~w; ©) (1 <p <),

el = ([ 1o a)e,

D(T)=(x|x(t) is absolutely continuous on each finite interval and

(€ Ly (~@, ).
Discrete:

1. C[—"’ 77]1
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[lx|| = sup, [x(2)],
D(T) = (x|x’(t)E Cl-m, 7]).

2. Ly(=m,7) (1 <p <),

=l =( [T 1o a)”,

D(T)=(x|x(t) is absolutely continuous and x’(¢) CLP(—n, 7)).

In the discrete case the functions are, of course, periodic, and an x in

Cl-w, o] has limits at +  and —cc.

Well-known theorems show that D(T) and, in fact, D,, (T) are dense in all
these spaces. One shows easily that 7 is closed. It follows that (A~ T) is
closed for any A, and (A — T) ! is closed when it exists. Since a closed trans-
formation defined on the whole space is bounded [ 3, p.36], the resolvent Ry (T)
will exist if and only if A is such that the differential equation

Ay(e) = y7(2) = x(¢t)
has a unique solution y in X for each x in X. Then

y = Ry(T)x.

One shows easily in the continuous case (compare with5.3) that

f°° e w(er E)dE (R(M) > 0),
0

_/" e (b4 £)dE (R(\) < 0),
and

S(E)x(t) = x(t+ &),
Also

1
Ry (T)]] < o1

When f € ((y) (as y = 0 we shall write just ( hereafter ), that is,
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f () =f_°° MG (&) de,

then

F(T)x(t) = f" C(&EYx(t = £)dé .

Also

ot s [T 1o a

in all the spaces.

Now in the discrete case the formulas above for the continuous case are all
valid if one interprets x (¢) = x (¢ + 2n 7). However, with this identity, they may

be given the more convenient form

1 m
1 - e27A f02 My (e o+ £)dé (R()) > 0),
€
RA(T)x(t)= .
1 *277/\ fi ey (e + £)dé (R(v) < 0).
—e =27

Another representation is

At . .
Ry (1) = —— [G'Mf.w N2 (Edt 4 M [T ()0
AMgin, n=0, £1, £ 2,.¢.).
For [€Q,
F(T)x(e) =f_" H(E)x (e - £)dE,
where

H(¢) = Z G(¢ + 2nm).

n=-o0

If we use the Fourier representation



286 WILLIAM G. BADE

(=<}

x(t) ~ Z xpe'™,

n==o00

then

int
®  xpe

Ry(T)x(¢) ~ 3

n=-00

" s
A~in

and, more generally,

f(Tx(t) ~ 2 fin)xze™,

n=-oo

where the numbers f (in) are the Fourier coefficients of H (£ ). Again,

1Ry (7] sl—i—l

and

rits [Tia@ae- 716

When p = 2, one may show further that

DI = sup  [f(D)]
A )

€ o(T

in both the discrete and continuous cases. This and the above facts are well
known. The transformations f (T ) are special cases of factor transforms for
which one may refer to [ 3, p. 344, 361 ]; see also [ 1, p. 991

In view of these remarks we may state a corollary of Theorem 7.1 in the

following convenient form.

THEOREM 8.1. Let

) =[°° M G(&)dE

o0

and
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hn(A) = eC"A p,(A),

where the numbers c, are real and the p, are polynomials. If f (X) and

ha(A) f(X) = [“’ e N G (£)dE

have a common strip [—r, rl, r > 0 of absolute convergence, and in this strip
by (A) (V)] < M
and

lim A, (A) f(X) =1,

n-— oo
then:

(a) ifx CLP(—oo,oo) (p>1),0r Cl=co, ], and x € D,(T),

(8.1) lim  hy(T) f"" C(&)x(t = )dE = x(2)

n— oo

in norm. If for some M”,

[]

(8.2) f"" |G (£)|dé < M (n=1,2--),

then (8.1) holds for all x.
(b) If x € Ly(~cw, ), the limit (8.1) holds for all x without (8.2).

Actually the theorem is too restrictive in L,(~w, o). Since —iT is self-
adjoint in this space [12, p.441], we may use the calculus of Stone and von
Neumann (see $4). With this calculus it is sufficient for the conclusion that

hn(X)f (M) be defined and converge boundedly to unity on the imaginary axis.

As an application of the theorem above we obtain for function spaces an in-

version theorem due to Hirschman and Widder [ 7]. Let

= A
FO) = EWTY EQ) = [T (1 -_) MO,
k=1 "

where a; = b, +ic, (k=1,2,..+)is asequence of complex numbers such that
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If

ha(A) = e n (1__) A/ (n=l, 2.0,

k=1 ak

where the d, are real numbers approaching zero, then the conditions of the
theorem on the functions f (A), Ay(A)f(X) (=1, 2,...) are satisfied in any
closed vertical strip free of zeros of £ (A). Letting

1

mi

- oo RY;
6(&) = ; f.m F(0) M an,

1 , 00
Gp(&) = — f‘ B (M) f (X)) €M dr
2L J-ioo
these authors show that

'/:°° |Ga(€)| dE < M < co.

Thus

T 1\ foo d
(8.3) lim I(dy,) H(l——)B(E)/:w G(E)x(t—&)déE=x(t) (T=Zt-),

n—ee k=1 4

in norm for x in any of the spaces. We list below the kernels of some common

transforms with their bilateral transforms which fall under this discussion:

Laplace e¢ e'eg I'(ir-»xa)
. 1
Stieltjes — sech é-
e 2 cos A

Meijer Ecos TV € K, (&) cos (m/2) T ((1=v=X)/2)T((1 +v~2A)/2)

m 2 2A
(-3ev<3)
-—<v<
2 =

N)ln—ﬂ
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Hirschman and Widder have studied inversion formulas of this sort in great
detail (see [4, S, 6, 7, 16]; see also Pollard [10]). Their results involve the
formal differential operator D = d/dt, and are concerned with inversion at par-
ticular points rather than in the norm topology of function spaces. Their proofs
are quite different, involving a convergence argument with the kernels G,(¢)
in contrast to the present method of first proving inversion for a dense set of
functions. On the other hand, the present method seems unsuitable for obtaining
local results.

Similar inversion formulas have been proved for L,(-c, «c) by H. Pollard
[9] by use of Fourier transform methods. He needs only to prove that the pro-
ducts h,()) f (M) converge boundedly to unity on the axis. However, in each
case he considers one can show this is true in a strip of positive width. In
several cases we are unable to show (8.2), for example in the case of the

Weierstrass transform where

'52 )\2 n
G(§)=e_ ,f()\):e)ﬁ/“, and A,(\) = (1———) ,
7 n

or the partial sums in the series for f (1), and in the case of the Stieltjes and

Laplace transforms when 4, are the partial sums.

As a final application, we give an example for the case of the circle. Here
the Weierstrass transform takes the form either of a transformation of series
o0 o0
int int-n2/4
x(t) ~ D° xpe™, f(M)x(t)= 2 =pe ,

n=-o0o n=-=oo

or a finite convolution
1 ™
f(T)x(t):——/ 0, (&, 1/4)% (¢ - £)de,
27 J-m

where
o0

63(610() _ \/77/_0( Z e-(§+2n77)2/4a

n=-00

> 2
=1+2 Ze'” % cos né
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is the theta function occurring in the theory of heat conduction [ 3, p.402]. For

any x in L,(—m, 7) or x in D, (T ) of the other spaces,

7'2 n
lim (1 _4_) F(T)x(e) = x(¢)

n— oo n

in norm.
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SUBFUNCTIONS OF SEVERAL VARIABLES

E. F. BEckENBACH AND L. K. JACKSON

1. Introduction. Convex functions have been generalized in the following
two directions: to subharmonic functions [ 5] of two (or more) independent
variables, by replacing the dominating family { F(x)} of linear functions, or

solutions of the differential equation

d*F

’

dx?

with a family of harmonic functions { F(x, y)}, or solutions of the partial dif-

ferential equation
(1) AF = —+ — = 0;

and to subfunctions [1] of one variable, by replacing the dominating family of
linear functions with a more general family of functions of one variable having

certain geometric features in common with the family of linear functions.

We shall here combine the foregoing considerations, generalizing subhar-
monic functions by replacing the dominating family of harmonic functions with

a more general family of functions of two (or more) independent variables.

Bonsall [ 2] has recently considered some properties of subfunctions of two
independent variables relative to the family of solutions of the second-order

elliptic partial differential equation

oF oF .
AF + a(x,y) — + b(x,y) —+ c(x, y)F = 0.
dx dy

Received February 17, 1952. This research was supported in part by an Office of
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Tautz [6] has considered a more general situation; but he restricted the domin-
ating family of functions to being linear, and its members to having no positive

maxima or negative minima at interior points of the domain of definition.

After developing some properties of subfunctions from a few postulates for
our dominating family of functions ($2), we shall introduce further postulates
as we need them in studying a Dirichlet problem relative to the dominating fami-
ly of functions ($$3-5). Applications to elliptic partial differential equations
will be made in a subsequent publication.

2. Generalized subharmonic functions. Let D be a plane domain (nonnull
connected open set), and let {y} be a family of closed contours y bounding
subdomains I of D such that

a) T=T+ycCD,

b) T is closed,

c¢) {y}includes all circles x which lie together with their interiors K in D,
K=K+«xcCD,

and have radii less than a fixed p > 0.

Let { F(x, y)} be a family of functions whose domains of definition lie in

D and which satisfy the following postulates:

PosSTULATE 1. For any member y of {y} and any continuous boundary-
value function f(x, y) on y, there is a unique F(x, y; f; y) € {F(x, y)} such
that

a) F(x,y; fiy)=f(x,y) ony,
b) F(x,y;f;y) is continuous in .
PosTULATE 2. For each constant ¥ > 0, if
Fi(x, y), Fo(x, y) € { F(x, y)},
and
(2) Fi(x,y) < Fo(x,y) + M onvy,

then
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Fi(x,y) < Folx, y) + M in [';

further, if the strict inequality holds at a point of y then the strict inequality
holds throughout I".

REMARK. We note that the second part of Postulate 2 might have been
restricted to the case M = 0 without actual loss of generality. For if the strict

inequality in (2) holds at a point of y then also
Fi(x,y) < Fx, ;5 Fy + M; y) on y,

with the strict inequality holding at a point of y. It follows from the second part
of Postulate 2, restricted to the case M = 0, that

Filx,y) < F(x, 93 Fp + M; y) < Fo(x,9) + M in I ;
or

Fi(x,y) < Fy(x,y) + M in I',
for M > 0.

DEFINITION 1. A function g(x, y) is a continuous sub-{ F (%, y)} function
in D, or briefly a subfunction, provided

a) g(x,y) is continuous in D,
b) the inequality
glx, y) < Flx, y) on y
implies the inequality
glx, y) < F(x,v5) inT.

NOTATION. In the sequel we shall restrict use of the symbols D, v, I, I-:,
x K, K, f(x,%), F(x,y), F(%,%;f;y), and g(x, y) to the foregoing desig-

nations.

THEOREM 1. If g(x, y) is a subfunction in D, then either

wll

(3) glx,y) = F(x, y; 85 y) in

or
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g(x, y) < Flx, y; 85 7) throughout T".
Proof. Suppose that for a point (x4, yo) of I' we have

(4) gz, y,) = Flx, 58 v)-

Let « € {y} be a circle with center at (x,, ¥,) and lying together with its
interior K in I'. Then we have

glx,y) = F(x,y; 8 k) < Flx, 558 y) on K,
and therefore
(5) glx,y) < F(x,y;85x) < F(x, 958 v) in K.
In particular, by (4), we have

g(xy)) < Flxg, v 856) < Flx, 5 8 v)=8(x, 5,
so that
F(x, v 8 k) = Fx, 55 8 v),

and therefore, by (5) and Postulate 2,

glx,y) = F(x,y; 8 k) = F(x,5; 8 v) on K.

Since I' is a connected open set, for any point (x, y) of I there is a finite
chain of circles in {y}, each lying in I', each with its center on the circum-
ference of the preceding one, and such that the chain begins with « and ends
with a circle through (x, y). Continued repetition of the foregoing analysis
shows that (4) implies (3).

COROLLARY. If g(x,y) is a subfunction in D, and, for a fixed y, T is
interior to the domain of definition of F(x, y; g; y), then either

g(x,y) = F(x, 5585 7),
or every neighborhood of each point of y contains points exterior to T for which
8(x, y)> Flx, y; 85 7).

REMARK. For a subfunction g(x) of one variable, relative to a family

{F(x)} of functions defined on an interval a < x < b, the corollary can be
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strengthened as follows [1]: If a < x; < x, < b, and

g(x,) = F(x,), g(x,) = F(x,),
then either
g(x) = F(x)
or
g(x) > F(x)

for @ < x < x; and for x, < x < b. But, as independently observed in con-
versation by R. H. Bing and M. H. Heins, the stronger result does not generally
hold for subfunctions of more than one variable. Thus the function

V(z) = log z(z—-lz-)l, (z=2x+iy)

is subharmonic in |z| < 1. For large M > 0, the set of points where
V(z)<-M

has exactly two components, one containing the point z = 0, the other con-

taining z = 1/2. Let W(z) be defined by

~ M on the component containing z = 0,
W(Z) =
max [V (z), - 2M] elsewhere in | z| < 1.

Now W(z) is continuous and subharmonic in |z| < 1, coincides with the har-
monic function —M on small circles with center at the origin, but is strictly
dominated by —M in the neighborhood of z = 1/2.

THEOREM 2. If g (x, ¥) is a subfunction in D forn=1,2, .., and
£,(% ¥) — 8 (%, ¥)

uniformly on each closed and bounded subset of D, then g (x,y) is a sub-

function in D.

Proof. Clearly, g (x, y) is continuous in D. For any y € {y} and any
€ > 0, there is an N = N(¢€) such that for n > N we have
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18, (2, ¥) ~ g,(% y)| <€ in T

Then for n > N and (x, y) € I', we have
8 (% ¥) < g,(x%, ) + €
S F(xysg,5y) + €< Fx, x5 855 7) + 26

Therefore, since € > 0 is arbitrary, we have
g(% y) < Flx y5 85 y) inT.

The following result is a generalization of Littlewood’s theorem [ 4, pp. 152-
157] concerning subharmonic functions.

THEOREM 3. 4 function g(x, y), continuous in D, is a subfunction in D if

and only if corresponding to each (x4,7y0) € D there exists a sequence of circles
Kn = kp (%55 ¥,) €1y} with centers at (xo, ¥,) and radii p (x,y,) —0,
such that

glxg, ¥,) < Flxg, g5 8 k).

Proof. We shall prove only the sufficiency of the condition, since the neces-

sity is obvious by definition.

Suppose that the condition holds but that g(x, y) is not a subfunction; then
there isay € {y}and an F(x, y) € { F(x, y)} such that

g(x, y) < F(x, y) on y
but

g(x, y) > F(x, y)
at some point of I". Then the set of points of I on which

max g(x, y) = F(x,y)=M>0
(x,y) el

is attained is a closed nonnull interior set E in I'.

Let (x, y,) be a point of E such that

dist [(xy, y,), y1 = min dist [(%, y), yl.
(x,y) €E
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By hypothesis, we have
8(xy ¥y) < Fx, v 8 k,)3

but, by our selection of (x, y ), for sufficiently large n there is an arc of

K, on which
g(x, y) = F(x,y) < M.

Thus on K, we have
Fx, ;58 1,) = glx, y) < F(x, y) + M,

with the strict inequality holding at some point, so that, by Postulate 2, at each

point inside «, we have

F(x, y; g5 k,) < F(x, y) + M;
in particular, we have

8z, ) < Flxg, v 8 1,) < Flxg,y)) + M=glx, ),

a contradiction.

REMARK. A method similar to that used in proving Theorem 3 can be used
to show that Postulate 2, restricted to the case y = k, implies the result stated
in Postulate 2 for general y € {y}. Thus Postulate 2 might have been restricted

to the case y = k without actual loss of generality.

THEOREM 4. If g (%, ¥), g,(%, ¥), «++, g,(x, ¥) are subfunctions in D,
then g (x, y), defined by

go(x, _’y) = max [g‘(x, y), gz(% y), *0y gn(x’ y)]’

is a subfunction in D.

Proof. Since the functions g].(x,y) (j=1,2,+++,n) are continuous, it
follows that g (x, y) also is continuous. Let y € {yl, and let (%, y,) €r.

Then for some j, with 1 < j < n, we have

Bol%gs ¥y ) = 8 (x5 ¥,) < Flxg, y55 855 y) < Flxg, v45 845 7).
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THEOREM 5. If g(x, y) is a subfunction in D, then, for any fixed y € {y},
the function g(x, y; y), defined by

g(x, y) for (%, y) € D-T,

glx, y;y) =
F(x, y;8y) for(x,y)E T,

is a subfunction in D.

Proof. It follows from Theorem 3 that we need to test the behavior of
g(x, y; y) only relative to small circles k € {y} with centers at points (%, yo)
of the given y. But then we immediately have the desired inequality

g(xgs vy v) = g(xy, ¥,) < Flxg, v 8 1) < F(x, y,5 8(% y5 y); «).

DEFINITION 2. Superfunctions are defined by reversing the inequalities in
the definition (Definition 1) of subfunctions relative to the family { F(x, y)}.

It is easy to show that results analogous to Theorems 1-5, with suitable
alterations, hold for superfunctions: in addition to writing ‘‘superfunction’’

for “‘subfunction,’” we reverse the inequality in the last line of Theorem 1 and

[ ¢ 1.2

in the last line of Theorem 3, and replace ‘“‘max’ by ‘“‘min’’ in Theorem 4.

3. A Dirichlet problem. We now introduce some additional symbols.

NOTATION. Let Q be a bounded connected open subset of D with boundary

o such that

Q=0+ wCD.

To distinguish points of Q from points of w, we shall often designate points
of Q by capital letters 4, B, and points of w by &, B; and we shall write f(4)
for f(x, y), where (x, y) are the coordinates of 4, and so on.

Let () be a bounded, but not necessarily continuous, function defined on

o, and define k4 () and A*(x) by

h«(a) = lim inf A (B),
B—a

E*() = lim sup k(B).
,B-»a
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DEFINITION 3. By a solution of the Dirichlet problem for § relative to
{ F(x, y)} and relative to the given bounded boundary-value function A(x) on

w, we shall mean a function H(x, y) which is continuous in Q, satisfies

(6) hs(a) < liminf H(A) < limsup H(A4) < &¥(w),

A-a A-a

and is such that for each y € {y} with T C Q we have

(7) H(x, y) = F(x, 5; H; y) in I,

DEFINITION 4. We shall say that a function H(x, y) which is continuous
in Q, and which satisfies (7) for each y € {y} with " C Q, is an { F (x, y)}-
function in Q, though of course in the given family { F(x, y)} there might be
no member whose domain of definition contains Q; the given domains of defi-
nition might for instance be small circles. Clearly, the only functions which are

both subfunctions and superfunctions are the { F (x, y)}-functions.
DEFINITION 5. The function ¢(x, y) is an under-function provided

a) ¢(x, y) is continuous in 5,
b) ¢(A4) is a subfunction in Q,

c) ¢(a) satisfies
d(a) < hs(a) onw.
DEFINITION 6. The function ¢/ (x, y) is an over-function provided

a) y(x, y) is continuous in Q,
b) ¢ (4) is a superfunction in Q,

c) Y (a) satisfies
Yyla) > A¥(a) onw.

THEOREM 6. If ¢(x, ¥) is an under-function and ¢)(x, y) is an over-func-
tion, then

¢>(9C,y)5_ lll(x,)’) in Q.

Proof. The result can be established by a method similar to that used in
proving Theorem 3.
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TuEOREM 7. If ¢ (%, %), ¢,(% 5), -+, é,(x, y) are under-functions,
then ¢(x, y), defined by

#(x, ¥) = max [¢ (%, 5), ¢,(x, 9) +++, ¢, (%, y)],
is an under-function.

THEOREM 8. If ¢ (%), ¥,(x,¥), -+, %.(x, y) are over-functions,
then i (x, y), defined by

‘//(x’ y) = min [l/ll(x’ )’), ¢2(x’ }’), M) (/’n(x’ )’)],
is an over-function.

Proof. Property b) of Definition 5 holds for ¢(x, y) by Theorem 4; the
other properties of Definition 5 hold for ¢(x,y) since they hold for each
qﬁ].(x, y). Thus Theorem 7 is valid; and Theorem 8 can be proved similarly.

THEOREM 9. If ¢(x, y) is an under-function, and y € {y}, T CQ, then
é(x, y; v), defined by

b (x, ) for (x,y)inQ - T,

o(x, y5y) =
F(x, y; ¢y) for (x,y) in T,

is an under-function.

THEOREM 10. If ¢/ (x, y) is an over-function, then y(x, y; y) is an over-
function.

Proof. Theorem 9 follows immediately from Definition 5 and Theorem 5,
and Theorem 10 holds similarly.

PoSTULATE 3. For any « € {y}, and for any collection {f (x,y)} of
functions fv(x, y) which are continuous and uniformly bounded on «, the func-
tions F (x, y; fv; k) are equicontinuous in K.

We shall use the following well-known and easily established result in con-
nection with Postulate 3.

LEMMA 1. For any collection { U, (x, y)} of functions U,x, y) which are

uniformly bounded and equicontinuous on a set E, the functions S(x, y) and

I(x, y), defined by
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I

S(x, y): sup [Uy(x’ )’)];
U, efu,}

I(x, v) = inf [U, (=, y)],
Uyefu,}

are continuous on E.

PoSTULATE 4. For any bounded connected open subset Q of D with bounda-
ry  such that Q C D, and for any bounded function (o) defined on w, there

exists an under-function ¢(x, y), and there exists an over-function ¥ (x, y).

DEFINITION 7. By H«(x, y) and H*(x, y) we shall denote the functions
defined by

Hi(x, y) = sup [é(x, y)],
¢ €lopl

B (% y)= inf [¢(xy)],
yefyl

where { ¢} and {1/} denote the familities of under- and over-functions, respective-
ly.

The existence of the functions Hs(x, y) and H*(x, y) follows from Postulate
4 and Theorem 6.

THEOREM 11. The function Hx«(x, y) is a subfunction in Q.

Proof. We shall show first that for each x € {y}, with K C ©, the function

Hu(x, y) is continuous in K, so that H«(x, ¥) is continuous in Q.

Let ¢, (x, y) and (/ro(x, y) be fixed members of { ¢ (x, )} and { (%, y)i,
respectively; and for each ¢ (x, y) € { b (x, y)} define

®(x, y) = max [¢(x, y), ¢,(x y)1.

Using Theorem 4, we readily verify that ®(x, y) satisfies the conditions of
Definition 5, so that ®(x,y) is an under-function; also, by Theorem 9, ®(x, y;«)

is an under-function.

Since ®(x, y; k) is an under-function, and

d(x,y) < ®(x,y) < D(x, y; x),

we have
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(8) Hi(x,y) = sup @(x, y;«);
P € {D}

further, using Theorem 6, for (x, y) in K we obtain
(9) ¢o(x,y)5 ®(x, y; k) = F(x, y; ®; ) < Yy (%, 7).
It now follows from (8), (9), Postulate 3, and Lemma 1 that Hx(x, y) is con-

tinuous in K, so that H«(x, y) is continuous in Q.

Now, for any circle x € {y} with center (x, y,) and K C Q, and for any
¢ € { &1, by the definition of H«(x, y) we have

é(x,y) < He(x, y) on K;
therefore, since ¢(x, y) is a subfunction in Q, we have
2y, y,) < Flxg, yo5 by k) < Flxg, yi5 Has k),
whence, again by the definition of H«(x, y), it follows that
Hilxy, y,) < F(xy, 5 Has k).
Accordingly, by Theorem 3, H«(x, y) is a subfunction in Q.
THEOREM 12. The function Hs(x, y) is a superfunction in Q.

Proof. Let there be given any € > 0 and any y € {y} with I" C Q. Then,
by the definition of Hx(x, y), for any (x, y,) € T there is a ¢, € {$} such
that

€
950(270, )’0) > H*(xo, }’0) - 5 H

therefore, by continuity, there is a circle x| € {y}, with center (x, y,) and
K  C Q, such that

(10) gbo(x, y) > Hy(x, y) — € in K, .

Since the circular discs K, form an open covering of I, by the Heine-Borel
Theorem there exists a finite subcovering; let ¢, (x, y), ¢, (x, ¥)yeoey b (x,5)
be the associated under-functions, and let ¢(x, y) be defined by
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$(x, y) = max [, (x, ¥), ¢, (%, ), «oo 5 &, (% ¥)].
Then, by Theorem 7, ¢(x, y) is an under-function; and, by (10), we have
d(x y) > Helx, y) — € inT.

By Postulate 2, then, we obtain

(11) F(x,v;¢5y)> F(x, y; Hi— €3 y) > F(x, y; His y) =€ in .

Since for (x, ¥) € T and any ¢ € { ¢} we also have
(12) Hi(x, y) > &d(x, y5 ) = Fx, 5 b5 9),
it follows from (11) and (12) that
Hix y) > F(x, y; Hes y) - € in T
Thus since € > 0 is arbitrary, we have
Hilx, y) > F(x, y; He; y) in I
so that H4(x, y) is a superfunction in .

Since Theorems 11 and 12 hold also for the function H (x, y), and since
the only functions which are both subfunctions and superfunctions in { are

{ F(x, y)}-functions in Q (see Definition 4), we have the following result:

THEOREM 13. The functions H«(x, v) and H*(x, y) are{F (x,y)}-functions
in Q).

We now turn our attention to the behavior of the functions Hs«(x, y) and
H*(x, y) at the boundary » of Q.

4. Regular boundary points; barrier functions. We make the following defi-

nition.

DEFINITION 8, The point &y € o is a regular boundary point of Q relative
to { F(x, y)} provided that for every bounded function A( ) on w the functions
Hs(x, y) and H*(x, y) satisfy (6) at og:

(13a) ha(0o) < liminf Hx(A) < limsup Hx(4) < h*(a,),

A-a A—uxo

0
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(13b) he( o) < lim inf H*(A4) < limsup H*(4) < h*(a,).

A—vao A—oao

THEOREM 14. If all points of w are regular boundary points of Q, and h(ot)
is continuous on w, then the Dirichlet problem for Q, relative to { F(x, y)} and

h(a), has a unique solution.

Proof. From (13) and the continuity of A(&) on w, we see that Hx(x, y)

and H*(x, y) are continuous in Q and satisfy
Hye(o) = H(a) = h(a) on w.

Accordingly, by Definitions 5 and 6 and Theorems 11 and 12, Hx(x, y) is both
an under-function and an over-function; similarly, H*(x, y) is both an under-

function and an over-function. Therefore, by Theorem 6, we have
Ha(x, y) = H¥(x, ¥) in Q.

For the same reason, any other solution of the Dirichlet problem must coincide

with H«(x, y) and H*(x, y) in Q.

We shall now give local sufficient conditions in terms of barrier functions
(see [ 3, pp. 326-3281) in order that a point & € w be a regular point of Q; in

the next section we shall study conditions under which barrier functions exist.

DEFINITION 9. For a point Gg = (%, ¥o) € @, a circle x with center
at 0lp and with K C D, and constants € > 0, M, and N, a function

s(x,y) = s(x, y; k3 €, M, N)
is a barrier subfunction provided:

a) s(x,y) is continuous inQ nK,

b) s(x, y)is a subfunction in Q n K,

c) s(og) > N - ¢,

d) s(xy) < N+ 2¢ onw n K,

e) s(x,y)< M on Q nk.

DEFINITION 10. With the notation of Definition 9, a function
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S(x, y) = S(x y; ;3 € M, N)
is a barrier superfunction provided
a) S(x, y)is continuous in QnKk,
b) S(=x, y) is a superfunction in Q n K,
c) S(ug) < N+ ¢
d) S(x, y)> N - 2¢ onw nk,
e) S(x,y)> M on Q nk.

THEOREM 15. If for the point 0o € w, and for each set of constants
€ > 0, M, and N, there exists a sequence of circles k, = k,(0y) with center at
&o and radii p (%o) — O for which barrier subfunctions s(x, y; kn; €, M, N)
and barrier superfunctions S(x, y; kp; €, My N) exist, then oo is a regular

boundary point of Q relative to { F (%, y)}.

Proof. For a given bounded function 4( &) defined on w, it follows from
Theorem 6 and Definition 7 that

Hi(x y) < H(x, ) in Q,
so that
lim inf Hy(A) < lim inf H*(4)
A-aa0 A—»ao
and

lim sup Hx(A4) < lim sup H*(4).

A—vao A—u:v.0

Accordingly, in order to verify (12) and thus prove the theorem, we need only

show that

(14) ha( ) < lim inf Ha(A)
A——oao

and

(15) limsup H*(4) < k*(a).

A—vao
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For a given € > 0 there is a circle « satisfying the hypotheses of the theo-
rem and for which
ha(0g) — € < hs(a) < B*(a) < B*(0g) + € onw nK.

For a fixed 8 > 0 and for any under-function ¢ (x, y), let

M= min__ [¢(x’y)"8]9
(x,y) € Qnk

N = hs(0g) - 3e,
and
s(x, y)=s(x, y;x; ¢, M, N).
Consider the function ® (x, y), defined by

max [ ¢ (%, y), s(x, y)] inQ nk,
O(x, y) = B
d(x, y) inQ-—E;

we shall show that ®(x, ¥) is an under-function. Since we have
s(x, y) < M < ¢lx, ) on Q n «,

it follows readily that

(I)(x, )’)=<f>(x, y) on(_an,

and accordingly that ®(x, y) is continuous in Q. Further, ®(x, y) is a sub-
function in Q - K, since ®(x, y) = ¢(x, y) there; ®(x, y) is a subfunction
in Q n K by Theorem 4 and Definitions 5 and 9; and for a point * € Q n k we
have s () < ¢()— 8, so that there is a circle about 00 in which ®(x, y) =
¢ (x, y); thus, by Theorem 3, ®(x, y) is a subfunction in Q; also, by Defi-
nition 9 and the choice of k and N, we have

s(a) < N+2e=hs(0g)—€ < hx(t) on(onk,
and therefore, since
() < hx(at) on w,

we have
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(o) < hx(at) on w.

By Definition 5 we have thus shown that ®(x, y) is an under-function.

By the choice of N and the definitions of s(x, y) and ®(x, y), we have
he(to) —4e =N - € <s(tg) < ®(tg),

so that by continuity there is a neighborhood of ¢(y in whose intersection with
Q n K we have

h*(O(.o) - 5e < (D(x’ _')’)
and consequently
hs(og) - 5€ < Hilx, y).

Since € > 0 is arbitrary, (14) now follows; and (15) can be established simi-
larly.

5. The existence of barrier functions. Relative to the, Laplace partial dif-
ferential equation (1), a criterion of Poincaré [ 3, p.329] for &, to be a regular

boundary point of Q is that there should exist a circle x with
(16) QnkK-= UKo

We shall now adjoin postulates concerning the family { F (x, y)} under which
(16) is a sufficient condition for the existence of barrier sub- and superfunc-
tions at G, and therefore, by Theorem 15, for ¢ to be a regular boundary point
of Q relative to { F (x, y)}.

PoSTULATE 5. For any circle «k € {y}, and any real number M, there

exist continuous functions f (%, y), f (%, y), defined on k, such that

F(x,y;fl;K)S_M,F(x,y;fz;K)ZM in K.

POSTULATE 6. For any circle x € {y}, and any real numbers € > 0 and

N, there exists a continuous function f(x, y) defined on k such that
| Fx,, ¥ fi k) = N| < €,
where (xo, yo) is the center of «.

POSTULATE 7. For any circle « € { y}; if the functions f/(x, y) (j=0,1,0.),
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defined on «, are continuous and uniformly bounded on «, and

lim fx, ) = f(% ¥)

]——400
for all but at most a finite number of points of , then

Lim F(x,y; f;3 ) = F(x, y; f5 «)

]-—.oo ]

for all points of K.

POSTULATE 8. For any circle « € {y}, if the functions f].(x,y) (j=
1,2, ...), defined on «, are continuous on k and equicontinuous at a point
(xo, ¥,) € k, then the functions F(x,y;f;«) (j=1,2,+++), defined in

]
K, are equicontinuous at (xo, Y ).

THEOREM 16. If for the point & € w there exists a circle k, with K C D,
such that

ﬁ n K = 0(0,
then o is a regular boundary point of Q) relative to { F(x, y)}.

Proof. Since the conclusions of Theorems 15 and 16 are identical, in order
to prove Theorem 16 we need only to show that its hypothesis implies that of
Theorem 15. Explicitly, we shall give the construction of a barrier subfunction
for a suitable circle x,(%ty) with center at ¢, and inside an arbitrary circle
Ko with center at G, as prescribed in Theorem 15; the existence of barrier

superfunctions can be treated similarly.

Let the circle kg C D be drawn with center at ¢y = (%9, yo) and intersect-
ing k. By Postulate 6 there is a continuous function f(x, y) defined on ko such
that

(17) | Fxos Y035 f3 ko) =N| < €+

By continuity, there is a circle x; C Ky, with center at ¢ g, such that

(18) F(x, 95 f3kg) <N+ 2¢€ in K, -

Now we define
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R = min F(x, v f; ko)
(xxy)éKl

and
M, = min (M, N, R).

By Postulate 5, there exists a continuous function fl(x, y ) defined on «, such
that

(19) Fx, s fi50,) < My in K, .

Let B be the intersection of the line of centers of x and x; with the arc of
ky lying outside K, and let B{, B{’, By, B3 be points of k; near B arranged in
the order B; B{ B B{’ B3’ around «,.

We define the function fz(x, y) on k, as follows:

[ y)=f(x,y)-1 on arc B{ B B{’;
f, (%, y)=F(x, 55 f; ko) on long arc By B3 ;
f, (%, y)=17(0) on arc B{ B;;
(%, y)=17(0) on arc B{’ B;’;

the functions [’(0) and [”’(0) are linear functions of the central angle of «,

such that f2 (x, y) is continuous on k.

For (x, y) on x{ , we set
f, (%, y)=min [f,(x y), F(x 5 f; ko).
By (17) and Postulate 7, we can take the arc B; B B;” small enough that
(20) | F (%9, y03 fy3 k1) = N| < €.
Further,- since
f3(x,y)§ F(x, y;5 f35 ko) on Ky s
by (18) and Postulate 2 we have

(21) F(x, y; f3360) < N+2¢€ in K.
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Let Q € K, be a point on the open line-segment %, B, and sufficiently
close to B that

(22) F(Q; f3 k1) < F(Q5 f15 k1)

Let x* and «** be the two circles through Q and &g, and tangent to ;. Let p be
the length of the common chord ¢y Q of x* and «”, or the length of the common

chord of k” and k, whichever is less, and choose the constant C so that
(23) Cp> M*,

where

M*=  max _ [F(x,y; fi;c) |+ max_ | F(x, 55 f3560) ]
(x, y) €K, (x, y) €Ky

We now define continuous functions A;(%, ¥) and A;’(x, ¥) on «° and «”,

respectively, as follows:

h{ (% y)=F(x, % fs3 k1) = CL(x —x0)? + (y —y9)? 1?2 on k*
(24)

R’ (x, y)=F (%, y; f35 k) = Cl(x—x0)+ (}’")’0)2]”2 on k”,

and, for n=2,3, +--,

hi(x, y) on k’—K”,

hl;(x’ }’) = ‘ —
F(x,y; hplys & on k'nK”,

(25)

/z.l”(x, y) on K"—-R'

hy'(x, y) = -
F(x, y; hp; k) on «”’nK".

Let
G= max |F(x, y;h{; )|+ max_ |F(x, y; b{"; k) |;
(x,y) €K’ (x,y) €K’

then by Postulate 5 there is a continuous function f;(x, y) defined on x; such
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that
F(% 95 fas k) <=G inkK,.

It follows from Postulate 2 and the definitions of the 4, (x, y) and 4;’(x, y)

that for each positive integer n we have

F(x, y;5 fas k1) < Fx, 95 hps «7) < F(x, 935 f35 k1) inK’,
and
F(x, y;5 fas k) < F(x, 55 ha's k7)) < F (%, y; f35 k1) in K”.

Hence, by Postulate 3 and L.emma 1, the functions u’(x, y) and u”(x, y),

defined by

u’(x, y)= su F(x, v; hny k%)
kg efng}

and

u”(x, y) = sup F(x, y; hn's °%)
hirethyr

are continuous in K” and K/, respectively; indeed, by Postulate 8 and by Lem-
ma 1 applied to the sets (K’= Gy~ Q) and (K"~ ¢ — (), the functions
u’(x, y) and u’’(x, y) are continuous in K’ and K”’, respectively, except
possibly at the points ¢y and Q. As for the behavior of these functions at &,

since by our construction we have

(26) Fx, y; hi; k) < u’(x, y) < Fx, y; f35 k1) in K’,
and
(27)  F(x ys {5 k) <u”(x, y) < Fx, y5 fa5 k) in K,

and since the functions at the extremes of these inequalities have equal values
at (, and are continuous at (g, it follows that u”(x, y) and u”(x, y) are con-

tinuous also at ¢

As in the last part of the proof of Theorem 11, u’(x, y) and u”(x, y) can

easily be shown to be subfunctions in K* and K, respectively.

Now we define the function u(x, y)in K’u K** as follows:
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U'(x,y) in E’—K"
(28) u(x, y) =1 u”(x, y) inK”-K’
max [u”(%, y), u”(x, y)] in K'nK”".

Since u’(x, y) and u”’(x, y) coincide on x“nA’, on «’’nK’, and at &,, and
both are continuous at G, it follows that u(x, y) is continuous in K’ u K**

except possibly at Q.

Clearly u(x, y) is a subfunction in K~ K* and in K"~ K" By Theorem
4, u(x, y) is a subfunction in K“nK“. Since in addition the hypothesis of Theo-
rem 3 holds for each point of xk“nK** and for each point of x”’nK”, it follows
that u(x, y) is a subfunction throughout K’ u K”.

To conclude the proof, we shall show that the function
F(xi Y5 f[; Ky ) for (x, y)€ ﬁn[Kl — (E’U K'l)]’

(29)  s(xy) = o
max [ F (%, y; f13 k1)s u(x, y)] for (%, 7)€ Qn(K'vuK*)],

satisfies all the conditions of Definition 9 for being a barrier subfunction for

ky = Ky (0y) as prescribed in Theorem 15.

Since, by (23), (24), (25), and the definitions of u’(x, ¥), u”(x, y), and

u(x, v), we have

(30) u(x, y) < Fx, v; f13 k)

on the part of k“u k* which lies in Q; since % (x, y) is continuous on x“u k**

except possibly at Q; and since, by (22), (26), and (27), there is a neighbor-
hood of Q in which (30) holds, it follows that s (x, y) is continuous in QnKj.

That s (x, y) is a subfunction follows from exactly the same kind of argu-

ment as the one used in discussing u(x, y).

By (20), (24), (25), (26), and (27), we have
u(xo, y0) = F(xg, yo3 f35 k1) > N= ¢,
whence, by (29), we have also
s(x9, y0) > N— €.

It follows from (19) that

F(X,y;fl;K[)SN+2€ il’lKl
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and from (21), (26), (27), and (28) that

u(x, y) <N+2¢ in K’uvK”,
whence, by (29),

s(x, y) <N+2¢ on OnK.

Finally, by (19), (23), (24), (25), and the definitions of u’(x,y), u”(x,y),

u(x, v), and s (%, y), we have
s(x,y) <M on Qnk,.

Thus s(x, y) satisfies all the conditions of Definition 9, and is a barrier

subfunction s (%, y; «y; € M, N) as desired.
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EXTENSION OF A RENEWAL THEOREM

Davip BLACKkWELL

1. Introduction. A chance variable x will be called a d-lattice variable if

(1) Z Prix = nd} =1
n =00
and
(2) d is the largest number for which (1) holds.

If x is not a d-lattice variable for any d, x will be called a nonlattice variable.

The main purpose of this paper is to give a proof of:

THEOREM 1. Let xy, x5, +++ be independent ideniically distributed chance
variables with E(x,;) = m > 0 (the case m = + © is not excluded); let S, =
%y + <+ +xp; and, for any h > 0, let U(a, h) be the expected number of integers
n > 0 for which a < S, < a + h. If the x,, are nonlattice variables, then

U{a, h)— —, 0 as @ —+ ©, —©.
m

If the x, are d-lattice variables, then

Ul(a, d)— —, 0 as a—» + ©, — @©.
m

(If m =+ o, h/m and d/m are interpreted as zero.)

