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AN OPERATIONAL CALCULUS FOR OPERATORS WITH
SPECTRUM IN A STRIP

WILLIAM G. 13ADE

1. Introduction. Let A be a complex Banach space, and Ί be a closed dis-

tributive operator whose domain and range are in A. We suppose the spectrum

σ ( 7) of 7 does not cover the whole plane, and write

(λ/- τrι = Rλ(τ)

for λ £ σ( 7 ) . In the case that Ί is bounded, N. Dunford [ 2 ] and A. E. Taylor

[13] have defined an operational calculus for T by the formula

(1.1) f(T) = — f f ( λ ) R χ ( T ) d λ ,

where f is analytic on σ ( 7 ) , and C is a suitable bounded contour enclosing

σ(T). Such functions / form an algebra, and the mapping / — > / ( Ί ) is a homo-

morphism of this algebra into the algebra of bounded operators on A.

When 7 is assumed to be closed but not bounded, the problem of developing

an operational calculus for 7 meets with the difficulties that the domain D(T)

is a proper subspace, and σ(T) is in general unbounded. A modification of

( 1 . 1 ) ,

(1.2) f(T) = / ( o c ) / + — f f ( λ ) R λ ( T ) d λ ,

has been used by Taylor [ 1 4 ] when / is analytic on σ(T) and at infinity. Here

C is a bounded contour enclosing the singularities of /. Although most of the

theory for the bounded case may be carried over, the c lass of functions / is

restricted; and polynomials in 7, being unbounded operators, need a separate

Received June 13, 1952. This paper is a revised version of the author's doctoral
dissertation submitted to the University of California, Los Angeles. He wishes to thank
Professor Angus E. Taylor for constant help and encouragement.
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258 WILLIAM G. BADE

treatment.

ϊn this paper we consider the case that σ (7 ) lies in a strip S of finite

width, and 11 Rχ ( 1 ) 11 is bounded outside any strip containing 5 in its interior.

This is a common situation for differential operators ( for example, T — d/dt in

Lp{~ oc, oc), p > 1 ). Ίhese assumptions enable us to define an operator cor-

responding to any function analytic and of finite order in a strip containing S.

The operator f(T) is bounded or unbounded depending on the growth behavior

of /. In this it resembles the operational calculus for unbounded self-adjoint

operators in Hubert space ( [ 8 ] , I 12]), and in fact reduces to it in this case.

In 9 > 2-4 the calculus is constructed from a postulated set of conditions

on 7 and Kχ( 7). If / is absolutely integrable in a strip containing S, the oper-

ator f (T) is defined by a variant of formula (1.1 ),

where I is an infinite contour running up one side of 5 and down the other. If

/ is of order n — 2, roughly speaking, then f(T)x is defined for x in the sub-

space

/ / „ ( Ί ) = ( x I x f T x , '•• , Ί n - ι χ C ί ) ( Ί ) )

by the formula

(c ϊ — T ) n ί / ( ^ ) ̂ ^ ( 7 ) c
f(Ί)x = ̂ — J — dλ,

where 01 is any point exterior to Γ. Equivalently,

ix + j_f.
2πi -T

dλ.
λn

Ίhe usual homomorphism rules hold, and the results are consistent with those

of Taylor. A closed extension of /( 7 ) is obtained which coincides with the

Stone-von Neumann operator in the case of self-adjoint Ί in Hubert space.

In § 5 we assume a further growth condition on j | / ? \ ( 7 ) | | near σ(T), and

investigate operators corresponding to bilateral transforms. This section is

largely a reformulation for our situation of results of Hille 1.3, Chap. 15] for an

operational calculus for the case that σ(T) is confined to a half plane and / is
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a one-sided transform. In § 7 we prove a theorem on the construction of inverses

of such operators by limits of polynomials in T.

As an application we take T the operation of differentiation in the spaces

C and Lp (1 <_ p < oc)on the real line and the unit circle. For the case of the

line where σ(T) is the imaginary axis, if

/ ( λ ) = / eAϊ G(ξ)dξ

c o n v e r g e s a b s o l u t e l y i n a s t r i p c o n t a i n i n g σ(T), t h e n

f(T)x(t) = [°° G{ξ)x{t-ξ)dξ.
J-oo

Consider the Stieltjes transform

I foe ξ
ψ(t) = - / s e c h - x ( t - ξ)dξ,

77 J-oo 2

for which / (λ) = [cos 77λ]~ι. Writing

~ /
COS 77λ = W 1 -

we see from the inversion theorem of § 7 that

n I 1 ^2\
(1.3) lim Γ[ 1 \ φ ( t ) = x ( t ) ,

1—0 ^ \ ( / t - 1 / 2 ) 2 rfί2 /

where convergence is in the norm topology of any of the spaces mentioned.

This example is typical of a class of inversion theorems for which the theorem

of §7 gives a uniform treatment. Inversion formulas of this sort have been proved

by different methods for L 2 (-oc, 00) by Pollard [9] and for C[-oc, 00) by Widder

[16] (see Hirschman and Widder [4, 5, 6 and 7] for extensive results on the

corresponding local problem). The case p ^ 2 does not seem to have been con-

sidered before. Our method also applies to inversion of transforms

Γ H(ξ)x(t-ξ)dξ
J -77

in the corresponding spaces on the circle.
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2. Construction of the calculus. Let T be a closed operator whose domain

ϋ ( 7 ) is a prescribed subspace. We suppose:

A. i he spectrum σ( 7) lies in the vertical strip

- Ύ 1 σ < r (λ = σ + i r, 0 < y < oc ) .

13. The resolvent ίlχ(Ί ) = (XI - T)~ι satisfies

| | / ί λ ( 7 " ) | | < M ( t ) , \ σ \ > t, t > γ . 1

The s t r ip containing σ(T) i s taken to be ver t ica l merely for c o n v e n i e n c e .

The symbol p(T) will denote the r e s o l v e n t s e t , and [ A ] the s e t of bounded

linear operators mapping X into itself . We s h a l l need the following known re-

s u l t s :

( a ) As 7 is c losed, !<λ ( T) is in [ A ] for λ C p(T) [ 1 4 , p . 1 1 0 ] .

( b ) if Dn( T) are the s u b s p a c e s defined by

DG(T) - A, Dn(T) = (x I x, Tx, ••• , Tn'ιxCD(l )) (n > 1) ,

then for any polynomial

P ( λ ) = aoλ
n + a^"'1 +... + an ( α 0 ^ 0 ) ,

the c o r r e s p o n d i n g o p e r a t o r P (T) with domain Z/Λ( 7 ) i s c l o s e d , and [ 14, p . 202 j .

Rλ(T)P(T)x = P(T)Rχ(T)x

( c ) If x ζl Dn(T), and Oί is any complex number, then

(2.1) Rχ(T) =

and for any m and n, Rχ {T) m a p s Dn(T) one-to-one onto Dm + n{T) [ 14, p . 204-

2 0 5 ] .

We s h a l l a l s o n e e d the fol lowing e l e m e n t a r y c o n s e q u e n c e of the def ini t ion

1 One may show through the Phragmen-Lindelδf theorem (the proof in [15, p. 177]
holds for operator-valued functions) that B is implied by the apparently much weaker
condition | | Rχ( T)\\ =O(e^ σ ' ), β< 1.
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of a closed operator.

LEMMA 2.1. Let K be closed with domain l)> and, let

HnC[X] U = 1, 2, . . . ),

with

Hx = lim II n x
n —*oo

defined for each x G A. If x C D> and

IJn Kx = KHnx

for each n> then Hx C D and KHx = HKx.

Our procedure for assigning operators f(T) to functions / ( λ ) will be a

variant of the contour integral approach of Dunford and Ίaylor . It will be con-

venient to set up the correspondence first for a particular c lass of functions

and use this c lass to treat less restrictive c a s e s .

DEFINITION 2.1. We denote by £ ( 0 , γ) the c lass of functions /sat i s fy ing:

( a ) / i s analytic in a strip —r < σ < r, r > γ (r may vary with / ) .

( b ) As T — » ± o o , / ( σ + i τ ) — > 0 uniformly with respect to σ, -~rι < σ < rγ

for any rι < r.

( c ) / \f(σ + ir)\dr< oc ( - r < σ < r ) .

The c las s £ ( 0 , y ) is an algebra, although strictly speaking not an algebra

of functions, since the functions / do not have a common domain. To get con-

dition ( c ) for products, we note that if / C £ ( 0 , y ) , f(σ+iτ) is bounded in

T for fixed σ (-r < σ < r). Thus if | fγ (σ + i r) \ < M (σ f ixed),

/ \fΛσ+ir) f(σ+iτ)\ < M | / (σ + i r) \dτ cc.

For convenience we adopt a convention with regard to contour integrals. If

/ is analytic in — r < σ < rs where r > γ, the symbol Γ c ( ω ) will denote a con-

tour composed of the two parallel line segments σ = ± cy -ω < _ r < ω , where

γ < c < r; the positive sense along σ = c will be upward, and that along σ - — c
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downward. The symbol Γ c will denote the contour obtained by letting ω —»oo.

We now define operators corresponding to functions in L ( 0 , y) .

DEFINTION 2.2. For f C £ ( 0 , y), we set

(2.2) f(T)x = / f(λ)R,(T)xdλ.
2πi *TC

 A

This formula defines an operator in [X], the integral converging absolutely

and uniformly in x. It is easily seen to be independent of c except for the re-

striction y < c < r.

T H E O R E M 2.1. // f, g C <C(0, y), then

(a) ( / + g ) ( 7 ) = / ( T ) + g ( T ) ,

( b ) (fg)(T) = f ( T ) g ( T ) .

Proof. Statement ( a ) is obvious. To prove ( b ) let / and g both satisfy the

the conditions of Definition 2.1 in the strip [-r. r ] , and let c and c' be chosen

so that γ < c < c' < r. Using the functional equation

(2.3) Rλ(T) - Rμ(T) = ( μ - λ ) Λ λ ( Γ ) Λ μ ( Γ ) ,

we see readily that f(T)g(T) is given by the expression

Lf f(K)Rλ(T)dK L rfμ

1 ί i f /"(λ)
Λ ^)R(T)d J ί
Λ^ g^)μ()μ J dλ.

πι Γc^
 μ 2πι Γc λ - μ

Since c < c ' 9

1 f / ( λ ) _ _ 1 f g(μ) . f n
/ dλ = 0, / dμ = g ( λ ) .

Formula ( b ) now follows.

T H E O R E M 2 . 2 . Let f C £ ( 0 , y ) , a €.Dn{T), and P {I) be a polynomial in

T of degree n. Then f(T)x G Dn{T\ and
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P ( T ) f ( T ) x = f ( T ) P ( T ) x .

Proof. For fixed m let π(ί, m) ( i = 1, 2, ••• ) be a sequence of partitions

of the contour Yc(m) whose meshes go to zero as i —> cc. Setting

we have

P(T)Hinx = HimP{T)x

for each i. Now letting ί —»oo, we see from Lemma 2.1 that

and

We now apply the lemma again as m —> oc.

We note also the following useful consequence of ( 2 . 3 ) .

LEMMA 2.2. Let f C C ( 0 , γ) and \ R (α) | > c. Then

λ r f ( λ ) U λ ( Ί ) x

Ra(T)f(T)x =— I dλ.
2 771 Γ c α - λ

To assign operators to functions with less restrictive growth properties than

those of <o (0, y), we must overcome the problem of the convergence of the in-

tegral in (2.2 ). As motivation, suppose that / C L ( 0 , y) and x €1 Dn ( 7 ). Then,

by the Lemma 2.2,

τ)x = — y
2/ %

f(λ)Rλ(T)x

277/

or, by use of Theorem 2.2,

ι r f(λ)Rχ(T){al - T)"x
f(T)x = J dλ.

ΓC

The convergence-producing factor in the denominator suggests the following

development.
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D E F I N I T I O N 2.3. For each n > 0, let

£(n, y) = (/ | / ( λ ) ( d - λ Γ Λ G C ( 0 , y) for | R ( α ) | > y),

and let £ (oc , y) = IΓ°=O £ ( TZ, y ) .

The definition of £(rc s y) does not depend on Cί, since if / C £ (n, γ) for

one (X it is in for any other with | R ( G()| > y We note that

£ ( 0 , y) C £ ( 1 , y) C . . .

ί-'(oo, y) is an algebra.

T H E O R E M 2.3. ///> # G £ U, y), ίλen α / + / 3 g C £ ( r e > y ) . If f£Z(m, γ)

and g C £ ( ra, y), ί/ίere /g G £ (m + n, y).

We omit the proof, which follows from the fact £ ( 0 , y) is an algebra.

DEFINITION 2.4. for / C £ ( n , y ) , and x in Dn(T), we choose α such

that I ft ( Cί) I > y, and define

λ r f(λ)Rχ(T)(al-T)nx
(2.4) f(T)x = I <iλ

2πi Jlc (o; _ λ ) n

where c < | R ( α ) | .

To show that this definition is independent of CX, let / C i ( n , γ), n > 1,

x€Dn(T), and | R ( α ) | , |R(/3) | > c. By Lemma 2.2,

! /• f(λ)Rλ(T){βI-T)nx
Rrι(T) / d\

2 Ji (β-λ)n

T)(βl-T)nx
dλ

1 f *ι Λ } κ λ [ ι } [ ί~jί ~ 1

1 f f^ 3/- T)nx
dλ

( α - λ ) π

f(λ)Rλ(T)(al-T)nx
ι r f(λ)Rλ(T)(al-T)nx

= Rn(T) / dλ.
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Since Rn(T) h a s an i n v e r s e ,

f(λ)Rλ(T)(al-T)n

x λ r f(λ)Rλ( T)(βl - Ί ) n x
- I dλ - /

2τ™ Γ c ( α _ λ ) ^
7λ.

We remark a l s o t h a t when x C =LΛn9 γ), it is a l s o in ^(n + 1, y ); and if

J) + ( 7 ), Lem

the same opera tor .

x £ J) + ( 7 ), Lemma 2.2 s h o w s t h a t formula 2.1 for both n and n+ 1 y i e l d s

THEOREM 2.4. Let / G i ! ( m , y) , fζClΛr^γ), and x C Dm+rJ Ί ). Ίhen

g(T)x CDn(T), and f(J)g(T)x = (fg){Ί)x.

Proof. We note t h a t

/g G £ (m + n, y ) and ^ f / ).\. C /V;/;̂ ' 7 )

by T h e o r e m s 2.2 and 2 . 3 . Now if we write

A ( λ ) = / ( λ ) ( α - λym,k(λ) = g(λ)(a~λTl\ and ! ^ ; ( ΰ ) ; -> r ,

then, by T h e o r e m s 2.1 and 2.2,

f ( T ) g ( T ) x = h ( T ) { a l - Ί ) m k ( Ί ) ( : J ~ 7 ) n x

= ( α / - 7 ) m + π h(T)k(T)x

We a r e lee! to a n o t h e r formula for f(T) in the fo l lowing w a y . S u p p o s e f i r s t

that / C C ( O , y ) a n d x Cϋn{'ί). T h e n in the i n t e g r a l ( 2 . 2 ) we may s u b s t i t u t e

j χ

RΛ Ί )χ = T +

ί ? λί+1

Rλ(T)Tnx

ί ? λί+1 λ"

to obtain 2

2 A formula of this type for n = 2 is used by Hille [3, p. 239].
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f(O)x 1 f λ
f(T)x = V . / dλ.

U \ + 2 i JΓ n

"-' f^(O)Vx 1 f
= V . /

This formula has meaning when f££{ny γ) instead of <C(0, y), and we shall

establish it. In fact we prove more generally:

T H E O R E M 2.5. Let / G £ U , y) and χ€Dn(T). If | R ( α ) | < c , then

• • ' • Γ <

Proof. We s u p p o s e f i r s t t h a t | R ( α ) | > γ, a n d c h o o s e c' s u c h t h a t γ<c'<

R ( C ί ) | < c. T h e n

f(λ)Rλ(T)(T-aI)nx

( λ - α ) n

f(λ)Rλ(T)(T-al)nχ

where C is a small circle described counterclockwise enclosing α and not inter-

secting Γc or Γ c ' Substituting from (2.1) in the second integral, we have

1 Γ f(λ)Rχ(T)(T- 0J)nxdλ

2ni ->c (λ- a)n

= — f f(λ)RΛT)xdλ + T — I— 7d\{T~(xl)kx

- Σ

This establishes (2.5) when | R (a) | > y. However, the right side of (2.5) is

independent of (X and analytic in Cί. Thus (2.5) holds in the larger region.

The calculus developed above has the disadvantage that if P ( λ ) is a poly-

nomial of degree n, and hence is at best in «C(τι + 2, y), the operator corre-
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sponding to P (λ) is defined only on Dn+2(T). We check that this operator is

really the formal polynomial in T in the typical case / ( λ ) = λ. For x in D3( 7 ) ,

using the series formula, we have

f(T)x = Tx +
2ι 7T I

Rλ(T)T3x
dλ,

since /(0) = / " ( 0 ) = 0. But

Rλ(T)T3x
(2.6) J dλ <2M(c)\\T3x'

1 c λ

άr

2 π II T 3 x \ \ M ( c )

The left side is independent of c, and must vanish since M ( c ) is nonincreasing.

In passing we note without proof some facts which we shall not need later.

If for x €. Dn{ Ί ) we write

11*11,,= Σ ll^ll'
1 = 0

then Dn{T) wi th t h i s norm i s a B a n a c h s p a c e X^n'; and if / C < C ( ^ y ) , the

o p e r a t o r f(T) de f ined on X t o X i s b o u n d e d . If D ( 7 ) i s d e n s e in A ( a c o n d i -

t ion of § 5 ) , t h e n Dm( T) i s d e n s e in X^n' for m > n.

3. Consistency with Taylor's operators. For an arbitrary closed operator

with nonempty resolvent set , Taylor [14] has defined an operator corresponding

to any function / analytic on σ(T) and at infinity. In our situation, let us denote

by Q<(y) the c lass of functions whose singularit ies lie in bounded se t s in the

two half-planes σ < - γ and σ > y. If / C Q ( y ) , and Ωi and Ω 2 are clockwise

contours in p(T) enclosing these se t s , then Taylor 's formula defines

(3.1) f[T] = f(cc)/ / f(λ)RΛT)dλ.
λ

This operator is bounded, and the correspondence /—» f[T] preserves sums

and products. In our theory, Q(γ) C <C (2, y); and the corresponding operator
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f(T) are defined only on D2(T). We shall show that f[T] is an extension of

f{T). First we note the relationship between ψ ( y ) and the c lasses L(n? y ) .

LEMMA 3.1. Let / £ Q ( y ) . Then fC£(k,γ) (A = 0 , 1 ) if and only if

it has a zero of order at least 2 — k at infinity.

Proof. First let / £ £ (0, y) n Q (y), and let R be the radius of a circle

about the origin containing the singularities of / in its interior. Since clearly

/(oo) = 0, we may write

λ λ 2

where g is analytic, and

\g ( λ ) | < W for | λ | > R.

Then if a •£ 0,

fn dT

/

n n fn dT

\ f ( i τ ) \ d r > | α | l o g - - M —
R l\ J R η-2

lim = 0 0 ,

which contradicts Condition (C ) of Definition 2.1. Thus / has a zero of order

two at infinity. The converse is clear. For the case k — 1, we use the foregoing

argument on / ( λ ) (α - λ ) " L .

T H E O R E M 3.1. Let / £ £ ( 0 , y) n Q ( y ) . Then f{T) = f[ Π .

Proof. Let X be a large circle of radius r centered at zero, and let c be

chosen (c > y) so that the singularities of / lie interior to K but exterior to

Γ c . Let

Γ c ( ω )

denote that part of Γ c cut off by K, and let S be the two arcs of K (described

counterclockwise) which lie exterior to Γ c . In formula (4 .1) , for f[T] we may

take
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Ω! + Ω2 = S + Γ c ( ω ) .

Now, by Lemma 3.1,

= 0(λ-2)

for large values of λ. Also by Condition B of §2, 11 Rχ ( T) \ \ is bounded if

> c. Thus

f f(λ)Rχ(T)dλ\\ = θt-\

As

lim Γc (ω) = Γc ,

the theorem is proved.

COROLLARY 3.1. // / G Q ( y ) , then

f[T]x = f{T)x

for x in D2{T ) .

Proof. L e t

g ( λ ) = / ( λ ) ( α ~ λ Γ 2 .

Then

g G £ ( 0 , y ) n Q ( y ) and g[T] = g{T).

But ( s e e [14, p. 203 ])

/ ( I H = (aI-T)2g(T) = (c:I~T)2g[T] = / [ I ] .

Similarly one shows i f / G £ ( l , y ) n Q ( y ) then

for x mϋ{Ί ).

4. A closed extension of / (T). Let / be in C (π, y ) , but not in £ (ra - 1, y ) .
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The operator f(T), defined on Dn(T), need not in general be closed on this

domain. However, we can describe an extended domain on which it will be

closed. As before, we set

A ( λ ) = / ( λ ) ( α - λ Γ \ | R (

and write

f ( T ) x = ( a / - T ) n h ( T ) x .

D E F I N I T I O N 4.1. We define

D ( f ( T ) ) = (x \h{T)xCDn(T)),

and define

f(Ί)χ = (aI-T)nh(T)x

for* in D(f(T)).

Since i C C ( 0 , y ) , f l n ( Γ ) Cfl(/(T)) by Theorem 2.2. The inclusion may

be proper. We shall need a lemma.

LEMMA 4.1 . Let f in Q ( y ) have a zero of order n (but not n + 1) at in-

finity. Thenx€Dm(T) (m > 0 ) if and only if f[T ]x € Dm+n{T).

Proof. Necessity is proved by Taylor [14, p. 203]. To prove sufficiency

first suppose that n = 0, i.e., /(oc) £ 0, and that

f[T]x€Dm(T).

If x C Dk(T), where 0 < k < m, then

f[T]x = f(<x>)x + — / f(λ)Rλ(T)xdλ
2πi y Ω 1 + Ω 2

 Λ

= f ( c o ) x + h [ T ] x ,

w h e r e Λ ( λ ) = / ( λ ) - / ( o o ) . A s h h a s a z e r o a t i n f i n i t y , h [ T ] x C Djc + ι ( 7") b y

t h e f i r s t h a l f of t h e l e m m a . B u t a s k < m ,
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and hence x £ D̂ . + ι ( T ) . By repeating the argument, we see that x £ Dm(T).

If n > 1 and

we set

g ( λ ) = (a-λ)nf(λ)

and note that

f[T]x = Rl(T)g[T]x.

As R£(T) maps Dm+n{T) one-to-one onto Dm(T),

g[T]x€Dm(T).

But since g(oo) ^ 0, x £ Z)m( J ) by the case rc = 0 just proved.

T H E O R E M 4 . 1 . The subspace D(f(T)) is independent of Cί, and f(T) with

domain D ( / ( T ) ) is a closed extension of f(T).

Proof. If |R(CO|, |R( j8) | > y , α ^ w e denote by Da(f(T)\ Dβ(f(T)\

ha, and hβ the respective domains and functions /(λ)(α~λ)" n and /(λ) (β-λ)~n.

Then

P ( λ ) U λ )

A α ( λ ) - A Λ ( λ ) = = g{λ)hβ{λ),

where P i s a polynomial of degree n - 1. T h e function g i s in Q ( y ) , and g [ T]

c a r r i e s Dn(T) into i t se l f ( i n fact into Dn + ι(T)) by the lemma. S ince

(ghβ)(T) = g[T]hβ(T)

(apply Rβ(T) to both sides ),

ha(T) = hβ(T) + g[T]hβ(T)

and

Dβ(f{T)) C Dα(/(Γ)).
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S y m m e t r y g i v e s t h e r e v e r s e . N o w f i x i n g 0, a n d a s s o c i a t e d h ( λ ) , l e t

xn€D(?(T)) U = l , 2 , . . ),

and suppose

lim xm = x0 and lim /( T)xm = γQ .

Then

l i m h ( T ) x m - h { T ) x 0 ,

a s h ( T ) i s c o n t i n u o u s . A s h ( T ) x m C Un(T), a n d (al - T ) n i s c l o s e d on

Dn(T),h(T)x0Cϋn(T); i .e. * 0 C D (f(T)), and

Γ ( Γ ) Λ 0 = (al-T)n h(T)x0 = y o .

When

/ ( λ ) = X o ; λ ί ( α B ̂  0 ) ,
1=0

the operator f(T) is the formal polynomial in Γ. For if

A(λ) = / ( λ ) ( α - λ Γ ( " + 2 )

then h C Q(y), with a zero of order exactly two at infinity. By Lemma 4.1,

h[T]x (=h(T)x) CDn+2(T)

if and only if x £ Dn( Ί ). Hence

D n m = D{J(T)).

If xCDn(T),

R^2(T)f(T)x = A [ Π Ϊ = /?;+2(7) £ of
i = o

n

OL

7Ϊ

/ u ) = 2^ α i y

1=0
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By s i m i l a r r e a s o n i n g one s h o w s t h a t f(T)~f[T] for f ζl Q- ( y )•

We now ident i fy f(T) in t h e c a s e t h a t X i s a H u b e r t s p a c e a n d A = — iT

i s s e l f - a d j o i n t [ 8 , p . 4 4 ] . If \ET\ (-00 < T < oo) i s the r e s o l u t i o n of / a s -

s o c i a t e d w i t h A, D (A) = D {T) is t h e s e t of x for w h i c h

lim / Tek(τ)dErx

exists, where e^.(r) is one iί -k <_ τ <_ & and zero otherwise. If F (r) is con-

tinuous, we define Dp as the set of x for which

)x = lim / F(τ)ek(τ)dEτx

exis ts . The operator F (A) is normal, and hence closed on Dp. We write

Dp = D(An) if F ( τ ) = T " .

Taking F ( τ ) = / ( j τ ) , w e easily see that /"(Γ) = F ( / 4 ) when / C £ ( 0 , y)

(here y = 0) and that D ( 4 " ) = Dn{Ί). Now let / C £ ( r e » y ) ,

) I > 0, and H ( r ) = h(iτ).

If

A(n*eo,,(n,

that is

ί K ^ x C D f / l " ) = D ( ( α / - ί ^ ) n ) ,

then

lim [°° F(τ)ek(r)dErx

/

ex) Γ c o

(α -ir)nek(τ)dEτ I H(μ)dEμx

exists and x €1 Dp, The argument may be reversed. Thus
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and

DF = D ( f ( T ) )

F(A) = (al-iA)H(A) = ( α / - Γ ) Λ A ( T) = / ( 7 ) .

5. Operators corresponding to bilateral transforms. A class of operators of

particular interest in applications is the set corresponding to the subclass

I) (γ) C <L(2, y) of absolutely convergent bilateral Laplace-Stieltjes transforms

J ^ e ^ dβ{ξ) By a well-known theorem of Hamburger [17, p 265], any func-

tion in £ ( 0 , y) is in l)(y) While functions in <C(0, y) yield bounded operators,

functions from D(y) may yield unbounded operators in the absence of addi-

tional assumptions on T and Rχ(T). In this section and throughout the rest of

the paper we shall assume

1 3 ' :

(5.1)
| σ | - y

C : D ( Ί) is dense in X, 3

which will ensure boundedness. The results here are essentially due to ίlille;

in his book [3, Chap. 15] he constructs a calculus for operators with spectrum

in the left half-plane, the class of functions being one-sided transforms converg-

ing absolutely in a half-plane containing the spectrum. The details of the con-

struction in our case will differ sufficiently to justify giving an outline of the

development. We take the following result from Hille.

THEOREM 5.1. [3 , p. 307, 322]. // T is a closed operator satisfying A, B',

and C, the formulas

(5.2)

1 fr+ic

* 77 i Jr-i oo

— ( C , l ) - f ' r ~ l °
\πi J-r+ioo

^Condition C implies Dn(T) is dense for n > 1. For if λ € p(T), Dn(T) = Rχ'l(T)D(T)
is dense in R\~l (T) X = Dn(T), and thus by a repetition of the argument is dense in D(T),
and hence in A. It will follow from Theorem 5.1 [3, p. 228] that D^ {T) = ΓΓ=γ Dn{T) is
also dense.
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where x ζl X? r > y, define a group of bounded operators a (<f), —oo < ζ < oo s

where

17) =

c3 ( £ ) j s strongly continuous in ζy and, for each x ζl D (T),

lim = Tx.

R\(T) has the representation

Rλ(T)x =

(5.3)

Jo
(σ > y ) ,

(σ < - y ) ,

x ζ- X, the integrals converging absolutely.

The operator 3 (ξ) will prove to be /( T) f o r / ( λ ) = e λ ξ .

Let Ψ denote the vector space of complex-valued functions β satisfying:

(a) β is normalized and of bounded variation on ( —oo, oo).

( b ) β ( - c c ) = l i m ί ^ . 0 O β(ξ) = 0.

(c) There is an r > γ (r depending on β), such that /J^ e" ^ dβ(ξ)

converges absolutely for - r < σ < r.

We denote by Ψc the subclass of Ψ of β continuous at zero and write

Ψ + = ( / 3 | / 3 G Ψ C , β ( ξ ) = 0 , £ < 0 ) ,

= β(0), 0< f)

If u denotes the function

: £ < o ) ,

(ξ- o),

1 (0<ξ),
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then each β £ Ψ has a unique representation

β= β+ + β. + [j3(0 + ) - j 8 ( 0 - ) ] ι * ,

where β + £ Ψ+, j8_ C Ψ _ . The latter functions are given by

β+(ξ) = β(ξ) - β(0+) (0<ξ)

and

and β ( O - ) otherwise.

DEFINITION 5.1. A function / is in l ) ( y ) if and only if

e-λ£ dβ(ξ),

where β £ Ψ. It is in Q ( y ) if and only if / C l ) ( y ) and β is absolutely con-

tinuous.

We write f=f+ + f_ + t/3(0 + ) - jS(O-)] corresponding to the decompo-

sition above, and note that

(5.4) Λ ( λ ) = f° e-λ£ dβ+(ξ), / . ( λ ) = f°° e-Xt dβ.(ξ).

Thus /+ and /_ are analytic for σ < r and σ > - r respectively.

T H E O R E M 5 . 2 . / / / C l ) ( y ) , then the bounded operator f{T\ defined by

(5.5) f{T\x=Γ Z(~ξ)xdβ(ξ) (xCX)
J-oo

is also given by

1 rr+i oo

(5.6) f \ T } x = (C, 1 ) - / f(λ)Rχ(T)xdλ
2πi J r-i oo

(C, 1) - / Γ l f(λ)Rλ(T)xdλ.
2πi
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Moreover,

1 Γr+ioo

+(ξ) = (C, 1 ) - / f.{λ)RΛT)xdλ,
2πi J r-ioG / v

f\T\x = ί°° %{-ξ)xdβ (ξ) = (C, D -
Jo 2πi

f (λ)Rλ(T)xdλ;

and if β = u? f\T\x — x9 the two integrals of ( 5 . 6 ) each yield x/2. If x €1 D2(T),

f{ Ί\x — f(Ί)x in the sense of § 2.

We sketch the proof. Consider the first integral of (5.6). After substituting

from (5.3) and (5.5), and interchanging the order of integration, we may express

the partial integral

1 fω Γ τl 1
— J 1 + f(r + ir)Rr+ιτ(T)Xdr

= Γ ° eτt v(ξ, ω)dβ+(ξ)+ f° e-Γ£ v(ξ,ω)d (ξ)
Jθ J- oo P-

(5.7)

where

-)] υ(0, ω ) ,

v(ξ, ω) = I v(a)
J - oo

2 sin - a)/2da

ω\ς -

and

t (CX) = x/2

0

(α < 0 ) ,

( α = 0 ) ,

(0 < α).

The classical theorem on the Fejer integral holds for vector-valued functions

(see [3, p. 49]). Thus

lim v(ξ, ω) = v{ξ )

for each ζ and, in fact, uniformly in any bounded interval of continuity of v (ζ) .
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Since j8+ and /3_ are continuous at zero, one shows easily that the first integral

on the right of (5.7) vanishes in the limit, and

1 /v+;°o fo π „ [/3(O + )-/3(O-)]
(C, 1) - f(λ)R,(T)xdλ= I 3(-ξ)xdξ + — - x

- ί Γ U + 2 X

The second integral of ( 5 . 6 ) yields /+{ T\x + [ β ( 0 + ) - β(0-)]x, and the sum

of the two is f{T\x.

Finally, when x G D2 ( T) we may substitute

* Tx

in (5.6). Calculation of residues yields

! f
/

πi Γr

f(λ)Rλ(T)T2x
dλ = f(T)x.

χ2

It follows from the foregoing theorem that 3 (ζ) is f\ T\ for f(λ)~e ^.

If / f C l)(y), one shows easily [3, p. 309] that

( / 1 / 2 ) U ! χ =

where

θ{ξ)= Γ βι{ξ-η)dβ2{η).
J-OO

W;e also note that

\\i\τ\\\ < i~ e\*\y \dβ{ξ)\,

and if xCDn(T), / C l ) ( y ) then f { T \x C Dn(T). The proof of the latter

follows that of Theorem 2.2.

6. A class of kernels. We shall denote by Q 0 (y) those functions in
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(see § 3 ) which vanish of infinity. Any / i n Q o ( y ) is in G ( y ) , i .e., is an ab-

solutely convergent bilateral Laplace transform. Our purpose is to characterize

the kernels G ( ξ ) for which

f(X) = [°° G(ξ)e-λ£ dξ, fCG0(γ).

For this we shall need certain well-known results.

An entire function F is said to be of exponential type δ if

max I F ( z ) I =
μi=r

for every positive 6 and no negative 6. Polya has shown [ l l , p. 585] that there

is a one-to-one correspondence between entire functions of exponential type

and functions analytic at infinity as follows: If

(6.1) /(λ) = T ( | λ | > C)

where C is the natural radius of convergence, then

/(λ)= Γ e-λ^ F(ξ)dξ,
Jo

where F is the entire function

0 0 a ζn

(6.2) F(ξ)= T A -

F is of exponential type C. Conversely, F determines /. Further let K be the

set of singularities of /, and

k(φ) = max

be its support function. The function
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is called the indicator of F as it measures the growth of F in the direction φ.

Polya shows that k(φ) - h(-φ).

T H E O R E M 6 . 1 . A function f is in Ci ( y ) if and only if it is of the form

/ ( λ ) = [°° e-λξ G{ξ)dξ,

J - OO

where

F+(ξ) (0<ξ<oo),

GU) =
F(ξ) ( - o o < £ < O ) ,

and F + and Fm are entire functions of exponential type satisfying

\F+(ξ)\ = 0{eξ&+), S + < - y , as ^ — » + oo,

IF (ξ)\ = O(eξS ) , 8 > γ, as ξ—*-0D.

Proof. Let / £ QQ ( y ) . Then we may write

= /.(λ) + /+(λ),

where Ω t and Ω2 are bounded clockwise contours lying in R ( λ ) > y and

R ( λ ) < - y, respectively, which enclose the sets of singularities of / which

are in these two half-planes. The functions /_ and /+ are in Q^(y), and the de-

composition is unique. Then

(6.3) /. (λ) = ί°° e λ ξ F+{ξ)dξ, R ( λ ) > c + ,
Jo

w h e r e F+(ξ) i s e n t i r e of type c + . S i n c e t h e s i n g u l a r i t i e s of / + l i e in R ( λ ) < - y,

k(π) = λ ( 0 ) < ~ y ,

and t h u s

\F+(ξ)\ = O(eξS + ),
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where δ + < - y as ζ—> + oc, and the integral (6.3) converges absolutely for

R(λ) > - y .

One shows that

= f° λt FJξ)dξ,

where -F_(ξ) is the entire function associated with /_ by (6.1) and (6.2) by

setting

λ = - μ, g ( μ ) =

as the singularities of g lie in K(μ) < — y.

Conversely, if

/ ( λ ) =

where F + is an entire function of exponential type with the indicated order

property, /+ is analytic at infinity and its singularities lie in R ( λ ) < - y. The

case of /_ is similar.

7. An inversion theorem. We now prove a result which, when T is the oper-

ator of differentiation in spaces of functions on the real line, will yield the

inversion of many common convolution transforms by differential operators of

infinite order (see (1.2) and (8.3)).

Let /be in I) (y) and [ / { T } ] " ι exist. If 1// is in <C (m9 γ) for some m9 the

calculus shows that

[ f [ τ \ v ι = ( f ι ) ( T ) .

When this is not the case, however, we can often construct the inverse as a

pointwise limit of polynomials or other operators. The idea is to find a sequence

ί hn \ of functions in L (oo? y) such that

Mλ)/(λ)—>i

suitably near σ(T). The functions hn(λ)f(λ) may be treated by the calculus,

and under proper conditions the sequence

(hnf){T) = hn(T)f(T)
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should converge strongly to /. We shall call a sequence \hn\ an inverting se-

quence f o r / C I) (y) if

(1) hn(λ)f(λ) C l)(y) 7 i = l , 2 , . . . with a common strip [-r,r] (r > γ)

of absolute convergence;

(2) lim M λ ) / ( λ ) = 1 (-r < σ < r ) ;

(3) for some integer k > 0,

Note that uniform boundedness of hn(λ)f(λ) implies ( 3 ) if k = 2.

LEMMA 7.1. //A C £ ( m , y ) αrcc? /cmo? A/are ίw U ( y ) , ίAerc

( A / ) ί Π = h ( T ) f \ T \ .

Proof. Given Λ; in I we pick %( (i = 1, 2, , ) in Dm + 2(T) converging

to x. Then f\T\ %ι and (A/) ί T } %( converge to f\ T\ xι and (A/) ! T\ X{ re-

spectively. Since for each i,

( h f ) \ Ί \ χ i = h ( T ) f { T \ x i = h ( T ) f { T ] x i t

and h(T) is closed, the result follows.

THEOREM 7.1. lf\hn\ is an inverting sequence for f C U (y), ίAerc

lim hn(T)f{ T\x = %

/or eαcA % i^ D^{Ί). The limit holds for all x in X if and only if the transforma-

tions (hnf) ί T } are uniformly bounded.

Proof. For each ny

hn(Ί){\Ί\ = (hnf)\T\

by the lemma. Now if x C D^ ( T) we may write

*-ι ( A ^ ^ ί O ) ^ i Γ hn(λ)f(λ)Rλ(T)Tkx

(hnf)(T)x=Σ, 7} + — L ~k dλ.

By condition (2), all terms in the summation go to zero except the first which
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converges to x. The last term by ( 3 ) converges to

Rλ(T)Tkx

λk
dλ.

But this integral vanishes by the argument to establish (2.6), Since D^iT) is

dense in X we conclude the last statement from the Banach-Steinhaus theorem

and the principle of uniform boundedness [3 , p. 25].

In applications we shall take hn(λ) of the form pn(λ) or e n p^(λ), where

pn is a polynomial and cn is real. In each case,

hn(T) = hn(T).

For the former this was proved at the end of § 4. The latter case is left to the

reader.

8. Examples. An important application of the theory of the preceding sec-

tions is found by taking for 7 the operator of differentiation in certain spaces

of complex-valued functions defined on the boundary of the unit circle or on the

real line. Where functions in the spaces we consider are defined on the line,

the spectrum of T is the imaginary axis, whereas σ(T) consists of the integral

points of the imaginary axis when the functions in the space are defined on the

circumference of the circle. For this reason we shall call these two groups of

spaces the continuous and discrete cases respectively.

Continuous:

1. C [-oc, oo],

| | x | | = s u P ί | * ( f ) | ,

D(T) = ( * | % ' ( f ) C C [ - c c , c c ] ) .

2. Lp(-cc, oo) (1 < p < oo),

/ \x(t)\Pdt)ι/P,

D {T) = (x\x (t) is absolutely continuous on each finite interval and

* ' ( f ) C L p ( - o c , c o ) ) .

Discrete:

1. C[~77, π],
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D ( T ) = ( x \ x ' ( t ) C C [ - π , π ] ) .

2. L p ( - τ r , π) ( 1 < p < o c ) ,

D(T)={x\x(t) is absolutely continuous and # ' ( ί ) C L p ( - 77, π) ) .

In the discrete case the functions are, of course, periodic, and an x in

C [-oo, oc] has limits at + oc and - o c .

Well-known theorems show that D(T) and, in fact, D^ (T) are dense in all

these s p a c e s . One shows easi ly that T is closed. It follows that ( λ / — Ί) is

closed for any λ, and (λ/— T ) " ι is closed when it ex i s t s . Since a closed trans-

formation defined on the whole space is bounded [ 3 , p . 3 0 ] , the resolvent Rχ{T)

will exist if and only if λ is such that the differential equation

= x(t)

has a unique solution y in X for each x in /¥. Then

One shows easily in the continuous case (compare with 5.3) that

RΛΊ)χ(t)

Γ
Jo

- f° e-λξ x(t+ ξ)dξ
J-OO

( R ( λ ) > 0 ) ,

( R ( λ ) < 0 ) ,

and

Also

ί«λmπ< | T Ϊ .

When / G G (y) (as γ - 0 we shall write just Q hereafter), that is,
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/ ( λ ) = G{ξ)dξ,

then

f(T)x(t) = [°° G(ξ)x{t - ξ)dξ.

Also

in all the s p a c e s .

Now in the discrete case the formulas above for the continuous case are all

valid if one interprets x (t) = x(t + 2n π) However, with this identity, they may

be given the more convenient form

Rλ(T)x(t) =«
l _ e

Γ

-2πλ

ξ)dξ

l - e 2 π λ J-2

Another representation is

sinh πλ / '
J-π

(λ £ in, 7i = 0, + 1 , ± 2, . . ) .

For / £ G ,

f(T)x(t) = Γ H(ξ)x(t - ξ)dξ,
J -Ή

where

If we use the Fourier representation
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*ω ~ Σ

n=-oo

then

Rχ{T)x{t) ~ Σ,

and, more generally,

oo

f{T)x{t) ~ Σ f(in)xne
int,

where the numbers f {in) are the Fourier coefficients of H{ζ). Again,

and

< Γ
J-π

When p = 2, one may show further that

λ € σ(T)

in both the discrete and continuous cases. This and the above facts are well

known. The transformations f (T) are special cases of factor transforms for

which one may refer to [3, p. 344, 361]; see also [ l , p. 99].

In view of these remarks we may state a corollary of Theorem 7.1 in the

following convenient form.

T H E O R E M 8.1. Let

f{χ) = ί°° e " λ ^ G{ξ)dξ
J - oo

and
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AB(λ) = eCnλ

 P n ( λ ) ,

where the numbers cn are real and the p are polynomials. If f ( λ ) and

hn(λ)f(λ) = f°° e-χ£ Gn(ξ)dξ
J- oo

have a common strip [ —r, r ] s r > 0 of absolute convergence, and in this strip

| A B ( λ ) / ( λ ) | <M

and

lim hn(λ)f(λ) = 1 ,

then:

( a ) if x £ Lp(- oo, oo) ( p >_ 1 ) , or C [-oo, oc], αrcί/ Λ; G D2(T),

( 8 . 1 ) l i m A Λ ( Γ ) [°° G ( ξ ) x ( t - ξ ) d ξ = x ( t )
n —• oo J - ex)

m norm. If for some M'9

(8.2) ί0 0 | G B ( £ ) | # < Λ Γ ( n - 1 , 2 , . . . ) ,
•/- oo

ί/ιe^ (8.1) holds for all x.

(b) If x ζi L2{ — oc,oo), ίΛβ Zimi'ί (8 .1) holds for all x without ( 8 . 2 ) .

Actually the theorem is too restrictive in L 2( —oo, oc). Since — iΊ is self-

adjoint in this space [ 12, p. 441], we may use the calculus of Stone and von

Neumann (see § 4 ) . With this calculus it is sufficient for the conclusion that

hn{λ) f (λ) be defined and converge boundedly to unity on the imaginary axis.

As an application of the theorem above we obtain for function spaces an in-

version theorem due to Hirschman and Widder [7] . Let

f(λ) = [E(λ)Yι, E(λ) = Y

where a^ = b^ + ic^ (k = 1, 2, ) is a sequence of complex numbers such that
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If

i £ / M
Σ 7- <«' Σ 7- < 0 0

( n - 1 , 2, . . . ),

where the dn are real numbers approaching zero, then the conditions of the

theorem on the functions / ( λ ) , hn(λ) { ( λ ) (n = 1, 2, ••• ) are satisfied in any

closed vertical strip free of zeros of E ( λ ) . Lett ing

G(ξ) = — (l°° f(λ)eλ^dλ,
2 77 i J - i °o

these authors show that

77 ί J " i
dλ

J-c
ιGn(ξ)\ dξ<M < o o .

Thus

(8.3) lim
dt

in norm for x in any of the spaces. We list below the kernels of some common

transforms with their bilateral transforms which fall under this discussion:

Laplace .-ei

c i X u ^
otieltjes seen —

2?r 2

2 πv c
Meijer — cos — eζ Kv\ξ)

π 2

- λ )

1

cos πλ

77 2A

\ 2 ~ - 2/
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Hirschman and Widder have studied inversion formulas of this sort in great

detail (see [4, 5, 6, 7, 16]; see also Pollard [10]). Their results involve the

formal differential operator D = d/dt, and are concerned with inversion at par-

ticular points rather than in the norm topology of function spaces. Their proofs

are quite different, involving a convergence argument with the kernels Gn{ξ)

in contrast to the present method of first proving inversion for a dense set of

functions. On the other hand, the present method seems unsuitable for obtaining

local results.

Similar inversion formulas have been proved for L 2 ( —oc, oc) by H. Pollard

[9] by use of Fourier transform methods. He needs only to prove that the pro-

ducts hn(λ) / ( λ ) converge boundedly to unity on the axis. However, in each

case he considers one can show this is true in a strip of positive width. In

several cases we are unable to show (8.2), for example in the case of the

Weierstrass transform where

e ξ 2 ,2,Λ I λ 2 \ "
G(ξ) = , f(λ) = eλ f \ and A Λ (λ) = 1 ,

\lH ' An I

or the partial sums in the series for / ( λ ) , and in the case of the Stieltjes and

Laplace transforms when hn are the partial sums.

As a final application, we give an example for the case of the circle. Here

the Weierstrass transform takes the form either of a transformation of series

'', f(T)x(t)= Σ *neint-n2/4

n=-oo

or a finite convolution

f(T)x{t)=— [Ή Θ3(ξ,
2 77 J

where

2 y e"" 2 c xcos nt
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is the theta function occurring in the theory of heat conduction [3 , p. 402]. For

any x in L 2 (- π, π) or x in D2 ( T ) of the other spaces,

/ i2 \n

lim 1 f ( T ) x { t ) = χ ( t )
n-,<χ> \ 4n I

in norm.
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SUBFUNCTIONS OF SEVERAL VARIABLES

E. F . B E C K E N B A C H AND L. K. J A C K S O N

1. Introduction. Convex functions have been generalized in the following

two directions: to subharmonic functions [ 5 ] of two (or more) independent

variables, by replacing the dominating family \F(x)\ of linear functions, or

solutions of the differential equation

d2F
= 0,

dx2

w i t h a family of h a r m o n i c f u n c t i o n s \F(x9 y ) ! , or s o l u t i o n s of t h e p a r t i a l dif-

f e r e n t i a l e q u a t i o n

, x d2F d2F
(1) Δ F Ξ - + = 0;

dx2 dy2

and to subfunctions [ 1 ] of one variable, by replacing the dominating family of

linear functions with a more general family of functions of one variable having

certain geometric features in common with the family of linear functions.

We shall here combine the foregoing considerations, generalizing subhar-

monic functions by replacing the dominating family of harmonic functions with

a more general family of functions of two (or more) independent variables.

Bonsall [ 2] has recently considered some properties of subfunctions of two

independent variables relative to the family of solutions of the second-order

elliptic partial differential equation

dF dF
ΔF + a (x, y ) — + b (x, y ) + c (x, γ ) F = 0.

dx dy

Received February 17, 1952. This research was supported in part by an Office of
Naval Research contract.

Pacific J. Math. 3 (1953), 291-313
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Tautz [6] has considered a more general situation; but he restricted the domin-

ating family of functions to being linear, and its members to having no positive

maxima or negative minima at interior points of the domain of definition.

After developing some properties of subfunctions from a few postulates for

our dominating family of functions ( § 2 ) , we shall introduce further postulates

as we need them in studying a Dirichlet problem relative to the dominating fami-

ly of functions ( § § 3 - 5 ) . Applications to elliptic partial differential equations

will be made in a subsequent publication.

2. Generalized subharmonic functions. Let D be a plane domain (nonnull

connected open set), and let \γ\ be a family of closed contours y bounding

subdomains Γ of D such that

a) Γ ^ Γ + y C D ,

b) Γ is closed,

c) { γ \ includes all circles K which lie together with their interiors K in Z),

and have radii less than a fixed p > 0.

Let {F(x, y)\ be a family of functions whose domains of definition lie in

D and which satisfy the following postulates:

POSTULATE 1. For any member y of { y} and any continuous boundary-

value function f{x, y) on y, there is a unique F{x, y; f; γ) C { F(x, y)\ such

that

a) F{x,y;f;γ) = f(x,y) on y,

b) F(x, y; f; γ) is continuous in Γ .

POSTULATE 2. For each constant M >_ 0, if

Fι(x,y),F2(x,y)C\F(x>y)\,

and

( 2 ) Fx{x, y) < F2(x,y) + M ony,

then
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Fx(x9y) < F2(x, y) + M in Γ;

further, if the strict inequality holds at a point of y then the strict inequality

holds throughout Γ.

REMARK. We note that the second part of Postulate 2 might have been

restricted to the case M = 0 without actual loss of generality. For if the strict

inequality in (2) holds at a point of y then also

^l (*> y) < F{x, y; F2 + M; γ) on y,

with the strict inequality holding at a point of y. It follows from the second part

of Postulate 2, restricted to the case M = 0, that

F{(x9y) < F(x, y ; F2 + M; y ) < F2(x,y) + M in Γ

or

Fx(x,y) < F2{x9 y) + M in Γ ,

ίoτM> 0 .

D E F I N I T I O N 1 . A f u n c t i o n g(x, y) i s a continuous sub-\ F (x9 y)} function

in D, or briefly a subfunction, provided

a) g(x, y) is continuous in D,

b) the inequality

g(x9 y) < F{xy y) on y

implies the inequality

g(x> y) < F(x, y) in Γ .

NOTATION. In the sequel we shall restrict use of the symbols Z), y, Γ, Γ,

A:, K, K, f(x,y), F(x, y), F{x, y; f; y), and g(x, y) to the foregoing desig-

nations.

THEOREM 1. // g(x9 y) is a subfunction in D9 then either

(3) g(x, y) s F(x9 y; g; γ) in Γ ,

or
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g(x, y) < F{x9 y; g; γ) throughout Γ.

Proof. Suppose that for a point {x0, y0) of Γ we have

(4) g(x0, y Q ) = F(xQ, y Q ; g; y ) .

Let K ζl{γ\ be a circle with center at (x0, y0) and lying together with its

interior K in Γ Then we have

g(x9 y) = F(x, y; g; K) < F(x, y; g; γ) on K ,

and therefore

(5) g(x, y) < F(x, y; g; K) < F(x, y; g; γ) in K.

In particular, by (4), we have

g ( χ

o > y o ϊ < F(<xo> r 0

; s ; κ ) ^ F ( V γ o ; s ; y ) - g ( \ 9 y 0 ) ,

so that

and therefore, by ( 5 ) and Postulate 2,

g(%, y) = F{x, y; g; K) = F {x, y; g; γ) on K.

Since Γ is a connected open set, for any point (x, y) of Γ there is a finite

chain of circles in {y}, each lying in Γ, each with its center on the circum-

ference of the preceding one, and such that the chain begins with K and ends

with a circle through (x, y). Continued repetition of the foregoing analysis

shows that (4 ) implies (3) .

COROLLARY. If g(x9 y) is a sub function in D, andy for a fixed γ, Γ is

interior to the domain of definition of F(x9 y; g; y), then either

g(x, y) = F{x, y; g; y ) ,

or every neighborhood of each point of γ contains points exterior to Γ for which

g(x, y)> F(x, y; g; y ) .

REMARK. For a subfunction g(x) of one variable, relative to a family

\F(x)\ of functions defined on an interval a < x < b, the corollary can be
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strengthened as follows [ l ] : If a < xϊ < x2 < 6, and

then either

g(x) H F(x)

or

gix) > Fix)

for a < x < xi and for x2 < x < b. But, as independently observed in con-

versation by R. H. Bing and M. H. Heins, the stronger result does not generally

hold for subfunctions of more than one variable. Thus the function

(z = x + iy)

is subharmonic in | z | < 1. For large M > 0, the set of points where

V(z) < - M

has exactly two components, one containing the point z = 0, the other con-

taining z = 1/2. Let ^ ( z ) be defined by

- I I on the component containing z = 0,

IPU) =
max [ F ( z ) , - 2M] elsewhere in | z \ < 1 .

Now W(z) is continuous and subharmonic in \z\ < 1, coincides with the har-

monic function - I I on small circles with center at the origin, but is strictly

dominated by -M in the neighborhood of z = 1/2.

THEOREM 2. // gn(%, y) is a subfunction in D for n - 1, 2, , and

gn(χ, y)-^>gQ(χ> y)

uniformly on each closed and bounded subset of D, then gQ(x9 y) is a sub-

function in D.

Proof. Clearly, gΛ%> y) is continuous in D. For any γζl \γ\ and any

e > 0, there is an N = N( e) such that for n > N we have
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| g π U r ) - go(
χ> y)\ < £ i n Γ .

Then for n > N and (x, y) £ Γ, we have

go(*> y) < Enίχ> y) + 6

< F U , y; gn; y) + e < F(x, y; gQ; γ) + 2e.

Therefore, since e > 0 is arbitrary, we have

go(
χ> y) < F<<x> y\ ^ 0

; y^ i n Γ

The following result is a generalization of Littlewood's theorem [4, pp. 152-

157] concerning subharmonic functions.

THEOREM 3. A function g(x, y), continuous in D, is a subfunction in D if

and only if corresponding to each (#o$yo)£ D there exists a sequence of circles

κn = κn(xQ9 yo)C*{γ\ with centers at (xQ, yQ ) and radii ρn(xQ, yQ) —>0,

such that

g(*0,y0)< ^ ( v y o i « " t J

Proof. We shall prove only the sufficiency of the condition, since the neces-

sity is obvious by definition.

Suppose that the condition holds but that g(x, y) is not a subfunction; then

there is a y C \y\ and an F (x, y) £ { F (x, y)} such that

g(x, y) < F(x, y) on γ

but

g(x, y) > F(x, y)

at some point of Γ. Then the set of points of Γ on which

max g(x, y) - JF(x, y) = M > 0
U,y)eΓ

is attained is a closed nonnull interior set E in Γ.

Let (x , y ) be a point of E such that

dist [ U n , y ) , γ] = min dist [ U , y), y ] .
(χ,y)€E
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By hypothesis, we have

but, by our selection of (#0> y ), for sufficiently large n there is an arc of

κn on which

g(x, y) - F(x, y) < M.

Thus on κn we have

F(χ, y; g; κn) = gU, y) < F(x, y) + Λf,

with the strict inequality holding at some point, so that, by Postulate 2, at each

point inside κn we have

F(x, y; g; K J < F(x, y) + M

in particular, we have

e(*0> r0) < ^ ( v V « ; ι c n ) < F ( V ^ o ) + M = ^ V ^ ^

a contradiction.

REMARK. A method similar to that used in proving Theorem 3 can be used

to show that Postulate 2, restricted to the case γ - K, implies the result stated

in Postulate 2 for general γ d\γ\. Thus Postulate 2 might have been restricted

to the case γ = K without actual loss of generality.

T H E O R E M 4. // g t ( * , y ) , g2(χ, y ) , ••• , gn(χy y) a r e subfunctions in D,

then gQ(x, y), defined by

gQ(x, y) = max [g^x, y), g2(x, y),•••, gn(x, y)],

is a subfunction in D,

Proof. Since the functions gλx9 y) (/' = 1, 2, , n) are continuous, it

follows that gQ(x, y) also is continuous. Let γ C \γ\, and let (XQ9 yQ ) C Γ.

Then for some /, with 1 < / < n, we have
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THEOREM 5. If g(x, y) is a subfunction in D, then, for any fixed γ C { y},

the function g(x, y; y), defined by

g(x,y) /orU,y)CD-Γ,

g(x9 y; γ) =

F(x, y; g; y) for (x, y) C Γ,

is a subfunction in D.

Proof. It follows from Theorem 3 that we need to test the behavior of

g{x, y; γ) only relative to small circles K C ί y} with centers at points (x , y )

of the given y But then we immediately have the desired inequality

V

DEFINITION 2. Superfunctions are defined by reversing the inequalities in

the definition (Definition 1) of subfunctions relative to the family \F(x, y)}.

It is easy to show that results analogous to Theorems 1-5, with suitable

alterations, hold for superfunctions: in addition to writing "superfunction"

for "subfunction," we reverse the inequality in the last line of Theorem 1 and

in the last line of Theorem 3, and replace "max" by "min" in Theorem 4.

3. A Dirichlet problem. We now introduce some additional symbols,

NOTATION. Let Ω be a bounded connected open subset of D with boundary

ω such that

Ω = Ω + ω C D.

To distinguish points of Ω from points of ω, we shall often designate points

of Ω by capital letters A, B, and points of ω by α, β; and we shall write f(Λ)

for f(x, y), where (x, y) are the coordinates of A, and so on

Let h(d) be a bounded, but not necessarily continuous, function defined on

ω, and define h* (α) and A*(θί) by

A*(α) = liminf h{β),
β-+CL

A * ( α ) = l i m s u p h(β).
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DEFINITION 3. By a solution of the Dirichlet problem for Ω relative to

\F{x, y)\ and relative to the given bounded boundary-value function h (α) on

ω, we shall mean a function H(x, y) which is continuous in Ω, satisfies

( 6 ) h*(a) < lim inf Π(A) < lim sup H(A)< A*(α),
A —*OL A —*CL

and is such that for each γ £ { γ} with Γ C Ω we have

(7) H(x,y) ^ F(x,y;H;γ) in Γ.

DEFINITION 4. We shall say that a function H{x, y) which is continuous

in Ω, and which satisfies ( 7 ) for each γ £ !y} with Γ C Ω, is an \F{x, y)\-

function in Ω, though of course in the given family \F(x, y)\ there might be

no member whose domain of definition contains Ω the given domains of defi-

nition might for instance be small circles. Clearly, the only functions which are

both subfunctions and superfunctions are the \F(x, y)}-functions.

DEFINITION 5. The function φ {x, y) is an under-function provided

a ) φ{x, y) is continuous in Ω,

b) φ{Λ) is a subfunction in Ω,

c) φ((λ) satisfies

φ(a) < Λ*(α) on ω.

DEFINITION 6. The function φ(x, y) is an over-function provided

a) φ(x, y) is continuous in Ω,

b) ψ(A) is a superfunction in Ω,

c) φ(θi) satisfies

ψ(α) > Λ*(α) on ω.

THEOREM 6 If φ(x, y) is an under-function and ψ(x, y) is an over-func-

tion, then

φ(χ, y) < ψ(χ, y) in Ω.

Proof. The result can be established by a method similar to that used in

proving Theorem 3.
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THEOREM 7. // φγ(x, y ) , φ2(x,y\ *φn(x,y) ore under-functions,

then φ(x, y ) , defined by

φ(x, y) = max [φχ(x9 y ) , φ2(x, y),•••, Φn(*> y ) l f

is arc under-function.

T H E O R E M 8. // ψι(χ,y)9 Ψ2(χ, y), ••• , Φn(
χ> y ) a r e over-functions,

then φ(x, y ) , defined by

φ(x, y) = min [ψ^x, y ) , ψ2(x, y ) , ••• , Ψn(x> ϊ)h

is an over-function.

Proof. Property b) of Definition 5 holds for φ(x, y) by Theorem 4; the

other properties of Definition 5 hold for φ(x, y) since they hold for each

φ\x, y). Thus Theorem 7 is valid; and Theorem 8 can be proved similarly.

THEOREM 9. // φ(x, y) is an under-function, and γ C {yi, Γ C Ω, then

φ(x, y; y), defined by

φ{x, y) for (x, y) in Ω - Γ,

φ(x9 y; γ) = '

F(x9 y; φ,γ) for (x, y) in Γ ,

is an under-function.

THEOREM 10. // φ(x, y) is an over-function, then φ(x, y; γ) is an over-

function.

Proof. Theorem 9 follows immediately from Definition 5 and Theorem 5,

and Theorem 10 holds similarly.

POSTULATE 3. For any κζi\γ\, and for any collection \fv{x, y)\ of

functions fy{x, y) which are continuous and uniformly bounded on K, the func-

tions F(x, y; fv; K) are equicontinuous in K.

We shall use the following well-known and easily established result in con-

nection with Postulate 3.

LEMMA 1. For any collection { Uv(x, y)\ of functions Uv{x, y) which are

uniformly bounded and equicontinuous on a set E? the functions S(x9 y) and

l{x9 y ) , defined by
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S(x, y) s sup \Uv{x, y ) ] ,
υve\uv\

Kx,y)* inf [Uv(x,y)]f

vve\υv\

are continuous on E.

POSTULATE 4. For any bounded connected open subset Ω of D with bounda-

ry ω such that Ω C /), and for any bounded function h(d) defined on ω, there

exists an under-function φ(x, y ) , and there exis ts an over-function ψ{x, y )

DEFINITION 7. By H*(x, y) and H*(x, y) we shal l denote the functions

defined by

H*{xy y) = s u p [φ(x, y ) ] ,
Φ e\φ\

H*(x,y)^ inf [ψ(x,y)]9

ψe{ψ\

where { φ \ and { φ \ denote the familities of under- and over-functions, respective-

ly

The existence of the functions #*(%, y) and H {x, y) follows from Postulate

4 and Theorem 6.

THEOREM 11. The function H*(x, y) is a subfunction in Ω.

Proof. We shall show first that for each K C { γ i, with K C Ω, the function

H*(x, y) is continuous in K, so that H*(x, y) is continuous in Ω.

L e t φ o ( x 9 y ) a n d ψ Q ( x , y ) b e f i x e d m e m b e r s o f \ φ ( x , y ) } a n d \ φ ( x , y ) } ,

r e s p e c t i v e l y ; a n d for e a c h φ(x, y) C \φ{x, y ) \ de f ine

Φ(x, y) = max [φ(x, y ) , φQ(x, y ) ] .

Using Theorem 4, we readily verify that Φ(x, y) satisfies the conditions of

Definition 5, so that Φ(xsy) is an under-function; also, by Theorem 9, Φ(x,y; K)

is an under-function.

Since Φ(x, y; K) is an under-function, and

φ(x, y) < Φ{x, y) < Φ(x, y; K ) ,

we have
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( 8 ) H*(x, y ) = sup Φ(x,y;κ);
Φ e l Φ !

further, using Theorem 6, for {x, y) in K we obtain

(9) φQ(χ, y) < φ(χ, y; κ) = F(x, y; Φ; K ) < 0 Q ( * , y ) .

It now follows from (8), (9), Postulate 3, and Lemma 1 that H*{x, y) is con-

tinuous in K, so that H*(x, y) is continuous in Ω.

Now, for any circle κζl\γ\ with center (xQ, y ) and K C Ω, and for any

<£ £ { φ 1, by the definition of H*{x, y) we have

</>(%, y) < H*(x, y) on K;

therefore, since φ(x, y) is a subfunction in Ω, we have

^ V ^ o ^ F ^ o ' y o

; ^ K ) 1 F(xQ,yo;H*;κ),

whence, again by the definition of //*(#, y), it follows that

Accordingly, by Theorem 3, H*(x, y) is a subfunction in Ω.

THEOREM 12. The function H*(x9 y) is a super function in Ω

Proof. Let there be given any € > 0 and any γ G \γ\ with Γ C Ω. Then,

by the definition of H*(x, y), for any (xQ, yQ ) G Γ there is a φQ G { φ \ such

that

therefore, by continuity, there is a circle κ Q G ί y } , with center (xQ, y ) and

KQ C Ω, such that

(10) tf0Uy) > ff*(*,y) - e inK0.

Since the circular d i scs Ko form an open covering of Γ, by the Heine-Borel

Theorem there exis ts a finite subcovering; let φχ{x, y ) , Φ2(x, y ) , ••• , φn(x,y)

be the associated under-functions, and let φ(x, y) be defined by
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φ ( x , y ) == m a x [ φ ^ x , y ) , Φ2(x, y ) , ••• , Φn(%, y ) l

Then, by Theorem 7, φ (x9 y) is an under-function; and, by (10), we have

φ{xy y) > #*(%, y) - 6 in Γ .

By Postulate 2, then, we obtain

(11) F(x, y; φ; γ) > F(x, y; ff*-e; y) > F(*, y; #*; y) - 6 in Γ.

Since for (#, y) £ Γ and any φ ζi\φ\ we also have

(12) #*(*, y) > ^(Λ, y; y) = F(Λ;, y; ^ y),

it follows from (11) and (12) that

#*(*, y) > F(Λ, y; //*; y) - e inf.

Thus since e > 0 is arbitrary, we have

H*(x, y) > F(x,y;H*; γ) in Γ.

so that H*(x, y) is a superfunction in Ω

Since Theorems 11 and 12 hold also for the function H (x, y), and since

the only functions which are both subfunctions and superfunctions in Ω are

{ F(x, y) !-functions in Ω (see Definition 4), we have the following result:

THEOREM 13. The functions //*(%, y ) and H*(x, y) are\F(x,y)\-functions

in Ω .

We now turn our attention to the behavior of the functions H*(x, y) and

H (A;, y ) at the boundary ω of Ω.

4. Regular boundary points; barrier functions. We make the following defi-

nition.

DEFINITION 8. The point α 0 C ω is a regular boundary point of Ω relative

to \ F(x, y)\ provided that for every bounded function h(d) on ω the functions

H*(x, y) and H (x, y) satisfy ( 6 ) at Ct0 :

( 1 3 a ) M α 0 ) < lim inf H*{A) < lim sup H*{A) < A * ( α 0 ) ,
Λ A
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(13b) λ * ( α o ) < liminf H*(A) < Urn sup H*(A) < Λ * ( α 0 ) .
A-+aQ A-*aQ

THEOREM 14. If all points of ω are regular boundary points o/Ω, and h(θi)

is continuous on ω, then the Dirichlet problem for Ω, relative to { F(x9 y)\ and

h(<l), has a unique solution.

Proof. From (13) and the continuity of h((λ) on ω, we see that H*(x9 y)

and H (x9 y) are continuous in Ω and satisfy

#*( α) = H*( a) = h ( α ) on ω.

Accordingly, by Definitions 5 and 6 and Theorems 11 and 12, H*{x9 γ) is both

an under-function and an over-function; similarly, H (x9 y) is both an under-

function and an over-function. Therefore, by Theorem 6, we have

H*(χ> γ) = H*(χ, y) in Ω.

For the same reason, any other solution of the Dirichlet problem must coincide

with H*(x9 y) and H*(x9 y) in Ω.

We shall now give local sufficient conditions in terms of barrier functions

(see [ 3, pp. 326-328]) in order that a point (X G ω be a regular point of Ω; in

the next section we shall study conditions under which barrier functions exist.

DEFINITION 9. For a point α 0 = (χQ9 y0 ) C ω, a circle K with center

at CX0 and with K C D9 and constants e > 0, M9 and /V, a function

s{x9 y) = s (x9 y; κ; e, M, N)

is a barrier subfunction provided:

a) s (x9 y) is continuous in Ω n K9

b) s {x9 y) is a subfunction in Ω n K,

c) s ( α 0 ) > N - 6,

d) s (#, y) < N + 2e o n ω n K ,

e) s (x9 y) < M o n Ω n κ .

DEFINITION 10. With the notation of Definition 9, a function
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S(x,y) a S{x,y;κ; e,M,N)

is a barrier sup erf unction provided

a) S(x, y) is continuous in Ω n K,

b) S(x, y) is a superfunction in Ω n K,

c) S ( α 0 ) < N + e

d) S(x, y) > N - 2e on ω n K,

e) S(x, y ) > M o n Ω n / c .

THEOREM 15. // for the point α 0 G ω, and for each set of constants

€ > 0, M, and N9 there exists a sequence of circles κn = κn(d0) with center at

α 0 and radii pn(&o) —»0 for which barrier subfunctίons s(x, y; κn; e, M, N)

and barrier super functions S(x, y; κn; £, M, N) exist, then α 0 is a regular

boundary point o/Ω relative to \ F (x, y)}.

Proof. F o r a given bounded function h(&) defined on ω, it follows from

Theorem 6 and Definit ion 7 t h a t

H*(x, y) < H*(x, y) in Ω ,

so that

l iminf H*(A) < l iminf H (A)
A-,a0 - A~*o

and

lim sup H*(A) < lim sup H*(A).

Accordingly, in order to verify (12) and thus prove the theorem, we need only

show that

(14) M α 0 ) < lim inf H*(A)

and

(15) lim sup H*(A) < A*(α 0 ) .

~* o
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For a given e > 0 there is a circle K satisfying the hypotheses of the theo-

rem and for which

A*( α 0 ) - e < A*( α) < λ*( α ) < A*( α 0 ) + e on ω n K.

For a fixed δ > 0 and for any under-function φ{x, γ), let

M= min_ ίφ(x,y)-δ],
(χ,y) e Ω ΠK

/V = A*(α 0 ) - 3e,

and

s U , y) = s{χ, y; K; e, M, N).

Consider the function Φ(Λ;, y), defined by

max [ φ (x9 y), s (x, y) ] in Ω n K,

^ (%, y) in Ω - K

we shall show that Φ(#, y) is an under-function Since we have

s (x9 y) < M < φ(x, γ) o n Ω n / c ,

it follows readily that

Φ(x, y) = φ(x, y) on Ω n K,

and accordingly that Φ(x, y) is continuous in Ω. Further, Φ(x, y) is a sub-

function in Ω - K, since Φ(x, y) = φ(x9 y) there; Φ(x, y) is a subfunction

in Ω n £ by Theorem 4 and Definitions 5 and 9; and for a point 0C C Ω n K we

have s ( α ) < < £ ( α ) - δ , so that there is a circle about CX in which Φ(x, y) =

φ(x, y); thus, by Theorem 3, Φ{x, y) is a subfunction in Ώ; also, by Defi-

nition 9 and the choice of K and N9 we have

s ( α ) < /V + 2e = A*( α 0 ) - e < A*( α) on ω n K,

and therefore, since

φ(θi) < A*(α) on ω,

we have
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Φ ( α ) < A*(θί) on ω

By Definition 5 we have thus shown that Φ(x, y) is an under-function.

By the choice of N and the definitions of s(x, y) and Φ(x, y), we have

h*(a0) - 4 e = N - e < s(a0) < Φ ( α 0 ) ,

so that by continuity there is a neighborhood of Cί0 in whose intersection with

Ω n K we have

λ * ( α 0 ) ~ 5e < Φ U , y)

and consequently

(*, y ) .

Since £ > 0 is arbitrary, (14) now follows; and (15) can be established simi-

larly,

5. The existence of barrier functions. Relative to the, Laplace partial dif-

ferential equation (1), a criterion of Poincare [ 3, p. 329] for α 0 to be a regular

boundary point of Ω is that there should exist a circle K with

(16) Ω n K = α 0 .

We shall now adjoin postulates concerning the family { F(x, y)\ under which

(16) is a sufficient condition for the existence of barrier sub- and superfunc-

tions at CC0, and therefore, by Theorem 15, for (Xo to be a regular boundary point

of Ω relative to { F (x, y)}.

POSTULATE 5. For any circle κ£\γ\, and any real number M, there

exist continuous functions fχ(x9 y), f2i
χ> y)> defined on K, such that

Fix, y; fχ\ K) < M, F{x9 y; f2; K) > M in K.

POSTULATE 6. For any circle K ζL\γ\, and any real numbers e > 0 and

iV, there exists a continuous function f(x, y) defined on K such that

\F(xo,y0;f;κ)-N\ < e,

where (x , yQ ) is the center of K.

POSTULATE 7. For any circle κC\γ\; if the functions fj(x9 γ) (/ = 0, 1, ),
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defined on κ9 are continuous and uniformly bounded on K, and

lim fix, y) = fAx, y)
/-oo /

for all but at most a finite number of points of K, then

lim F(x, y; /.; K) = F{x, y; f K)
j —» OO '

for all points of K

POSTULATE 8. For any circle κ£{γ\, if the functions f.(x, y) (/ =

1, 2, ), defined on /c, are continuous on K and equicontinuous at a point

(xQ, yQ) £ K, then the functions F(x,y;f.;κ) (/ = 1, 2, ), defined in

K9 are equicontinuous at (xQ, yQ )•

THEOREM 16. If for the point α 0 C ω there exists α circle κ9 with K C Z),

such that

Ω n K = α 0 ,

ί/iew 0Co is α regular boundary point of O relative to \ F(x, y) 1.

Proof. Since the conclusions of Theorems 15 and 16 are identical, in order

to prove Theorem 16 we need only to show that its hypothesis implies that of

Theorem 15. Explicitly, we shall give the construction of a barrier subfunction

for a suitable circle K^CCQ) with center at Cί0 and inside an arbitrary circle

κ0 with center at Cί0, as prescribed in Theorem 15; the existence of barrier

superfunctions can be treated similarly.

Let the circle κo C D be drawn with center at Cί0 = (#o> Jo) a n ( ^ intersect-

ing K. By Postulate 6 there is a continuous function f(x^ y) defined on κ0 such

that

( 1 7 ) I ^ U o ^ o / x o ) - ^ < β.

By continuity, there is a circle Kγ C KQ, with center at Cίo> such that

F{x, γ;f;κ0) < N + 2e in Kι

Now we define
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R = min _ F (x, y; f; κ0 )
(χ,y)6Ki

a n d

Λ/+ = m i n (M, N, R ) .

By Postulate 5, there exists a continuous function /(#> y) defined on κι such

that

(19) F U y / ^ j ) < Λf* in K t .

Let B be the intersection of the line of centers of K and /<i with the arc of

Kγ lying outside K9 and let B(, B"$ β2'> $2 ' be points of κ\ near β arranged in

the order B'2 B[ B B"B" around κ r

We define the function /2(#> y) on κL as follows:

/2 (** r ) = ft(χ, y) - i o n a r c β i ' β 5 " 5

f2(x,y) = F (x, y; /; κ 0 ) o n l o n § a r c β 2 #2" 5

/ ( ^ > y) = / ' ( β ) o n a r c B i B 2 ' ;

the functions l'(θ) and l"(θ) are linear functions of the central angle of K^,

such that /2 (Λ;̂  y ) is continuous on Ki

For (x, y) on Kj_ , we set

/3 (Λ, y ) = min [/2(tf, y ) , ^ ( ^ s y; /; /co)l

By ( 1 7 ) and Postulate 7, we can take the arc Bζ B B2" small enough that

(20) IFixo.yo fjK^-Nl < e.

Further, since

fs(x, y) < F(x, y; f; κ0) on κlf

by (18) and Postulate 2 we have

(21) F U , y /. Ki) < Λ/ + 2 e in ^
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Let Q C Kι be a point on the open line-segment (Xo B, and sufficiently

close to B that

(22) F(Q',f3'>«ι)

Let K' and K" be the two circles through Q and CX0, and tangent to κχ Let p be

the length of the common chord (Xo Q of K' and K " , or the length of the common

chord of K' and K, whichever is less, and choose the constant C so that

(23)

where

Cp > M*,

A Γ = m a x _ \F(x9y; ft; κι)\+ m a x _ \ F(x, y ; f3; κ ι ) \ .
(χ,y)eκι (χ,y)eκι

We now define continuous functions hή(xs y) and h^(x^ y) on K' and K' ',

respectively, as follows:

h[{x, y) = F(x, y; f3; K ι ) - C[{x-x0)
2

(24)

h['(x, y) = F(x, y; f3; K,) - C[{x -x0)
2 + (y-yo)

2V/2

and, for n = 2, 3, ,

»ί(*.y)

o n

on K ,

Ajί (Λ, y ) =

(25)

(«, y; Λπ-i K

h'Ax, y)

on K n/ί ,

on K ΠΛ .

Let

G= max_ I F ( Λ , y; Aί κ θ I + max_ | F (%, y; h[' κ / 7) |

then by Postulate 5 there is a continuous function f^{x9 y) defined on κι such
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that

F(x,y;f4; κx) < -G i n X l β

It follows from Postulate 2 and the definitions of the hή(x9 y) and h"(x9 y)

that for each positive integer n we have

F ( χ > J\ A ; * i ) < F ( x , y ; h ή ; K ' ) < F ( x , y ; f 3 ; κ t ) in K\

and

F(x9 y; f4; κ t ) < F (x9 y; h"', K " ) < F ( ^ y; / 3 ; κ i ) in X' ' .

Hence, by Postulate 3 and Lemma 1, the functions u'(x9 y) and u"(x9 y)9

defined by

u'(x,y)= sup F(x, y; h'n\ K ')

and

M " U , y ) = sup F(% s y; Aί' ic")

are continuous in K' and K", respectively; indeed, by Postulate 8 and by Lem-

ma 1 applied to the sets (K'~ tt0- Q) and (K"~ OLO-Q)9 the functions

u'(x$ γ) and u"(x$ γ) are continuous in K' and A , respectively, except

possibly at the points α 0 and Q. As for the behavior of these functions at CC0,

since by our construction we have

(26) F(x9 y; h(; K') < u'(x9 γ) < F(x, y; f3; κt ) in K\

and

(27) F (x,y ,h[' , κ") < u"{x,y) < F (x, y; f3; κ t ) inK",

and since the functions at the extremes of these inequalities have equal values

at (Xo and are continuous at Cί0, it follows that u'(x9 γ) and u"(x> y) are con-

tinuous also at CX0

As in the last part of the proof of Theorem 11, u'{x9 y) and u"(x> y) can

easily be shown to be subfunctions in K' and K", respectively.

Now we define the function u(x9 y) in K'u K" as follows:
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(28) u(χ, y) =

u'{x, y) mK'-K"

u (x9 y) l n λ - Λ

max u'{x9 y), u'\%s y) ] in K'r\K".

Since u'{x9 γ) and u"(x$ y) coincide on κ 'nΛ", on κ"nK', and at Cί0, and

both are continuous at 0Co, it follows that u{xs y) is continuous in K' u K"

except possibly at Q.

Clearly u(x, y) is a subfunction in K'- K" and in K"—K' By Theorem

4, u(x, y) is a subfunction in K'nK". Since in addition the hypothesis of Theo-

rem 3 holds for each point of κέ'nK" and for each point of κ"nK', it follows

that u(x^ y) is a subfunction throughout A 'u K"

To conclude the proof, we shall show that the function

[ F(x, y; Λ; K, ) for {x, y)C Ωn[X 1 - ( f u Γ ) ] ,

(29) s(x,y)= \

I max [Fix, y; A; κι), uix, y)] for ( * , y ) C Ωn ( K ' u £ " ) ] f

satisfies all the conditions of Definition 9 for being a barrier subfunction for

κ t = κιid0) as prescribed in Theorem 15.

Since, by (23), (24), (25), and the definitions of u'ix$ y), u"ix$ y), and

u{x$ γ), we have

(30) uix,y) < Fix,y; /\; Ki)

on the part of κ ' u /<" which l ies in Ω; s ince uiχ9 y ) is continuous on κ ' u K "

except possibly at Q; and s ince, by ( 2 2 ) , ( 2 6 ) , and ( 2 7 ) , there is a neighbor-

hood of Q in which ( 3 0 ) holds, it follows that s ixf y) is continuous in Ω n A P

That six9y) is a subfunction follows from exactly the same kind of argu-

ment as the one used in discussing uix$ y).

By ( 2 0 ) , ( 2 4 ) , ( 2 5 ) , ( 2 6 ) , and ( 2 7 ) , we have

M(*o» Jo) = ^ ( * o * 7 o ; /a; * i ) > N - e ,

whence, by ( 2 9 ) , we have also

s ( * o * 7o) > /V - e .

It follows from (19) that

Fix, y; fι; Ki) <N + 2e inKι
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and from (21), (26), (27), and (28) that

u(x$ γ) < /V + 2e in £ 'u K'\

whence, by (29),

s(x$ γ) <^ N + 2e onOnK.

Finally, by (19), (23), (24), (25), and the definitions of u'(x9y\ u"{x,y),

u{xί γ), and s (x9 γ), we have

s (x9 γ) < M on Ω n κ t .

Thus s (x9 γ) satisfies all the conditions of Definition 9, and is a barrier

subfunction 5 {x$ y; κx; 6, M, N) as desired.
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EXTENSION OF A RENEWAL THEOREM

DAVID B L A C K W E L L

1. Introduction. A chance variable x will be called a d-lattice variable if

(1) £ Pr{* = n</| = 1
n = -oo

and

(2) d is the largest number for which (1) holds.

If x is not a (/-lattice variable for any d, x will be called a nonlattice variable.

The main purpose of this paper is to give a proof of:

THEOREM 1. Let xv x2, ••• be independent identically distributed chance

variables with E(xi) = m > 0 (the case m = + oo is not excluded); let Sn =

# ! + •••+ xn; and, for any h > 0, let U(α, h) be the expected number of integers

n > 0 for which a < Sn < a + h. If the xn are nonlattice variables, then

h
U(a9 h)—> — , 0 as a —> + oo, - oo.

m

If the xn are d-lattice variables, then

d

U (α, d)—> — , 0 as a —> + oc , - oo .
m

(If m = + oo, h/m and d/m are interpreted as zero. )

T h i s theorem h a s been proved ( A ) for nonnegat ive (/- la t t ice v a r i a b l e s by

Kolmogorov [ 5 ] and by E r d δ s , F e l l e r , and P o l l a r d [ 4 ] ; ( B ) for nonnegat ive non-

l a t t i c e v a r i a b l e s by the writer [ l ] , u s ing the methods of [ 4 ] ; ( C ) for (/-lattice

v a r i a b l e s by Chung and Wolfowitz [ 3 ] ; ( D ) for nonla t t ice v a r i a b l e s such that

the d i s t r ibut ion of some Sn h a s an a b s o l u t e l y cont inuous part and m < oc by Chung

Received June 28, 1952. This paper was written under an Office of Naval Research
contract.

Pacific J. Math. 3 (1953), 315-320
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and Pollard [ 2 ] , using a purely analytical method; and ( E ) in the form given

here by Harris (unpublished). Harris' proof does not essentially use the results

of the special cases (A), (B), (C), (D) the proof given here obtains Theorem 1

almost directly from the special cases (A) and (B) by way of an integral identi-

ty and an equation of Wald.

2. An integral identity. Let /Vt be the smallest n for which Sn > 0, and write

zί = SN let N2 be the smallest n > 0, for which S^ + n - S/y t > 0, and write

z2 = S/v +jv ~~ $N 9 a n d so on. Continuing in this way, we obtain sequences N ί9

Λ̂2> 5 zι* Z2> of independent, positive, identically distributed chance vari-

ables such that

Let V ( t ) , R (t) denote the expected number of integers n > 0 for which

Tn = Zι + " + zn ^ t a n d ~ ί < ̂  < °»

n<Nί9 respectively. That F ( ί ) < o o follows from a theorem of Stein [ 6 ] , and

that R (t) < oo follows from E (Nx ) < oo, which we show in the next section. The

integral identity i s :

T H E O R E M 2 / £ / ( α , h ) = [°° [ R ( t - a ) - R { t - a - h ) ] d V ( t ) .

Jo

Proof. If Πjr is the number of integers n with

/Vj + + NR < n < Nί + + Nκ + t and α < 5^ < α + A,

we have

E(nκ\Tκ = ί ) = Λ ( ί - α ) - R ( t - a - h ) ,

so that

£ ( Λ Λ ) = f°°[R(t-a) - Λ ( f - α - A ) ] dFκ(t),

where F ^ ( ί ) = Pr{ Tκ <t\. Summing over K = 0, 1, 2, , and using the fact

that

=o
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we obtain the theorem.

3. Wald's equation. The main purpose of this section is to note that E{Nί )

is finite, so that an equation of Wald [ 7, p. 142] holds.

THEOREM 3. E (/V1 ) < oo and mE (yVt) = E {zι ), so that m, E ( z t ) are both

finite or both infinite.

Proof. I n s h o w i n g E{Nί ) f i n i t e , w e m a y s u p p o s e {xn\ b o u n d e d a b o v e ; f o r

d e f i n i n g # * = m i n { s w , M\ y i e l d s a n /V* >N; c h o o s i n g M s u f f i c i e n t l y l a r g e

m a k e s E(x*)> 0 , a n d £ ( / V * ) < oo i m p l i e s E(Nl)<a>. S i n c e

K N, + + Nκ K

we obtain, letting K —» oc and using the strong law of large numbers, first that

E (z 1 ) = mE (N i ) and next since if ί xn \ is bounded above and \ zn\ is bounded,

that E (Nx ) is finite in this case and consequently in general.

4. The d-lattice case. For αf-lattice variables, Theorem 2 yields

\o ) U \nd, d) — 2^ τ\s — n) v\s) = 2 L γ\s> v \ s + n> *

s = o s = o

w h e r e r ( s ) = Λ ( s ( O - R ( [ s - 1 ] ί ) a n d v ( s ) = F ( s d ) - V([s - 1 ] < / ) . N o w

Σ r(s) = l i m R(t) = EiN^ < oo .

Theorem (A) asserts that

d

E(zι )

applying this to (1) yields

dEiN,)
U (nd, d ) —> , 0 as n —> oo , - co ,

E(zι)

and Wald's equation yields Theorem 1 for (/-lattice variables.

5. The nonlattice case. For nonlattice variables we have, rewriting Theorem
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2 with a change of variable,

£ / ( α , A ) = [ ° [R(t) - R{t~h)] dV(t
JM

For any if > 0, write

U(a, A ) = 7^/tf, α , A ) + / 2 ( Λ f , α , A ) ,

where

Λ =
1

and

I = [ ° ° [ R ( t ) - R ( t - h ) ] dV(t + a).
2 Jo

T h e o r e m B appl ied to { zn\ y i e l d s

V(t + h) - V{t)—> —
£ ( z i )

for all h > 0 a s t —» oo, so t h a t , s i n c e R(t) i s m o n o t o n e ,

R(t)dV(t + a) - / ^ β ( ί ) ^ F ( ί + α + A )

: Γ R(t)dt, 0
.2, JM-h

a s a — > oc , — oo

for fixed M, A. We now show t h a t , for fixed A, / (M, α, A) — > 0 a s Λ/ — > oo uni-

formly in a. We have

JM2 ^ jM+nh
n =o

n =0

w h e r e

Λ ^ ί f , Λ ) = s u p [ Λ ( ί ) - R(t-h)]
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as t varies over the interval (M + nh, M + {n + 1) h). Since, by Theorem (B),

h
V(b + h) - V(b)

E(Zι)

there is a constant c (for the given h) such that

I2(M,a,h) < c

Now

as b —> oo ,

for all M and a .

Σ Rχ (M9 2n) < E(Nι ) - R(M) and £ Rι (M, 2n
n =0 n =0

and R(M) ) as/M—>oo. Thus

, h)

for all α, where e(M9 h ) —» 0 as M —> oo for fixed h. Then

U (α, h —
hE(h\)

< e{m, h) 1AM, α,h) -
E( c R{t) dt

so that

lim sup U{α, h) -
hE{Nι

e(M, h)
1 \ίM

E(zχ) \JM-
R(t) dt - hE(Nι

Letting M —> oo yields

U(α,h)-
E{z

as α —> oo ,

and Wald's equation yields Theorem 1 for α —> oo. Similarly,
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U(a, h) < e(M,h) + \lι(M,a,h)\

for all α, so that

lim sup ί/(α, h) < 6 {M, h)
a —* —oo

and U ( α, h ) —> 0 as a—> - oc . This completes the proof.

REFERENCES

1. D. Blackwell, A renewal theorem, Duke Math. J. 15 (1948), 145-151.

2. K. L. Chung and Harry Pollard, An extension of renewal theory, Proc. Amer. Math.
Soc. 3 (1952), 303-309.

3. K. L. Chung and J. Wolfowitz, On a limit theorem in renewal theory, Ann. of Math.
55(1952), 1-6.

4. P. Erdos, W. Feller, and H. Pollard, A theorem on power series, Bull. Amer. Math.
Soc. 55 (1949), 201-204.

5. A. Kolmogorov, Anfangsgrunde der Theorie der Markoffschen Ketten mίt unendlich
vielen moglichen Zustanden, Mat. Sbornik N.S. 1 (1936), 607-610.

6. C. Stein, A note on cumulative sums, Ann. Math. Statistics 17 (1946), 498-499.

7. A. Wald, Sequential tests of statistical hypotheses, Ann. Math. Statistics 16 (1945)
117-186.

STANFORD UNIVERSITY



SOME THEOREMS ON THE SCHUR DERIVATIVE

L. C A R L Ϊ T Z

1. Introduction. Given the sequence { am \ and p ^ 0, Schur [ 5 ] defined the

derivative a' by

( 1 . 1 ) < = Δαm = (am + ι -am)/pm + ι;

higher derivatives are defined by means of

a^"ιh α ( o ) - aam ) , am - am .α - a
am - am

In particular if p is a prime, a an integer and am = aP , then by Fermat's theorem

is integral. Schur proved that if p \ α, then also the derivatives

are all integral. Moreover if αj = 0 (mod p) then all the derivatives ΔraP are

integral, while if αj ^ 0 (mod p) then every number of &PaP has the denomi-

nator p.

A. Brauer [ l ] gave another proof of Schur's results. About the same time

Zorn [6] proved these results by p-adic methods and indeed proved the follow-

ing stronger theorem. For x = 1 (mod p), define

and as above let SrXm denote the r-th derivative of Xm; then

u.2> « „ . <P-»<^»•••<••'-•> A ϊ . ( r

provided r < p; for r < p - 2, the congruence (1.2) holds (mod p m + 1 ) . It is also

shown that Schur's theorem is an easy consequence of Zorn's results.

Received November 16, 1951.
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In the present paper we shall give a simple elementary proof of Zorn's con-

gruences. In addition we prove, for example, that for r < p,

(1.3) ΛV™ , - ί aPm

q'm
 i=* P

i ) f (modp"),

where

for r < p - 1, (1.3 ) holds (mod p m + ι ) .

We next ( § 4 ) extend Schur's and Zorn's theorems to algebraic numbers. In

§ 5 we consider a generalization of another kind suggested by the arithmetic

function ( see for example [ 2, p. 84-86])

(1.4) F(a, m) = Σ μ(d) a6.

de-m

Finally ( § 6 ) , we give some applications of Schur's theorem to the Euler and

Bernoulli polynomials and numbers; the results are analogous to Kummer's con-

gruences [ 3 , Ch. 12]. In particular ΔrE m is integral (mod p) for p > 2,r< p,

r < m; also ΔΓ ( B^+ m/( k + p m )) is integral (mod p ) for p — 1 )( k + 1, r < p,

r < m. Here E^ and B^ denote the Euler and Bernoulli numbers in the notation of

Nδrlund [ 3 ] .

2. Formulas for Δ Γ α m . We shall require some preliminary results.

LEMMA 1. The following identity holds:

(2.1) ΓI ( * - P £ ) = Σ (-1)' Φ p
i = 0 i = 0

' Φ p ί ( ί '- l ) / 2 *r"\

where

(2.2) φ = ( p Γ " l H p ~ 1 ] ' " i P . " 1 } = [ / _ , ] , [Γ

o] = 1.

L E M M A 2. Puί

k

i = o
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where (m ) denotes a binomial coefficient. Then

0

(2.3) * k,r

(r<k)

Γ-l

k(k-ι)/2

Γ !

where Ui is an integer.