This theorem has been proved (A) for nonnegative d-lattice variables by
Kolmogorov [ 5] and by Erdss, Feller, and Pollard [ 4]; (B) for nonnegative non-
lattice variables by the writer [ 1], using the methods of [4]; (C) for d-lattice
variables by Chung and Wolfowitz [3]; (D) for nonlattice variables such that

the distribution of some S, has an absolutely continuous part and m < cc by Chung

Received June 28, 1952. This paper was written under an Office of Naval Research
contract.
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and Pollard [ 2], using a purely analytical method; and (E) in the form given
here by Harris (unpublished). Harris’ proof does not essentially use the results
of the special cases (A), (B), (C), (D); the proof given here obtains Theorem 1
almost directly from the special cases (A) and (B) by way of an integral identi-
ty and an equation of Wald.

2. An integral identity. Let N, be the smallest n for which S, > 0, and write
z, = SNI; let N, be the smallest n> 0, for which Sy +, Sy, > 0, and write
z,=SN,+N, = Sn,,and so on. Continuing in this way, we obtain sequences N,
Ngy «++52y, 24, +++ of independent, positive, identically distributed chance vari-
ables such that

SN1+...+N =Zp ket 2.

Let V' (t), R(t) denote the expected number of integers n > 0 for which
T ==z etz <t and -t < S <0,
< <9, <

n 1
n <N, respectively. That ¥ (¢t) <  follows from a theorem of Stein [ 6], and
that R (¢) < o follows from £ (N, ) < o, which we show in the next section. The
integral identity is:
THEOREM 2." U(a, h) = fw [R(t—a) = R(t—a-h)]dV(t).
0

Proof. If ny is the number of integers n with

N +---+NK §n<N1+---+N

. and a < S <a+h,

K +1

we have
E(ng|Ty =t) =R(¢t-a) - R(¢t-a-1),

so that
Etne) = [[TIRG=a) = Rt —a =M1 dFy (2),

where F (t) = Prt Ty < t}. Summing over K =0, 1, 2, +++, and using the fact
that

V(e)= 22 Fy(e),
K =0
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we obtain the theorem.

3. Wald’s equation. The main purpose of this section is to note that £ (N, )
is finite, so that an equation of Wald [ 7, p. 142] holds.

THEOREM 3. £(N,) <w and mE(N,)=E(z,), so that m, E(z,) are both

finite or both infinite.

Proof. In showing £ (N, ) finite, we may suppose {x,} bounded above; for
defining x* = min {s,, #} yields an NT > N,; choosing } sufficiently large
makes E (xﬁ) >0, and £ (z’Vi< ) < o implies £ (N, )< w. Since

T

X S

N1 +...+NK
= . [

K Ny + oot Ny K

N o+eee+ Ny

we obtain, letting K —> o« and using the strong law of large numbers, first that
E(z,)=mE(N,) and next since if { x, } is bounded above and { z,,} is bounded,

that £ (N, ) is finite in this case and consequently in general.

4. The d-lattice case. For d-lattice variables, Theorem 2 yields

(3) U(nd,d) = Z r(s=n)v(s) = D2 r(s)v(s+n),
s =0 § =0

where r(s)=R(sd)=R([s-11d) andv(s)=V(sd)-V([s—-1]1d). Now

7]

2 rls)= lim R() = E(N,) <o

s =0

Theorem (A) asserts that

d
vin) — , as n—> o, —©;
E(Zl)
applying this to (1) yields
dE(Ny)
Ulndyd) — ——— , 0 asn—w, - ©,
E(z,)

and Wald’s equation yields Theorem 1 for d-lattice variables.

5. The nonlattice case. For nonlattice variables we have, rewriting Theorem
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2 with a change of variable,

U(a, h) =fM°°[R<t) “RG=m)] dV(t+a).

For any M > 0, write
Ula, h) =1 (M, a, h) +1,(M, a, k),
where

M
L= [ R - RG-DT @)

and

I =A [R(:) = R(e—h)] dV(t+a).

2

Theorem B applied to { z, } yields

V(t+h) = V(t)—

h
E(z,)

for all A > 6 as t — w, so that, since R (¢) is monotone,

M M~h
ll=/0. R(t)dV(t+a)—[) R(t)dV(t+a+h)

1 M
—_)E(zl).-/l‘:f—h R(t)de, O as a—> @, ~
for fixed M, h. We now show that, for fixed 4, 12 (M, a, h) — 0 as }} — o uni-

formly in a. We have

(o]

M+(n+1)h
> /M [R(¢) = R(t—h)) dV (s +a)

+nh

IN

> R Myn)[V(a+M+(n+1)h) - V(a+M+nh)l,
n=0

where

R (Myn) = sup [R(t) ~ R(t-1)]
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as t varies over the interval (M + nh, ¥ + (n + 1) k). Since, by Theorem (B),

V(b+h) =V(b)—>

as b—> w0,

h
E(z)

there is a constant ¢ ( for the given 4) such that
12 (M,a,h) < c z Rl(M,n) for all ¥ and a.
n =0
Now

2 R, (M,2n) <E(N) - R(M) and > R (M, 2n+1) < E(N) = R(M),

n=90 n=0
andR(M)—-)E(Nl)as M — . Thus
|U(a, h) - II(M, a, h}| < (M, k)

for all @, where (¥, 1) — 0 as ¥ — o for fixed 4. Then

Ula b hE(Ny) ( ( 1 M
(ay h ~ < €(m, k) I (M, a, h) - / R d
a E(21) < m + 1 a E(21) —h (l) t
1 M
+ E—(—;—l—) /;I~h Il(t) dt—hE(Nl) .
so that
hE(N,)
lim sup |U(a, h) - —
a — > E(Zl)
(M, b) [l R d - ey
< e(M, : - .
< € + E(zl) —h t) dt 1)
Letting ¥ — ¢ yields
RE(N,)
Ula, h) —> ——— as a — ©,
E(z,)

1

and Wald’s equation yields Theorem 1 for ¢ —> . Similarly,
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Ula, b)Y < €(M, k) + |1 (M, a, k)|
for all a, so that

lim sup U(a, h) < € (M, k)

a— -0

and U(a, h) — 0 as a—> — oo. This completes the proof.
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SOME THEOREMS ON THE SCHUR DERIVATIVE

L. CARLITZ

1. Introduction. Given the sequence {a, | and p # 0, Schur [ 5] defined the

derivative a’ by
m

m+1,
9

(1.1) ap = Nap = (Gpyy = ag)/p
higher derivatives are defined by means of

af,f) = ANa, = :f\(a,(,f_l)), ag,f) = Qg .
In particular if p is a prime, @ an integer and a,,; = @™, then by Fermat’s theorem

’ +1
ay, = (aPm _ apm)/perl

is integral. Schur proved that if p ¥ a, then also the derivatives

A2aP™, N3P, .. APT LGP
are all integral. Moreover if ¢/ =0 (mod p) then all the derivatives ATaP™ are
integral, while if af # 0 (mod p) then every number of APa”™ has the denomi-

nator p.

A. Brauer [ 1] gave another proof of Schur’s results. About the same time
Zorn { 6] proved these results by p-adic methods and indeed proved the follow-

ing stronger theorem. For x = 1 (mod p), define
Xp = (7 = 1)/pm*t,
and as above let A’X,, denote the r-th derivative of X,,; then

— 2-— L) r__.
(1.2) ATY, = (p-1) (p*=1)---(p"=1) AT (mod p™)
(r+1)!

provided r < p; for r < p — 2, the congruence (1.2) holds (mod p™*!). It is also

shown that Schur’s theorem is an easy consequence of Zorn’s results.

Received November 16, 1951.
Pacific J. Math. 3 (1953), 321-332
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In the present paper we shall give a simple elementary proof of Zorn’s con-

gruences, In addition we prove, for example, that for r < p,

pom_ Lom M., (' -1) i
(1.3) NaP" = = o, T (mod o™,
where
dPDp™ = 1 4 p™t g

for r < p~1, (1.3) holds (mod p™*1).

We next ($4) extend Schur’s and Zorn’s theorems to algebraic numbers. In
$5 we consider a generalization of another kind suggested by the arithmetic
function ( see for example [ 2, p.84-861)

(1.4) Fla,m) = X pu(d)al.

de=m

Finally ($6), we give some applications of Schur’s theorem to the Euler and
Bernoulli polynomials and numbers; the results are analogous to Kummer’s con-
gruences [ 3, Ch. 12]. In particular ArEk+ =« is integral (mod p) for p> 2,r < p,
r<m; also Ar(3k+pm/(k+ p™)) is integral (mod p) for p~14£k+1, r<p,
r<m. Here E; and B, denote the Euler and Bernoulli numbers in the notation of

Norlund [ 3].
2. Formulas for A"a,,. We shall require some preliminary results.

LEMMA 1. The following identity holds:

r=1 r
(2.1) [T (x=p= 22 (-1 [1] pili=0/2 yr-i,
i=0 i=0

where

f_l (r_l—l)"'( r"‘l'+l~1)
(22) (- D - AR NS
(p=1)(p2=1)--e (p*=1)

LEMMA 2. Put

k
fir = 2 DU PO,

i=0
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where (’;’) denotes a binomial coefficient. Then

0 (r<k)
1 ! )
(2.3) W’k,,=4—r—! H (p"-p") (r=Fk)
t =0

1
. pk(k"l)/2 U

rl

(r>k),

s

where U, is an integer.
’

Lemma 1 is will known. To prove L.emma 2, we note first that the binomial

coefficient (f) is a polynomial in x of degree r. Since by (2.1)
k k-1
Z (_l)i [k] pi(i“l)/Z pf(k—i) - H (pr__pi)’
13
i=0 i=0
the several parts of (2.3) follow without much difficulty.
LEMMA 3. For an arbitrary sequence { a,,},
r . s
(2.4) ANa, = p—rm—r(ru)/z Z (1) [I] pl(z—l)/z At -
i=0

This formula, which is given by Schur, is easily proved. In view of (2.1) it

can be put in the following symbolic form:

r=1
(2.5) Ar(lm - p—rm-r(r+1)/2 a™ n (a-—pl),
i =0

where it is understood that after expansion of the right member a* is to be re-

placed by a,.
Suppose now that p 4 a and put

(2.6) e B

so that ¢ is integral. Then by the binomial theorem we have
pr

p-Dpmts _ 5 (pis) p(mﬂ)iqfn (r>s),

i=0
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and by (2.4) this implies
prm+r(r+ 1)/2 Ara(p_l)Pm

r

p’ o
(=1)S [rs] p(r—s)(r—s—l)/z Z (pis) p(m+1)z q:n

™

s=0 1=0
p’ o r
= 3 Pl 3T (-1 L) (7)) plrme) e/
i1=0 §=0
_ Z p(m+1)i qz W,
1 =0

r
=i prm+r(r+1)/2 g:n I—I (Pi—l)

=1

pr 1 ) )
n Z _‘ p(m+1)L+r(r——1)/2 q;l Ur,i’

i=r+1

by (2.3); W,,; and U, ; have the same meaning as in Lemma 2. We thus get

| r . pT . .
(2.7) AalP~vlp == g 1 -+ 2 — plm+ 1) (i=r) g U
r! i=rer U°

i=1

We next set up a similar formula for A7q , where ¢, is defined by (2.6). In-
deed substitution in (2.1) gives

r

Z (=1)"s [;] p(r—s)(r—s-x)/z —(m+s+1) (a(P'l)P

m+s

-1)

prm+r(r+ 1)/2 Arq _
s =0

r r

p .
- Z (=1)-S [;] p(r—-s)(r—s-l)/2—(m+s+1) Z (pis) p(m+1)z qin

s =0 i=1

= pz p(m+1)(i—1) qfn i (~1)r—s [;] (pis) p(r—s)(r—s_l)/z -5
t1=1 s=0
1

r
- T prm+r(r+1)/2 q:n+1 I_I (Pi—l)

=1

" i ;Tp(m+1)(i-—1)+r(r—1)/2 q’in U

I =r+2

’

ryi?
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by a slight modification of Lemma 2; the coefficient ] ; is integral and is de-
y g r,i g

fined by

1 , r ) ‘ .
I’ Pr(r—x)/z Ui = 55 (=15 101 (p77%) ps(s—l)/z (r=s)

s=0

Hence

r

AT ____1__ T+1i ' i P
(2.8) Agp, = || (p'~1) + 2,
I =1

1
q ;
(r+1H)1 ™ i 5 !

(m+1) (i-r=1) i 7’
i1 P qm JT,L"

Using the same method we can also evaluate ATaP™. Tt follows from (2.6)

that

m

m+s m S"“].
(2.9) aP™ " =GP (14 pmtlg )% (es - = )

and thus substitution in (2.4) yields

r €r
prm+r(r+1)/2 ATaP™ = P Z (_l)r—s[;] p(r—s)(r—s—l)/2 Z (eL_S) p(m+1)iq:‘n
s$=0 i=0

€r r
_ apm Z p(m+1)i an Z (=1)"$ [;] (eis) p(r—-s)(r~s—1)/2.

i=0 S$=0

. esy - Sy . .
Since () is a polynomial in p® of degree i, the same reasoning as before ap-

plies and we get after a little manipulation

[T, (p' -
(2.10) I el A
. ! m r
r! (p-1)
€r 1
+ aP™ Z 7 p(m+1) (i-r) (Ifn Ur’:i,
i=r+1

. .
where U . is integral.
ryi

Comparison of (2.7) and (2.10) shows that (2.7) is included in (2.10). In-
deed it is easy to set up the following formula which includes both (2.7) and
(2.10):
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H;=1(Pi_1)

1 m
(211) AT = =GP gk
r. (P-—l)r

€r 1
kp™ — (m+1)G-r) i
e i P I Vriv
1=r+1
where V. ; = Vr(]? is integral and k> 1. The proof of (2.11) is exactly like the

proof of (2.10); the first step is to raise both members of (2.9) to the k-th power.

3. The main results. In order to make use of (2.7) and (2.10) it is evidently
necessary to examine p(m“)(i_’)/i!. We suppose i>r, r<p. Then in the first
place it is easily seen [ 6, p.462] that p*~7/i! is integral (mod p), and a simple
discussion shows that pi_’/i! is divisible by p unless (i) i = p, r=p ~ 1, or

(ii) i = p + 1, r = p. We now state:

TueEOREM 1. The derivative ATalP~VP™ s integral for 1 <r<p-1, while
AP P=UP™ pos the denominator p provided a?™! £ 1 (mod p?); if aP7l=1
(mod p?) then all Aa®P=1P™ e integral.

THEOREM 2. For 1 <r<p, m>0,

m 1 " .
(3.1) Va8 = =g TT ('-1) (mod p™);
Tr:

i=1

if r<p-1, the congruence is valid (mod p™*!).

THEOREM 3. The derivative ATaP™ is integral for 1 <r < p — 1, while APaP™
has the denominator p provided aP~!' # 1 (mod p?); if a®~' =1 (mod p?) then all
ATalP=UP™ gre integral.

THEOREM 4. For 1 <r<p, m >0,

;
m 1 m I_I"—‘ (Pl“l)
(3.2) A'aP™ = = aP" g, L (mod p™);
r: (p_l)r

if r < p -1, the congruence is valid (mod p™*h).

If we make use of (2.11) rather than (2.7) or (2.10) we get the following

more general result.

THEOREM4'. For1 <r<p, m>0
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; .
m 1 m I_I‘: (pl—l)
AT kP =— ofP q;nk’ —i(—l—-T (mod p™);
r. p..

if r <p -1, the congruence is valid (mod p™*!).

To apply (2.8) we first examine pi_rﬂ/i! fori>r+1, 7+ 1< p. We have:

THEOREM 5. The derivative Arqm is integral for 1 <r<p-2, while Ap—lqm
has the denominator p provided aP~!' £ 1 (mod p?); if @? ™' = 1 (mod p?) then all
A'q, are integral.

THEOREM 6. For 1<r<p-1,m>0,

1 r .
Ar = —_— r+1 ( 1_1) (mod m);
(3.3) = T 1:11 p p

if r < p — 2, the congruence is valid (mod p™*').

Theorem 3 is of course Schur’s theorem; Theorems 5 and 6 are due to Zorn.

The remaining theorems are presumably new.

4. Generalization for algebraic numbers. Let % be an algebraic number field

of degree n and let P denote a prime ideal of %; also let
(4.1) No=pli  p9lp, P4 ps

for simplicity we assume p> n. If « % is integral (mod ) and P4 «, then by

Fermat’s Theorem

(4.2) 1148, B=0  (mody).

It follows from (4.2) that

(4.3) aP P L 14 B, Bm =0  (mod pmetl),

il

while (4,3) implies

p’
(4.4) /=P 5 (0 B, (rzs)

1=0

Then, exactly as in § 2,
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r pr )
R D S C Dl ST Ll SR Y1

S=0 i =0
pr T

= 3 B X (GG plrmedmen/z,
1=0 s$=0

application of Lemma 2 now leads to

r

m L L 1 .
(4.3) A7 P/70PT = — D g7 TT(pF-1) & 37 = p7 " glio

=1 i=r+1

where w; ; is integral. Note that for e > 1 the right member of (4.5) need not be
integral. Accordingly we assume e = 1; the assumption p > n is then no longer
needed.

We now have:

THEOREM 7. Let Np = p/, v2 & p, b ¥ o; then AT aPf-0p™ o integral for
1 <r<p-1, while AP aPT=DP™ has the denominator p provided -t 4
(mod 1?); if a1 = 1 (mod %) then all AT «®f=1P™ 4re integral.

THEOREM 8. With the hypotheses of Theorem 7,

m 1 Bm \" [~ .
(4.6) AT o(P-10p E—( ) IT (»*-1) (mod p™)

rl pmtt i=1
for r < p; if r < p — 1 the congruence is valid (mod P™*!).

In order to extend Theorems 3 and 47 it is convenient to suppose that Pis a

prime ideal of the first degree. The following two theorems may be proved.

THEOREM 9. Let Np = p, 12 ¥ p, b4 ;3 then AT oP™ is integral for 1 <1<
p — 1, while AP oaP™ has the denominator p provided oP™' £ 1 (mod P2 );if&p_l =
1 (mod %) then all A7 W™ are integral.

THEOREM 10. With the hypotheses of Theorem 9,

(mod p™)

s om 1 [EBm\" Tha 6P -1
(4.7) AT P :"'.-‘-(

pm+1 (p_l)r

for r < p; if r < p — 1 the congruence is valid (mod p™*1).
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For brevity we omit the extension of Theorems 5 and 6 for algebraic numbers.

5. Another generalization. Changing slightly the notation (1.1) we put

- _ _ it1
(5.1) A== e
and
Aa = (AT 1g ) — A1, ) i+x.
P mpt ( P mpitl p mp‘)/p

Then clearly ApAq = Aqu. If @ and % are arbitrary integers then if follows from

a well-known theorem concerning (1.4) that

(5.2) Sya* = Ap +e- Ap aF (k= piteeepg®)

is integral. In view of Schur’s theorem we can state the following generalization.
THEOREM 11. Let(a,k) =1 and let r < the smallest prime dividing k; define

(5.3) 8Tk = 5, 57 tak,

Then 8)a, is integral for k> 1.

Indeed because of the commutativity of the operators A, we need only ob-
12
serve that (5.2) and (5.3) imply
- rok AT ATk
(3,4.) Bka Apl APS(Z

and the theorem follows immediately.

The restriction (a,k) = 1 can be removed by taking % sufficiently large as we

shall see below.
A slight extension of Theorem 11 is contained in:

THEOREM 12. Let

€s
s ?

(ek) =1, k=pleep
and let 1, <p;y j=1,++,5; then
- 1 s k
(5.5) Apl ---Apsa
is integral for all k> 1.

We remark that the function defined in (5.2) can also be expressed in the form
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(-1)°
5 o - 2 (4 dk
e A

where ;1 (d) is the Mébius function and

e(t1 e.+1
kl = pll e o o pss ;
similarly (5.3) becomes
(-1)°

BZak =

> uld) & tatk,
koo g | &
Formulas of a different kind can be obtained by applying (2.4)to(5.4)and (5.5);

for example, (2.5) suggests the following symbolic formula:

S S r=1
r ko g-r r(r+1)/2 €j ol
Ska =k I_I p]. . H a]. I_I (a] p].),
j=1 j=1 i=0
where after expansicn aj;l cee ais is to be replaced by o™,
f f
m = pll cee ps‘s .

A similar but slightly more complicated formula can be stated for (5.5). We shall

omit the generalization of Theorems 11 and 12 to algebraic numbers.

6. Applications. In the theorems of §2 it is assumed that p 4 a. However
Theorem 3, for example, is easily extended to the case p|a. We can state that
ATaP™ is integral for r < p — 1 and arbitrary a provided m > r. For let p| a; then,
in view of (2.4), it is only necessary to verify that

m4r-i 1 1
p +—2- L(L—I)Zrm+5-r(r+1)

for 0<i<r<p-1, r>m. This can be proved by induction with respect to m. In
the next place since Theorem 11 is a direct consequence of Theorem 3 we infer
that it also holds for all @ provided r < min (e, -+, e5) in the notation of
Theorem 11.

Now consider the number

k
(6']‘) Ck = Z Aaa ’
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where 4, denote integers (mod p) and n > 1 is arbitrary. Then

n
r r k+pm
(6.2) ACk+pm= > A Aa"P (k>0),
a=1
so that by the remark in the previous paragraph A’ Cpm is certainly integral
(mod p) provided r < p — 1 and r < m. In the second place we may apply the oper
ator 82 defined in (5.2) and (5.3) and get

n
hik .
(6.3) kChh = 22 40,0

a=1

we infer that §) C, is integral provided r < the smallest prime dividing % and
r<min (i, +++, is), the notation being that of (5.2). Indeed a somewhat more
general result can be obtained by applying Theorem 15, namely,

r Ts
(6.4) At e Ay G (h>0)

S

is integral provided r, < p,, r, <€, t =1, ,s.

¢
As an instance of (6.1) we take the well-known formula for the Euler poly-

nomial

| s .
(6.5) En(z) = 3 — 3 (=10 (§) (x4 )™

s$=0 2 1=0

(We use the notation of Norlund [ 4] for the Euler and Bernoulli polynomials.) If
p> 2 and x is integral (mod p) the preceding discussion applies. In particular

using (2.4) we have:
THEOREM 13. Let p > 2 and x be integral (mod p). Then
r . Iy
ArEk+pm (x) = p—-rm—r(r+1)/2 Z (=1) [:1 pl(l~1)/2 Ek+pm—i(x)
i=0
is integral (mod p) provided r < p, r < m.

For brevity we omit the generalizations corresponding to (6.3) and (6.4).

The special case

(6.6) Z u(d) E/He(x)EO (mod m)

de=m
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may be noted

As for the Bernoulli polynomials, it can be shown that if p 4 a and x is inte-
gral (mod p) then a formula of the type (6.1) holds for

ak+1

(6.7) By (%) = B, (%)

E+1

(See for example Nielsen [ 3, Ch.14 ].) Thus it follows that

r
Aer+Pm(x) - p—rm-—r(r+1)/2 Z (—-l)i [;] pi(i—l)/Z B %)

: k+p’"—i(
1=0

is integral for r < p, r < m. If now we assume p ~ 1 ' k& and take a a primitive root
(mod p) such that @ ! = 1 (mod p") we get:

THEOREM 14. Let p> 2 and x be integral (mod p); put H, (x) = B, (x)/k.
Thenifp-14Fk+1,

R
Aer.,.pm(x) - P-rm—r(r+l)/2 Z (—l)i [:] pi(i—l)/2 Hk+pm-‘i(x)
1=0

is integral for r<p, r<m.

Finally corresponding to (6.6) we state

Z uld) Bk+e(x)50 (mod m),

de=m

for B, (x) as defined in (6.7).
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GENERALIZED CONVEXITY AND SURFACES
OF NEGATIVE CURVATURE

PauL A, CLEMENT

Introduction. In a study [ 4] of surfaces whose Gaussian, or total, curvature
K satisfies the relation K < 0, a number of functions having geometrical sig-
nificance have been shown to be convex. In the present paper, a study of sur-
faces whose Gaussian curvature satisfies K < K;, where K, is a negative con-
stant, leads to the determination of a class of functions which are subfunctions
(defined in §$1.1) of a two-parameter family of functions determined by the
bound K. This is a natural generalization because the convexity property is
equivalent to the subfunction property with respect to the particular two-para-

meter family (nonvertical straight lines) determined by the bound K, = 0.

A main objective will be to exhibit functions which have a geometrical
significance and also have the subfunction property for surfaces with K < K.
This property then implies certain inequality relations for functions associated

with certain geometrical configurations on such surfaces.

I. SuBFUNCTIONS

1.1. Definitions. A real-valued function g(x) of a single real variable x
defined on an open interval (a, b), with — < a <x < b < + o, is said to be

a convex function of x provided g (x) satisfies the inequality
(1.11) gltv, + (1=t)x, ] <tg(x) + (1 =2t)g(xy)

for all x,, x, in (a, b) and for all ¢ on the range 0 < ¢ < 1. If g(x) is of class
C?, it is convex if and only if g*’(x) > O throughout the interval.

Geometrically, (1.11) indicates that no part of the graph of the curve y=g(x)

lies above the chord joining two points upon it within the interval (a, b).

A generalization of the foregoing characteristic geometric property of convex

Received July 6, 1952, This paper is largely a condensation of a June, 1949, doctoral
dissertation, University of California, Los Angeles; I gratefully acknowledge the gui-
dance of Professor Beckenbach.

Pacific J. Math. 3 (1953), 333-368
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functions leads to the theory of subfunctions [3]. Let {A,g(x)} be a two-
parameter family of continuous functions such that for all x,, x, in (a, ) and
apfBo (%) of the family such that
hoopo (%) =7y, (i=1,2). Then a function g(x) is said to be a subfunction of

every y,, y, there exists a unique member A

the given family on (a, b) provided* we have
(1.12) glex, + (1 —2)x,] < kg g Lix; + (1 =12)x,]
for all x,, x, in (a, b) and for all ¢ on the range 0 < ¢ < 1, and where
hayp, (%) =g (x;) (i=1,2).

Geometrically, (1.12) indicates that in the subinterval (x,, x,) no part of
the graph of the curve y = g(x) lies above the member of the parameter family
joining the points [x,, g(x,)] and [x,, g(x,)]. We note that if g(x) is convex,

it is a subfunction of the two-parameter family of nonvertical straight lines.

1.2. A fundamental theorem. Necessary and sufficient conditions that a
function g(x) be a subfunction of a certain type of two-parameter family have
been obtained by Shniad [ 10]. The following lemma and theorem are due to him;
proofs are included because of the fundamental use made of the theorem in

subsequent developments.

Lemma 1.1. If ¢(x) is a positive continuous function of x, and Y (x) is a
strictly increasing continuous function of x, on a < x < b, then the condition
that g(x) be a subfunction of the family A¢ + By, where A and B are para-

meters of the family, is equivalent to the condition that g/¢ be a convex func-

tion of .

Proof. The hypotheses on ¢ and i) ensure that g/¢ is a continuous function
of ¢y, To prove the existence of a unique member of the family through any two
points (x;,y;) (i=1,2), with the x; distinct and in the interval, it suffices
to note that

qS(xl) ¢(x1)l//(x1)
= ¢(x1)¢(x2)[5//(x2)—1/;(x1)] £ 0.
¢(x2) ¢(x2)l//(x2)

Let x, and x, satisfy @ < x; < x, < b, and let

1A more general definition of the subfunction property is given in [ 5]; in [3] it is
shown that a function satisfying (1.12) necessarily is continuous on (a, b).
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halﬁl(x)=A1¢(x)+Bl¢(x)x//(x)ﬂ
with
halﬁl(x,-)=g(xi) (i=1,2).
Then the condition
halﬁl(x)Zg(x) for x; < x < x,

is equivalent to the condition

g(x)
P(x)

Ay + Biy(x) >

for x; < x < x,,

or that g (x)/¢(x) be a convex function of i) on the range )(a+) < ¢y < ¥(b-).

THEOREM 1.2.2 Let P(x), Y(x), and g(x) be functions having the fol-
lowing properties on an interval a < x < b:

a) the functions ¢, ¥, and g have continuous second derivatives,

b) the inequalities gﬁ(x) > 0and y'(x) > 0 hold, and

c) each of the functions ¢(x) and ¢ (x)y(x) is a solution of the differential
equation

R’ + Ph"+ Qh = 0,

where P and Q are continuous on the interval.

Then a necessary and sufficient condition that g(x) be a subfunction of the
family A + By on the given interval is that
g7+ Pg"+ g0

on the interval.

Proof. From Lemma 1.1 it follows that g is a subfunction of the family if
and only if g/¢ is a convex function of /. Since g/¢ has a continuous second

derivative with respect to i, the latter condition is equivalent to

2The conclusion of this theorem is obtained in a more general setting in [9]. How-
ever, the proof is immediate for the theorem as stated here, and this form is sufficient
for our purposes.
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e L e M R e D R

From the Wronskian relation we easily verify that ¢ and ¢ ¢ are linearly inde-
pendent solutions of the differential equation. Then the theorem follows from
uniqueness properties of linearly independent solutions of this type of dif-

ferential equation.
1.3. Sub-K, functions. The differential equation we are to consider is
R+ Koh = 0,

where K, is a negative constant, and the interval of definition is 0 <x < b < cc.

The two-parameter family of solutions of the equation is given by

(1.31) thep(x)}=1{a cosh (\/——Tox)+[3sinh (\/-——Kox)},

where ¢ and 3 are the parameters. A property of this family is given in the

following lemma; we omit the proof.

LEmMA 1.3. If A: (xy, y,) and B: (x,, y,) are two points with x, # x,,
then there is one .and only one curve of the family {hog(x)} passing through A
and B. Thus, if y, > 0 and y, > 0, the curve hal,gl(x) passing through A and
B satisfies hallgl(x) >0 forx, <x < x,.

DEFINITION. A function g(x) will be said to be a sub-K, function of x
if it is a subfunction of the family tA_,(x)} of (1.31) on the interval 0 < x <
b <. Moreover, g(x) will be said to be a K,-function if the sign of equality
of its subfunction relation (1.12) holds throughout the interval; and it will be
a strictly sub-K, function if the strict inequality holds throughout for 0 < ¢ <1,

It is convenient to introduce a second-order differential operator © defined

by

D? + K,,

fod
O

where K, is a negative constant; we may write G, to indicate the variable for

differentiation.
REMARK. With the choices

#(x) = cosh (yV=Kox) and ¢ (x) = tanh (v=Kyx),
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the family {0+ By} coincides with the family (1.31), and these functions
¢ and ¢ satisfy the hypotheses of Theorem 1.2. Hence a function g(x) of class
C? is a sub-K, function (K,-function) if and only if Cg(x) > 0 (Gg(x)=0)
on the interval.

Certain elementary properties of sub-K, functions are given in the following
theorems. The proofs are omitted as they merely involve applying the foregoing

remark to appropriate members of the family { haB(x) i

THEOREM 1.4. Any linear combination of sub-K, functions with nonnegative

coefficients is a sub-K, function.

THEOREM 1.5. Let f(x) be a nonnegative sub-K, function, and let k be
a constant > 1. Then [f(x)1* is a sub-K, function; in fact, [f(x)1* is a
sub-kK, function.

THEOREM 1.6. Let f(x) (i=1,2,+++,n) be convex functions of x which
are nonnegative and monotonic nondecreasing and at least one of which is a

sub-Ky function. Then the product function fify =1, is a sub-Ky function.

[I. SURFACES OF NEGATIVE CURVATURE

2.1. Geodesic parameters. Let an analytic surface S be represented by
geodesic parameters [7, p. 174] (u, v), so that

(2.11) ds? = du? + p?*(u, v)dv? (p>0),
and
(2.12) da = p(u, v)du dv,

where the curves v = constant are the geodesics, and the curves u = constant
are the geodesic parallels. The surface S is said to be given in geodesic repre-

sentation.

Singular points of the geodesic family are points where pu = 0; other points,

where y > 0, are regular points.

The Gaussian curvature K of S exists at all regular points. If S is given in
geodesic representation, the Gaussian curvature is given [7, p.181] by the
formula
1 92
(2.13) K="

Foou?
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DEFINITION. An analytic surface S will be said to be a sub-K, surface if
its Gaussian curvature is bounded from above by K,, a negative constant, at
all regular points of S. Moreover, S will be said to be a K,-surface if its
Gaussian curvature everywhere is Kq. If S is a sub-K surface which is not a

K,-surface, it will be said to be a strictly sub-K, surface.

2.2. Geodesic parallels. We have the following lemma,

LEmMA 2.1. If an analytic surface S is given in geodesic representation,
then a necessary and sufficient condition that S be a sub-K, surface is that the
function p(u, vo) be a sub-K, function of u for each line-segment u, <u < u,,

v=uvq in the (u, v)=domain of definition.

Proof. The result follows directly from (2.13) and Lemma 1.3 by an argu-
ment analogous to that in [4, p.286]. The proof reveals that p is a strictly
sub-Ky function of u if and only if S is a strictly sub-K; surface, and that y is

a Ky-function of u if S is a K -surface.

Let S be a sub-K, surface given in geodesic representation. Then we have

the following results.

THEOREM 2.2. Let the arcs C(u) (u; < u < u,), of length l(u), be arcs
of geodesic parallels between geodesics v=v, and v=v, (v, <v,) on S.
Then the length 1(u) is a sub-K, function of u (that is, of the geodesic length
u—uy); L(u)is a strictly sub-K, function if S is a strictly sub-K, surface, and

I{u) is a Ky-function if S is a Ky-surface.

Proof. A proof may be patterned on that of the related theorem in [ 4, p. 2871,
in which we substitute the appropriate member (which is of class C?) of the

family (1.31) in a subfunction inequality in place of the convexity inequality.

THEOREM 2.3. Let the arcs C(u) (uy - W < u <uy +W), of length I(u),
be arcs of geodesic parallels between geodesics v=v, and v=v, (v, <v,) on
S, and let a(w) denote the area of the part of S enclosed by v =v,, C(u, +w),
v=uvy Clu;-w) (0 <w <W). Then a(w) is a sub-K, function of w; a(w)
is a strictly sub-K,, function if S is a strictly sub-K, surface, and is a Ky-func-

tion of w if S is a Ky-surface.

Proof. The proof is similar to that in [4, p.288] when we consider sub-

function properties instead of convexity properties.

2.3. Geodesic polar coordinates. Let the analytic surface S be represented



GENERALIZED CONVEXITY AND SURFACES OF NEGATIVE CURVATURE 339

in geodesic polar coordinates [ 7, p.181)] (u, »), that is, coordinates for which

(2.11), (2.12), and

dp
(2.31) p(0, ») =0, [——] =1
du u=0

are satisfied. The curve u = uy is a geodesic circle with center at the pole P
of the representation and geodesic radius u,.
We shall write r, 6 for u, v, respectively.

Hereafter we indicate functions determined by, or calculated for, a K-

surface by a subscript zero. Some such functions can be determined explicitly.

LEMMA 2.4. Let S, be a Ky-surface, and let 1,(r) and ay(r) denote the
circumference and area, respectively, of the geodesic circle on S, with fixed

center P and geodesic radius r. Then

2
(2.32) lo(r) = ——— sinh (y"Kor)
V=K
and
2w N
(2.33) ag (r) = [cosh (v/=Kyr)—11.
—f
Moreover,
lo () > 2mr (r>0 on S),
and
ag(r) > wr? (r>0 on S).

Proof. Since Gyp =0, we find that the function p (r) of the family (1.31)
satisfying (2.31) is
1
VK,

sinh (\/~Kyr).

polr) =

When we evaluate (2.11) and (2.12) for a geodesic circle using this expression

for p, we obtain the formulas of the lemma. The inequalities are easily es-

tablished; cf. [ 4, p.291-2921.
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We remark that the functions [(r) and aq(r) will occur in formulas which
refer to a sub-K, surface S; in such cases, (2.32) and (2.33 ) provide definitions

of these functions on S.

IIl. SUBFUNCTIONS FOR GEODESIC CIRCLES

3.1. Definition. Some functions of geometrical significance involving the
geodesic radius have certain properties in common. We collect these properties
in the following definition.

ConpiTioN C. For a given sub-K, surface S and for a given pole P of
geodesic polar coordinates on S, a function ¢ (r) of the geodesic radius r satis-
fies Condition C provided: ¢(0)=0; for r > 0 on S, ¢(r) is a continuous,
nondecreasing sub-K, function of r; ¢(r) = 0 if S is a Ky-surface, but otherwise

¢ (r) is a strictly sub-K; function.

If we let K4 =0, the K,-surface becomes a developable surface, and the
““sub-K, function of r’’ property becomes the usual ‘‘convex function of r’’
property. Thus our Condition C specializes to Condition A of [ 4, p.289] when
Ky =0,

It follows from the theorems of § 1.3 that sums and products of functions
which satisfy Condition C also satisfy Condition C.

3.2. The length function. Hereafter we assume that u{r, 0) is of class C?,
which ensures the existence of the derivatives we write. We now consider a

geodesic circle C; on S with fixed center P and geodesic radius r.

LeEmMMA 3.1. Let S be an analytic sub-K, surface, and let [(r) denote the
length of the circumference of C,. Then L(r) satisfies the differential relation

(3.21) OL(r)=1"(r)+ Kyl(r) > 0 (r>0 on S).

Proof. The result is immediate since G, u(r, 8) > 0 for r > 0 on S. We
note that equality holds in (3.21) if and only if S is a K, -surface, that is, in
our notation, if and only if we have Gl (r) = 0, where {y(r) is given by (2.32).

LEMMA 3.2. Let S be an analytic sub-K, surface, and let a(r) denote the
area of Cr. Then a(r) satisfies the differential relation

(3.22) a”(r)+Kpa(r)y=2m=1°(r) + Kya(r) =27 > 0 (r>0 on S).

Proof. By differentiating the area function
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alr) = /;' A” w(ps 0)dp do,

we get

21 dp
a’(r) = / —dg = 1'(r).
0 0

r

Since a(0) =0, and {(0) = 27 by (2.31), we have equality in (3.22) for r = 0.

The derivative of the function
1(r)+ Kga(r)-27

is ©l(r), which is nonnegative by Lemma 3.1; hence the left member of (3.22)
is monotonic nondecreasing, and (3.22) holds. It is readily seen that equality
holds in (3.22) if and only if S is a Ky-surface.

TREOREM 3.3. Let S be an analytic sub-K, surface, and let [(r) denote
the length of the circumference of C;. Then the function

¢ (r) = 1(r) = 1 (r) (r>0 on S),
satisfies Condition C.

Proof. The functions p(r, 6) and p (r, 6) associated with the surfaces S
and S,, respectively, both satisfy (2.31), and are such that

2
O Ku=0 (r>0 on S),
ar?
*u

0+K0p0=0 (r>0 on S),
ar?

where K < K,. By Sturm’s oscillation theorems [8, Chap. X1, it follows that

ulr, 0) = p(r, 6) > 0 (r>0 on S),

and

o 9
—#——-920 (r>0 on S).
or ar -
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Hence we find that <,'b1(0) =0, ¢l(r) =0 on S if and only if S is a K,-surface,

and

¢»'(r)El'(r)-—l'(r)=/2ﬂ(a—#—-aﬁ)d6>0 (r>0 on S).
t 0 0 ar or .
Then calculation shows that
6¢ (r) = 6I(r),
whence
6¢ (r) > 0 (r>00nS5),

by Lemma 3.1. Thus, by Theorem 1.2, ¢l(r) satisfies Condition C.

COROLLARY 3.4. If S is an analytic sub-K, surface, then [(r) is a mono-

tonic increasing sub-K, function of r and satisfies the inequality
L(r) > 1o(r) (r>0 on S);
1(r) is a strictly sub-K function if and only if S is not a K y-surface.
Proof. The inequality follows from Theorem 3.3 and the identity

1(r) = Lo(r) + ¢,(r) (r>0o0nS).

REMARK. The function ¢ (r) may be modified to form a new function in
the following way: replace the function [,(r) (Lemma 2.4) in @, (r) by its
Maclaurin series expansion from which has been deleted any finite or infinite
number of terms. The new function so obtained is a nonnegative, monotonic
increasing, sub-K, function of r. In like manner, similar functions may be formed
from subsequent ¢ functions which involve subtractive functions [,(r) and

ao(r). We omit proofs.

3.3. 'The area function. On a surface where K < K, the area function a (r)

for a geodesic circle C, has properties similar to those given for {(r).

THEOREM 3.5. Let S be an analytic sub-K, surface, and let a(r) denote
the area of C,. Then the function

¢,(r) = a(r) ~ ao(r) (r>00nS)
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satisfies Condition C.
Proof. Verification is immediate by use of Lemma 3.2 and Theorem 1.2.

COROLLARY 3.6. If S is an analytic sub-K, surface, then a(r) is a mono-

tonic increasing sub-K, function of r and satisfies the inequality
a(r) > ag(r) (r>00nS);
a(r) is a strictly sub-K function if and only if S is not a Ky-surface.
Proof. The inequality follows from Theorem 3.5 and the identity
a(r) = ao(r) + ¢,(r) (r>0o0nS).

We shall find additional theorems for ihe functions a(r) and ¢, (r) showing
certain subfunction properties of these functions when an additional assumption
is made for the surface S. In the sequel we use the following lemma, which
shows that certain conditions which clearly imply the sub-K, function property

for a function also imply this property for its square root.

LEMMA 3.7. If g(r) is a nonnegative function for which g””’(r) exists in
¢
the interval o < r < f, and g(r) satisfies

(3.31) h(c) = 2g () g () = [g’(c)]1? + 4Ko[g(c)1? > 0
and
g7’ (r) + 4Kog’(r) > 0 (a <r<B),

then [g(r)1'/? is a sub-K, function in & < r < B and is a strictly sub-K, func-
§

tion there provided

(3.32) g7 (r) + 4Kyg?(r) > 0 (ax<r< B

Proof. If we let f(r) = [g(r)]1*/2, then at points where f (r) # 0 we have

1
Cf (r) = 1 (g(PT32h(r).

Moreover,

(3.33) h'(r) = 2g(g"”" + 4Kog"),
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so that from the hypotheses we get
h(a) > 0, A°(r) >0 (x <r< B,

whence A(r) > 0. Thus &f(r) > 0 at points where f(r) # 0. And, since the non-
negative function f(r) satisfies the subfunction inequality (1.12) for points
where f(r)=0, it follows that the continuous function f(r) is a sub-K, function
for o < r < B.

With (3.31) and (3.32) the nonnegative sub-K, (and hence convex) function
g (r) can vanish at no more than one point of & < r < 8, whence, by (3.33),
we have A(r) > 0 (¢t < r ¢ B). It follows that we have &f(r) > 0 except for
at most one point of & < r < 3, so that f(r) is a strictly sub-K, function for
o < r < B. This completes the proof of the lemma.

An additional assumption on the surface S causes certain functions im-
mediately to satisfy (3.33) for r > 0 on S. Thus, if S satisfies K < 4K, for
its Gaussian curvature, then a modification of the proof of Theorem 3.3 indicates

that we have
a”(r)+ 4Koa’(r)=1""(r) + 4Kl (r) > O (r>0onS),

with equality holding if and only if S is a 4K;-surface. We now determine some
functions which have certain subfunction properties in common; these properties

are collected in:

ConDITION D. For a given sub-4K, surface S and for a given pole P of
the geodesic polar coordinates on S, a function 1 (r) of the geodesic radius
r satisfies Condition D provided: ¢/ (0)=0; forr > O on S, ¢ (r) is a continuous
monotonic nondecreasing sub-K, function of r; and ¥ (r) is a strictly sub-Kj

function except possibly when S is a 4K -surface.

THEOREM 3.8. Let S be an analytic sub-4K, surface, and let a(r) denote

the area of the geodesic circle C;. Then

Y (1) = [a(r)]'/?

and

$,(r) = [g,(1)]1?% = La(r) - ag(r)]'/?

satisfy Condition D, and  (r) is a Ko-function if S is a 4K -surface.
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Proof. We have
a’(r)=10(r), a’(r)=1°(r), a”(r)=1"(r);
hence, beside a(0)=0, we have
a'(O):O, a”'(T)Z 0 (rZ 0 on S),
with
a”(r)+4Kya’(r) > 0

for r > 0 on S unless K = 4Ky. Then for r > 0 on S, a(r) satisfies the hypo-
theses on g(r) of Lemma 3.7, so that l//l(r) satisfies Condition D for r > 0 on
S, and is a strictly sub-K, function if S is not a 4K-surface. If S is a 4K-

surface, then

/2 L/
la(r)1¥/? = { { cosh (\/—llnf(or)—l}]1 s( 2 ) ’ sinh (v/-Kgr),

- 0 —Ho

and thus it is a K y-function.

The proof for ¢, (r) is similar in method and is omitted.

We can find other functions which satisfy Condition D. Let ,(r) and a(r)
denote the length of circumference and area, respectively, of the geodesic
circle C, on a 4Ksurface. Formulas for /,(r) and a,(r) can be written (see
Lemma 2.4), and these expressions serve to define [,(r) and a,(r) for a sur-
face S having arbitrary curvature. If S is a sub-4K, surface, then, by methods

analogous to those of Lemma 3.1 and Lemma 3.2, we find the relations
1’(r) > 27 = 4Koa(r) (r>0o0nS),
and

17”(r)+4Kyl(r) > 0 (r>0 onS),

with the equality sign holding for r > 0 on S if and only if S is a 4K -surface;
that is,

(3.34) 1[(r)=2n~4Kya,(r),

and
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I (r) + 4Kyl (r) = 0.

THEOREM 3.9. Let S be an analytic sub-4K, surface, and let l(r) and
a(r) denote the circumference and area function, respectively, of C, on S. Then

the functions
g//s(r) =1(r) - ll(r),
Y (r) =a(r) —a (r),

and

g (r) = [a(r) = a ()12
satisfy Condition D,

Proof. The method is that used in earlier theorems wherein now we apply

the four relations which immediately precede Theorem 3.9.

REMARK. It was indicated earlier that our Condition C reduces to Condition
A of [4, p.289] if K, = 0. Now if K, = 0, the assumption that S satisfies K < 4K,
imposes no new requirement upon the surface. In fact, our Condition D becomes
Condition A if K, = 0 and if the function ¢ (r) is identically zero when the sur-

face is developable.

The role played by the condition K < 4K, when K, # 0 for ‘‘square root”
functions is indicated in the following theorem.

THEOREM 3.10. Let S be an analytic sub-K, surface, and let a(r) denote
the area of C; on S. Then in order that the function

p,(r) = la(r)]'/2

be a sub-K, function of r for every possible pole P, it is necessary and suf-
ficient that S be a sub-4K, surface.

Proof. The sufficiency has been established in Theorem 3.8.
Now let P; be a point of S where K, > 4K, and let P; be the pole of a

geodesic polar coordinate system. Since S is analytic, there exists a neighbor-
hood of P; in which K > 4K,, and hence a value r; > 0 such that the geodesic
circle of radius r, lies entirely within this neighborhood. In this coordinate

system we have
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0%
— + 4Kqu < 0 (0<r<r ons),
ar?

and then it easily follows that
1”(r) + 4Kyl(r) < 0 (0<r<r onS).

By calculation we get that

1
Sl/fl(r) = Za's/z[Qal'- 1?2+ 4K0a2] =—a%2h(s),

o

where h(r) is the bracketed expression. Then we have that 4 (0) =0, and
h*(r)=2a(1" + 4K4l) < 0O (0 <r<ronS);

hence A(r) < 0for 0 < r < r,, and thus also
Gy, (r) <0 (0<r<r;onS).

Then by Theorem 1.2, ¢, (r), when evaluated in a coordinate system with such

a pole, cannot be a sub-K, function.

IV. THE ISOPERIMETRIC INEQUALITY AND RELATED FUNCTIONS

4.1. The isoperimetric inequality. Let L and A4 denote the perimeter and
area, respectively, of a simply connected region bounded by an analytic curve

on a surface of nonpositive curvature. The isoperimetric inequality

(4.11) O=——-4>0

holds for such a region. In fact, the following theorem [6, p.670-672] has

been established:

For an analytic surface S, a necessary and sufficient condition that (4.11)
hold for all simply connected regions bounded by analytic curves on S is that
K < 0onS. Further, if K < 0 but K # 0 on S, then the strict sign of inequality
holds in (4.11); while if K = 0 on S, then the sign of equality holds in (4.11)

only for geodesic circles on S.



348 PAUL A. CLEMENT

We shall study the function 6 of (4.11) and some modifications of it for

sub-K, function properties when S is assumed to be a sub-K, surface and the
region is that determined by a geodesic circle. A well-known generalization
of the function @ for geodesic circles on surfaces of constant negative curva-

ture K, is the function

12(r)  Koa?(r)
(4.12) ¢3(r)s ype + ype - al(r),

which we shall call the isoperimetric function.

THEOREM 4.1. Let S be an analytic sub-K, surface, and let 1(r) denote
the length of the circumference, and a(r) the area, of the geodesic circle C; on

S. Then the isoperimetric function ¢,(r) satisfies Condition C.

Proof. Squaring the inequality (3.22) and using (3.21), we obtain
4nG¢ (r) > [17? + Kol? - 4n*) = h(r),

where A (r) is the function in brackets. Then we see that A(0) =0, and that
h(r) > 0 for r > 0 by (3.21); hence ©¢ (r) > 0 for r > 0 on S, and thus
¢,(r) is a sub-K, function by Theorem 1.2. The other requirements of Condition
C are easily found to be satisfied by ¢_(r).

COROLLARY 4.2. If S is an analytic sub-K, surface, and 1(r) and a(r)

as in the theorem, then the function

1%(r)

w

0,(r) = - a(r)

is a continuous monotonic nondecreasing sub-K, function of r.

Proof. It follows from the proof of Lemma 3.2 that a(r) is a continuous
monotonic nondecreasing sub-K, function of r, and then that a?(r) also has
these properties by Theorem 1.5. Then, using the positive coefficient —K,/4m,
we may apply Theorem 1.4 and get

so that 0,(r) has the properties stated in Corollary 4.2.
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COROLLARY 4.3. If S is an analytic sub-K, surface, then

12(r) 12(r)  Koa®(r)
~alr) > +
4n 7 7

(4.13) —a(r)>0 (r>00nS),

where the sign of equality holds for r > 0 on S if and only if S is a Ky-surface.

Proof. This corollary is an immediate consequence of Theorem 4.1 and
Corollary 4.2.

4.2. Modifications of the isoperimetric function. We shall consider modi-
fications of the isoperimetric function, ¢,(r), which are produced by adding
certain functions to it and/or by replacing I(r) by ly,(7) or 2mr and a(r) by
aq(r) or zero. For example, the function 6, (r) may be considered a modification

of ¢,(r) formed by replacing the a?(r) function in ¢,(r) by zero.

THEOREM 4.4. Let S be an analytic sub-K, surface, and let [(r), [,(r),
and a(r), ay(r) denote length and area functions associated with the geodesic
circle Cr. Then the functions

L(r)I(r)  Kyal(r)
4 (1) = + = a(r)

4 %4

and

lo(r)l(r) Koag(r)a(r) ag(r) alr)

= + - -
¢5(r) 4n 4 2 2

satisfy Condition C.
Proof. We establish the result that
(4.21) lol” = 11§ = 1yl + Koagl = 201 >0 (r>0o0nS).

The function on the left is zero when r = 0, and its derivative is the nonnegative
(by Lemma 3.1) function /o(r) S{(r); hence (4.21) holds.

Now <;54(0)= 0, and ¢;(T) > 0 by (4.21) and Theorem 3.3; thus ¢4(r) is

monotonic nondecreasing. The calculation for © ¢, (r) may be arranged so that
4‘77 6¢4(r) = [1061— Kol(l s lo)— ZKan(l'— lo’)

—4nKo(a—ag) + Ko(13 + Kya2 — 4mag)].
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Then we have 6¢4(r) > 0 for r > 0 on S, since each parenthesis above is non-
negative by previous results ~the last one, in particular, being identically zero
according to Corollary 4.3. Thus ¢ (r) is a sub-K, function by Theorem 1.2.
Finally, ¢,(r) satisfies Condition C since the signs of equality hold in the
relations above if and only if S is a K,-surface, and obviously ¢,(r) =0 if S

is a K-surface.

For ¢.(r), we find that ¢.(0) =0 and that ¢ (r) > 0 by Lemma 3.2. We

may arrange the calculation so that

4n6¢5(r) LIoOl + (1517 + Kologl = 271§ - 27Kyay)]

1\

181"+ Kylyl — 4n? = h(r),

where h(r) is the function after the inequality sign. Clearly £(0)= 0, and we
find that

i

he(r) = ILGL > 0.

Hence, h(r) > 0 for r > 0 on S, and then Theorem 1.2 ensures that qu(r) is a

sub-K, function. The other conditions to complete the proof are easily verified.

Theorem 4.4 then admits a corollary which is analogous to the isoperimetric
inequality for the functions ¢,(r) and ¢ (r); we omit its statement, but we re-
mark that the inequality for ¢ (r) is sharper than the isoperimetric inequality

(4.13) in that it presents a better estimate (greater lower bound) for [(r).

The next theorem presents another function determined by the modification

process.

THEOREM 4.5. For a surface and functions as in Theorem 4.4, the function

ri(r) rig(r)

—a(r) -

qﬁé(r‘)z + aO(r)Eé[l(r)—lo(r)]—[a(r)—ag(r)]

satisfies Condition C.

We omit the computations and also the corollary stating the inequality satis-

fied by ¢ (r).

It may be noted that with ¢ (r) satisfying Condition C it readily follows that
¢4(r') does. For if the function
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1
— (l0—277r) (l‘—lo),
4

which satisfies Condition C (in part by Theorem 1.6), is added to ¢ _(r), we
obtain ¢,(r), which then satisfies Condition C (in part by Theorem 1.4).

Theorem 4.5 suggests a consideration of the substitution of [(r)~-l,(r)
and a(r) - ay(r) for the functions /(r) and a(r). When this substitution is
made in the isoperimetric function, we find that the new function does not satis-
fy our conditions. Nevertheless, in the next theorem we have a result of this

procedure.

THEOREM 4.6. For a surface and functions as in Theorem 4.4, the function
1 K
B, (r) = — [1(r) = 1,(r)]* + =2 [a(r) - ap(r)]?
4n 4

satisfies Condition C.

Proof. We find that ¢ (0) =0 and that ¢7(r) > 0 by Lemma 3.2 and Theo-

rem 3.3; thus ¢, (r) is monotonic nondecreasing. By computation we find that
476¢ (r) > 12(17=15) (" + Koa - 27) + Ko (1 - I0)*+ K2(a=-agy)?] = k(r),

where h(r) is the bracketed expression. We see that A(0) =0, and that its

derivative satisfies
Rr) > 2l =1 (1" + Kga = 27) + Ko (1 = 1) (17 = 1§) + K¢ (a —ag) (1= 1y)]

= 20"+ K)(I’+Kga~2m) >0

by Lemmas 3.1 and 3.2. Hence A(r) > O for r > 0 on S, with equality holding
if and only if S is a K,-surface. It follows that ¢ (r) satisfies Condition C

since obviously ¢, (r) = 0if S is a Ko-surface.

Theorem 4.6 admits refinements of the inequalities which appear in Corol-

lary 4.3 and Corollary 3.4.

COROLLARY 4.7. Let an analytic sub-K, surface S be referred to a geo-
desic polar coordinate system with pole P. Then, for geodesic circles, the
isoperimetric function ¢,(r) and the functions ¢.(r) and ¢,(r) satisfy the

inequalities
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(4.22) $3(r) > 2¢,(r) > 0
and
¢,(r) > ¢,(r) >0,

where the signs of equality hold for r > 0 on S if and only if S is a Ky-surface,

in which case dall functions are identically zero.

Proof. It is easily seen that
¢,(r) = ¢,(r) = 2¢,(r),
and the corollary then follows from Theorems 4.6 and 4.3.

COROLLARY 4.8. Let an analytic sub-K, surface S be referred to a geo-
desic polar coordinate system with pole P. Then the length of the circumference

of a geodesic circle of radius r satisfies the inequality

(4.23) 1(r) > 1,(r) + V=Ko la(r)=ay(r)],

where the sign of equality holds for r > 0 on S if and only if S is a K¢-surface.

Proof. Since Ko < 0, 47, (r) has real factors. The factor qﬁs(r), where
b (r)=1-1, +vV=Ky(a~ay), satisfies ¢4(r) > 0 by Corollaries 3.4 and
3.6; hence so also does the other factor by Corollary 4.7. This other factor
yields (4.23).

Less precise relations may be obtained from the isoperimetric function by

using the theorems of § 1.3.

THEOREM 4.9. Let S be an analytic sub-K, surface with length and area
functions relating to geodesic circles on S as previously defined. Then the

functions

1
@, (r) = s [22(r) = 12(r)] ~ [a(r) = ao(r)],

Lo, 2 Ko 2 2
$o(r) = 4—”-[l (r) = 1)) + oy La%(r) - ao(r)],

and
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a(r; lg(r) = [%r) - 4ma(r) cosh(

“K,
¢, (r) = 13(r) - Y 20’)

ay(r
satisfy Condition C.

Proof. We refer to § 1.3 and merely indicate the verification of the desired
subfunction property of these functions. Thus, ¢ (r) results from adding the
function —(Ko/4n)[a2(r)—a§(r)], which satisfies Condition C, to the isoperi-
metric function ¢,(r). The function ¢  (r) is obtained by adding the function
qﬁz(r)sa(r)— ao(r) to ¢3(r). And the function ¢u(r) is obtained by adding
~Kya(r)la(r) = ao(r)], which satisfies Condition C, to dng (r)

4.3. Another kind of modification. The properties of the isoperimetric func-
tion and its modifications which we have developed now enable us to introduce
new functions which satisfy our conditions. These new functions are produced

by replacing each term of an expression by its square root.

THEOREM 4.10. Let S be an analytic sub-4K, surface with length and area
functions relating to a geodesic circle on S as previously defined. Then the

functions

g[;é(r) =+val(r) - \/ao(r)

and
$,(r) = Va(r) = va,(r)
satisfy Condition D.

Proof. We have 4.(0) =0, and

, 1] ! L
Yr(r) = =]— - —| >0
2lve  va
for r > 0 on S by the properties of ¢  (r) of Theorem 4.9, since now 1,(r) and
a,(r) behave analogously to /4(r) and ay(r) of that theorem. Hence .(r) is

a monotonic nondecreasing function of r. Then using (3.34) and the isoperi-
metric identity satisfied by [,(r), we get

-3/2

6!/}7(r)= [2al’ - 1% + 4Kya?] > 0
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for r > 0 on S, since the function in brackets is identical with that which would
occur for the function i, (r) of Theorem 3.8. Thus ¢, (r) satisfies Condition D.

The proof for 4 (r) is similar to this for ¥, (r).

The next theorem presents a modification of the function é,,(r) of Theorem

4.9.

THEOREM 4.11. Let S be an analytic sub-K, surface with length and area
functions relating to geodesic circles on S as previously defined. Then the
function

qSlz(r) = 1(r)Vae(r) = Lo(r)Va(r)

satisfies Condition C.

Proof. We first establish the inequality

(4.31) 2a(r)1’(r) = 1%(r) + Kya?(r) > 0 (r>0o0n S),

where the sign of equality holds for r > 0 on S if and only if S is a K,-surface.
The result is immediate, since the function on the left in (4.31) is zero at

r =0, and its derivative is nonnegative for r > 0.
Clearly ¢,,(0)=0, and qﬁu(r) >0 for r > 0 on S since q:’)u(r) satisfies

Condition C. Then, by substituting for 1°(r) and ({(r) from (4.31), we find
that

¢on 25 |(= +l—) (v - 1va) - Kovam (a-van |2 o.

tnus ¢ (r) is monotonic nondecreasing. Then using (3.21) we find that

1, llg ! 121 15!
266 ,,(r) > 2 = — - —
Va, Ve Vag, 2a5Vag Va

1, U, 121,
+ - + .
Vi, V@  2ava

Now using (4.31) in the last two parentheses, we get
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+ — (IVa, - lo\/T)—Kolo\/z (Va-Vag)
Qg

aag

46¢ ,(r) > 2(

V Qo Vv a
2 2
> — (mo\/i —ug) > (U1~ 115).
Va

a Qo a

1", 115) 11,

Hence, by (4.21), it follows that 6¢12(r) > 0 forr > 0 on S. Thus, on citing
Theorem 1.2 and the obvious fact that ¢ (r)=0if S is a Ko-surface, we have
shown that ¢  (r) satisfies Condition C.

V. EXTENSIONS AND GENERALIZATIONS

5.1. Geodesic circular sectors. The generalization from a basic configura-
tion of geodesic circles to one of geodesic circular sectors is indicated in

[4, p.296], and its relations apply immediately to this study.

We state some representative results.

THEOREM 5.1. Let S be an analytic sub-K, surface, and let 1(r; 0y, 0;)
and a(r; 0, 0,) denote respectively the length of the bounding arc and the
area of the geodesic circular sector on S with fixed pole P, fixed angle from

0, to 0,, 6, < 0,, and geodesic radius r. Then the functions
¢13(r) = I(r; 61: 62) - lo(r; 6[, 02)’

a(r; 0, 0,)—ae(r; 04, 0,),

1l

¢ (r)
and

12(r; 0,, 0,)  Koa®(r; 045 0,) ( |
= ol M 0 9 0 N
vy e Sy v e

(r>0,0,<60<6, on S),
satisfy Condition C.

The proof for each function is similar to the proof of the analogous result

for the corresponding function for geodesic circles, and will not be given here.

Other functions which satisfy Condition C or Condition D for geodesic cir-

cular sectors (the analogues of those for geodesic circles) obviously could be
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written. It is clear that, as corollaries, we then obtain certain inequality re-

lations between the length and area functions for a suitably restricted surface.

5.2. Regular super-K, surfaces. The preceding results concerning sub-K,
surfaces hold in the large and are unaffected by singular points. We now de-
scribe somewhat analogous results for surfaces whose Gaussian curvature
satisfies K > K,; such surfaces will be called super-K, surfaces. We still
assume K, < 0, although some of the results hold, in the small, for K, any
constant. In general, our results will hold only on parts of S where there are no
singular points of the surface, or of the family of geodesics, other than at the
pole of geodesic polar coordinates; and some of the results hold only in the

small even where there are no singular points.

A function f(x) is said to be a super-K, function provided —f(x) is a

sub-K, function.

A surface S given in geodesic coordinates, or in geodesic polar coordinates,
will be said to be regular provided there are no singular points on S except, in

the case of geodesic polar coordinates, at the pole P.

Lemma 2.1 holds if we add the restriction that S is regular, and replace
““sub-K,’* by ““super-K,.”” Theorems 2.2 and 2.3 hold with the same alterations,
and the inequality relations given by (3.21), (3.22), and (4.21) hold with the

inequality signs reversed.

THEOREM 5.2. Let S be a regular analytic super-K, surface, and let [(r)

and a(r) denote the length and area functions for a geodesic circle C,. Then
the functions —g{)].(r) (j=1,2,4,5,6, 8) satisfy Condition C.

Proof. The theorem follows in routine fashion by an examination of earlier
calculations for these functions in relation to (3.21), (3.22), and (4.21) with

the inequality signs reversed.

Now consider the isoperimetric function ¢ (r). We compute ¢5(r), and find
that ¢,(r) is monotonic nonincreasing on any regular super-K, surface S, and
is monotonic decreasing if S is not a K,-surface. Actually, since [7(0) =2n,
it follows from a consideration of ©¢ (r) that there is an ro =ro(S, P) such

that ¢ (r) is a super-K, function for 0 <r < r,.

From the properties of the functions ¢j(r) we obtain results for {(r) and

a(r). We have

I(r) = lg(r) + ¢1(r),
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U(r) = 15(r) + ¢{(r),
and
Gl(r) = @¢1(r).

Since the functions —¢j(r) satisfy Condition C on regular super-K, surfaces,

we have
¢l(r)§0, "E)gbl(r)_<_0 (r>0o0nS).

It follows that on regular analytic super-K, surfaces the function 1(r) is a
super-K, function and satisfies [(r) < lo€r); L(r) is a strictly super-K, func-
tion and satisfies the strict inequality for r > 0 on S if S is not a Ky-surface.
Also, on these surfaces we have ¢{(0) =0, so that, since ¢,(r) is a super-K,
function, for a given regular analytic super-K, surface and for a given pole P
on S, either I(r) is monotonic increasing on S or there is an ro =ro(S, P) > 0
such that [(r) is monotonic increasing for 0 < r < ry and monotonic decreasing

forr > ry onS.
Again, we have

a(r) =ae(r) + ¢,(r),

a’(r) = lo(r) + ¢,(r) = 1(r),
and
Salr) =2nm + 5¢2(r).

On regular analytic super-K, surfaces we have
¢,(r) <0, ¢77(0) =0, 5¢,(r) <0 (r> onS).

Hence on regular super-K, surfaces, a(r) satisfies a(r) < ao(r); the strict
inequality holds for r > 0 on S if S is not a Ky-surface. Further, for a given
regular analytic super-K, surface, and for a given pole P on S, either a(r) is
a strictly sub-Kq function, or there is an ry =ro(S, P) > 0 such that a(r) is
a strictly sub-K, function for 0 < r < rq and a strictly super-K, function for
r>ry on S. The interval 0 < r < ry on which a(r) is a sub-K, function coin-

cides with the interval on which [ (r) is increasing.
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From the properties of ¢,(r), ¢ (r) and ¢ (r) described in Theorem 5.2,
we deduce some inequalities of interest. Thus, on regular analytic super-K,

surfaces we have the inequalities
1

a(r) > e [Io(r)I(r) + Kyal(r)],
7

1

a(r) > Lo(r)(r) = 2mas(r)],

o\T

and
r
alr) > ag(r) - 3 [l(r) - 1(r)],

associated with ¢,(r), ¢,(r), and ¢ (r) respectively, with the signs of e-
quality holding for r > 0 on S if and only if S is a Ky-surface.

When the proof in Theorem 4.6 is examined in light of the new basic in-
equalities for regular analytic super-K, surfaces, we find that ¢_(r) remains
a monotonic, nondecreasing sub-K, function. The function 47¢, (r) is factor-
able in such a way that ¢ (r) is a factor; then, by Theorem 5.2, the other

factor satisfies the inequality

(r) = Lo(r) — V=Kg [a(r) - ag(r)] < 0.

Hence, using this last relation, on regular analytic super-K, surfaces we have

the inequalities

L(r) <lg(r) = V=Ko [ag(r) — a(r)] < ly(r),
and

1
ag(r) > al(r) > ag(r) = ———[l(r) = I(r)],

K,

with the signs of equality holding for r > 0 on S if and only if S is a Ky-surface.

The ¢ functions related to geodesic circular sectors { see Theorem 5.1) have

analogous properties on regular super-K, surfaces.

5.3. Surface characterization. Heretofore we have assumed S to be either
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a sub-K surface or a super-K, surface. In certain instances we have obtained,
in the two cases, conclusions which are distinct except for the dividing class
of K,-surfaces. Thus by logical exclusion we obtain several characterizations

of the indicated classes of surfaces.

For example, a regular analytic surface S is a super-K, surface, but not a

Ky-surface, if and only if for each pole P on S we have

(5.31) 1(r) < lo(r)
forallr > 0 on S.

Proof. In $5.2 we have shown that the condition K > K,, K # K;, on S
implies (5.31). Conversely, if we should have K; < K, at some P; on S, then
we would have K < K throughout some neighborhood of P, and therefore, in
the neighborhood, we would have [(r) > [,(r); also, if we should have K = K
on S, then we would have [(r) =1[,(r); hence (5.31) implies K > Ko, K # K,

on S.

In the same way we could establish similar results for each function in the

following theorem.

THEOREM 5.3. The regular analytic surface S is i) a sub-K, surface, but
not a Ko-surface, ii) a super-K, surface, but not a Kq-surface, or iii) a Ko

surface, if and only if we have

1l
S

(5.32) i) q:')j(r) > 0, i) ¢j(r) <0, or iii) gbj(r) =
(j= L, 2,6 81 9,0, 15)9

respectively, for all poles P and allr > 0 on S.
By Theorem 1.2, it is evident that we might replace (5.32) with the dif-

ferential conditions
i) 6¢j(r)>0, i) 6¢i(r)<0, or iii) 6¢j(r)50
(] =1, 2,4,5,6, 8, 13, 14).

5.4. Geodesically similar curves. The preceding theory may be applied to
more general configurations than geodesic circles and sectors. Thus we may
study comparison functions which involve length and area functions relating
to a class of curves upon an arbitrary surface S as compared to the correspond-

ing curves upon a Ky-surface or in the plane.
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It is evident that r has heretofore played a dual role: it has served as the
parameter for the family of geodesic circles (sectors) on S with centers at the
pole P, and it also has been a variable of the geodesic polar coordinate system.
We now rephrase the previous conditions in terms of the parameter of the family

of curves to be considered.

CoNDITION A(k). For a given surface S of nonpositive Gaussian curva-
ture, and for a given one-parameter family of curves C (%), a function A (%) of
the parameter k satisfies Condition A (k) provided: A(0) = 0; for & > 0, A(k)
is a continuous monotonic nondecreasing convex function of %; A(%k)=0 if S
is a developable surface, but otherwise is monotonic increasing and strictly

convex.

ConbiTiON C(k). For a given sub-K, surface S, and for a given one-
parameter family of curves C (%), a function 7(%) of the parameter k satisfies
Condition C (k) provided: 7(0) = 0; for £ > 0, 7(k) is a continuous monotonic
nondecreasing sub-K, function of k; 7(k)=0 if S is a K -surface, but other

wise 7(k) is a strictly sub-K function of £.

On a surface S referred to geodesic polar coordinates (r, €) with a given

pole P, we first consider the family of curves C (k) of parameter & given by

(5.41) r=kf(0), k>0,

where f(0) admits a continuous derivative and f(60) > 1. We remark that the
condition f(#) > 1 is merely a normalization; for, if f(6,) < 1 and f(0) # 0
in a closed interval, o < 6 < 3, then f(0) is bounded away from zero in
(o, B), say f(0) >m > 0 in (&, B). Then a new parameter k; may be intro-
duced by setting k= m#k,, so that

r = klfl(e) = kl[mf(e)],

and this representation satisfies our requirements. It may be noted that f(6) =1
presents the case of geodesic circles (sectors). The curves C(k) of the
family given by (5.41) are said to be similarly situated or homothetic, and we

shall call them geodesically similar.

THEOREM 5.4. Let S be an analytic surface of nonpositive Gaussian curva-
ture referred to geodesic polar coordinates with given pole Py. Let Ip(k; «, )
and lg(k; o, B) denote the lengths of the curve of the family C(k) of (5.41)
from 6= to 6=, (« < B), for the parameter value k in the plane and on
the surface S, respectively, and let ap(k; o, B) and as(k; o, B) denote the
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areas of the sectors formed by the curve of the family C(k), 0 =&, and 0= (3
(« < B), for the parameter value k in the plane and on the surface S respective-

ly. Then the functions

Mks o, B) = Is(k; o, B) = Ip(k; o, B)
and

A lks o, B) = ag(hs o, B) = ap(k; o, B)

satisfy Condition A (k).

Proof (outlined). For 6, fixed and « < 6, < B, let

) dr 2q1/2 ) dr 291/2
No(k, ) = ar _ ar ,
olks o)) [" +(d9) ] [’ +(d6)]

where r =r(6) is given by (5.41). We find that A,(0, 6,) = 0, and that dAo/dk
and 9*)\o/dk? are nonnegative since pu(r, 6,) is a convex function of r. On
verifying the other requirements, we have that, for each fixed value 6y, Ay(%, 6,)
satisfies Condition A (k).

Since
B
Mtk o, 8) = 7k 0)a0,

it follows (See [4, Theorem 1, p.287].) that A;(k; &, B) satisfies Condition
A (k). If the function [5(k; &, B) alone is considered, then the relations used
also indicate that lg(%; &, B) is a convex function of k, that it is strictly con-
vex if S is not a developable surface, and that it is linear (as a function of %)

if S is developable.
Now, with (5.41),

Ak «, B) = '['8 /;r Lulp, )= pldpdo,

and its first and second derivatives are found to be nonnegative by use of the

convexity of p(r, 0). The remainder of the argument is direct.

We find other results for the area functions:
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THEOREM 5.5. Let S be an analytic sub-K, surface referred to geodesic
polar coordinates with given pole Po. Let as(k; o, B), as (k; o, B), and
ap(k; &, B) denote the areas of the sectors formed by the curve of the family
C(k) of (5.41) for the parameter value k, 6= &, and 0= (&« < B) on the
surface S, the Ky-surface Sy, and in the plane respectively. Then the function

)\2(1‘5; U, B) = as(k; A, B)“aP(k; o, ,8)

is a monotonic nondecreasing sub-K, function of k, and the function
7 (k5 o, B) = as(k; &, B) — ag (ks o, B)
satisfies Condition C (k).

Proof. By Theorem 5.4, A,(k; ¢, B) is nonnegative and monotonic non-
decreasing. By calculation,

2

g I¢]
S Ay (s cx,ﬁ)=/‘3/’ (Bpn+ = (17~ 1)=Kop1 dpdd > 0
a JO p

forr > 0 (£ > 0) on S since f(6) > 1. Hence A,(k; &, B) is a sub-K, function
of k.

For the other function, we find that

o7y

B
— = [Pt )= ot 001 1(9)a0

and
© ; N AT - — K (p— 2_1)
le(k,Ot,B)—_/a . LF26,(pn =) = Ko(p = py) (f2=1)1dpd0.

These are nonnegative by the proof of Theorem 3.3, and the rest of the argument

is immediate.

5.5. The Steiner configuration. Let C be an arbitrary closed convex curve
in the plane, of length L and area F, and let C(p) be a curve parallel to C
at a distance p from it, p being measured along the outward normal to C, of
length L (p) and area F (p). The family of curves C(p) will be called a Steiner

configuration; it is a classical result of Steiner [2, p. 128] that
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L(p)=1L +2mp
and

F(p)=F + pL + np2.

Generalizations of these formulas for curves lying on a curved surface have
been given in [1; 2], and explicit formulas found in the case of surfaces of
constant curvature. We shall establish the sub-K, function property of some
functions which involve the L (p) and F (p) functions for the Steiner configura-
tion associated with a suitable curve C on an arbitrary sub-K, surface, K, < 0.
It is evident that our preceding theory for geodesic circles of center Py on S is
obtained from a Steiner configuration on S.if the curve C is a geodesic circle

of center Py on S.

Let the curve C be a simple, closed, bounding, and differentiable curve on
the surface S. Introduce a geodesic representation with coordinates (u, v) in
which u = 0 is the curve C, and v = constant are the geodesics orthogonal to
C; further, let v be the arc length of C measured positively for motion on the
curve which keeps the bounded area to the left, and let u be the arc length of
geodesics normal to C. Sufficient conditions for the validity of such a coordinate
system in a region of S have been given [1; 2], We shall assume that our co-
ordinate system is valid and term admissible those curves which satisfy the

above conditions.

Then, for an admissible curve C of length L and area F, and for p fixed, the

length L (p) of C(p) is given by

(5.51) L(p) = _/C‘;z(p,v)dv,
and the area F (p) of C(p) is given by

(5.52) F(p)=F + /Cfopg(u,v)dudv.

For a K,-surface, K, < 0, Abascal [1, p.843] has shown that these relations

simplify to (in our notation)

K
(5.53) Lo(p)=L+lo(p)-.—2—0[Flo(p)+La0(p)],
w

and
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Liy(p)  KyFaylp)
(5.54) Folp) = F + aglp)+ o\p _ ol Go\p ’
27 27

where {4(p) and ay(p) are given in Lemma 2.4.
LEMMA 5.6. The functions Ly(p) and Fy(p) satisfy the relations
Li(p) + KoFy(p) = 27 =0,
Ly (p) + KoLy(p) =0,
and

L3(p) Ko F¢ (p)
(5.55) ? + ° — Fy(p) =M = constant
4m 4n

for p > 0 on the Ky-surface S.

Proof. The first two relations follow easily from (5.53), (5.54), and the
properties of [;(p) and ay(p). The third relation is immediate since the deriva-

tive of its left member is zero.

THEOREM 5.7. Let S be an analytic sub-K, surface, and let C(p) denote
the curves of the Steiner configuration for an admissible curve C on S. Then
the length function L(p) is a sub-Ky function of p; L(p) is a strictly sub-K,
function if S is a strictly sub-K, surface, and it is a Ky-function of p if Sis a
Ky-surface. Further, the area function F(p) is a strictly sub-K, function.

Proof. These properties of L (p) were established in Theorem 2.2.

By calculation from (5.52) we get

0
(5.56) GpF(p)= //p Gugdudv+/(—’i) dv + K F.
c Jo c \du =0

For our geodesic representation, it is known {7, p. 188] that

d
SN
w u=0

where Kg(v) is the geodesic curvature of C. By the Gauss-Bonnet theorem

[7, p.191], noting that C has no exterior angles, we get
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(5.57) /Kg(v)dv= 27 - f/KududeQn—KoF.
Cc
F

since K < Kq. With &, p > 0 and (5.57), it follows from (5.56) that
(5.58) @pF(p)zL'(p)+KOF(p)2277,
and then Theorem 1.2 ensures the result of the theorem.

We shall now make comparison between the length and area functions for
Steiner configurations on a sub-K, surface S and on the K,-surface. However,
our expressions may be considered to be functions formed with respect to S
alone because of (5.53), (5.54), and the known formulas for [,(p) and ay(p).

THEOREM 5.8. Let S be an analytic sub-K, surface, and let C(p) denote
the curves of the Steiner configuration for an admissible curve C of length L

and area F on S. Let Cy(p) denote the curves of the Steiner configuration for

any admissible curve Cqy of length Lo =L and area Fy =F on the Ky-surface
So- Then the functions

T2(p) = L(p) = Lo(p)

and

T3(p) = F(p) — Fy(p)

satisfy Condition C(p), where p is the parameter of the family.

Proof. There is equality in (5.57) if S is a K,-surface, and the proof using
(5.51) and (5.52) is similar to those of Theorem 3.3 and Theorem 3.5.

Theorem 5.8 admits the corollary that the functions L (p) and F (p) satisfy

the inequalities

| Kol
L(p) > Lolp) = L + Lo(p) + —2-"— [F1(p) + Lao(p)]
7

and

Lis(p)  [KolFaglp)
F(p) > Fo(p) = F +ao(p) + + ;
2n 27

both functions are strictly sub-K, functions and satisfy the strict inequalities
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for p > 0o0n S ifSis not a Ky-surface, and they satisfy the equalities if S is
a Ky-surface. We remark that the conditions L, =L and F, = F were imposed
to meet the requirements of Condition C(p). The sub-K, function properties

and inequality relations above would hold equally well for any admissible C,
such that L, < L and Fy, < F.

We shall now establish some results for functions involving L (p) and F (p)

which are analogous to the isoperimetric function and to its modifications.

THEOREM 5.9. Let L(p) and F(p) be the length and area functions, re-
spectively, of the curves of a Steiner configuration on an analytic sub-K, sur-
face S. Then the function

L2
6(p) = (p)

- F(p)

is a positive monotonic strictly increasing sub-K, function of p; further, if
C, on the Ky-surface S, satisfies Ly = L and Fo = F, then the function

L2(p) - L2(p)
i(p) = —pT-i S [F(p) =~ Fy(p)]

™
satisfies Condition C(p).

Proof. Tt is known [6] that 6(p) > O on sub-K, surfaces. With (5.58) and
Theorem 5.7, routine computations show that 0°(p) and ©6(p) are positive,
establishing the properties of 0(p). The properties of 7,(p) are established in
routine manner by the use of (5.58) and Theorem 5.8.

THEOREM 5.10. Let L(p) and F(p) be the length and area functions,
respectively, of the curves of a Steiner configuration on a sub-K, surface S,
and let Ly(p) and Fo(p) be the length and area functions, respectively, of the

curves of a Steiner configuration on a K surface Sy. Let the admissible curve

Co on Sy satisfy Lo=L and Fy = F. Then the function

~ Fo(p)

L? Ko F?*(p) Lip) KoFg(p)
’Ts(p)E (P)+ ] —F(p)]-—[ zﬂ N of'o

4n 4 4n
satisfies Condition C(p).