Lemma 1 is will known. To prove Lemma 2, we note first that the binomial

coefficient ( x ) is a polynomial in x of degree r. Since by (2.1)

k k-i

Σ ( - 1 ) ' φ P

i{i~ι)/2

 P

r{k-i] = Π (pr~pι)>
i = o i = 0

the several parts of (2.3 ) follow without much difficulty.

LEMMA 3. For an arbitrary sequence { am \,

(2.4)

i = 0

This formula, which is given by Schur, is easily proved. In view of (2.1) it

can be put in the following symbolic form:

( 2 . 5 )

i =0

a iwhere it is understood that after expansion of the right member a is to be re-

placed by α,.

Suppose now that p \ a and put

(2.6) a^P-^Pm = I + pm + ιqm,

so that q is integral. Then by the binomial theorem we have

Pr

i ) m + s Λ ) )p \ Λ

i = 0
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and by ( 2 . 4 ) this implies

s = 0

Σ p(m+ι)'?i έ
1 = 0 5 = 0

l = 0

1 prm+r(r+i)/2 ^ pj

i = r + i l '

by (2.3); ϋ r / and Ur ι have the same meaning as in Lemma 2. We thus get

1 r ' i PT l

r ! m . . / ! m »

We next set up a similar formula for ΔΓσ , where ί7 is defined by (2.6). In-

deed substitution in (2.4) gives

5 =0

Γ P Γ

= S ^ ( _ χ ) Γ - 5 [ Γ ] p ( r - s ) ( r - s - 0 / 2 - ( t f i + s + l ) \ ^ / p s

s - o / = i

i = 1 s = o

T Γ

p rm+r(r+0/2 ^ Γ + l T̂ Γ

i = 1

F -
i = r + 2 ι '
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by a slight modification of Lemma 2; the coefficient UΓ ι is integral and is de-

fined by

J _ Dr(r-i)/2 ij' . = y*

i\ r'1 *-"
1 5 = 0

Hence

(2.8) Δ V = — ^ C 1 Π ( P ' - D + t -T P ( l B + 0 ( i - Γ - ι ) d £/;..

Using the same method we can also evaluate ί\rapm. It follows from (2 .6)

that

(2.9) aPm + s = aPm ( 1 + p -

and thus substitution in (2 .4) yields

Γ

p(r-5)(r-s-i)/2 V^

s = 0 ί = o

er r

i=o 5 = o

Since ( s ) is a polynomial in ps of degree i, the same reasoning as before ap-

plies and we get after a little manipulation

( 2 . 1 0 ,

where {/ . is integral.

Comparison of ( 2 . 7 ) and (2 .10) shows that ( 2 . 7 ) is included in ( 2 . 1 0 ) . In-

deed it is easy to set up the following formula which includes both ( 2 . 7 ) and

(2.10) :
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2.11) Δ rα*Pm = — akPm qr kr

r ! m

Π = 1 ( p ι ' - υ

^ , i ^ Vm r,ι

where F Γ > , = F . ^ is integral and k > 1. The proof of (2.11) is exactly like the

proof of (2.10); the first step is to raise both members of (2.9) to the A -th power.

3. The main results. In order to make use of (2.7) and (2.10) it is evidently

necessary to examine p ' m + ι ' ^ "~ Γ ' / i ! . We suppose i > r, r<p. Then in the first

place it is easily seen [6, p. 462] that pι~Γ/i\ is integral (mod p ) , and a simple

discussion shows that pι~τ / i\ is divisible by p unless ( i ) i = p, r = p - 1, or

( i i ) ί = p + 1, r = p. We now state:

THEOREM 1. The derivative Λ Γ α ^ p ~ 1 ^ m is integral for 1 < r < p - 1, w/u'Ze

Δ ^ α ^ " " 1 ^ " 1 Λαs the denominator p provided aP~ι £ 1 (mod p 2 ); i/ α ^ " 1 = 1

(mod p 2 ) ί/ierc αZZ Δ Γ α ^ p " L ^ m are integral.

T H E O R E M 2. For l < r < p, m > 0,

(3.1) Δ r > - ι > P m

 s i q

r

m Π ( p ' - D (modpm);

1 = 1

if r < p - 1, ίΛe congruence is valid (mod p m + x ) .

THEOREM 3. The derivative Δ Γ a p m is integral for 1 < r < p - 1, whileΔpapm

has the denominator p provided aP~ι φ 1 (mod p 2 ); if aP~ι = 1 (mod p 2 ) then all

Δr

a(p-i)pm

 a r e integral

T H E O R E M 4. For 1 < r < p, m > 0,

χ Π^^p^-l)
( 3.2) Δ Γ aP m

 Ξ — aP m / (mod pm )
r] " (P-IY

if r < p - 1, the congruence is valid ( m o d p m + ι )

If we make use of (2 .11) rather than ( 2 . 7 ) or (2 .10) we get the following

more general result .

T H E O R E M 4' . For I < r < p, m > 0
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if r < p - 1, the congruence is valid (mod

To apply (2.8) we first examine pι~r~ι/i\ for i > r + 1, r + 1 < p. We have:

THEOREM 5. The derivative ΔΓί7 is integral for 1 < r < p - 2, while Δp~ιq

Λαs ίAe denominator p provided aP~ι ^ 1 (mod p 2 ) ; if aP~ι = 1 (mod p 2 ) ί/iê z all

Δrq are integral.

T H E O R E M 6 . For 1 < r < p - 1 , m > 0 ,

(3.3) Δ ' ? m a ^ - L ^ ,; + 1

if r < p - 2, the congruence is valid (mod p m + 1 ) .

Theorem 3 is of course Schur's theorem; Theorems 5 and 6 are due to Zorn.

The remaining theorems are presumably new.

4. Generalization for algebraic numbers. Let k be an algebraic number field

of degree n and let *p denote a prime ideal of k; also let

(4.1) Λ φ = p / ; μ e | P , Ϊ3e + 1 + p;

for simplicity we assume p > n. If OC A; is integral (mod Jo) and ^/p (X, then by

Fermat's Theorem

(4.2) α ^ " 1 = 1 + β, β = 0 (mod ^ ) .

It follows from (4.2) that

(4.3) α ( P / - 1 ' P m = 1 + βm,

while (4.3) implies

Pr

(4.4) a(Pf-

Then, exactly as in § 2,

22 (
= o
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r pr

p (r+i)/2 ^r a(pf-l)pm

 = y* (_ ]_ )Γ-s j-r-j (r-s) (r-s-1)/2 y* (p s ) ni

S = 0 i = 0

= Σ &m Σ ( - i Γ φ ( p )p(r"s)(r"s

i = o s = o

application of Lemma 2 now leads to

) £ r(m + l)

ι = l i = r+i " *

where ωΓji is integral. Note that for e > 1 the right member of (4.5) need not be

integral. Accordingly we assume e = 1; the assumption p > n is then no longer

needed.

We now have:

T H E O R E M 7. Let N\) = p^, !p2 Jf p, ^ α; ίΛerc ΔΓ oSp ι^pm is integral for

1 £ Γ ^ P ~~ 1» while SP θSp ~ι'P has the denominator p provided oP ~ι φ 1

(mod )θ2 ); if ap ~ι = 1 (mod )θ2 ) ί^ezi α/Z ΔΓ COP " ^ ^ are integral.

THEOREM 8. With the hypotheses of Theorem 7,

I I βm \r Γ

(4.6)

for r < p; if r < p — 1 ίAe congruence is valid (mod jθm + 1 ) .

In order to extend Theorems 3 and 4" it is convenient to suppose that \) is a

prime ideal of the first degree. The following two theorems may be proved.

THEOREM 9. Let /V£ = p, }θ2 \ p, ^ CX; ίAen ΔΓ α p m is integral for \<r <

p - 1, ^/ii'Ze Δ p α p Aαs ίΛe denominator p provided θP~x 4 1 ( m o d £>2 );if θP~ι =

1 (mod ίp2 ) then all Δ Γ θP are integral.

THEOREM 10. With the hypotheses of Theorem 9,

1 IkβmV Π = 1 ( p ' - 1 )
4.7)

r ! \ p m + ι

for r < p; if r < p - 1 the congruence is valid (mod



SOME THEOREMS ON THE SCHUR DERIVATIVE 329

For brevity we omit the extension of Theorems 5 and 6 for algebraic numbers.

5. Another generalization. Changing slightly the notation (1.1) we put

(5.1) Δ o = (α - α . ) / p / + ι ,

P mpι mpι+ι mpι

and

Δ Γ α . = ( Δ Γ ~ ι α . , - Ar~la .)/pi+ί.
P mpι P mp1*! P mpι V

Then clearly ΔpΔ^ = Δ^Δp. If a and k are arbitrary integers then if follows from

a well-known theorem concerning (1.4) that

(5.2) 8ka
k = Δ P i •••ΔPsα

/c (k = p\ι ...pe/)

is integral. In view of Schur's theorem we can state the following generalization.

THEOREM 11. Let (a9k) = 1 and let r < the smallest prime dividing k; define

(5.3) 8r

ka
k = δ A δ p α * .

Then δί.α, is integral (or k > 1.

Indeed because of the commutativity of the operators Δp we need only ob-

serve that (5.2) and (5.3) imply

(5.4) S^-Δ^. .Δ;/

and the theorem follows immediately.

The restriction (a9k) = 1 can be removed by taking k sufficiently large as we

shall see below.

A slight extension of Theorem 11 is contained in:

THEOREM 12. Let

{a,k) = 1, k = p\ι . . . pe

s

s ,

and let r.<p., / = 1, , s; ίAerc

(5.5) ^ - ^ ' /

is integral for all k > 1.

We rejnark that the function defined in (5.2) can also be expressed in the form
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where μ{d) is the Mδbius function and

similarly (5.3) becomes

1 d \ k

Formulas of a different kind can be obtained by applying ( 2.4 ) to ( 5.4) and (5.5);

for example, (2.5) suggests the following symbolic formula:

8r

Lak = k~r F T P Γ ( Γ + O / 2 Π «*'" Π ( « / - P ) ,
7 = 1 7 = 1 i=o

where after expansion a ι a s is to be replaced by am,

A similar but slightly more complicated formula can be stated for (5.5). We shall

omit the generalization of Theorems 11 and 12 to algebraic numbers.

6. Applications. In the theorems of § 2 it is assumed that p Jf a. However

Theorem 3, for example, is easily extended to the case p | α. We can state that

ΔΓα^ is integral for r < p — 1 and arbitrary a provided m > r. For let p | a; then,

in view of (2.4), it is only necessary to verify that

m+r-i + i ; ( £ _ ! ) > rm + i Γ ( Γ + D
2 2

for 0 < i < r < p - 1, r> m. This can be proved by induction with respect to m. In

the next place since Theorem 11 is a direct consequence of Theorem 3 we infer

that it also holds for all a provided r < min ( e l f , e s ) in the notation of

Theorem 11.

Now consider the number

(6.1) C A -
a = l
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where Aa denote integers (mod p) and n > 1 is arbitrary. Then

(6.2) Δ Γ ^ + - = Σ Aa^ak+Pm U > 0 ) ,
P a = l

so that by the remark in the previous paragraph ΔΓ C m is certainly integral

(mod p) provided r < p — 1 and r < m. In the second place we may apply the oper-

ator 8r

k defined in (5.2) and (5.3) and get

we infer that <5̂  C, is integral provided r < the smallest prime dividing k and

r< min (il9 ••• , is ), the notation being that of (5.2). Indeed a somewhat more

general result can be obtained by applying Theorem 15, namely,

(6.4) Δjj . Δ ^ C ^ <Λ>0)

is integral provided rt < pt,
 r

t < e

t9 t - 1, , s .

As an instance of (6.1) we take the well-known formula for the Euler poly-

nomial

m Λ sΛ

(6.5) Em(x) = Σ, — Σ, (-
s = 0

2 s —

(We use the notation of Norlund [4] for the Euler and Bernoulli polynomials.) If

p > 2 and x is integral (mod p) the preceding discussion applies. In particular

using (2.4) we have:

THEOREM 13. Let p > 2 and x be integral (mod p). Then

k+p i : (-I)'' φ p ^ - ^ Ek+pm-ά*)
i =0

7*5 integral (mod p) provided r < p, r <m.

For brevity we omit the generalizations corresponding to (6 .3) and ( 6 . 4 ) .

The special case

(6 .6) Σ μ(d) Ek+e(x) = 0 (moάm)
de - m
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may be noted

As for the Bernoulli polynomials, it can be shown that if p \ a and x is inte-

gral (mod p) then a formula of the type (6.1) holds for

(6.7)

(See for example Nielsen [3, Ch. 14 ].) Thus it follows that

Δ ' 0 * + P » ( ί ί ) = p- m " r ( r + 1 ) / 2 £ (-i) ' Φ p t ( i"1 ) / 2 % » - , ( * )
1 = 0

is integral for r < p, r < m. If now we assume p - 1 /f k and take α a primitive root

(mod p) such that aP~ι = 1 (mod pΓ) we get:

THEOREM 14. Lei p > 2 am/ Λ; &e integral (mod p); pw£ ^fc(
x) = β .̂ (x)/k.

Ί hen if p — 1 J( fc + 1,

r

i = o

is integral for r < p, r < m

Finally corresponding to (6.6) we state

for βk(x) as defined in (6.7).
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GENERALIZED CONVEXITY AND SURFACES

OF NEGATIVE CURVATURE

PAUL A. CLEMENT

Introduction. In a study [4] of surfaces whose Gaussian, or total, curvature

K satisfies the relation K < 0, a number of functions having geometrical sig-

nificance have been shown to be convex. In the present paper, a study of sur-

faces whose Gaussian curvature satisfies K < Ko, where K$ is a negative con-

stant, leads to the determination of a class of functions which are subfunctions

(defined in §1.1) of a two-parameter family of functions determined by the

bound Ko. This is a natural generalization because the convexity property is

equivalent to the subfunction property with respect to the particular two-para-

meter family (nonvertical straight lines) determined by the bound Ko = 0.

A main objective will be to exhibit functions which have a geometrical

significance and also have the subfunction property for surfaces with K < Ko.

This property then implies certain inequality relations for functions associated

with certain geometrical configurations on such surfaces.

I. S U B F U N C T I O N S

1.1. Definitions. A real-valued function g{x) of a single real variable x

defined on an open interval (α, b), with -co < ^ α < % < 6 < ^ + o o , i s said to be

a convex function of x provided g(x) satisfies the inequality

(1.11) g [ t x v + ( l - ί ) * 2 ] < t g ( x i ) + ( l - t ) g ( x 2 )

for all xl9 x2 in (α, b) and for all t on the range 0 <̂  t < 1. If g (x) is of class

C 2 , it is convex if and only if g"(x) > 0 throughout the interval.

Geometrically, (1.11) indicates that no part of the graph of the curve γ — g{x)

lies above the chord joining two points upon it within the interval (α, 6) .

A generalization of the foregoing characteristic geometric property of convex

Received July 6, 1952. This paper is largely a condensation of a June, 1949, doctoral
dissertation, University of California, Los Angeles; I gratefully acknowledge the gui-
dance of Professor Beckenbach.
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functions leads to the theory of subfunctions [ 3 ] . Let \haβ(x)} be a two-

parameter family of continuous functions such that for all xl9 x2 in (o, b) and

every yγ$ γ2 there exists a unique member haQβQ(x) of the family such that

haQβQ(xi) - Jι (i = 1, 2). Then a function g(x) is said to be a subfunction of

the given family on (α, b) provided1 we have

(1.12) g[txi + ( l - t ) x 2 ] < haιβι[txi + ( l - t ) x 2 ]

for all xl9 x2 in (α, b) and for all t on the range 0 < £ <_ 1, and where

haιβί^
xi) = g(χi ) (l = 1, 2 ) .

Geometrically, (1.12) indicates that in the subinterval (xt> x2) no part of

the graph of the curve y = g(x) lies above the member of the parameter family

joining the points [xlf g(%ι )] and [x2, g(x2)]. We note that if g(x) is convex,

it is a subfunction of the two-parameter family of nonvertical straight lines.

1.2. A fundamental theorem. Necessary and sufficient conditions that a

function g(x) be a subfunction of a certain type of two-parameter family have

been obtained by Shniad [ 10]. The following lemma and theorem are due to him;

proofs are included because of the fundamental use made of the theorem in

subsequent developments.

LEMMA 1.1. If φ{x) is a positive continuous function of x, and φ{x) is a

strictly increasing continuous function of x, on a < x < b9 then the condition

that g(x) be a subfunction of the family Λφ + Bφψ, where A and B are para-

meters of the family, is equivalent to the condition that g/φ be a convex func-

tion of φ.

Proof. The hypotheses on φ and ψ ensure that g/φ is a continuous function

of xjj. To prove the existence of a unique member of the family through any two

points (Λ^ , γi ) {i - 1, 2), with the x( distinct and in the interval, it suffices

to note that

φ(ιφ(2)φ(2)φ(ι) £ 0.
φ(x2) φ(x2)φ{x2)

Let Xγ and x2 satisfy a < x^ < x2 < b, and let

XA more general definition of the subfunction property is given in [ 5 ] ; in [3] it is
shown that a function satisfying (1.12) necessarily is continuous on (α, b).
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ha β (χ) = Axφ(x) + Bίφ{x)φ(x)

with

Then the condition

ha β (x) > g(x) for xγ < x < x2

is equivalent to the condition

A\ + Bx φ(x) ;> for xί < x < x2 9

φ(x)

or that g{x)/φ(x) be a convex function of φ on the range φ(a + ) < φ < φ(b-).

THEOREM 1.2. 2 Let φ(x), φ(x), and g(x) be functions having the fol-

lowing properties on an interval a < x < bi

a ) the functions φ, φ, and g have continuous second derivatives,

b) the inequalities φ{x) > 0 and φ'(x) > 0 hold, and

c) each of the functions φ(x) and φ(x) φ(x) is a solution of the differential

equation

h" + Ph' + Qh = 0,

where P and Q are continuous on the interval.

Then a necessary and sufficient condition that g(x) be a subfunction of the

family Aφ + Bφφ on the given interval is that

on the interval.

Proof. From Lemma 1.1 it follows that g is a subfunction of the family if

and only if g/φ is a convex function of φ. Since g/φ has a continuous second

derivative with respect to φ, the latter condition is equivalent to

2 The conclusion of this theorem is obtained in a more general setting in [$)]. How-
ever, the proof is immediate for the theorem as stated here, and this form is sufficient
for our purposes.
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[ / " O Λf Ί Γ / " J L ' J L " / JL' \ 2 -ι i
I// Z <Σ) | \ III (p CD / G) \ I I

Γ ~ — + 8\— + 2 ( — i - °
φ φ \ i φ φ φ \ φ I liWφ Φ > iΦ'Φ Φ

From the Wronskian relation we easily verify that φ and φ ψ are linearly inde-

pendent solutions of the differential equation. Then the theorem follows from

uniqueness properties of linearly independent solutions of this type of dif-

ferential equation.

1.3. Sub-^o functions. The differential equation we are to consider is

A " + Koh = 0,

where Ko is a negative constant, and the interval of definition is 0 <_x < b < oc.

The two-parameter family of solutions of the equation is given by

(1.31) U α y β ( * ) } = {Cί cosh (V-

where Ot and β are the parameters. A property of this family is given in the

following lemma; we omit the proof.

LEMMA 1.3. // A: ( # l 5 yι ) and B: (x2, Y2 ) are t w o points with x± ^ x29

then there is one .and only one curve of the family \ haβ(x)\ passing through A

and B. Thus? if yι >_ 0 and y2 >_ 0, the curve ha β {x) passing through A and

B satisfies ha β (x) >_ 0 for xx < x < x2.

DEFINITION. A function g(x) will be said to be a sub-K0 function of x

if it is a subfunction of the family ^h^Λx)] of (1.31) on the interval 0 < x <

b <_oo. Moreover, g(x) will be said to be a KQ-function if the sign of equality

of its subfunction relation (1.12) holds throughout the interval; and it will be

a strictly sub-K0 function if the strict inequality holds throughout for 0 < t < 1.

It is convenient to introduce a second-order differential operator S defined

by

S s D2 + Ko,

where KQ is a negative constant; we may write Qx to indicate the variable for

differentiation.

REMARK. With the choices

φ(x) Ξ cosh (V-^o^) a n d φ(x) = tanh {yJ-Kox),
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the family \<Xφ+ βφφ\ coincides with the family (1 .31), and these functions

φ and φ satisfy the hypotheses of Theorem 1.2. Hence a function g(x) of c lass

C 2 is a sub-i£0 function ( i ϊ 0 -funct ion) if and only if 5g{x) > 0 (Gg(%) = 0 )

on the interval.

Certain elementary properties of sub-&0 functions are given in the following

theorems. The proofs are omitted as they merely involve applying the foregoing

remark to appropriate members of the family \h n(x)}.

THEOREM 1.4. Any linear combination of sub-K0 functions with nonnegative

coefficients is a sub-K0 function.

THEOREM 1.5. Let f(x) be a nonnegative sub-K0 function, and let k be

a constant > 1. Then [ / ( % ) ] is a sub-K0 function; in fact9 [f (x)] is a

sub-kK0 function,

THEOREM 1.6. Let f {x) (i—1, 2, ••• , n) be convex functions of x which

are nonnegative and monotonic nondecreasing and at least one of which is a

sub-KQ function. Then the product function fif2'
mmfn

 ι ' s a su^"^o function.

II. SURFACES OF NEGATIVE CURVATURE

2.1. Geodesic parameters. Let an analytic surface S be represented by

geodesic parameters [7, p. 174] {u, v), so that

(2.11) ds2 = du2 + μ 2 U s v)dv2 (μ > 0 ) ,

and

(2.12) da = μ(u, v)du dv,

where the curves v = constant are the geodesies, and the curves u = constant

are the geodesic parallels. The surface S is said to be given in geodesic repre-

sentation.

Singular points of the geodesic family are points where μ = 0; other points,

where μ > 0, are regular points.

The Gaussian curvature K of S exists at all regular points. If S is given in

geodesic representation, the Gaussian curvature is given [7, p. 181] by the

formula

1 d2μ
(2.13) K = L.

f du2
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DEFINITION. An analytic surface S will be said to be a sub-K0 surface if

its Gaussian curvature is bounded from above by Ko, a negative constant, at

all regular points of S. Moreover, S will be said to be a Resurface if its

Gaussian curvature everywhere is Ko. If S is a sub-X0 surface which is not a

K0-surface, it will be said to be a strictly sub-K0 surface.

2.2. Geodesic parallels. We have the following lemma,

LEMMA 2.1. // an analytic surface S is given in geodesic representation,

then a necessary and sufficient condition that S be a sub-K0 surface is that the

function μ{u, v0 ) be a sub-K0 function of u for each line-segment uγ < u < u2,

v = vQ in the (u, v) —domain of definition.

Proof. The result follows directly from (2.13) and Lemma 1.3 by an argu-

ment analogous to that in [4, p. 286]. The proof reveals that μ is a strictly

sub-K0 function of u if and only if S is a strictly sub-K0 surface, and that μ is

a £0-function of u if S is a K0-surface.

Let S be a sub-2£0 surface given in geodesic representation. Then we have

the following results.

THEOREM 2.2. Let the arcs C{u) (uί <u <Lu2)> of length l(u), be arcs

of geodesic parallels between geodesies v = vι and v = v2 (t>i < v2 ) on S.

Then the length l(u) is a sub-K0 function of u {that is, of the geodesic length

u — Uι ); I (u) is a strictly sub-K0 function if S is a strictly sub-K0 surface, and

l(u) is a KQ-function if S is a K0-surface.

Proof. A proof may be patterned on that of the related theorem in [4, p. 287],

in which we substitute the appropriate member (which is of class C 2 ) of the

family (1.31) in a subfunction inequality in place of the convexity inequality.

THEOREM 2 . 3 . Let the arcs C(u) (ui -W < u < ux +W), of length l(u),

be arcs of geodesic parallels between geodesies υ — vx and v — υ2 (vγ < v2) on

S, and let a(w) denote the area of the part of S enclosed by v = vι$ C (uι + w),

v = υ2, C {uι - w) ( 0 < w < W). Then a(w) is a sub-K0 function of w; a(w)

is a strictly sub-K0, function if S is a strictly sub~K0 surface, and is a K0-func-

tion of w if S is a K0-surface.

Proof. The proof is similar to that in [4, p. 288] when we consider sub-

function properties instead of convexity properties.

2.3. Geodesic polar coordinates. Let the analytic surface S be represented
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in geodesic polar coordinates [7, p. 181] (u, v\ that is, coordinates for which

(2.11), (2.12), and

(2.31) μ(0, v) = 0, h ^ l = 1

are satisfied. The curve u = u0 is a geodesic circle with center at the pole P

of the representation and geodesic radius u0.

We shall write r9 θ for u9 v9 respectively.

Hereafter we indicate functions determined by, or calculated for, a Ko-

surface by a subscript zero. Some such functions can be determined explicitly.

LEMMA 2.4. Let So be a KQ-surface, and let lo(r) and aQ(r) denote the

circumference and area, respectively, of the geodesic circle on SQ with fixed

center P and geodesic radius r. Then

(2.32)

and

2π
(2.33) ao(r) = [ c o s h ( y / - K o r ) - l ] .

~Ko

Moreover^

l0 ( r ) > 2πr (r > 0 on S),

and

ao{r) > πr2 (r > 0 on S).

Proof. Since Quμ - 0, we find that the function μQ(r) of the family (1.31)

satisfying (2.31) is

When we evaluate (2.11) and (2.12) for a geodesic circle using this expression

for μ, we obtain the formulas of the lemma. The inequalities are easily es-

tablished; cf. [4, p. 291-292].
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We remark that the functions lo(r) and ao(r) will occur in formulas which

refer to a sub-&0 surface S; in such cases, (2.32) and (2.33) provide definitions

of these functions on S.

III. SUBFUNCTIONS FOR GEODESIC CIRCLES

3.1. Definition. Some functions of geometrical significance involving the

geodesic radius have certain properties in common. We collect these properties

in the following definition.

CONDITION C. For a given sub-K0 surface S and for a given pole P of

geodesic polar coordinates on S, a function φ{r) of the geodesic radius r satis-

fies Condition C provided: <^(0) = 0; for r>0 on 5, φ(r) is a continuous,

nondecreasing sub-K0 function of r; φ ( r ) = 0 if S is a X0-surface, but otherwise

φ(r) is a strictly sub-X0 function.

If we let Ko = 0, the X0-surface becomes a developable surface, and the

"sub-X0 function of r" property becomes the usual "convex function of r"

property. Thus our Condition C specializes to Condition A of [4, p. 289] when

It follows from the theorems of § 1.3 that sums and products of functions

which satisfy Condition C also satisfy Condition C.

3.2. The length function. Hereafter we assume that μ(r9 θ) is of class C 2 ,

which ensures the existence of the derivatives we write. We now consider a

geodesic circle Cr on S with fixed center P and geodesic radius r.

LEMMA 3 . 1 . Let S be an analytic sub-K0 surface, and let l(r) denote the

length of the circumference of Cr. Then l(r) satisfies the differential relation

(3.21) S Z ( r ) Ξ l"(r) + Kol(r) > 0 (r > 0 on S).

Proof. The result is immediate since GΓμ(r, θ) > 0 for r >_ 0 on S. We

note that equality holds in (3.21) if and only if S is a K0-surface, that is, in

our notation, if and only if we have S/ 0 (r) = 0, where lo(r) is given by (2.32).

LEMMA 3.2 . Let S be an analytic sub-K0 surface, and let a(r) denote the

area of Cr. Then a{r) satisfies the differential relation

(3.22) a " ( r ) + £ o a ( r ) - 2 7 r = Γ(r) + Koa{r) - 2π > 0 (r > 0 on S).

Proof. By differentiating the area function
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Γr r2ττ
a(r) = / / μ ( p > θ)dpdθ,

Jo Jo

we get

dμ

/

2τr dμ
— dθ^ l'(r).
dr

Since α ( 0 ) = 0, and Z'(O) = 2 77 by (2 .31), we have equality in (3 .22) for r = 0.

The derivative of the function

Γ(r) + Koa{r) -2π

is S/(r), which is nonnegative by Lemma 3.1; hence the left member of (3.22)

is monotonic nondecreasing, and (3.22) holds. It is readily seen that equality

holds in (3.22) if and only if S is a K0-surface.

THEOREM 3.3 . Let S be an analytic sub-K0 surface, and let l(r) denote

the length of the circumference of CΓ. Then the function

φ^r) Ξ l(r) __ lo(r) (r > 0 on S ) ,

satisfies Condition C .

Proof. The functions μ{r9 θ) and μQ(r> 0) associated with the surfaces S

and So, respectively, both satisfy (2.31), and are such that

d2μ
— 1 + Kμ = 0 (r > 0 on S ) ,

dr2

2 + X o μ o = 0 ( r > 0 on 5 ) ,

dr2

where K < Ko* By Sturm's oscillation theorems [8, Chap. X], it follows that

μ(r, θ) - μQ(r, θ) > 0 (r > 0 on S ) ,

and

- ϋ ί ^ > 0 ( r > 0 o n S ) .
5 ^
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Hence we. find that ^ ( 0 ) = 0, φ^ir) = 0 on S if and only if S i s a K 0 - s u r f a c e ,

and

Γ2ττldμ dμΛ
# ( Γ ) = Z ' ( Γ ) - Z ' ( Γ ) = / — ) dθ > 0 ( r > 0 o n S).

1 υ Jo \dr dr /

Then calculation shows that

Gφ^r) = SZ(r),

whence

Qφ^r) > 0 (r > 0 on 5 ) ,

by Lemma 3.1. Thus, by Theorem 1.2, φ^r) satisfies Condition C.

COROLLARY 3.4. If S is an analytic sub-K0 surface^ then l(r) is a mono-

tonic increasing sub-K0 function of r and satisfies the inequality

l(r) > lo{r) ( r > 0 on S);

I ( r ) is a strictly sub-K0 function if and only if S is not a K0-surface.

Proof. The inequality follows from Theorem 3.3 and the identity

l(r) = lo(r) + φ^r) ( r > 0 on S).

REMARK. The function φ ( r ) may be modified to form a new function in

the following way: rep lace the function lo(r) (Lemma 2 . 4 ) in Φι(r) by i t s

Maclaurin s e r i e s expansion from which h a s been de le ted any finite or infinite

number of terms. The new function so obtained is a nonnegative9 monotonic

increasing^ sub-K0 function of r. In l ike manner, s imilar functions may be formed

from s u b s e q u e n t φ functions which involve subtract ive functions lo(r) and

cio(r). We omit proofs.

3.3. Ί h e area function. On a surface where K '< KQ9 the area function a(r)

for a g e o d e s i c c irc le Cr h a s proper t ie s s imilar to those given for / ( r ) .

THEOREM 3.5. Let S be an analytic sub-K0 surface, and let a(r) denote

the area of Cr. Then the function

φΛr) Ξ a(r) - α o ( r ) (r > 0 on S)
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satisfies Condition C.

Proof. Verification is immediate by use of Lemma 3.2 and Theorem 1.2.

COROLLARY 3.6. If S is an analytic sub-K0 surface, then a(r) is a mono-

tonic increasing sub-KQ function of r and satisfies the inequality

a(r) > ao(r) (r > 0 on 5 ) ;

a (r ) is a strictly sub-K0 function if and only if S is not a KQ-surface.

Proof. The inequality follows from Theorem 3.5 and the identity

a(r) = ao(r) + φ2{r) (r > 0 on S).

We shal l find additional theorems for the functions a{r) and φ {r) showing

certain subfunction properties of these functions when an additional assumption

is made for the surface S. In the sequel we use the following lemma, which

shows that certain conditions which clearly imply the sub-&0 function property

for a function also imply this property for its square root.

LEMMA 3.7. // g(r) is a nonnegative function for which g'"{r) exists in

the interval Cί < r < β, and g(r) satisfies

(3.31) A(α) s 2g(α)g"(α) - [g ' (α)] 2 + 4K0[g(a)]2 > 0

and

g'"(r) + 4K0g'(r) > 0 {a<r<β),

then [ g ( r ) ] ' is a sub-K0 function in CX < r < β and is a strictly sub-K0 func-

tion there provided

( 3 . 3 2 ) g'"(r) + 4 K 0 g ' ( r ) > 0 (<X < r < β).

Proof. If we l e t f (r) = [ g ( r ) ] ι / 2 , t h e n a t p o i n t s w h e r e f (r) £ 0 w e h a v e

Moreover,

(3.33) Λ'(r) =
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so that from the hypotheses we get

A(α) > 0, A'(r) > 0 (<x < r < β),

whence h(r) > 0. Thus G/(r)> 0 at points where f(r) 4" 0. And, since the non-

negative function f{r) satisfies the subfunction inequality (1.12) for points

where f(r)=O, it follows that the continuous function f(r) is a sub-X0 function

for α < r < β.

With (3.31) and (3.32) the nonnegative sub-X0 (and hence convex) function

g(r) can vanish at no more than one point of Cί < r < β, whence, by (3.33),

we have h ( r) > 0 ((X < r ^ β ). It follows that we have Qf(r) > 0 except for

at most one point of (X < r < β, so that f(r) is a strictly sub-^ 0 function for

α < r < β. This completes the proof of the lemma.

An additional assumption on the surface S causes certain functions im-

mediately to satisfy (3.33) for r > 0 on S. Thus, if S satisfies K <_4>K0 for

its Gaussian curvature, then a modification of the proof of Theorem 3.3 indicates

that we have

a'"(r) + 4K0a'(r) = l"(r) + 4K0l (r) > 0 (r > 0 on S ) ,

with equality holding if and only if S is a 4& 0 -surface. We now determine some

functions which have certain subfunction properties in common; these properties

are collected in:

CONDITION D. For a given sub-4X 0 surface S and for a given pole P of

the geodesic polar coordinates on 5, a function ψ(r) of the geodesic radius

r sat is f ies Condition D provided: \jj ( 0 ) = 0; for r > 0 on S, φ (r) is a continuous

monotonic nondecreasing sub-A0 function of r; and ψ ( r ) is a strictly sub-K 0

function except possibly when S is a 4K 0-surface.

T H E O R E M 3 . 8 . Let S be an analytic sub-4<K0 surface, and let a(r) denote

the area of the geodesic circle CΓ. Then

and

Φ2(r) ^ [φ2(r)]1/2

 Ξ [a(r)~ α o ( r ) ] ι / 2

satisfy Condition D, and ψ t ( r ) is a K0-function if S is a 4>K0-surface.
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Proof. We have

a'(r) = l(r), a"{r) = l'{r\ a'"(r) = l"(r);

hence, beside α ( 0 ) = 0, we have

α ' ( 0 ) = 0 , a'"(r)> 0 (r > 0 on S ) ,

with

α ' " ( r ) + 4K o α'(r) > 0

for r > 0 on S unless K = 4A0. Then for r > 0 on S, a (r) satisfies the hypo-

theses on g{r) of Lemma 3.7, so that φ ( r) satisfies Condition D for r > 0 on

S, and is a strictly sub-A0 function if S is not a 4X0-surface. If S is a 47̂  0~

surface, then

1 2 77 , I / 77 \ 1 / 2I 1 / 2 / 77 \
= )

-I \-Λ0/

and thus it is a K0-fundtion.

The proof for Φ2(r) is similar in method and is omitted.

We can find other functions which satisfy Condition D. Let l^ir) and a^ir)

denote the length of circumference and area, respectively, of the geodesic

circle CΓ on a 4Λ0-
SUΓface Formulas for ^(r) and aί{r) can be written (see

Lemma 2.4), and these expressions serve to define l{{r) and aι{r) for a sur-

face S having arbitrary curvature. If S is a sub-4&0 surface, then, by methods

analogous to those of Lemma 3.1 and Lemma 3.2, we find the relations

Γ(r) >2π- iKoa(r) (r > 0 on S ) ,

and

Z' /(r) + 4A0Z(r) > 0 (r > 0 on 5 ) ,

with the equality sign holding for r > 0 on S if and only if S is a 4/£0-surface;

that is,

(3.34) /;(/•)= 2 τ 7 - 4 X o α 1 ( r ) ,

and
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l('{r) + 4K 0 /!(r) = 0 .

THEOREM 3,9. Let S be an analytic su6-4X 0 surface, and let l(r) and

a{r) denote the circumference and area function, respectively, of Cr on S. Then

the functions

φ3(r) = l(r) ~ l^r),

Φ4(r) = a(r) ~aχ ( r ) ,

and

0 s ( r ) s lair) - α o ( r ) ] ι / 2

satisfy Condition D.

Proof. The method is that used in earlier theorems wherein now we apply

the four relations which immediately precede Theorem 3.9.

REMARK. It was indicated earlier that our Condition C reduces to Condition

A of [4, p. 289] if Ko = 0. Now if Ko = 0, the assumption that S satisfies K < 4>K0

imposes no new requirement upon the surface. In fact, our Condition D becomes

Condition A if Ko — 0 and if the function φ (r) is identically zero when the sur-

face is developable.

The role played by the condition K < 4X0> when Ko φ 0 for "square root"

functions is indicated in the following theorem.

THEOREM 3.10. Let S be an analytic sub-K0 surface, and let a{r) denote

the area of CΓ on S. Then in order that the function

be a sub-K0 function of r for every possible pole P, it is necessary and suf-

ficient that S be a sub-4<K0 surface.

Proof. The sufficiency has been established in Theorem 3.8.

Now let Pi be a point of S where Kv > 4K0, and let PL be the pole of a

geodesic polar coordinate system. Since S is analytic, there exists a neighbor-

hood of Pi in which K > 4>K0, and hence a value r t > 0 such that the geodesic

circle of radius rγ lies entirely within this neighborhood. In this coordinate

system we have
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<92μ
+ 4 £ 0 μ < 0 (0 < r < r t on 5 ) ,

dr2

and then it easily follows that

l"{r) + 4K0Z(r) < 0 (0 < r < rx on S).

By calculation we get that

iQφ(r) = i α - 3 / 2 [ 2 α Z / ~ I2 + 4 £ V ] s i α ' 3 / 2 Λ ( r ) ,
4 4

w h e r e h(r) i s t h e b r a c k e t e d e x p r e s s i o n . T h e n w e h a v e t h a t A ( 0 ) = 0 , a n d

0 ( 0 < r < r Λ o n S ) ;

hence A ( r ) < O f o r O < r < r 1 , and thus also

S 0 t ( r ) < 0 (0 < r < r t on 5 ) .

Then by Theorem 1.2, φχ{r), when evaluated in a coordinate system with such

a pole, cannot be a sub-X0 function.

IV. T H E I S O P E R I M E T R I C I N E Q U A L I T Y AND R E L A T E D F U N C T I O N S

4.1. The isoperimetric inequality. Let L and A denote the perimeter and

area, respectively, of a simply connected region bounded by an analytic curve

on a surface of nonpositive curvature. The isoperimetric inequality

L2

(4.11) θ = A > 0
477

holds for such a region. In fact, the following theorem [6, p. 670-672] has

been established:

For an analytic surface S, a necessary and sufficient condition that (4.11)

hold for all simply connected regions bounded by analytic curves on S is that

K <^0 on S. Further, if K < 0 but K φ 0 on S$ then the strict sign of inequality

holds in (4.11); while if K = 0 on S, then the sign of equality holds in (4.11)

only for geodesic circles on S.
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We shall study the function θ of (4.11) and some modifications of it for

sub-#0 function properties when S is assumed to be a sub-i(0 surface and the

region is that determined by a geodesic circle, A well-known generalization

of the function θ for geodesic circles on surfaces of constant negative curva-

ture Ko is the function

I2(r) K0a
2(r)

(4.12) φ (r) = + a(r),
3 477 47Γ

which we shall call the isoperimetric function.

THEOREM 4.1. Let S be an analytic sub-K0 surface, and let l(r) denote

the length of the circumference, and a(r^ the area, of the geodesic circle Cr on

S. Then the isoperimetric function φΛr) satisfies Condition C.

Proof. Squaring the inequality (3.22) and using (3.21), we obtain

4πGφ3(r) > [I'2 + Kol
2 - 4 τ 7 2 ] = A ( r ) ,

where h(r) is the function in brackets. Then we see that Λ(0) = 0, and that

λ ' ( r ) > 0 for r > 0 by (3.21); hence &φ3(r) > 0 for r > 0 on S, and thus

Φ3(r) is a sub-^o function by Theorem 1.2. The other requirements of Condition

C are easily found to be satisfied by φ (r),

C O R O L L A R Y 4 . 2 . If S is a n analytic sub-K0 surface, and l ( r ) and a ( r )

as in the theorem, then the function

θtir)^1-^! _ α ( r )
477

is a continuous monotonic nondecreasing sub-KQ function of r.

Proof. It follows from the proof of Lemma 3.2 that a(r) is a continuous

monotonic nondecreasing sub-X 0 function of r, and then that a (r) a lso has

these properties by Theorem 1.5. Then, using the positive coefficient - A o / 4 77,

we may apply Theorem 1.4 and get

K0a
2(r)

0 , ( r ) S φ{r) ,

so that θί(r) has the properties stated in Corollary 4.2.



GENERALIZED CONVEXITY AND SURFACES OF NEGATIVE CURVATURE 3 4 9

COROLLARY 4.3 If S is an analytic sub-K0 surface, then

( 4 . 1 3 ) l—L - a { r ) > ί - l l + " ' " - g ( r ) > 0 ( r > O o » S ) ,
477 4 77 4 77

where the sign of equality holds for r > 0 on S if and only if S is a Resurface.

Proof. This corollary is an immediate consequence of Theorem 4.1 and

Corollary 4.2.

4.2. Modifications of the isoperimetric function. We shall consider modi-

fications of the isoperimetric function, φ Ar), which are produced by adding

certain functions to it and/or by replacing l(r) by Z 0 ( Γ ) O Γ %πr and a(r) by

ao(r) or zero. For example, the function ( ^ ( r ) may be considered a modification

of φ3(r) formed by replacing the a2(r) function in φs(r) by zero.

THEOREM 4.4. Let S be an analytic sub-K0 surface, and let l(r), lo(r\

and a{r), ao{r) denote length and area functions associated with the geodesic

circle Cr. Then the functions

lo(r)l(r) Koa
2{r)

< A * ( Γ ) Ξ Ξ + : α ( r )
477 477

a n d

lo(r)l{r) K Q a Q ( r ) a { r ) ao{r) a ( r )
+ — — — — — — — — —•——— —

/ 5 4ττ

satisfy Condition C.

Proof. We establish the result that

(4.21) lol' - llζ = lol' + KQaol - 2πl > 0 (r > 0 on 5 ) .

The function on the left is zero when r = 0, and its derivative is the nonnegative

(by Lemma 3.1) function lo(r) Gl(r); hence (4.21) holds.

Now <£4(0) = 0, and φ^{r) > 0 by (4.21) and Theorem 3.3; thus φ4(r) is

monotonic nondecreasing. The calculation for S φ4(r) may be arranged so that

4π Qφ4(r) = [1OQI - Kol(l - l0) - 2Koao(l'- lό)

- 4 πK0(a - aQ) + K0(IQ + Ko a\ - 4 πa0)].
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Then we have &φ4(r) > 0 for r > 0 on S, since each parenthesis above is non-

negative by previous results —the last one, in particular, being identically zero

according to Corollary 4.3. Thus φ4ir) is a sub-#0 function by Theorem 1.2.

Finally, φ4(r) satisfies Condition C since the signs of equality hold in the

relations above if and only if S is a A0-surface, and obviously φXr) = 0 if S

is a K0-surίace,

For φ-(r), we find that <άc(0) = 0 and that φ'(r) > 0 by Lemma 3.2. We
c> o o

may arrange the calculation so that

r) ^ [Z0SZ + (Γol'+ Kolol - 2πΓ0 - 2πKoao)]

where h(r) is the function after the inequality sign. Clearly Λ ( 0 ) = 0 , and we

find that

Λ ' ( r ) EE Z Q S Z > 0 .

Hence, h(r) > 0 for r > 0 on S, and then Theorem 1.2 ensures that Φ5(r) is a

sub-K0 function. The other conditions to complete the proof are easily verified.

Theorem 4.4 then admits a corollary which is analogous to the isoperimetric

inequality for the functions φ ( r) and φAr); we omit its statement, but we re-

mark that the inequality for Φ5^
r) l s sharper than the isoperimetric inequality

(4.13) in that it presents a better estimate (greater lower bound) for Z(r).

The next theorem presents another function determined by the modification

process.

THEOREM 4.5. For a surface and functions as in Theorem 4.4, the function

rl(r) rlo(r) Γ

^ 6 ( Γ ) Ξ _ L - : _ α ( Γ ) + ao(r) = -lUr) - ίo(r)] - [a(r) - ao(r)]
I £ L

satisfies Condition C.

We omit the computations and also the corollary stating the inequality satis-

fied by φ (r)

It may be noted that with Φ6(r) satisfying Condition C it readily follows that

Φ4(f) does. For if the function
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(lo-2πr) (l-l0),
477

which satisfies Condition C (in part by Theorem 1.6), is added to φ6(r), we

obtain φ^ir), which then sat is f ies Condition C (in part by Theorem 1.4).

Theorem 4.5 suggests a consideration of the substitution of l(r) - lo{r)

and a(r) - ao(r) for the functions l(r) and a(r). When this substitution is

made in the isoperimetric function, we find that the new function does not sat is-

fy our conditions. Nevertheless, in the next theorem we have a result of this

procedure.

THEOREM 4.6. For a surface and functions as in Theorem 4.4, the function

φΛr) S — U(r) - lo(r)]2 + — [a(r) - α o ( r ) ] 2

satisfies Condition C.