Proof. Obviously 75(0) = 0, and using (5.55) we get 7¢(p) > 0 by (5.58).
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By another calculation we find that
4nGrs(p) > (2L (p) L (p)+ Ko F(p)—2n]l+ Ko L2(p)+ K2F%(p)
~ 4Ky F(p)-4nK M},

where the constant # is given by (5.55). We then use (5.58) just as we used
(3.22) in the proof of Theorem 4.1, and we get

(5.59) 47075(p) > (L% p)+ Ko LA p)~4n*—4nKoM] = h(p)
where A(p) is the function in brackets. By (5.53) and (5.54), we verify that
4nKoM = LZ (p) + KoL%(p) - 447,

and when this is substituted in (5.59), it follows that 2(0) > 0 since L"(0) >
L§(0) by (5.58). By computation and use of Theorem 5.7 we find that £°(p) > 0
for p > 0; hence h(p) > 0 for p > 0, and 75(p) is a sub-K, function. Since
further considerations show that the signs of equality hold above if and only if
S is a Ky-surface, we have, with the final remark that 75(p) =0 if S is a K-
surface, the result that 75(p) satisfies Condition C (p).

We remark that the last two theorems imply inequalities for the functions

L(p) and F(p) somewhat similar to (4.13); we omit the formal statements.

Let the symbol ®,(p) denote the new functions produced from the functions
qﬁk(r) when the functions r, a(r), ay(r), {(r), and [,(r), associated with geo-
desic circles, are replaced by the functions p, F(p), Fy(p), L(p), and Ly(p),
respectively, associated with the Steiner configuration of an admissible curve

C. For example,
TS(P) = (D3(P) - M’

where M is the constant of (5.55). It may then be verified (indeed almost solely
by inspection of the proof that the corresponding ¢ (r) function satisfies Con-
dition C) that the functions

@k(p)—M (k=4,5),
and

@, (p) (k=6,7,8,9,10,11),
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satisfy Condition C (p).

Again, we might formulate a Condition D(p) which is analogous to Condition
D in the way that Condition C (p) corresponds to Condition C. Then large parts
of the theory in § 3.3 on ‘‘square-root’’ functions are found to apply to similar
functions associated with a Steiner configuration. Finally, it may be shown that
much of the theory in € $5.2, 5.3 can be generalized to hold for appropriate

functions associated with Steiner configurations.
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ON THE HITCHCOCK DISTRIBUTION PROBLEM

MERRILL M. FLooD

1. Introduction. Frank L. Hitchcock [1] has offered a mathematical formula-
tion of the problem of determining the most economical manner of distribution
of a product from several sources of supply to numerous localities of use, and
has suggested a computational procedure for obtaining a solution of his system
in any particular case. L. Kantorovitch [ 2], Tjalling C. Koopmans [ 3], George
B. Dantzig [4b], C. B. Tompkins [5], Julia Robinson [7; 8], Alex Orden [6],
and others [ 4] have also discussed the computational aspects of this problem;
paper [ 5] illustrates the use of the ‘‘projection method,’” due to C. B. Tompkins,
as a computational process applicable to either of the Fundamental Problems of

the present paper.

We shall be concerned only with the mathematical justification of computa-
tional procedure, and shall limit our attention to one specific method of solution
of general validity. No attempt will be made to compare the various methods
already proposed, either as to their mathematical similarity or as to their rela-

tive efficiency in any particular case.

2. The problem. The problem is to find a set of values of the mn variables

%ij, subject to the following conditions:

m n

(2.1) 2 Xij = Cjs D %ij =T
i=1 j=1

(2.2) xij > 0,

Received January 25, 1952. The author’s interest in the problem was aroused by
papers on transportation theory presented by Koopmans [4a] and Dantzig [4b] at a con-
ference on linear programming in Chicago during June, 1949, under the auspices of the
Cowles Commission for Research in Economics of the University of Chicago. Several
other papers presented at this conference are of closely related interest. Professor
Koopmans, in his Introduction io the Conference Proceedings [4], also discussed the
background and interrelationship of the conference papers —including the bearing of
some of these on the Hitchcock distribution problem. The results of the present paper
have been presented in three seminar lectures: once in December, 1949, at The RAND
Corporation in Santa Monica, once in July, 1950, at the Institute for Numerical Analysis
of the National Bureau of Standards in Los Angeles, and once in June, 1951, at the
National Bureau of Standards in Washington, D.C. The author is especially indebted
to Dr. D.R. Fulkerson, who has given real assistance in simplifying notation and
proofs of theorems, for a careful reading of the manuscript.

Pacific J. Math. 3 (1953), 369-386
369
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(2.3) inj d;j = minimum.

2y
The numbers m, n, rj, cj, and d;; are given positive integers with Zc]' =2r;
The indices i and j are understood always to range over these same integers
m and n, respectively; it is also assumed, for convenience, that m > n. Any
set of values x;; that satisfies all these conditions is called a solution of the

problem.

There is no loss of generality in assuming that the d;; are positive integers,
rather than rational numbers, since the problem is essentially unchanged if
d;j is replaced by ad;j + b, where a and b are any positive rational numbers. We
have not examined the case in which some of the quantities r; cj, and d;j are
irrational. The only effect of irrationality on the results of the present paper is
a possible lack of convergence of the iterative process of solution. These con-

siderations are not of importance in the usual applications.

It will sometimes be more convenient to use an alternative statement of the

problem, in matrix notation, as follows:

(2.4) My > b,
(2.5) y >0,
(2.6) a’y = minimum .

It is easily seen that the two formulations are equivalent if y, a, b, and ¥ are
defined as follows:

= X..

Yn(i-1)+j ij?

TnG-1)+j = dij s

In Iy oo I, ¢
) A —c
M= b =
I, Iy oee n r
“‘Jl —]2 "‘—‘]m 9 -T )

where I, is the identity matrix of order n, and J; is the m x n matrix with all
elements zero except for the ith row in which each element is unity. Of course,
¥s a, ¢, and r are column matrices (or vectors) with components y, -1)+j°

G (i-1)+j2 Cjo and r,, respectively, and a prime denotes the transpose of a

matrix (or vector).
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3. Fundamental theorems. There are several fundamental theorems con-
cerning systems of linear inequalities that are useful for this paper. I reproduce
their statements here in a form given by A. W. Tucker in an unpublished note
dated December, 1949, The interested reader can find proofs of these theorems,

and of others of similar type, in a paper by Gale, Kuhn, and Tucker [ 4c 1.

FUNDAMENTAL PROBLEMS. (Here lower case roman letters denote one-
column vectors, while capitals denote rectangular matrices; M, a, and b are

given, but d is to be determined.)

ProBLEM I. To satisfy the constraints Mx < a, x > 0, and make b'x = d

for d maximal in the sense that no x satisfying the constraints makes b“x > d.

ProBLEM II. To satisfy the constraints M’y > b, y > 0, and make a’y = d

for d minimal in the sense that no y satisfying the constraints makes a’y < d.
Problems I and II are said to be dual.

FUNDAMENTAL FEASIBILITY THEOREM. The constraints in a problem
are feasible (that is, satisfied by some x or y) if and only if the dual problem

in homogeneous form (that is, with b = 0 or a = 0) has a null solution.

FUNDAMENTAL EXISTENCE THEOREM. i. The vectors x and y are solu-
tions of Problems 1 and 11 if and only if they satisfy their constraints in the two
problems and make a’y = b’x. Such x and y exist if the constraints in both

problems are feasible.

ii. A problem has a solution if and only if its constraints are feasible and

its homogeneous form has a null solution.

FUNDAMENTAL DUALITY THEOREM. A problem has a solution (for a
unique d) if and only if the dual problem has a solution (for the same d).

4. The dual and combined problems. We note that the problem, as stated in
relations (2.4)-(2.6), is a Fundamental Problem of form II. The dual problem

1S

(4.1) Mx < a,
(4.2) x>0,
(4.3) b’x = maximum.

This can be rewritten in a more convenient form, for our present purposes, as
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follows:

(4.4) Vi~ uj Sdij,

(4.5) Zc]' vj—Zri u; = maximum,

where vj=xj—%n4+j, and u; =~ xXpp+i + Xan+m+i; We omit the condition (4.2),

that x > 0, since this imposes no limitation on u; and v;.
THEOREM 1. The problem has a solution.

Proof. By the Fundamental Existence Theorem, there is a solution if and

only if the constraints are feasible and y = 0 is a solution of the problem when

b = 0. Now
Se- Zn,

SO
T C]'

. -
1T

satisfies the constraints. When b = 0, obviously the only values that satisfy the

constraints are x;j = 0, and so the theorem is proved.
By the Fundamental Duality Theorem, we see:
COROLLARY 1A. The dual problem has a solution.

THEOREM 2. The numbers x;j, and u;, vj, are solutions of the problem and
the dual, respectively, if and only if they satisfy:

(4-.6) inj=ri, inj=cj’ xijZOy
j i

(4.7) dij + uj — vj >0,

(4.8) xij(dij + u; — v]') =0.

Proof. Since (4.6) and (4.7) are simply the constraints for the problem and
the dual, respectively, it remains only to show that (4.8) is equivalent to the
condition a“y — b’x = 0. Now
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d
a’y - b’x = injdij - Zijj + Zriui
i ] j i

= 2 xijdij = 2 wijvj + 2 wijui = 30 xij(dij + ui = vj).
i, ] i, ] i, ] i, ]

Since each term in this sum is nonnegative,
a’y —b’x =0
if and only if
xij(dij + u; — vj) = 0.

We refer to the problem of finding values for x;;, u;, and v; that satisfy
(4.6)-(4.8) as the ‘““combined problem”’, and note that the combined problem

always has a solution.

5. Linear graphs. It will be convenient, for some purposes, to associate

linear graphs [ 9] with certain subsets of the elements of a matrix S = ||s,, [|.
If I is a given subset of the elements of S, we define the I-graph L of S as
follows: the vertices of L are all the points (A, £) in the Cartesian plane for
which s, , € I; the arcs of L are all line-segments joining pairs of neighboring
vertices with either equal abscissas or equal ordinates, where two vertices with
equal abscissas (ordinates ) are neighboring if they are not separated by another
vertex of L with the same abscissa (ordinate). For the moment, denote the
vertices of L by symbols a, b, ¢, +++, f, and the arcs by symbols such as
ab, bc, +++, cf (no distinction is made between the arcs ab and ba). Then a
chain is a set of one or more distinct arcs that can be arranged as ab,bc, + -+, de,
ef, where vertices denoted by different symbols are distinct. A cycle is a set of
distinct arcs (at least four are necessary ) that can be ordered as ab, bc,+++, ef,
fa, the vertices being distinct as in the case of a chain. A graph is connected
if each pair of vertices is joined by a chain. A forest is a graph containing no

cycles, and a tree is a connected forest.

If L contains v vertices, a arcs, and p connected pieces, the number
p=a—v +p is known as the cyclomatic number (or first Betti number) of L.
It follows from a well-known theorem [9] concerning linear graphs in general
that: (i) L is a forest if and only if x =0, and (ii) L contains just one cycle
if and only if p= 1.

Note that L contains a cycle if and only if there is a subset of / that can be

arranged as a sequence
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Shykys Shykys Shokygs Shykys***sShy k,s Shy kg »

where the #’s and k’s are distinct among themselves; and L contains a single
cycle if and only if / contains just one subset that can be arranged in the dis-
played form. We call such a subset of / an I-circuit on S, and denote it by [ S, 1.
For a particular arrangement of [S; ], we also refer to the terms sp_k, as odd-

terms, the others as even-terms.

In case I consists of all sp; > 0, as it frequently will, we speak of the
positive graph of S, positive circuits on S, and abbreviate such statements as

““the positive graph of S is a forest” to “‘S is a forest”.

6. The method of solution. In the method of solution to be developed for
the problem, we start with a special set of values X° = HxlO]H that satisfy the
constraints (4.6). We then test to determine whether or not there exist u; and
v; satisfying the relations (4.7) and (4.8) for the given X°. If so, then X° is
a solution, otherwise not. The method next yields a new trial matrix X '=|| x:]H,

if X0 is not a solution, such that
0 1
Z (xi]- - xij)dij > 1.
i ]

After a finite number of steps this process necessarily must terminate, and it

leads to an exact integral solution of the problem.

The first trial matrix X® is a forest of ¢ trees, and has m + n — ¢ nonzero

elements. According as t=1 or ¢t > 1, two essentially different cases may be

met at each stage of the solution process. !

At each stage when X = || x;;|| is a tree, the equations (4.8) have a general
solution for u; and v; with one free parameter, say u;. However, the quantities
dij + u; — vj are uniquely determined in this case, so it is sufficient to calcu-
late them and note whether or not they are all nonnegative in order to decide

whether or not X is a solution. If some

1These are the nondegenerate and degenerate cases in the work of Dantzig [4b].
We shall use these terms also. The method of solution developed by Dantzig [4b] for
the nondegenerate case is essentially the same as the one in the present paper, al-
though the derivations of the results are quite different. Orden [ 6] has subsequently
given an elegant method for reducing the degenerate case to the nondegenerate one, as
an extension of the €-method proposed by Dantzig [4b]. The author believes that the
treatment of the degenerate case provides the only results in the present paper that are
new, or at least fresh for the Hitchcock problem, and also of some mathematical in-
terest. It also seems likely that the method given here will often be more efficient
computationally, in the degenerate case, than the Dantzig-Orden €-method.
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diljl +ouj — vj, <0,

then there is a unique I-circuit [X] on X, where [ consists of xi, j, and all
positive x;j, that may be arranged with x;, j, as the second term, say. Let g
denote the smallest odd-term of [ X5 ]. Then the new trial matrix X* is obtained
from X by adding g to the even terms of [ X; ], subtracting g from the odd-terms,

and leaving the other elements of X unchanged.

At each stage when X is a forest of ¢ > 1 trees, the equations (4.8) have a
general solution for u; and v; with ¢ independent parameters, and the quantities
dij + u; — vj involve ¢ — 1 independent parameters. The rows and columns of the
matrix X are rearranged so that it can be represented as a square matrix of order
t whose t? elements are submatrices Xgp such that Xgp =0 if @ # b, and X4,
is a tree with mg + ng — 1 nonzero elements and is of order mg X ng. It may also

be assumed that each X, is a solution of its subproblem. We can select

Uyg, uml+[’ ceey U'ml+.u tmy.t1

to be the ¢ parameters. If we assign these the value zero and denote this parti-
cular solution of (4.8) by u; and v}, then we may define numbers
We partition the matrix P = H;7”|| into submatrices corresponding to the Xab
and denote them P ,. Let p,, be the smallest element in P , and define the
square matrix P of order ¢t by P = {[p_; ||. To designate the position of p_; in
the matrix P = HELJH , we may write p_, alternatively as

~ia Jb

paab ’
the subscripts referring to the submatrix and the superscripts to the rows and

columns in the submatrix. When it introduces no ambiguity, the subscripts on

the superscripts will be omitted in order to simplify the notation.

The test as to whether or not X is a solution consists of forming all sums
pal ay sevap = Paja, + Pa, ay toreet Paj, a,
for h=2,3,+++,¢t, where (a; a;+++ap) is any permutation of % different

positive integers, none greater than ¢; X is a solution if and only if all such

sums are nonnegative,
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If any

pala2"°ah < 0’

then there is a unique /-circuit [Xs] on X, where / consists of all positive %ij

together with all x;; that correspond to the terms

=

pak ak+1 of pa1 ajeccap?
which can be arranged to involve all

xl
af Gk +1

as even-terms. If g is the smallest odd-term in [Xs], then (as in the nonde-
generate case ) the new trial matrix X* is obtained by adding g to the even-terms

of [Xs], subtracting g from the odd-terms, and leaving the other elements of X
unchanged.

7. The initial trial solution. An X that satisfies (4.6) will be called a

trial solution. It would be all right to take the positive values

r; C]'

=

for the initial trial solution X° = Hx? . An alternative is to construct an initial

trial solution that is a forest. It is always possible to do this in integral values.
The following theorem certifies the existence of such an integral trial solution.

The method of proof shows how to construct one.

THEOREM 3. There is a matrix X°= Hx?}ll with integral elements that

satisfies (4.6) and is a forest.

Proof. The theorem is trivial for m = 1. Assume the theorem is true for m and
consider the case m + 1.

Let the notation be chosen so that

Ty 2Ty > eee> ey > 0, and ¢y > ¢y > eee>cp > 0.

If n <m+1, then ¢; > rp4re f n=m+1 then ¢; > rp4; unless c;=rj=2A
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(for all i and j); in this latter case X = A satisfies the conditions of the theo-
rem. Hence, by the induction hypothesis, there is a set of nonnegative integers

x;."]. (¢=1,+.., m) such that

Zx;j=cj_81jrm+1’ Zx?}:rw and X*:Hx;‘jll
]

is a forest. Then X, defined by

0 _ % 0 _
XD = %, me].-_S

1j Tm+1
satisfies (4.6). Now since the (m + 1)st row, with only one positive element,
clearly cannot contribute terms to a positive circuit, X° is also a forest; the

theorem is proved.

To apply this method, in the construction of a trial solution, search for the

smallest r; ~and the largest c; , and then set

x?l =iy
In effect, this deletes the i st row, after cj is replaced by ¢; —r;, and the
process is repeated (with interchanged rows and columns as necessary) until
all x?j have been determined. For automatic machine calculation, the procedure
is easily made unique, for any one starting order of rows and columns, by speci-
fying that the search is first on row-totals when the number of rows is the same
as the number of columns at any stage, and that the row-total or column-total
with the smallest index is chosen whenever at any stage there are several equal
values to choose from. This initial trial solution will be called “‘preferred’” for

identification. ?

THEOREM 4. A trial solution that is a forest of t trees has m + n — t non-

zero elements.

Proof. Observe first that if the trial solution X is a forest of ¢ trees, the

rows and columns of X can be rearranged so that X has the form

2Sometimes, as in this instance, we indicate how to make a unique choice among
possible alternatives at each computational step, but usually do not. It is necessary
to do this in order completely to routinize the computing steps, of course, but the matter
presents no difficulty and we omit it here.
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0 Xy ee-0

DR A B IR

0 0 «..X,

where each X4, is a tree. Consequently, the theorem amounts to proving that an
m X n matrix with no zero rows or columns, which is a tree, has m + n — 1 posi-
tive elements. If m + n = 2, this is obvious, so assume the statement to be true
for all matrices for which m + n =% and consider one for which m+n=1F% + 1.
Since m > n, clearly some row has only one positive element, as otherwise
there would be a positive circuit. Delete this row and apply the induction hypo-
thesis.

In actual cases when m and n are relatively small, or when there is other
reason to believe that an initial trial solution better than the preferred one can
be found by trial and error, it may be better to construct the initial trial solution
in some other way than the one given in the proof of Theorem 3, in order to

reduce the number of steps required in the iterative process.

The methods developed in this paper apply directly for any trial solution that
is a forest, and are readily extended for other cases. It is easy to see that there

must be at least one solution which is a forest.

8. Nondegenerate case. We consider now the case of a trial solution X

which is a tree. Let the positive elements of X be
%ig ja (a=1,«ec,m+n=1)

We shall need the following theorem.

THEOREM 5. If X is a trial tree, the set of equations
(8.1) dij + uj —vj =0 for (i, j) = (ia, ja),
has the general solution

uj = u'+ z, vj = vj*+ <,

where (u], v].*) is a particular solution and z is arbitrary.

Proof. The theorem is apparent for m = 1, and we proceed by induction.
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Suppose the theorem is true for all trial trees of m rows, and let X be an
(m + 1) x n trial tree. Obviously, there must be at least one row of X that has
exactly one nonzero element; we may suppose it to be x,4,, without loss of

generality — also that

=m+1 and j . | =n.

‘m4n-1 1

Since X is a trial tree, the matrix obtained from X by deleting the last row (or,
if m + 1 =n, its transpose) is also. The induction hypothesis implies that the

general solution of (8.1), with the final equation omitted, is of the form

We note next that this final equation becomes

*
m+1

u = (v* - d

m+1 n m+1n)+z=u’

+ z.

The theorem follows easily.

It will be convenient to call the particular solution u;, v; of (8.1) obtained
by setting u, = O the preferred trial solution of the dual problem corresponding

to the trial tree X. As an obvious consequence of Theorem 5, we state:

COROLLARY 5A. If X is a trial tree, then it is a solution of the problem if
and only if the corresponding preferred trial solution (u; vj) of the dual problem

satisfies
dij + u; - 3]' >0
for all i and j.

All that is needed now in order to establish the method for the nondegenerate
case is to show how to construct a new trial matrix X*, if X is not a solution,
such that

2 (x5 = x;.k].)dij > 1.
i, ]
In this case, it follows by Corollary SA that

dkl+uk—vl<0
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for at least one pair (%, [) and, of course, %y, = 0.

THEOREM 6. [f the trial solution X is a tree, and x;; =0, then there is a

unique Il-circuit on X, where I consists of all positive X together with x.

Proof. It suffices to show that the [-graph of X has cyclomatic number
p = 1. By assumption, the positive graph of X has cyclomatic number zero; and
since X must have positive elements x_; and x,, for some a and b, the I-graph
of X has two more arcs, one more vertex, and the same number (one) of con-

nected pieces. Hence p =1, and the proof is complete.

Now arrange this unique [-circuit [ Xg] with x,,; as the second term, and let
g be the minimum of the odd-terms of [X;] in this arrangement. If we subtract
g from the odd-terms, add g to the even terms, and leave the remaining elements
of X unchanged, we get a matrix X* that satisfies (4.6) and is a forest (since

[Xs] is unique).
THEOREM 7. The following relation holds:
Z (x,']' - x;.kj)di]' > 1.
i,
Proof. Let
(XY= Uiy jys %ip jys Bigjps Migja sttt Figjgs %igjy 1s
where
Xiyja = Xk
Then
. *
2 (xij—xij)dii =gldij ~dipj, +diyj, —diyja+eer+digjo —digj)
i ]
=—g(di”-2 +oug - vfz) > 1.
The theorem follows.

If X* is a tree, then the whole process is repeated until at some stage a

trial matrix is obtained that either (i) is a solution, or (ii) is not a solution
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and is a forest of ¢ > 1 trees. We shall now discuss (ii).

9. The degenerate case. Let X be a trial matrix which is a forest of ¢ > 1
trees. As we have seen, we may suppose that the rows and columns of X are
ordered so that

where each submatrix X4 of order mg x ng is a tree. We can apply the methods
of the nondegenerate case to the subproblems corresponding to the submatrices
Xgaa, and either obtain a solution to each subproblem or further decompose the
matrix X; thus we may also assume that each X;, is a solution to its sub-

problem.

By Corollary 5A, we know that
(9.1)  diJ+ul - >0 (a=1,eev, 85 ia=1, 0 ,ma; ja=Leee,ma),

where ug, v, is the preferred trial solution of the dual subproblem corresponding
to the solution X,,, and that

2 vt S B S i
(9.2) dyd+uy =) =0 if x /> 0.
We recall also that the most general values for ufl and ”{1 are given by
=t I =)
ul =u, +z,, vl =vl+z,

where the z, are arbitrary parameters.

It follows from Theorem 2 that X is a solution if and only if there are values

of z, that satisfy inequalities corresponding to (4.7), or in our present notation:
(9.3) débj + uli - vfé) >0 for all a, b, ig, and j, .

But (9.3) has a solution for z, if and only if the following inequalities have a

solution for z,:

(9.4) Pub + %a — %5 20,
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where

Pab = Ao + g = Vhs Pop = min {pab -
l,]

We have proved:

LEMMA A. The matrix X is a solution if and only if there are real numbers
Zq such that

Pab + 24 — 2> 0 (ayb=1,+00,t) .

In order to establish a criterion for the solvability of (9.4), we consider a

special case of the original problem, defined as follows:

dab'—:pab, ra= Cb = 1, a, b=1,"’,t.

We call this the special problem, the corresponding dual the special dual, and
now consider the special combined problem:

;yab =2 V=1 (y,5 > 0),
a

Pap + 2 — Wy 20, Yp(pyp + 2, — wp) = 0.
If we set y,, =3,;, then for this trial solution the conditions reduce to:

Pap + 24— Wy >0 for a £ b,

Since p,, = 0, it follows that z, = w,, and so these conditions are equivalent to
(9.4). Hence, by Theorem 2, (9.4) has a solution if and only if [[5,, || is a

solution of the special problem. Using Lemma A, we now have:

LEMMA B. The matrix X is a solution of the original problem if and only if

the identity matrix is a solution of the special problem.
THEOREM 8. The matrix X is a solution of the problem if and only if

palaz...ah >0 (h=2,3,¢e4,t),
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where (ay, a,, «++, ap) is any permutation of h different positive integers, none

greater than t, and
Payay eevap = Payay T Pagag T Py ag

Proof. By Lemma B, it suffices to show that the condition of the theorem

is equivalent to the statement that || 5, || is a solution of the special problem.

First of all, it is easy to see that at least one solution Y = ||y, || of the
special problem is a forest, and hence has less than 2¢ nonzero elements. That
the elements of Y are all either zero or unity can be seen by induction as fol-
lows. The basis of the induction is obvious, and we consider the case ¢ + 1,
assuming the statement for ¢. There must be at least one element of Y that is
unity, as otherwise Y would have at least 2¢ nonzero elements. We may suppose
that this element is y,, ,, . But then the induction hypothesis implies that each
element y,, (a, b=1, .+, ¢) is zero or one. It follows that there are exactly

t elements of Y that are unity, whence we can write

ZZ Yab Pab = palbl + pa2b2 toees Pa, b,
a

where (@, a, «++ a;) and (b, b, --- b;) are permutations of the first ¢ integers.

Then || 5,, 1] is a solution of the special problem if and only if always
Pay by + Payb, 000 F Po,b, 2 Py ¥y ettt =0,
The proof is completed by noting that this sum can be written as
Payay T Payagt ttPaya 0

with (@, a, +++ ap ) as described in the theorem.

We now need to show how to construct an improved trial solution X* in the
event that X is not a solution. In this case, we know from Theorem 8 that there

is a sum

_i00 _0;0 ~ 90 <0
4 eee + .
pal a, + p¢12 ajz Pay, a,

Let I consist of all positive elements xflja together with all
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.0.0
xr ]
A A+

of X. Then we assert:

THEOREM 9. There is a unique I-circuit on X that can be arranged to in-
volve as even-terms all the
xt 1 .
Qpak+1

Proof. The positive graph of X has m + n — ¢ vertices, m + n — 2t arcs, and

t connected pieces. Also, for each

-0 -0

x
Qg ag+y
there are nonzero elements

xio].x L0
apar’ “Gg+10k+1 "

Hence in passing from the positive graph to the I-graph, A vertices and 24 arcs
are added, and the number of connected pieces is decreased from ¢ to ¢t — A + 1.

Thus the cyclomatic number of the /-graph is
p=(2h+m+n-2t)=(h+m+n—-t)+(t—-h+1)=1,

so there is a unique /-circuit [Xs] on X. Since the graph obtained by omitting
from I any

;00
xt
Ak Ak +1

clearly has no cycle, [ X ] contains all of these.

Evidently [ X ] can be arranged, for example, as

S A o A L S A A A A
ayay’ “aya,’ “aya, >Taya,? Tayaz’?
so that all
.0 .0

X
A Ak +1
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appear as even-terms.

As in the nondegenerate case, let g be the smallest odd-term in [ X5 ] (hence
g > 0), and define a new trial matrix X* by replacing the elements of X that
appear in [ X ] by new ones increased by g for even-terms and decreased by
g for odd-terms; the other elements of X are left unchanged. Again X * satisfies
the conditions for a trial matrix. To complete the discussion of the degenerate

case, it remains only to prove:
TueorEM 10. The following relation holds:
*
2 (xﬁ"xﬁ)du'z-l'
i’j

Proof. Since X and X* differ only on
[Xs1= (xiyjys iy s iy fp s Figja ittt Figjgs Figjy b

then

2 (xif_x:j)dif="g(di1f1 —diyj, tdiyj, —diyjyt e Hdigjo—digfy ).
i, ]

The proof is completed by noting that

di]-=p.~+71-—71,i and Bij=0 if x..>0,

g ] )

so that

2 (xif_x;}')dif T g(palaz"' ah) 2 1.
l’]
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ON THE UNIQUE DETERMINATION OF SOLUTIONS
OF THE HEAT EQUATION

W. FuLks

1. Introduction. Recently it has been shown independently by Hartman and
Wintner [ 5] and by the present author [ 4] that if u(x, ¢) has continuous deriva-

tives u,, and u;, and is a nonnegative solution of the heat equation
(1) uxx(x,t)—ut(x,t)=0

in a rectangle R: {0 <x<1; 0<t<k< o}, then u(x, t) can be represented in
the form

(2) u(x,z)=/"° G(x, 5y, 0) dA (y)
0

)
+/‘ G (x,t;O,s)a’B(s)—ftG (%, 61, s) dC(s),
0 y 0 y

where
1 —
(3) G(x,t;y,s):;[I%(E—Z—y,t—s)—l’s(f——;—z,t—s)],

and where &, is the Jacobi theta function. The integrals are Riemann-Stieltjes
integrals with nondecreasing integrator functions, 4, B, and C. The first integral

may be improper but is absolutely convergent. It was further shown (see [5] and

[3]) that

(4) ulx, 0+) = A7(x)
and
(5) w(04,¢) =B (t=0); u(1-0,¢) =C’(£-0)

at every point where the derivatives in question exist.

Received January 30, 1952. The preparation of this paper was sponsored, in part, by
the Office of Naval Research, Contract Nonr - 386 (00).

Pacific J. Math. 3 (1953), 387-391
387



388 W. FULKS

2. Theorem. As to the question of the extent to which (4) and (5) uniquely
determine u(x, t), it is clear that they do not do so completely, for the singular
solution G, (x, t; 0, 0), called a heat explosion by Doetsch [2], has normal
boundary values identically zero on the three boundaries x =0, x =1, and £ = 0
of R. Yet A, B, C, through formula (2), do uniquely determine u; hence one
might expect that by proper choice of the path of approach to the boundary, zero
boundary values would assure the vanishing of u. In particular, because of the
central role played by G and G, in the representation (2), one might expect
those paths to be the curves along which these functions become unbounded.

This leads us to the following:

THEOREM. Suppose

(a) u(x,t) is a nonnegative solution of (1) in R;

(b) uxy and u, are continuous in R;

(¢) u(x,0+) =0 (0<x<1);

(d) for every s (0<s <k), lim u(x,t) = 0 as (x, t) tends to (0, s) along
some parabolic arc of the form t ~s =ax?*, a> 0, and lim u(x,t)=0 as (%, t)

tends to (1, s) along some parabolic arc of the form t —s = a(x —1)%, a > 0.

Then u(x,t) = 0in R.

3. Proof. As we remarked in the first sentence, conditions (a) and (b) per-

mit representation of u in the form (2). From the formula

= ~(x+20)?
(6) I (x/2,0) = (me)™V2 37 exp ——?—ﬂ;t—n)-],

which can be found in [ 2], it is easily seen that for 0 < x < 1 the two latter inte-
grals in formula (2) — 0 as ¢t — 0+. Furthermore,

- )
flo G(x,t;y,0) dA(y)=f G(x, t;y,0) dA(y)
0 0+

+

+ /1—5 G(x, t;y, 0) dA(y) + fl_o G(x, t;y,0) dA(y),
5 -5

where § < (1/2) min [x, 1 — x] and is taken so small that, given € > 0,

3
G(x,t;y,0) dA(y)l < € and

0+

f‘”" Glx tsy,0) dd(y)| < €
1-8

uniformly in ¢, for 0 < t < t, for some t,. Possibility to do this is ensured by [5,
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Lemma 2, p.385]. Now

1-5 1-5 - ~(x —y)?
./é G(x, t;5y,0) dd(y) =A (47t)712 exp [—%] dA (y)

S ~(x -y +2n)?
TS e e [__y__
8

n = -—oo

n#o

4t

]dA(y)

- o - 2
- Sl ’ >, (4me)™V?* exp [_(f_+4yt+—2n)] dA (y).

n =-o00

The two latter integrals are easily seen to vanish with ¢. Since also the left side
of (2) — 0 ast — 0, it follows that, if 5°< §,

’,

_ _ _ 2
Tim A' ® (Ar) V2 exp [(964—t}/)]dA(y)

t—-0+

S (% —y)?
< lim ./;l ° (47t)712 exp [__(964—}/] dA(y) < 2e.
12

t—-0+

Let € — 0 and obtain

-— ’ — - 2
lim ./8'1 ° (4mt)"2% exp [—i—%] dd(y) = 0.

t—>0+

By [6, Th.7], we see that A (y) is constant between §% and 1 - 5", Let §"—0.
This ensures the vanishing of the first integral of (2).

Now let us turn to the boundary x = 0. Suppose that for some ¢, the boundary
function B (s) is not continuous. If ¢ is the jump (positive since B(s) is in-
creasing) in B(s) at s = ¢y, then for ¢ > ¢,, since Gy(x, t; 0, s)>0 (see[5,
p-3701).

t
ulx, t) Z/ Gy(x,t;O,s) dB(s) > o Gy(x,t;(), ty)
0

1 2
= — gxg /2 (t—tg)3% exp |——
2 4(t—1ty)

1 g (2 2
+ = or V2 (t~15)72 3 (2n+x) exp ——(—CL+—x) .
2 R 4(t—ty)

n#o
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“Since u(x, t)—0 as (x, t)—(0, t,) along ¢t — t, = ax? for some a > 0, we have

- -1
ul(x, t) > — gn /2 x72 g73/2 exp |—
2 4a
oo 2
+i on"V2 g2 S 2n + % exp ~(2n + %)
2 n=-—oo %3 4ax?

n #o

As x — 0+, the sum clearly — 0; but

1
lim ul(x,2) =0>lim —
(x,2)—(0,2¢) Tx—>0 2

_ P -1
on V2 x7%2 ¢ 2 exp | —|= .
4a

This is a contradiction., Hence o = 0, and B (s) is continuous for 0 < s < k.

Now let ¢ =t + ax?. Then

¢ 2/
ulx, t) _>_/0+ax 2 Gy(x, t; 0,s) dB(s)
ty

torax?/a 1 _ —x?
= - (t—s)3/%2 exp | ——— | dB
-/;0 2 x" P 4(t-s) (s)

2 1
+/;to+ax /2 'E ”_1/2 (t_s)"3/2 Q(x’ t;s) dB(S),
0

where

0o _ 2

n =-o
nZo

Clearly the latter integral vanishes with x, Since in the interval of integration

—x2 S -x2 -1
PTG = 2@ | T | 2

we have

and
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it follows that

2

1 -1
7712 q73/2 472 exp [—] [B(to + ai) —~ B(ty)] + o(1)
2a 2

u(x, t) > E
B(ty+ax?/2)-B(ty)
ax?/2

+0(1),

where K is a positive constant. Letting x — 0, we obtain

B(ty+ax?/2)~B(ty)
0> lim

+
Jim ey =D {B(ty)].

Hence, by [ 1, p.5801, B(s) is a monotone decreasing function. Since it is non-
decreasing, it must be constant. Similarly it can be shown that C(s) is constant.

This completes the proof.

It seems probable that conditions (b), (c¢) and (d) would ensure the van-
ishing of u(x, ¢) if it were represented by (2) with 4, B, C of bounded varia-
tion, but the proof eludes the author.
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LENGTH AND AREA OF A CONVEX CURVE
UNDER AFFINE TRANSFORMATION

Joun W. GREEN

1. Introduction. We consider in the plane the class of all convex curves into
which a given convex curve can be affinely transformed, and seek the minimum
of L2/A, where L denotes perimeter and A the area. This amounts to finding the
minimum length for a fixed area, or, what is the same thing, to finding the mini-
mum length under area-preserving affine transformations. In § 2 are found neces-
sary conditions on the supporting function that a given curve yield the minimum
of L2/A, and in § 3 these are shown to be sufficient. In $4 is derived a proper-
ty of the minimizing curves; namely that if they are sufficiently smwooth, they
have at least six vertices. In §5 is derived an integral representation of the
supporting function of a convex curve, and another lemma to be used in §6. In
6 we study the problem of finding the maximum, over all convex curves, of the
minimum over affine transformations of L2/4; in other words, we seek that curve
of given area, which when affinely transformed so as to minimize its length,
gives the greatest length. We show that the extreme curve is a polygon of not
more than five sides, but fail to show what is extremely likely, that the solution

is a triangle.

For general facts about convex figures and their supporting functions which

are used, see [3].

2. Necessary conditions. Consider a convex curve K and its area-preserving
affine transforms. Since rigid motions can be ignored, any transformation in which

we are interested can be written in the form

(1) T: .

Y =p X+ eyl
The length L (), u) of the transformed curve K (A, p) is a continuous function
of A and y, and tends to w as (A% + p2)!/? becomes large. Thus L (), ) has

a minimum value, which we take for the moment to be at A = u = 0.

Received June 2, 1952.
Pacific J. Math. 3 (1953), 393-402
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In order to find L (A, ) we need the supporting function p (X, u; 6) of K (A, u).

If p(0) =p(0, 0, ) is the supporting function of K, then a supporting line to
K is

(2) x cosf + y sin 6 = p(6).
The transformation (1) carries (2) into
(3) x( e cos@+psin6)+y'e~’\ sin 6 = p(6),

which is a supporting line to K (X, ).

To convert (3) into normal form we set

e cos 0 + pu sin@ = k cos ¢,

(4) A .
e sin @ =k sin ¢,
or
cot ¢ = e cot 0 + ue)‘,
(5) A : 2 2\ o2
k? = (e® cos @ + p sin0)? + e sin” 6.

The normal form of (3) is then
x’ cosp + y’ sing = p(0)/k,
and so
p(A p @) =p(0)/k.
From (5) and (4) we see that
csc?p dp = e csc? 0 df, 2N k? sin?¢ = sin 0,

and so d¢ = d0/k%. Thus®

(6) LOwi) = [P ) do - p(@)%.
Now let A and y be functions of a parameter ¢, with A(0) = p(0) = 0. Then
L(X(2), u(e)) = L(¢),
and direct computation from (6) results in

L All integrals go from 0 to 27 unless otherwise noted.
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~L°(0) , 1, .
(7) —3 fp(G) Ay cos 20 + S Ho sin26t d6 = 0.

Since )\'0 and y; may be taken at pleasure, it is clear that in order for ¢ = 0 to

yield a minimum, we must have

(8) fp(e) cos 20 do = fpw) sin 20 d6 = 0.

In other words, a necessary condition that K give a minimum length is that the

second Fourier coefficients of p be zero.

3. Sufficiency. Suppose now that A = = 0 is a critical value of L (X, p), not

necessarily the minimum. Then, as in § 2, we see that

/p cosZGd@:/p sin260 d6 = 0.

Futher differentiation of (6), with the use of (8) and certain trigonometric i-

dentities, results in
’” 3 2
(9)L (0) =—2-fp(9){x (1+5 cos46)+ 10xy sin 460 +y*(1 -5 cos40)}d0,
where x = A7, 2y = p/. Setting
1 2 1
(10) K(9) = x2(1—--3— cos 46) — gxy sin46 + y2(1+ 3- cos 40),
we may rewrite (9) as
s’ 3 ’”
(11) L (O)=§fp(9){K+K | do.

Suppose now that p is twice differentiable, and integrate the K" term in (11)
by parts twice. We get

’ 3
1 L = — YK d6.
(12) (0) - = j'(p+p )

The discriminant of the quadratic form (10) is equal to —32/9, and the form is
positive definite. Let M be its minimum value for x? + y2 = 1, and all 6. The

quantity p + p” is the radius of curvature, ds/d 0, of K, and so

’” 3 3
L o>—fMds=—ML.
(13) ()_2 5
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If p is not twice differentiable, we approximate it uniformly by supporting func-
tions which are. The right member of (9), for these approximating functions, is
at least 3ML/2, where L is computed for the approximating function; thus,

passing to the limit, we see that (13) is satisfied in this case also.