Proof. We find that φy{0) = 0 and that φ'7(r) > 0 by Lemma 3.2 and Theo-

rem 3.3; thus φy(r) is monotonic nondecreasing. By computation we find that

4 τ τ S < / > 7 ( r ) > L 2 ( Z ' - I Z ) W + K o a - 2 π ) + K Q ( l - l Q ) 2 + K 2

0 ( a - α 0 ) 2 ] ^ h ( r ) ,

where h(r) i s the b r a c k e t e d e x p r e s s i o n . We s e e t h a t Λ ( 0 ) = 0, and t h a t i t s

der iva t ive s a t i s f i e s

Λ ' ( r ) > 2 [ ( l " - K ' ) ( l ' + K o a - 2 π ) + K Q ( l - l o ) ( l ' - l £ ) + K 2

0 ( a - a o ) ( l - l 0 ) ]

= 2 ( l " + K Q l ) { l ' + K Q a ~ 2 π ) > 0

by Lemmas 3.1 and 3.2. Hence h{r) > 0 for r > 0 on S, with equality holding

if and only if S is a #0-surface. It follows that φ7ir) satisfies Condition C

since obviously φy(r) = 0 if S is a i^0-surface.

Theorem 4.6 admits refinements of the inequalities which appear in Corol-

lary 4.3 and Corollary 3.4.

COROLLARY 4.7. Let an analytic sub-K0 surface S be referred to a geo-

desic polar coordinate system with pole P. Then, for geodesic circles, the

isoperimetric function φ (r) and the functions φΛr^ an^ Φy^r^ satisfy the

inequalities
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(4.22) φ3(r) > 2φs(r) > 0

and

Φ3(r) > φy(r) > 0,

where the signs of equality hold for r > 0 on S if and only if S is a K0-surface,

in which case all functions are identically zero.

Proof. It is easily seen that

Φ7(r) = Φ3(r)- 2φ5(r),

and the cbrollary then follows from Theorems 4.6 and 4.3.

COROLLARY 4.8. Let an analytic sub-K0 surface S be referred to a geo-

desic polar coordinate system with pole P. Then the length of the circumference

of a geodesic circle of radius r satisfies the inequality

(4.23) l(r) > lo(r) + V 3 ^ U ( r ) - ao(r)],

where the sign of equality holds for r > 0 on S if and only if S is a K0-surface.

Proof. Since Ko < 0, 4>πφ7(r) has real factors. The factor φ&(r), where

φ8ir) = I - lQ + yJ-K0 (a - aQ), satisfies φg(r) > 0 by Corollaries 3.4 and

3.6; hence so also does the other factor by Corollary 4.7. This other factor

yields (4.23).

Less precise relations may be obtained from the isoperimetric function by

using the theorems of § 1.3.

THEOREM 4.9. Let S be an analytic sub-K0 surface with length and area

functions relating to geodesic circles on S as previously defined. Then the

functions

φg(r) Ξ _ [I2(r) - / o

2 (r)] - [ α ( r ) - ao(r)],

φ ( r ) Ξ — [ Z 2 ( r ) - Z 2 ( r ) ] + — t α 2 ( r ) - o 2 ( r ) ] ,

4 77 477
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φu(r) = I2(r) - Z n

2 (r) Ξ I2(r) - 4 τ τ α ( r ) c o s h

satisfy Condition C.

Proof. We refer to § 1.3 and merely indicate the verification of the desired

subfunction property of these functions. Thus, φ ( r) results from adding the

function -(Kύ/4>π)[a2(r)- a2 ( r ) ] , which satisfies Condition C, to the isoperi-

metric function Φ3(
r) The function φί0(r) is obtained by adding the function

φ2(r) = a(r) — ao(r) to φ(r). And the function φ (r) is obtained by adding

~Koa{r)[a(r) - ao{r)]9 which satisfies Condition C, to 4>πφ3{r).

4.3. Another kind of modification. The properties of the isoperimetric func-

tion and its modifications which we have developed now enable us to introduce

new functions which satisfy our conditions. These new functions are produced

by replacing each term of an expression by its square root.

THEOREM 4.10. Let S be an analytic sub-4<K0 surface with length and area

functions relating to a geodesic circle on S as previously defined. Then the

functions

and

satisfy Condition D.

Proof. We have φy{0) = 0, and

k
> 0

for r > 0 on S by the properties of φ ( r ) of Theorem 4.9, s ince now lι(r) and

a^r) behave analogously to lo{r) and ao(r) of that theorem. Hence ψ7(r) i s

a monotonic nondecreasing function of r. Then using (3 .34) and the isoperi-

metric identity satisfied by lι(r), we get

Qψ7{r) =
-3/2

[2aΓ- I2 + 4 K 0 α 2 ] > 0
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for r > 0 on S, since the function in brackets is identical with that which would

occur for the function ψt(r) of Theorem 3.8. Thus ψy{r) satisfies Condition D.

The proof for Ψ6(r) is similar to this for φy(r).

The next theorem presents a modification of the function φ ( r) of Theorem

4.9.

THEOREM 4.11. Let S be an analytic sub-K0 surface with length and area

functions relating to geodesic circles on S as previously defined. Then the

function

Φί2(r) Ξ Z(r)Vαo(r) - lo(τ)y/7(r)

satisfies Condition C.

Proof. We first establish the inequality

(4.31) 2 α ( r ) Z ' ( r ) - I2(r) + Koa
2(r) > 0 (r > 0 on S ) ,

where the sign of equality holds for r > 0 on S if and only if S is a K0-surface.

The result is immediate, since the function on the left in (4.31) is zero at

r = 0, and its derivative is nonnegative for r > 0.

Clearly <£ ι 2(0) = Q, and Φl2(r) > 0 for r > 0 on S since Φn(r) satisfies

Condition C. Then, by substituting for Γ(r) and IQ(Γ) from (4.31), we find

that

mus Φl2(
r) i s monotonic nondecreasing. Then using (3.21) we find that

/ Z o ' \ / Z0'Z l 2

0 l l ' o l

V° / \V«o

Now using (4.31) in the last two parentheses, we get
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2 Γa~ \ 2

> — μ ' W - -"ό > — U'zo-"o').

Hence, by (4.21), it follows that &Φi2(r) > 0 for r > 0 on S. Thus, on citing

Theorem 1.2 and the obvious fact that Φΐ2(r) = 0 if S is a X0-surface, we have

shown that Φl2(
r) satisfies Condition C.

V. EXTENSIONS AND GENERALIZATIONS

5.1. Geodesic circular sectors. The generalization from a basic configura-

tion of geodesic circles to one of geodesic circular sectors is indicated in

[4, p. 296], and its relations apply immediately to this study.

We state some representative results.

THEOREM 5.1. Let S be an analytic sub-K0 surface, and let l(r; βu θ2)

and a(r; θl9 θ2) denote respectively the length of the bounding arc and the

area of the geodesic circular sector on S with fixed pole P, fixed angle from

θι to θ2, θγ < θ29 and geodesic radius r. Then the functions

φί3(r) = / ( r ; θl9θ2) - Z0(r; θi9 θ2),

φl4(r) = a(r; θl9 Θ2)~ao(r; θl9 θ2 ) ,

and

I2(r; θι9 θ2) Koa
2(r; θl9 θ2)

φ (Γ) = + . - a(r; θi9 θ2),
9 l 5 ' 2(θ2 ~ θt) 2(θ2 - θ,) l 2

(r> 0, θt <θ< θ2 on 5 ) ,

satisfy Condition C

The proof for each function is similar to the proof of the analogous result

for the corresponding function for geodesic circles, and will not be given here.

Other functions which satisfy Condition C or Condition D for geodesic cir-

cular sectors (the analogues of those for geodesic circles) obviously could be
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written. It is clear that, as corollaries, we then obtain certain inequality re-

lations between the length and area functions for a suitably restricted surface.

5.2. Regular super-/£0 surfaces. The preceding results concerning sub-&0

surfaces hold in the large and are unaffected by singular points. We now de-

scribe somewhat analogous results for surfaces whose Gaussian curvature

satisfies K > Ko; such surfaces will be called super-K0 surfaces. We still

assume Ko < 0, although some of the results hold, in the small, for Ko any

constant. In general, our results will hold only on parts of S where there are no

singular points of the surface, or of the family of geodesies, other than at the

pole of geodesic polar coordinates; and some of the results hold only in the

small even where there are no singular points.

A function f(x) is said to be a super-K0 function provided ~f(x) is a

sub-X0 function.

A surface S given in geodesic coordinates, or in geodesic polar coordinates,

will be said to be regular provided there are no singular points on 5 except, in

the case of geodesic polar coordinates, at the pole P.

Lemma 2.1 holds if we add the restriction that S is regular, and replace

"sub-X0" kv "super-# 0." Theorems 2.2 and 2.3 hold with the same alterations,

and the inequality relations given by (3.21), (3.22), and (4.21) hold with the

inequality signsreversed.

THEOREM 5.2. Let S be a regular analytic super-K0 surface, and let l{r)

and a(r) denote the length and area functions for a geodesic circle CΓ. Then

the functions ~φ.{r) (j = 1, 2, 4, 5, 6, 8 ) satisfy Condition C.

Proof. The theorem follows in routine fashion by an examination of earlier

calculations for these functions in relation to (3.21), (3.22), and (4.21) with

the inequality signs reversed.

Now consider the isoperimetric function φ3(r). We compute φ'3(r), and find

that φ ( r ) is monotonic nonincreasing on any regular suρer~K0 surface S, and

is monotonic decreasing if S is not a Resurface. Actually, s ince Z ' ( 0 ) = 277,

it follows from a consideration of &φ3ir) that there is an r 0 = ro{S, P) such

that Φ3(r) is a super-X 0 function for 0 < r < r 0 .

From the properties of the functions φ{r) we obtain resul t s for l(r) and

a(r). We have

l(r) = lo(r) + φ^r),
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Π r ) = lό(r) + φ[(r),

and

6/(r) = Gφ^r).

Since the functions -φ.(r) satisfy Condition C on regular super-K0 surfaces,

we have

φt(r) < 0s Όφ^r) < 0 ( r > 0 o n S).

It fo l lows t h a t on regular analytic super-K0 surfaces the function I ( r ) is a

super-K0 function and satisfies l(r) < lo{r); l(r) is a strictly super-K0 func-

tion and satisfies the strict inequality for r > 0 on S if S is not a K^-surface.

A l s o , on t h e s e s u r f a c e s we h a v e <^'(0) = 0, s o t h a t , s i n c e φ ( r ) i s a s u p e r - K 0

function, for a given regular analytic super-K0 surface and for a given pole P

on S, either l(r) is monotonic increasing on S or there is an r0 - ro(S$ P) > 0

such that l{r) is monotonic increasing for 0 < r < r0 and monotonic decreasing

for r > r0 on S.

Again, we have

a ( r ) = a o ( r ) + φ 2 ( r ) 9

a\r) = / 0 ( r ) + φχ{r) = Z ( r ) ,

and

S α ( r ) = 2 77 + S φ2(r).

On r e g u l a r a n a l y t i c s u p e r - K 0 s u r f a c e s we h a v e

Φ2(r) < 0, φ'2'{Q) = 0, Gφ2(r)

H e n c e on regular super-KQ surfaces, a(r) satisfies a(r) < ao(r); the strict

inequality holds for r > 0 on S if S is not a KQ-surface. Further, for a given

regular analytic super-K0 surface, and for a given pole P on S9 either a(r) is

a strictly sub-K0 function, or there is an r 0 = ro(S9 P) > 0 such that a{r) is

a strictly sub~K0 function for 0 < r < r 0 and a strictly super-K0 function for

r > r 0 on S. T h e i n t e r v a l 0 .< r < r 0 on w h i c h a{r) i s a s u b - K 0 funct ion co in-

c i d e s wi th t h e i n t e r v a l on w h i c h l{r) i s i n c r e a s i n g .
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From the properties of φ Ar), Φ5(
r) and φΛr) described in Theorem 5.2,

we deduce some inequalities of interest. Thus, on regular analytic super-K0

surfaces we have the inequalities

a(r) > — [lo{r)l(r) + K o α o

2 ( r ) ] ,
4

α ( r ) > Uo(r)l(r) - 2πao(r)],
loir)

and

a(r) > ao(r) ~-[lo{r) - l(r)],

associated with φ^{r), φs(r), and φ6(r) respectively, with the signs of e-

quality holding for r > 0 on S if and only if S is a Resurface.

When the proof in Theorem 4.6 is examined in light of the new basic in-

equalities for regular analytic super-/£0 surfaces, we find that φ Ar) remains

a monotonic, nondecreasing sub-/£0 function. The function 4 77<^7(r) is factor-

able in such a way that φ (r) is a factor; then, by Theorem 5.2, the other

factor satisfies the inequality

Hr) - lo(r) - y/^Γ0 [a(r) - ao(r)] < 0 .

Hence, using this last relation, on regular analytic super-KQ surfaces we have

the inequalities

l(r) < lo(r) - ^ΠΓ0 [ao(r) - a(r)] < Z 0 ( r ) ,

and

ao(r) >_a(r) > ao{r) = = r U0(r) - l(r)],

with the signs of equality holding for r > 0 on S if and only if S is a K0-surface.

The φ functions related to geodesic circular sectors (see Theorem 5.1) have

analogous properties on regular super-A0 surfaces.

5.3. Surface characterization. Heretofore we have assumed S to be either
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a sub-X0 surface or a super-A0 surface. In certain instances we have obtained,

in the two cases, conclusions which are distinct except for the dividing class

of K0-surfaces. Thus by logical exclusion we obtain several characterizations

of the indicated classes of surfaces.

For example, a regular analytic surface S is a super-K0 surface, but not a

K0-surface9 if and only if for each pole P on S we have

(5.31) l(r) < lo(r)

for all r > 0 on S.

Proof. In § 5 . 2 we have shown that the condition K > KQ9 K φ Ko, on 5

implies ( 5 . 3 1 ) . Conversely, if we should have A!t < KQ at some P L on S9 then

we would have K < Ko throughout some neighborhood of Pl9 and therefore, in

the neighborhood, we would have l(r) > lo(r); a lso, if we should have K = Ko

on S, then we would have l(r) = lo(r); hence (5 .31) implies K > Kθ9 K φ Ko

on S.

In the same way we could establish similar resu l t s for each function in the

following theorem.

THEOREM 5.3. The regular analytic surface S is i) a sub-K0 surface, but

not a K0-surface9 ii) a super-K0 surface, but not a K0-surface9 or iii) a Ko~

surface9 if and only if we have

(5.32) i)φj(r)>0, n)φfr)<0, or i i i) fy(r) = 0,

( ; = 1 , 2, . . . , 6 , 8,9, . . . , 1 5 ) ,

respectively, for all poles P and all r > 0 on S.

By Theorem 1.2, it is evident that we might replace (5.32) with the dif-

ferential conditions

i) Qφj(r) > 0, ii) Gφjίr) < 0, or iii) S ^ (r) = 0

(/ = 1, 2,4, 5, 6, 8, 13, 14).

5.4. Geodesically similar curves. The preceding theory may be applied to

more general configurations than geodesic circles and sectors. Thus we may

study comparison functions which involve length and area functions relating

to a class of curves upon an arbitrary surface S as compared to the correspond-

ing curves upon a X0-surface or in the plane.
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It is evident that r has heretofore played a dual role: it has served as the

parameter for the family of geodesic circles ( s e c t o r s ) on S with centers at the

pole P, and it also has been a variable of the geodesic polar coordinate system*

We now rephrase the previous conditions in terms of the parameter of the family

of curves to be considered.

CONDITION A(k) For a given surface S of nonpositive Gaussian curva-

ture, and for a given one-parameter family of curves C(k), a function λ(k) of

the parameter k satisfies Condition A (A;) provided: λ ( 0 ) = 0; for k > 0, λ(k)

is a continuous monotonic nondecreasing convex function of k; λ(k)= 0 if S

is a developable surface, but otherwise is monotonic increasing and strictly

convex.

CONDITION C(A ). For a given sub-X0 surface S, and for a given one-

parameter family of curves C(k)9 a function τ(k) of the parameter k satisf ies

Condition C(k) provided: τ ( 0 ) = 0; for k > 0, τ ( k) is a continuous monotonic

nondecreasing sub-X0 function of k; τ{k)= 0 if S is a K 0-surface, but other-

wise τ(k) is a strictly sub-A0 function of k.

On a surface S referred to geodesic polar coordinates (r, θ) with a given

pole P, we first consider the family of curves C(k) of parameter k given by

(5.41) r = kf(θ\ k > 0,

where f(θ) admits a continuous derivative and f(θ) > l We remark that the

condition f(θ) > 1 is merely a normalization; for, if f(θ0) <_ 1 and f{θ) ^ 0

in a closed interval, CX < θ < β, then f{θ) is bounded away from zero in

(CX, j8), say f(θ) > m > 0 in ((X , β). Then a new parameter kι may be intro-

duced by setting k = mkγ, so that

T = kj^θ) = k^

and t h i s r e p r e s e n t a t i o n s a t i s f i e s our r e q u i r e m e n t s . It may be n o t e d t h a t f{θ)= 1

p r e s e n t s the c a s e of g e o d e s i c c i r c l e s ( s e c t o r s ) . T h e c u r v e s C(k) of t h e

family given by ( 5 . 4 1 ) are s a i d to be similarly situated or homothetic, and we

s h a l l c a l l them g e o d e s i c a l l y s i m i l a r .

THEOREM 5.4. Let S be an analytic surface of nonpositive Gaussian curva-

ture referred to geodesic polar coordinates with given pole Po. Let lp(k; CX , β)

and l$(k; Cί, β) denote the lengths of the curve of the family C(k) of (5.41)

from θ = (X to θ = β, (CX < β), for the parameter value k in the plane and on

the surface S, respectively, and let ap(k; CX , β) and a$(k; CX , β) denote the
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areas of the sectors formed by the curve of the family C(k), θ = 0i9 and Θ = β

(Cί < β)9 for the parameter value k in the plane and on the surface S respective-

ly. Then the functions

λi(k; α , β) Ξ ls(k; Cί, β) - lP(k; Cί, β)

and

λ2{k; α , β) = as(k; Cί, β) - ap(k; Cί, β)

satisfy Condition A{k).

Proof (outlined). For θ0 fixed and a < θ0 < β, let

where r = r{θ) is given by (5.41). We find that λo(O, θ0 ) = 0, and that dλo/dk

and d2λQ/dk2 are nonnegative since μ(r9 ΘQ) is a convex function of r. On

verifying the other requirements, we have that, for each fixed value θ0, λo(k, θ0)

satisfies Condition A (A;).

Since

λ tU; a, β) Ξ fβ λo(k, θ)dθ,
J a

it follows (See [4, Theorem 1, p. 287].) that λι(k; (X, β) satisfies Condition

A(k). If the function l$(k; Cί, β) alone is considered, then the relations used

also indicate that ls(k; (X, β) is a convex function of k, that it is strictly con-

vex if S is not a developable surface, and that it is linear (as a function of A;)

if S is developable.

Now, with (5.41),

λ 2 U ; Cί,/3) Ξ / fr [ μ ( p , θ ) - pλdpdθ,
Ja JO

and its first and second derivatives are found to be nonnegative by use of the

convexity of μ(r, θ) The remainder of the argument is direct.

We find other results for the area functions:
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THEOREM 5.5. Let S be an analytic sub-K0 surface referred to geodesic

polar coordinates with given pole Po. Let a${k; CX, β), as (k; (X, β), and

ap(k; CX, β) denote the areas of the sectors formed by the curve of the family

C(k) of (5.41) for the parameter value ft, 0= (X, and θ = β (CX < β) on the

surface S? the K0-surface Sθ9 and in the plane respectively. Then the function

λ 2 U ; CX, β) = as(k; Cί, β)-aP(k; CX, β)

is a monotonic nondecreasing sub-K0 function of k9 and the function

r^k; α , β) = as(k; CX, β) - aSQ(k; CX, β)

satisfies Condition C(ft).

Proof. By Theorem 5.4, λ2(ft; Cί, β) is nonnegative and monotonic non-

decreasing. By calculation,

Γβ Γr r d2μ
S / c λ 2 ( Z ; ; (X, β)= / / [Qpμ + — ^ - (f2 -l)-Kop] dpdθ > 0

•/α JO dp

for r > 0 (k > 0) on 5 since f(θ) > 1. Hence X2{k; CX, /3) is a sub-X0 function

of A:.

For the other function, we find that

- Γ Γ = [β[μ(r,θ)-μ(r,θ)]f(θ)dθ
dk J a υ

and

Si.r. (ft: α, /3)

These are nonnegative by the proof of Theorem 3.3, and the rest of the argument

is immediate.

5.5. The Steiner configuration. Let C be an arbitrary closed convex curve

in the plane, of length L and area F9 and let C(p) be a curve parallel to C

at a distance p from it, p being measured along the outward normal to C, of

length L{p) and area F ( p ) . The family of curves C(p) will be called a Steiner

configuration; it is a classical result of Steiner [2, p. 128] that
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L (p) = L + 2πp

and

F (p) = F + p L + πp2 .

Generalizations of these formulas for curves lying on a curved surface have

been given in [ 1 ; 2], and explicit formulas found in the case of surfaces of

constant curvature. We shall establish the sub-#0 function property of some

functions which involve the L{p) and F(p) functions for the Steiner configura-

tion associated with a suitable curve C on an arbitrary sub-/£0 surface, Ko < 0.

It is evident that our preceding theory for geodesic circles of center P o

 o n $ i s

obtained from a Steiner configuration on Sr if the curve C is a geodesic circle

of center Po on S.

Let the curve C be a simple, closed, bounding, and differentiate curve on

the surface S. Introduce a geodesic representation with coordinates (u, v) in

which u - 0 is the curve C, and v = constant are the geodesies orthogonal to

C; further, let v be the arc length of C measured positively for motion on the

curve which keeps the bounded area to the left, and let u be the arc length of

geodesies normal to C. Sufficient conditions for the validity of such a coordinate

system in a region of S have been given [ l ; 2] We shall assume that our co-

ordinate system is valid and term admissible those curves which satisfy the

above conditions.

Then, for an admissible curve C of length L and area F9 and for p fixed, the

length L ( ρ ) of C ( p ) is given by

(5.51) L(p) = / μ(p, v)dv,

a n d t h e a r e a F ( p ) of C (p) i s g i v e n by

(5.52) F(p) = F + / / μ(u9 v)dudv.

For a 2£0-surface, Ko < 0, Abascal [ l , p. 843] has shown that these relations

simplify to (in our notation)

(5.53) 0 ( P ) + 0 ( p )
2 7T

and
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Lίo(p) K0Fa0(p)
(5.54) F0(p)= F + ao(p)

2π 2π

where lo(p) and ao(p) are given in Lemma 2.4.

LEMMA 5.6. The functions L0(ρ) and F0(ρ) satisfy the relations

L'0(p) + K0F0(p) - 2π = 0,

£ 0 " ( p ) + K0L0(p)= 0,

and

L2

0(p) K0F*(p)
(5.55) + F0(p) = M = constant

4 π 4>π

for p >_ 0 on the K^-surface S o .

Proof. The first two relations follow easily from (5.53), (5.54), and the

properties of IQ{P) and ao{p). The third relation is immediate since the deriva-

tive of its left member is zero.

THEOREM 5.7. Let S be an analytic sub-K0 surface, and let C(p) denote

the curves of the Steiner configuration for an admissible curve C on S. Then

the length function L(p) is a sub-K0 function of p; L(p) is a strictly sub-KQ

function if S is a strictly sub-K0 surface9 and it is a KQ-function of p if S is a

K0-surface. Further, the area function F(ρ) is a strictly sub-K0 function.

Proof. These properties of L (p ) were established in Theorem 2.2.

By calculation from (5.52) we get

(5.56) SoF(p)= f fP Quμdudv + f ( — \
H Jc Jo JC \du I

For our geodesic representation, it is known [7, p. 188] that

KΛv) =

where Kg{v) is the geodesic curvature of C. By the Gauss-Bonnet theorem

[7, p. 191], noting that C has no exterior angles, we get



GENERALIZED CONVEXITY AND SURFACES OF NEGATIVE CURVATURE 3 6 5

(5.57) J Kg(v)dv = 2π - jjKμdudυ > 2π - K0F.

C F

since K < Ko. With Qu μ > 0 and (5.57), it follows from (5.56) that

(5.58) S p F ( p ) Ξ L'{P) + K0F(p) > 2π,

and then Theorem 1.2 ensures the result of the theorem.

We shall now make comparison between the length and area functions for

Steiner configurations on a sub-K0 surface S and on the Ko-surface. However,

our expressions may be considered to be functions formed with respect to S

alone because of (5.53), (5.54), and the known formulas for / 0 (p) and ao(p).

THEOREM 5.8. Let S be an analytic sub-K0 surface, and let C(p) denote

the curves of the Steiner configuration for an admissible curve C of length L

and area F on S. Let C0(ρ) denote the curves of the Steiner configuration for

any admissible curve Co of length Lo = L and area FQ = F on the K0-surface

So. Then the functions

τ2(p)= L(p)- L0(P)

and

τ3(p) = F(P)~ F0(p)

satisfy Condition C ( p ) , where p is the parameter of the family.

Proof. There i s equal i ty in ( 5 . 5 7 ) if S i s a A' 0 -surface, and the proof u s i n g

( 5 . 5 1 ) and ( 5 . 5 2 ) is s imilar to t h o s e of Theorem 3.3 and Theorem 3.5.

Theorem 5.8 admits the corol lary t h a t the functions L(p) and F(p) satisfy

the inequalities

l * o l
L(p) >L0(p) = L + lo(P) + ίFlo(p) + Lao(P)]

2 77

and

Llo(p) \K0\Fa0(p)
> F0(p) = F +ao(p) +

2 77 2 77

both functions are strictly sub-K0 functions and satisfy the strict inequalities
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for p > 0 on S if S is not a K0-surface, and they satisfy the equalities if S is

a K0-surface. We remark that the conditions Lo = L and Fo = F were imposed

to meet the requirements of Condition C ( p ) . The sub-Z£0 function properties

and inequality relations above would hold equally well for any admissible C o

such that Lo < L and Fo < F.

We shall now establish some results for functions involving L(p) and F (p)

which are analogous to the isoperimetric function and to its modifications.

THEOREM 5.9. Let L(p) and F(p) be the length and area functions, re-

spectively, of the curves of a Steiner configuration on an analytic sub-K0 sur-

face S, Then the function

L2(p)
θ(p) Ξ — - F(p)

477

is a positive monotonic strictly increasing sub-K0 function of p; further, if

Co on the Resurface So satisfies Lo = L and FQ — F, then the function

L2{p)-L2

0{p)
τ4(P) = [F(p)-F0(P)]

477

satisfies Condition C(p)

Proof. It is known [6] that θ(ρ) > 0 on sub &o surfaces. With (5.58) and

Theorem 5.7, routine computations show that θ'(p) and Gθ(p) are positive,

establishing the properties of θ(p). The properties of τ4(p) are established in

routine manner by the use of (5.58) and Theorem 5.8.

THEOREM 5.10. Let L(p) and F{p) be the length and area functions,

respectively, of the curves of a Steiner configuration on a sub-K0 surface S,

and let L0{p) and F0(p) be the length and area functions, respectively, of the

curves of a Steiner configuration on a K0-surface So. Let the admissible curve

Co on So satisfy LQ — L and Fo = F. Then the function

TS(P) -
L2(p) K0F

2(p) I Γ L O

2 ( P ) K0F0Hp)
F(p)\ - — + F0{p)

satisfies Condition C (p ).

Proof. Obviously τ s (0) = 0, and using (5.55) we get τ'5{p) > 0 by (5.58).
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By another calculation we find that

- 4πK0F(p)-4πK0M\,

where the constant M is given by (5.55). We then use (5.58) just as we used

(3.22) in the proof of Theorem 4.1, and we get

( 5 . 5 9 ) 4 τ 7 δ r 5 ( p ) > [L'\p) + Ko L 2 ( p ) ~ 4 π2 - 4πK0 M ] EE h(p)

where h(p) is the function in brackets. By (5.53) and (5.54), we verify that

M = L'2(p) + K0L
2(p) - 4ττ 2 ,

and when this i s substituted in ( 5 . 5 9 ) , it follows that h(0) > 0 since / / ( 0 ) >

L Q ( 0 ) by ( 5 . 5 8 ) . By computation and use of Theorem 5.7 we find that h'{p)> 0

for p > 0; hence h(p) >_ 0 for p > 0, and τ5{p) is a sub-& 0 function. Since

further considerations show that the s igns of equality hold above if and only if

5 is a A!0-surface, we have, with the final remark that τs(p) = 0 if 5 is a KQ-

surface, the result that τs{p) sat is f ies Condition C ( p ) .

We remark that the las t two theorems imply inequalit ies for the functions

L(p) and F(ρ) somewhat similar to (4 .13) ; we omit the formal s tatements .

Let the symbol Φ/^p) denote the new functions produced from the functions

( ^ ( r ) when the functions r, a(r), aQ(r), l(r), and lQ(r), associated with geo-

desic circles, are replaced by the functions p, F ( p ) , F0(ρ), L(p), and L0(ρ),

respectively, associated with the Steiner configuration of an admissible curve

C For example,

τ s ( p ) s Φ3(p)- M,

where M is the constant of ( 5 . 5 5 ) . It may then be verified (indeed almost solely

by inspection of the proof that the corresponding φ(r) function sat isf ies Con-

dition C ) that the functions

Φk(p) - M (k = 4, 5 ) ,

and

ΦΛp) U = 6, 7, 8,9, 10, 11),
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satisfy Condition C ( p )

Again, we might formulate a Condition ΐ)(p) which is analogous to Condition

D in the way that Condition C (p) corresponds to Condition C Then large parts

of the theory in § 3.3 on "square-root" functions are found to apply to similar

functions associated with a Steiner configuration. Finally, it may be shown that

much of the theory in § § 5.2, 5.3 can be generalized to hold for appropriate

functions associated with Steiner configurations.
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ON THE HITCHCOCK DISTRIBUTION PROBLEM

MERRILL M. FLOOD

1. Introduction. Frank L. Hitchcock [ 1 ] has offered a mathematical formula-

tion of the problem of determining the most economical manner of distribution

of a product from several sources of supply to numerous localities of use, and

has suggested a computational procedure for obtaining a solution of his system

in any particular case. L. Kantorovitch [2 ] , Tjailing C. Koopmans [3] , George

B. Dantzig [4b], C. B. Tompkins [5] , Julia Robinson [7; 8], Alex Orden [ 6 ] ,

and others [4] have also discussed the computational aspects of this problem;

paper [ 5] illustrates the use of the "projection method," due to C. B. Tompkins,

as a computational process applicable to either of the Fundamental Problems of

the present paper.

We shall be concerned only with the mathematical justification of computa-

tional procedure, and shall limit our attention to one specific method of solution

of general validity. No attempt will be made to compare the various methods

already proposed, either as to their mathematical similarity or as to their rela-

tive efficiency in any particular case.

2. The problem. The problem is to find a set of values of the mn variables

%ij, subject to the following conditions:

(2.2)

Received January 25, 1952. The author's interest in the problem was aroused by
papers on transportation theory presented by Koopmans [4a] and Dantzig [4b] at a con-
ference on linear programming in Chicago during June, 1949, under the auspices of the
Cowles Commission for Research in Economics of the University of Chicago. Several
other papers presented at this conference are of closely related interest. Professor
Koopmans, in his Introduction lo the Conference Proceedings [ 4 ] , also discussed the
background and interrelationship of the conference papers — including the bearing of
some of these on the Hitchcock distribution problem. The results of the present paper
have been presented in three seminar lectures: once in December, 1949, at The RAND
Corporation in Santa Monica, once in July, 1950, at the Institute for Numerical Analysis
of the National Bureau of Standards in Los Angeles, and once in June, 1951, at the
National Bureau of Standards in Washington, D.C. The author is especially indebted
to Dr. D. R. Fulkerson, who has given real assistance in simplifying notation and
proofs of theorems, for a careful reading of the manuscript.

Pacific J. Math. 3 (1953), 369-386
369
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(2.3) = minimum

if]

The numbers m9 n> r^ cy, and d(j are given positive integers with ΣLCJ = Σ r j .

The indices i and y are understood always to range over these same integers

m and n, respectively; it is also assumed, for convenience, that m > n. Any

set of values %(j that satisfies all these conditions is called a solution of the

problem.

There is no loss of generality in assuming that the dη are positive integers,

rather than rational numbers, since the problem is essentially unchanged if

dij is replaced by adij + b, where a and b are any positive rational numbers. We

have not examined the case in which some of the quantities ΓJ, cy, and dij are

irrational. The only effect of irrationality on the results of the present paper is

a possible lack of convergence of the iterative process of solution. These con-

siderations are not of importance in the usual applications.

It will sometimes be more convenient to use an alternative statement of the

problem, in matrix notation, as follows:

(2.4)

(2.5)

(2.6)

M'y > b,

y > o ,

a'γ — minimum ,

It is easily seen that the two formulations are equivalent if y, α, 6, and M* are

defined as follows:

j = xij

W •

In

In

Λ
/.

In

-In

J2

-Jϊ

••• In

In

••• Jm

•••-Jm

b =

c

— c

r

— r

where In is the identity matrix of order n, and /j is the m x n matrix with all

elements zero except for the iύ\ row in which each element is unity. Of course,

y, α, c, and r are column matrices (or vectors) with components y /. t\ + ->
a

n(i- ι) +j9 cj> a n ^ Γ(i respectively, and a prime denotes the transpose of a

matrix (or vector).
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3. Fundamental theorems. There are several fundamental theorems con-

cerning systems of linear inequalities that are useful for this paper. I reproduce

their statements here in a form given by A, \fy. Tucker in an unpublished note

dated December, 1949. The interested reader can find proofs of these theorems,

and of others of similar type, in a paper by Gale, Kuhn, and Tucker [4c],

FUNDAMENTAL PROBLEMS. (Here lower case roman letters denote one-

column vectors, while capitals denote rectangular matrices; M, α, and b are

given, but d is to be determined.)

PROBLEM I. To satisfy the constraints Mx < a, x > 0, and make b'x = d

for d maximal in the sense that no x satisfying the constraints makes b 'x > d.

PROBLEM II. To satisfy the constraints M'γ > b, y > 0, and make a'y = d

for d minimal in the sense that no y satisfying the constraints makes a'y < d.

Problems I and II are said to be dual.

FUNDAMENTAL F E A S I B I L I T Y T H E O R E M . The constraints in a problem

are feasible (that is, satisfied by some x or y) if and only if the dual problem

in homogeneous form (that is, with b — 0 or a = 0) has a null solution.

FUNDAMENTAL EXISTENCE THEOREM, i. The vectors x and y are solu-

tions of Problems I and II if and only if they satisfy their constraints in the two

problems and make a'y ~ b'x. Such x and y exist if the constraints in both

problems are feasible.

ii. A problem has a solution if and only if its constraints are feasible and

its homogeneous form has a null solution.

FUNDAMENTAL DUALITY THEOREM. A problem has a solution (for a

unique d) if and only if the dual problem has a solution (for the same d).

4. The dual and combined problems. We note that the problem, as stated in

relations (2.4)-(2.6), is a Fundamental Problem of form II. The dual problem

is:

(4.1) Mx < a>

(4.2) x > 0,

(4.3) b'x — maximum.

This can be rewritten in a more convenient form, for our present purposes, as
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follows:

(4.4) VJ- ui < dij,

(4.5) maximum.

where Vj - XJ - xn+j, and Ui = - %2n+i + X2n+m+i > w e o m i t t n e condition (4.2),

that x > 0, since this imposes no limitation on UΪ and fy.

THEOREM 1. The problem has a solution.

Proof. By the Fundamental Existence Theorem, there is a solution if and

only if the constraints are feasible and γ = 0 is a solution of the problem when

b = 0. Now

so

Ti

Hj

satisfies the constraints. When 6 = 0, obviously the only values that satisfy the

constraints are xq = 0, and so the theorem is proved.

By the Fundamental Duality Theorem, we see:

COROLLARY lA. The dual problem has a solution.

THEOREM 2. The numbers Xij, and wls VJ9 are solutions of the problem and

the dual9 respectively, if and only if they satisfy:

(4.6) Σ,xij " ri> Σ,xij = ci> %ίϊ - °'

(4.7) dη + ui - VJ > 0,

(4.8) xij(dij + ui - VJ) = 0.

Proof. Since (4.6) and (4.7) are simply the constraints for the problem and

the dual, respectively, it remains only to show that (4.8) is equivalent to the

condition a 'y - b 'x - 0. Now
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a'y - b'x = 22 xij dij - Σcj vj + Σ,Γi Ui

i,j j i

i, / ί, / i, j i, j

Since each term in this sum is nonnegative,

a 'y — b 'x = 0

if and only if

xij(dij + Ui - Vj) = 0.

We refer to the problem of finding values for χq9 u{9 and VJ that satisfy

(4.6)-(4.8) as the "combined problem", and note that the combined problem

always has a solution.

5. Linear graphs. It will be convenient, for some purposes, to associate

linear graphs [9] with certain subsets of the elements of a matrix S = | | s ^ | | .

If / is a given subset of the elements of S, we define the I-graph L of S as

follows: the vertices of L are all the points (h, k) in the Cartesian plane for

which s^i ζ- I; the arcs of L are all line-segments joining pairs of neighboring

vertices with either equal abscissas or equal ordinates, where two vertices with

equal abscissas (ordinates) are neighboring if they are not separated by another

vertex of L with the same abscissa (ordinate). For the moment, denote the

vertices of L by symbols a, b, c, , /, and the arcs by symbols such as

ab, bc9 ••• , cf (no distinction is made between the arcs ab and ba). Then a

chain is a set of one or more distinct arcs that can be arranged as ab,bc, , de9

ef, where vertices denoted by different symbols are distinct. A cycle is a set of

distinct arcs (at least four are necessary) that can be ordered as ab, be, , ef,

fa, the vertices being distinct as in the case of a chain. A graph is connected

if each pair of vertices is joined by a chain. A forest is a graph containing no

cycles, and a tree is a connected forest.

If L contains v vertices, a arcs, and p connected pieces, the number

μ = a — v + p is known as the cyclomatic number (or first Betti number) of L.

It follows from a well-known theorem [9] concerning linear graphs in general

that: ( i ) L is a forest if and only if μ = 0, and (i i) L contains just one cycle

if and only if μ = 1.

Note that L contains a cycle if and only if there is a subset of / that can be

arranged as a sequence
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Shιkl9
 s h ι k2> $h2 k2> $h2 k3 > * * 9 Shσ kσ 9 Shσ kx 9

where the h's and A 's are distinct among themselves; and L contains a single

cycle if and only if / contains just one subset that can be arranged in the dis-

played form. We call such a subset of / an I-circuit on S, and denote it by [Sσ ].

For a particular arrangement of [Sσ ], we also refer to the terms sh & as odd-

terms, the others as even-terms.

In case / consists of all s^k > 0, as it frequently will, we speak of the

positive graph of 5, positive circuits on S, and abbreviate such statements as

"the positive graph of 5 is a forest" to "S is a forest".

6. The method of solution. In the method of solution to be developed for

the problem, we start with a special set of values X° = | | # ? . | | that satisfy the

constraints (4.6). We then test to determine whether or not there exist U( and

Vj satisfying the relations (4.7) and (4.8) for the given X°. If so, then X° is

a solution, otherwise not. The method next yields a new trial matrix ^ l = | | * λ ||>

iί X° is not a solution, such that

hi

After a finite number of steps this process necessarily must terminate, and it

leads to an exact integral solution of the problem.

The first trial matrix 1 ° is a forest of t trees, and has m + n - t nonzero

elements. According as t = 1 or t > 1, two essentially different cases may be

met at each stage of the solution process. *

At each stage when X - \\xij\\ is a tree, the equations (4.8) have a general

solution for u( and VJ with one free parameter, say uί. However, the quantities

dij + Ui — VJ are uniquely determined in this case, so it is sufficient to calcu-

late them and note whether or not they are all nonnegative in order to decide

whether or not X is a solution. If some

These are the nondegenerate and degenerate cases in the work of Dantzig [4bJ.
We shall use these terms also. The method of solution developed by Dantzig [4b J for
the nondegenerate case is essentially the same as the one in the present paper, al-
though the derivations of the results are quite different. Orden [6] has subsequently
given an elegant method for reducing the degenerate case to the nondegenerate one, as
an extension of the £-method proposed by Dantzig [4b] . The author believes that the
treatment of the degenerate case provides the only results in the present paper that are
new, or at least fresh for the Hitchcock problem, and also of some mathematical in-
terest. It also seems likely that the method given here will often be more efficient
computationally, in the degenerate case, than the Dantzig-Orden £-method.
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dHίι + UH ~ vh < °'

then there is a unique /-circuit [ ^ s ] on X, where / consists of %ι y and all

positive %jy, that may be arranged with χiijι

 a s the second term, say. Let g

denote the smallest odd-term of [Λ! s]. Then the new trial matrix X* is obtained

from X by adding g to the even terms of [Xs ], subtracting g from the odd-terms,

and leaving the other elements of X unchanged.

At each stage when X is a forest of t > 1 trees, the equations (4.8) have a

general solution for U{ and vj with t independent parameters, and the quantities

d(j + iii — VJ involve t — 1 independent parameters. The rows and columns of the

matrix X are rearranged so that it can be represented as a square matrix of order

t whose t2 elements are submatrices Xab such that Xab = 0 if α ^ b, and Xaa

is a tree with ma + na - 1 nonzero elements and is of order τna x na. It may also

be assumed that each Xaa is a solution of its subproblem. We can select

to be the t parameters. If we assign these the value zero and denote this parti-

cular solution of (4.8) by uι and VJ , then we may define numbers

Pi/ = dίj + »i- η .

We partition the matrix P= llp^ vll into submatrices corresponding to the Xaι,

and denote them Paf) Let pa^ be the smallest element in Pa^ and define the

square matrix P of order t by P = \\ p f l^ | | . To designate the position of p f l^ in

the matrix P = | | p. . | | , we may write pab alternatively as

- ia ίb
Pa b >

the subscripts referring to the submatrix and the superscripts to the rows and

columns in the submatrix. When it introduces no ambiguity, the subscripts on

the superscripts will be omitted in order to simplify the notation.

The test as to whether or not I is a solution consists of forming all sums

P = P + P + + P
t'aia2 ah ^aγa2 ^a2 a3 ^ah aγ

for h — 2, 3, , ί, where ( o t 02 ••• β l ι ) is any permutation of h different

positive integers, none greater than ί; X is a solution if and only if all such

sums are nonnegative.
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If any

Paίa2 . ah »

then there is a unique /-circuit [ ^ s ] on X, where / consists of all positive al-

together with all xij that correspond to the terms

^ ° P^i a2 . . . ah '

which can be arranged to involve all

ak ak

as even-terms. If g is the smallest odd-term in [/Ys], then (as in the nonde-

generate case) the new trial matrix X* is obtained by adding g to the even-terms

of [ ^ s ] , subtracting g from the odd-terms, and leaving the other elements of X

unchanged,

7. The initial trial solution. An X that satisfies (4.6) will be called a

trial solution. It would be all right to take the positive values

for the initial trial solution X° = | | # ° | | . An alternative is to construct an initial

trial solution that is a forest. It is always possible to do this in integral values.

The following theorem certifies the existence of such an integral trial solution.

The method of proof shows how to construct one.

THEOREM 3. There is a matrix X°=\\χ9. | | with integral elements that

satisfies ( 4 . 6 ) and is a forest.

Proof. The theorem is trivial for m = 1. Assume the theorem is true for m and

consider the case m + 1.

Let the notation be chosen so that

r i > Γ2 ^ '•• > rm + ι > 0> a n d c i > C2 > * •* ίi cn > 0.

If n < m + 1, then cx > rm + ι . If n = m + 1 then c t > rm + ι unless CJ = ry = λ
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(for all i and j); in this latter case X° = λ satisfies the conditions of the theo-

rem. Hence, by the induction hypothesis, there is a set of nonnegative integers

x*j (i - 1, , m) such that

is a forest. Then X°, defined by

i/ " xij> m + 1 j ~ ° i y ro+l '

satisfies (4.6). Now since the (m + 1) st row, with only one positive element,

clearly cannot contribute terms to a positive circuit, X° is also a forest; the

theorem is proved.

To apply this method, in the construction of a trial solution, search for the

smallest rj and the largest CJ , and then set

* ? • = r . .

In effect, this deletes the i t s t row, after cjί is replaced by CJ - r ^ , and the

process is repeated (with interchanged rows and columns as necessary) until

all %?. have been determined. For automatic machine calculation, the procedure

is easily made unique, for any one starting order of rows and columns, by speci-

fying that the search is first on row-totals when the number of rows is the same

as the number of columns at any stage, and that the row-total or column-total

with the smallest index is chosen whenever at any stage there are several equal

values to choose from. This initial trial solution will be called ''preferred" for

identification. 2

THEOREM 4. A trial solution that is a forest of t trees has m + n — t non-

zero elements.

Proof. Observe first that if the trial solution X is a forest of t trees, the

rows and columns of X can be rearranged so that X has the form

2Sometimes, as in this instance, we indicate how to make a unique choice among
possible alternatives at each computational step, but usually do not. It is necessary
to do this in order completely to routinize the computing steps, of course, but the matter
presents no difficulty and we omit it here.
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Xn 0 0

0 X22 0

0 0 . . . X tt

where each Xaa is a tree. Consequently, the theorem amounts to proving that an

m x n matrix with no zero rows or columns, which is a tree, has m + n — 1 posi-

tive elements. If m + n — 2, this is obvious, so assume the statement to be true

for all matrices for which m + n — k and consider one for which m + n = k + 1.

Since m >_ n9 clearly some row has only one positive element, as otherwise

there would be a positive circuit. Delete this row and apply the induction hypo-

thesis.

In actual cases when m and n are relatively small, or when there is other

reason to believe that an initial trial solution better than the preferred one can

be found by trial and error, it may be better to construct the initial trial solution

in some other way than the one given in the proof of Theorem 3, in order to

reduce the number of steps required in the iterative process.

The methods developed in this paper apply directly for any trial solution that

is a forest, and are readily extended for other cases. It is easy to see that there

must be at least one solution which is a forest.