Because of (13), we now see that if A = ;= 0 is a critical point for L (), p),
then it is a proper relative minimum. Consider now any transformation 7, corre-

sponding to parameters Ag, 19, which yields a
K, = KAy 1)

for which the second Fourier coefficients of the supporting function vanish. We
may write T in the form (TTSI) T,; that is, in studying the length of the trans-
forms of K as function of T, we may study instead the length of the transforms of

K, as function of TT!. We may write

x = e ho) x = e x’,
T35 1y 2 (peo by ™) xR L o E
where
£=r-),,
(14) n=peto e,
Now

LN, ) =2(& 9),

and, by the foregoing analysis, 2( &, n) has a proper relative minimum at £=17 =
0. But the transformation (14) is nonsingular, and so L (A, p) has a proper rel-
ative minimum at Ay, po. Thus every critical point of L (A, u) is a proper relative
minimum. But an (analytic) function in the plane which has only minima for
critical points and which tends to c at great distance can have only one critical
point [6]. Thus L (X, ) has only one critical point, and this must be at the

minimum.

THEOREM 1. 4 necessary and sufficient condition that K have the least
length of all curves into which it can be transformed by an area-preserving affine

trans formation is that

fp cos 20 d9=fp sin 20 d6 = 0.

Henceforth we shall refer to such K as extreme curves.
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4. A six-vertex theorem. A vertex on a convex curve is a point where the
radius of curvature has an extremum. It is a theorem of Kneser (see for example
[1, p.160]) that every convex curve, if sufficiently smooth, has at least four

vertices.

THEOREM 2. Each extreme curve with a continuous radius of curvature has

at least six vertices.?

The radius of curvature p is given in terms of the supporting function by

p=p+p”. Now

d
fp cos@dﬂzfd—; cosGdG:fcosGds:fdy:O,

and similarly for [ p sin 6 d6. Also

fp cos 26 d@:f(p+p”) cos 260 dO = 0,

by two integrations by parts. Thus we see that

L o0
(15) p"“E—n—+Z(an cosnf + b sin nd).
3

It has been known since Liouville ([ 5, p.264]) that (15) implies thatp — L/2#

has at least six alternations in signs, and hence p six extrema.

In a very similar manner one can prove the following theorem, which however,

will only be stated.

THEOREM 3. Each extreme curve intersects a certain circle, of radius L/2x,

at least six times.

5. Some lemmas. If //(&, p) is the Minkowski Stiitzfunktion of a convex

curve, then
p(6) = H(cos 0, sin ).
Now /1 is a convex function of & 7; p(6)is not convex, but has the somewhat

2 Blaschke [ 2] has already shown that a convex curve K may be affinely transformed
until its radius of curvature is in the form (15), and thus that it has six vertices. How-
ever, the vanishing of the coefficients a,and b, was attained in an entirely different way.
Namely, he found that ellipse K, of area equal to that of K, whose mixed volume with K
is a minimum. Transforming affinely so that K, becomes a circle, we see that K becomes
a curve satisfying (15). We have not been able to discover that Blaschke or others made
any application of this result to the present problem.
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analogous property of being sub-sine. A function f(0) is sub-sine if, provided
f(0) = A cos 9 + B sin 6 at ¢, and 6,, where 0,<0,<0, +m,

then
f(6) <A cos + B sing for 6, <0<9,.

A necessary and sufficient condition [ 4] that a periodic function p(6) be the
supporting function of a convex curve is that it be sub-sine, or, if it is of class
C’, thatp+p” > 0.

LEMMA 1. 4 necessary and sufficient condition that a function p(6) of peri-
od 27 be the supporting function of a convex curve is that it be expressible -in
the form

6
(16) p(6) =/; sin (0 —t) da(t) + A cos 0 + B sin 6,

0

where a is a nondecreasing function.
First let a supporting function p C C*’; then
p+p”=2g(0)20.
The solution of the differential equation p + p** = g(6) is readily verified to be
6
(17) p(0) = [ sin (0-0) g(1) di 4 p(0,) cos (0-6,)
o
+p’( 00) sin (6 = 00),
which is of the form (16) with

a(f) = /: g(t) dt.
0

Note that
a(f,) = 0 and a(6 +2n7) =f(p +p”)do=1L.

Now if p ¢ C”’, it is the uniform limit of supporting functions p, which are. We
put each p, in the representation (17), and apply the Helly selection theorem
and the Bray-Helly theorem ([ 7, p.29-31]) to obtain the result immediately.
The factors p,(6,) offer no difficulty, since one easily shows that they are
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bounded for all n.

The converse is proved similarly. If a periodic p is given by (16), we can
approximate a by a sequence of smooth monotone functions a, which give peri-
odic functions p,; these p, are sub-sine since they satisfy

44 ’

p, +p, =a >0.

Again using the Bray-Helly theorem, we have that p = lim p,; that is, p is a limit

of sub-sine functions, and so is sub-sine.

LEMMA 2. If p(0) is a supporting function, and if there exist at least six
disjoint intervals in 0 < 0 < 2, interior to each of which p is not identically of
the form A cos 0 + B sin 0, then there éxists a function (0) with the following
properties:

(a) p + Ay is a supporting function for small ||,

(b) [ d6 =[ncos20 db = [sin26df =0,

(c) n# Acosf + Bsind.

Let Ij: a; <0< b]-, j=1,2,...,6, be the disjoint intervals mentioned, and
let p be given by (16). We may assume that a (0) is continuous at a; and b;.

Define

a(a}.) for 0 <0 <a,,
(18) Bi(O) = {a(f) for
a(bl.) for

while outside (0, 277) we make df3; periodic. Set
B = Z}\i ,8/., where l)\jl <1.

Then a () + AB(0) is nondecreasing if |A| < 1, as simple computation reveals.
We set

6
n =‘/0‘ sin (0 ~t) dB]-(l) and n = Z:/\]' nj-

Then p + Ay is of the form (16), with a+ A3 in place of a. In order that 5 have
period 27, and thus that (a) be satisfied, we demand that

(19) 2 fsine 4B;(0) = 2\, fcose 48,(8) = 0.
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To satisfy conditions (b) of the lemma, we set

(20) ZA].'[T,]. d0 = 2 A, fnj cos 20 df = infm. sin20 d6 = 0.

Equations (19) and (20) comprise five homogeneous equations in the six un-
knowns Aj. They always have a nontrivial solution, which we employ for the con-
struction of 8. If A\; # 0, then 7 is equal in I; to a nonzero multiple of p (8),
plus sine and cosine terms, and this by hypothesis is not of the form 4 cos 6 +

B sin (. Thus ( c¢) is satisfied, and the lemma is proved.

6. The minimax problem. We now restrict our attention to extreme curves, and
seek the maximum m of L2/A. A crude estimate of m can be obtained as follows.
If K is any convex curve of area 1, inscribe in K a triangle A of maximum area,
A(A). Then at each vertex of A, K must have a supporting line parallel to the
opposite side of A, and these three supporting lines form a triangle A,. Trans-
form the plane in an area-preserving affine way so that A and A, are carried into,
equilateral triangles A” and A{, and K into K’ The perimeter L (A”") of A’ is
given by

L(AY) =6 JA(AONS.

Then
L(K) < L(A?) = 2L(A") = 12/ A(A)//3 < 12/3.
Thus for the transform K’ of K, we have
L%/4 < 48 \/3, and so m < 48/3.
On the other hand, the equilateral triangle gives
L?/4 =12 /3, andso m > 12 /3.

We now normalize our problem by considering extreme curves of length 1, and
try to minimize the area. By the usual compactness argument ([ 2, p.62]), there
does exist a minimizing curve K. Let p be the supporting function of K. Suppose
there exists a function 5 (0) satisfying conditions (a), (b) of Lemma 2. Con-
sider the area 4 (\) of the extreme curve, of unit length, whose supporting func-
tion is p + Ayn. We have
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(21)  24(\) =f{<p+m,)2 — (p*+ A2} do
=24(0) + 2\ f(pn —p7") dO + \? f(n2 - ') do.

Because of the extreme nature of K, the term [(pn —p’n’) d6 =0. Because of

conditions (b) of Lemma 2, the Fourier series of n will be as follows.

n =a cosf + bl sin 0 + Z (a]. cosj0+b]. sin j6),
3

and by Parseval’s relation,
i 2d6—(a2 b2) i ( 2 bZ)
. ] =(al+ b6]) + a; + b?).
3
Similarly (nbeing bounded),
1 ” 2 2 - 2 (2 2
— Jn do = (a2 + b3) + >~ j? (a}+ b}),
3
and so

(22) f(nz—n'2)d6=nz (1-j%) (e} + b?).

3

Since A(X) > A(0), we see from (21) and (22) that aj = bj =0 for j > 2, so that
n=a, cos O+ b, sin 6. Thus it is not possible to satisfy (a), (b), and (¢c)

simultaneously.

Now if K is a polygon, p is piecewise of the form 4 cos 6 + B sin 6, and con-
versely. If K is not a polygon it is clear that one can find as many intervals as
desired in each of which p is not of that form, and L.emma 2 applies. Lemma 2
also applies if K is a polygon of six or more sides. Thus it is not possible for

K to be other than a polygon of five or fewer sides.

It appears very likely that K is an equilateral triangle and that m = 12 /3.
To eliminate the cases of four and five sides is just a problem in the calculus,
but possibly a very difficult one. In these cases there are not enough sides to
construct the variations used above, which consist of sliding sides in and out
parallel to themselves, so if a variational method is to be used, a different kind

of variation, involving changing the angles, must be found.
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AN ISOPERIMETRIC MINIMAX

WiLLiaM GUSTIN

Introduction. In the preceding paper J. W. Green considers for a given
convex body K in the euclidean plane the minimum of the isoperimetric ratio r
(ratio of squared perimeter [2to area a) taken over all affine transforms # of K.
He then investigates the maximum value taken over all K of this minimum ratio,
shows by variational methods that such a maximum is attained by some polygon
of five or fewer sides, and conjectures that it is, in fact, attained by a triangle
with 12\/3, the isoperimetric ratio of an equilateral triangle, as the minimax
ratio. I shall prove this conjecture directly by refining an estimation used by

Green, the precise statement of results being as follows:

[. Let K be an nontriangular plane convex body; there then exists an affine

transform k of K with r(k) < 12/3.
II. Let T be a nonequilateral triangle; then r( T) > 12\/3.
Before taking up the proof of these results we dispose of a lemma.

II. Let k be a possibly degenerate convex body withs C k C t, wherein ¢
is an equilateral triangle, and s a side of ¢; there then exists a number x with
0 < x <1 such that

(k) £(2/3 + x/3) I(¢)
a(k) > x a(t),

AN

simultaneous equality occurring if and only if either x =0, k=sorx=1, k=1t

Proof of INI. Let p be that supporting strip of % parallel to the line-seg-
ment s; and let x be the ratio of the width of p to the width or altitude of ¢. Thus
0<x<1, withx=0orx=1 according as k= s or &k = ¢, Choose a point at which
k touches the side of p opposite s, and define %4 to be the triangle with this
point as apex and s as base. Define £* to be the trapezoid formed by intersection
of pand t. Clearly s Ck CkCk*Ct; and k= k= k* if and only if k= s or k= ¢.

Received October 16, 1952.

Pacific J. Math. 3 (1953), 403 - 405
403



404 WILLIAM GUSTIN

Since kD ky, it follows that a(k) > a(kx), with equality if and only if & = ky.
And since k£ C k¥, it follows that [ (%) < L(E*) with equality if and onlyif k = k*,
These inequalities become, upon the easy computation of a(%«) and [(£*), the

asserted inequalities of III.

Proof of 1. Let K be the given nontriangular convex body. Since the area
functional is continuous, it easily follows from a compactness argument that a
triangle T of maximal area can be inscribed in K. Let the three sides of T be
labelled S; (i =1, 2, 3), and let V; be that vertex of T opposite S;. Because the
area of T is maximal, the line L; through V; and parallel to S; is a line of sup-
port of K. The triangle formed by the three lines L; then circumscribes K and
also T; it is composed of four nonoverlapping congruent triangles T and T;,
where T; is labelled so as to have S; as a side. That part X; of K in T;is a
possibly degenerate convex body with S; C K; C T;. Now any triangle can be af-
finely transformed into any other triangle. In particular, T can be affinely trans-
formed into an equilateral triangle ¢, with T; going into ¢;, S; into s;, K; into k;,
and K into k. Therefore s; C k; Ct;, and t; is congruent to £ According to III,
ratios x; exist giving inequalities on {(%;) and a(%;). Furthermore, since K and
hence % is nontriangular, not all x; = 0 and not all x; = 1. Therefore 0 <x < 1,
where x = 2 x;/3. Evidently k is composed of the four nonoverlapping sets ¢ and

k; in such a way that

IR) = 22 10hk;) = 1(8) < (1+ %) ((0),

a(k) = 2 alky) +a(s) 3 (1+3%) als),

whereupon
1+ %) x(1~-x)
r(/c)s(—-—x)-r(c)= [1———~—— 123 < 12{3,
T 1+ 3x : 1+3x

as was to be shown.

Proof of Il, Through II is merely a matter of trigonometry, and very likely
can be verified by exhibiting a neat but perhaps unperspicuous trigonometric i-

dentity, I shall here prove it by the sort of methods used above.

Let T be a nonequilateral triangle. Define S;, V;, L; as above. Since T is
nonequilateral, some two of its sides, say 5, and S,, are unequal. Let v, be that
point on the line L, regarded as a linear mirror, at which v, = V, is reflected

when viewed from v, = V,; and let ¢ be the so symmetrized isosceles triangle
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with vertices v; and sides s;. Then the path s; s, is shorter than S; S,, so
1(t) < I(T); and, since both triangles have the same base and altitude, a(¢) =
a(T). Therefore r(¢) <r( 7). Consequently if the minimum isoperimetric ratio
among triangles is attained, it is attained by an equilateral triangle only; where-
upon it would follow that r( T) > 12\/3, as was to be shown. Now all possible
triangle isoperimetric ratios are realized by triangles of fixed perimeter con-
taining a fixed point. By a compactness argument, some such triangle achieves
a maximum area and hence a minimum isoperimetric ratio. This completes the

proof.

INDIANA UNIVERSITY






SOME HAUSDORFF MEANS WHICH EXHIBIT
THE GIBBS’ PHENOMENON

ARTHUR E. LIVINGSTON

1. Introduction. The regular Hausdorff mean of order n with kernel g(x) for
the sequence (sy ) is defined by

hn = hn, g = Z(Z) Sk /01 (1= 0)"F dg (1),

where g(x) is of bounded variation on the interval 0 < x < 1, g(1) - g(0) =1,
and g(0+)=g(0). The integral in the definition being a Stieltjes integral, it
is clear that g (0) may be taken to be zero.

For the sequence

" sin kx

Sn(x)'—" Z L )

k=1

Otto SzaSz [3] has proved the following result: lf, as n — ®, %, — 0+ and

nxp — A < w, then

b gln) — fO‘Si(Ax)dg(x),

where

x sint
Si(x) = [ dt.
0 t

He defines the Gibbs’ ratio for the kernel g (x) to be

2
F(g) = max —f Si(Ax)dg(x).
A>o0 ™ Y0

Received March 14, 1952, The work in this paper was done during the period when
the author held Atomic Energy Commission Predoctoral Fellowship OR-21478.
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If F(g) > 1, then the sequence {A, g(x)} exhibits the Gibbs’ phenomenon on
the right at x = 0.

It is here proved that (1) if a(x) is a regular Hausdorff step-function kernel
whose points of jump are linearly independent over the rationals, then F (ct) > 1;
(2) if o(x) is regular and has precisely two jumps, then F(a) > 1. It seems
reasonable that the first result is true without the hypothesis of linear indepen-

dence, but the author has been unable to show this.

The Euler method of summability (€, p), 0 < p < 1, is a regular Hausdorff
method having for its kernel the one-step function €,(x) which vanishes for
0 < x < p, and has the value one for p < x < 1; the method (¢, p) is ordinarily
denoted by (£, (1 ~p)/p). Clearly,

2
F(ep) == Si(n) > 1 (0<p< 1),
7
so that the one-step case of (1) above follows trivially (this was shown by

Szasz [2, 3]).

2. Notation. It is convenient to collect here some notations which will be

used throughout this paper.
(a) alx)isa step-function defined as follows:
t(x)=a;, =0 for0<x < By,
= ay, for By < x < B andk=2,+++, N,

=ay4+; =1 for By <x <1,

where aj, # ap4, fork=1,+++, N;

(b) Si(x):fx S
0

t

x sint

dt;

1
(¢) si(x)=Si(x) -5 =/

00 t

2 2 N
(d) f(x)-_-fa(x)=—/lSi(xy)dO((y)=—ZAk Si(x Br),
7 Jo T ho1

where A = ap4+y — aj;

(e) F(a) = max fa(x).
x>0
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It is clear that it is no restriction to assume that all regular step-function

kernels are of the form (a).

3. The zeros of si(x). It is well known that si{(2n + 1)7w] > 0 and
si(2n7) < 0 for n=0, 1, -+, and that si(x) has precisely one zero, call it
Zn, in each interval n7 < x < (n+1)m (n=0, 1, ---). It is intuitively clear

and easy to prove rigorously that
( 1) >0
zp —|n + =7 .
" 2

It will be shown in this section that even more is true, namely, that
e
zp = |n+=ln .
2

The tables [ 4] for the sine integral show that
1.9264 < z4 < 1.9265 and 4.893 < z; < 4.894.
It therefore follows that the following statement is true:
THEOREM 3.1. The function si(x) is positive whenever
1
-1.2150 < x — (2n+ 1)#m <§n,
and is negative whenever

1
xZOand—1.389<x—2nn<-2-n, (n=0,1,..).

This result is needed in $ 5.

It will now be shown that the zeros modulo 7 of si(x) form a strictly de-

creasing sequence with limit 7/2. The formal statement is:

THEOREM 3.2. Let (n+ 1/2+ x5)7 be the zero of [° u™' sin u du in the

interval

nre<x<(n+)nm (n=0,1,.-+).

Then the sequence (x,) is strictly decreasing with limit zero.
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(The first two paragraphs of the following proof are due to Harry Pollard,
the fourth to the referee. Both Pollard and the referee point out that the relation

d
= LF(%)/F(x)]>0

of the fourth paragraph can be deduced from general theorems on completely
monotonic functions [5, pp.144, 145, 167]. I I. Hirschman, Jr., has observed
that the zeros modulo 7 in the interval 0 < x < o of [~ g(u) sin u du are mono-

tone decreasing for any g(u) which is completely monotonic on 0 < u < ).

Proof. Let

Fa) = [T audy du for x> 0,
Then
(1) /;a w' sinwdu=[F(a) cos u=F"(u) sin u]?

for @ > 0. To prove this, let L (x) and R (x) denote, respectively, the left and
right sides of (1). Since L(a)=R(a), it is sufficient to show that L"(x) =
R’(x) for x > 0. But this is immediate, for

L’(x)=-x""sinx,

R(x)=-sinx [F(x)+ F”(x)] =-sinx fw e ™ du.

0

Now taking the limit in (1) as ¢ — o gives
(2) —/oo u! sinudu=F(x)cosx—F’(x)sinx,
X

for F{w)=F(0)=0.

Since F(x) > 0 and F’(x) < 0, it follows from (2) that the finite zeros

of [*® u™! sin u du occur at the points where
x p

Therefore, to complete the proof of the theorem, it is sufficient to show that
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F’(x)/F (x) is strictly increasing to zero as x — .

Employing the usual derivative notation, one has

n _-xu n_,-u
"'(-—x)"HF(n)(x) = xNtt fw ue du = '/-m e du,
0 1442 0 1+ (u/x)?
so that
—(=x)""EFO) (%) 5 al as x — .
Therefore,

F’(x) _l[sz'(x
= x
F(x)

)
—0 as x — w.

xF(x)

All that remains to be shown, then, is that F*(x)/F (x) is strictly increas-
ing, and this will follow if

d [F'(x)
de LF(x)

or, equivalently, if
[F/(x)]? - F(x)F*"(x) < 0.
Now

-xUu

F(x)—2F'(x)y+F"(x)y2=/m (1 +yu)?idu > 0,

0 1+u?

so that the discriminant of the quadratic expression in y on the left must be
negative. Since this discriminant is [F’(x)12~ F(x)F*(x), the proof is

complete.
4. The main theorem, Two lemmas are needed.

LeEmma 4.1, IfO0<a; <1lfork=1,+-+,n,and a;, «++, ap, 1 are linearly
independent over the rationals, then, given € > 0, there exist odd positive in-
tegers x, l{,e++y Iy, m < n, and there exist even positive integers I 415+,
such that 0 < xap~ Iy < € fork=1, v+, n.

Proof. If Red u denotes the fractional part of u, then it is known that the
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vectors (Red ja,, -+, Red ja,), j=0,1, .., are dense in the n-dimensional

unit-cube [ 1, p. 83 ]. Hence there is a positive integer j such that

1 l—-ap+e€

= (1 -a) < Red jap < min|——— , 1 (k=1,ce0y m),
2 2

1 2—ap + €

E(Q—ak)<Redjak<min —2'—'—,1 (k=m+1,ece,n).

The conclusion of the lemma is satisfied by taking
x=2j+1, I = 2(jay, — Red jag)+ 1 for k=1,++c, m,
and
I =2(jag —Red jag +1) fork=m+ 1, -+, n.

LEMMA 4.2. Let t(x) be defined as in 2(a). If By, +++, By, 1 are linearly
independent over the rationals, then F (&) > 1.

Proof. Let P, Q be the sets of positive integers & < N for which 4; > 0,
Ay < 0, respectively, Then

flx) =

3o

(2 + Z\,AkSi(ka).

keP k€Q

By hypothesis, 0 < B < 1 for k=1, ..., N. Therefore, Lemma 4.1, with
€ = 1/2, asserts the existence of a positive x, and nonnegative integers nj such
that

1
0<nxoﬁk—-(2nk+1)n<§n for k€ P

and
1
0<axqBr~2(ng+1)m < -2- m for k € Q.

By Theorem 3.1, si(mx, %) > 0 for k€ P and si(mxyBx) < 0 for £ € Q. Re-
calling that 224 = 1, one obtains that f(7x,) > 1, which is sufficient.
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Since

lim Si(4x) =

A oo

N |~

m sign x

boundedly, it follows that F (g) > 1 for every regular Hausdorff kernel.

Let now o(x) be a regular N-jump llausdorff kernel. It will be shown that
if F(a)=1, then B8, -++, By are linearly dependent over the rationals, and
this will prove:

THEOREM 4.1, If a(x) is defined as in 2(a) with By, +++, BN linearly
independent over the rationals, then F (&) > 1.

Proof. Let B=(By +++, By)andr=(r, «++, ry), rj rational. Set

iﬁl = max Bky

1<k<N

and let x be a scalar such that 0 < x < |B|"!. Let A be the zero N-tuple. The

inner product of N-tuples A and B is defined in the usual way and is denoted

by (A]B). Let

a¥(t) =1 for xBy <t <1

and 0¥ (¢)= tlxt) otherwise. Then «” is also a regular N-jump Hausdorff
kernel, and F (¢*) = F (x).

Suppose now that F (&)= 1. According to Lemma 4.2, there corresponds to
each x in the interval 0 < x < |B|™! an ry, # A and a rational number R, such
that

(xBlre) = Ry

But the available r,, R, are countable while the permissible x are uncountable.

Hence, there is an uncountable set X of x associated with anr # A and a ration-

al R, If x, x“€ X, then
(x—27)(B]|r) =0,

Taking x # x* gives (8|r) = 0; that is, 8, -+, Bn are linearly dependent

over the rationals.

5. The two-step case. The theorem to be proved is:
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THEOREM 5.1. If a(x) is a regular two-jump Hausdorff kernel, then F(&)> 1.

Proof. If B, and f3, are linearly independent over the rationals, then Theo-

rem 4.1 gives the result.

If &(x) is not an increasing function, then either 4; > 1 and 4, < 0 or
Ay <0 and A, > 1. Suppose that it is the first. Recalling that 4, + 4, =1,

one obtains

2 2
f(x) = ;Sl(xBl) ——A2[Si(xﬁ1) hd Sl(xﬂz)].

Since A, < 0, and Si(#) is the absolute maximum of Si(x), it follows that
2
f(a/By) > = Si(w) > 1.
w

The remaining two-jump kernels are those which are increasing and for

which

B2

_P
B1 ‘7’

with p and ¢ integral and (p, ¢) = 1. If p and ¢ are odd, there is no problem,
for then f(7q/B:) > 1. Otherwise, one of p, ¢ is odd and the other even. To
treat this situation, the following lemma, whose proof offers no difficulty, is

useful:

LEMMA 5.1. Let 0 < b, < by, < 1. If I, and I, are odd positive integers
such that

€
{16, = I, by | <—=(b; +by),
m
then there exists a positive number x such that
|xb, =l | < e for k=1, 2.

By Theorem 3.1, the proof of Theorem 5.1 will be complete if a positive
x and odd positive integers I, and /, exist such that

| xBr ~ wly| < 1.215 for k=1, 2.
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By the above lemma, then, one wishes to find odd positive integers [, = 2i + 1
and [, = 2j + 1 such that

_ ' 1.215
|ply ~ql;| = |2pi = 2qj +p—ql < —— (p+q).
m

Since p and ¢ have unlike parity, p + ¢ > 3. It will therefore be sufficient to
find nonnegative integers i and j such that 2pi -~ 2qj + p— g = L.

If p— g =1, simply take i = g and j = p.

If p ~ g > 3, then the Diophantine equation
. . 1
pi-di= (L-p+q)

makes sense and, furthermore, has positive solutions i and ;.

6. Remark. According to Theorem 3.2, the zeros modulo 7 of si(x) tend
to 7/2. Therefore, the method of proof used in this paper can not be expected

to handle all step-function kernels omitted by Theorem 4.1.
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ON GENERATION OF SOLUTICNS OF THE BIHARMONIC
EQUATION IN THE PLANE BY CONFORMAL MAPPINGS

CHARLES LOEWNER

Introduction. The study of harmonic functions in the plane is essentially
facilitated by the invariance of the Laplace equation

under the group of conformal mappings. The transformations leaving the bi-

harmonic equation

d%u d*u 9*u
+ 2 + =0

(1) Vi = -
dx* dx " dy? dy*

invariant are much more restricted; they only form the group of similarity trans-
formations in the (x, y)-plane. On the other hand, more general transformations
leaving the biharmonic equation invariant may be obtained if u is not treated as
a scalar which does not change its value under the transformations, but trans-

formations of the more general type

x'= ¢ (x, y)
(2) }"=‘/'(x>~y)
u’ = y(x, y)u

are permitted. We assume the functions ¢, ¢, and  to be four times continuously
differentiable, and X # 0. That such nontrivial transformations exist follows
immediately from the well-known representation of a biharmonic function u in

the form

Received June 23, 1952, This paper is a partly simplified version of work done under
sponsorship of the Office of Naval Research. See the Technical Report with the same
title, No. 13, N6ori-106, Task V (NR-043-992), with two notes by G. Szega.

Pacific ]. Math. 3 (1953), 417-436
417



418 CHARLES LOEWNER

(3) u=h(x, y)r* + hy(x, y),

with suitable harmonic functions A, and k,, and r? = x? + y2, If a transformation

by reciprocal radii is applied, which in polar coordinates is given by
1 4

(4a) r’=-, 0°=90,
r

and u is transformed according to the formula

1
(4b) u'= —u,
.2
then ©” becomes
(3a) u'=hy (x5 y) + by (x5 92,

with 4, ’ and h,” being the harmonic functions of x% y” obtained from A, and

k, by the transformation (4a). This shows that u” is biharmonic in x* and y”.

By combination of the transformation obtained with arbitrary similarities,
more general transformation of type (2) may be obtained. In order to write them

in a simple way we set
z=x+1iy, 2" =x"+ iy’.

One sees easily that the composed transformations can be written in one of the

following forms:

Gz + dz’
(5%) z'=z—’8, u' =k =z u;

yz + 6 dz

UZ + dz’
(5°%) 2z’ = B, u' =k |—| u.

yZ + 8 dz

The constants ¢, 8, vy, 8, k£ are only subjected to the conditions
“p
y &

Each Moebius transformation in the (x, y )-plane may, therefore, be extended to

£0, k# 0, k real.

a transformation in the (x, y, u)-space leaving the biharmonic equation in-

variant. The extended transformations are analogues of those introduced by
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W. Thomson in his study of the Laplace equation in 3-space.

In the first section of this paper we shall show that formulas (5’) and (5*)
represent the only transformations of type (2) leaving the biharmonic equation
invariant. They form a group M in the (x, y, u)-space depending on seven real
parameters.

The introduction of M has the advantage that if a problem concerning the
biharmonic equation is solved for a domain B of the (x, y)-plane, it can also
be solved for any domain B’ obtained from B by a Moebius transformation. A
further advantage consists in the possibility of introducing domains having
z = in the interior or on the boundary. All definitions regarding the behavior
of a biharmonic function u at z = @ are obtained by using one of the transfor-
mations (5) transforming z = w into a finite point z°=a”’, and considering the
transformed biharmonic function u” at z“=a’. For example, u is called regular
at z=c if u’ is regular at z”=a’. Also the concept of a biharmonic Green’s
function I' (x, y) with the boundary conditions =0 and du/dn = 0 requiring
that u and the normal derivative are zero on the boundary (Green’s function of
the clamped plate) may be extended to the case where the domain considered
contains z = o in its interior, and o should be the pole of I'. The singular
part of I', belonging to a finite pole a’ is given by r’? log r’, r” denoting the
distance of z’=x"+iy” from a’. By using a transformation (5) transforming
a’ into infinity, one obtains a biharmonic function satisfying the same boundary
conditions in the transformed domain whose singular part at z =0 is —c logr,
with a positive constant ¢, and r representing the distance of z from z =0 or
from any other fixed point of the z-plane. In order to make the definition definite

we set ¢ = 1.

This extension of the concept of Green’s function will be utilized in §2,
which is concerned with a question of Hadamard [3] regarding the sign of the
Green’s function. He asked whether it may oscillate in sign. R. J. Duffin [1]
indicated that the answer is affirmative by constructing solutions of the bi-

harmonic Poisson equation
4
Vi =plx,y)

in an infinite straight strip satisfying the boundary conditions

which oscillate in sign although p is positive. In §2 simple examples of domains
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bounded by analytic Jordan curves are constructed in which Green’s function
for suitable choice of the pole may oscillate in sign. Other examples were found

by G. Szegs [ 4] and P. R. Garabedian [2].

There are indications that in the exterior of a convex curve with the pole at
infinity a change of the sign of the Green’s function cannot occur. In the last
part of § 2 we prove only that this conjecture is equivalent to positivity of the

. . 2
harmonic function VT,

The fact that the biharmonic equation is absolutely invariant only under the
group of similarities does not exclude the possibility that for an individual bi-
harmonic function u other conformal mappings exist which transform u into a new
biharmonic function. Indeed, we shall show in $1 that in general there exists a
one-parameter family of conformal mappings which are not similarities and which
transform u into biharmonic functions. In particular one can construct in this
way from one Green’s function a one-parameter family of Green’s functions of
nonsimilar domains. (Only the case of a circle has to be excluded here.) This

also will be discussed in § 1 and applied in § 2.

1. Transformations of biharmonic functions. We shall prove that the trans-
formations of type (2) leaving the biharmonic equation invariant form the group
M described by equations (5). All transformations are assumed to be one-to-one

and four times continuously differentiable, and the Jacobian shall never vanish.

We make use of the well-known fact that the biharmonic equation is the

Fuler-Lagrange equation of the variational problem

(6) Bff(vzu)zdxdy—.-o.

If the integral of (6) is subjected to a transformation of type (2), an integral in
the (x% y’)-plane must be obtained whose Euler-Lagrange equation must again

be the biharmonic equation

v,4u' = 0.

The new integrand is a quadratic expression in the second derivatives of u” with

respect to x and y”’, and the second degree terms are evidently given by
xy 92u’ ox’\2 ox’\?2

(= 1) (5)
xy’ dx’? Ox dy

9%u’ [ax' gy’ dx” dy”’ ] %u’ (ay' )2 0}/')2] r
+ 22— —_—t — + — vl R (—— ’
ox’dy’ L dx ox dy dy ay’? Wox dy

1
(7) —
NP
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J being the Jacobian of the transformation from the (x7 y’)-plane into the
(%, v )-plane.

Already from the expression (7) one can derive the fourth order terms of the
Euler-Lagrange equation, which by assumption is again the biharmonic equation.

This leads by a simple computation to the equations

o \? 9x\? dy’\? Ay “\?
® &) () -G) ()
Ox dy ox dy

and we see that the mapping must be conformal.

In order to obtain further conditions on the transformation, we specialize u
to an arbitrary harmonic function of x and y. Since it is then also a harmonic
function of x* and y’, we have

’2

(09 v dx du dx Ou ]

u'=uv'2><+2[—, —t—
dx’ ox dy’ ody

and further,

(97) 0=V =uV 4 4[8V’2X o WV x o ]

—— + —
dx” dx’ dy” dy”’

9%y 9% d*y 9%u Py 9%
+ 4 = + 2 — — + ]
0x"* 9x*2 dx‘dy” 0dx’dy dy’% 9y’?

2 . . .
Since V' u=0 represents the only relation between the derivatives of u”

with respect to x” and y” up to the second order, we may conclude.from (9”’) that

82 82 62
(10) X X s 'X ~ = 0.
9x’%  9y’?  dx"dy

The only functions satisfying these conditions are those of the form
(11%) Y = colx’? + 97%) + 2c.x” + 2c,y" + c3

(cgs ¢y 5 Ca5 c3 arbitrary constants ).
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Application of the same considerations to the inverse transformation leads to a

similar formula for the reciprocal of y:

(11*) l: co’(x% + ¥2) + 2¢,%x + 2¢,7y + 37,

X
with suitable constants ¢y, ¢;”, c3”, c3”. Consider now first the case of a
nonconstant Y . According to (117) and (11°°), the level lines of y are in both
planes systems of concentric circles each of which may degenerate into a sys-
tem of parallel lines. But a conformal mapping transforming such systems into
each other must be, as is well known, a proper or improper N.oebius transforma-

tion.

In the case of a constant y we may proceed as follows: We compose the
transformation with one of the transformations (5) having a nonconstant y , and
apply to the composed transformation the previous result saying that now the
(x, v Fplane is subject to a Moebius transformation. Using the group property
of the Moebius transformation, we conclude that also the original transformation

of the (x, y »-plane is a Moebius transformation.

We now have to investigate how the coefficients ¢; in x depend on the
Moebius transformation to which the (x, y)-plane is subjected. Since we already
know the transformations (5), it is sufficient to consider only the identity

transformation. We know already that ¥ must have the form
x = colx? + ¥2) + 2c,x + 2¢,y + c3,

and multiplication of any biharmonic function uz by x must again lead to a bi-

harmonic function. Setting

u=x?+y?

gives immediately the result ¢y = 0. Setting further

u=x(x2+y2) or u=y(x2+y2)

gives then ¢; = c, = 0, and we see that y must be a constant. We have thus

arrived at:

THEOREM 1. The most general transformations of type (2) which leave the

biharmonic equation invariant are represented by formulas (5°) and (5%).

As was already mentioned in the introduction, there exist in general for an
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individual biharmonic function u (%, y) conformal mappings which are not simi-
larities, and which transform u again into a biharmonic function. In order to
derive them we make use of the well-known Goursat representation of a bi-

harmonic function,
(12) u=RN{zp(z) + q(2)},

where p(z) and ¢ (z) are analytic functions of z = x + iy, and the symbol I in-
dicates the real part of the quantity in parentheses. The representation is

unique modulo a change of p and ¢ into
(13) p, =p+a+icz, q =q—az +id
(a, ¢, d constants, ¢ and d real).

We write further the Laplacian in the more convenient form

9%y

(14) V% = 4 —
dzdz

Without loss of generality we may restrict our attention to proper conformal

mapping. Let
(15) z’=f(z)

be such a mapping transforming u into a biharmonic function in the (z’= x " +iy”)-

plane. We have

gy S T k& =5R[i€ = —”lf;]=m[dp, i'-l;]
dz’dz’ dzdz dz’ dz’ dz dz’ dz dz’ dz
and
4 d? d?%z
(16”") _Ju__ =m[ P ]
9z°%9z"? dz*% dz7’2
and, therefore,
d* d*z
(16) sr[ P 2]=o
dz*? dz’?
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Excluding now the trivial case of linear mappings characterized by

d?z
-0,
dz*?
we conclude from (16) that
d? d?
(17) P = ic z (¢ areal constant),
dz*? dz*?
and hence
(18) p=icz + Gz’ + f3 (%, B constants).

We may exclude also the possibility & = 0, since then p = icz + 8 and according
to (12) our function u is harmonic. But in this case (15) may be any conformal

mapping. If & # 0 we have
(19) z’=a(p—-icz)+b (a, b, ¢ constants, a # 0, c real).
We have thus arrived at:

THEOREM 2. A proper conformal mapping transforming a given biharmonic
but not harmonic function u with the Goursat representation (12) again into a

biharmonic function is either a similarity or one of the transformations (19).

REMARK 1. For the functions u with constant Laplacian V?u, the mappings
(19) coincide with the similarity mappings, and these are the only biharmonic
functions of this type.

REMARK 2. By combination of the transformations (19) with transformations
of type (5), more general mappings may be obtained transforming u into a bi-

harmonic function.

2. A question of Hadamard regarding the sign of Green’s function of the
clamped plate. As was already discussed in the introduction, Hadamard asked
whether Green’s function of the clamped plate may change its sign. We shall
construct here very elementary examples showing that this is the case. In order
not to interrupt further considerations, we shall first derive several simple

lemmas which will be used in our constructions.

Consider first a finite domain B, and let I'(z,, z,) be its biharmonic
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Green’s function now considered as function of a pair of points z, and z, in B.

Because of the well-known symmetry
I'(zy, 25) = T (2,9, 2,),
it is irrelevant which of the points is considered as pole. We have:
LEMMA 1. For any choice of m points zy, z55 *++ , 2z, in B, the determinant

Uz, 2y) Tlzy,25), 000,02y, 2p)
(20) D= [z, 20) T(zg, 295000, Ulz0, 211)

I_‘(Zm» Zl)y F(zms 22)’ cee, F(stzm)

satisfies

D> 0.

This is an immediate consequence of the well-known fact that I'(z,, z,)

represents a positive definite kernel.

In particular, ['(a, @) > 0; but the equality sign cannot hold since then
the inequality

I'(a, a) I'(a, z)
=-T1%a,2)>0
I'(z,a) T'(z, z)

would lead to I'(a, z) =0 for all z in B, which is evidently impossible. We
have, therefore:

LEMMA 2.°  For all points z in B, we have

(21) I'(z,z) > 0.

We assume now B to contain oo in its interior, and state, for its Green’s

function with the pole at infinity, which we will call I" (z):

—

It is, for example, sufficient to assume the boundary of B to be three times con-
tinuously differentiable to ensure the existence of I

2Hadamard ascribes the first proof of inequality (21) to M. Boggio. His formula for
the variation of I'(z, z) on p.28 of the already quoted paper also implicitly contains
a proof.
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LEMMA 3. I'(z) can be represented in the neighborhood of z = @ in the

form
(22) [(z) =-logr + agr® + 2a,x + 2a,y + I'1(2)
(r = |z, ap, a;, a, constants),

with a remainder 1y bounded in the neighborhood of z = w, and the constant

aqy is positive.

Proof. 1f we apply to [ (z) the transformation (5°) corresponding to z’=1/z,
I'(z) changes into Green’s function I'“(z”) of the transformed domain B’ with

the pole in z’= 0. But for ['” we have
T(z%) =r?logr’+ ag + 2a,x" + 2a,5" + +++,

the dots indicating quantities of at least second order. The constant g, is

positive by Lemma 2. Transforming back, we obtain the contents of Lemma 3.

We introduce now the Goursat representation of I', writing it in the form
(23) T(z) = N7 p(z)} - h,

where p(z) is analytic and %4 harmonic.® From Lemma 3 we can easily con-
clude that the free constants in the choice of p and A can be selected so that

the following conditions are satisfied:
(a) The function p(z) has at infinity a simple pole with a positive p“(w).

(b) The function % differs from log r by a harmonic function in B, regular

also at infinity.

By the conditions (a) and (b), the functions p and h are uniquely deter-

mined.

We shall now derive properties of p(z) characterizing it independently of h.
We use the analytic function

(2) =2 2h
w\z) = azo

3We assume from now on that B is simply connected, in which case p(z) is always
single-valued.
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Its expansion at infinity starts with the term 1/z. From (23) and the boundary

conditions satisfied by I' we conclude that, on the boundary of B,

(24) 0= — = —1{; —_
dz 2 p(2)+a’zz

ar 1 dp __] dh
dz

This equation evidently completely expresses the boundary conditions on I’

modulo an additive constant. We have proved, therefore:
LEMMA 4. The function p(z) is characterized by the two properties:
(a) It has at infinity a simple pole with a positive derivative p’(w ).

(b) The function

coincides on the boundary of B with a function which is analytic in B and whose

expansion at «c starts with 1/z.

We know from Theorem 2 that p (z ) maps our domain B onto a domain B, (not
necessarily schlicht) with preservation of the Green’s function with pole at
infinity. In order to bring Lemma 4 into a form in whichk B and B, play a sym-
metric role, we introduce the function z = g({) which maps the exterior of the

unit circle | {| = 1 onto B so that
(25) gle) = 0, g’(w) > 0.
In a similar way,
(&) =p(g())
maps the exterior of | {| = 1 onto the domain B, and we have again
(25) flx) =0, f(c)>0.
Lemma 4 can now be expressed by saying that

— df A ——

coincides on | {| = 1 with the boundary values of a function analytic in | {| > 1
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whose Taylor expansion at infinity starts with the term (g”(cc)¢)™'. Multi-
plication with dz/d{ leads, therefore, to:

LEMMA 5. The function f({) is characterized by the following properties :
(a) It is analytic in | {| > 1 and has at infinity a simple pole with f’(w) > O.

(b) The function

(26) ()

coincides on |{| =1 with the boundary values of a function w(() analytic in

| £| > 1 whose expansion at infinity starts with the term 1/{.

As soon as () is determined, it is easy to construct the Green’s function
s y

by using equation (24). It gives, after transformation into the {-plane,

(27) 23—Z;=w(/;) (1< > 1).

An integration of w () determines A modulo an additive constant which is to be

adjusted to the boundary condition I" = 0.

Lemma 5 will now be utilized to find simple examples of domains whose
Green’s function oscillates in sign. The simplest choice of g({) one might try

would be

By
g(§)=é+—é— (1Bl < 1),

which maps |{| > 1 onto the exterior of an ellipse or, in the limiting case

| B, | =1, onto a slit domain. In this case, one verifies easily that

{-B/<

(28) f(§) = ——
2(B,B, +1)

and a simple computation gives, for I" written as function of {, the expression

B1 By

1 _
29 U073 ’- -1 -1 ’ =Py 1).
2 21+ B By \© +B1Bi| ~logp, ([ {l=psp21)

But one verifies easily that I' is here always positive. We try, therefore,
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for g(£) an expression*
1
(30) g(§)=é+—+—é—

and shall show that for suitable choice of the constants 8, and 8, we obtain a
schlicht map of |{| > 1 on a domain B with a Green’s function whose sign

oscillates.

First we shall show that the corresponding f(() is of the form

Oy Oy
(31) f(é)=c[§+ a0+—+—],c>0.
¢

In order to verify this we introduce the analytic functions

~ 1 — _
(327 gl ==+ B¢+ By &,

N

~ 1 _
(3279 (o) = C[Z+ Ao + Uy ¢+ Uy 42],

which coincide on |{| =1 with g({) and f({), respectively. According to
Lemma 5, we have to show that the constants ¢, &, 0, C(, can be chosen in

such a way that

~ dg ~ df
(33) w(é)=f(é)z;+ g(éf)z

has an expansion in 1/ starting with the term 1/£. We have

(34) w(C)=c[%+’CA_O+'OTl ¢+ T, 42”1_%_32_2]

+c[%+,§l £+ B 42”1“2;_'-3;;}

or

4N. Mouskhelichvili gave a general procedure telling how to construct Green’s func
tion of a domain whose mapping function g({) is rational. We have to compute it in case
(30) in all details. See [43. N. Mouskhelichvili, Application des intégrales analogues ¢
celles de Cauchy a quelques probléeme de la physique mathématique, Tiflis, 1922,
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(34%) w(é):c[(oTz+E;)CZ+(’GT1+B_1)€—-(072,81 v By oy~ o)

2072,32+2E;“2+a151+510(1—2 ]
Foeee b,
¢

The conditions on f({) are, therefore, satisfied if
(357) Uy + By =0, ty + B, =0, O‘o=alﬁz+[3_10‘2:
and

c(20y By + 2B20z + Gy By + B1 &y = 2) = = 1,

which gives

(35) U1 = - By, Gy =- By, O(o=-23_132,
and

ct=2(1+ ﬁlﬁl + 2, B—z)-

Our function f((¢) is, therefore, given by

o _ BB
39 (0=l Bz ) [o-2R pam= —Zj—}

In order to obtain I', we have to compute, according to formula (23), the real
part of f({)g({). Using the expression (36), we obtain

— _ Bi Bay(= Bi By
O =¢- 26, B~ - c_] ==
- - -7 E - Bfﬁz ¢
=C§—25152§+B1'Z’—l312+Bzzj*ZT‘—Bz4—2
2B1B2B2 ﬁlﬁ?um?z Elfsz_ﬁzéz
z & e fer e

and
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B1 B . B2Bs

p? p*

(37) PRI (D = p? -

_ BIB, BiB2B:  PBiB2
_2§R|Bx,82§+ % + Iz + Zg’z l

We substitute further into the formula (34) for w({) the expressions (35) for
Ctg, Cly, CLo, and obtain

1 = = — Br 2B,
(38%) w(<)=c[2‘23162“514—32§2]Il——- ]

¢ &
1 — — B 2B,
+cl=+ Bl + Bl + —+ — 1,
¢ ¢t &
or, after a simple computation,

2(B3 B, + 2B,B2)  4B1B2B,
(38) wm:iH‘ ﬁﬁ+ﬁBz+ BiBaba|
¢ % 3

In order to obtain £ we may, according to (27), integrate w({):

,8;‘),52 +2/§152 313252
+
2

(39) w(é)d{:log(-Qc[ 7

} + C (C a constant).

Since the real part of (39) must coincide on | {| =1 with R{f({) g ()}, we
obtain, by comparison of (37) and (39),

(407) CH—BLBl‘BzB_2}=§R(C)1
or
(40) R(C) o 1= BB~ B2 B

2(1+ By By +20,B,)

From the foregoing formulas we finally obtain, by substitution into (23), the
following expression for I'(z) in terms of :
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o o
(1) e B0 BB gl D D

p? p* ¢ p?¢

_% log p - (1*3151 - Bzﬁz)’
with
(42) el =2(1+ BB+ 2B, B2)-
We can now show that the constants 3; and 3, can be chosen in such a way

that g () represents a schlicht mapping of | {| > 1, and still I'({) oscillates

in sign. Evidently we obtain an oscillating I if the normal derivative
(5)
dp2

on the unit circle | {| = 1 becomes negative in some of its points. But we have,

from (41),

p=1

9r _ _
C-l(;) =2-6B,81-20B,8;
2!

4BiB 6BiB 2BiB  4BiB _ _
—Ml- Tttt [+ 205 BB 26, Ba),
. _
(43) c-l(a_r) =4—431;§1-1632/§2-16§%§—1ﬁ (1<l =1).
dp? ¢

p=1
This expression becomes negative on the unit circle if

16|81 B2| > 4 = 4B, By ~ 16, Bs»

or

(44) |B,1 + 21821 > 1.
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The function g({) represents a schlicht mapping of the exterior of the unit

circle if the difference quotient

g(d,) - g(g)
él—éz

has positive real part there. This is the case if

|Bi] +2[B,] < 1.

But even the exterior of slightly smaller circle is mapped schlicht under this
condition if only the cases || +2|B,| =1, and B? and B; of equal argu-
ment, are excluded. If, therefore, | 81|+ 2|B,|=1, and B} and B2 have dif-
ferent arguments, all sufficiently close values f;, B, give schlicht mappings
of |£| > 1, and can be chosen so that (44) is satisfied. We thus obtain ex-

amples of domains where I oscillates in sign.

We conjecture that, for the exterior of a convex curve and pole at infinity,

I' is positive. We shall support this conjecture by proving:

THEOREM 3. For the exterior of a convex curve and pole at infinity the
positivity of I is equivalent to the positivity of VT,

.. 20 . . .
This is important because VT is a harmonic function.

First we shall prove that the positivity of ' implies the positivity of VA
Assume first that the boundary curve is analytic. Then I' can be analytically
continued beyond the bourdary curve, and we can speak of derivatives of higher
order on the curve itself. From the positivity of I' and the boundary condition
it follows immediately that the normal derivative of second order on the boundary

satisfies

But the second derivative in the tangential direction is zero again on account
- 2
of the boundary conditions. We have, therefore, V°I" > 0 on the boundary.

Since VT is harmonic and, on account of LLemma 3,
(vri,._. >o,

the Laplacian VT s positive in the whole domain.
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The condition of analyticity of the boundary curve now can easily be dropped

by a limiting process.

We shall now prove the converse: Vr > 0 implies I' > 0. For the proof we
need some preliminary considerations regarding the following question: Which

differential operators of second order,

(45) (% y) (o y) 2 s 2 () (x, y) 2
viX, y)=a11\X Y ¢-9x_2+ A\ % Y axay'*'azzxs}’

dy?
du u

+ 2a,(%, ) — + 2a,(x, y) — + a3(x, y)u,
dx dy

transform an arbitrary bikarmonic function u(x, y) into a harmonic function

v (x, y)? The answer is given in:

X
LEMMA 6. The most general operator of the required type is of the form

Im(x, y) 0 dm(x, y) d
(46) v(x,y)=m(x,y)v2u,—2 _m_f_y_u.{._u_u +v2m.u,
dx  Jdx dy dy

where the function m(x, y) is of the form

(47) m(x, y)=co(x? +y2) + 2¢,x + 2¢,y + c3 (cg, €15 €y c3 constants).
Proof. We form

aszu 32v2u 62v2u
+ 2ay, + 8y,
dx dxdy dy

+ terms of lower order.

(48 V=ay,

Since the only relation between the derivatives of u up to the fourth order is

given by Vi =0, we see already from (48°) that
(499 ay; =0, ayy = ay,.
Calling a,, = a,, = m, we can write (45) in the form

du du
(45°) v =mVu + 2a, — + 2a, — + azu.
dx dy

From (45’) we obtain
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(48”%) Vi =2

am oV Im IV EYA
_— + — + 24a,
dx dx dy dy dx

+ a,

dy

avzu,

+ terms of lower order.

From (487’) we conclude that

dm om
(497) L
dx y
and (45°) can be rewritten as
dm 9 dm 0
(457) vemVi o) 2 28R o,
ax ax ay ay

From this equation we derive

(48"') v2v=v2mv2u_4 a2m aZu azm 82u

9%m 9%u

+ 2
dx? 9x? dxdy dxdy ’ dy? dy?

|

2
+ a3 V'u + term of lower order ,

which gives

(49”) . —

and we obtain (45) in the form (46) with m given by an expression (47). We

verify easily that for any such choice of m the Laplacian satisfies

V2v = 0.

Let B now be the exterior of a closed convex curve, and I' its Green’s

function with the singular point at infinity, and assume that VI > 0 in B.

Take a straight line which does not penetrate into the interior of the boundary

curve. By change of the coordinate system we can make this line the y-axis,

so that B lies to its left. We now apply Theorem 5 with the special choice

m = x, and obtain that

or
(50) v=xV2F—2——
dx
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is harmonic in B. On the boundary of B,

ar )
(51) — =0, VT >0

the latter inequality being a consequence of the assumption that V' > 0in B.
Since our domain lies completely in the half-plane x < 0, we conclude from (51)
that v has nonpositive boundary values. From the behavior of I at z = w ex-
pressed by Lemma 2, we see that v is regular at infinity. From the extremum
properties of harmonic functions we now conclude that v < 0 in the whole B.

In particular, on the y-axis where x = 0 we obtain the result
(52) — > 0.

Let [ now be a half line originating in a point C of the boundary curve of
B orthogonal to the tangent line at C. laying the y-axis perpendicular to [
through any of its points, we see that (52) holds in all points of /; and, since
I' = 0 at C, we arrive at the inequality I" > 0 along the whole /. But the equality
cannot hold, for otherwise I' would be zero along a whole segment of [ and,
since it is analytic, along the whole [. This contradicts Lemma 2, which im-
plies that ' — o as z —» . The whole domain B can be covered with half
lines having the properties of [. The inequality I" > 0 holds, therefore, in the
whole B.
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REMARK ON THE PRECEDING PAPER OF CHARLES LOEWNER

G. SzEGO

1. Introduction. In the preceding paper, Charles Loewner constructed certain
Jordan curves with the property that the clamped plates bounded by such Jordan
curves have an oscillating Green’s function. The question concerning the sign
of the Green’s function has been raised by J. Hadamard, and this problem has
been pursued recently by R. J. Duffin and P. R. Garabedian. The construction
of Loewner is based on a method due to N. Muskhelichvili using appropriate

conformal mappings. *

The purpose of the present note is to construct such Jordan curves in an
elementary manner. For the sake of completeness we repeat a few definitions to

be found in the preceding paper.

A function of u(x, y) defined in a domain g and having therein continuous
partial derivatives of the fourth order is called a biharmonic function in g if it

satisfies the biharmonic equation

d*u d%u d%u
(1) Véy=V2V2y = + 2 + =0.

9 x* dx% dy? ay*

Let g be a connected domain bounded by a finite number of analytic arcs.
Let ¢ be a fixed point in g. The Green’s function I'(p) =I"(p; ¢q) of g with re-
spect to ¢q is a function of the variable point p = p(x, y) satisfying the follow-
ing conditions:

(a) T' is a biharmonic function of p except at the singular point g. Denoting
by r the distance of p from ¢, we have

(2) T=r2logr+k,
where £(p) = k(x, y) is biharmonic in g without exception.

(b) On the boundary of g we have the conditions:

1See the References given in the paper of Loewner.
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or
an

(3) I =

A function u(x, y) biharmonic in the neighborhood of x=0, y = 0 can be

written in the form:
(4) u(z y) = (2% + y2) u (% y) + u,(xy),

where u, and u, are harmonic functions in the neighborhood of x=y=0.

The previous concepts can be extended to infinite domains by using an ana-
logue of Thomson’s transformation. As is obvious from the representation (4),
we have:

Let u(x, y) = u(r, ¢) be harmonic in the neighborhood of the origin r = 0
(1, ¢ are polar coordinates). We apply the inversion

x=x'(x'2+)"2)_l, )’=y'(x'2+y'2)-l,
(5) N )
r=(r)"1 b=’
The function
(6) U(x%y) = (r)? ulx, y)

will be then a biharmonic function in the neighborhood of x* = o, y'= .
A function biharmonic in the neighborhood of the origin can be presented as

a linear combination of the basic bihamonic functions

r"cosng, r"sinng,

(7)

r"*2 cosng, r"*t?sinng, n=0,1,2 -+,
to which r2 log r has to be added if the function is singular at the origin (as for

instance is the case for the Green’s function with respect to the origin).

A function biharmonic in the neighborhood of x = ®, ¥ = , can be repre-

sented as a linear combination of the basic biharmonic functions

- -n .
r™ cosng, r sinng,

(8) -
r?2™ cosndg, r?™ sinng, n=2012-¢--,

to which log r has to be added if the function is singular at infinity.

By use of the inversion (5), (6) there is no difficulty in defining the Green’s
function of an infinite domain with singular point at infinity provided that this

point is an interior point of the domain.
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2. Results. In order to prepare the construction announced above, we con-
sider the infinite plane, which we interpret as the complex z-plane, z = x + iy =

ret®

, cut along the following circular arc of the unity circle:
(1) r=1, m—a <P <m+ A

Here o is given, 0 < & < 7. We map this infinite slit domain onto the exterior of
the unit circle of the {-plane, {=p e'¥, in such a way that z = and { = o cor-
respond to each other. Furthermore, we assume that dz/d( is positive at z = (=

. This mapping has the following form:

(Ag-1
(2) z = i s 0<\<I1.
-
[lere A is an appropriate function of «.
First we note that the real point z=—1 of the slit corresponds to { =1 and

{=~1. Now let A = cos o 0 <t < w/2; since

dz 1-2A¢+ &2
(3) SR bk AL

d¢ (£=-2)2
we see that the points (= etivo correspond to the end-points z =—eti% of the
slit. More precisely, ¢'%0 corresponds to 70 | _e-io Ag (= 'V describes

the unit circle in the positive sense, z surrounds the circular slit; the arc ~y <
U<, corresponds to the inner ( concave) side of the slit, and the remaining arc
to the outer ( convex) side of it. In particular, =1 and ¢ = -1 are transformed

into the point z = —1 on the concave and convex border of the slit, respectively.

Inserting ¢ = e'¥o in (2), we find that

ei% (cos Yy - ei% -1)

. —idj
ezt\/fo'( cosyp—e °) _ e2i‘/’0 _
Yo

i

_pia

e ~ —cosy, e " —cos iy,
so that 2(//0 = 77— ; hence
(4) A = sin (®/2).

We denote the image of the circle | {| = R, R> 1, by C. This is an analytic

Jordan curve.
The principal results of this note are the following:

I. LetI'(p) be the Green’s function of the infinite slit domain of the z-plane



440 G. SZEGO

bounded by the circular arc (1), having at z = w its singular point. This function
changes its sign in the slit domain just defined.

II. Let I'(p) be the Green’s function of the infinite domain outside of the
curve Cp, R> 1, having at z = wits singular point. This function will change its
sign in the infinite domain outside of Cr provided R is sufficiently near to 1.

From the last example it is easy to derive an example of the kind announced
in the introduction: we have to apply an inversion to the curve Cr with respect

to any fixed interior point. Here we must use the results of Chapter 1.

3. Circular slit. We seek the Green’s function I'(p) of the circular slit do-

main in the following form:

1 1
(1) ['(p) = log — + A(p-——) cos + f(p, ) + (r2=1) glp, ).
p p

Here A is a constant, and f(p, /) and g(p, ) are harmonic functions regular
for p > 1, including p = . The point p is represented by the complex number
z = re'® defined in 2. The relation between z = re!® and ¢=pe'¥ is given by
2 (2).

The boundary conditions of the clamped plate amount to the fact that the
function (1) and its derivative with respect to p vanish as p=1. But p =1 im-

plies that r = 1, so that we have:

(I) f(1,¢) =0; i.e., f(p, ) =0.

a(r?)
dp

(II) =1 + 24 cosy + ( ) g(l, ) =0.
p=1

Now we note the following formulas which will be useful in our later work:

2 ) A2p2—2Ap cosyy+ 1
=p ’
p?=2\p cos y + A

~2Xp cos iy + A2 (p? + 1)

(2)

r2-1=(p*-1)
p?=2Xp cos gy +A?

From the second we conclude that

1 -2\ cos iy +A?

(3) a(r?) ) —2Xxp cos iy + A2 (p2+1) 4r(=cos i+ A)
dp p=1 p2~2Ap cos y + A\?

p=1
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tience condition (II) can be written as follows:

4X(=cos ¢ +A)
(4) -1+ 24 cosyy + = g(Ly) =o0.
1-2A cosyy+ A

We determine 4 according to the condition

AX(=cos U + A)
-1+ 24 cosy + v =0,

412
A=(2M)71,

and (4) yields

1-2X cos ¢y + A2
g(]-, ¢’)= 5
4A?

1+A2 1 cosi

(5)

g(p, [r//) =

4)\2 2A 1%

Recapitulating, we find the following expression for the Green’s function

I'(p):

1 1 1 2
(6) F(P)=l°g—+—(p——) cosz//+(r2__1)(1+)\ _ COS'.//).
P P

In the limiting case & —> 7, A — 1, we obtain of course the Green’s function

of the exterior of the unit circle, namely,

1 1
(7) log — + — (p2-1).
P 2

4. Conclusion. (a) The dominant term in 3 (6) is

1+ A2
r2

422

so that I' is positive as z — . Now we write

and have
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This quantity is certainly negative if \ is sufficiently near 1, more precisely if

A > Ao where ) is the only root of the equation

(2) log A + =0

on the range 0 <A< 1.

(b) We can show however that I" must change its sign for all A\, 0 < A < 1.
IFor this purpose we compute the following second derivative at the point z = —1

on the concave side of the slit:

d?r 1 d2(r?) (1-))2
=l-gt
2
4p* | pe1, y=o Ap® | peryp=0 AN

(d(r2)) 1
+ < =
73 P

From the second formula in 3 (2) we find

d2(r?) _, —2) + 2A2
dp* 0=1, =0 (1-2)2
(=22 +2A2) (1 =XM)2 = (=21 + 2A%) (2-2)) _4A(1+3))

+ -_

(1-x)* (1-x)2

so that, in view of 3 (3),

(3)

dp?

(d2r‘) 1 1+3A 4 4\
P=1, =0

which is indeed negative.

(c) It is interesting to compute this second derivative for all values of \. We
obtain from 3 (6):
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I

921 cos ~2Xcosy+ 207 [1+A2 cos s
1 }\ + 2
dp? =1

1-2)cos g+ A% | 42 2A

d [=2\p cos ¢ + A2 (p?+ 1) (1+)\2 cosd;)
+ —_— —
4o\ p2-2xp cosyea? [\ ZA
(4)
2costyy -2\ cos i+ 22
"

A 1-2\ cos ¢ + A2

4AA(X = cos i)
1-2) cosyh+ A2

Hence this second derivative is positive on the convex side of the circular arc,
and negative on the concave side of this arc. On the convex side I' is positive,
and on the concave side " is negative, provided p is sufficiently near to the arc

in question.

5. On the Green’s function of the infinite domain which is the exterior of C R
We denote now by I'(p) the Green’s function of the infinite domain which is the
exterior of CR’ having its singular point at infinity. We seek this function in the
form:

R P
F(p):log—+A—}E cosyy + B
p
(1)
p2_A2 R
+ C + 1z |D+E — cosy],
p? = 2\p cos ¢+ A? P

where A, B, C, D, E are appropriate constants depending on R and X; here again
the point p is represented by the complex number z = rei¢, and the relation be-
tween z = re!® and ¢ = pe'¥ is the same as above. We show that the constants
A, +++, E can be determined in a unique way so that [ satisfies the boundary
conditions of the clamped plate provided that R is sufficiently near to 1; more
precisely, there must be 0 < R — 1 < € = €(A).

The conditions

(2) ['=— =0 for p = R

are equivalent to the following:
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(3) = — =0 for p = R,

where the function I'; is defined by

= (p?2 = 2Ap cosr + A2) I

R
(4) = Iog;—+A%cosl//+B) (p? = 2Ap cos ¢y + A%) + C(p?2-A2)

2 > 2 - R
+p2(1=2xp cosy + A2 p2) |D+E — cos ¢ ].
p
Here we used the first formula in 3 (2). Now (4) is a quadratic expression in
cos iy. Conditions (3) can be replaced by the corresponding set of equations for

the coefficients of cos ¢/ in (4). These equations are somewhat simplified if in

1

(4) we replace cos ¢y by p~! cos ¢y. The resulting coefficients are:

R
M, (p) = (Iog ; + B) (p2+A%) + C(p?2 =A%) + Dp?(1+2%p?),

A R
(5)M2(p) =z (p2+A%) = 2) (log — + B) - 2XADp% + ER (1+2\%p?),
p

3AA .
M(p) == —— -~ 21 ER.

The boundary conditions are equivalent to the following set of conditions:
(6) M (R) = M/ (R) = M,(R) = M,(R) = M_(R) = M (R) = 0.
(b) The last of these six equations can be disregarded since ¥ ;(p) is inde-

pendent of p. The resulting five equations are linear in the five unknown quanti-

ties A, -+, E. They are as follows:

(7) B(R?2+)%2) + C(R2=)2%) + DR2(1+A?R?» =0,

1
2RB - — (R*+A2%) + 2CR + D (2R +4\?R%) = 0,
2

{
—;{— (R +A2) — 2AB — 9ADR? + ER(1+ A2R?) = 0,

i
o

2\ s 4
2A+?—4)\DR+2£4)\2R =0, 'E-FER
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In order to show that the unknowns are uniquely determined, we have to dis-
cuss the determinant of this system. As R — 1 the elements of this determinant

approach those of the following determinant ( the second and fourth equations are

divided by 2):

0 1+A%  1-=A%  1+A? 0
0 1 1 1+2A2 0

(8) 1+ A2 -2\ 0 -2X 1+A2
1 0 0 -2\ A2
1 0 0 0 1

Subtracting here the first column from the last we obtain:

0 1+A%2  1-)\2 1+ A2

0 1 1 1+ 2\2
—)\2
(1-2%) 1+A2 -2 0 -2
1 0 0 0
1+12  1-)2 1+ M2
=-(1-2)\2) 1 1 1+2A2
—2) 0 —2A
1+22  1-2A2 ,
=202 (1-)\? =423 (1=A\2 0.
A (1 ) 9 0 ( ) #

6. Conclusion. From 5 (7) it is obvious that the parameters 4, «.. , £ are
rational functions of R and A. Let X be fixed, 0 <X < 1. Then these parameters
are rational functions of R, and the evaluation of the determinant 5 (8) shows
that they are regular in a certain neighborhood of R = 1. Incidentally, we find
from 3 (6) that

1 1+ A2
(1) A=-E=—, D=-B-=

AZ ] C=0 aS[{=1.
2A 4

Inserting z=0, p=1/A, ¥ = 0 in 5 (1), we obtain an elementary function of
R which is regular at R = 1. It is a combination of log R and the rational func-
tions A, B, C of R. Now this function is negative for A = 1 (provided A is suf-
ficiently small). From this the same property follows for the function 5 (1)

provided R is sufficiently near to 1. This yields the desired property of the
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domain outside of the level curve Cp of the conformal mapping of the circular

slit domain onto the exterior of the unit circle.

In order to prove the same property for all A (and for sufficiently small values

of R~ 1), we compute

d*T
dp?

P=R, Y=0

We note that the curve CR intersects the real axis in two points; the curve is
convex at the left point and concave at the right point of the intersection, pro-
vided R ~ 1 is small enough. The second derivative (2) we consider is associ-

ated with the concave point of intersection. Now ( 2) has the same sign as
2
d* 1,

dp?

(3)

’

p:R, \L:O

where I} is defined as in 5 (4). From 5 (4) we see again that (3) is a function
of R which is regular at R = 1. Since it is negative for R = 1, it must be negative

for all R > 1 sufficiently near to 1.

This establishes the assertions.

STANFORD UNIVERSITY



LIPSCHITZ FUNCTIONS OF CONTINUCUS FUNCTIONS

IMANUEL MARX AND GEORGE PIRANIAN

1. Introduction. The present paper was suggested by a note of W. S, Loud

{21 in which the following theorem on functions of a real variable is proved.

THEOREM 1. If & is a constant (0 < o < 1), there exist a continuous
function {(t) and a pair of positive constants K| and K, such that

[f(e+h) = f(O] <Ky [R]®

for all ¢ and all h, and such that

lim sup [f(e+ ) - f(0)] > K
h-o lh‘a

2

for all t.

It is natural to examine the possibility of a variable exponent «(¢) and to
consider various definitions that associate with every continuous function f(¢)
a ‘“‘Lipschitz function” ¢ (¢ f). For a reasonable choice of the definition,
Loud’s result implies that every constant (0 < & < 1) is the Lipschitz func-
tion of some continuous function. The following sections offer two different
definitions of Lipschitz functions, and deal with the problem of characterizing

the functions that are Lipschitz functions of continuous functions.

2. The point Lipschitz function of a function. Let f(¢) be a continuous,

real-valued function of ¢, Consider the quantity

[ Qe +h) = f(z0)]
Q¢ to; f) = lim sup .
b G

If Q(a, ty; f) is finite for « = o, it is zero for all o less than «f if O is
greater than zero for & = , it has the value + o« for all & greater than o,
Let o(ty; f) denote the least upper bound of all & for which Q(a, ¢o; f) is

Received November 26, 1951.
Pacific J. Math. 3 (1953), 447-459
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finite. Then «(¢; f) shall be called the point Lipschitz function of f(t). A

simple computation shows that

(1) (¢ f) = lim inf 10glf(t+h)_f(t)‘
h—o log | A |

’

where the fraction on the right is to be interpreted as having the value + o

whenever f(¢+h)=f(¢).

THEOREM 2. If f(¢) is continuous (-~ o < t < w), then &(t; f) is the in-
ferior limit of a sequence of continuous functions of t; if o.(t; f) > 1 throughout

sonie open interval of the t-axis, then G (t; f)= o throughout the interval.

Let L (¢, h; f) denote the fraction in the right member of (1), let € denote a
constant (0 < € < 1/2), and let

(2) (Xe(t;f)=min [1/e, min
l

L(t, ks )],
€ < |h €

< 2

Then O(E(L‘; f) is a continuous function of ¢, because of the restriction on A and
the truncation of L (¢, h; ) imposed in the right member of (2). If € is assigned
the successive values 1/4, 1/8, 1/16, «+- , the first part of Theorem 2 follows
from the formula (2).

For the second part of the theorem, consider an open interval / on the t-axis
throughout which o (¢; f) > 1. Because f’(¢) = O throughout /, f(¢) is constant

in 1, and the proof of the theorem is complete.

THEOREM 3. Let { ¢,(t)} be a sequence of continuous functions (0 <
Un(t) < 1), and let

a(t) = lim inf o, (¢).

n--+ 00
Then there exists a continuous function f(t) such that o (t; f) = a(t).

The theorem will be proved by a construction analogous to that used by
Loud in his proof of Theorem 1. Let g(t, s) be the continuous function which
takes the value 0 when ¢ is an even multiple of s, takes the value 1 when ¢ is
an odd multiple of s, and is linear between consecutive multiples of s. Let
o be a constant between 0 and 1, and let 4 > [2(1 - «)]™! be an integer.
Loud proved that the series
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(3) Z 2-2Aan g(t, 2-2An),
n=1

converges to a function f(¢) which has the properties promised in Theorem 1.
Roughly, the principal intuitive idea behind Loud’s proof is that for every pair
of values ¢ and A at most one or two terms of the series (3) make a significant
contribution to the difference f(¢+ )~ f(¢); the contribution is always small
enough so that the first inequality in Theorem 1 is satisfied; and for every ¢
there exist arbitrarily small values of 4 for which the contribution is so large
that the second inequality in Theorem 1 is satisfied. The following three sec-
tions will be devoted to elaborations of Loud’s method that lead to a proof of
Theorem 3. We first summarize our construction of a continuous function f(¢)
whose Lipschitz function o (¢) is the inferior limit of a given sequence of con-
tinuous functions 0, (¢). The construction is then described in full detail in

the following two sections.

The function f(¢) will be written as an infinite series

() = 3" Gp(e),
m=1

with G, depending on the function ¢, (¢) alone. For every m, we divide the
t-axis into intervals [ over each of which the function &, (¢) lies within fixed
bounds to be specified. The function G, (¢) is defined separately in each in-
terval. Qver a fixed interval I, the graph I, of the function G, (t) consists of
rows of saw-teeth completely filling /. There is a row of relatively high and
wide teeth in the central portion of the interval, flanked by two rows of some-
what lower and much narrower teeth, which are in turn flanked by two rows of
still lower and narrower teeth, and so on. All the teeth of the central row have
equal height and equal width, all the teeth of the two flanking rows have equal
height and equal width, and so on. Toward the end-points of the interval /, the
heights and the widths of the teeth of I',, approach zero. The function G (¢) is
continuous for all ¢, is differentiable except at a countable number of points,
and is not constant in any interval. The heights and the widths of the saw-teeth

are so chosen that

alts f) = ale)

for the function

F(8) = 3 o).
m=1
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Details of the proof follow.

3. Classes of intervals. For each m, we denote by I, a class of intervals
to be constructed, with I, depending on I, I, -+, [;;,.; as well as on the
functional values of &, (t). The class I, consists of finitely many or infinitely
many disjoint, open intervals that meet the following three requirements: each
point of the f-axis lies in the closure of one of the intervals; no point of the
t-axis is a limit point of end-points of intervals of the class /;; and throughout

each of the intervals one of the conditions

0

I

o, (¢) < 3/4,

IN

1/4

IN

ay(2) <1

IN

is satisfied.

When the classes I, [,, +++, I, of intervals have been defined, we choose
the intervals of the class [, subject to the following four requirements: each
point of the t-axis lies in the closure of one of the intervals of the class; no
point of the t-axis is a limit point of end-points of intervals of the class;

throughout each interval of the class, one of the conditions

0 < Up(e) <3/2m*t,

1/2m+1 S_ C(m(t) 35/2m+1;

(4) 3/2M* < g () < 7/2mL

1-3/2"* < ap,(t) <1

is satisfied; and no end-point of an interval of the class I, is an end-point of

an interval of a previously defined class.

4. The saw-tooth functions. The function f(¢) to be constructed will be of

the form

(5) f(0) = 3 Gu(e) = 3 g, (0),
m=1 n=i

where



LIPSCHITZ FUNCTIONS OF CONTINUOUS FUNCTIONS 451

Gi(t) =g, + 8, + 85+ 8, +°°*»
Go(t) =g, + 85+ gy +222s
Ca(t) =g, + g, +nn >

Ga(t) =g, +e,

The indices n=1, 3, 6, 10, «-. , are said to belong to m = 1, the indices n = 2,
5 9, -++, are said to belong to m = 2, and so on. The graphs of the functions
G (t) and g, (¢) will be denoted by T, and y,, respectively.

We summarize the construction of the functions g, (¢). Corresponding to the
function G,, we have selected a class I, of intervals, and throughout each in-
terval | of the class [, the function o, (¢) satisfies one of 2™ inequalities
specified in § 3. We choose a class of exponents ¢ in accordance with these
inequalities, so that ¢ is fixed throughout each interval /, and a decreasing
sequence { s, } of positive numbers, where s, depends only on s, sy, +++ 5 sp.y
and on the value of m to which the index n belongs. The function g, (¢) is
continuous, with a graph ¥, consisting alternately of rows of equally high and
equally wide saw-teeth and of segments of the t-axis. There are at most two
subintervals of each interval I of the class [, where gn(t) differs from zero,

and in these subintervals it has the form
(6) gn(t)=srf g(t, sp),

with the exponent ¢ corresponding to the interval [. (The function g(¢, s) was
defined in €2, immediately after the statement of Theorem 3.) The terms gn(t)
of the series for G,, (t) are so chosen that every point interior to an interval
of the class [, lies on the base of a tooth of the graph 17, of G,, (¢). It remains
to describe the choice of the exponents ¢ in (6), to select the sequence {s,},

and to determine the position of the teeth in y, .

Let g, (¢) be a term of G, (¢), and let I be an interval of the class ;. The
graph y, of g, (¢) shall contain rows of equal saw-teeth over at most two sub-
intervals of I/, and the exponent c¢ in (6) determining the height of the teeth
shall have the value 1/2™*!, 3/2™*!l ..., or 1-1/2™*!, according as the
function 0, (¢) satisfies in I the first, second, ««+, or last of the conditions
(4). It follows that the height s¢ of a tooth in y, has one of finitely many values

and depends only on the range of values taken by ¢, (¢) in the interval / where



452 IMANUEL MARX AND GEORGE PIRANIAN

the tooth appears, while the width 2s, is the same for all teeth appearing any-
where in y . It also follows that the derivative g’ (¢) exists (except at denumer-

ably many points ), and takes only finitely many values.

The number s, can be chosen arbitrarily, subject to the condition 0 <s, < 1.
Once the numbers s, s5, +++, sp.; are determined, s, is chosen subject to the

following three conditions:
1) We require that s,.; be an even multiple of s,.
2) We require that the inequality

-m-1 Sp-1
s, <
10

be satisfied, where m refers to the function G, (¢) of which g (¢) is a term.
If this requirement is met, the height of each tooth in y, is no greater than 1/20
the base width of any tooth in y, (r=1,2,«+¢,n~ 1), and every tooth in
Yp-, 18 more than 10 times as high as every tooth in y . It follows that the

series &= |g,(¢)| converges uniformly on the interval (~c0, ).

3) We require finally that the slopes of the sides of the lowest teeth in y,
be in absolute value greater than 10 times the sum of the greatest slopes that
can possibly occur in Y, (r=1,2,+++,n~-1). Because the side of a tooth of

1-c

height s and width 25 has a slope numerically equal to 1/s'"¢, this require-

ment is met provided s, is chosen small enough.

We turn now to the disposition of the teeth in y . Let / be any interval of the
class I, Then y, shall have as many teeth in | as possible, subject to the
restriction that the distance from either end of / to any tooth of the graph shall
be greater than twice the height of the tooth.

Again, if I is an interval of the class [/, and if Y, has no teeth in /, then
v, shall have as many teeth in / as possible, subject again to the restriction
mentioned above. If y has beeth in /, then y, shall have, in I, two rows of
teeth flanking the row of teeth of y ; again, the distance from either end of /

to any tooth in y, shall be greater than twice the height of the tooth.

Next, if / is an interval of the class /, then y, shall have teeth in the mid-
dle portion of / provided that v, has no teeth in / and [ is sufficiently long. If
v, has teeth in /, then y, shall have two rows of teeth: each of these rows shall
be adjacent to a previously constructed row, and shall extend as near as pos-
sible to the nearer end of I, subject to the condition that the remaining distance
be greater than twice the height of the teeth.
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The construction of y (n =10, 15, 21, «++) proceeds according to the pat-
tern that has been described. The construction of y, (n=2, 5,9, «++) is similar
to the previous construction, with these modifications: the construction is car-
ried out with reference to intervals of the class /,, and with reference to the
values of the function ¢, (t); and the distance from each tooth to the end of
the interval of the class I, in which it stands is required to be 2% times the
height of the tooth (2™ times the height of the tooth in the construction of teeth
belonging to the graph I';; ). The construction of I",, is entirely independent of
the construction of I, (k £ m). Further details are superfluous, and we must

only prove that the function defined by (6) has the required properties.

5. Arithmetical estimates. First we show that if ¢y is a fixed point, ¢g =
®(¢ty), and € > 0, then

|0 + ) = f(24)]

agte

(7) lim sup
o 4]

oo

In other words, the point Lipschitz function of f(¢) has at ¢, a value not greater
than ¢,.

Let m be any integer such that ¢, is interior to an interval of the class [,
(at most one positive integer m fails to satisfy this requirement); then there
exists an integer n such that g (¢) is a term in the series defining G, (¢) and
such that ¢, lies on the base of a tooth of the graph y, of g (). Therefore
g, (t) is linear in a sufficiently small interval with ¢, as end-point; that is,

there exists a number £, with

1
(8) Esnﬁthl<3n’

such that the function g, (¢) is linear in the interval joining the points ¢ = ¢, and

t =ty + h. For this number 4 we have further

|G (tg +B) =G (1) ] = \gn(zo+h)—gn(zo)\ = |h| srf"
where
(9) c < Oy + 27 4 270

For all teeth that cover the segment joining ¢, and ¢y + & and belong to
graphs y, with r < n, the requirement 3) on {s,} implies that
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set > 10 > max | g’()],
r<n

and therefore that

2 lg (o +h) =g (2)] < |h] st /10.
r<n

For the functions g_ with r > n, the requirement 2) on {s, } gives

2 g (tg+h) =g (tg)] < s, (1/10+1/100 + +++) < s,/5.
r>n

From (8) and from the estimates obtained thus far it follows that

|f(to+h)~f(2o)] N |A] S,i-l “‘Ih|3,f-l/10—8n-/5

ag te

ag te

|&| |4

agt € C-ag-€

n

1
>sz (9/20-1/5) s =—s
4

n

By (9), the exponent in the last member is less than —€./2 if m is large enough,
and therefore the relation (7) is established.

Secondly we must prove that, for every € > 0,

[f(to +h)—f(20)]
(10) lim sup =0

h—)o lh‘ao-e

We choose an integer my such that 2™ + 27! < ¢ for all m > m,, and a posi-

tive quantity h, such that the interval
to—ho <t < tg+ho

contains no end-point of an interval of any of the classes I, I, +++, or Imo’
except possibly the point ¢, itself. Without restricting the generality of the
proof, we suppose that | k| < Aq.

To establish (10), we make separate estimates of the variation of G (¢)
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for the following three cases: the point ¢, is an end-point of an interval of the
class I; ty is not an end-point, and m < mg; or t, is not an end-point, and

m > Mmge

If t; is an end-point. of an interval of the class [, then the disposition of the

saw-teeth ensures that
(11) IGm(to+h)—Gm(t0)|<|h}/2m.