8. Nondegenerate case. We consider now the case of a trial solution X

which is a tree. Let the positive elements of X be

ιa Ja

We shall need the following theorem.

THEOREM 5. If X is a trial tree, the set of equations

(8.1) dij + ui - VJ = 0 for (i, j) = ( i α , j a ) ,

has the general solution

m + n-l).

i = u + z, VJ = v +

where {u*, v*) is a particular solution and z is arbitrary.

Proof. The theorem is apparent for m = 1, and we proceed by induction.
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Suppose the theorem is true for all trial trees of m rows, and let X be an

(m + 1) x n trial tree. Obviously, there must be at least one row of X that has

exactly one nonzero element; we may suppose it to be xm+ιn without loss of

generality —also that

Since A! is a trial tree, the matrix obtained from X by deleting the last row (or,

if m + 1 = n, its transpose) is also. The induction hypothesis implies that the

general solution of (8.1), with the final equation omitted, is of the form

ui = ui + z> vj =

We note next that this final equation becomes

The theorem follows easily.

It will be convenient to call the particular solution U{9 VJ of (8.1) obtained

by setting uι = 0 the preferred trial solution of the dual problem corresponding

to the trial tree X, As an obvious consequence of Theorem 5, we state:

COROLLARY 5A. If X is a trial tree, then it is a solution of the problem if

and only if the corresponding preferred trial solution {u($ VJ) of the dual problem

satisfies

dij + Ui - VJ > 0

for all i and j .

All that is needed now in order to establish the method for the nondegenerate

case is to show how to construct a new trial matrix X*9 if X is not a solution,

such that

hi

In this case, it follows by Corollary 5A that

dkl + uk ~ vl
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for at least one pair {k9 I) and, of course, x, , = 0.

THEOREM 6. // the trial solution X is a tree, and x^ = 0, then there is a

unique l-circuit on X, where I consists of all positive x^ together with x^.

Proof. It suffices to show that the /-graph of X has cyclomatic number

μ — 1. By assumption, the positive graph of X has cyclomatic number zero; and

since X must have positive elements xQ^ and x^ for some a and b, the /-graph

of X has two more arcs, one more vertex, and the same number (one) of con-

nected pieces. Hence μ = 1, and the proof is complete.

Now arrange this unique /-circuit [ ^ s ] with x, , as the second term, and let

g be the minimum of the odd-terms of [A! s] in this arrangement. If we subtract

g from the odd-terms, add g to the even terms, and leave the remaining elements

of X unchanged, we get a matrix X* that satisfies (4.6) and is a forest (since

[Xs ] is unique ).

THEOREM 7. The following relation holds:

Proof. L e t

[Xs] = [xiιjl9
 xiγ j 2 $

 xi2 j 2 > xi2ϊz ' *# * ' xis is' %is 7 i

where

x i ι h = xkl'

Then

hi

Uίl "

The theorem follows.

If A* is a tree, then the whole process is repeated until at some stage a

trial matrix is obtained that either ( i ) is a solution, or ( i i ) is not a solution
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and is a forest of t > 1 trees. We shall now discuss ( i i ) .

9. The degenerate case. Let X be a trial matrix which is a forest of t > 1

trees. As we have seen, we may suppose that the rows and columns of X are

ordered so that

X =

Xn 0 . . . 0

o x 2 2 . . . o

0 0

where each submatrix Xaa of order ma x na is a tree. We can apply the methods

of the nondegenerate case to the subproblems corresponding to the submatrices

ί α α , and either obtain a solution to each subproblem or further decompose the

matrix X; thus we may also assume that each Xaa is a solution to its sub-

problem.

By Corollary 5A, we know that

(9.1) - v £; ia = h ' ' ,ma\ ja = 1, « o ) ,

where ua9 va is the preferred trial solution of the dual subproblem corresponding

to the solution Xaa, and that

(9.2) ί f *'

We recall also that the most general values for uι

a and vJ

a are given by

V =

where the 2α are arbitrary parameters.

It follows from Theorem 2 that X is a solution if and only if there are values

of za that satisfy inequalities corresponding to (4.7), or in our present notation:

(9.3) ua ~ ylb

But (9.3) has a solution for za if and only if the following inequalities have a

solution for za :

[9.4) Pab + Za ~ zb
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where

ua ~ v ί Pα6 = m i n

( /)

We have proved:

LEMMA A. The matrix X is a solution if and only if there are real numbers

za such that

> 0 (a, b = 1, . . . , ί ) .

In order to establish a criterion for the solvability of (9.4), we consider a

special case of the original problem, defined as follows:

dab = Pab' Γ α = Cb = X ' a> b = ^ " ' ' l*

We call this the special problem, the corresponding dual the special dual, and

now consider the special combined problem:

6 α

Pα6 + 2α " n > 0. rα 6(Pα6 + Za " Wb^ = °

If we set yab = δ β ^, then for this trial solution the conditions reduce to:

Pab + za~ wb>-° f o r α ^ 6 ,

Paa + Zα "" ^α = °

Since p α α = 0, it follows that za = u>a, and so these conditions are equivalent to

(9.4). Hence, by Theorem 2, (9.4) has a solution if and only if | | δ f l ^ | | is a

solution of the special problem. Using Lemma A, we now have:

LEMMA B. The matrix X is a solution of the original problem if and only if

the identity matrix is a solution of the special problem.

THEOREM 8. The matrix X is a solution of the problem if and only if

P α i α 2 . . . α f t > ° U = 2 f 3 , . . . , ί ) ,
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where {au a2, 5 ah) is any permutation of h different positive integers^ none

greater than t9 and

Paχ a2 . . . ah

 F Paχ a2

 + Pa2 a3

 + " ' + Pah at *

Proof. By Lemma B, it suffices to show that the condition of the theorem

is equivalent to the statement that |j δ f l^ j | is a solution of the special problem.

First of all, it is easy to see that at least one solution Y ~ | | y α ^ | | of the

special problem is a forest, and hence has less than 2ί nonzero elements. That

the elements of Y are all either zero or unity can be seen by induction as fol-

lows. The basis of the induction is obvious, and we consider the case t + 1,

assuming the statement for ί. There must be at least one element of Y that is

unity, as otherwise Y would have at least 2ί nonzero elements. We may suppose

that this element is yί + l ί + l # But then the induction hypothesis implies that each

element ya^ (α, b = 1, ««• , t) is zero or one. It follows that there are exactly

t elements of Y that are unity, whence we can write

Σ yabPab = Paιbι + Pa2b2

 + > " Patbt>
a, b

where (aί a2 at) and ( i^ b2 «« bt) are permutations of the first t integers.

Then | | δab \ \ is a solution of the special problem if and only if always

Pa.b, + Pa2b2 +•'•+ Patbt > Pn + P22 + ' ' ' + P« = °

The proof is completed by noting that this sum can be written as

with {a± a2 ah) as described in the theorem.

We now need to show how to construct an improved trial solution X* in the

event that X is not a solution. In this case, we know from Theorem 8 that there

is a sum

o o -o o - , °, °
p ι J + p ι / + . . . + pι J < 0.
tJaι a2 ^ ra2 α 3

 τ ^ah aγ

Let / consist of all positive elements xι1 together with all
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akak+l

of X. Then we assert:

THEOREM 9. There is a unique I-circuit on X that can be arranged to in-

volve as even-terms all the

Proof. The positive graph of X has m + n — t vertices, m + n — 2ί arcs, and

t connected pieces. Also, for each

x '
akak + l

there are nonzero elements

Hence in passing from the positive graph to the /-graph, h vertices and 2h arcs

are added, and the number of connected pieces is decreased from t to t - h + 1.

Thus the cyclomatic number of the /-graph is

μ = (2h + m + n - 2ί) - (h + m -f n - ί ) + (ί - h + 1) = 1,

so there is a unique /-circuit [Xs] on Z. Since the graph obtained by omitting

from / any

x
ak

clearly has no cycle, [Xs] contains all of these.

Evidently [Xs ] can be arranged, for example, as

so that all

0 0 -1 0 0 1 .0-0
aχ a2 > Xa2 i2>~m> \ a2 > Xa2 a3

%ak ak + l
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appear as even-terms.

As in the nondegenerate case, let g be the smallest odd-term in [Xs ] (hence

g > 0), and define a new trial matrix X* by replacing the elements of X that

appear in [Xs ] by new ones increased by g for even-terms and decreased by

g for odd-terms; the other elements of X are left unchanged. Again X* satisfies

the conditions for a trial matrix. To complete the discussion of the degenerate

case, it remains only to prove:

THEOREM 10. The following relation holds:

hi

Proof. Since λ and X* differ only on

[ * s ] = [ x i i j ι , x i x j 2 > % i i h * % i 2 J 3 ' ' • • ' X i s i s > X i s ί ι

then

hi

The proof is completed by noting that

dij=~Pij+1}j-~ui a n d Pf/ = 0 i f

so that

i] ιj ij S v P α i α 2 . ah' -

hi
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ON THE UNIQUE DETERMINATION OF SOLUTIONS

OF THE HEAT EQUATION

W. F U L K S

1. Introduction. Recently it has been shown independently by Hartman and

Wintner [5] and by the present author [4] that if u(x, t) has continuous deriva-

tives uxx and ut, and is a nonnegative solution of the heat equation

(1) u

Xχ(χ* *) " ut^Xf ^ = °

in a rectangle R: {0 < x < 1 0 < t < k < 00!, then u(x, t) can be represented in

the form

(2) u(x,t)=fl~°G(x,t;y90)dA(y)
Jo +

+ [t G U , t; 0 , 5 ) d B ( s ) - V GAx,t; 1, s ) d C ( s ) ,
Jo y Jo y

where

( 3 ) G ( * , t ; v , i ) - - U , I — , ί -

and where ^ 3 is the Jacobi theta function. The integrals are Riemann-Stieltjes

integrals with nondecreasing integrator functions, A, B9 and C. The first integral

may be improper but is absolutely convergent. It was further shown ( see [5] and

[3]) that

(4) a U , 0 + ) = A\x)

and

(5) u(0+, ί ) = S ' ( t - O ) ; ι » ( l - 0 , 0 = C ' ( ί - O )

at every point where the derivatives in question exist.

Received January 30, 1952. The preparation of this paper was sponsored, in part, by
the Office of Naval Research, Contract Nonr-386(00).
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2. Theorem. As to the question of the extent to which ( 4 ) and ( 5 ) uniquely

determine u(x9 t)9 it is clear that they do not do so completely, for the singular

solution Gy(x, t; 0, 0 ) , called a heat explosion by Doetsch [ 2 ] , has normal

boundary values identically zero on the three boundaries x = 0, x = 1, and t = 0

of R. Yet A9 B, C, through formula ( 2 ) , do uniquely determine u; hence one

might expect that by proper choice of the path of approach to the boundary, zero

boundary values would assure the vanishing of u. In particular, because of the

central role played by G and Gy in the representation ( 2 ) , one might expect

those paths to be the curves along which these functions become unbounded.

This leads us to the following:

T H E O R E M . Suppose

( a ) u ( x 9 t ) is a nonnegative solution of ( 1 ) in R ;

( b ) uxx and ut are continuous in R;

( c ) u(x9θ + ) = 0 (0<x< 1 ) ;

( d ) for every s ( 0 <s < k), lim u{x, t) = 0 as {x, t) tends to ( 0 , s) along

some parabolic arc of the form t - s = ax2, a > 0, and lim u(x9 t) = 0 as (x, t)

tends to ( 1 , s) along some parabolic arc of the form t — s = a{x — 1) , α > 0.

Then u(x9 t) == 0 in R.

3. P r o o f . A s w e r e m a r k e d i n t h e f i r s t s e n t e n c e , c o n d i t i o n s ( a ) a n d ( b ) p e r -

m i t r e p r e s e n t a t i o n of u i n t h e f o r m ( 2 ) . F r o m t h e f o r m u l a

\-{x + 2n)2\

(6) #3(*/2, o = uo- 1 / 2 Σi eχp [—•£•—]»
n oon = -o

which can be found in [ 2 ] , it is easily seen that for 0 < x < 1 the two latter inte-

grals in formula ( 2 ) — » 0 as t —» 0 + . Furthermore,

r l-o Γ δ

/ G(x,t;y,0) dA{y) = ] G(x9 ί y, 0 ) dA{y)

+ Γ ~ δ G(x9t;y,0) dA(y) + f l"° G(x9 t y9 0) dA(y) 9

Js Ji-δ

where δ < (1/2) min [%, 1 -%] and is taken so small that, given e > 0,

I Γ 5 G ( Λ , ί y, 0) di4(y)| < e and I Γ " ° G(x, t y, 0) dA (y ) | < €
I Jo + I Iji~δ I

uniformly in ί, for 0 < t < t0 for some ί0. Possibility to do this is ensured by [ 5 ,
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Lemma 2, p. 385]. Now

G(x,t;y,0) dA(y) = exp
\~(χ-y)2

dA(y)

-

exp

exp

- (# - y + 2n]

- U + y +

The two latter integrals are easily seen to vanish with t. Since also the left side

of (2) —-> 0 as t —»0, it follows that, if δ ' < δ,

TίπΓ exp

lim exp

Let e —»0 and obtain

lim Γ ~ 8 ( 4 τ r ί Γ 1 / 2 exp
t-> o+ ^δ

dA(γ) < 2e.

= 0 .

By [ 6 , T h . 7 ] , we see that A(y) is constant between δ ' , and 1 - δ ' . Let δ ' — > 0 .

This ensures the vanishing of the first integral of ( 2 ) .

Now let us turn to the boundary x = 0. Suppose that for some ί0 the boundary

function B(s) is not continuous. If σ is the jump (posit ive since B (s) is in-

creasing) in B (s ) at 5 = ί0, then for t > ί0, s ince Gy (x, t 0, 5 ) > 0 ( s e e [ 5,

p. 3 7 0 ] ) .

u(x9 t) > / Gy{x9 t; 0, 5) dB(s) > σ Gγ(x, t; 0, t0)

~y/2 (t-to)~3/2 exp

- σπ~ι/2 (t-t0Γ
3/2

exp
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Since u(x, t)—>0 as (%, t)—>(0, t0 ) along t - t0 = ax2 for some a > 0, we have

u(x,t) > - σπ~ί/2 x~2 α ~ 3 / 2 exp
" " 2 4α

1 -1/2 -3/2— σ;r x a 3 / 2

9

2n + x
—— exp

As x —>0+, the sum clearly —> 0; but

lim u(x,
) ( )

n̂  ~ σπ~ί/2 x~2 α~ 3 / 2 exp — U oo
O 2 4 α

This is a contradiction. Hence σ = 0, and Z? (s ) is continuous for 0 < s < k.

Now let ί = t0 + ax2. Then

u(x, t) > Gγ(x, t; 0,

, + αxV2

where

Q{x,t;s)=

Clearly the latter integral vanishes with %, Since in the interval of integration

we have

exp > exp
-x

exp
- 1

2a

and

t - s < ax ,
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it follows that

[ l l ] [ L ^\ - B ( ί o ) l + o ( l )u(x,t) > -i π"UΊ α~3 / 2 x~2 exp [ l l ] [β

+ o ( l ) ,> X
ax2/2

where K is a positive constant. Letting x —> 0, we obtain

0 > hm

Hence, by [ 1, p . 5 8 0 ] , B{s) i s a monotone decreasing function. Since it is non-

decreasing, it must be constant. Similarly it can be shown that C(s) is constant .

This completes the proof.

It seems probable that conditions ( b ) , ( c ) and ( d ) would ensure the van-

ishing of u(x, t) if it were represented by ( 2 ) with A9 B, C of bounded varia-

tion, but the proof eludes the author.
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LENGTH AND AREA OF A CONVEX CURVE

UNDER AFFINE TRANSFORMATION

JOHN W. GREEN

1. Introduction. We consider in the plane the class of all convex curves into

which a given convex curve can be affinely transformed, and seek the minimum

of L /A, where L denotes perimeter and A the area. This amounts to finding the

minimum length for a fixed area, or, what is the same thing, to finding the mini-

mum length under area-preserving affine transformations. In § 2 are found neces-

sary conditions on the supporting function that a given curve yield the minimum

of L2/A, and in § 3 these are shown to be sufficient. In § 4 is derived a proper-

ty of the minimizing curves; namely that if they are sufficiently smooth, they

have at least six vertices. In § 5 is derived an integral representation of the

supporting function of a convex curve, and another lemma to be used in §6. In

6 we study the problem of finding the maximum, over all convex curves, of the

minimum over affine transformations of L2/A; in other words, we seek that curve

of given area, which when affinely transformed so as to minimize its length,

gives the greatest length. We show that the extreme curve is a polygon of not

more than five sides, but fail to show what is extremely likely, that the solution

is a triangle.

For general facts about convex figures and their supporting functions which

are used, see [3] .

2. Necessary conditions. Consider a convex curve K and its area-preserving

affine transforms. Since rigid motions can be ignored, any transformation in which

we are interested can be written in the form

( 1 ) T:

x = eλ x'

μ x + e" λ y'

The length L(λ, μ) of the transformed curve K(λ, μ) is a continuous function

of λ and μ, and tends to oo as (λ 2 + μ 2 ) becomes large. Thus L(λ, μ) has

a minimum value, which we take for the moment to be at λ = μ - 0.

Received June 2, 1952.
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In order to find L (λ, μ ) we need the supporting function p ( λ , μ ; Θ) of K(λ, μ ) .

If p( 0) = p (0 , 0, 60 is the supporting function of K, then a supporting line to

Kis

( 2 ) # cos θ + y sin 0 = p(θ).

The transformation ( 1 ) carries ( 2 ) into

( 3 ) x'{eλ cos (9 + μ sin 0) + y ' e " λ sin (9 = p(θ),

which is a supporting line to K{λ, μ ) .

To convert ( 3 ) into normal form we set

( 4 )
e cos θ + μ sin θ = k cos 0 ,

e~ λ sin θ ~ k sin ώ ,

cot φ = e 2 λ cot 0 + μ e λ ,

A;2 = ( β λ cos 0 + μ sin (9)2 + e ' 2 λ sin2 θ.

The normal form of (3) is then

A;' COS φ + y' sin 0 = p(θ)/k,

and so

p(λ, μ, 0) = p{θ)/k.

From (5) and (4) we see that

c s c 2 0 dφ = e 2 λ c s c 2 θ rfθ, e 2 λ A;2 sin2 0 = s i n 2 ^ ,

and so dφ = αf^A2. Thus 1

p ( λ , μ, φ) dφ = J p ( θ ) — .

N o w l e t λ a n d μ b e f u n c t i o n s of a p a r a m e t e r ί, w i t h λ ( 0 ) = μ ( 0 ) = 0 . T h e n

L ( λ U ) , μ ( O ) = L ( ί ) ,

a n d d i r e c t c o m p u t a t i o n f rom ( 6 ) r e s u l t s i n

All integrals go from 0 to 2π unless otherwise noted.
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-L'{0) r ί 1 1
(7) = / p ( 0 ) | λ ό cos 2(9 + -μ'o sin 2 (9 \ dθ = 0.

Since λ' and μ' may be taken at pleasure, it is clear that in order for t — 0 to

yield a minimum, we must have

(8) ίp(θ) cos 20 dθ = fp(60 sin 2(9 rf0 = 0.

In other words, a necessary condition that K give a minimum length is that the

second Fourier coefficients of p be zero.

3. Sufficiency. Suppose now that λ = μ = 0 is a critical value of L (λ, μ), not

necessarily the minimum. Then, as in § 2, we see that

ίp cos 2Θ dθ = ίp sin 20 dθ = 0.

Futher differentiation of (6), with the use of (8) and certain trigonometric i-

dentities, results in

(9) L " ( 0 ) = - | p ( 0 ) U 2 ( l + 5 cos 460+ 10 xy sin 4(9 + y2 (1 - 5 cos 4(9)

where % = λ^ , 2y = μ^ . Setting

1 2 1
(10) K(θ) = % 2 ( 1 ~ - cos 4(9) %y sin 4 (9 + y2 (1 + — cos 4 (9),

o o o

we may rewrite (9) as

(11) L " ( 0 ) = - Jp(θ)\K + K"\ dθ.

Suppose now that p is twice differentiate, and integrate the K term in (11)

by parts twice. We get

(12) ZΛ0) = - f(p + p") K dθ.

The discriminant of the quadratic form (10) is equal to -32/9, and the form is

positive definite. Let M be its minimum value for x2 + y2 = 1, and all 0. The

quantity p + p " is the radius of curvature, ds/dθ, of K, and so

=-j ML.
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If p is not twice differentiate, we approximate it uniformly by supporting func-

tions which are. The right member of (9), for these approximating functions, is

at least 3 ML/2, where L is computed for the approximating function; thus,

passing to the limit, we see that (13) is satisfied in this case also.

because of (13), we now see that if λ = μ = 0 is a critical point for L (λ, μ),

then it is a proper relative minimum. Consider now any transformation 7 0 , corre-

sponding to parameters λ 0, μ0, which yields a

for which the second Fourier coefficients of the supporting function vanish. We

may write T in the form ( TTQ1) TO; that is, in studying the length of the trans-

forms of K as function of Γ, we may study instead the length of the transforms of

Ko as function of TTQ1. We may write

7 Ύ - ' :

where

(14)

Now

X = e ( λ - λ 0 ) x'

y = ( μ e - λ o _ μ e " λ ) x' + e " ( λ - λ θ ) r ' =

£ - λ - λ 0 ,

7/ = μe" λ o - μQ

L ( λ , μ ) = Q ( £ η ) ,

and, by the foregoing analysis, Q ( ξ, η) has a proper relative minimum at ξ = η =

0. But the transformation (14) is nonsingular, and so L (λ, μ) has a proper rel-

ative minimum at λO5 μo Thus every critical point of L(λ, μ) is a proper relative

minimum. But an (analytic) function in the plane which has only minima for

critical points and which tends to oo at great distance can have only one critical

point [ 6 ] . Thus L(λ, μ) has only one critical point, and this must be at the

minimum.

THEOREM 1. A necessary and sufficient condition that K have the least

length of all curves into which it can be transformed by an area-preserving affine

transformation is that

Jp cos 2Θ dθ = I p sin 2(9 dθ = 0.

Henceforth we shall refer to such K as extreme curves.
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4. A six-vertex theorem. A vertex on a convex curve is a point where the

radius of curvature has an extremum. It is a theorem of Kneser (see for example

[ l , p. 160]) that every convex curve, if sufficiently smooth, has at least four

vertices.

THEOREM 2. Each extreme curve with a continuous radius of curvature has

at least six vertices. 2

The radius of curvature p is given in terms of the supporting function by

p = p + p ". Now

jp cos θ dθ = I cos θ dθ = /cos θ ds = φ dy = 0,

and similarly for f p sin θ dθ . Also

ί p cos 2(9 dθ = Γ ( p + p " ) cos 2Θ dθ = 0,

by two integrations by parts. Thus we see that

1 £.
(15) p ~ + 2_, ( α

π

 c o s ra^ + b sin n ί ) .
2 ί 7 3

It has been known since Liouville ( [5 , p. 264]) that (15) implies that p — L/2π

has at least six alternations in signs, and hence p six extrema.

In a very similar manner one can prove the following theorem, which however,

will only be stated.

THEOREM 3. Each extreme curve intersects a certain circle, of radius L/2πt

at least six times.

5. Some lemmas. If //(<f, μ) is the Minkowski Stϋtzfunktion of a convex

curve, then

p ( 0 ) = H{cosθ, s i n θ).

Now // i s a c o n v e x funct ion of ξ, η; p(θ)is not c o n v e x , b u t h a s the s o m e w h a t

Blaschke [2] has already shown that a convex curve K may be affinely transformed
until its radius of curvature is in the form (15), and thus that it has six vertices. How-
ever, the vanishing of the coefficients α 2 and ό 2 was attained in an entirely different way.
Namely, he found that ellipse K p of area equal to that of K, whose mixed volume with K
is a minimum. Transforming affinely so that K t becomes a circle, we see that K becomes
a curve satisfying ( 15). We have not been able to discover that Blaschke or others made
any application of this result to the present problem.
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analogous property of being sub-sine. A function f(θ) is sub-sine if, provided

f{β) = A cos θ + B sin θ at 0γ and θ2, where θ < θ < θ + π,

then

/ ( 0 ) < A cos (9 + S sin θ ίov θχ< θ < θ2.

A necessary and sufficient condition [ 4 ] that a periodic function p(θ) be the

supporting function of a convex curve is that it be sub-sine, or, if it is of c las s

C " , that p + p" > 0.

L E M M A 1. A necessary and sufficient condition that a function p(θ) of peri-

od 2π be the supporting function of a convex curve is that it be expressible 4n

the form

Cθ
(16) p(θ) = I sin {θ - t) da(t) + A cos θ + β sin θ,

where α is a nondecreasing function.

First let a supporting function p C C"; then

P + P " = g(θ) > 0 .

The solution of the differential equation p + p" ~ g(0) is readily verified to be

( 1 7 ) p ( 0 ) = / sin ( 0 - ί ) g ( ί ) Λ + p ( 0 ) cos ( 0 - 0 )

p ' ( . 0 o ) s i

which is of the form (16) with

α(0) = ί
Jθ0

Note that

α(0Q) = 0 and a(θQ + 2π) = J (p + p'O c?0 = L.

Now if p ^ Cκ /, it is the uniform limit of supporting functions pn which are. We

put each pn in the representation (17), and apply the Helly selection theorem

and the Bray-Helly theorem ([7, p. 29-31]) to obtain the result immediately.

The factors pή(θ0) offer no difficulty, since one easily shows that they are
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bounded for all n.

The converse is proved similarly. If a periodic p is given by (16), we can

approximate α by a sequence of smooth monotone functions <xn which give peri-

odic functions pn; these pn are sub-sine since they satisfy

Again using the Bray-Helly theorem, we have that p = lim pn; that is, p is a limit

of sub-sine functions, and so is sub-sine.

LEMMA 2. If p(θ) is a supporting function, and if there exist at least six

disjoint intervals in 0 < θ < 2π9 interior to each of which p is not identically of

the form A cos θ + B sin θ, then there exists a function η(θ) with the following

properties:

( a ) p + \η is a supporting function for small | λ | ,

(b) / η dθ = fη cos 2(9 dθ = fη sin 2Θ dθ = 0,

(c) η φ A cos θ + B sin θ*

Let Li α, < 0 < bjf j = 1, 2, , 6, be the disjoint intervals mentioned, and

let p be given by (16). We may assume that a(θ) is continuous at αy and bj.

Define

a (a.) for 0 < θ < α ,

α ( 0 ) for α. < θ < b.,

a(b.) for b. < θ < 2π.

while outside (0, 2π) we make dβ: periodic. Set

j 3 = Σ λ / i3 ;., where | λ;. | < 1 .

Then CL(Θ) 4- λβ(θ) is nondecreasing if | λ | < 1, as simple computation reveals .

We set

77. = / sin ( 0 - ί ) dβ.(t) and η = 2 ^ λ η..

Then p + kη i s of the form ( 1 6 ) , with α + λ/3 in place of α . In order that r/ have

period 277, and thus that (a) be satisfied, we demand that

(19) Σ λ ; . fsin<9 cί/3yC0) = Σ λ fcosθ dβ.(θ) = 0 .
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To sa t i s fy c o n d i t i o n s ( b ) of t h e lemma, we s e t

(20) Σ λ; Jηj dθ = Σλ ; . Jηj cos 20 dθ = Σ λ J ηέ sin 2(9

Equations (19) and (20) comprise five homogeneous equations in the six un-

knowns λy. They always have a nontrivial solution, which we employ for the con-

struction of β. If λk^ 0, then η is equal in /& to a nonzero multiple of p(θ),

plus sine and cosine terms, and this by hypothesis is not of the form A cos θ +

B sin Q. Thus ( c) is satisfied, and the lemma is proved.

6. The minimax problem. We now restrict our attention to extreme curves, and

seek the maximum m of L2/A. A crude estimate of m can be obtained as follows.

If K is any convex curve of area 1, inscribe in K a triangle Δ of maximum area,

/4(Δ). Then at each vertex of Δ, K must have a supporting line parallel to the

opposite side of Δ, and these three supporting lines form a triangle Δ t . Trans-

form the plane in an area-preserving affine way so that Δ and Δt are carried intov

equilateral triangles Δ ' and ΔJ* and K into K'.- The perimeter L ( Δ ' ) of Δ ' is

given by

L(Δ ' ) = 6

Then

L(K') < L(Δp = 2L(Δ') = l2y/A(Δ')/yβ < 12/^3.

Thus for the transform X Ό f K, we have

L2/A < 48 y/3, and so m < 48 V~3

On the other hand, the equilateral triangle gives

L2/A = 12 V % and so m > 12 yβ.

We now normalize our problem by considering extreme curves of length 1, and

try to minimize the area. By the usual compactness argument ( [ 2 , p . 6 2 ] ) , there

does exist a minimizing curve K. Let p be the supporting function of K. Suppose

there exists a function η(0) satisfying conditions ( a ) , ( b ) of Lemma 2. Con-

sider the area A(\) of the extreme curve, of unit length, whose supporting func-

tion is p + λη. We have
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( 2 1 ) 2A(λ) = J\{p + λη)2 - ( p ' + λ r , ' ) 2 ! dθ

= 2/1(0) + 2λ f{pη - P y ) dθ + λ2 f{η2 - η'2) dθ.

Because of the extreme nature of K9 the term f(pη — p'η') dθ = 0. Because of

conditions ( b ) of Lemma 2, the Fourier series of η will be as follows.

η = aχ cos θ + ^ sin (9 + ^ ( α c o s / # + &• sin / # ) >
3

and by Parseval's relation,

+ έ

Similarly (77' being bounded),

— Ϊη'2

π J
b2)

and so

(22) J { η 2 - η ' 2 ) d θ = π £ ( I - / 2 ) ( o 2

+ fc
2 ) .

3

Since /l(λ) > ^ (0), we see from (21) and (22) that α; = bj = 0 for 7 > 2, so that

η^at cos # + & ! sin (9. Thus it is not possible to satisfy ( a ) , (b), and (c)

simultaneously.

Now if K is a polygon, p is piecewise of the form A cos θ + B sin θ, and con-

versely. If K is not a polygon it is clear that one can find as many intervals as

desired in each of which p is not of that form, and Lemma 2 applies. Lemma 2

also applies if K is a polygon of six or more sides. Thus it is not possible for

K to be other than a polygon of five or fewer sides.

It appears very likely that K is an equilateral triangle and that m = 12 yHI.

To eliminate the cases of four and five sides is just a problem in the calculus,

but possibly a very difficult one. In these cases there are not enough sides to

construct the variations used above, which consist of sliding sides in and out

parallel to themselves, so if a variational method is to be used, a different kind

of variation, involving changing the angles, must be found.
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AN ISOPERIMETRIC MINIMAX

WILLIAM GUSTIN

Introduction. In the preceding paper J. W. Green considers for a given

convex body K in the euclidean plane the minimum of the isoperimetric ratio r

(ratio of squared perimeter I2 to area a) taken over all affine transforms k of K.

He then investigates the maximum value taken over all K of this minimum ratio,

shows by variational methods that such a maximum is attained by some polygon

of five or fewer sides, and conjectures that it is, in fact, attained by a triangle

with 12γ3, the isoperimetric ratio of an equilateral triangle, as the minimax

ratio. I shall prove this conjecture directly by refining an estimation used by

Green, the precise statement of results being as follows:

I. Let K be an nontriangular plane convex body; there then exists an affine

transform k of K with r(k) < 1 2 \ J Ί Ϊ .

II. L e t T be a nonequilateral triangle-, then r ( T ) >

Before taking up the proof of these results we dispose of a lemma.

III. Let k be a possibly degenerate convex body with s C k C t, wherein t

is an equilateral triangle, and s a side of t; there then exists a number x with

0 < x < 1 such that

^ V 3 ) l(t)

a ( k ) > x a ( ί ) ,

s i m u l t a n e o u s e q u a l i t y o c c u r r i n g if a n d o n l y if e i t h e r x = 0 9 k = s o r x — 1 , k = L

Proof of III. Let p be that supporting strip of k parallel to the line-seg-

ment s; and let x be the ratio of the width of p to the width or altitude of ί. Thus

0 < x < 1, with x — 0 or x — 1 according as k — s or k — t. Choose a point at which

k touches the side of p opposite 5, and define k* to be the triangle with this

point as apex and s as base. Define k to be the trapezoid formed by intersection

of p and ί. Clearly s C ^ C K ^ C ί ; and k^= k = k* if and only if k = s or k = t.

Received October 16, 1952.
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Since k D k*9 it follows that a(k) 2 α (^*)> with equality if and only if k = k*.

And since k C k*, it follows that l{k) <;/(&*) with equality if and only if A; = k*.

These inequalities become, upon the easy computation of a(k*) and/(&*), the

asserted inequalities of III.

Proof of I. Let K be the given nontriangular convex body. Since the area

functional is continuous, it easily follows from a compactness argument that a

triangle J of maximal area can he 'inscribed in K. Let the three sides of T be

labelled S( ( i = 1, 2, 3), and let V ι be that vertex of T opposite S;. Because the

area of T is maximal, the line L{ through Vι and parallel to S( is a line of sup*

port of K. The triangle formed by the three lines L{ then circumscribes K and

also T; it is composed of four nonoverlapping congruent triangles T and T} ,

where Tj is labelled so as to have S( as a side. That part K( of K in Γ/is a

possibly degenerate convex body with S; C K; C 7\ . Now any triangle can be af-

finely transformed into any other triangle. In particular, T can be affinely trans-

formed into an equilateral triangle t9 with 7\ going into £;, S/ into s t , K( into &;,

and K into k. Therefore s; C k^ C ίj, and ίj is congruent to ί. According to III,

ratios %ι exist giving inequalities on l(kι) and α(kι). Furthermore, since K and

hence A; is nontriangular, not all X{ = 0 and not all %{ - 1. Therefore 0 < x < 1,

where x = 2^ #j/3. Evidently A: is composed of the four nonoverlapping sets t and

kι in such a way that

a(k) = 2 ^ a(ki) + a( t) > ( 1 + 3 * )

whereupon

r(k) < r(t) = 1 -
1 + 3 %

as was to be shown.

Proof of II. Through II is merely a matter of trigonometry, and very likely

can be verified by exhibiting a neat but perhaps unperspicuous trigonometric i-

dentity, I shall here prove it by the sort of methods used above.

Let T be a nonequilateral triangle. Define S;, Fj, Lj as above. Since T is

nonequilateral, some two of its sides, say Sι and S2, are unequal. Let v3 be that

point on the line L 3 , regarded as a linear mirror, at which vi = Vί is reflected

when viewed from v2 = V2; and let t be the so symmetrized isosceles triangle
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with vertices vι and sides s^. Then the path sι s2 is shorter than S t S 2, so

l(t) < l{ T); and, since both triangles have the same base and altitude, a(t) =

a(T). Therefore r(t) < r ( 7 ) . Consequently if the minimum isoperimetric ratio

among triangles is attained, it is attained by an equilateral triangle only; where-

upon it would follow that r( T) > 12\/~3> a s w a s to be shown. Now all possible

triangle isoperimetric ratios are realized by triangles of fixed perimeter con-

taining a fixed point. By a compactness argument, some such triangle achieves

a maximum area and hence a minimum isoperimetric ratio. This completes the

proof.

INDIANA UNIVERSITY





SOME HAUSDORFF MEANS WHICH EXHIBIT

THE GIBBS' PHENOMENON

A R T H U R E. L I V I N G S T O N

1. Introduction. The regular Hausdorff mean of order n with kernel g (x ) for

the sequence (s^ ) is defined by

[ι
Jo

where g ( x ) is of bounded variation on the interval 0 < % < 1, g ( l ) - g ( 0 ) = l ,

and g ( 0 + ) = g(0). The integral in the definition being a Stieltjes integral, it

is clear that g ( 0 ) may be taken to be zero.

For the sequence

n sin kx

Otto Szasz [ 3 ] has proved the following result: If, as n—»oo, xn—» 0+ and

nxn —4 A < oo, then

where

/ Si(Ax)dg(x),

Γx sin t
5i(*) = / it.

Jo t

He defines the Gibbs' ratio for the kernel g(x) to be

2 z i
F(g) = max — / S i ( / 4 ^ ) J g ( % ) .

Λ > o TT Jo

Received March 14, 1952. The work in this paper was done during the period when
the author held Atomic Energy Commission Predoctoral Fellowship OR-21478.
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If F(g) > 1, then the sequence \hUtg(x)\ exhibits the Gibbs' phenomenon on

the right at x = 0.

It is here proved that (1) if d(x) is a regular Hausdorff step-function kernel

whose points of jump are linearly independent over the rationals, then F(cί) > 1;

(2) if θXx) is regular and has precisely two jumps, then F (θί) > 1. It seems

reasonable that the first result is true without the hypothesis of linear indepen-

dence, but the author has been unable to show this.

The Euler method of summability ( 6 , p), 0 < p < 1, is a regular Hausdorff

method having for its kernel the one-step function ep(x) which vanishes for

0 < x < p, and has the value one for p < x < 1; the method ( e, p ) is ordinarily

denoted by {E, (1 - p )/p ). Clearly,

2
F(ep) = - S i U ) > 1 (0 < p < 1),

77

so that the one-step case of (1) above follows trivially (this was shown by

Sza'sz [2, 3]).

2. Notation. It is convenient to collect here some notations which will be

used throughout this paper.

(a) (λ(x) is a step-function defined as follows:

a(x) = ax = 0 ior 0 < x < β l 9

= afo for βfc. i < x < βk and k = 2, , N,

= 1 for/3/v < x < 1 ,

where a^ ^ α/c + i for k = 1, , N

Γx sin t
( b ) S i U ) = / dt;

Jo t

1 Γx sin t

2 Joo t

2 Γi 2 _ !
(d) / U ) = fa(x) = — / Si (xy )da(y) = — 22

π Jo 77 Λ = 1

where A^ =

(e) F(α) = max fa(x).
x > 0
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It is clear that it is no restriction to assume that all regular step-function

kernels are of the form ( a ) .

3. The zeros of s i(ac). It is well known that s i [ ( 2 n + l)π] > 0 and

si (2^77) < 0 for n = 0, 1, , and that S I ( Λ ) has precisely one zero, call it

zn , in each interval nπ < x < (n+l)π (n = 0, 1, •••)• It is intuitively clear

and easy to prove rigorously that

/ 1 \

\ 2 /

It will be shown in this section that even more is true, namely, that

zn - I n + — 177 I 0 .

The tables [ 4 ] for the sine integral show that

1.9264 < z0 < 1.9265 and 4.893 < zι < 4.894.

It therefore follows that the following statement is true:

THEOREM 3.1. The function s i (%) is positive whenever

- 1.2150 < x - (2/ι + l ) τ τ < - π ,

and is negative whenever

x > 0 and - 1.389 < % - 2 π 7 7 < - 7 7 , ( π = 0, 1, •••).

This result is needed in § 5.

It will now be shown that the zeros modulo π of s i(%) form a strictly de-

creasing sequence with limit π/2 The formal statement i s :

THEOREM 3.2. Let (n + 1/2 + ̂ )77 be the zero of f™ u~ι sin u du in the

interval

nπ<x<{n + ϊ)π (w = 0 , 1 , • ) .

Then the sequence (xn) is strictly decreasing with limit zero.



4 1 0 ARTHUR E. LIVINGSTON

(The first two paragraphs of the following proof are due to Harry Pollard,

the fourth to the referee. Both Pollard and the referee point out that the relation

4 [FUl/FU)] > 0
dx

of the fourth paragraph can be deduced from general theorems on completely

monotonic functions [ 5 , pp. 144, 145, 167] . I. I. Hirschman, Jr., has observed

that the zeros modulo π in the interval 0 < x < oo of J^° g(u) sin u du are mono-

tone decreasing for any g(u) which is completely monotonic on 0 < u < oo).

Proof. Let

F(x) = ί°° e"xu(l + u2yι du for x > 0.
Jo

Then

( 1 ) I u~ι s i n u du = [F (u) c o s u - F'(u) s i n u ] "
Jx

for a > 0. To prove this, let L{x) and R(x) denote, respectively, the left and

right s ides of ( 1 ) . Since L (a) ~ R(a), it is sufficient to show that L'(x) =

R'(x) for x > 0. But this is immediate, for

L ' ( x ) = — x" ι sin x,

R'{x) = -βinx[F(x) + F"(x)] = -sinx ί°° e'xu du.
Jo

Now taking the limit in (1) as a —> oo gives

(2) - / u~ι sin u du = F{x) cos x - F ' ( Λ ) sin x9

Jx

Since F ( Λ ) > 0 and F'{x) < 0, it follows from ( 2 ) that the finite zeros

of J^° u~ι sin u du occur at the points where

F'{χ)
= cot x.

F(x)

Therefore, to complete the proof of the theorem, it is sufficient to show that
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F'(x)/F (x) is strictly increasing to zero as x —»oo.

Employing the usual derivative notation, one has

, x , foe u

ne'xu roc u

ne
M{χ) = χn + l / d u = Γ

Jo l + u2 Jo 1 + U

so that

—\—x)ty\x)—> n\ as x—» oo.

Therefore,

F'(x) Γ x2F'(x) 1
—» 0 a s x —» oo.

All t h a t r e m a i n s to be s h o w n , t h e n , i s t h a t F '(x)/F {x) i s s t r i c t l y i n c r e a s -

ing, and t h i s w i l l follow if

> 0
dx lF{x)

or, equivalently, if

[F'{x)]2 - F(x)F"(x) < 0.

Now

F(x)-2F'(x)y + F"(x)y2 = / ( 1 + y ^ ) 2 ^ > 0 ,
J 2

(x)-2F'(x)y + F"(x)y2 = /
Jo l + u

so that the discriminant of the quadratic expression in γ on the left must be

negative. Since this discriminant is [ F'{x) ] 2 - F (x )F"(x), the proof is

complete.

4. The main theorem. Two lemmas are needed.

LEMMA 4.1. // 0 < a^ < 1 for k - 1, , n, and α p , an, 1 are linearly

independent over the rationals, then, given e > 0, there exist odd positive in-

tegers x9 119 , Im, m < n, and there exist even positive integers Im+ 1 5 , In9

such that 0 < xa^ - 1^ < e for k = 1, , n.

Proof, If Red u denotes the fractional part of u9 then it is known that the
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vectors (Red jaι, ••• , Red jan), j = 0, 1, , are dense in the ^-dimensional

unit-cube [ 1, p. 83]. Hence there is a positive integer j such that

1 /I -ak + e \
— ( 1 - ah ) < Red iair < min , 1 1 (k = 1, , m),
2 2

1 2-ak + e \
- ( 2 - ajr) < Red yα/̂  < min , 1 ] (k = m + 19 , n)

2 \ 2 I

The conclusion of the lemma i s satisfied by taking

x = 2/ + 1, /& = 2 ( α^ - Red yα^) + 1 for Zr = 1, , m ,

and

Ik = 2{jaji - Red yα^ + 1) for k = m + 1, , n.

LEMMA 4.2. Lei a ( # ) 6e defined as in 2 ( a ) . // βl9 ••• , /S^, 1 are linearly

independent over the rationale, then F (&) > 1.

Proof. Let P9 Q be the sets of positive integers k < N for which Aj, > 0,

/1/c < 0, respectively. Then

/(*) = - f Σ + Σ MΛSi(Λ)8Λ).
77 μ e P keQj

By hypothesis, 0 < βk < 1 for A; = 1, , N Therefore, Lemma 4.1, with

6 = 1/2, asserts the existence of a positive x0 and nonnegative integers nk such

that

0 < πx0 βk - ( 2nk + 1) π < - π for k C P

and

0 < πxoβk-2(nk + l)π < - π ίor k C Q.

By Theorem 3.1, si {πx0 βk ) > 0 for A: C P and si ( πx0 βk ) < 0 for k C (λ Re-

calling that £/4^ = 1, one obtains that/(77%O ) > 1, which is sufficient.
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Since

lim Si (Ax) = — π sign x

boundedly, it follows that F (g) > 1 for every regular Hausdorff kernel.

Let now a(x) be a regular /V-jump Hausdorff kernel. It will be shown that

if F (a) - 1, then j8 1 5 , jSjv are linearly dependent over the rationals, and

this will prove:

T H E O R E M 4 . 1 . // d(x) is defined as in 2(a) with βv ••• , /3/v linearly

independent over the rationals ? then F (C() > 1.

Proof. Let β = {β p , /3/v) and r = ( r 1 ? , rN ), r^ rational. Set

| /3 | = max βfc,

and let x be a scalar such that 0 < x < \β\~ι. Let Λ be the zero /V-tuple. The

inner product of /V-tuples A and B is defined in the usual way and is denoted

by (A\B). Let

ax(t) = 1 for xβN < t < 1

and (λx ( ί ) = C((xi) otherwise. Then CX% is also a regular /V-jump Hausdorff

kernel, and F (ax ) = F ( a ) .

Suppose now that F(cχ)= 1. According to Lemma 4.2, there corresponds to

each Λ; in the interval 0 < x < I/3I"1 a n r % φ. Λ and a rational number /?% such

that

ixβ\rx) = R % .

But the available r%s i^% are countable while the permissible x are uncountable.

Hence, there is an uncountable set X of x associated with an r ^ Λ and a ration-

al R. If x, x'CX, then

(x-x')(β\r) = 0.

Taking x Φ x' gives ( / 3 | r ) = 0; that is, β l9 ••• , /3/γ are linearly dependent

over the rat ionals .

5. The two-step case. The theorem to be proved i s :
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THEOREM 5.1. // d(x) is a regular two-jump Hausdorff kernel, then F(QL)> 1.

Proof. If βγ and β2 are linearly independent over the rationals, then Theo-

rem 4.1 gives the result.

If (λ(x) is not an increasing function, then either A i > 1 and A2 < 0 or

Aγ < 0 and A2 > 1. Suppose that it is the first. Recalling that Ax + A2 - 1,

one obtains

fix) = -SiUft) ~-A2[Si(xβι) - Si (*&)].
π π

Since A2 < 0, and Si (77) is the absolute maximum of SΪ(Λ ), it follows that

f(π/βx) > - Si(ιr) > 1.
π

The remaining two-jump kernels are those which are increasing and for

which

βi

with p and q integral and (p, q) - 1. If p and q are odd, there is no problem,

for then f(πq/βχ) > 1. Otherwise, one of p9 q is odd and the other even. To

treat this situation, the following lemma, whose proof offers no difficulty, is

useful:

LEMMA 5.1. Let 0 < bγ < b2 < 1. // lγ and l2 are odd positive integers

such that

\lιb2 - l2bγ\ < - (bί + b2),
π

then there exists a positive number x such that

I xbk - πlk I < e for k = 1, 2.

By Theorem 3.1, the proof of Theorem 5.1 will be complete if a positive

x and odd positive integers lx and I2 exist such that

I xβk - πlk\ < 1.215 for 4 = 1, 2.
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By the above lemma, then, one wishes to find odd positive integers 11 = 2i + 1

and /2 = 2/ + 1 such that

1.215
I Ph - <7̂2 I = I 2pi - 2qj + p - q \ < (p + q).

π

Since p and qr have unlike parity, p + q ^ 3 . It will therefore be sufficient to

find nonnegative integers i and / such that 2pi - 2qj + p - q = 1.

If p — qr =s 1, simply take i — q and j = p.

If p - <7 > 3, then the Diophantine equation

1
pi - qj = - ( l - P + <7)

makes sense and, furthermore, has positive solutions t and .

6. Remark. According to Theorem 3.2, the zeros modulo π of si(x) tend

to πj2 Therefore, the method of proof used in this paper can not be expected

to handle all step-function kernels omitted by Theorem 4.1.
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ON GENERATION OF SOLUTIONS OF THE BIHARMONIC

EQUATION IN THE PLANE BY CONFORMAL MAPPINGS

CHARLES LOEWNER

Introduction. The study of harmonic functions in the plane is essentially

facilitated by the invariance of the Laplace equation

a d2u d2u
V = 0

dx2 dy

under the group of conformal mappings. The transformations leaving the bi-

harmonic equation

, . 4 d4u d4u d4u
(1) V4u Ξ + 2 + = 0

dx4 dx dy2 dγ4

invariant are much more restricted; they only form the group of similarity trans-

formations in the (x, y)-plane. On the other hand, more general transformations

leaving the biharmonic equation invariant may be obtained if u is not treated as

a scalar which does not change its value under the transformations, but trans-

formations of the more general type

%' = φ (x9 γ)

( 2 ) y ' = ψ(x,y)

u' = χ(χ* y)u

are permitted. We assume the functions φ, φ, and y to be four times continuously

differentiable, and X Φ 0. That such nontrivial transformations exist follows

immediately from the well-known representation of a biharmonic function u in

the form

Received June 23, 1952. This paper is a partly simplified version of work done under
sponsorship of the Office of Naval Research. See the Technical Report with the same
title, No. 13, N6ori-106, Task V (NR-043-992), with two notes by G. Szegδ.

Pacific ]. Math. 3 (1953), 417-436
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(3) u = hι(x, y)r2 + h2(x, y ) ,

with suitable harmonic functions hγ and h2, and r2 = x2 + y 2 . If a transformation

by reciprocal radii is applied, which in polar coordinates is given by

(4a)

and u is transformed according to the formula

(4b)

then u' becomes

(3a)

u = — u,

:'U',y')r' 2 ,

with /^ ' and A2 ' being the harmonic functions of x% y' obtained from ht and

h2 by the transformation (4a). This shows that u' is biharmonic in x* and y ' .

By combination of the transformation obtained with arbitrary similarities,

more general transformation of type (2) may be obtained. In order to write them

in a simple way we set

x + z * - x' + iy

One sees easily that the composed transformations can be written in one of the

following forms:

(5')

(5")

z '

z'

<Xz

yz

α ?

yz

+ β

+ 8'

+ β

+ S '

U

- k

dz'

dz

dz'

dz

u;

The constants Oί, β, y, δ , k are only subjected to the conditions

0, k έ 0, k real.
aβ

yδ

Each Moebius transformation in the (x9 y )-plane may, therefore, be extended to

a transformation in the {x9 y9 u)-space leaving the biharmonic equation in-

variant. The extended transformations are analogues of those introduced by
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W. Thomson in his study of the Laplace equation in 3-space.

In the first section of this paper we shall show that formulas ( 5 ' ) and ( 5 " )

represent the only transformations of type (2) leaving the biharmonic equation

invariant. They form a group M in the (x9 y, u )-space depending on seven real

parameters.

The introduction of M has the advantage that if a problem concerning the

biharmonic equation is solved for a domain B of the (x9 y)-plane, it can also

be solved for any domain B' obtained from B by a Moebius transformation. A

further advantage consists in the possibility of introducing domains having

z — oo in the interior or on the boundary. All definitions regarding the behavior

of a biharmonic function u at z = oo are obtained by using one of the transfor-

mations (5) transforming 2=00 into a finite point z*'— a'', and considering the

transformed biharmonic function u' at z*' = α ' . For example, u is called regular

at z = 00 if u' is regular at z ' = α ' . Also the concept of a biharmonic Green's

function Γ {x9 y) with the boundary conditions u — 0 and du/dn~0 requiring

that u and the normal derivative are zero on the boundary (Green's function of

the clamped plate ) may be extended to the case where the domain considered

contains z — 00 in its interior, and oc should be the pole of Γ. The singular

part of Γ, belonging to a finite pole α', is given by r ' 2 log r% r' denoting the

distance of z'*=.χ'+iy* from a'. By using a transformation (5) transforming

α ' into infinity, one obtains a biharmonic function satisfying the same boundary

conditions in the transformed domain whose singular part at z = 00 is — c log r,

with a positive constant c, and r representing the distance of z from z - 0 or

from any other fixed point of the z-plane. In order to make the definition definite

we set c = 1.

This extension of the concept of Green's function will be utilized in §2 ,

which is concerned with a question of Hadamard [3] regarding the sign of the

Green's function. He asked whether it may oscillate in sign. R. J. Duffin [ l ]

indicated that the answer is affirmative by constructing solutions of the bi-

harmonic Poisson equation

in an infinite straight strip satisfying the boundary conditions

du
u = 0, — = 0

an

which oscillate in sign although p is positive. In §2 simple examples of domains
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bounded by analytic Jordan curves are constructed in which Green's function

for suitable choice of the pole may oscillate in sign. Other examples were found

by G. Szego [4] and P. R. Garabedian [ 2 ] .

There are indications that in the exterior of a convex curve with the pole at

infinity a change of the sign of the Green's function cannot occur. In the last

part of § 2 we prove only that this conjecture is equivalent to positivity of the

harmonic function V Γ.

The fact that the biharmonic equation is absolutely invariant only under the

group of similarities does not exclude the possibility that for an individual bi-

harmonic function u other conformal mappings exist which transform u into a new

biharmonic function. Indeed, we shall show in § 1 that in general there exists a

one-parameter family of conformal mappings which are not similarities and which

transform u into biharmonic functions. In particular one can construct in this

way from one Green's function a one-parameter family of Green's functions of

nonsimilar domains. (Only the case of a circle has to be excluded here.) This

also will be discussed in § 1 and applied in § 2.

1. Transformations of biharmonic functions. We shall prove that the trans-

formations of type (2) leaving the biharmonic equation invariant form the group

M described by equations (5) . All transformations are assumed to be one-to-one

and four times continuously differentiate, and the Jacobian shall never vanish.

We make use of the well-known fact that the biharmonic equation is the

Euler-Lagrange equation of the variational problem

( 6 ) δ ff (V2u)2 dx dy = 0.

If the integral of ( 6 ) is subjected to a transformation of type ( 2 ) , an integral in

the (%' y')-plane must be obtained whose Euler-Lagrange equation must again

be the biharmonic equation

v'V=o.

The new integrand is a quadratic expression in the second derivatives of u' with

respect t o x ' and y'9 and the second degree terms are evidently given by

(7) λ
X2

xy\Ud2u' \(dx'\2 (d*'\]

)2u' \dx' dy' dx' dy'Λ d u'

'dy' L dx dx dy dy J Λy'2
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/ being the Jacobian of the transformation from the (x% y ')-plane into the

(x9 y)-plane.

Already from the expression ( 7 ) one can derive the fourth order terms of the

Euler-Lagrange equation, which by assumption is again the biharmonic equation.

This leads by a simple computation to the equations

dy I \dx I \ dy

dx' dy' dx' dy'
— + — = 0,

dx dx dy dy

and we see that the mapping must be conformal.

In order to obtain further conditions on the transformation, we specialize u

to an arbitrary harmonic function of x and y. Since it is then also a harmonic

function of x' and y', we have

π / 2 . π /2 f dy du dy du \

I (9%' (9%' d y ' d y ' J

and further,

dx dx dy dy

d\ d2u d\ d2uf dzγ dλu d\ dλu dzy dzu 1
+ 4 £ + 2 2 — + .

l a % ' 2 a,; ' 2 dx'dy' dx'dy' dy'* <9y'2 J

/ 2/ 2

Since V w = 0 represents the only relation between the derivatives oί u'

with respect to x* and y' up to the second order, we may conclude.from ( 9 " ) that

d\ d2χ d2χ

do) — - = —(L , — i — = o.

dx'2 dy'2 dx'dy'

The only functions satisfying these conditions are those of the form

(11') x = co(x'2 + y'2) + 2cιX'+ 2 c 2 y ' + c 3

( c O s Cι j c2> c3 arbitrary constants ) .
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Application of the same considerations to the inverse transformation leads to a

similar formula for the reciprocal of y:

(11") 1 = co'(x2 + y2) + 2c/x + 2c 2 'y + c3 ' ,
X

with suitable constants c o ' $ cx'9 c2'9 c 3 ' . Consider now first the case of a

nonconstant y . According to (110 and (11") , the level lines of y are in both

planes systems of concentric circles each of which may degenerate into a sys-

tem of parallel lines. But a conformal mapping transforming such systems into

each other must be, as is well known, a proper or improper Moebius transforma-

tion.

In the case of a constant y we may proceed as follows: We compose the

transformation with one of the transformations (5) having a nonconstant y , and

apply to the composed transformation the previous result saying that now the

(x, y )-plane is subject to a Moebius transformation. Using the group property

of the Moebius transformation, we conclude that also the original transformation

of the (x, y\-plane is a Moebius transformation.

We now have to investigate how the coefficients C{ in y depend on the

Moebius transformation to which the (x, y)-plane is subjected. Since we already

know the transformations (5), it is sufficient to consider only the identity

transformation. We know already that y must have the form

X = co(x2 + y2) + 2cxx + 2c2y + c 3 ,

and multiplication of any biharmonic function u by y must again lead to a bi-

harmonic function. Setting

u = x2 + y2

gives immediately the result c0 = 0. Setting further

/ 0 9\ / 2 2\

u = x\x + y ) or u = y\x + y )

gives then Cγ — c2 — 0, and we see that y must be a constant. We have thus

arrived at:

THEOREM 1. The most general transformations of type (2) which leave the

biharmonic equation invariant are represented by formulas (5 7 ) and ( 5 " )

As was already mentioned in the introduction, there exist in general for an



SOLUTIONS OF THE BIHARMONIC EQUATION BY CONFORMAL MAPPINGS 4 2 3

individual biharmonic function u (x9 γ) conformal mappings which are not simi-

larities, and which transform u again into a biharmonic function. In order to

derive them we make use of the well-known Goursat representation of a bi-

harmonic function,

(12) u = K { 7 p U ) + q(z)\,

where p(z) and q (z) are analytic functions of z = x + iy, and the symbol 3ί in-

dicates the real part of the quantity in parentheses. The representation is

unique modulo a change of p and q into

(13) p = p + a + icz9 q — q — az + id

(a9 c, d constants, c and d rea l ) .

We write further the Laplacian in the more convenient form

2
(14) V a = 4

d z d z

Without loss of generality we may restrict our attention to proper conformal

mapping. Let

(15) z ' = / U )

be such a mapping transforming u into a biharmonic function in the (z'= ac' + iy')-

plane. We have

dz^ dz_ _ idp_ dz_ £^__\ f\^P_ £L\
V dz' dΊ' " \dz dz' dΊ'\~ Adz' d~z~Λ

d2u _ d2u dz dz idp dz £^\ f\^P £L

dz'dV " dzdV

and

dz

and, therefore,

%£\

f d2p d*7\
(16) Si - = 0.

Ir fz ' 2 c/S"'2-1



424 CHARLES LOEWNER

Excluding now the trivial case of linear mappings characterized by

d2z
0,

dz'2

we conclude from (16) that

(17) = ic (c a real constant),

dz'2 dz'2

and hence

(18) p - icz + (X z ' + /3 (&,j3 constants ) .

We may exclude also the possibility (X = 0, since then p = icz + β and according

to (12) our function u is harmonic. But in this case (15) may be any conformal

mapping. If Cί Φ 0 we have

( 1 9 ) z' = a(p — icz ) + b (a9 b? c constants , a Φ 0, c r e a l ) .

We have thus arrived at:

THEOREM 2°, A proper conformal mapping transforming a given biharmonic

but not harmonic function u with the Goursat representation (12) again into a

biharmonic function is either a similarity or one of the transformations (19).

REMARK 1. For the functions u with constant Laplacian V u, the mappings

(19) coincide with the similarity mappings, and these are the only biharmonic

functions of this type.

REMARK 2. By combination of the transformations (19) with transformations

of type (5), more general mappings may be obtained transforming u into a bi-

harmonic function.

2. A question of Hadamard regarding the sign of Green's function of the

clamped plate. As was already discussed in the introduction, Hadamard asked

whether Green's function of the clamped plate may change its sign. We shall

construct here very elementary examples showing that this is the case. In order

not to interrupt further considerations, we shall first derive several simple

lemmas which will be used in our constructions.

Consider first a finite domain B, and let Γ ( z l s z2 ) be its biharmonic
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Green's function now considered as function of a pair of points z± and z2 in B.

Because of the well-known symmetry

z2 ) =

it is irrelevant which of the points is considered as pole. We have:

LEMMA 1. For any choice of m points z l y z2, , zm in B, the determinant

(20)

satisfies

D =

ϊ9 z2 ) , • • • , Γ(zl9

(z29 , z2), , zm)

), Γ ( z m , z 2 ) ,

D > 0 .

This is an immediate consequence of the well-known fact that Γ ( z l s z2 )

represents a positive definite kernel.

In particular, Γ ( α s a) >̂  0; but the equality sign cannot hold since then

the inequality

Γ(a9 a) Γ(a> z)

Γ(z,a) Γ U , z)

= - Γ 2 ( α s z) > 0

would lead to Γ (α> z) = 0 for all 2: in B, which is evidently impossible. We

have, therefore:

LEMMA 2. For all points z in B9 we have

(21) Γ ( z , z) > 0.

We assume now 5 to contain 00 in its interior, and state, for its Green's

function with the pole at infinity, which we will call Γ (z ):

XIt is, for example, sufficient to assume the boundary of B to be three times con-
tinuously differentiable to ensure the existence of Γ.

2Hadamard ascribes the first proof of inequality (21) to M. Boggio. His formula for
the variation of Γ ( z , 2) on p. 28 of the already quoted paper also implicitly contains
a proof.
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LEMMA 3. Γ ( z ) can be represented in the neighborhood of z — oo in the

form

(22) Γ ( z ) = - l o g r + aor
2 + 2a xx + 2a2y + Γι(z)

(r = \z\9 α 0 > ai9 a2 constants ) ,

with a remainder Γ t bounded in the neighborhood of z = oo, and the constant

a0 is positive.

Proof. If we apply to Γ(z) the transformation (5 ' ) corresponding t o z ' = 1/z,

Γ ( z ) changes into Green's function Γ ' ( z ' ) of the transformed domain B' with

the pole in z ' = 0. But for Γ ' we have

Γ ' ( z ' ) = r / 2 l o g r ' + α 0 + 2aιX' + 2027' + . . . ,

the dots indicating quantities of at least second order. The constant a0 is

positive by Lemma 2. Transforming back, we obtain the contents of Lemma 3.

We introduce now the Goursat representation of Γ, writing it in the form

(23) Γ(z) = SίiFpU)} - h,

where p(z) is analytic and h harmonic.3 From Lemma 3 we can easily con-

clude that the free constants in the choice of p and h can be selected so that

the following conditions are satisfied:

( a ) The function p(z) has at infinity a simple pole with a positive p'(oo).

(b) The function h differs from log r by a harmonic function in B, regular

also at infinity.

By the c o n d i t i o n s ( a ) and ( b ) , the f u n c t i o n s p a n d h a r e u n i q u e l y deter-

m i n e d .

We s h a l l now d e r i v e properties of p(z) characterizing it independently of h.

We use the analytic function

dh
w(z) = 2 — .

dz

8 W e a s s u m e f rom n o w o n t h a t B i s s i m p l y c o n n e c t e d , i n w h i c h c a s e ρ{z) i s a l w a y s

s i n g l e - v a l u e d .



SOLUΉONS OF THE BIHARMONIC EQUATION BY CONFORMAL MAPPINGS 4 2 7

Its expansion at infinity starts with the term 1/z. From (23) and the boundary

conditions satisfied by Γ we conclude that, on the boundary of B,

dΓ 1
(24 0 = = -

dz 2

dp ) dh

dz 1 dz

This equation evidently completely expresses the boundary conditions on Γ

modulo an additive constant. We have proved, therefore:

LEMMA 4 . The function p(z) is characterized by the two properties:

( a ) It has at infinity a simple pole with a positive derivative p ' (oo).

(b) The function

dp _

dz

coincides on the boundary of B with a function which is analytic in B and whose

expansion at oo starts with 1/z.

We know from Theorem 2 that p(z ) maps our domain B onto a domain Bγ (not

necessarily schlicht) with preservation of the Green's function with pole at

infinity. In order to bring Lemma 4 into a form in which B and Bx play a sym-

metric role? we introduce the function z = g (ζ) which maps the exterior of the

unit circle | ζ\ - 1 onto B so that

(25) g(cc) = oo, g'(oo) > 0.

In a similar way,

/ ( £ ) = p(g(ζ))

maps the exterior of | ζ\ = 1 onto the domain Bγ, and we have again

(25) /(oc) = oo, / '(oc) > 0.

Lemma 4 can now be expressed by saying that

df dζ

Ίζlz"

coincides on | ζ\ = 1 with the boundary values of a function analytic in | ζ\ > 1
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whose Taylor expansion at infinity starts with the term (g'(oc)ζ)~ l Multi-

plication with dz/dζ leads, therefore, to:

LEMMA 5. The function f(ζ) is characterized by the following properties :

(a ) It is analytic in \ ζ\ > 1 and has at infinity a simple pole with /'(oo) > 0.

(b) The function

< » ,

coincides on \ζ\ — 1 with the boundary values of a function ω(ζ) analytic in

I ζ\ > 1 whose expansion at infinity starts with the term 1/ζ.

As soon as fiζ) is determined, it is easy to construct the Green's function

by using equation (24). It gives, after transformation into the £-plane,

dh
(27) 2—=ω(ζ) ( | £ I > 1 ) .

dζ

An integration of cΰ(ζ) determines h modulo an additive constant which is to be

adjusted to the boundary condition Γ = 0.

Lemma 5 will now be utilized to find simple examples of domains whose

Green's function oscillates in sign. The simplest choice of g(ζ) one might try

would be

ζ+— ( | j 8 i | < l ) ,

which maps | ζ\ > 1 onto the exterior of an ellipse or, in the limiting case

I βi I = 1» onto a slit domain. In this case, one verifies easily that

and a simple computation gives, for Γ written as function of ζ, the expression

(29) Γ= \ L2 1 - 1 - 1 + β t β λ - l o g p , ( | C | = p , p > 1 ) .
2(l + βιβi) \ p 2 J

But one verifies easily that Γ is here always positive. We try, therefore,
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for g(ζ) an expression4

βι β2
(30) g(ζ) = ζ+—+ —

and shall show that for suitable choice of the constants β{ and β2 we obtain a

schlieht map of | ζ\ >_ 1 on a domain B with a Green's function whose sign

oscillates.

First we shall show that the corresponding f(ζ) is of the form

f ex! α 2 1
( 3 D / ( £ ) = c\ζ+ α 0 + -T- + — h * > 0.

In order to verify this we introduce the analytic functions

(32') ^

(32") 7(0- c\^+a0+aι ζ+ a

which coincide on | ζ\ = 1 with g(ζ) and f(ζ)9 respectively. According to

Lemma 5, we have to show that the constants c? C(o, Cί1? α 2 can be chosen in

such a way that

(33) ω ( ζ ) f{ζ)+g(ζ)

has an expansion in 1/ζ starting with the term \/ζ. We have

(34) +0o+ oΓi ζ+ΰ2 j{ φ

r α i 2 α 2 i

\1~F-T\
or

4 N . Mouskhelichvili gave a general procedure telling how to construct Green's func
tion of a domain whose mapping function g( ζ) is rational. We have to compute it in case
(30) in all details. See [ 4 ] . N. Mouskhelichvili, Application des integrates analogues c
celles de Cauchy a quelques probleme de la physique mathematique, Tiflis, 1922.
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(34') ω(ζ) = c ί(cΓ2 + β~2)ζ2 + ( ά ! + ^ ) C ~ (oΓ2 β t + ft α t -oΓ 0 )

26Γ2 /32 + 2/32 α 2 + αΊ β t + ft α t - 2

_ + . . .

The conditions on f{ζ) are, therefore, satisfied if

(35') «! + A = 0, α 2 + /32 = 0, α 0 = aι β2 + ft α 2 ,

and

c(2όΓ2 β 2 + 2/3 2 α 2 + "ά! βt + βΊ αi - 2) = - 1,

which gives

( 3 5 ) α i = - j8 l f α 2 = - / 3 2 , α 0 = - 2ft β 2 ,

and

c"1 = 2(1 + i3 t ΪOΊ + 2/S2 )8"2).

Our function fiζ) is, therefore, given by

( 3 6 ) / ( O J 2 U 3 f t 2 β β ) J \ ζ 2 β β\ζ-2βι β2-— - — J.

In order to obtain Γ, we have to compute, according to formula (23), the real

part of /( ζ) g (ζ) Using the expression (36), we obtain

- 2 ft /32 £ + A = - A - + 02 =- - 2 - = - - β 2 -

A 0i A

and
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βlβi β2β2

(37) c"1 mf(ζ)giζ)\ =
2 P4

- 2
β2β2 βιβ2β2

ζ2 ζζ2

We substitute further into the formula (34) for ω(ζ) the expressions (35) for

Cί0, CCi, OC2, and obtain

(38') U -2β1β2-βιζ-β2ζ
2

βι

2

+ c β2ζ
2

βι 2/32

1 + — +

C ζ3

or, after a simple computation,

(38) ω(ζ) = — + c
iβyβ2β2

In order to obtain h we may? according to (27) ? integrate ω(ζ):

(39) fω(ζ)dζ= logζ~2c
β2β2+2βιβ2 βιβ2β2

ζ
+ C (C a c o n s t a n t ) .

Since the rea l part of ( 3 9 ) must coincide on | ζ\ - 1 with $l\ f(ζ)g(ζ)\9 we

obtain, by comparison of ( 3 7 ) and ( 3 9 ) ,

(40') dl -

(40)
βιβi+2β2β2)

From the foregoing formulas we finally obtain, by substitution into ( 2 3 ) , the

following expression for Γ ( ^ ) in terms of ζ:
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(41)
,/3, β2β2

P2 P 4

-231 βlβ2ζ~
ζ P2C

with

(42)

- - l o g p - ( l - β ι β ι - β2β2),
c

c~ι = 2 ( 1 + βιβί + 2β2β2).

We can now show that the constants βι and β2 can be chosen in such a way

that g(ζ) represents a schlicht mapping of | ζ\ > 1, and still Γ(£) oscillates

in sign. Evidently we obtain an oscillating Γ if the normal derivative

on the unit circle | ζ\ = 1 becomes negative in some of its points. But we have,

from (41),

\do2l ί β ι - 20β2β2

-2ϊ ί
4/31j82

ζ ζ ζ ζ
ι β ι + 2β2β2),

or

(43)
'(-)

= 4 - - 16 β2 β2 - 16 S?

This expression becomes negative on the unit circle if

1 6 | / 3 , / 3 2 | > 4 - 4/3 1 /3 1 - 16/32

(44) i l l + 2 | / 3 2 | > 1 .
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The function g(ζ) represents a schlicht mapping of the exterior of the unit

circle if the difference quotient

giζ,)- g(ζ2)

has positive real part there. This is the case if

\βι\ + 2\β2\ < 1 .

But even the exterior of slightly smaller circle is mapped schlicht under this

condition if only the cases \βι + 2 \ β2 | = 1> and β and β of equal argu-

ment, are excluded. If, therefore, | / 3 ι | + 2 | j 8 2 | = l, and β* and β2

2 have dif-

ferent arguments, all sufficiently close values βi9 β2 give schlicht mappings

°f I C\ > 1> a n ( ^ c a n be chosen so that (44) is satisfied. We thus obtain ex-

amples of domains where Γ oscillates in sign.

We conjecture that, for the exterior of a convex curve and pole at infinity,

Γ is positive. We shall support this conjecture by proving:

THEOREM 3. For the exterior of a convex curve and pole at infinity the
2

positivity of Γ is equivalent to the positivity o/V Γ

This is important because V Γ is a harmonic function.

First we shall prove that the positivity of Γ implies the positivity of V Γ.

Assume first that the boundary curve is analytic. Then Γ can be analytically

continued beyond the boundary curve, and we can speak of derivatives of higher

order on the curve itself. From the positivity of Γ and the boundary condition

it follows immediately that the normal derivative of second order on the boundary

satisfies

d2r
— > o.
dn2 "

But the second derivative in the tangential direction is zero again on account

of the boundary conditions. We have, therefore, V Γ > 0 on the boundary.

Since V Γ is harmonic and, on account of Lemma 3,

2

the Laplacian V Γ is positive in the whole domain.
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The condition of analyticity of the boundary curve now can easily be dropped

by a limiting process.
2

We shall now prove the converse: V Γ > 0 implies Γ > 0. For the proof we

need some preliminary considerations regarding the following question: Which

differential operators of second order,

d2u d2u d2u
(45) v(x9 y) = an(x9 y) + 2a Ax9 y) - — — + a22(x, γ)

du du
+ 2aι(x9 y) + 2a2(x, y) + a3(x9 y)u,

dx dy

transform an arbitrary biharmonic function u(x9 y) into a harmonic function

v(x, y)? The answer is given in:

X

LEMMA 6. The most general operator of the required type is of the form

(46) v(x9

dm(x, y) du dm(x9 y) du

+
7 2

m u,
dx dx dy dy

where the function m(x, y) is of the form

(47) m{xy y) - cQ(x2 + y2 ) + 2c γx + 2c2y + c3 ( c 0 > c l s c29 c3 constants ).

Proof. We form

2 dVu dVu dSJu
(48 ) V v = a i i + 2 α l 2 + α 2 2 + terms of lower order.

dx2 dxdy dy2

Since the only relation between the derivatives of u up to the fourth order is

given by V u = 0, we see already from (48') that

(49') aί2 = 0, axι = α 2 2 .

Calling α u = α 2 2 = m, we can write (45) in the form

2 du du
(45') v = mV u + 2ax — + 2a2 + a3u.

dx dy

From (45') we obtain
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dm dV u dm dV u

dx dx dy dy
+ a2h——+ a2 r

dx dy

+ terms of lower order.

From (48") we conclude that

(49") o,

and (45') can be rewritten as

dm

77'
dm

dy

(45")
2 I dm du dm du

v - m V u - 2 I — — + —

I dx dx dy dy

From this equation we derive

(48'") V\; = V2mV2u-4
d2m d2u d2m d2u d2m d2u

+.2 +

dx
2
 dx

2
 dxdy dxdy dy

2
 dy

2

+ α3 V u + term of lower order ,

which gives

(49")
d2 d2m d2m

dx2 dy2 dxdJ
- 0, α 3 = V m,

and we obtain (45) in the form (46) with m given by an expression (47). We

verify easily that for any such choice of m the Laplacian satisfies

V2v = 0.

Let B now be the exterior of a closed convex curve, and Γ its Green's

function with the singular point at infinity, and assume that V Γ > 0 in B.

Take a straight line which does not penetrate into the interior of the boundary

curve. By change of the coordinate system we can make this line the y-axis,

so that B lies to its left. We now apply Theorem 5 with the special choice

m — x, and obtain that

(50) v = %V2Γ - 2 —
dx
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is harmonic in B. On the boundary of B,

(51) — = 0, V2Γ > 0
dx

the latter inequality being a consequence of the assumption that V Γ > 0 in B.

Since our domain lies completely in the half-plane x < 0, we conclude from (51)

that v has nonpositive boundary values. From the behavior of Γ at z - oo ex-

pressed by Lemma 2, we see that v is regular at infinity. From the extremum

properties of harmonic functions we now conclude that i; < 0 in the whole B,

In particular, on the y-axis where x = 0 we obtain the result

(52) > 0.
dx -

Let I now be a half line originating in a point C of the boundary curve of

B orthogonal to the tangent line at C. Laying the y-axis perpendicular to I

through any of its points, we see that (52) holds in all points of /; and, since

Γ = 0 at C, we arrive at the inequality Γ >_ 0 along the whole I. But the equality

cannot hold, for otherwise Γ would be zero along a whole segment of / and,

since it is analytic, along the whole I. This contradicts Lemma 2, which im-

plies that Γ—» oo as z —»oo. The whole domain B can be covered with half

lines having the properties of U The inequality Γ > 0 holds, therefore, in the

whole B.
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REMARK ON THE PRECEDING PAPER OF CHARLES LOEWNER

G. SZEGO

1. Introduction. In the preceding paper, Charles Loewner constructed certain

Jordan curves with the property that the clamped plates bounded by such Jordan

curves have an oscillating Green's function. The question concerning the sign

of the Green's function has been raised by J. Hadamard, and this problem has

been pursued recently by R. J. Duffin and P. R. Garabedian. The construction

of Loewner is based on a method due to N. Muskhelichvili using appropriate

conformal mappings. x

The purpose of the present note is to construct such Jordan curves in an

elementary manner. For the sake of completeness we repeat a few definitions to

be found in the preceding paper.

A function of u(x, y) defined in a domain g and having therein continuous

partial derivatives of the fourth order is called a biharmonic function in g if it

satisfies the biharmonic equation

d4u d4u d4u
(1) V 4 u = V2 V2 u = + 2 + = 0.

dx4 dχ2dy2 dy4

Let g be a connected domain bounded by a finite number of analytic arcs.

Let q be a fixed point in g. The Green's function Γ ( p ) = Γ ( p ; q) of g with re-

spect to q is a function of the variable point p = p{x9 y) satisfying the follow-

ing conditions:

( a ) Γ is a biharmonic function of p except at the singular point q. Denoting

by r the distance of p from q, we have

(2) Γ = r2 logr + fc,

where k(p) = k(x, y) is biharmonic in g without exception.

(b) On the boundary of g we have the conditions:

1 See the References given in the paper of Loewner.

Received June 23, 1952.

Pacific J. Math. 3 (1953), 437-446
437
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dΓ
(3) Γ = — = 0.

dn

A function u(x9 y) biharmonic in the neighborhood of x=09 y - 0 can be

written in the form:

(4) u(χ, y) = U 2 + y 2 ) uχ(χ, y) + u2(χ, y ) ,

where ux and u2 are harmonic functions in the neighborhood of x = y = 0.

The previous concepts can be extended to infinite domains by using an ana-

logue of Thomson's transformation. As is obvious from the representation (4),

we have:

Let u{x9 y) ~ u(r, φ) be harmonic in the neighborhood of the origin r = 0

(r, φ are polar coordinates). We apply the inversion

x = x\x'2 + y'2)-\ y = y\x'2 + y ' 2 Y \

(5) r-(r')-1 - '

The function

(6) V(x',y') = ( r ' ) 2 u(x9 y)

will be then a biharmonic function in the neighborhood of x' = oo, y ' = oo.

A function biharmonic in the neighborhood of the origin can be presented as

a linear combination of the basic biharmonic functions

rn cos nφ9 rn sin nφ9

(7)
rn+2 cos nφ, rn 2 sin nφ9 n = 0, 1, 2, ,

to which r2 log r has to be added if the function is singular at the origin (as for

instance is the case for the Green's function with respect to the origin).

A function biharmonic in the neighborhood of x - oo, y — oo, can be repre-

sented as a linear combination of the basic biharmonic functions

r~n cos nφ9 r~n sin nφ9

( 8)
r2~n cos nφ9 r2~n sin nφ9 n = 0, 1, 2, ,

to which log r has to be added if the function is singular at infinity.

By use of the inversion (5) , (6) there is no difficulty in defining the Green's

function of an infinite domain with singular point at infinity provided that this

point is, an interior point of the domain.
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2. Results. In order to prepare the construction announced above, we con-

sider the infinite plane, which we interpret as the complex z-plane, z = x 4- iy -

re ι *, cut along the following circular arc of the unity circle:

(1) r = i , 7 7 - α < g 0 < 7 7 + α .

Here OL is given, 0 < Cί < π We map this infinite slit domain onto the exterior of

the unit circle of the £-plane, ζ-p e^, in such a way that z = oo and ζ- oo cor-

respond to each other. Furthermore, we assume that dz/dζ is positive at z - ζ =

oo. This mapping has the following form:

(2)
ζ-λ

Here λ is an appropriate function of (X.

First we note that the real point z — — 1 of the slit corresponds to ζ - 1 and

ζ = — 1. Now let λ = cos φ , 0 < φ < π/2; since

, x dz l

U ) - ζ ' λ -

we see that the points ζ- e ± l ^o correspond to the end-points z = —e ι a of the

slit. More precisely, elv^o corresponds to eι^rr~a' = — e~ιa. As £ = e1^ describes

the unit circle in the positive sense, z surrounds the circular slit; the arc ~φQ <

φ < φ corresponds to the inner ( concave) side of the slit, and the remaining arc

to the outer (convex) side of it. In particular, ζ-1 and ζ- - 1 are transformed

into the point z = — 1 on the concave and convex border of the slit, respectively.

Inserting ζ= eιΨo in (2), we find that

e °{cosφ0 - e ° - 1) e2t^o(cos φ0 - e * °) 2iψQ _ α

< _ # = β = — β ,

e* ° - cos φQ e ° - cos ^ Q

so that Ίφ - π - Oί; hence

(4) λ = sin ( α / 2 ) .

We denote the image of the circle | ζ\ =/?,/?> 1, by CR. This is an analytic

Jordan curve.

The principal results of this note are the following:

I. Let Γ ( p ) be the Green's function of the infinite slit domain of the z-plane
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bounded by the circular arc (1) , having at z = oo its singular point. This function

changes its sign in the slit domain just defined.

II. Let Tip) be the Green's function of the infinite domain outside of the

curve CR9 R > 1, having at z = ooits singular point. This function will change its

sign in the infinite domain outside of CR provided R is sufficiently near to 1.

From the last example it is easy to derive an example of the kind announced

in the introduction: we have to apply an inversion to the curve CR with respect

to any fixed interior point. Here we must use the results of Chapter 1.

3. Circular slit. We seek the Green's function Tip) of the circular slit do-

main in the following form:

( 1 ) Tip) = log- + Alp--) cosφ + fip, φ ) + ( r 2 - l ) g(p, φ ) .
p \ pi

Here A is a constant, and /(p, φ) and g(p, φ) are harmonic functions regular

for p > 1, including p = oo. The point p is represented by the complex number

z = reiζ^ defined in 2. The relation between z = re1® and ( = p e 1 ^ is given by

2 (2).

The boundary conditions of the clamped plate amount to the fact that the

function (1) and its derivative with respect to p vanish as p = 1. But p = 1 im-

plies that r = 1, so that we have:

(I j f(\,φ) = 0; i.e., f(p, φ) Ξ 0.

/(9(r 2 )\
(II) - 1 + 2/4 cosφ + g ( l , ώ ) = 0 .

\ d p /P=ι

Now we note the following formulas which will be useful in our later work:

λ 2 p 2 - 2λp cos φ + 1
r = p ,

p 2 - 2λp cos φ + λ2

( 2 ) . . . , , ~2λp cosφ + λ2ip2 + D

p 2 - 2λp cos φ + λ2

From the second we conclude that

( 3 ) | " v < M _ 2 [ ~ 2 λ p c o s ^ + λ 2 ( P 2

p2 - 2λp cos φ + λ 2 / 1 - 2λ cos if/ + λ
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ίience condition (II) can be written as follows:

(4) - 1 + 2Λ cosφ + • - g ( l , φ) = 0.
4 λ ( - c o s φ + λ)

- 2λ cos(/f + λ2

We determine 4 according to the condition

4 λ ( - c o s ^ + λ)
- 1 + 24 c o s ^ + = 0,

4λ2

4 = ( 2 Λ Γ 1 ,

and (4) yields

1 - 2λ cos ψ + λ2

gίhψ) =

g(p» Ά) =

4λ 2

1 + λ2 1 cos φ

4λ 2 2 λ P

Recapitulating, we find the following expression for the Green's function

Γ ( p ) :

, . „ . , , 1 1 / 1 \ . _ x / l + λ2 cosώ\
( 6 ) Γ ( p ) = log — + p cosφ + (r2 - 1 ) .

P 2 λ \ P I \ 4λ2 2 λ P /

In the limiting case (X—>π, λ —» 1, we obtain of course the Green's function

υf the exterior of the unit circle, namely,

(7) l o g - + - ( p 2 - l ) .

4. Conclusion, ( a ) The dominant term in 3 (6) is

4λ 2

so that Γ is positive as z —> oo. Now we write

1

λ

and have
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1 1 1 + λ 2 1
Γ = log λ + λ - —

2λ \λ \ 4λ2 2]

l - λ 2

= l o g λ + _ .

This quantity is certainly negative if λ is sufficiently near 1, more precisely if

λ > λ 0 where λ0 is the only root of the equation

l - λ 2

(2) logλ + = 0

4 λ 2

on the range 0 < λ < 1.

( b) We can show however that Γ must change its sign for all λ, 0 < λ < 1.

For this purpose we compute the following second derivative at the point z = — 1

on the concave side of the slit:

1 Id2(r2)\ ( l - λ ) 2

+ \ dP

From the second formula in 3 ( 2) we find

Id2(r2)\ -2λ + 2λ2

( - 2 λ + 2 λ 2 ) ( l - λ ) 2 - ( - 2 λ + 2 λ 2 ) ( 2 - 2 λ ) 4 λ ( l + 3λ)
+ 4 =

( l - λ ) 4 ( l - λ ) 2

so that, in view of 3 (3),

f 3λ 4 4λ
/ Γ \ 1

( 3 ) = 1 + ,

\ aP lp=ι,φ=o

which is indeed negative.

( c) It is interesting to compute this second derivative for all values of λ. We

obtain from 3 ( 6 ) :
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cos φ - 2 λ cos φ + 2λ
= 1 + 2

- 2 λ p cos ψ + λz(pz + 1

p 2 - 2λρ cos φ + λ2

- 2 λ cos ι/y + 2λ 2

1 - 2λ cos

4λ(λ - cos φ)

— 2λ cosι// + λ

Hence this second derivative is positive on the convex side of the circular arc,

and negative on the concave side of this arc. On the convex side Γ is positive,

and on the concave side Γ is negative, provided p is sufficiently near to the arc

in question.

5. On the Green's function of the infinite domain which is the exterior of C D .

We denote now by F ( p ) the Green's function of the infinite domain which is the

exterior of CR, having its singular point at infinity. We seek this function in the

form:

R p
Γ ( p ) = log — + A - cos φ + B

P &

+ C LZ + \z\
2 \D + E — c o s J ,

p 2 - 2λp cosψ + λ2 \ P I

where A, B, C, D, E are appropriate constants depending on R and λ; here again

the point p is represented by the complex number z = re* , and the relation be-

tween z = re1® and ζ~ pe1^ is the same as above. We show that the constants

A, , E can be determined in a unique way so that Γ satisfies the boundary

conditions of the clamped plate provided that R is sufficiently near to 1; more

precisely, there must be 0 < R - 1 < 6 = e ( λ ) .

The conditions

dΓ
( 2) Γ = = 0 for p = R

dp

are equivalent to the following:
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ι

( 3 ) Γ = = 0 for p = R,

dp

where the function Γι is defined by

Γ\ = ( p 2 - 2λp c o s ^ + λ 2 ) Γ

(4) = log —• + A — cos ψ + B) ( p 2 - 2λp COSΪ/Γ + λ 2 ) + C(P

2-λ2)

+ p 2 ( 1 - 2λp cos t/ί + λ2 p 2 ) Z) + £ — cos J .

\ /

Here we used the first formula in 3 ( 2 ) . Now ( 4 ) is a quadratic expression in

cos ψ. Conditions ( 3 ) can be replaced by the corresponding set of equations for

the coefficients of cos φ in ( 4 ) . T h e s e equations are somewhat simplified if in

( 4 ) we replace cos ψ by p " 1 cos ψ. The resulting coefficients are:

M

t(p) = (log — + B) ( p 2 + λ 2 ) + C ( p 2 - λ 2 ) + Z ) p 2 ( l + λ 2 p 2 ) ,

( 5 ) M ( p ) = 4 ( p ' + λ 2 ) - 2λ log — + B - 2 λ / ) p 2 + ER ( l + λ 2 p 2 ) ,

R \ p I
2λA

M3(P) = - — - 2λ ER.

The boundary conditions are equivalent to the following set of conditions:

( 6 ) M(R) = M'{R) = MIR) = Λί ' (Λ) = Af,(Λ) = Aί ' (Λ) = 0 .
1 1 2 2 ό ό

(b) The last of these six equations can be disregarded since M3(p) is inde-

pendent of p. The resulting five equations are linear in the five unknown quanti-

ties A, , E. They are as follows:

(7) B(R2 + λ2) + C(R2-λ2) + DR2 (1 + λ2 R2) = 0 ,

2RB - — (R2 + λ2) + 2CR + D(2R + Ίλ2R3) = 0 ,

L ( Λ 2 + λ 2 ) _ 2 λ β _ 2 λ D Λ 2 + ER(l + λ2R2) = 0 ,

2λ A
2A + 4λDR + 2Eλ2R2 = 0 , — + ER = 0 .

R R
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In order to show that the unknowns are uniquely determined, we have to dis-

cuss the determinant of this system. As R —> 1 the elements of this determinant

approach those of the following determinant (the second and fourth equations are

divided by 2):

( 8 )

0

0

1 + λ 2

1

1

1 + λ 2

1

- 2 λ

0

0

1 - λ 2

1

0

0

0

1 + λ 2

l + 2 λ 2

- 2 λ

- 2 λ

0

0

0

1 + λ 2

λ 2

1

Subtracting here the first column from the last we obtain:

1 + λ 2 1 - λ 2 1 + λ 2

1 1 l + 2λ 2

+ λ 2 - 2 λ 0 - 2 λ

1 0 0 0

( 1 - λ 2 )

0

0

1 + λ2

1

- 2 λ

= 2 λ 2 ( 1 - λ 2 :
1 + λ 2

- 2 λ

1 - λ 2

1

0

1 - λ 2

0

1 + λ 2

l + 2λ 2

- 2 λ

= 4 λ 3 ( l - λ 2 ) jί 0 .

6. Conclusion. From 5 ( 7 ) it is obvious that the parameters A, , E are

rational functions of R and λ. Let λ be fixed, 0 < λ < 1. Then these parameters

are rational functions of R, and the evaluation of the determinant 5 ( 8 ) shows

that they are regular in a certain neighborhood of R — 1. Incidentally, we find

from 3 ( 6) th at

( 1 ) A = -E = — , D = ~
2λ 4 λ 2

C = 0 as R = 1.

Inserting z = 0, p — 1/λ, ψ = 0 in 5 (1), we obtain an elementary function of

R which is regular at R = 1. It is a combination of log R and the rational func-

tions A, B, C of R. Now this function is negative for R = 1 (provided λ is suf-

ficiently small) . From this the same property follows for the function 5 ( 1 )

provided R i s sufficiently near to 1. This yields the desired property of the
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domain outside of the level curve CR of the conformal mapping of the circular

slit domain onto the exterior of the unit circle.

In order to prove the same property for all λ (and for sufficiently small values

of R — 1), we compute

(2) —

\ UP lp=R,ψ=o

We note that the curve CR intersects the real axis in two points; the curve is

convex at the left point and concave at the right point of the intersection, pro-

vided R ~ 1 is small enough. The second derivative ( 2 ) we consider is associ-

ated with the concave point of intersection. Now ( 2 ) has the same sign as

where Γj_ is defined as in 5 ( 4 ) . From 5 ( 4 ) we see again that (3) is a function

of R which is regular at R = 1. Since it is negative for R = 1, it must be negative

for all R > 1 sufficiently near to 1.

This establishes the assertions.
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LIPSCHITZ FUNCTIONS OF CONTINUOUS FUNCTIONS

IMANUEL MARX AND G E O R G E P I R A N I A N

1. Introduction. The present paper was suggested by a note of W. S. Loud

[2] in which the following theorem on functions of a real variable is proved,

THEOREM 1. // CX is a constant ( 0 < α < 1) , there exist a continuous

function f{t) and a pair of positive constants Kγ and K2 such that

\f(t + h)-f(t)\ <K, \h\a

for all t and all h9 and such that

\f(t + h ) f ( t ) \
hm sup > A 2

A - o \h\a

for all t.