For each m < m, for which ¢, is not an end-point of an interval of the class
I, the quantity G (to+h)~ G, (t,) can be written as the sum of finitely
many terms of the form g (¢, +#£)— g, (¢); the set of indices n that occur in
this sum depends only on g, not on A. Since the corresponding derivatives

g, (t) are bounded, it follows that, for every o < 1,

Gm(t +h)~Gp(ty)
oy [onl Ol

h=0 m < m, |B|®

For m > mgy and | k| < kg, two possibilities arise, for each index m: either
to and to + A& both lie in the same interval of the class [, or they do not lie in
the same interval. In the latter case, the inequality (11) holds, and it is there-
fore sufficient to discuss the former case.

Let k be the least integer such that s, < [A| and such that the term g, (¢)
occurs in the series defining a function G, (¢) with m > my. The choice of the
exponents in the definition (6) of g, (t), and the requirement 2) on the sequence

{s,}, imply the inequality

2 1g,(5o+h)”é’r(to)| < 23;: <2 |hl°,
r>k

and the quantity c is greater than ¢, — € because of our choice of m,. Finally
we estimate the contribution from those terms gr(t), occurring in the series that
define functions G, (t) with m > mg, for which s, > |A| while ¢, and ¢y + 4
lie in the same interval of the class /,;. Let p be the greatest value of the index

r for such terms. We find
lgp (b0 + B = gp (e )| < [h]s€70 < [A1° [s,/h 10 < [A]°,

and the sum of the remaining terms of the same category is less than half of the

last member. The inequality (10) is established, and the proof of Theorem 3 is



456 IMANUEL MARX AND GEORGE PIRANIAN

complete.

We observe that Theorem 3 no longer holds if the restriction 0 < o, (¢) < 1
is removed. For if f(¢) is a continuous function, the set of points where
o (t; f) < 1 cannot have isolated points. The complete characterization of the

functions that are point Lipschitz functions of continuous functions appears to

be difficult.

6. The local Lipschitz function of a function. Let f(¢) be a continuous,
real-valued function of ¢, and let & be a variable taking positive values. Denote

by B(ty, h; f) the least upper bound of all numbers 3 for which the quantity

If(e”) = f(e9)]
(Lll_ t')B

remains bounded as long as the variables ¢’ and ¢’ satisfy the restriction
to~h <t’<t” < ty+h. For each value ty, B(ty, h; ) is a nonincreasing
function of A. The quantity

(12) B(t)=p(tf) = lim B(t b f)

h—o+

shall be called the local Lipschitz function of f(¢t).

It follows at once from the definition that
Bl ) < ale ),

for every continuous function f(¢). That equality does not always occur is seen

from the following example. Consider the function
f(¢)=tsin1/t (z £ 0), f(0)=0.

In every closed interval that does not contain ¢t = 0, f(¢) has a bounded deriva-
tive, so that « (¢ f) > 1 for ¢ £ 0. Since o (0; f) =1, it follows that the point
Lipschitz function of f(¢) is everywhere equal to 1 [except at the zeros of
f’(¢), where a(¢; f)=2]. On the other hand, the local Lipschitz function
B(t; f) has the value 1 everywhere except at t=0, and B(0; f)=1/2 (for
details, see [1]). It follows that equations (1) and (12) do not define equi-

valent Lipschitz functions.

7. Characterization theorems. The following two theorems provide a char-

acterization of bounded local Lipschitz functions of continuous functions.
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THEOREM 4. If f(t) is continuous (=0 < t < w), then

i) Bt f) is lower semi-continuous;

ii)  for each point t, either 0 < B(¢t; f) < 1, or B(t; f) =
iii) the set of points t where B(t; f) # « is a perfect set.

Suppose that 8(t) = 8(¢; f) is the local Lipschitz function of a continuous
function f(¢). If B(ty) > 1, the point ¢, is interior to an interval in which f(¢)
satisfies a Lipschitz condition with an exponent greater than 1. Then f(t) is
constant in an interval about ¢y, so that B(¢g; f) = . Part ii) of the theorem
is proved.

The set of points where 0 < 8(¢; f) < 1 cannot have isolated points, and
the set of points where S(¢; f) = w is open. Therefore part iii) of the theorem
is proved, as well as part i) for those points ¢ where f is infinite. Finally, if

B(ty) <1, for every € > 0 there exists an interval |[¢t—¢,| < & in which
B(t) > B(ty) - €.
It follows that

B(ty) < liminf B(¢)

t—ty

for all ¢y, and the proof of the theorem is complete.

THEOREM 5. Let B(t) (0 < B(t) < 1) be a lower semi-continuous func-

tion. Then there exists a strictly increasing continuous function F(t) such that

Bt F)=pB(t).

Let {I,} denote a sequence of closed intervals on the t-axis with the fol-
lowing property: for each point ¢, and for every € > 0, there exists an interval
I, of length less than ¢, covering t,. In each interval I, we select a point ¢, at
which B(t) assumes its minimum value in the interval. The function F (¢) will

be chosen as an infinite series
F(e) =3 f.(0).
r=1

If the point ¢ coincides with one of the points ¢y, ty5 «++ s tr.y, we choose
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/;(t) = 0; otherwise we choose f,(t) as a strictly increasing function of ¢ whose
local Lipschitz function has the value S(¢;) for ¢ = ¢, and the value 1 every-

where else.

The term f,(¢) is constructed from the function

This function is strictly increasing; for

f(g )/) = __lfi.
’ (1+ 1|2

when t # 0, and the function is continuous at t= 0. Furthermore, the local

Lipschitz function of f(¢; y) has the value y at ¢ = 0, since

(13) [F(es y)=f(e59)| < 2] -7}

for all distinct ¢’ and ¢”*; and it has the value 1 everywhere else, since f"(¢; y)
is continuous for |£| > 0. In order to adapt f(¢; y) to our needs we require a
sequence { p_} of positive numbers, chosen as follows. We set p = 1. If ¢ coin-
cides with ¢, £, «++, or t,.y, the function f (¢) is identically zero, and no
number p_ is needed. If all the quantities |ty — ¢y, |ty —tals oees | tr— try]
(r > 1) exceed 1, we set p_=1; otherwise we set p_equal to the least of these

quantities.

The nonzero terms fr(t) of the function F (t) are given by the formula

(14) fe) = 27 p,ffp—_-t-’; Bt

T

We prove first that

(15) B(te; F) < Bleo),

for each point £y, For every 4 > 0, the interval
to—h <t <tg+h

has a subinterval /; which contains the point 4. Since

ﬁ(tr) _<__ B(to)’
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and since the function F (¢) does not satisfy in /, a Lipschitz condition with an

exponent greater than 8(¢;), the relation (15) is established.

Secondly, we show that
(16) Bt F) > Blto) - €
for each point ¢, and every € > 0. Because () is lower semi-continuous,
B(t) > B(ty) - ¢

in some interval |t~ ¢,| < 8. We choose a pair of integers ry and r, (r, > ry)
such that

to=08 < try <to <t <to+3J,

and denote by I the closed interval (¢;, tr, ). We make separate estimates for
those terms f (¢) for which ¢, lies in /, for those terms with r > r, for which

t; is exterior to /, and for those terms with r < r, for which ¢, is exterior to /.

By (13) and (14), the inequality

() = [ ()] < 2v |7 g2 B4

holds for all distinct ¢’ and t?’. This inequality implies that the sum of all
terms f (¢) for which ¢, lies in [ satisfies throughout / a Lipschitz condition
with exponent B(to) — €. If r > r, and if ¢, does not lie in [, then f/(¢) <2™!
in /, so that the sum of all terms f_(¢) corresponding to such values of r has a
bounded derivative in I, that is, satisfies throughout / a Lipschitz condition
with exponent 1. Finally, let [’ be a subinterval of / containing t, and suf-
ficiently small to exclude all points ¢, for which r < r,, except those coin-
ciding with ¢o. The sum of the corresponding terms f, (¢) also has a bounded
derivative in I’. The inequality (16) is established, and the proof of Theorem 5

is complete.
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THE SPHERICAL CURVATURE OF A HYPERSURFACE
IN EUCLIDEAN SPACE

T. K. Pan

1. Introduction. Let ¥, be a hypersurface immersed in a Kuclidean space
Sy +1. Let P be a point of ¥, corresponding to the point P’ of the hyperspherical
representation G, of V,. Let V denote the extension of a region ¢ of V,, and
V'’ the extension of the corresponding hyperspherical region ¢ of G,. If the
region around P tends to zero, the ratio V’/V tends to a limit I, which is called
the spherical curvature of V, at P [1, pp.258-2611. It is found that ' = |Q/g],
where g=|g; | and Q= [Q .| are respectively the determinants of the coef-
ficients of the first and the second fundamental forms of V,. In this note, some
properties of the spherical curvature are studied, and new interpretations of the

Gaussian curvature are derived.

The notation of Eisenhart [2] will be used for the most part.
2. Some properties. Let a real and analytic hypersurface V, be defined by

ya.___ya(xl’”.’xn) (ad=1,+0e,n+1),
referred to a Cartesian coordinate system y* in a Euclidean space S;+;. Let a
vector-field v in V), be defined by

u“:piay“/axi (i=1,"',n)’

where the v* are real and analytic functions of the x’. Let C be a curve of V.
The normal curvature vector of v with respect to C at P is defined as the normal
component of the derived vector of the vector-field v along C at P [3]. Let «
denote a nonzero extreme value of the magnitudes of the normal curvature vectors
of v with respect to all curves of V, at P. Then «, which is called a principal
curvature of v at P, is defined by

(2.1) PI“,] _Kzgijl =0,
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where
k1l k_l
‘Pi; = Q, Qp P/gkzP P

Since || v, || is of rank 1, there is one such extreme corresponding to a vector-

field v. Its value is evidently equal to
_ i1z o ;12
(2.2) k= (¥ g2 = (H,-]-P'P’/g,-,- ptp)2,

where H;; is the fundamental tensor of the hyperspherical representation G,.

The extreme of the principal curvature of a vector-field v at P, as the field

varies, is defined by

(2.3) |H,

2
lj—K gi].|=0.

There are n such extremes «; corresponding to the principal directions for the

tensor H;j. Their product is found to be

[17 = | H/el"? = |9/,

i=1

since H = in].|=Qz/g, [1, p.260]. The principal directions for the tensor
Hij and those determined by the tensor (. are identical, since the principal
curvature of a principal vector-field can easily be shown equal to the normal

curvature of the corresponding line of curvature. Hence we have:

THEOREM 2.1. The spherical curvature of a V,, at P is equal to the product
of the extreme principal curvatures of vector-fields in V, at P, which is the same

as the product of principal curvatures of V, at P.

Since S, 4+ is Euclidean, the equations of Gauss are

Q

(2.4) Rier = @ Q= 9 @ -

ijkl il
Multiplying (2.4) by g** and summing with respect to i and &, we obtain

(2.5) Hjl = Mle + le,

where M is the mean curvature of V,, and where R, is the Ricci tensor. When

V, is a minimal hypersurface, we have M = 0, and the Ricci tensor is identical
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with the fundamental tensor of G,. If M # 0, we have

P o
(2.6) Hij ptp = Rij pp’

if and only if v is an asymptotic vector-field. If v is a unit asymptotic vector-
field, we notice, from (2.2), (2.6), and the equality

n
L
Rij Mg M) = = 22 Yoo
k=1

that the square of the principal curvature of v at P is numerically equal to the
sum of the Riemannian curvatures determined by v and n -~ 1 other mutually
orthogonal unit vectors orthogonal to v at P. Hence we have established the

following result:

THEOREM 2.2. The square of the principal curvature of an asymptotic
vector-field at P in V, is numerically equal to the mean curvature of V, at P for

the corresponding asymptotic direction.

The extreme of the principal curvatures x of asymptotic vector-fields at P in

V, is defined by

IR,

2
i~ K gijl = 0.

There are n such extreme values corresponding to the principal directions for
the Ricci tensor Rij' Their product is evidently equal to |Q/g|, if V), is minimal.
Hence we have:

THEOREM 2.3. The principal curvatures of asymptotic vector-fields at P

in V, attain their extreme values in the principal directions for the Ricci tensor.

THEOREM 2.4. The spherical curvature of a minimal V, at P is the product
of the principal curvatures of the n vector-fields at P corresponding to the

principal directions for the Ricci tensor.

3. The Gaussian curvature. When n =2, I' is called the spherical curvature
of a surface S in an ordinary space. It coincides in absolute value with the
Gaussian curvature K of S. The principal curvature of a vector-field v in V,, for
n =2 coincides in absolute value with the principal curvature of v in S, [3].
The extreme principal curvatures of vector-fields in V,, for n =2 coincide in

absolute value with the principal curvatures of S. The mean curvature of V, for
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n = 2 is identical with the Gaussian curvature of S. Hence Theorems 2.1 and 2.2

lead directly to the following new interpretations of the Gaussian curvature:

THEOREM 3.1. The Gaussian curvature of S at P is the product of the ex-
treme principal curvatures of vector fields of S at P, and is the negative of the
square of the magnitude of the Gaussian representation of a unit arc along an

asymptotic line from P in S.

Let p* and ¢® be two distinct conjugate vector fields in S. Then we have

qB= eﬁ#daupa (a, Bsp=1,2),

where da# is the second fundamental tensor of S. The principal curvatures of

the vector-fields p® and ¢* are respectively equal to
1/2
ep, = (h,5p*P"/ g, 5p°PH) /2,
1/2
ep, = (hgaﬁ papﬁ/ghaﬁpap’e) ‘2,
where haﬁ is the third fundamental tensor of S. Hence their product is

(3.1) (epp)(epq) = (h/g)l/z.

The expression on the right side of (3.1) is equal to eK, where e is +1 or -1
according as K is positive or negative at the point under consideration. At an
elliptic point, the principal curvatures of all vector-fields are of the same sign.
At a hyperbolic point, the principal curvatures of two vector-fields are different
in sign if they lie in different sections separated by the asymptotic lines of S.
Consequently, the principal curvatures of two conjugate vector-fields have
opposite signs, since conjugate directions are separated by the asymptotic
directions of the surface. Hence at an elliptic point of S, the product of the

principal curvatures of two conjugate vector-fields is positive; while at a hyper-
bolic point of S, it is negative. At a parabolic point the normal curvature of any

vector-field with respect to any curve is zero. We may consider that every di-
rection in S at a parabolic point is both an asymptotic direction and a principal
direction of a vector-field which is to be considered. Hence at a parabolic
point the principal curvature of any vector-field is zero; consequently, the
product of the principal curvatures of two conjugate vector-fields is zero. Thus

the following theorem is proved:
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THEOREM 3.2. The Gaussian curvature of S at P is the product of the

principal curvatures of any two distinct conjugate vector-fields in S at P.

The sum of the squares of the principal curvatures of the two conjugate
vector-fields is found to be

(epp)2 + (epq)2 = M(Kp + Kq) - 2K,

where kp and kg are the normal curvatures of the curves of the two fields, and
where M is the mean curvature of S. By Theorem 3.2 the above equation can be
written as

(3.2) (ep, + epq)2 = Mk, + Kq)e

Since the product of the normal radii at a point in conjugate directions is a
maximum for characteristic lines, and a minimum for lines of curvature, and
since the sum of normal radii in conjugate directions is constant, we obtain

from (3.2) the following result:

THEOREM 3.3. The sum of the principal curvatures of two conjugate vector-
fields at P is the mean proportional between the mean curvature at P of S and
the sum of the normal curvatures in the two conjugate directions at P. The
square of the sum of the principal curvatures of two conjugate vector-fields at
P is a maximum for the principal vector-fields of S, and a minimum for the

characteristic vector-fields of S.

Let m (m > 2) directions be such that the angle of two adjoining directions
is 27/m. Let the principal curvatures of the vector-fields in such directions be
denoted by ep, , ep,, +++, ep, . Then

1 m> 2 1
—_ Z (ep.)2=—M2-K,
m ¢ ¢ 2
1=1
since

1 m> 2 1
- Z KPi == M,
i=1 2

m

where Kp, are the normal curvatures of the curves of the corresponding vector-

fields.
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THEOREM 3.4. One mth of the sum of the squares of the principal curva-
tures of m (> 2) vector-fields at P, such that the angle of two adjoining vectors
of these fields at P is 2n/m, is constant and is the same for any m greater than
two. The constant is -half of the square of the mean curvature of S minus the
Gaussian curvature of S at P.

It is easy to prove that the principal direction of a vector-field in S is or-
thogonal to the curve of the field if and only if the vector-field is an asymptotic
field. Let p® be an asymptotic vector-field in S. Then its orthogonal trajectories
are defined by

du'B = eﬁ#gap,pa'
The principal curvature of the asymptotic vector-field p® is given by
(epp) = daﬁpae/i#ng pY /[(ga/gp“ pA) (gaﬁ m gy#py eAA g,y P12,

which after simplification becomes

= eBu a LY anB -
(ep,) = €™d s8, PP /ga,@p PP = Ty,
where T, is the geodesic torsion of the curve of the asymtotic vector-field.

THEOREM 3.5. The principal curvature of an asymptotic vector-field at P
in S is equal to the geodesic torsion at P of the curve of the field, or simply
the torsion at P of the corresponding asymptotic line.

From Theorem 3.1 and Theorem 3.5 we immediately obtain the first part of
the theorem of Enneper, that the square of the torsion of a real asymptotic line
at a point is equal to the absolute value of the total curvature of the surface
at the point. By the second part of the same theorem we notice that the principal
curvatures of the asymptotic vector-fields in S are different in sign.
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ON SELF-ADJOINT DIFFERENTIAL EQUATIONS
OF SECOND ORDER

Ruts LiND PoTTER

Introduction. This paper is concerned with the behavior near x = w of

solutions of the self-adjoint differential equation
(1) [r(x)y’ 1" +p(x)y=0,

where r(x) > 0 and r(x) and p(x) are continuous for positive values of x. A
solution is said to oscillate near x = o if it has no largest zero. We study the
oscillation and boundedness of solutions of equations of the form (1). Repeated
use is made throughout the paper of the Sturm comparison and separation theo-
rems and of two theorems due to Leighton [6; 51, Leighton’s theorems are the

following.

THEOREM L,. If r(x) and p(x) are continuous and r(x) > 0 on the in-

terval 0 < x < w0, and

oo dx x
lim f = and lim f plx)dx = o0,
X —00 1 r (x) X—00 1

then every solution of (1) vanishes infinitely often on the interval (1, ®).

THEOREM L,. Ifr(x) and p(x) are continuous, and r(x)p(x) is a positive
monotone function of x for x large, a necessary condition that solutions of (1)

be oscillatory near x = ¢ is that not both limits

x dx x
lim f , lim / p(x)dx
x—0e J1 r(x) x—00 J1

exist and are finite.
We proceed to the study of conditions under which solutions of equation (1)

Received May 5, 1952. The author is indebted to Professor Walter Leighton for helpful
suggestions in the preparation of this paper. Part of the work was done while the author
was employed under contract N9onr-95100 with the Office of Naval Research.
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are oscillatory.

1. Oscillation theorems. In this first section we consider the so-called

*‘normal’’ form of equation (1) in which r (%) = 1. It will be useful to set

p(x) = h%(x),

where h(x) is positive and of class C? when x > a > 0. Equation (1) then
becomes

(1.1) v+ B2 (x)y = 0.

To study the oscillation of solutions of equation (1.1), it is useful to consider

also the equations

(1.2) (A% (x)z°]"+ z = 0,
1 % (x) A (x)
1. ’7 e _ _
(1.3) A (x)m”] +[h(x) () 2 ]" 0
B2 (x) R (x) ]
1. ‘1 - - = 0.
(1.4) [A(x)"] +[h(x) o 3 ¢

Nonnull solutions of these four differential equations are oscillatory® or non-
oscillatory simultaneously, for one may readily verify that the derivative of
a solution of (1.1) is a solution of (1.2), equation (1.3) is obtained from (1.1)
by the substitution 7 = A~'/2(x)y, and (1.4) is obtained from (1.2) by the sub-
stitution ¢ = A1/ % (x)z.

We define
1 R2x)  b(x)
. H = -
(1.5) (%) [h(x) 4h(x)+2 ]
and
(1.6) H,(x) [ L) hﬁ(x)]
' A Ve R Y F Ea

1A solution is said to be oscillatory on an interval if it vanishes infinitely often
on the interval.
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It follows from Sturm’s comparison theorem that if #,(x) < 0 or H,(x) < O for

large values of x, the solutions of (1.1) are nonoscillatory. Similarly, it follows

from Theorem L, that if?
x  dx
lim f = ,
a h(x)

solutions of (1.1) are oscillatory if

|
+

X
limf H(x)dx =
a

0,

or if

lim /x Hy(x)dx = + .
a

We proceed with a proof of the following result.

THEOREM 1.1. If

lim /x Hy(x)dx = + o,
a

the solutions of (1.1) are oscillatory.

Note first that lim fa" #"'(x)dx cannot be finite, for then A’(x) — — w;
and A (x) could not be positive, as assumed. An application of Theorem L, com-

pletes the proof of the theorem.
The following lemma will be useful in the sequel.

LEmMMA 1.2. If h(x) is a positive monotone function, a necessary condition

that solutions of (1.1) be oscillatory is that

x dx
lim/ = 0.
a h(x)

To prove the lemma let us suppose that its conclusion is false; that is,

x  dx
lim/ < .
a h(x)

2All limits taken in this paper will be limits as x —> ., Unless otherwise indicated,
ais a suitably chosen positive number.

suppose
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Then by a well-known theorem on infinite integrals, lim xh™'(x) =0, so that
for any fixed value of n, A”'(x) < (nx)™!, for x sufficiently large. Since so-

lutions of the equation

¥+ (nx) 2y =0

are nonoscillatory whenever n > 2, an application of Sturm’s comparison theorem

ields the contradiction, and the truth of the lemma is established.
y

THEOREM 1.2. If
x
lim/ H(x)dx = w,
a

a necessary and sufficient condition that the solutions of (1.1) be oscillatory

is that
x  dx
Iim/ = 0.
a hix)

The sufficiency of the condition follows from Theorem L, applied to equation
(1.3).

To prove the necessity, let us suppose that

) x dx <
lxm/:z h (%) .

Since

lim /x Hi(x)dx = o,
a

it is readily seen that lim 2“(x) =+ o, and hence A (x) is monotone for large
values of x. It follows from Lemma 1.2 that then the solutions of (1.1) are

nonoscillatory, contrary to the hypothesis.

The proof of the theorem is complete.
THEOREM 1.3, [flim [* A"} (x)dx = w and, for large values of x,

[A7(x)]? < k* < 4,

solutions of (1.1) are oscillatory.
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Under the hypotheses of the theorem,

. x . 1, 1, x 1 dx
hm'/a' H{(x)dx > lim E/z (x)-—E/z (a) +/; (l - 4k2)m)] = 0,

so that Theorem L, implies that solutions of (1.3), and hence that solutions

of (1.1), are oscillatory.

THEOREM 1.4. If h(x)H,(x) is a positive monotone function, a necessary
condition that solutions of (1.1) be oscillatory is that

I /’x dx
m A h(x) =+ 0.

To prove the theorem note first that it follows from Theorem L, that not
both the limits

. x  dx . x
th — hmﬁ H(x)dx

can be finite. Suppose the conclusion of the theorem were false. Then the
positiveness of H,(x) would imply that the second limit above would also be

finite. From this contradiction we may infer the truth of the theorem.
The following result is useful in the application of the theory.

THEOREM 1.5. If lim A’(x) = L exists, solutions of (1.1) are nonoscil-
latory if L > 2, and oscillatory if L < 2.3

This theorem is proved by using Sturm’s comparison theorem with the aid

of the relation

hx) = h(a) + /xh’(x)dx.

If L =2, solutions may or may not be oscillatory depending on A (x), as the
following example shows.
EXAMPLE 1.1. For the equation
,, a*+1/4 log2x
Y+ ————— =0,
x?log?x

3Part of this theorem is contained in a theorem of Hartman and Wintner [ 1],
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we have

xlogx

(a?+1/4 1og2x)1/2

h(x) =

and lim h’(x) = 2, whereas the solutions of the equation are oscillatory or not
according as a? > 1/4 or a? < 1/4.

COROLLARY 1.5, If lim [* k"' (x)dx = o, and H,(x) and H,(x) are non-
negative and not identically zero for large values of x, a necessary condition
that solutions of (1.1) be nonoscillatory is lim h’(x) = 2.

If

x dx
limf = ®,
a h(x)

and either
x
lim/ H(x)dx =
a
or

lim f" Hy(x)dx = w,
a

application of Theorem L, to (1.3) or (1.4), as the case may be, shows that
solutions of (1.1) are oscillatory. Therefore, if solutions of (1.1) are assumed

nonoscillatory,

lim /" Hy(x)dx <
a

and

lim f" H,(x)dx < co,
a

in which case lim A’(x) may be seen to exist. Since

1

_— 2
h(x)[4 h’*(x)]dx,

x 1 , 1 , x
/a Hy(x)d = —h/(x) = ~h'(a) + 1/4L
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x 1 1 x 1
H -}’ 3
fa d(¥)dx == h/(x) + <a)+1/4/a -

) [4-r"%(x)]dx,

X

and the limit of the difference of the two integrals exists, lim A“(x) exists.

Moreover, since
x
0 <f (Hx) + Hy(x)]ds,
a

lim 2°?(x) < 4. Therefore, by Theorem 1.5, lim ~’(x) =2, and the corollary
is established.

An extension of Theorem 1.5 to the more general equation (1) can be made

if either
x  dx
lim/ =
a r(x)

or

x
limf p(x)dx = 0.
a

We assume that r(x) > 0 and p(x) > 0, and that r(x) and p (x) are functions
of class C’ when 0 < a < x«.

THEOREM 1.6. If

I x dx
""/; rx)

and
d
lim r(x)—-[r(x)P(x)]-l/2 =L,
dx

the solutions of (1) are oscillatory if L < 2, and nonoscillatory if L > 2.

Transforming equation (1) by the substitution

=f1x r(d:)

leads to the equation
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2y
— +r(x)p(x)y = 0.
dt2

The theorem follows immediately upon application of Theorem 1.5 to this equa-
tion. {Note that L < 0 is incompatible with the assumption r(x)p(x) > 0.)

THEOREM 1.7. If p(x) is positive for large values of x, and

lim /x plx)dx = «
a

and
d
limr(x) — [r(x)p ()2 =M,
dx

the solutions of (1) are oscillatory if M > —2 and nonoscillatory if M < -2.

If y is a solution of equation (1), z =r(x)y” is a solution of the differential

equation

o [ vl
. p(x)z +r(x)z_ .

Thus the solutions of (1) and those of (1.7) are oscillatory or nonoscillatory
together. Application to equation (1.7) of the procedure used on equation (1)
in the proof of Theorem 1.6 establishes the stated result.

The examples which follow indicate the sensitivity of the results of this

section.
ExavpLE 1.2. For
(1.8) ¥y’ + a*x™y =0,

we note that

h'(x)=_ix-(n+2)/2.
2a

To study the equation we distinguish three cases.

Case 1: n > —2. Then lim A’(x) =0, so that the solutions of (1.8) are



ON SELF-ADJOINT DIFFERENTIAL EQUATIONS OF SECOND ORDER 475

seen to be oscillatory by Theorem 1.5.

Case 2: n < —2. Then lim (%) = «0, and Theorem 1.5 can again be applied,

showing the solutions of (1.8) to be nonoscillatory here.

Case 3: n=-2. Then lim A°(x) = 1/a. The solutions are oscillatory if
a? > 1/4 and nonoscillatory if a? < 1/4, by Theorem 1.5. Theorem 1.5 fails
to give any information if a®=1/4 (lim A°(x)=2). In this case, however,

H,(x) = 0, and the solutions are nonoscillatory. The equation

y” + 1/4x"% = 0
is thus in a sense a limiting equation.

ExampLE 1.3. For

y+ (1/4x"? + e™) y =0,

since lim h“(x) =2, Theorem 1.5 gives no information about the solutions.
However, for large values of x, H,(x) < 0 and the solutions are accordingly

nonoscillatory.

EXAMPLE 1.4. Another equation for which lim 4°(x) = 2 is

¥y’ + 1/4 x"Hog 'x (1 + logx)y = 0.

The solutions of this equation are oscillatory by Theorem 1.1 since
x
lim/ Hy(x)dx = «.
a

The limitations of the theory of this section are indicated by the fact that
from the theorems which have been given here it is not possible to determine

whether the solutions of the equation in Example 1.1 are oscillatory or not.

2. Counting the zeros of a solution. We consider first the differential
equation (1.1), where A(x) > 0 and of class C’ on the interval 0 < x < w.
Let N(a, x) represent the number of zeros of a solution y (x) of (1.1) on the
interval * (a, x) where @ > 0. This number differs by at most one for all so-
lutions, and hence for the present purpose can be considered as depending only
mating intervals it will be convenient to use the following conventions:

[a, b] means the interval a <x<b, (a, b] means the interval a < x < b, [a, b) means the
interval a <x < b, (a, ) means the interval a <x < b.
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on the differential equation and not on a particular solution.

In the preceding section it was shown that the solutions of equation (1.1)
are oscillatory whenever lim A27(x) < 2, and are nonoscillatory whenever
lim A’(x) > 2. There are equations with oscillatory solutions and others with
nonoscillatory solutions for which lim 2’(x)=2. Wiman [8] has given an

asymptotic formula for N (a, x) when lim 2“(x) = 0:

1 rx dx
N ~ — .
(a, %) n[z h(x)

An asymptotic formula is readily found whenever 0 < lim A°(x) < 2, by con-

sidering the set of differential equations

y” + (m* + 1/4)x"%y = 0,

m
where m is any real number. For a particular value of m, N(a, x) = — logx + k&
(k is a constant), and A *(x) = (m? + 1/4)"1/2, 4

THEOREM 2.1. If, in equation (1.1), lim A" (x) =m < 2,
1/1 1\
(2.1) N(a, x) ~ —(— - —) logx.
7\ 4

Any differential equation included in Theorem 2.1 is also included in the

stronger Theorem 2.3 given below.

The Wiman formula can be extended to an equation of the form (1).

THEOREM 2.2, If

x  dx x
lim/ = or limf plx)dx = oo,
a a

r(x)

then whenever

d
lim r(x)— [r(x)p(x)]1/%2 =0
dx

the relation

N(a, x) N-i—/x vV plx)rt(x)dx

holds.
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If lim [* r!(x)dx = w, we apply to (1) the transformation

t = /{;x i (x)dx

and obtain

d2
(2.2) —}—/+r(x)p(x)y=0.
dt?

According to the Wiman theorem, the number of zeros N(ay, t) of a solution

y (t) of (2.2) is asymptotically equal to
1 re
_/' [r(x)p ()1 2de,
m Ja,
provided
d -
lim — [r(x)p(x)] 172 _ 0,
de

But this is equivalent, under the transformation, to the first half of the theorem.

1f

lim/xp(x)dx = @,
a

we apply the transformation

s = /ax p(x)dx

to equation (1.7), noting that the zeros of a solution of (1) and those of a

solution of (1.7) separate each other, and proceed as above.

An application of a variant of the foregoing method yields a generalization

of the Wiman theorem for equation (1.1).

THEOREM 2.3. If the function g(x)=[x?h"%(x)—=1/41""? is real and

positive, and

(2.3) limx[g™ ' (x)]"= 0,
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then

1 prx g(x)
N ~— dx.
(a, x) 77./; x

%
To prove the theorem we transform (1.1) by the substitution y = x'/?z and

obtain

(2.4) [xz°]% + g%(x)x"tz = 0.

The proof of the theorem may now be completed by applying Theorem 2.2 to
equation (2.4).

Theorem 2.3 is more general than the Wiman theorem. Applying the law of
the mean to A"'(x), we see that the Wiman condition, lim 4’(x) = 0, implies
lim xA™'(x) = «c, and it is readily verified that whenever the Wiman condition
is satisfied equation (2.3) holds. On the other hand, Theorem 2.3 applies to

differential equations for which the Wiman theorem is not available; e.g.,®

1+ logx
(2.5) y"+——g—y=0
4x? logx

It should be observed that Theorem 2.3 includes all equations covered by
Theorem 2.1, whereas Theorem 2.1 is not applicable to equation (2.5) since

lim A “(x) = 2.

Still more refined results are obtainable if instead of using the transformation

1/2

which led to equation (2.4), we use the substitution y = ¢'/*(x)z, where g (x)

is so chosen that [* ¢"'(x)dx diverges more slowly than log x. This suggests

the use of the sequence
x logx, x logx log,x, «++, x logx ++« log x, « -+
(ef. [61).

To show that such a sequence can be used, the following theorem is in-

cluded.
THEOREM 2.4. In the differential equation

(2.6) lr,. (x)y")" + p(x)y = 0,

5See Example 1.4, This equation was shown to have oscillatory solutions.
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if

(2.7)

and

(2.8)

then

(2.9)

where

ON SELF-ADJOINT DIFFERENTIAL EQUATIONS OF SECOND ORDER
ro(x) = %, ra(x) = rp.y (x)log, %,

d
lim ey (x) — (e (2)p ()12 = 0,
dx

p (%) = olryy (x)loglx],

d
lim rp(x) — [rn(x)pl(x)]'l/2 =0,
dx

p, (x) = Iog;/zx {[rn_l(x)(logrll/zx)']'Jr p(x)logrllnx}.

Moreover, (2.9) does not imply (2.7).

The proof is clear once the limits in question are evaluated.
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3. Boundedness of the solutions of a particular equation. In this section we

study the question of boundedness near x = + @ of solutions of the self-adjoint

differential equation

(3.1)

[r(x)y’]’ - p(x)y = 0.

We assume that r(x) and p(x) are positive continuous functions of x for x

large, and that r’(x) is continuous.

A cANONICAL FORM. It is useful to develop a canonical form for the

solutions of (3.1). This form is suggested by the special case

r(x)p(x) = k*.

In this instance the general solution of (3.1) may be written

Clev(x) —v(x)’

+ cye
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where v (x) = &7 [ ¥ p(x)dx, and ¢, and c, are arbitrary constants.

Direct computation and an application of the fundamental existence theorem

for systems of differential equations yield the following result.
THEOREM 3.1. The general solution of (3.1) may be written

clu(x)ev(x) + c2u(x)e'v(x),

where u(x) and v(x) are functions of class C* which satisfy the pair of equa-

tions
(3.2) rwdl(ru’) = pul = =1,
(3.3) ru?v’ = 1.

Since u(x) is a function of class C? satisfying (3.2) and (3.3), u(x) can-

not vanish.

THEOREM 3.2. The general solution of (3.2) is given by the relation
(3.4) u? = ayl2 + l)y22 + 2¢y,y,

where y, and y, are linearly independent solutions of (3.1) and a, b, and c are

any constants satisfying the relation
ab = ___k-Z + CZ,
if k is the constant

r(x)ly, (x)yy(x) = y/(x)y,(x)].

To prove the theorem, the solution given by (3.4) can be substituted directly
in (3.2).

BOUNDEDNESS OF SOLUTIONS OF (3.2). We first prove a lemma.

LeEvMMA 3.3. Let r(x), r’(x), and p(x) be continuous and r(x)p(x) be
positive and monotone for large values of x. If u(x) is a positive solution of
equation (3.2), the relations lim u(x) =« and lim u(x) < o cannot hold

simultaneously.

Suppose that the hypotheses of the theorem are satisfied when x > a, and
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that lim u(x) =c0 and lim u(x) < . Since u(x) is of class €2, there are an
infinite number of relative maximum points and of relative minimum points of

u(x) on (a, o). We rewrite the equation (3.2) in the form

(3.2)° (ru’)’ = r w3 (rpu® - 1).

From the hypotheses of the lemma, lim [7(x)p (x)] exists and is nonnegative.
If lim [r(x)p(x)] > 0, there exists a relative maximum point x,, of u(x) for

which
[r(xM)u'(xM)]’> 0 and r(xM)u’(xM) = 0.

This implies that there is a positive number ¢ such that u’(x) > 0 when xy <
x < xy + €, which is impossible. If lim [r(x)p(x)]1=0, from equation (3.2)’

we see there is a relative minimum point x,, of u(x) for which

[r(xm)u(xy )] <0 and r(xy)u’(xy) = 0.

This implies that there is a positive number €’ such that uz’(x) < 0 when x,, <
x < xpm + €7, which is impossible.
Thus, in any case, the assumption lim u(x)= o and lim u(x) < o leads

to a contradiction. The truth of the lemma follows.

THEOREM 3.3. Let r(x), r’(x), and p(x) be continuous, and r(x)p(x) be
positive and monotone increasing for large values of x. Then every solution

u(x) of equation (3.2) is bounded near x = «c.

We recall that a solution u(x) of equation (3.2) cannot vanish, and note
that if u(x) is a solution, so is —u(x). Let a be a positive real number such
that the hypotheses of the theorem are satisfied when x > a. Suppose then that
u(x) > 0 and let m(x) and M (x) be respectively the minimum value and the

maximum value of u (x) on [a, x 1. Let x,, and xy be such that
ulxy) = m(x), ul(xy) = M(x).

Since

[r (x)u’(x))?* = r(x)p(x)u?(x) + r(a)p(a)u?(a)

+ /x w? () r(2)p ()] dx + w?(a) = w2 (x) + [r(a)u’(a)]?,



482 RUTH LIND POTTER

it follows that

(3.5)  [r(xm)u’(xm)]? + ¢2 < w2 (x) + r(a)p(a)m?®(x) + ¢,

(3.6) [r(xpy)u’(xy)]? + c;2 >M (%) + r(a)p(a)M?(x) + c2’2,
where ¢y, c,, c{, ¢, are real constants. We identify two cases according as

[r(x)u’(x)]? is bounded or not.

Case 1. If [r(x)u’(x)]? is bounded, it follows from inequality (3.6) that

M (x) is bounded, and hence that u (x) is bounded.
Case 2. 1f lim [r(x)u’(x)]% = @, we assume u (x) is not bounded. Then
limM(x) = « and limu(x) = o

by Lemma 3.3. But equation (3.2)” then implies that (ru’)” is eventually posi-
tive or lim [r(x)u’(x)]1*=w. It follows from inequality (3.5) that lim m (% )=cc
and hence that lim m (x) = 0. Then by Lemma 3.3, u (%) is bounded.

We give a companion result when r(x)p(x) is monotone decreasing.

THEOREM 3.4. If r(x), r’(x), and p(x) are continuous, and r(x)p(x) is
positive and monotone decreasing for large values of x, every solution u(x) of

(3.2) is bounded away from zero.
The proof of this theorem is similar to that of Theorem 3.3.

The following theorem specializes Theorem 3.3 to the ‘‘normal form’ of

(1).

THEOREM 3.5. If p(x) > 0 and monotone increasing for large values of x,
then the differential equation

(3.7) y”—-plx)y =0

is such that all solutions are monotone, and there is one solution yl(x) which
approaches zero as x — «. Every solution of the differential equation (3.7)

which is linearly independent of y (x) is unbounded on (0, o).

The monotone character of the solutions is apparent from the fact that if
y (x) is a solution of (3.7), y”’(x) is eventually of one sign and hence so is

y‘(x). The general solution can be written
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(3.8) y(x) = Clu(x)ev(x) i Czu(x)e'v(x),

where u (x) is positive, and u (x) and v (x) are functions of class C? satisfying
(3.2) and (3.3). By Theorem 3.3, u(x) is bounded, and hence [v’(x)]"! is

bounded. Thus v“(x) is positive and bounded away from zero. This implies

Hr;u(x)e'v(") = lim u(x)ev™) = 0,

We set

-v(x)

y, (x) = ulx)e
and let y, (x) be a positive solution linearly independent of y (x). Since
limy/(x) =0
and
y (x)y, (x) =y (x)y, (x) = ¢,
where ¢ is a nonzero constant,

lim y, (x ) = a,
and the theorem follows.

COROLLARY 3.5, If lim [* r"'(x)dx =, and r(x)p(x) is a positive
monotone increasing function of x for x large, there is one solution yl(x) of
equation (3.1) which approaches zero as x — w. All solutions linearly in-
dependent of y, (x) approach + @ or —« as x — . The solutions are all mono-

tone.
Welett = [* r"!(x)dx. Equation (3.1) becomes

d2
(3.9) Y rx)plx)y =0,
de?

where r and p are to be considered functions of t. The theorem follows from

Theorem 3.5 applied to equation (3.9).