It is natural to examine the possibility of a variable exponent d(t) and to

consider various definitions that associate with every continuous function f{t)

a " L i p s c h i t z function" C ( ( ί ; / ) For a reasonable choice of the definition,

Loud's result implies that every constant α ( 0 <(X < l ) i s the Lipschitz func-

tion of some continuous function. The following sect ions offer two different

definitions of Lipschitz functions, and deal with the problem of characterizing

the functions that are Lipschitz functions of continuous functions,

2 . T h e p o i n t L i p s c h i t z f u n c t i o n o f a f u n c t i o n . L e t f{t) b e a c o n t i n u o u s ,

real-valued function of ί Consider the quantity

Q{a, to; f) = lim sup
h-,o \h\a

If Q((X, tQ; f) is finite for (X = α', it is zero for all a less than α'; if Q is

greater than zero for CX = CX', it has the value + oc for all CX greater than Cί'.

Let &{t0; f) denote the least upper bound of all (X for which Q ( α, to; f) is
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f i n i t e . T h e n ait; f) s h a l l b e c a l l e d t h e point Lipschitz function o f fit). A

simple computation shows that

( 1 ) « ( , ; / ) - l ΰ n i n f
Λ-»o l o g I A I

where the fraction on the right is to be interpreted as having the value + oo

whenever / ( t + h ) = / ( t ) .

T H E O R E M 2. If fit) is continuous ( - o o < t < oo), then ait; f) is the in-

ferior limit of a sequence of continuous functions of t; if (X ( ί ; / ) > 1 throughout

soriie open interval of the t-axis9 then C ί ( ί ; / ) = oo throughout the interval.

Let L it, h; f) denote the fraction in the right member of (1), let e denote a

constant (0 < e < 1/2), and let

( 2 ) a At; f) = min [ 1/e , min L ( ί , h f)].
e < \h\ < 2β

Then Cί£(ί; / ) is a continuous function of £, because of the restriction on h and

the truncation of L ( ί , h; f) imposed in the right member of ( 2 ) . If e is assigned

the success ive values 1/4, 1/8, 1/16, , the first part of Theorem 2 follows

from the formula ( 2 ) .

For the second part of the theorem, consider an open interval / on the ί-axis

throughout which Cί(ί; /) > 1. Because / ' ( ί ) = 0 throughout /, fit) is constant

in /, and the proof of the theorem is complete.

THEOREM 3. Let \ dnit)\ be a sequence of continuous functions (0 <

α Λ ( ί ) < 1), and let

ait) = l i m i n f a n i t ) .

Ί h e n there exists a continuous function fit) such that O t ( ί ; / ) = C X ( ί )

The theorem will be proved by a construction analogous to that used by

Loud in his proof of Theorem 1. Let g(ί, s) be the continuous function which

takes the value 0 when t is an even multiple of s, takes the value 1 when t is

an odd multiple of s, and is linear between consecutive multiples of 5. Let

a be a constant between 0 and 1, and let A > [ 2 ( 1 - α ) ] " 1 be an integer.

Loud proved that the series
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(3) Σ 2'2Aan * U 2'2An),
n-l

converges to a function f(t) which has the properties promised in Theorem 1.

Roughly, the principal intuitive idea behind Loud's proof is that for every pair

of values t and h at most one or two terms of the ser ies ( 3 ) make a significant

contribution to the difference f{t + h) — f(t); the contribution is always small

enough so that the first inequality in Theorem 1 is satisfied; and for every t

there exist arbitrarily small values of h for which the contribution is so large

that the second inequality in Theorem 1 is satisfied. The following three sec-

tions will be devoted to elaborations of Loud's method that lead to a proof of

Theorem 3, We first summarize our construction of a continuous function f(t)

whose Lipschitz function d{t) is the inferior limit of a given sequence of con-

tinuous functions dn(t). The construction is then described in full detail in

the following two sect ions .

The function f{t) will be written as an infinite ser ies

fU)
m =1

with Gm depending on the function Cim(t) alone. For every m, we divide the

ί-axis into intervals / over each of which the function Cίm(O lies within fixed

bounds to be specified. The function Gm{t) is defined separately in each in-

terval. Over a fixed interval /, the graph Γm of the function Gm(t) consists of

rows of saw-teeth completely filling /. There is a row of relatively high and

wide teeth in the central portion of the interval, flanked by two rows of some-

what lower and much narrower teeth, which are in turn flanked by two rows of

still lower and narrower teeth, and so on. All the teeth of the central row have

equal height and equal width, all the teeth of the two flanking rows have equal

height and equal width, and so on. Toward the end-points of the interval /, the

heights and the widths of the teeth of Γ m approach zero. The function Gm (t) is

continuous for all ί, is differentiable except at a countable number of points,

and is not constant in any interval. The heights and the widths of the saw-teeth

are so chosen that

) = a(t)

for the function
oo
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Details of the proof follow.

3. Classes of intervals. For each m9 we denote by lm a class of intervals

to be constructed, with Im depending on Ilf I2i ••• > ̂ m-i a s well as on the

functional values of dm(t). The class / t consists of finitely many or infinitely

many disjoint, open intervals that meet the following three requirements: each

point of the ί-axis lies in the closure of one of the intervals; no point of the

ί-axis is a limit point of end-points of intervals of the class I^ and throughout

each of the intervals one of the conditions

0 < at(t) < 3/4,

1/4 < α ! ( ί ) < 1

is satisfied.

When the classes Ii9 I2, * Im-ι °f intervals have been defined, we choose

the intervals of the class Im subject to the following four requirements: each

point of the ί-axis lies in the closure of one of the intervals of the class; no

point of the ί-axis is a limit point of end-points of intervals of the class

throughout each interval of the class, one of the conditions

0 < α m ( t ) < 3/2 m + 1 ,

l / 2 m + 1 < am(t) < 5/2 m + 1 ,

(4) 3/2 m + 1 < α m ( ί ) < 7/2m + 1 ,

α m ( t ) < 1

is satisfied; and no end-point of an interval of the class Im is an end-point of

an interval of a previously defined class.

4. The saw-tooth functions. The function /(<) to be constructed will be of

the form

( 5 ) f i t ) = Σ. G m ( t ) = Σ, « „ ( * > '
m-l n=\

where
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1 0

The indices n = 1, 3, 6, 10, , are said to belong to m = 1, the indices n = 2,

5, 9, , are said to belong to m - 2, and so on. The graphs of the functions

Gm(t) and gn(t) will be denoted by Γ m and γ , respectively.

We summarize the construction of the functions g ( ί ) . Corresponding to the

function Gm we have se lected a c lass Im of intervals, and throughout each in-

terval / of the c lass Im the function dm(t) sat is f ies one of 2 m inequalities

specified in § 3 . We choose a c lass of exponents c in accordance with these

inequalit ies, so that c is fixed throughout each interval /, and a decreasing

sequence \sn\ of positive numbers, where sn depends only on s l9 s2> ••• » sn-ι

and on the value of m to which the index n belongs. The function gn(t) is

continuous, with a graph γ consist ing alternately of rows of equally high and

equally wide saw-teeth and of segments of the ί-axis. There are at most two

subintervals of each interval / of the c lass Im where gn(t) differs from zero,

and in these subintervals it has the form

( 6 ) g n ( t ) = SZ g(t, Sn),

with the exponent c corresponding to the interval /. (The function g(t9 s) was

defined in § 2 , immediately after the statement of Theorem 3.) The terms gn(t)

of the series for Gm(t) are so chosen that every point interior to an interval

of the c lass Im l ies on the base of a tooth of the graph Γ m of Gm (t). It remains

to describe the choice of the exponents c in ( 6 ) , to se lect the sequence U n l ,

and to determine the position of the teeth in γn.

Let gn (t) be a term of Gm ( ί ) , and let / be an interval of the c lass Im. The

graph γ of g (t) shall contain rows of equal saw-teeth over at most two sub-

intervals of /, and the exponent c in ( 6 ) determining the height of the teeth

shall have the value l/2™ + ι , $/2m + ι , , or 1 - 1 / 2 W + 1 , according as the

function Cίm{t) satisf ies in / the first, second, ••• , or last of the conditions

( 4 ) . It follows that the height s^ of a tooth in γn has one of finitely many values

and depends only on the range of values taken by CXm(ί) in the interval / where
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the tooth appears, while the width 2sn is the same for all teeth appearing any-

where in y . It also follows that the derivative g^(O exists (except at denumer-

ably many points ), and takes only finitely many values.

The number s t can be chosen arbitrarily, subject to the condition 0 < sι < 1.

Once the numbers slf s2> ••• * sn-ι a r e determined, sn is chosen subject to the

following three conditions:

1) We require that sn.ι be an even multiple of sn .

2) We require that the inequality

-m-l sn-ί

s2 <
10

be satisfied, where m refers to the function Gm(t) of which g ( ί ) is a term.

If this requirement is met, the height of each tooth in γn is no greater than 1/20

the base width of any tooth in yΓ (r = 1, 2, , n — 1), and every tooth in

yn_ i is more than 10 times as high as every tooth in γn It follows that the

series Σ ^ = 1 \gn(t)\ converges uniformly on the interval (-oo, oo).

3) We require finally that the slopes of the sides of the lowest teeth in γn

be in absolute value greater than 10 times the sum of the greatest slopes that

can possibly occur in γ (r = 1, 2 , , n — 1). Because the side of a tooth of

height sc and width 2s has a slope numerically equal to \/s ι"c, this require-

ment is met provided sn is chosen small enough.

We turn now to the disposition of the teeth in γn Let / be any interval of the

class /1 # Then y shall have as many teeth in / as possible, subject to the

restriction that the distance from either end of / to any tooth of the graph shall

be greater than twice the height of the tooth.

Again, if / is an interval of the class Il9 and if γι has no teeth in /, then

y shall have as many teeth in / as possible, subject again to the restriction

mentioned above. If γ has beeth in /, then y shall have, in /, two rows of

teeth flanking the row of teeth of γ^ again, the distance from either end of /

to any tooth in y3 shall be greater than twice the height of the tooth.

Next, if / is an interval of the class I i9 then y6 shall have teeth in the mid-

dle portion of / provided that y3 has no teeth in / and / is sufficiently long. If

y has teeth in /, then γ shall have two rows of teeth: each of these rows shall

be adjacent to a previously constructed row, and shall extend as near as pos-

sible to the nearer end of /, subject to the condition that the remaining distance

be greater than twice the height of the teeth.
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The construction of γn {n = 10, 15, 21, ••• ) proceeds according to the pat-

tern that has been described. The construction of y (n = 2, 5, 9, ) is similar

to the previous construction, with these modifications: the construction is car-

ried out with reference to intervals of the class 72, and with reference to the

values of the function CX2(O; and the distance from each tooth to the end of

the interval of the class I2 in which it stands is required to be 2 2 times the

height of the tooth ( 2 m times the height of the tooth in the construction of teeth

belonging to the graph Γ m ). The construction of Γm is entirely independent of

the construction of Γ, (k φ m) Further details are superfluous, and we must

only prove that the function defined by (6) has the required properties.

5. Arithmetical estimates. First we show that if ί0 is a fixed point, α 0 =

α ( ί 0 ) , and e > 0, then

(7) lim sup

A-o \h o + e

In other words, the point Lipschitz function of f(t) has at ί0 a value not greater

than Cί o.

Let m be any integer such that t0 is interior to an interval of the c lass Im

(at most one positive integer m fails to satisfy this requirement); then there

exists an integer n such that gn(t) is a term in the series defining Gm (t) and

such that t0 l ies on the base of a tooth of the graph γn of gn ( ί )• Therefore

g {t) is linear in a sufficiently small interval with t0 as end-point; that is,

there exists a number h, with

( 8 ) — sn < I h I < sn ,

such that the function gn(t) is linear in the interval joining the points t = t0 and

t = t0 + h. For this number h we have further

| G m ( ί 0 + A ) - G m ( ί 0 ) | = | s π ( i o + λ ) - g n ( t o ) l = I M C 1

where

(9) c < α 0 + Tm + Tm-1.

For all teeth that cover the segment joining t0 and t0 + h and belong to

graphs y with r < n, the requirement 3) on { sn \ implies that
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r < n

and therefore that

r<n

For the functions gr with r > n, the requirement 2) on \sn \ gives

Σ \sΓ

(-to + h)-gr(to)\ < sn (1/10 + 1/100+. . ) < s B / 5 .

From (8) and from the estimates obtained thus far it follows that

u r o + e ur ° + e

By (9) , the exponent in the last member is less than - 6 / 2 if m is large enough,

and therefore the relation (7) is established.

Secondly we must prove that, for every e > 0,

| / U o + ) / ( o ) l
(10) lim sup = 0.

Λ-o \h\ao'e

We choose an integer m0 such that 2"m + 2~m~ι < 6 for all m > m 0, and a posi-

tive quantity h0 such that the interval

to — h0 < t < t0 + h0

contains no end-point of an interval of any of the classes Iu / 2 , ••• , or ImQ>

except possibly the point t0 itself. Without restricting the generality of the

proof, we suppose that \h\ < Λo.

To establish (10), we make separate estimates of the variation of Gm(t)
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for the following three cases: the point t0 is an end-point of an interval of the

class Im; t0 is not an end-point, and m < mo; or t0 is not an end-point, and

ΊTl > P 2 Q .

If t0 is an end-point of an interval of the class Im, then the disposition of the

saw-teeth ensures that

( I D \ G m ( t 0 + h ) - G m ( ί 0 ) | < \ h \ / 2 m .

For each m < m0 for which ί0 is not an end-point of an interval of the class

/m, the quantity Gm(t0 + h) — Gm{t0) can be written as the sum of finitely

many terms of the form gn(t0 + h) - gn(t0); the set of indices n that occur in

this sum depends only on hθ9 not on h Since the corresponding derivatives

g^(t) are bounded, it follows that, for every (X < 1,

^ \Gm(to + h)-Gm(to)\

lim V = °
h-*0 m <m0 \n\

For m > mQ and | h \ < h0, two possibilities arise, for each index m: either

t0 and t0 + h both lie in the same interval of the class / m , or they do not lie in

the same interval. In the latter case, the inequality (11) holds, and it is there-

fore sufficient to discuss the former case.

Let k be the least integer such that s^ < \ h \ and such that the term g^it)

occurs in the series defining a function Gm(t) with m > m0. The choice of the

exponents in the definition (6) of gn(t), and the requirement 2 ) on the sequence

ί sn 1, imply the inequality

r > k

2sc

k < 2

and the quantity c is greater than CX0 - e because of our choice of m 0 . Finally

we estimate the contribution from those terms gr(t), occurring in the ser ies that

define functions Gm(t) with m > mθ9 for which sr > \h\ while t0 and t0 + h

lie in the same interval of the c lass Im» Let p be the greatest value of the index

r for such terms. We find

h)-gp(t0)\ < \h\sc

p

 ι < \h\c \sp/h \c-1

and the sum of the remaining terms of the same category is less than half of the

last member. The inequality (10) is established, and the proof of Theorem 3 is
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complete.

We observe that Theorem 3 no longer holds if the restriction 0 < an{t) < 1

is removed. For if f (t) is a continuous function, the set of points where

α ( ί ; /) < 1 cannot have isolated points. The complete characterization of the

functions that are point Lipschitz functions of continuous functions appears to

be difficult.

6 . T h e l o c a l L i p s c h i t z f u n c t i o n o f a f u n c t i o n . L e t f(t) b e a c o n t i n u o u s ,

real-valued function of t, and let h be a variable taking positive values. Denote

by B{t0, h; f) the least upper bound of all numbers β for which the quantity

{t"-t')β

remains bounded as long as the variables ί' and t" satisfy the restriction

t0 ~- h < t' < t" < tQ + h. For each value t09 B(t0, h; f) is a nonincreasing

function of h. The quantity

(12) β(t) = β(t f) = lim B(t, h; f)

s h a l l b e c a l l e d t h e local Lipschitz function o f f(t).

It follows at once from the definition that

β(t;f)<a(t;f),

for every continuous function f(t). That equality does not always occur is seen

from the following example. Consider the function

/ ( * ) = * sin 1/ί (t £ 0 ) , / ( 0 ) = 0.

In every closed interval that does not contain t = 0, f(t) has a bounded deriva-

tive, so that α (ί; /) > 1 for t £ 0. Since α ( 0 ; /) = 1, it follows that the point

Lipschitz function of f{t) is everywhere equal to 1 [except at the zeros of

/ ' ( O , where α ( ί ; / ) = 2 ] . On the other hand, the local Lipschitz function

β(t f) has the value 1 everywhere except at t - 0, and /3 (0; /) = 1/2 (for

details, see [ l ] ) . It follows that equations (1) and (12) do not define equi-

valent Lipschitz functions.

7. Characterization theorems. The following two theorems provide a char-

acterization of bounded local Lipschitz functions of continuous functions.
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THEOREM 4. If f(t) is continuous (-oo < t < oo), then

i ) β(t; f) is lower semi-continuous;

i i ) for each point t, either 0 < β{t; f) < 1, or β(t; f) = oo;

i i i ) the set of points t where β(t; f) ^ oc is a perfect set.

S u p p o s e t h a t β{t) = β{t; f) i s t h e l o c a l L i p s c h i t z funct ion of a c o n t i n u o u s

funct ion f(t). If β(t0) > 1, t h e p o i n t t0 i s i n t e r i o r t o an i n t e r v a l in w h i c h f{t)

s a t i s f i e s a L i p s c h i t z c o n d i t i o n wi th a n e x p o n e n t g r e a t e r t h a n 1. T h e n f(t) i s

c o n s t a n t in an i n t e r v a l a b o u t t 0 , s o t h a t β{t0; f) = oo. P a r t i i ) of the t h e o r e m

i s p r o v e d .

T h e s e t of p o i n t s w h e r e 0 < β(t; f) < 1 c a n n o t h a v e i s o l a t e d p o i n t s , and

the s e t of p o i n t s w h e r e β(t; f) = oo is o p e n . T h e r e f o r e p a r t i i i ) of t h e t h e o r e m

i s p r o v e d , a s w e l l a s p a r t i ) for t h o s e p o i n t s t w h e r e β i s i n f i n i t e . F i n a l l y , if

β{t0) < 1, for every e > 0 t h e r e e x i s t s an i n t e r v a l | t — t0 \ < δ in w h i c h

β(t) > β(t0)- e.

It follows that

β ( t 0 ) < l i m i n f β ( t )
t->t0

for all t0, and the proof of the theorem is complete.

T H E O R E M 5 . Let β(t) ( 0 < β(t) < 1 ) be a lower semi-continuous func-

tion. Then there exists a strictly increasing continuous function F (t) such that

β(t; F) = β ( t ) .

Let ! Ir} denote a sequence of closed intervals on the ί-axis with the fol-

lowing property: for each point t0 and for every £ > 0, there exis ts an interval

Ir of length less than e, covering ί0. In each interval Iτ we se lect a point tr at

which β(t) assumes its minimum value in the interval. The function F(t) will

be chosen as an infinite ser ies

If the p o i n t tr c o i n c i d e s wi th one of the p o i n t s tl9 t2> > tr-1> w e c h o o s e
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frit) = 0; otherwise we choose fr(t) as a strictly increasing function of t whose

local Lipschitz function has the value βitΓ) for t — tτ and the value 1 every-

where else.

The term fr(t) is constructed from the function

/(*; y) = S g n

y ^

This function is strictly increasing; for

f'(t γ)- , I f . | y , ' ,

when t φ. 0, and the function is continuous at t = 0. Furthermore, the local

Lipschitz function of fit; γ) has the value γ at £ = 0, since

( 1 3 ) l / ( « " ; y ) - / U ' ; y ) | <2\t" -t'V

for all dist inct ί ' a n d ί"; and it has the value 1 everywhere e l se , since / ' ( t ; γ)

is continuous for | ί | > O In order to adapt fit; γ) to our needs we require a

sequence { pr\ of positive numbers, chosen as follows. We se t p = 1. If tτ coin-

cides with tl9 t29 ••• 9 or ί/ -i> the function frit) is identically zero, and no

number pr is needed. If all the quantities \ t r - t ί \ , \tr-t2\ > •••> U r - ^ r - i l

(r > 1) exceed 1, we set pr = 1; otherwise we set pr equal to the leas t of these

quantit ies .

The nonzero terms frit) of the function Fit) are given by the formula

( 1 4 ) fit) = Tτ

 Pr f — j 8 ( ί r ) | .

K /
We prove first that

(15) βitQ; F) <βit0),

for each point ί0. For every h > 0, the interval

t0 - h < t < t0 + h

has a subinterval lτ which contains the point ί0. Since

β(tr) <β(t0),
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and since the function F (t) does not satisfy in Ir a Lipschitz condition with an

exponent greater than β(tr), the relation ( 1 5 ) is establ ished.

Secondly, we show that

(16) β(t0; F) >β(to)-e

for e a c h p o i n t ί 0 a n d e v e r y € > 0 . B e c a u s e β ( t ) i s l o w e r s e m i - c o n t i n u o u s ,

β ( t ) > β ( t 0 ) - e

i n s o m e i n t e r v a l 1 1 — t0 | < δ . W e c h o o s e a p a i r o f i n t e g e r s r ι a n d r 2 ( r 2 > r t )

s u c h t h a t

t0- 8 < trχ < t0 < tr2 < tQ + 8,

and denote by / the closed interval (ίΓ , tr2) ^ e make separate estimates for

those terms fΓ(t) for which tr lies in /, for those terms with r > r2 for which

tτ is exterior to /, and for those terms with r < r2 for which tr is exterior to /.

By (13) and (14), the inequality

| / r ( ί " ) - / r ( ί ' ) | < 2 U r \t"-t'\βUr)

holds for all distinct t' and t". This inequality implies that the sum of all

terms fr(t) for which tΓ lies in / satisfies throughout / a Lipschitz condition

with exponent β (t0) - 6. If r > r 2 and if tΓ does not lie in /, then / r '(O < 2 r - 1

in /, so that the sum of all terms fr{t) corresponding to such values of r has a

bounded derivative in /, that is, satisfies throughout / a Lipschitz condition

with exponent 1. Finally, let / ' b e a subinterval of / containing t0 and suf-

ficiently small to exclude all points tr for which r < r 2, except those coin-

ciding with ί0. The sum of the corresponding terms fr(t) also has a bounded

derivative in /'. The inequality (16) is established, and the proof of Theorem 5

is complete.
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THE SPHERICAL CURVATURE OF A HYPERSURFACE
IN EUCLIDEAN SPACE

T. K. Pan

1. Introduction. Let Vn be a hypersurface immersed in a Euclidean space

Sn + ι . Let P be a point of Vn corresponding to the point P ' of the hyperspherical

representation Gn of Vn. Let V denote the extension of a region φ of Vn, and

V* the extension of the corresponding hyperspherical region φ' of Gn. If the

region around P tends to zero, the ratio V*/V tends to a limit Γ, which is called

the spherical curvature of Vn at P [ 1 , pp. 258-261], It is found that Γ = |Ω/g | ,

where g = |g | and Ω = | Ω . . | are respectively the determinants of the coef-

ficients of the first and the second fundamental forms of Vn. In this note, some

properties of the spherical curvature are studied, and new interpretations of the

Gaussian curvature are derived.

The notation of Eisenhart [2] will be used for the most part.

2. Some properties. Let a real and analytic hypersurface Vn be defined by

y α = y a ( x \ . . . , x n ) ( α = 1, ••• , n + 1 ) ,

referred to a Cartesian coordinate system ya in a Euclidean space Sπ + 1 . Let a

vector-field v in Vn be defined by

va = pidya/dxi {i = 1, ••• , n),

where the va are real and analytic functions of the xι Let C be a curve of Vn

The normal curvature vector of v with respect to C at P is defined as the normal

component of the derived vector of the vector-field v along C at P [ 3 ] . Let K

denote a nonzero extreme value of the magnitudes of the normal curvature vectors

of v with respect to all curves of Vn at P. Then K, which is called a principal

curvature of v at P9 is defined by

(2.1) | Ψ ( 7 - κ 2 g ι 7 l = 0 ,
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where

Since | | Ψ | 7 | | is of rank 1, there is one such extreme corresponding to a vector-

field v. Its value is evidently equal to

(2.2) κ = (ψ..

where //, y is the fundamental tensor of the hyperspherical representation Gn»

The extreme of the principal curvature of a vector-field v at P9 as the field

varies, is defined by

(2.3) lfy-κ 2* i ;. |-0.

There are n such extremes 5̂ . corresponding to the principal directions for the

tensor Hij. Their product is found to be

since H = \Hi. \ = Ω2/g, [ 1, p. 260]. The principal directions for the tensor

H.. and those determined by the tensor Ω̂  . are identical, since the principal

curvature of a principal vector-field can easily be shown equal to the normal

curvature of the corresponding line of curvature. Hence we have:

THEOREM 2.1. The spherical curvature of a Vn at P is equal to the product

of the extreme principal curvatures of vector-fields in Vn at P, which is the same

as the product of principal curvatures of Vn at P.

Since SΛ + 1 is Euclidean, the equations of Gauss are

(2.4) Rijkl = Qik Qμ - Qa Ωβ .

Multiplying (2.4) by g and summing with respect to i and kf we obtain

(2.5) Hμ = MQμ + Rjl9

where M is the mean curvature of Vnf and where R .̂  is the Ricci tensor. When

Vn is a minimal hypersurface, we have M = 0, and the Ricci tensor is identical
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with the fundamental tensor of Gn. If M ̂  0, we have

(2.6) HijP'pi-RijP'pi

if and only if v is an asymptotic vector-field. If v is a unit asymptotic vector-

field, we notice, from (2.2), (2.6), and the equality

k=ί

that the square of the principal curvature of v at P is numerically equal to the

sum of the Riemannian curvatures determined by v and n - 1 other mutually

orthogonal unit vectors orthogonal to v at P. Hence we have established the

following result:

THEOREM 2.2. The square of the principal curvature of an asymptotic

vector-field at P in Vn is numerically equal to the mean curvature of Vn at P for

the corresponding asymptotic direction.

The extreme of the principal curvatures K of asymptotic vector-fields at P in

Vn is defined by

There are n such extreme values corresponding to the principal directions for

the Ricci tensor JR̂  .. Their product is evidently equal to | Ω/g|, if Vn is minimal.

Hence we have:

THEOREM 2.3. The principal curvatures of asymptotic vector-fields at P

in Vn attain their extreme values in the principal directions for the Ricci tensor.

THEOREM 2.4. The spherical curvature of a minimal Vn at P is the product

of the principal curvatures of the n vector-fields at P corresponding to the

principal directions for the Ricci tensor.

3. The Gaussian curvature. When n = 2, Γ is called the spherical curvature

of a surface S in an ordinary space. It coincides in absolute value with the

Gaussian curvature K of S. The principal curvature of a vector-field v in Vn for

rc = 2 coincides in absolute value with the principal curvature of v in 5, [3]

The extreme principal curvatures of vector-fields in Vn for n = 2 coincide in

absolute value with the principal curvatures of S. The mean curvature of Vn for
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n ~ 2 is identical with the Gaussian curvature of S. Hence Theorems 2.1 and 2.2

lead directly to the following new interpretations of the Gaussian curvature:

THEOREM 3.1. The Gaussian curvature of S at P is the product of the ex-

treme principal curvatures of vector fields of S at P, and is the negative of the

square of the magnitude of the Gaussian representation of a unit arc along an

asymptotic line from P in S.

Let p α and qa be two distinct conjugate vector fields in S. Then we have

where rf is the second fundamental tensor of 5. The principal curvatures of

the vector-fields p α and qa are respectively equal to

where ha „ is the third fundamental tensor of S. Hence their product is

(3.1) /

The expression on the right side of (3.1) is equal to eX, where e is +1 or-1

according as K is positive or negative at the point under consideration. At an

elliptic point, the principal curvatures of all vector-fields are of the same sign.

At a hyperbolic point, the principal curvatures of two vector-fields are different

in sign if they lie in different sections separated by the asymptotic lines of S.

Consequently, the principal curvatures of two conjugate vector-fields have

opposite signs, since conjugate directions are separated by the asymptotic

directions of the surface. Hence at an elliptic point of S, the product of the

principal curvatures of two conjugate vector-fields is positive; while at a hyper-

bolic point of S, it is negative. At a parabolic point the normal curvature of any

vector-field with respect to any curve is zero. We may consider that every di-

rection in S at a parabolic point is both an asymptotic direction and a principal

direction of a vector-field which is to be considered. Hence at a parabolic

point the principal curvature of any vector-field is zero; consequently, the

product of the principal curvatures of two conjugate vector-fields is zero. Thus

the following theorem is proved:
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THEOREM 3.2. The Gaussian curvature of S at P is the product of the

principal curvatures of any two distinct conjugate vector-fields in S at P.

The sum of the squares of the principal curvatures of the two conjugate

vector-fields is found to be

(epp)
2 + {ePq)

2 - MUp + κq) - 2K,

where Kp and Kq are the normal curvatures of the curves of the two fields, and

where M is the mean curvature of S. By Theorem 3.2 the above equation can be

written as

(3.2) (epp + ePq)
2 = M(κp + κq).

Since the product of the normal radii at a point in conjugate directions is a

maximum for characteristic lines, and a minimum for lines of curvature, and

since the sum of normal radii in conjugate directions is constant, we obtain

from (3.2) the following result:

THEOREM 3.3. The sum of the principal curvatures of two conjugate vector-

fields at P is the mean proportional between the mean curvature at P of S and

the sum of the normal curvatures in the two conjugate directions at P. The

square of the sum of the principal curvatures of two conjugate vector-fields at

P is a maximum for the principal vector-fields of S, and a minimum for the

characteristic vector-fields of S.

Let m (m > 2) directions be such that the angle of two adjoining directions

is 2π/m. Let the principal curvatures of the vector-fields in such directions be

denoted by ep , ep2, ••• , epm Then

1 m > 2 1
- Σ ( e p . ) 2 = - M 2 - K ,
m = ι 2

since

where Kp are the normal curvatures of the curves of the corresponding vector-

fields.
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THEOREM 3.4. One mth of the sum of the squares of the principal curva-

tures of m (> 2) vector-fields at P9 such that the angle of two adjoining vectors

of these fields at P is 2π/m> is constant and is the same for any m greater than

two. The constant is half of the square of the mean curvature of S minus the

Gaussian curvature of S at P.

It is easy to prove that the principal direction of a vector-field in S is or-

thogonal to the curve of the field if and only if the vector-field is an asymptotic

field. Let pa be an asymptotic vector-field in S. Then its orthogonal trajectories

are defined by

The principal curvature of the asymptotic vector-field p α is given by

which after simplification becomes

where Ίg is the geodesic torsion of the curve of the asymtotic vector-field.

THEOREM 3.5. The principal curvature of an asymptotic vector-field at P

in S is equal to the geodesic torsion at P of the curve of the field, or simply

the torsion at P of the corresponding asymptotic line.

From Theorem 3.1 and Theorem 3.5 we immediately obtain the first part of

the theorem of Enneper, that the square of the torsion of a real asymptotic line

at a point is equal to the absolute value of the total curvature of the surface

at the point. By the second part of the same theorem we notice that the principal

curvatures of the asymptotic vector-fields in S are different in sign.
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ON SELF-ADJOINT DIFFERENTIAL EQUATIONS

OF SECOND ORDER

R U T H LIND P O T T E R

Introduction. This paper is concerned with the behavior near x = oo of

solutions of the self-adjoint differential equation

(1) [ r ( x ) y ' ] ' + p ( x ) y = 0,

where r(x) > 0 and r(x) and p(x) are continuous for positive values of x. A

solution is said to oscillate near x = oc if it has no largest zero. We study the

oscillation and boundedness of solutions of equations of the form (1). Repeated

use is made throughout the paper of the Sturm comparison and separation theo-

rems and of two theorems due to Leighton [6; 5]. Leighton's theorems are the

following.

T H E O R E M L 1 # If r ( x ) a n d p { x ) a r e c o n t i n u o u s a n d r ( x ) > 0 o n t h e i n -

t e r v a l 0 < x < o c , a n d

/•oo dx Γx
lim I = oc and lim / p {x )dx == oo,

%-*oo J i r ( x ) %->oo J i

then every solution of (1) vanishes infinitely often on the interval ( 1 , o°).

T H EOREM L 2 . If r(x) and p {x ) are continuous, and r (x ) p (x ) is a positive

monotone function of x for x large, a necessary condition that solutions of (1)

be oscillatory near x = oc is that not both limits

dx .. . . . .
)ax

/

x dx [x
, l i m I p ( x t

r(x) x-*oojι

exist and are finite.

We proceed to the study of conditions under which solutions of equation (1)

Received May 5, 1952. The author is indebted to Professor Walter Leighton for helpful
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are oscillatory,

1. Oscillation theorems. In this first section we consider the so-called

" n o r m a l " form of equation ( 1 ) in which r{x) = 1. It will be useful to set

p U ) = h'2(x),

where h(x) i s p o s i t i v e and of c l a s s C2 when x > a > 0. Equat ion ( 1 ) then

becomes

(1.1) y " + h'2(x)y = 0 .

To study the oscillation of solutions of equation (1.1), it is useful to consider

also the equations

(1.2) [h2(x)z']'+ z = 0,

r l h'2(χ) h"(χ)]

Nonnull solutions of these four differential equations are oscillatory1 or non-

oscillatory simultaneously, for one may readily verify that the derivative of

a solution of (1.1) is a solution of (1.2), equation (1.3) is obtained from (1.1)

by the substitution η = h"ι/2 (x)γ, and (1.4) is obtained from (1.2) by the sub-

stitution £= hι/2 (x)z.

We define

( 1 . 5 Hx(x) =
1 2 Jh{χ) Mix)

and

1 h z { x ) h ( x )(1 6) ' w b w ]•
1A solution is said to be oscillatory on an interval if it vanishes infinitely often

on the interval.
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It follows from Sturm's comparison theorem that if Hγ{x) < 0 or H2(x) < 0 for

large values of x, the solutions of ( 1 . 1 ) are nonoscillatory. Similarly, it follows

from Theorem Lγ that if2

fx dx
lim / = oo,

Ja h(x)

solutions of (1.1) are oscillatory if

ίx

lim / H{ (x )dx = + oo,
Ja

or if

fx
lim / H2 (x )dx - + oc.

Ja

We proceed with a proof of the following result.

T H E O R E M 1.1. //

ίx

lim / H2(x)dx ~ + oc,

Ja

the solutions o / ( l . l ) are oscillatory.

Note first that lim fa

x h"ι(x)dx cannot be finite, for then h'(x)—> - oo;

and h(x) could not be positive, as assumed. An application of Theorem Lι com-

pletes the proof of the theorem.
The following lemma will be useful in the sequel.

LEMMA 1.2. If h(x) is a positive monotone function, a necessary condition

that solutions of (1Λ) be oscillatory is that

. -. dx
lim

Γx dx
l i m / TΓ~\ = °°#

Ja hyx)

To prove the lemma let us suppose that its conclusion is false; that is,

suppose

fx dx
lim / < oo.

Ja h(x)

2All limits taken in this paper will be limits as x—»°o. Unless otherwise indicated,
αis a suitably chosen positive number.
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Then by a well-known theorem on infinite integrals, lim xh"1 (x) = 0, so that

for any fixed value of n, h~ι (x) < (nx)'1, for x sufficiently large. Since so-

lutions of the equation

y"+ (nxY2y = 0

are nonoscillatory whenever n >_ 2, an application of Sturm's comparison theorem

yields the contradiction, and the truth of the lemma is established.

T H E O R E M 1.2. //

lim / Hi(x )dx = oo,
Ja

a necessary and sufficient condition that the solutions of (1.1) be oscillatory

is that

lim
fx dx

ιm J ττ~\= °°*
Ja hyx)

The sufficiency of the condition follows from Theorem L t applied to equation

(1.3).

To prove the necessity, let us suppose that

rx dx
lim / 7 7 ^ ; < oo.

Since

fx
lim / Hί (x)dx = oo,

Ja

it is readily seen that lim Λ ' ( Λ ; ) = + OO, a n d hence h{x) is monotone for large

values of x It follows from Lemma 1.2 that then the solutions of (1 .1) are

nonoscillatory, contrary to the hypothesis.

The proof of the theorem is complete.

THEOREM 1.3. //lim fa

x h"ι(x)dx = oo and9 for large values of x,

[h'(x)]2 <k2<4,

solutions of ( 1 . 1 ) are oscillatory.
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Under the hypotheses of the theorem,

Γx Γ 1 1 Γx I 1 \ dx 1
lira / Hί(x)dx > lim - λ ' ( * ) - - λ ' ( α ) + / 1 Γ

Ja l ~ I 2 2 Ja \ 4k2lh(x)\
oo,

so that Theorem Lγ implies that solutions of (1.3), and hence that solutions

of (1.1), are oscillatory.

THEOREM 1.4. If h(x)H2(x) is a positive monotone function, a necessary

condition that solutions of (1.1) be oscillatory is that

Γx dx
l i m /

Ja h(x)

dx
lim / ——- = + oo.

)

To prove the theorem note first that it follows from Theorem L2 that not

both the limits

dx
lim / , lim / H2(x)dx

Γx dx Γx
l i m / 7 T ^ ' l i m / ^ ( * -

Ja h \x ) Ja

can be finite. Suppose the conclusion of the theorem were false. Then the

positiveness of H2(x) would imply that the second limit above would also be

finite. From this contradiction we may infer the truth of the theorem.

The following result is useful in the application of the theory.

THEOREM 1.5. // lim h^{x)~L exists, solutions of ( 1 . 1 ) are nonoscil-

latory if L > 2, and oscillatory if L < 2. 3

This theorem is proved by using Sturm's comparison theorem with the aid

of the relation

h(x) = h(a) + [X h'{x)dx.

If L = 2, solutions may or may not be oscillatory depending on h(x), as the

following example shows.

EXAMPLE 1.1. For the equation

„ a2 + 1/4 l o g 2 *
y + y 0

3 Part of this theorem is contained in a theorem of Hartman and Wintner [ l ]
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we have

(α 2

 + l / 4 l o g 2 * ) 1 / 2

and lim h'(x) — 2, whereas the solutions of the equation are oscillatory or not

according a s α 2 > 1/4 or α 2 < 1/4.

COROLLARY 1.5. // lim fa

x h'1 (x)dx = co, and Hι(x) and H2(x) are non-

negative and not identically zero for large values of x, a necessary condition

that solutions of (1.1) be nonos dilatory is lim h'(x) = 2.

If

'% dx

/
Ja
'a h(x

and either

fx
im / Hι(x)dx -

Ja

fx
lim / H2(x)dx = oo,

Ja

application of Theorem Lχ to (1.3) or (1.4), as the case may be, shows that

solutions of (1.1) are oscillatory. Therefore, if solutions of (1.1) are assumed

nonos cillatory,

fx
lim / Hί(x)dx < oo

Ja

and

lim / H2 (x )dx < OD,

Ja

in which case lim h'{x) may be seen to exist. Since

[XHι(x)dx « I A ' ( * ) _ I Λ ' ( O ) + 1/4/"* - i - U-h'\x)Ux,
Ja 2 2 Ja h ( x )
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H2(x)dx = --h'(x) + -h'(a) + 1/4 [X — ! — [4-h'2(x)]dx,
a 2 2 Ja h ( x )

and the limit of the difference of the two integrals exists, lim h'{x) exists.

Moreover, since

0 < / * * [ # , ( * ) + H2(x)]dx,
Ja

lim h'2 (x) < 4. Therefore, by Theorem 1.5, lim hA{x)~29 and the corollary

is establ ished.

An extension of Theorem 1.5 to the more general equation ( 1 ) can be made

if either

Γx dx
lim / = oc

Ja r(x)

or

Γx

lim / p ( x ) dx = oo.
Ja

W e a s s u m e t h a t r ( % ) > 0 a n d p ( x ) 2 l 0 , a n d t h a t Γ ( Λ ) a n d p { x ) a r e f u n c t i o n s

o f c l a s s C w h e n 0 < α < x .

T H E O R E M 1.6. //

rx dx
iim / — - ^ = oo,

Ja r(xt'(x)

and

limr(x)—[r(x)p(x)Tι/2 = L,

dx

the solutions of (1) are oscillatory if L < 2? and nonos dilatory if L > 2.

Transforming equation (1 ) by the substitution

Γx dx
1 = Ja 7ΰ)

leads to the equation
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d2y
+ r{x)p(x)y = 0 .

dt2

The theorem follows immediately upon application of Theorem 1.5 to this equa-

tion. (Note that L < 0 is incompatible with the assumption r(x)p(x) > 0.)

THEOREM 1.7. Ifp(x) is positive for large values of x, and

ίx

lim / p (x)dx = oc

Ja

and

l i m r U ) - p - [ r U ) p ( * ) ] " 1 / 2 = M,
dx

the solutions of (1) are oscillatory if M > — 2 and nonoscillatory if M < — 2.

If γ is a solution of equation (1), z - r(x)y' is a solution of the differential

equation

(1.7)
(x)

Thus the solutions of (1) and those of (1.7) are oscillatory or nonoscillatory

together. Application to equation (1.7) of the procedure used on equation (1)

in the proof of Theorem 1.6 establishes the stated result.

The examples which follow indicate the sensitivity of the results of this

section.

E X A M P L E 1.2. For

(1.8) y " + a2xny = 0,

we note that

Λ ( * ) * .
2 a

To study the equation we distinguish three cases.

Case 1: n > - 2 . Then lim h'{x) = 0, so that the solutions of (1.8) are
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seen to be oscillatory by Theorem 1.5.

Case 2: n < —2. Then lim h'(x) = oo, and Theorem 1.5 can again be applied,

showing the solutions of (1.8) to be nonoscillatory here.

Case 3: n = - 2 . Then lim h'(x)=l/a. The solutions are oscillatory if

a2 > 1/4 and nonoscillatory if a2 < 1/4, by Theorem 1.5. Theorem 1.5 fails

to give any information if a2 - 1/4 (lim h'(x) = 2). In this case, however,

H^x) = 0, and the solutions are nonoscillatory. The equation

y " + l/4*~2y = 0

is thus in a sense a limiting equation.

E X A M P L E 1.3. For

y " + U/4*" 2 + e-*)y = 0,

since lim h'(x) = 2, Theorem 1.5 gives no information about the solutions.

However, for large values of x, Hι(x) < 0 and the solutions are accordingly

nonoscillatory.

EXAMPLE 1.4. Another equation for which lim h'(x) = 2 is

y" + l/4*" 2 log" 1 * ( l + log*)y = 0.

The solutions of this equation are oscillatory by Theorem 1.1 since

ίx

lim / H2(x)dx — oc.
J a

The limitations of the theory of this section are indicated by the fact that

from the theorems which have been given here it is not possible to determine

whether the solutions of the equation in Example 1.1 are oscillatory or not.

2. Counting the zeros of a solution. We consider first the differential

equation (1.1), where h(x) > 0 and of class C on the interval 0 < x < oo.

Let N (α, x) represent the number of zeros of a solution y{x) of (1.1) on the

interval4 (a9 x) where a > 0. This number differs by at most one for all so-

lutions, and hence for the present purpose can be considered as depending only
4In designating intervals it will be convenient to use the following conventions:

[α, b\ means the interval α < % ^ 6 , (α, b\ means the interval a < x < b, [α, 6) means the
interval α<Λ:<6, (α, b) means the interval a < x < b.
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on the differential equation and not on a particular solution.

In the preceding section it was shown that the solutions of equation (1.1)

are oscillatory whenever lim h'(x) < 2, and are nonoscillatory whenever

lim h'(x) > 2. There are equations with oscillatory solutions and others with

nonoscillatory solutions for which lim h'{x)-2. Wiman [ 8 ] has given an

asymptotic formula for N (a, x) when lim h '(x ) = 0:

1 Γx dx
N(a,x) - -

π Ja h(x)

An asymptotic formula is readily found whenever 0 < lim h'{x) < 2, by con-

sidering the set of differential equations

y " + (m2 + 1/4 )*f2y = 0,

m
where m is any real number. For a particular value of m, N (a, x) = — log# + k

(k is a constant), and h'(x) = (m2 + l /4V l / 2 . π

THEOREM 2.1. //, in equation (1.1), lim h'(x) = m < 2,

1/ 1 1 \ 1 / 2

(2.1) N(a,x) ~ l o g * .
π \ m

2 4 /

Any differential equation included in Theorem 2.1 is also included in the

stronger Theorem 2.3 giv^n below.

The Wiman formula can be extended to an equation of the form (1).

THEOREM 2.2. / /

Λx dx Γx
lim

then whenever

Γx dx Γx
im / = oo or lim / p(x)dx = oc,

Ja r{x) Ja

U ) [r{x)p(x)]"ί/2 = 0
dx

the relation

N

holds.

1 Γx I :
(a, x) / V p(x)r' ι (x)dx

π Ja
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If lim fα

x r'1 {X )dx = oo, we apply to (1) the transformation

t = / r~ι (x)dx
Ja

and obtain

d2y
(2.2) — + r(x)p(x)γ = 0.

According to the Wiman theorem, the number of zeros ΛKαj, t) of a solution

y(t) of (2.2) is asymptotically equal to

Γ- Γ [ r ( % ) p U
π Jaγ

provided

lim — [ r ( * ) p ( * ) r l / 2 = 0.

But this is equivalent, under the transformation, to the first half of the theorem.

If

ίx

lim / p (x )dx = co,

we apply the transformation

Γx
s - I p (x)dx

Ja

to equation (1.7), noting that the zeros of a solution of (1) and those of a

solution of (1.7) separate each other, and proceed as above.

An application of a variant of the foregoing method yields a generalization

of the Wiman theorem for equation (1.1).

T H E O R E M 2 . 3 . // the function g{x) = [ x2h'2 (x) - 1 / 4 ] 1 / 2 i s real and

positivey and

(2.3) limχ[g-ι(x)]'= 0 ,
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then

[
π Ja

To prove the theorem we transform (1.1) by the substitution y = x z and

obtain

(2.4) [ * * ' ] ' + g2(x)x'ιz = 0.

The proof of the theorem may now be completed by applying Theorem 2.2 to

equation (2.4).