THEOREM 3.6. Ifr(x), r'(x), and

e , 2
P(x):p(x) 177 (x) l[r (x)

Tx) 2 (x) alrx)
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are continuous, r(x) and P (x) are positive, and P(x) is monotone increasing

for x large, there is one solution y (x) of equation (3.1) such that
lim r1/2(x)y1 (x) = 0.

For every solution y(x) which is linearly independent of ¥, (x), r1/2(x)y(x)

is not bounded.

To prove this theorem we transform equation (3.1) by means of the substitu-

tion z = r!/2

(x)y. The resulting differential equation is
z” ~P(x)z = 0.
Application of Theorem 3.5 to this equation yields the theorem.

ExaMPLE 3.1. For
(x%y%) = x%y = 0,

all solutions of the corresponding equation
22wl (%) = 2%u] = =1

are bounded since [r{x)p(x)]” > 0 (Theorem 3.3). The general solution of the
given equation is

1
—(c e® + c ™),
x

ExAMPLE 3.2. For the equation

l,'x2—2 0
=7 - 2 LT

X

{r(x)p(x)]” < 0. By Theorem 3.4, therefore, all solutions of

1 1 ’ 1
I U PR

x2 X x4

are bounded away from zero. Moreover, since

p(x) . lr"(x) r'z(x)_
r(x) 2 r(x) 4r¥(x) B

9
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by Theorem 3.6 there is a solution y, (x) of the given equation such that
lim x'lyl (x) =0,

and for every linearly independent solution y (x),
limx'y (%) = w.

The general solution of this equation is

X -X
c c .
lxe + 2 xe

ExampPLE 3.3. Consider the differential equation

By Theorem 3.5, one solution of this equation approaches zero, and all solutions
which are linearly independent of this solution become infinite. The general

solution of the equation is

- 2 - x2
o 1/2% /2 NS VAL /2.

¢y ¢

THE RICCATI EQUATION ASSOCIATED WITH EQUATION (3.1). Since
the solutions of equation (3.1) are nonoscillatory, the transformation w=r(x)y 7y

applied to this equation leads to the relationship

(3.10) w’=px) - ri(x)w?,

which is valid for each solution y of (3.1) when x is sufficiently large. The
differential equation (3.10) can be used to obtain additional information on the

question of boundedness of solutions of (3.1).

TueorEM 3.7. [f lim [F rHx)dx < o and lim X p(x)dx < «, all solu-

tions of (3.1) are bounded, and there is a positive constant M such that

ly “(x)]| < Mrt(x).

It is sufficient to consider only positive solutions of equation (3.1). Ac-
cordingly, we suppose y(x) is any solution of (3.1) which is positive for x

large, and let b be a positive number such that both y (x) and y“(x) are of one



486 RUTH LIND POTTER

sign when x > b. Equation (3.10) is then valid for such values of x, and w (x)
is of one sign. If w(x) < 0 when x > b, y(x) is bounded. If w(x) > 0, when
x > b it follows from equation (3.10) that

w’(x) < p(x)

and
wlx) <w(d) + f:p(x)dx <K,

where K is a constant. Hence

and

y(x)
y(b)

log

x dx
K/ < .
b r (x)
Thus, y (x) is bounded.

To prove the last statement of the theorem we apply the first part to the

equation
’ [pUx)z’) - ri(x)z = 0,
for which z = r(x )y’ is a solution if y is a solution of (3.1).

Examples 3.1 and 3.2 show that the hypotheses of Theorem 3.7 cannot be

weakened to the convergence of only one of the integrals

f:réc)’ [, peres

4. Boundedness of nonoscillatory solutions of an equation of the form (1).

In this section we study the boundedness of solutions of an equation of the form
(1) when its solutions are nonoscillatory and both r(x) and p (x) are positive
and continuous functions of x for large values of x. ® It is known that a necessary
condition for the solutions of (1) to be nonoscillatory is that not both

" 6Sections 3 and 4 together discuss boundedness of nonoscillatory solutions whenever

p(x) is eventually one sign, for p(x) negative and positive respectively. The case
where p (x) is not of one sign is not studied in this paper.
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I /'x dx
m “ r(x)—oc

and

x
lim / p(x)dx = .
a

If r(x)p(x) is a monotone function, the convergence of both of the aforemen-

tioned integrals is a sufficient condition that (1) have nonoscillatory solutions

[s].
We state the principal theorem:

THEOREM 4.1. A necessary and sufficient condition that an equation of

the form (1) with nonoscillatory solutions have all solutions bounded near

T fx dx <
1im o r(x) Qe

Whenever the solutions of equation (1) are nonoscillatory, the transformation

x =0 is that

w(x)=r(x)y’/y leads to the Riccati equation

w2

r(x)

(4.1) w’'=-p(x) -

which is valid for each solution y (x) of (1) when x is sufficiently large.

Let y (x)be a nonoscillatory solution of (1) such that y(x) > 0 and y’(x) # 0
whenever x > a > 0, where a has been chosen sufficiently large that p(x) > 0
when x > a. It is sufficient to consider only solutions which are eventually
positive since the negative of a solution of (1) is also a solution. Then if

% > a, equation (4.1) is valid as noted above, and

w’(x) 1
< - .
wi(x) r(x)
Hence,
1 x  dx 1
4.2 .
(42) w(x)>./:z r(x)+w(a)
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We assume that

T /’x dx <
m a r(x) ®-

Hw(x)>o0,

y(x) 1 [ x dx 1 ]'l
S ) / o el

by equation (4.2), so that

x dx 1
./; r(x) * w(a)

where ¢ is a constant. Accordingly, y (x) is bounded. If w (x) < 0, then y“(x) <0,

logy (x) < log

C,

and y (x) is bounded. Thus, whenever

1. /‘x dx
< o,
Y T

all solutions of (1) are bounded.

If lim [* r"'(x)dx = o, it follows from equations (4.1) and (4.2) that w (x)

is a positive, monotone decreasing function with lim w(x)= 0. Therefore,

(4.3) L Z)y )
y(x)

for all solutions y(x) of (1). Let y, (x) and y,(x) be any two linearly inde-

pendent solutions of (1) which are positive for x large. From equation (4.3),

r(x)y, “(x) r(x)y," (x)
lim ————— =0, lim——— = 0.
¥, (%) ¥, (x)

If ¢ is the nonzero constant such that
r(x) [y, (2)y, (%) =y, (x)y,"(x)] = ¢,
then

r(x)y, (x)  r(x)y,"(x)
(4.4) - - .
y, (x) ¥, (x) y, (x)y, (x)

c
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The limit of the left side of the equation (4.4) is zero. Therefore, since all

positive solutions of (1) are monotone increasing, at least one of y, (x) and

x  dx
limf = 0,
a r(x)

not all of the solutions of (1) are bounded.

¥, (x) becomes infinite, and if

THEOREM 4.2. Solutions of (1) are nonoscillatory and bounded near x =
if r{x)p(x) is monotone decreasing and lim fax Y x)dx < @, or if r(x)p(x)

is monotone increasing and lim [* p(x)dx < w.
g a P

A solution of (1) can be written in the canonical form u (x)sinv(x), where

u(x) and v(x) are functions of class C? satisfying [ 5], the pair of equations

rud [(ru?) + pul =1, ru?v’= 1.

If r(x)p (x) is monotone decreasing, there exists [ 5] a positive number m such
that u(x) > m. Since lim fax Y x)dx < o,

x dx x dx
limv(x) = lim [v(a)+f -——-—]<v(a)+m'2lim/ < w.
a r(x)u?(x) a r(x)

Thus, solutions of (1) are nonoscillatory. An application of Theorem 4.1 now

yields the first part of the theorem.

The proof of the second half of the theorem is obtained by considering
equation (1.7). If y(x) is a solution of (1), r(x)y“(x) is a solution of (1.7).
But by the preceding paragraph, r(x)y “(x) is nonoscillatory and bounded when
r"Y(x)p '(x) is monotone decreasing and lim [* p(x)dx < . Therefore, y (x)

is nonoscillatory. That ¥ (x ) is bounded follows from a theorem of Leighton [ 3].

From equation (4.1) it is evident that whenever lim [* p(x)dx = oo, w (x)
is negative for every solution y (x) of (1). This remark, together with the fact
noted in the proof of Theorem 4.1 that, when lim [ rix)dx =, wix) is

positive for every solution y (x) of (1), proves the following theorem:

TueorEM 4.3. If lim (¥ p(x)dx =w, all nonoscillatory solutions y(x)
of (1) have the property that y*(x) is monotone decreasing. If lim [¥ r!(x)dx =00,

all nonoscillatory solutions have the property that y*(x) is monotone increasing.

It should be observed that the restriction to nonoscillatory solutions in
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Theorem 4.1 is not superfluous. This is illustrated by the following example.

ExAMPLE 4.1. The differential equation
s\ 1
(xy’) + =y =0
%
has the general solution

y(x) = ¢ sinlog [x] + c,cos log |x|.

All solutions of the equation are bounded near x = v, whereas
x dx
lim f = lim log
a r(x)

From the theorems of this section it is evident that whenever the so-called

x

-] = .
a

1

“normal form”’ of equation (1) with r(x) = 1 has nonoscillatory solutions, these

solutions cannot all be bounded.

5. Remarks on a theorem of Leighton. We recall that in Theorem L; Leighton
gives, as a sufficient condition for solutions of (1) to be oscillatory, that

x dx x
lim/ = w, limf p(x)dx = .
a

a r(x)

In the paper [ 6] containing this theorem there was established the existence of
a sequence of tests for oscillation, each more sensitive than the preceding.
This sequence was obtained by successively transforming an equation of the

form (1) into an equation
br (x)y"1" + p,(x)y = 0,
where
ro(x) = x, rn(x) = rn_l(x)lognx.

It might be asked whether there is some positive function R (x) with the property
that whenever (1) is transformed into an equation

[R(x)y“] + P(x)y = 0,

the relations



ON SELF-ADJOINT DIFFERENTIAL EQUATIONS OF SECOND ORDER 491

x  dx x
lim/ = 0, lim/ P(x)dx = o
a R(x) a

would give a necessary as well as a sufficient condition for oscillation. That

there is no such function is shown by the {ollowing theorem.

THEOREM 5.1. If r(x) is a positive continuous function such that
. X o1
llmf ri{x)dx = «,
a

there exists a positive continuous function p (x) such that lim [* p(x)dx < «,

and solutions of the differential equation

r(x)y’ ]+ p(x)y =
are oscillatory.

We set

plx) = r(x) [ .[ r(x)] )

The truth of the theorem then follows from Theorem 1.6.
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A NOTE ON THE BANACH SPACES OF CALKIN AND MORREY

E. H. RoTHE

1. Introduction. Let G be a bounded domain in an n-dimensional real Eucli-
dean space, and for & > 1, let L, be the space of real-valued functions f such that
f*is summable over G. The class 3, as defined by Calkin and Morrey [ 2; 6; 7]
is then the class of functions which together with their first “generalized de-
rivatives” [ 2, Def. 3.4; 7, p.4] are in L,. With a suitable norm, $, becomes a
Banach space [ 2, p.185]. Morrey proved [ 7, p. 8] that in this Banach space the
solid sphere V of radius K and with the origin as center is “weakly compact’’?).
Using this fact together with lower semicontinuity theorems, he obtained very

general existence theorems for minima of multiple integrals?®).

The object of the present note is to point out that some of the results in this
direction may be obtained by the use of general Banach space theory: the start-
ing point is the simple remark that the Banach space P, is reflexive (§2). The
weak compactness of the solid sphere V is, by Alaoglu’s theorem [1], a corol-
lary to this remark [ §3]. It now follows almost immediately that a real-valued
function I (x ), which is “weakly” lower semicontinuous, takes a minimum in V
(Theorem 3.1). In § 4 some sufficient conditions for weak lower semicontinuity
are given. Finally, as an example of the applicability of these considerations to
calculus of variation problems, a theorem on the existence of minima of multiple
integrals is given which is related to, but not identical with, the results of

Morrey referred to at the end of the previous paragraph (§5).

2. The uniform convexity and reflexivity of the space $,. Let ¢ denote the
point with coordinates ¢, t,, +++ , #, of the domain G of §1. Let f(¢) = f(o)(t)
be an element of B, and f(i) (¢)(i=1, 2, +++,n) its first generalized deriva-

tive with respect to ¢;. Let || f|| be defined by the equation

(2.1) ||ft|“=f 2= 19 (e))%de.

G =9

1See [71 for Morrey’s definition of weak compactness. The weak topology used in
the present paper is defined in $s.

2See {7, Chap. IIT], where also the relation to the results of Tonelli is discussed.

Received April 28, 1952.

Pacific J. Math. 3 (1953), 493-499
493



494 E. H. ROTHE

We then have:

LemMaA 2.1. Let a > 1. With the norm defined by (2.1) the space of classes

of functions of SBa equivalent under this norm is a Banach space®,

From now on §, will always denote the Banach space of Lemma 2.1, and it

will always be supposed that o > 1.
THEOREM 2.1. The space P, is uniformly convex*.

Proof. Let L, be the Banach space of classes of equivalent functions f
which are defined in G and for which

(2.2) {}; |flodeyt/®

exists. L is uniformly convex [3, p.403, Corollary]. Since a finite “uniformly con-
vex”’ direct product of uniformly convex spaces is uniformly convex [3, p.397-
398] it follows that the direct product of L, taken (n + 1) times by itself, that is,
the space B of (n + L)-tuples fo,f e+, fn (fLE& Ly v =0,1,+++n)with the norm

1/

[ Z I, 1%de

is likewise uniformly convex. This proves the theorem since $, is obviously a
linear subspace of .

Since a uniformly convex space is reflexive [5; 8], we have the following

corollary to Theorem 2.1.
COROLLARY. For & > 1, Bis reflexive.

3. The compactness of the sphere V. We recall first a few well-known defini-
tions and facts. Let £ be an arbitrary Banach space in the strong topology, that
is in the topology induced by the norm of the space. Let K be a positive number,
and V be the solid sphere ||x|| < K of E. By ¥V, we denote then the topological
space whose elements are those of V and whose topology is induced by the
following neighborhood definition: A neighborhood of the point x4 of V is de-
termined by a positive number € and a finite number of linear continuous func-

tionals {; (%), »++ , I, (%), and consists of all points x of V. for which

3See [2, p.185]. The definition of the norm given by Calkin is slightly different
from the one used in the present paper. However, the proof of Lemma 2.1 is essentially
unaltered.

4For the definition of the term ““uniformly convex’ see[ 3].
Yy
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[4;(x) = (x)] < € (i=1,2,004,n).

If E is the conjugate space of another Banach space F, E = F*, we denote
by V;( the topological space whose elements are again those of V, but whose
topology is induced by the following neighborhood definition: A neighborhood of
a point x, of VZ is determined by a positive number € and a finite number of

elements f;, +++, f, of F, and consists of all points x of VK for which
lx(f,) = x (f)] < € (i=1,2 +0,n).

A well-known theorem of Alaoglu [ 1, Theorem 1.3] states that V;‘( is compact.

Since for a reflexive space we have V, = VI? , we obtain:
LEMMA 3.1. IfE is reflexive then V. is compact.

Since a strongly closed convex subset of V is also closed in the weak to-
pology (that is, in the topology of V) we have as a consequence of Lemma 3.1
the following;:

LeEmMA 3.2. Let C be a convex subset of V which is closed in the strong to-
pology, and Cy the same set in the topology of V. Then Cy is compact.

An easy consequence of Lemma 3.2 is:

LEMMA 3.3. Let C and Cy have the same meaning as in Lemma 3.2, and let
I(x) be a real-valued function which is lower semicontinuous in Cy. Then I (x)

reaches a minimum in some point of C.°

The preceding lemmas, together with the corollary to Theorem 2.1, now yield

the main result of the present section:

THEOREM 3.1. Let C be a bounded closed convex subset of 4. Let the
norms of the elements of C be bounded by the positive constant K. Let V and V
have the same meaning as in the first paragraph of this section, with E replaced
by B and denote the set C in the topology of Vg by Cy. Then Cy is compact,
and a real-valued function [ (x ), which is lower semicontinuous in CK’ reaches a

minimum in C.
4. Sufficient conditions for lower semicontinuity. We prove now:

THEOREM 4.1. Let C and Cy have the same meaning as in Theorem 3.1,

5 For a proof that Lemma 3.2 implies Lemma 3.3 see [ 9, p. 423-424] .
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and let [(x) be a real-valued function defined on C. Then the following condition
is sufficient for the lower semicontinuity of I(x) on Cy (and therefore, by
Theorem 3.1, for the existence of a minimum of 1(x) on C): to each %y € C

there exists a bounded linear functional l(x) such that
(4.1) I(x) = (%)) 2 U(x — x)
for all x € C.

Proof. By definition of the lower semicontinuity we have to prove: to any

given € > 0 there exists a neighborhood N (%, ) of %, in VK such that
(4.2) I(x)—l(xo)g—f

for all x in the intersection, N(x,) n C. But by (4.1) the inequality (4.2) will

certainly be satisfied if we choose
N(x ) = {xl [1(x) ~ l(xo)l <€, x €Vl

THEOREM 4.2. With the same notations as in Theorem 4.1 tet [(x) have
first and second order Fréchet differentials D(x, h) and D?(x, h, k) at every

point x of C. Moreover, let
(4.3) D*(x, hy h) 2 0 for x € C.
Then [(x) is lower semicontinuous in Cy.

Proof. From the Taylor expansion [ 4, Theorem 5],
1 Lo,
I(x, +h) = I(x)) = D(x,, k) + 3 o D*(x, + thy h, h) dt,
together with (4.3), we obtain
I(xo + h) - I(xo) > D(xo, h).
This inequality shows that the assumptions of Theorem 4.1 are satisfied with

).

l(x—-xo) = l)(xo, EEN

3. An application to a multiple integral variational problem. l.et G be the
domain of $1 with points ¢t = (t;, «++, t,). Foreachp=1, .., m let z,(¢)€
B, and let il, be the space of classes of equivalent m-tuples z = (z, (), «--,
z, (2)) with the norm
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s /e
] dt] .

LEMMA 5.1. Theorems 3.1 and 4.1 still hold if B, is replaced by I1,.

az“
dty

5.1 nzn=[j IR IFIE DS
G wu=1

v=1

This lemma is obvious from the proofs of the theorems in question.
THEOREM 5.1. Let
f(ty 2, P) = f(tl’ ceey tnr_zl’ R I e A pmn)

be a real-valued function of the indicated variables with the following proper-

ties:

(1) fis defined for t =(tyy +++, t;) € G and for all values of the real vari-
bles zyy ppy (p=1,++« ,mjv=1, -+, n), and for the same domain of the vari-
bles df/dtv, df/0z ., and Of/dpuv are supposed to exist;

(2) if zﬂ(t) € %athen the functions of t obtained by replacing z by z#( t)
and Puv by azu/aty in f, af/az“, and af/apw are in L,B’ where BB is defined by

1/B+1/a =1;
(3) e(t’ 2y zO’ P Po) 2 0,

where by. definition

e(t’ 2, Zo, P PO) = f(ty 2y P) - f(t’ ZO’ Po)

- Z tfz#(h zo,po)(z#-—z/(l)+ 2 fP#v(t’zo’po)(P“y-PZy)l-
p=t =

Under these assumptions, if

azl 8zm
[(z)=_/;;ft1"“’tn’ zl(t),...,zm(t), azl , v, Y dt,

then there exists a

2 = 2 (2) = [{D(0), +vv, 2D (2)]
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in the sphere
(5.2) llzll < K
such that

1(z) 2 (V)
for all z in the sphere (5.2).

Proof. By Lemma 5.1 and Theorem 3.1, it will be sufficient to prove that
[(z) is lower semicontinuous at each point z° of the sphere (5.2). To such z°
we define the linear functional [ (¢) of

é = [41(t)9 R ] ém(t)]

by setting
m n ag,u
= d ’
l(é) '/; #Z=1 l(fzy)o 4;/. + v%l (fP/iv)o aty t

where the symbol ( )0 indicates that the arguments are

0 0
Logeee, tny zc;(t)’ Sty z?n(t)r azl/atly ey azm/atns

1?

and where

=14, (), -0, L (D] E€ T,

The assumption (2) assures us that the linear functional [ () is bounded. From
the definition of /() and the assumption (3) we obtain

I(z) = 1(2°) = 1(z=2%) + e 2 I(z = 2°).

Thus the assumption (4.1) of Theorem 4.1 is satisfied, and the theorem to be
proved follows from Theorem 4.1 in conjunction with Lemma 5.1.
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A GENERALIZATION OF THE CENTRAL ELEMENTS
OF A GROUP

EUGENE SCHENKMAN

1. Introduction. If ¢ and g are elements of a group G, we shall denote by

a'(g) or a(g) the element g " a g, and then for n = 2,3, 4, ++ - define ¢\ (z) =

a(a®V(g)).

If for some n and all ¢ € G, a(")(g) = a then a will be called weakly central

of order n or simply weakly central. Thus the center eclements of G are weakly

central of order 1.

As usual, let

lg,al =a™ ' g7bag=at-alyg);

then it can readily be verified by induction on n that

n~1 times n-1 times
rm—— r——

a"l'a(n)(g)=a-1.[a..o‘_a,g}...]_-l.a.{a..-[a,g]--.

Thus '™ (g) = a is equivalent to

n times
e e,
[a.-.[a,g]-..J:e,

where e is the identity of ;. It follows that if @ is an element of a normal nilpo-
tent finite subgroup of G then a is weakly central. Another easy consequence of
the definition is that if @ is weakly central in  then a is its own normalizer in

G if andonly if {a} = C; here { a} denotes the subgroup generated by a. It should

also be noted that if a is weakly central in G, then a is weakly central in G,

where @ is the image of a under a homomorphism which takes G onto G.

Received July 2, 1952.
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2. Theorems. We shall establish the following results.

TureoreEM 1. If in a locally finite group G all elements whose orders are
powers of a certain prime p are weakly central then they comprise a normal sub-

group of G.

An immediate consequence is the following analogue to Engel’s Theorem for

Lie algebras.

CoRoOLLARY 1. [f all the elements of a locally finite group are weakly
central then the group is the direct product of p - groups.

THEOREM 2. If G is a locally finite solvable group then the weakly central
elements comprise a normal subgroup of G which is the direct product of p-

groups.
This result can also be stated as follows for finite groups.

THEOREM 2a. If G is a finite solvable group then an element is weakly
central if and only if it is in the nil radical of the group. Here the nil radical
refers to the largest of all the nilpotent normal subgroups - nilpotent in the sense

that H" = e, where H* = [H" ™', H] (cf. [ 1, pp. 98-102]).

It has not been determined whether solvability must necessarily be assumed

for Theorems 2 and 24 to be true.

3. Proof of Theorem 1. We shall first consider the case where G is finite,
and use induction on the order of G. Let p be the prime such that all elements of
G whose orders are a power of p are weakly central. We must show that if S is
a p-Sylow subgroup of G then S is the only p-Sylow subgroup, and hence is nor-
mal in G. We do this by obtaining a contradiction in case S, is not normal in G.
Let Sy, .-+, S, be the conjugate Sylow subgroups of S, and suppose first that
SinSy=1elfori=1,++,k If NG is the normalizer of S, then every ele-
ment y of G not in N transform S, into one of the S;. But then for e # a € S, we
have a(y) ¢ S, and consequently a(y) E[t N, since

NnS;=8S,nS;=1el,

and hence, for all positive integers n, a™ (y) et So. It follows that a™ (y)#£a

for all n, and a is not weakly central, contrary to hypothesis.

Accordingly we need only consider the case where S; n S, ={e} for some i.

Let D be a maximal intersection of two different Sylow subgroups. Then the nor-
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malizer Np of D in G must have more than one p-Sylow subgroup [ 2, Chap. 1V,

Theorem 7]. It follows by our induction assumption that Np must equal G; for
1

if Np were properly contained in G it would have but one p-Sylew subgroup, con-
trary to the above. But now if Np = G, then D is normal in G, and the order of
G/D is less than that of G; consequently, again by the induction assumption,
G/D has but one p-Sylow subgroup. On the other hand N = G has more than -one
p-Sylow subgroup containing D, and therefore so also has G/D; this again leads
us to a contradiction. Thus in this case S, must be normal in G as the theorem

asserts.

REMARK The above proof shows that a weakly central element of prime
power order must lie in the intersection of at least 2 p-Sylow subgroups if the

number of p-Sylow subgroups is greater than one.

We return to the proof of Theorem 1 and consider the case where G is locally
finite. This means that any finite set of elements of G generates a finite sub-
group of G. Now we are assuming that the elements belonging to a certain prime
p are weakly central, and wish to show that they comprise a normal subgroup of
G. It is obvious that they form an invariant set, and hence they generate a nor-
mal subgroup of G. Furthermore, the product of any two elements whose orders
are powers of p has also order a power of p because of the local finiteness of G
and because the theorem is true for finite groups. It follows that the elements
whose orders are powers of p actually comprise the group they generate. This

completes the proof of Theorem 1.

4. Proof of Theorem 2a. From a previous remark we know that if an element
is in the nil radical then it is weakly central. We must show conversely that if an
element is weakly central then it is in the nil radical. The proof will be made by
induction on the order of G. If the order is one then the theorem is obviously
true. We now assume the theorem true for groups whose orders are less than £,
and let G be a group of order k. Let N be the nil radical, and g a weakly central
element of G. If { g, N} £ G then gN is weakly central in G/N, and hence by the
induction assumption gN is contained in a proper normal subgroup M/N of G/N;
(if the nil radical of G/N is not a proper subgroup of G/N then G/N is nilpotent
and the statement is true since every proper subgroup of a finite nilpotent group
is contained in a proper normal subgroup). It follows that g and N are contained
in a proper normal subgroup M of G, and therefore by the induction assumption g
is in the nil radical Ny of M; but Ny is contained in N since the nil radical is
a characteristic subgroup (cf. [1, p.102]), and hence N, is a normal nilpotent
subgroup of G; therefore when { g, N} # G then g € N as we wished to show.
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We now consider the case where { g, N{=G. Let Z be the center of N; then
Z is normal in G. Now if z is any element of Z such that { g, z} # G, then by the
induction assumption { g, z} is nilpotent and hence has a center Q. But{g,z}n Z

is normal in { g, z} since Z is normal in G, and therefore
Qalg, 2zt nZ #£1e}

[ 2, Chap. IV, Theorem 14]. But then, if
H=0Qnig z}nZ,

then H is in the center of G since G ={g, N}, and hence H is normal in G. It
follows by the induction assumption that G/H is nilpotent, whence, for some £,
Gk C H. But since H is in the center of G,

Gkt Z [G*, 6] C [H, G] = {e},

and therefore G is nilpotent; G = N, and g € N as was to be shown.

Accordingly we need now only consider the case where { g, z} = G for every
z € Z. Since g is weakly central then { g} cannot be its own normalizer in G;
that is, { g} is normal in R, where R # { g}. On the other hand, since G ={g, Z 1,
it follows that R or a subgroup of R is of the form {g, z} = G, so that R = G.
Hence g is in a cyclic normal subgroup of G, and consequently is in the nil

radical N as we wished to show. This completes the proof of Theorem 2 a.

5. Proof of Theorem 2. We first note that the product of two weakly central
elements is weakly central since they generate a finite group in which Theorem
2a is applicable. Thus the weakly central elements comprise a subgroup which

is obviously normal. It is the direct product of p-groups by Corollary 1.
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A NOTE ON THE DIMENSION THEORY OF RINGS

A. SEIDENBERG

1. Introduction. Let O be an integral domain. If in O there is a proper chain
(O)CPlchc---anc(l)
of prime ideals, but no such chain

(0) C P:c...c p’

nt+1

c (1),

then O will be said to be n-dimensional. Let O be of dimension n: the question
is whether the polynomial ring O[ x] is necessarily (n + 1)-dimensional. Here,

as throughout, x is an indeterminate.

By an F-ring we shall mean a 1-dimensional ring O such that O[x] is not 2-
dimensional (i.e., the proposed assertion that O[ x] is necessarily 2-dimensional
fails). Given an F-ring, we try by definite constructions to pass to a larger F-
ring having the same quotient field: this restricts the class of rings in which to
look for an F-ring—a priori we do not know they exist. In this way we also come
(in Theorem 8 below) to a complete characterization of F-rings: if O is 1-di-
mensional, then O[ x] is 2-dimensional if and only if every quotient ring of (—),
the integral closure of O, is a valuation ring. The rings O thus coincide (for di-

mension 1) with Krull’s Multiplikationsringe [ 5; p.554].

2. Preliminary results. The first five theorems are of a preparatory character,
and the proofs offer no difficulties.

THEOREM 1. Let O be an arbitrary commutative ring with 1, P,, P,, P, dis-
tinct ideals in O[x]. If P, C P, C P;, and P, and P, are prime ideals, then P,

P,, P; cannot have the same contraction to O.

Proof. Let

P, n0O=P, n0-=p,
Received May 15, 1952.
Pacific J. Math. 3 (1953), 505~512
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and consider
0lx1/P, = O[],
where x is the residue of x and O ~ O/p. Since
Olx]-pcP CP,,

x is algebraic over the integral domain O. Let —P-s be the image of P;; then ?3 #
(0); but also Py, n O £ (0). In fact, let y (3 P,, y # 0. Then

n n-1 _
¥ty +~-~+cn_0

for some ¢; € 0, cp # 0; and ¢, € ?3 n O. Hence also PynO £ p,

CoROLLARY. IfOis 1-dimensional, and P, P,, P; are distinct prime ideals
in O x] different from (0) with P, CP,C P, then Pyn O = (0), P, is the ex-

tension of its contraction to O, and P 5 is maximal.

Proof. 1f P, n O # (0), then P,, P,, P, would all have to contract to the

same maximal ideal in O. So
Pln0=(0) and P2n0=Pié(0).

Were O[x] . p C P, properly, then, since O[x] « p is prime,

O[x] - pn0O=(0),
whereas

O[x] - pnO =p.
SoO[x]-p=P,. Were P, not maximal, we would have P, n O = (0).

For the foregoing theorem, see also [ 4; Th. 10, p.375].

TueoREM 2. If O is n-dimensional, then O[x]is at least (n + 1 )-dimensional

and at most (2n + 1) -dimensional.

Proof. Let
(0)cP CcP,C...CP C(1)

be a proper chain of prime ideals inO. Then

(0) Cc O[«x] -« P1 c O[x] - P2 Ceve CO[x] - Pn c (1)
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is also a proper chain of prime ideals in O[x]; and O[x] . P, is not maximal,

since, for example,
O(x] .- P, C (O[x] . P,, x) C(1).

(Here, as throughout, we use the symbol C for proper inclusion.) Hence O[x] is

at least (n + 1)-dimensional. Let now O be n-dimensional, and consider a chain
(0) C P/ C v Pl c (1)
of prime ideals in O[ x]. Let there be s distinct ideals among the contractions

(0)n0, P, n0,--, P aO.

m

Then
m+1<2s<2(n+1), so m< 2n+1.

THEOREM 3. If O is n-dimensional but O[x] is not (n+ 1)-dimensional,
then for at least one minimal prime ideal p of O either the quotient ring Op is an
F-ring or O/p is m-dimensional and O/p[x] is not (m + 1)-dimensional, and

m < n.

Proof. Suppose that for some minimal prime ideal p of O, O[x] - p is not
minimal in O[ x]; that is, there exists a prime ideal P such that

(0) C P C O[x] -« p.

Then
(0) c Op[x] . PcC Op[x] . p

is also a chain of prime ideals in Op[x], as one easily verifies. Since Op[x] - p
is not maximal, this shows that Op is an F-ring. We pass then to the case that

O[x] « p is minimal for every minimal prime ideal p of O. Let

(0)CP;cC..eCP. (1)

n+2

be a chain of prime ideals in O[ x]. If
P n0O=p#(0),

then O/p is at most (n —1)-dimensional, and O[x]/O[x] - p is a polynomial
ring in one variable over O/p and is at least (n + 1)-dimensional. So we must

suppose
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P: nO0 =(0);
but then
P2n0=p2;é(0);

let p be a minimal prime ideal contained in p, ~such exists since O is finite di-
mensional; then O[ x] . p C P;, properly, since G[ x] « p is minimal but P; is not.
Replacing P: by O[x]. p, we come back to a previous case, and the proof is

complete.
COROLLARY. [fOis an F-ring, then so is some quotient ring of (.

The foregoing theorem shows that if for some n there exists a ring O which is
n-dimensional, while O[ x] is not (n + 1)-dimensional, then there exist [-rings.

Thus we may provisionally confine our attention to 1-dimensiona! rings O.

THEOREM 4. If O is 1-dimensional, and O is a valuation ring, then O[x] is

2-dimensional.
Proof. l.et p be a proper prime ideal of O, and let
(0) C P CO[x] . p,
where P is prime. Let
f(x) € P, f(x)#0.
Then one can factor out from f(x) a coefficient of least value, that is, write
f(x) = c.glx),

where ¢ € p, and g(x) has at least one coefficient equal to 1; in particular,

then g(x) ¢ Olx] « p; hence ¢ € P.So P n O # (0), whence
PnO=p and P = O[x]. p.

This proves that O[ x] is 2-dimensional (see Corollary to Theorem 1).

Theorem 4 restricts the size of an F-ring, since a maximal ring is a valua-
tion ring. The following theorem reduces the considerations to integrally closed

rings.

THEOREM 5. Let O be the integral closure of the integral domain O. Then O

is an F-ring if and only if O is an F-ring.
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Proof. Let R be an integral domain integrally dependent on O; a basic theo-
em of Krull (see, for example, [2; Th.4, p.254]) says that if P, C P, are prime
ideals in R, then they contract to distinct prime ideals in O; hence dim 2 < dim O.
Another theorem (loc. cit., p.254) says that if p, C p, are prime ideals in O, and
p; is a prime ideal in R contracting to p,, then there exists a prime ideal P,,
P,> P, contracting to p,. Hence dim R > dim O, and so dim R = dim 0. lience O
is 1-dimensional if and only if O is 1-dimensional, and a[x] is 2-dimensional if

and only if O[x]is 2-dimensional.

Thus if there exist /'-rings, then there exist integrally closed F-rings, and,
taking an appropriate quotient ring, we see that there would exist an integrally
closed f-ring O having just one proper prime ideal. In view of Theorem 4 (and
the close association of integrally closed rings with valuation rings) one may
ask whether an integrally closed ring with only one proper prime ideal is neces-
sarily a valuation ring. Were it so, there would be no f-rings, but it is not so:
Krull has an example [G; p. 670f]. i’or convenience, we may mention the example:
let K be an algebraically closed field, x and y indeterminates; O consists of the
rational functions r(x,y) which, when written in lowest terms, have denominators

not divisible by x, and which are such that r(0,y) € K.
3. Principal results. We now establish:

THEOREM 6. If O is integrally closed with only one maximal ideal p, & an
element of the quotient field of O, and 1/a ¢ O, then C{ &+ p is prime. If also
o ¢ O, then O[ &1« p is not maximal.

Proof. We first observe that
(Olai - p, &) £ (1),
as an equation

L=c,+c at e +cal (co € p, ¢; € 0),

leads to an equation of integral dependence for 1/u over O. Let now g(x) €
O[x] be a monic polynomial of positive degree. We may assume, trivially, that
% ¢ O; then g(a)=rc € 0 is impossible, as g( &) — ¢ =0 would be an equa-
tion of integral dependence for over O; in particular, g(«) # 0. Also 1/g(«) Et

O, for if it were in O, it would be a nonunit in O, and hence would be in p, so that
1 € g(a) - pcOla] - p,

and this is not so. By the result on a,
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(Olg(a)] - p, g(a)) £ (1).

Since o satisfies g(x) - g(a) =0, O[ «] is integral over O[ g(®)]; over any
prime ideal in O[ g(«)] containing (O[g(&)] - p, g(&)), there lies a prime
ideal in O[ o], hence

(Ol a] « p, g(a)) #(1).

Since 1 + g(x) is monic of positive degree, also

(Ofal «p, 1 + g(w)) #(1).

This shows that g( &) ¢ O[«] « p, a conclusion that also holds if g(x) is of
degree zero; that is, g(x) = 1.

We now prove that under the homomorphism g(x) — g(c&)of O[x] onto O[ «l],
the inverse image of O[ «] « p is O[x] . p; this will complete the proof, as

O[x] - p is prime but not maximal. Let, then,

g(x) € 0[x), g(x) € O[x] - p.
We write
g(x) = g (x) + g,(x),

where gz(x) € O[x] - p and no coefficient of 8, (x) is in p; in particular, this
is so for the leading coefficient c¢. Then gl( a)/c ¢ O[a] « p, since 8, (x)/c
is monic. A fortiori, gl(a) ¢ Ol «] « p, whence also g( o) ¢ Ol «]l - p.

COROLLARY. In the case « ét 0, if g(x) € O[x] and g(a) € O[«] - p,
then g(x) € O[x] « p.

THEOREM 7. Let O be an integrally closed integral domain, p a proper ideal
therein, a an element in the quotient-field of O, but a ¢ OP’ 1/a ¢ OP‘ Then
Ola] - p is prime but not maximal; in fact,

Olal - pnO=p and O[Oi]/o[O(]-pZO/p[x].
Proof. We know that Opla] « pis prime, and
Op[“]‘PﬂO[OC]:O[O(.]:O[(X].p

by the last corollary (and the fact that Op +pnO=p). Hence O[«] « p is prime.
Also here, as in the corollary, we have that if g(x) € O[x] and g(«) € O[«] -
p, then g(x) € O[x] - p; the required isomorphism follows at once.
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Theorem 7 is known in the case that O is a finite discrete principal order [ 3,
$ 49, p.-134-136]. The class of rings dealt with in the theorem includes this
class properly; for example, the ring O of the example of Krull is not a finite

discrete principal order, as xy” € O for all p, but y ¢ 0.

THEOREM 8. If O is 1-dimensional, then O[ x] is 2-dimensional if and only

if every quotient ring of the integral closure of O is a valuation ring.

Proof. By Theorem 5, we may assume O to be integrally closed. If O is an
F-ring, then so is one of its quotient rings ( Theorem 3, Corollary ). This quotient
ring is not a valuation ring (Theorem 4). Conversely, suppose some quotient
ring O; = Op is not a valuation ring. Let a be an element of the quotient field of
O, such that « Gt 0, and ! ¢ O,. Then O,[ «] is at least 2-dimensional, by
Theorem 6, and O, [x] is at least 3-dimensional, as one sees by considering the
homomorphism of O,[x] onto O,[ «] determined by mapping x into &. So O, is
an F-ring. Thus Op[%]« p is not minimal in Op[x], and it follows at once that

O[x] . p is not minimal in O[ x], whence O is an F-ring.

Let O be the ring of Krull’s example above, and let X be an indeterminate.
The single prime ideal p in O is constituted by the rational fractions r(x, y)
which, when written in lowest terms, have numerator divisible by x, i.e., are
of the form x g(x, y), where g(x, y) € K[x, yl. The polynomials in O [ X]
which vanish for X =y form a prime ideal, different from (0) since xX — xy is in

it, properly contained in O[ X] « p.
The following theorem is well known [ 4, Th. 13, p.376].

THEOREM 9. If O is a Noetherian ring of dimension n, then O[x] is(n + 1)-
dimensional.

Proof. Taking a quotient ring or residue class does not destroy the Noether-
ian character of O, so by Theorem 3 we may suppose O is 1-dimensional. Let
then p be a proper prime ideal in 0. Then O[x] : p is minimal for every principal
ideal O[x] . (a), where a € p, a # 0, so by the Principal Ideal Theorem [3,
p.371, O[x] . p is minimal in O[], and O[x] is 2-dimensional by Theorem 1,
Corollary. — Instead of the Principal Ideal Theorem, one could use instead that
the integral closure O is also Noetherian ( see, for example, [ 1, Th. 3, p.29]; see
also [3, $39, p.108]). Neither proof makes use of the full force of the quoted
theorems, so it might be of some interest to find a direct proof using less techni-

cal means.

NoTE. In a forthcoming paper we will show that if O is a 1-dimensional ring
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such that O[ x] is 2-dimensional, then O[x,, +++, x,] is (n + 1)-dimensional.
Theorem 2, above, will also be completed by examples showing that for any m, n

with n + 1< m< 2n + 1, there exist n-dimensional rings such that O[«x] is m-
dimensional.
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