Theorem 2.3 is more general than the Wiman theorem. Applying the law of

the mean to h" {x), we see that the Wiman condition, lim h'(x) = 0, implies

lim xh~ι {x) - oc, and it is readily verified that whenever the Wiman condition

is satisfied equation (2.3) holds. On the other hand, Theorem 2.3 applies to

differential equations for which the Wiman theorem is not available; e.g., 5

(2.5)
4% log%

It should be observed that Theorem 2.3 includes all equations covered by

Theorem 2.1, whereas Theorem 2.1 is not applicable to equation (2.5) since

lim A'(*) = 2.

Still more refined results are obtainable if instead of using the transformation

which led to equation (2.4), we use the substitution y = qι/2 (x)z, where q(x)

is so chosen that fx q"ι(x)dx diverges more slowly than log x. This suggests

the use of the sequence

x log%, x log% Iog2%, , x log% loĝ Λ;,

(cf. [61).

To show that such a sequence can be used, the following theorem is in-

cluded.

THEOREM 2.4. In the differential equation

(2.6) [ r n _ i ( x ) y ' ] ' + p ( x ) y = 0 ,

L See Example 1.4. This equation was shown to have oscillatory solutions.
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where

ro(x) = x, rn(x) = rnmi{x)loμnx,

if

(2.7) lhn/ ̂ U ) —[rnml{x)p(x)ri/2 = 0 ,

dx

and

( 2 . 8 ) p"Hx)= o t r ^ U ^

( 2 . 9 ) l i m / • „ ( * ) — [ r n ( x ) p ( χ ) ] ' l / 2 = 0 ,

Moreover, (2.9) Joes rioi imply (2.7).

The proof is clear once the limits in question are evaluated.

3. Boundedness of the solutions of a particular equation, ΐn this section we

study the question of boundedness near x = + oo of solutions of the self-adjoint

differential equation

(3.1) [r(x)y'Y- p ( x ) γ = 0 .

We assume that r(x) and p(x) are positive continuous functions of x for x

large, and that r'(x) is continuous.

A CANONICAL FORM. It is useful to develop a canonical form for the

solutions of ( 3 . 1 ) . This form is suggested by the special case

r{x)p(x) = k\

In this instance the general solution of (3.1) may be written

Cιe
v{x) + c2e-v{x\
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where v (x) = k"2 \* p (x )dx, and cι and c2 are arbitrary constants.

Direct computation and an application of the fundamental existence theorem

for systems of differential equations yield the following result.

THEOREM 3.1. The general solution o/(3.1) may be written

cιU(x)eυ{x) + c2u{x)e'v{x),

where u(x) and υ(x) are functions of class C which satisfy the pair of equa-

tions

(3.2) τu*{(ru'Y - pu] = - 1 ,

(3.3) ru2v'= 1.

S i n c e u(x) i s a f u n c t i o n of c l a s s C2 s a t i s f y i n g ( 3 . 2 ) a n d ( 3 . 3 ) , u{x) c a n -

n o t v a n i s h .

THEOREM 3.2. The general solution of (3.2) is given by the relation

(3.4) u2 = ay2 + by2 + 2cyty2

where y and γ are linearly independent solutions of (3.1) and a9 b9 and c are

any constants satisfying the relation

ah = _ Γ 2 + c 2 ,

if k is the constant

r(x)[yι(x)y'2(x) - γ;(x)y2(x)].

To prove the theorem, the solution given by (3.4) can be substituted directly

in (3.2).

BOUNDEDNESS OF SOLUTIONS OF (3.2). We first prove a lemma.

L E M M A 3 . 3 . L e t r ( x ) , r ' { x ) > and p{x) be continuous and r ( x ) p ( x ) be

positive and monotone for large values of x . If u ( x ) is a positive solution of

equation ( 3 . 2 ) , the relations l i m u ( x ) = cc and l i m u ( x ) < oc cannot hold

simultaneously.

Suppose that the hypotheses of the theorem are satisfied when x > α, and
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that lim u(x) = oo and lim u (x) < oc. Since u{x) is of c lass C , there are an

infinite number of relative maximum points and of relative minimum points of

u(x) on (α, oc). We rewrite the equation ( 3 . 2 ) in the form

( 3 . 2 ) ' ( ™ ' ) ' = r-ιu'3(rpu4 - 1 ) .

From the h y p o t h e s e s of the lemma, lim [r(x)p(x)] e x i s t s and i s n o n n e g a t i v e .

If lim [r(x)p(x)~\ > 0, t h e r e e x i s t s a r e l a t i v e maximum p o i n t xM of u (x ) for

which

[r{xM )u'{xM ) ] ' > 0 and r(xM)u'{xM) = 0.

T h i s impl ie s t h a t t h e r e i s a p o s i t i v e number e s u c h t h a t u'{x) > 0 when xy <

x < xM + € , which i s i m p o s s i b l e . If lim [r(x)p(x)] = 0, from equa t ion ( 3 . 2 ) '

we s e e there i s a r e l a t i v e minimum poin t xm of u{x) for which

[r(xm )u'{xm )] ' < 0 and r(xm ) u '(xm ) = 0.

T h i s i m p l i e s tha t t he re i s a p o s i t i v e number e' s u c h t ha t u'(x) < 0 when xm <

x < xm + € ' » wh ich i s i m p o s s i b l e .

T h u s , in any c a s e , the a s s u m p t i o n lim u{x)~ oc and lim u(x) < oc l e a d s

to a c o n t r a d i c t i o n . T h e truth of the lemma f o l l o w s .

THEOREM 3 . 3 . Let r(x), r'(x), and p(x) be continuous^ and r(x)p(x) be

positive and monotone increasing for large values of x. Then every solution

u{x) of equation ( 3 . 2 ) is bounded near x - oc .

We recall that a solution u(x) of equation (3 .2 ) cannot vanish, and note

that if u(x) is a solution, so is — u{x). Let a be a positive real number such

that the hypotheses of the theorem are satisfied when x > a. Suppose then that

u(x) > 0 and let m(x) and M(x) be respectively the minimum value and the

maximum value of u (x ) on [α, x ]. Let xm and x^ be such that

u ( x m ) = m ( x ) , u ( x M ) = M { x ) .

Since

[ r { x ) u ' ( x ) Y - r ( x ) p ( x ) u 2 ( x ) + r ( a ) p ( a ) u 2 ( a )

u 2 ( x ) [ r ( x ) p ( x ) V d x + u ' 2 ( a ) = u'* ( x ) + [r ( a ) u ' ( a ) ] 2 ,f
a
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it follows that

(3.5) [r(xm)u'(xm)]2 + c\ < m'Hx) + r(a)p (a)m2 (x) + c 2 ,

(3.6) [r(xM)u'(xM)]2 + c[2 >M-2(x) + r(a)p(a)M2(x) + c'2,

w h e r e cl9 c2, c[, c 2 ' a re r e a l c o n s t a n t s . We ident i fy two c a s e s a c c o r d i n g a s

[r(x )u'(x ) ] 2 i s b o u n d e d or n o t .

C a s e 1. If [r(x )u'(x)]2 i s b o u n d e d , i t fo l lows from i n e q u a l i t y ( 3 . 6 ) t h a t

M (x ) i s b o u n d e d , and h e n c e t h a t u (x) i s b o u n d e d .

Case 2 . If lim [ r (x )u'(x ) ] 2 = oo, we a s s u m e u {x) i s n o t b o u n d e d . T h e n

lim M(x) = oc a n d lim u{x) = oo

by L e m m a 3 . 3 . But e q u a t i o n ( 3 . 2 ) ' t h e n i m p l i e s t h a t ( r w ' ) ' i s e v e n t u a l l y p o s i -

t ive or lim [r(x)u'(x)] =oo. It fo l lows from i n e q u a l i t y ( 3 . 5 ) t h a t lim m" (%) = oc

and h e n c e t h a t lim m (x ) = 0. T h e n by L e m m a 3 . 3 , u (x) i s b o u n d e d .

We give a c o m p a n i o n r e s u l t when r (x)p (x) i s m o n o t o n e d e c r e a s i n g .

T H E O R E M 3 . 4 . lfr{x), r'{x), and p(x) are continuous, and r(x)p(x) is

positive and monotone decreasing for large values of x, every solution u(x) of

( 3 . 2 ) is bounded away from zero.

The proof of this theorem is similar to that of Theorem 3.3.

The following theorem specializes Theorem 3.3 to the "normal form" of

( i ) .

THEOREM 3.5. If p{x) > 0 and monotone increasing for large values of x,

then the differential equation

( 3 . 7 ) y " - p(x)y = 0

is such that all solutions are monotone, and there is one solution y (x) which

approaches zero as x—> oc. Every solution of the differential equation ( 3 . 7 )

which is linearly independent of y {x) is unbounded on ( 0 , oo ) .

The monotone character of the solutions is apparent from the fact that if

γ{x) is a solution of (3.7), y"(x) is eventually of one sign and hence so is

γ'{x). The general solution can be written
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(3.8) y(x) = c l U ( x ) e v M + c2u (x )e"v{x),

w h e r e u(x) i s p o s i t i v e , a n d u(x) a n d v{x) a r e f u n c t i o n s o f c l a s s C2 s a t i s f y i n g

( 3 . 2 ) a n d ( 3 . 3 ) . B y T h e o r e m 3 . 3 , u(x) i s b o u n d e d , a n d h e n c e [v'(x)]~l i s

b o u n d e d . T h u s v '(x) i s p o s i t i v e a n d b o u n d e d a w a y f r o m z e r o . T h i s i m p l i e s

ϊϊ^u(x)e'vM = limu(x)e-v(χ) = 0.

We set

yγ{x) = u(x)eMx)

and let y2ix) be a positive solution linearly independent of yι(x). Since

and

yί(χ)y2(χ) - y[(χ)y2 (x) = c ,

where c is a nonzero constant,

lim y2 (% ) = oc,

and the theorem follows.

COROLLARY 3 .5 . // lim fα

% r~ι (x)dx = oo, and r(x)p{x) is a positive

monotone increasing function of x for x large, there is one solution y{x) of

equation ( 3 . 1 ) which approaches zero as x—>oo. All solutions linearly in-

dependent ofy^(x) approach + 00 or — oc as x —» 00. The solutions are all mono-

tone.

We let t = fα* r~ι(x)dx. Equation (3.1) becomes

d2y
(3.9) — - r(x)p(x)y = 0 ,

dt2

where r and p are to be considered functions of t. The theorem follows from

Theorem 3.5 applied to equation (3.9).

THEOREM 3.6. If r(χ), r'(χ), and

χ p(x) l r " U ) 1 \r'(x)
) = -i-

r ( x ) 2 r ( x ) 4 l r ( x )
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are continuous, r(x) and P {x) are positive, and P (x) is monotone increasing

for x large, there is one solution yί(x) of equation ( 3 . 1 ) such that

\imrι/2(x)γι(x) = 0 .

For every solution y(x) which is linearly independent of y (x), rι'2(x)y(x)

is not bounded.

To prove this theorem we transform equation (3.1) by means of the substitu-

tion z - r 1 ' 2 {x)y. The resulting differential equation is

z " - P(x)z = 0 .

Application of Theorem 3.5 to this equation yields the theorem.

E X A M P L E 3.1. For

{x2y')'-x2y = 0 ,

all solutions of the corresponding equation

x2u3[(x2u')'- x2u] = - 1

are bounded s ince [r(x)p(x)]'> 0 (Theorem 3.3). The general solution of the

given equation is

x ι

c2e~x).

EXAMPLE 3.2. For the equation

/ 1 \ ' x2-2

Ί- y
X

[r(x)p(x)]'< 0. By Theorem 3.4, therefore, all solutions of

— u ' \ ( * 2 _ 2)u
2

are bounded away from zero. Moreover, since

p(x) l r " U ) r

r(x) 2 r(x) 4

Ήx)
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by T h e o r e m 3.6 t h e r e i s a s o l u t i o n γ (x) of the g iven e q u a t i o n s u c h t h a t

lim x" y (x) = 0,

and for every linearly independent solution y {x ),

lim x~ι y (x ) = oo .

The general solution of this equation is

c χex

EXAMPLE 3.3. Consider the differential equation

y"- L + JL)y = 0.
2 /

By Theorem 3.5, one solution of this equation approaches zero, and all solutions

which are linearly independent of this solution become infinite. The general

solution of the equation is

cιX'
ι/2eχ2/2 + c2x'ι/2e'χ2/2.

THE RICCATI EQUATION ASSOCIATED WITH EQUATION (3.1). Since

the solutions of equation (3.1) are nonoscillatory, the transformation w = r(x)y'/γ

applied to this equation leads to the relationship

(3.10) M / = p { x ) - r'ι{x)w2,

which is valid for each solution y of (3.1) when x is sufficiently large. The

differential equation (3.10) can be used to obtain additional information on the

question of boundedness of solutions of (3.1).

THEOREM 3.7. //lim fx r~ι(x)dx < oo and lim fx p (x)dx < oo, all solu-

tions of (3.1) are bounded^ and there is a positive constant M such that

| y ' U ) | < Mfι(χ).

It i s suff icient to c o n s i d e r only p o s i t i v e s o l u t i o n s of equat ion ( 3 . 1 ) . Ac-

cordingly, we s u p p o s e y(x) i s any so lu t ion of ( 3 . 1 ) which i s p o s i t i v e for x

large, and le t b be a p o s i t i v e number such t h a t both y(x) and y'(x) are of one
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sign when x > b. Equation (3.10) is then valid for such values of x, and w(x)

is of one sign. If w(x) < 0 when x > 6, y{x) is bounded. If w(x) > 0, when

x > b it follows from equation (3.10) that

'(x) < p(x)

and

Γx
w(x) < w(b) + I p(x)dx < K,

J b

where K is a constant. Hence

y'<*> . „.!

y(«)
Kr'ι(x)

and

log
γ(x)

y(b)

•% dx
< Kl < oo.

b r(x)

Thus, y (x ) is bounded.

To prove the last statement of the theorem we apply the first part to the

equation

for which z =

~[p-ι(x)z'V-r-ι(x)z = 0 ,

' is a solution if γ is a solution of (3.1).

Examples 3.1 and 3.2 show that the hypotheses of Theorem 3.7 cannot be

weakened to the convergence of only one of the integrals

dxr °o dx r oo

/ —rτ> p(x)dx.
J a r(x) Ja

4. Boundedness of nonoscillatory solutions of an equation of the form (1) .

In this section we study the boundedness of solutions of an equation of the form

( 1 ) when its solutions are nonoscillatory and both r(x) and p(x) are positive

and continuous functions of x for large values of x. 6 It is known that a necessary

condition for the solutions of ( 1 ) to be nonoscillatory is that not both

^Sections 3 and 4 together discuss boundedness of nonoscillatory solutions whenever
p(x) is eventually one sign, for p(x) negative and positive respectively. The case
where p (x) is not of one sign is not studied in this paper.
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*x dx
lim

and

lim

Γx dx
im /

Ja r(x'

im / p(x)dx = cc.
Ja

If r{x)p{x) is a monotone function, the convergence of both of the aforemen-

tioned integrals is a sufficient condition that (1) have nonoscillatory solutions

[ 5 ] .

We state the principal theorem:

THEOREM 4.1. A necessary and sufficient condition that an equation of

the form (1) with nonoscillatory solutions have all solutions bounded near

x = oo is that

Γx dx
lim I ——- < OD.

Ja r{x)

Whenever the solutions of equation ( 1 ) are nonoscillatory, the transformation

to (x ) - r(x)y'/y leads to the Riccati equation

(4.1) i o ' = -p(x) -
w2

which is valid for each solution y(x) of ( 1 ) when x is sufficiently large.

Let y (x)be a nonoscillatory solution of (1) such that γ{x) > 0 and y'(x) £ 0

whenever x > a > 0, where a has been chosen sufficiently large that p(x) > 0

when x > a. It is sufficient to consider only solutions which are eventually

positive since the negative of a solution of ( 1 ) is also a solution. Then if

x > α, equation (4 .1) is valid as noted above, and

w'(x) 1

Hence,

1 Γx dx
(4.2) > /

w (x ) J a r ( x )
+ •

J ( x ) J a r { x ) w ( a )
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We assume that

fx dx
lim / --—- < oo.

Ja r(x)

lίw(x) > 0 ,

y'U) 1 Γ fx dx
< /

y ( x ) r ( x ) i J a r ( x ) w ( a ) l

by equation (4.2), so that

I fx dx 1
logy (x ) < log / — — + — — + c,

\ J a r y x ) w y a )

where c is a constant. Accordingly, y (x) is bounded. If w (x) < 0, then y ' ( # ) < 0,

and y(x) is bounded. Thus, whenever

fx dx
lim / -—-• < oc,

Jα Γ ( Λ )

all solutions of (1) are bounded.

If lim f* r"ι{x )dx = oo, it follows from equations (4.1) and (4.2) that w (x)

is a positive, monotone decreasing function with lim w(x) = 0. Therefore,

r(x)y'(x)
(4.3) lim — — = 0

y\χ)

for all solutions y(x) of ( 1 ) . Let y.(x) and y (x ) be any two linearly inde-

pendent solutions of ( 1 ) which are positive for x large. From equation (4.3),

r(x)y/(x) r{x)y2'{x)

lim = 0, lim = 0.
yx(x) y2(χ)

If c is the nonzero constant such that

r(χ) ίyi'(χ)y2(χ) - yι(χ)y2(χ)'\ = c,

then

r(x)yι'(x) r{x)y2{x) c

(4.4) = — — — — .
yγ(χ) y2(χ) yί(χ)y2(χ)
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The l imit of the left s ide of the equat ion ( 4 . 4 ) i s zero. Therefore, s i n c e al l

pos i t ive s o l u t i o n s of ( 1 ) are monotone i n c r e a s i n g , a t l e a s t one of y{(x) and

y2 (x) becomes inf inite, and if

Γx dx
lim / - — = oo,

Ja r(x)

not all of the solutions of (1) are bounded.

T H E O R E M 4 . 2 . Solutions of ( 1 ) are nonoscillatory and bounded near x = oo

if r(x)p (x) is monotone decreasing and l i m fj° r"ι(x)dx < oc, or if r(x)p (x)

is monotone increasing and l i m fx p(x)dx < oo.

A solution of (1) can be written in the canonical form u {x )sin v (x ), where

u(x) and v(x) are functions of class C2 satisfying [$] , the pair of equations

ru3 [(ru')' + pu] = 1 , ru2v' = 1 .

If r (x)p (x) i s m o n o t o n e d e c r e a s i n g , t h e r e e x i s t s [ 5 ] a p o s i t i v e number m s u c h

t h a t u(x) > m. S i n c e lim f* r" (x)dx < oo,

dx ~\ Γ x dx
l i m v(x) = l i m | v (a) + / | < v (a) + ra~2lim / < o o .

~\x)
[ Γx dx 1 Γx i

v(a) + I < v (a) + m" l i m / —
Jo r(x)u2{x)\ J* '

T h u s , s o l u t i o n s of ( 1 ) are n o n o s c i l l a t o r y . Λn a p p l i c a t i o n of Theorem 4.1 now

y i e l d s the first par t of the theorem.

The proof of the s e c o n d half of the theorem i s obtained by c o n s i d e r i n g

equat ion ( 1 . 7 ) . If y{x) is a s o l u t i o n of ( 1 ) , r(x)y'(x) i s a so lu t ion of ( 1 . 7 ) .

But by the p r e c e d i n g paragraph, r(x)y'(x) i s n o n o s c i l l a t o r y and bounded when

r"ι(x)p"ι(x) i s monotone d e c r e a s i n g and lim f* p{x)dx < oo. There fore , y{x)

i s n o n o s c i l l a t o r y . T h a t y(x) i s bounded follows from a theorem of L e i g h t o n [ 3 ] .

From equat ion ( 4 . 1 ) it i s ev ident t h a t whenever lim f* p(x)dx = oc, w (x )

i s negat ive for every so lut ion y{x) of ( 1 ) . T h i s remark, together with the fact

noted in the proof of Theorem 4.1 that , when lim f* r" (x)dx~cc, w(x) i s

p o s i t i v e for every solut ion y(x) of ( 1 ) , proves the following theorem:

T H E O R E M 4 . 3 . / / l i m fα

x p(x)dx = oo, all nonoscillatory solutions y(x)

of (1) have the property that y2(x) is monotone decreasing, / / l i m f* r~ι(x)dx = co,

all nonoscillatory solutions have the property that y (x) is monotone increasing.

It should be observed that the restriction to nonoscillatory solutions in
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Theorem 4.1 is not superfluous. This is illustrated by the following example.

EXAMPLE 4.1. The differential equation

(xy'Y + -y = 0
x

has the general solution

y (x) = cγ sin log | x I + c^ cos log \x\

All solutions of the equation are bounded near x = oo, whereas

Γx dx
im / = lim log

Ja r{x)
l im

a
= o c .

From the theorems of this section it is evident that whenever the so-called

"normal form" of equation ( 1 ) with r(x) = 1 has nonoscillatory solutions, these

solutions cannot al l be bounded.

5. Remarks on a theorem of Leighton. We recall that in Theorem L t Leighton

gives, as a sufficient condition for solutions of ( 1 ) to be oscillatory, that

Cx dx fx
lim / = oo, lim / p {x)dx = oo.

Ja r(x) Ja

In the paper [6] containing this theorem there was established the existence of

a sequence of tests for oscillation, each more sensitive than the preceding.

This sequence was obtained by successively transforming an equation of the

form (1) into an equation

[ r B ( * ) y ' ] ' + Pn(x)y = 0,

where

ro(x) = x, rn(x) = r Λ β l (

It might be asked whether there is some positive function R(x) with the property

that whenever (1) is transformed into an equation

[R(x)y'V+P(x)y- 0 ,

the relations
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*x dx
lim

fx dx Γx
im I = oo, lim / P \x)dx

Ja R(x) Ja

would give a necessary as well as a sufficient condition for oscillation. That

there is no such function is shown by the following theorem.

THEOREM 5.1. // r(x) is a positive continuous function such that

Γx
lim I r~ι(x )dx = oc,

Ja

there exists a positive continuous function p(x) such that lim f* p(x)dx < oc,

and solutions of the differential equation

lr(x)y'V+p(x)y - 0

are oscillatory.

We set

U ) = l fi + [* d% 1
r(x) I Ja r(x)\

2

The truth of the theorem then follows from Theorem 1.6.
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A NOTE ON THE BANACH SPACES OF CALKIN AND MORREY

E. H. ROTHE

1. Introduction. Let G be a bounded domain in an rc-dimensional real Eucli-

dean space, and for α > 1, let L α be the space of real-valued functions f such that

/ α i s summable over G. The class 5βα as defined by Calkin and Morrey [2; 6; 7]

is then the class of functions which together with their first "generalized de-

rivatives" [2, Def. 3.4; 7, p. 4] are in Lα. With a suitable norm, ^5α becomes a

Banach space [2, p. 185]. Morrey proved [7, p. 8] that in this Banach space the

solid sphere V of radius K and with the origin as center is "weakly compact" 1 ).

Using this fact together with lower semicontinuity theorems, he obtained very

general existence theorems for minima of multiple integrals2).

The object of the present note is to point out that some of the results in this

direction may be obtained by the use of general Banach space theory: the start-

ing point is the simple remark that the Banach space ^ α i s reflexive ( § 2 ) . The

weak compactness of the solid sphere V is, by Alaoglu's theorem [ l ] , a corol-

lary to this remark [ § 3 l It now follows almost immediately that a real-valued

function /(%), which is "weakly" lower semicontinuous, takes a minimum in V

(Theorem 3.1). In § 4 some sufficient conditions for weak lower semicontinuity

are given. Finally, as an example of the applicability of these considerations to

calculus of variation problems, a theorem on the existence of minima of multiple

integrals is given which is related to, but not identical with, the results of

Morrey referred to at the end of the previous paragraph ( § 5).

2. The uniform convexity and reflexivity of the space 5βα. Let t denote the

point with coordinates ti, t2, , ^ of the domain G of § 1. Let / ( t ) = /^°' (t)

be an element of 5βα, and f^1' ( t) (i = 1, 2, , n) its first generalized deriva-

tive with respect to t(. Let | | / | | be defined by the equation

(2.1) | | / | r - f Σ, \f{i)(t)\adt.

See [ 7 ] for Morrey's definition of weak compactness. The weak topology used in
the present paper is defined in § 3.

See [7, Chap. Ill], where also the relation to the results of Tonelli is discussed.

Received April 28, 1952.
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We then have:

LEMMA 2.1 . Let a > 1. IFî Λ ^ e τz6>/7?z defined by (2.1) the space of classes

of functions of ^ equivalent under this norm is a Banach space3.

From now on ^ α wil l always denote the Banach space of Lemma 2.1, and it

will always be supposed that OC > l

THEOREM 2,1. The space §ais uniformly convex4.

Proof. Let La be the Banach space of classes of equivalent functions /

vvhich are defined in G and for which

(2,2)
JG

exists. La is uniformly convex [3,p.403, Corollary], Since a finite "uniformly con-

vex" direct product of uniformly convex spaces is uniformly convex [ 3 , p. 397-

398] it follows that the direct product of La taken (n + 1) times by itself, that is,

the space $~ of {n + l)-tuples fOff19 9fn (/vCί/α; v = 0,1, n) with the norm

1 /a

is likewise uniformly convex. This proves the theorem since 5βαis obviously a

linear subspace of 5βα.

Since a uniformly convex space is reflexive [5; 8 I, we have the following

corollary to Theorem 2.1.

C O R O L L A R Y . For α > 1, $ α i s reflexive.

3. The compactness of the sphere F. We recall first a few well-known defini-

tions and facts. Let E be an arbitrary Banach space in the strong topology, that

is in the topology induced by the norm of the space. Let K be a positive number,

and V be the solid sphere | | x \\ < K of E. By Vκ we denote then the topological

space whose elements are those of V and whose topology is induced by the

following neighborhood definition: A neighborhood of the point χ0 of Vκ is de-

termined by a positive number e and a finite number of linear continuous func-

tionals lt (x), ••• , ln(x), and consists of all points x of Vκ for which

3See [2, p.185]. The definition of the norm given by Calkin is slightly different
from the one used in the present paper. However, the proof of Lemma 2.1 is essentially
unaltered.

4 F o r the definition of the term "uniformly convex" s e e [ 3 ]
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|Z U ) - li(x0)\ < £ (i = 1, 2, . . . , n).

If E is the conjugate space of another Banach space F, E = F*, we denote

by V*κ the topological space whose elements are again those of F, but whose

topology is induced by the following neighborhood definition: A neighborhood of

a point x0 of V^ is determined by a positive number € and a finite number of

elements fί9 , fn of F, and consists of all points x of Vχ for which

A well-known theorem of Alaoglu [ 1, Theorem 1.3] states that F^ is compact.

Since for a reflexive space we have Vκ = V£, we obtain:

LEMMA 3.1. If E is reflexive then Vκ is compact.

Since a strongly closed convex subset of V is also closed in the weak to-

pology (that is, in the topology of Vκ ) we have as a consequence of Lemma 3.1

the following:

LEMMA 3.2. Let C be a convex subset of V which is closed in the strong to-

pology, and Cκ the same set in the topology of Vκ. Then Cκ is compact.

An easy consequence of Lemma 3.2 is:

LEMMA 3.3. Let C and Cκ have the same meaning as in Lemma 3.2, and let

I(x) be a real-valued function which is lower semi continuous in C^. Then I (x)

reaches a minimum in some point of C. 5

The preceding lemmas, together with the corollary to Theorem 2.1, now yield

the main result of the present section:

THEOREM 3.1. Let C be a bounded closed convex subset of $βα. Let the

norms of the elements of C be bounded by the positive constant K. Let V and Vκ

have the same meaning as in the first paragraph of this section, with E replaced

by ^Q, and denote the set C in the topology of Vκ by Cκ. Then Cκ is compact,

and a real-valued function I (x), which is lower semi continuous in Cκ, reaches a

minimum in C.

4. Sufficient conditions for lower semicontinuity. We prove now:

THEOREM 4.1. Let C and Cκ have the same meaning as in Theorem 3.1,

*For a proof that Lemma 3.2 implies Lemma 3.3 see [9, p. 423-424] .
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and let I(x) be a real-valued function defined on C. Then the following condition

is sufficient for the lower semi continuity of I{x) on C^ (and therefore, by

Theorem 3 . 1 , for the existence of a minimum of l(x) on C): to each x0 £ C

there exists a bounded linear functional l(x) such that

(4.1) / ( * ) - / ( * 0 ) > / ( * - * 0 )

for all x €1 C,

Proof. By definition of the lower semicontinuity we have to prove: to any

given 6 > 0 there exists a neighborhood N {x0 ) of x0 in Vκ such that

(4.2) /(*) - / U o ) > - e

for all x in the intersection, N (x0) n C. But by (4.1) the inequality (4.2) will

certainly be satisfied if we choose

N(XQ) = {X\ \l(x) - Z U o ) | < € , x £ Vκ\.

THEOREM 4.2 . With the same notations as in Theorem 4 .1 let I(x) have

first and second order Frέchet differentials D(x9 h) and D2 (x, A, k) at every

point x of C. Moreover, let

(4.3) D2(χ,h,h) > 0 for x £ C .

Then I(x) is lower semi continuous in Cκ.

Proof, From the Taylor expansion [4, Theorem 5],

/ ( * „ + A ) - / ( * „ ) - D ( x . , h ) + - f D 2 ( x + t h , h , h ) d t ,
o o υ 2 Jo

together with (4.3), we obtain

!(χ0 + h) - / U o ) > D(xQ,h).

This inequality shows that the assumptions of Theorem 4.1 are satisfied with

I ( x - xQ ) = ϋ ( x Q , x - xQ ) .

5. An a p p l i c a t i o n to a mul t ip le i n t e g r a l v a r i a t i o n a l problem. L e t G be the

domain of § 1 with p o i n t s t = ( t ί 9 , tn ). F o r e a c h μ = 1, , m l e t zμ{ t) £

^5α and l e t Π α be the s p a c e of c l a s s e s of e q u i v a l e n t m-tuples z = ( zί{t)9 ••• ,

zm ( t ) ) with the norm
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(5.1) Σ Σ
dz,

dt-.
dt

LEMMA 5.1. Theorems 3.1 and 4.1 still hold if^ais replaced by Πα.

This lemma is obvious from the proofs of the theorems in question.

T H E O R E M 5.1. Let

f{t,z,p) = / ( V , ί Λ . * i ' V P l l ' ' P m J

be a real-valued function of the indicated variables with the following proper-

ties:

(1) f is defined for ί = ( ί p , ί n ) C G and for all values of the real vari-

bles zμ, pμv (μ - 1, , m; v - 1, , n), and for the same domain of the vari-

bles df/dtV9 df/dzμ, and df/dpμv are supposed to exist;

the functions of t obtained by replacing z by z (t)

e in L β, where β is defim

l/β + l/α = 1;

(2) ifzμ(t)€'%

and p by dz Jdtv in f, df/θz , and df/dp are in Lβ, where β is defined by

(3) e( ί , z, z°,p,p°) I 0,

where by. definition

e{t,z,zo,p,p°) -f(t,z,p) - / ( t , Λ p ° )

- Σ f,

Under these assumptions^ if

ίίίHz) =

ίAere exists a

t l 9 rft,
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in the sphere

(5.2) | | 2 | | < K

such that

/ U ) £ /

for all z in the sphere (5.2).

Proof. By Lemma 5.1 and Theorem 3.1, it will be sufficient to prove that

I(z) is lower semicontinuous at each point z° of the sphere (5.2). To such z°

we define the linear functional I (ζ) of

by setting
m n dζ I

- — \ dt,- f m

Σ
V = I

where the symbol ( ) indicates that the arguments are

t l , . . . , tn, z\{t), . . . , z°m{t), dz\/dtιt" , dz°Jdtn,

and where

T h e a s s u m p t i o n ( 2 ) a s s u r e s u s t h a t t h e l i n e a r f u n c t i o n a l l(ζ) i s b o u n d e d . F r o m

t h e d e f i n i t i o n oίl(ζ) a n d t h e a s s u m p t i o n ( 3 ) w e o b t a i n

H z ) - I ( z ° ) = l(z-z°) + e > Uz - z°).

Thus the assumption (4.1) of Theorem 4.1 is satisfied, and the theorem to be

proved follows from Theorem 4.1 in conjunction with Lemma 5.1.
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A GENERALIZATION OF THE CENTRAL ELEMENTS
OF A GROUP

E U G E N E SCHENKMAN

1. Introduction. If a and g are elements of a group G, we shall denote by

or a(g) the element g~ιag, and then for n = 2, 3, 4, define a^Hg) =

α ( α ( π - ι > ( g ) ) .

If for some τi and all g C G, a^n'(g) = a then α will be called weakly central

of order n or simply weakly central. Thus the center elements of G are weakly

central of order 1.

As usual, let

[g, a] = a~ι g~ι ag = a~ι . a{g);

then it can readily be verified by induction on n that

n~\ times n-i times

a-1 . a{n)(g) = a~ι . [α U , g] . I""1 a . [ a . . . [α, g] . . . ]

Thus a^n' (g ) = α is equivalent to

where e is the identity of G. It follows that if o is an element of a normal nilpo-

tent finite subgroup of G then a is weakly central. Another easy consequence of

the definition is that if a is weakly central in G then a is its own normalizer in

G if and only if { a } ~ G; here \ a\ denotes the subgroup generated by α. It should

also be noted that if a is weakly centra] in G, then a is weakly central in G,

where a is the image of a under a homomorphism which takes G onto G.
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2. Theorems. We shall establish the following results.

THEOREM 1. // in a locally finite group G all elements whose orders are

powers of a certain prime p are weakly central then they comprise a normal sub-

group of G.

An immediate consequence is the following analogue to Engel's Theorem for

Lie algebras.

COROLLARY 1. // all the elements of a locally finite group are weakly

central then the group is the direct product of p- groups.

THEOREM 2. If G is a locally finite solvable group then the weakly central

elements comprise a normal subgroup of G which is the direct product of p-

groups.

This result can also be stated as follows for finite groups.

THEOREM 2a. If G is a finite solvable group then an element is weakly

central if and only if it is in the nil radical of the group. Here the nil radical

refers to the largest of all the nilpotent normal sub group s-nilpotent in the sense

that Hn = e, where Hn = [Hn~\ H] (cf. [ 1, pp. 98-102]).

It has not been determined whether solvability must necessarily be assumed

for Theorems 2 and 2a to be true.

3. Proof of Theorem 1. We shall first consider the case where G is finite,

and use induction on the order of G. Let p be the prime such that all elements of

G whose orders are a power of p are weakly central. We must show that if So is

a p-Sylow subgroup of G then So is the only p-Sylow subgroup, and hence is nor-

mal in G. We do this by obtaining a contradiction in case So is not normal in G.

Let Sl9 ••• , S^ be the conjugate Sylow subgroups of S o , and suppose first that

Si n So — { e \ for i = 1, , k. If N £ G is the normalizer of S o , then every ele-

ment y of G not in N transform So into one of the Sj. But then for e £ a G S o we

have a(y) (£ S o and consequently a(y)Q N, since

/V n Sj = So n Sj = { e },

and hence, for all positive integers n, crn' (y) ζμ So. It follows that a™ (y) ^ a

for all rc, and a is not weakly central, contrary to hypothesis.

Accordingly we need only consider the case where S; n S o = { e \ for some i.

Let D be a maximal intersection of two different Sylow subgroups. Then the nor-
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malizer Np of D in G must have more than one p-Sylow subgroup [2, Chap. IV,

Theorem 7] . It follows by our induction assumption that No must equal G; for

if Nβ were properly contained in G it would have but one p-Sylow subgroup, con-

trary to the above. But now if Np = G, then D is normal in G, and the order of

G/D is less than that of G; consequently, again by the induction assumption,

G/D has but one p-Sylow subgroup. On the other hand NQ = G has more than one

p-Sylow subgroup containing Z), and therefore so also has G/D; this again leads

us to a contradiction. Thus in this case So must be normal in G as the theorem

asserts.

REMARK The above proof shows that a weakly central element of prime

power order must lie in the intersection of at least 2 p-Sylow subgroups if the

number of p-Sylow subgroups is greater than one.

We return to the proof of Theorem 1 and consider the case where G is locally

finite. This means that any finite set of elements of G generates a finite sub-

group of G. Now we are assuming that the elements belonging to a certain prime

p are weakly central, and wish to show that they comprise a normal subgroup of

G. It is obvious that they form an invariant set, and hence they generate a nor-

mal subgroup of G. Furthermore, the product of any two elements whose orders

are powers of p has also order a power of p because of the local finiteness of G

and because the theorem is true for finite groups. It follows that the elements

whose orders are powers of p actually comprise the group they generate. This

completes the proof of Theorem 1.

4. Proof of Theorem Za. From a previous remark we know that if an element

is in the nil radical then it is weakly central. We must show conversely that if an

element is weakly central then it is in the nil radical. The proof will be made by

induction on the order of G. If the order is one then the theorem is obviously

true. We now assume the theorem true for groups whose orders are less than k,

and let G be a group of order k. Let N be the nil radical, and g a weakly central

element of G. If {g9 N \ φ G then gN is weakly central in G//V, and hence by the

induction assumption gN is contained in a proper normal subgroup M/N of G/N;

(if the nil radical of G/N is not a proper subgroup of G/N then G/N is nilpotent

and the statement is true since every proper subgroup of a finite nilpotent group

is contained in a proper normal subgroup). It follows that g and N are contained

in a proper normal subgroup M of G, and therefore by the induction assumption g

is in the nil radical NM oί M; but NM is contained in N since the nil radical is

a characteristic subgroup ( cf. [ 1, p. 102]), and hence /VM is a normal nilpotent

subgroup of G; therefore when { g, N \ Φ- G then g C /V as we wished to show.
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We now consider the case where { g, N i = G. Let Z be the center of N; then

Z is normal in G. Now if z is any element of Z such that { g, z \ Φ G, then by the

induction assumption { g, z } is nilpotent and hence has a center Q. But ί g, z } n Z

is normal in { g, z \ since Z is normal in G, and therefore

[2, Chap. IV, Theorem 14]. But then, if

H = Q n ί g, z \ n Z ,

then // is in the center of G since G = } g, N\, and hence // is normal in G. It

follows by the induction assumption that G/H is nilpotent, whence, for some k,

G C H. But since // is in the center of G,

Gk+ι = [Gk,G] c[H,G] = U ί ,

and therefore G is nilpotent; G = /V, and g £ /V as was to be shown.

Accordingly we need now only consider the case where { g, z \ = G for every

z ζl Z. Since g is weakly central then {g} cannot be its own normalizer in G;

that is, { g\ is normal in R9 where R φ. { g \. On the other hand, since G = } g9 Z !,

it follows that # or a subgroup of /? is of the form { gs z \ = G, so that R = G.

Hence g is in a cyclic normal subgroup of G, and consequently is in the nil

radical /V as we wished to show. This completes the proof of Theorem 2 a.

5. Proof of Theorem 2. We first note that the product of two weakly central

elements is weakly central since they generate a finite group in which Theorem

2a is applicable. Thus the weakly central elements comprise a subgroup which

is obviously normal. It is the direct product of p-groups by Corollary 1.
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A NOTE ON THE DIMENSION THEORY OF RINGS

A. SEIDENBERG

1. Introduction. Let 0 be an integral domain. If in 0 there is a proper chain

( 0 ) c P t c P 2 c . . . c P n c ( 1 )

of prime ideals, but no such chain

( 0 ) c P [ c . . . c P ' n + ι c ( l ) ,

then 0 will be said to be n-dimensionaL Let 0 be of dimension n: the question

is whether the polynomial ring O[%] is necessarily (n+ 1)-dimensional. Here,

as throughout, x is an indeterminate.

By an F-ring we shall mean a 1-dimensional ring 0 such that O[x] is not 2-

dimensional (i. e., the proposed assertion that O[x] is necessarily 2-<iimensional

fails). Given an F-ring, we try by definite constructions to pass to a larger F-

ring having the same quotient field: this restricts the class of rings in which to

look for an F-ring—a priori we do not know they exist. In this way we also come

(in Theorem 8 below) to a complete characterization of F-rings: if 0 is 1-di-

mensional, then O[x] is 2-dimensional if and only if every quotient ring of 0,

the integral closure of 0, is a valuation ring. The rings 0 thus coincide (for di-

mension 1) with Krull's Multiplikationsringe [5; p. 554].

2. Preliminary results. The first five theorems are of a preparatory character,

and the proofs offer no difficulties.

THEOREM 1. Let 0 be an arbitrary commutative ring with 1, P i9 P2, P3 dis-

tinct ideals in 0[x], If Pγ C P2 C P3, and P2 and P3 are prime ideals, then Pί9

D2> P3 cannot have the same contraction to 0.

n 0 = P2 n 0 = p,

505

Proof. Let
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and consider

O[X]/P2 = δ[χ],

where x is the residue of x and 0 2ί 0/p. Since

O[χ] . P c Pχ c P 2 ,

~x is algebraic over the integral domain 0. Let P 3 be the image of P3 then P 3 Φ-

( 0 ) ; but also P 3 n 0 £ ( 0 ) . In fact, let y C P 3 , y / 0 . Then

c o yn + cιyn~ι +•••+ c n = o

for some Cj C 0 , c Λ £ 0; and c w C P3 n 0 . Hence also P 3 n 0 / p,

COROLLARY. IfOis 1-dimensional, and P 1 ? P 2 , P 3 are distinct prime ideals

inθ[x] different from ( 0 ) wiίA P t C P 2 C P 3 , ίAezi P t n 0 = ( 0 ) , P 2 i s ίAe e^;-

tension of its contraction to 0, and P3 is maximal.

Proof. If ? ! n 0 ^ ( 0 ) , then P 1 ? P 2 , P 3 would all have to contract to the

same maximal ideal in 0. So

? t n 0 = ( 0 ) and ? 2 n 0 = p / ( 0 ) .

Were O [ # ] p C P 2 properly, then, since O [ # ] p is prime,

O[x] . p n 0 = ( 0 ) ,

whereas

O[x] p n 0 = p .

So O[%] p = P 2 . Were P 3 not maximal, we would have P 2 n 0 - ( 0 ) .

For the foregoing theorem, see also [ 4 ; Th. 10, p. 375] .

THEOREM 2. If 0 is n-dimensίonal, then 0[x] is at least (n + 1 )~dimensional

and at most ( 2n + 1) - dimensional.

Proof. Let

( 0 ) C Pι C P 2 C . . . C ? „ C ( 1 )

be a proper chain of prime ideals inO. Then

( 0 ) C O[x] Pι C O[x] . F 2 C •.. C O[x] P n C ( 1 )
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is also a proper chain of prime ideals in O[#] ; and O[x] Pn is not maximal,

since, for example,

0[x] Pn C (O[x] . Pn, x) C ( 1 ) .

(Here, as throughout, we use the symbol C for proper inclusion.) Hence O[x] is

at least {n + 1)-dimensional. Let now 0 be rc-dimensional, and consider a chain

( 0 ) c P [ c . . . c P'm c ( l )

of prime ideals in O[#] Let there be 5 distinct ideals among the contractions

( 0 ) n 0 , P[ n O , . . ,P'mnO.

T h e n

m + l < 2 s < 2 ( r c + l ) , s o m < 2n+ I.

THEOREM 3. If 0 is n-dimensional but 0[x] is not (n+ 1)-dimensional,

then for at least one minimal prime ideal p of 0 either the quotient ring 0p is an

F-ring or 0/p is m-dimensional and 0/p[x] is not (m + 1)-dimensional, and

m < n.

Proof. Suppose that for some minimal prime ideal p of 0, O[x] p is not

minimal inO[x]°; that is, there exists a prime ideal P such that

(0) C P C 0[x] p .

Then

(0) C Op[x] . P C Op[x] . p

is also a chain of prime ideals in 0p[x], as one easily verifies. Since Op[x] p

is not maximal, this shows that 0p is an i^-ring. We pass then to the case that

O[x] . p is minimal for every minimal prime ideal p of 0. Let

be a chain of prime ideals in O[Λ;] If

p n O = p ^ ( 0 ) ,

then 0/p is at most (n — 1)-dimensional, and 0 [ # ] / 0 [ # ] p is a polynomial

ring in one variable over 0/p and is at least {n + 1)-dimensional. So we must

suppose
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P[ n O = ( 0 ) ;

but then

P'2 n 0 = p2 £ ( 0 ) ;

let p be a minimal prime ideal contained in p 2 —such exists since 0 is finite di-

mensional; then O[ x] p C P , properly, since G[ x] p is minimal but P2 is not.

Replacing P hy O[x] p, we come back to a previous case, and the proof is

complete.

COROLLARY. If 0 is an F-ring, then so is some quotient ring of 0.

The foregoing theorem shows that if for some n there exists a ring 0 which is

zz-dimensional, while 0 [ x l is not (n + 1)-dimensional, then there exist /-rings.

Thus we may provisionally confine our attention to 1-dimensiona] rings 0.

THEOREM 4. ifO is l-dimensional, and 0 is a valuation ring, then 0[x] is

2-dimensionaL

Proof. Let p be a proper prime ideal of 0, and let

(0) C P C 0[x] p ,

where P is prime. Let

fix) C P, f(χ) jί 0.

Then one can factor out from fix) a coefficient of least value, that is, write

/(*)= cg{x),

where c C p, and g{x) has at least one coefficient equal to 1; in particular,

then g(x) <£ 0[x] . p; hence c C P. So P n 0 £ (0), whence

P n 0 = p and P = 0 [ * ] . p .

This proves thatθ[%] is 2-dimensional (see Corollary to Theorem 1).

Theorem 4 restricts the size of an F-ring, since a maximal ring is a valua-

tion ring. The following theorem reduces the considerations to integrally closed

rings.

THEOREM 5. Let 0 be the integral closure of the integral domain 0. Then 0

is an F-ring if and only if 0 is an F-ring.
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Proof. Let R be an integral domain integrally dependent on 0; a basic theo-

em of Krull (see, for example, [2; Th. 4, p.254j) says that if P t C P2

 a r e prime

ideals in R, then they contract to distinct prime ideals in 0; hence dim ll < dim 0.

Another theorem (loc. cit., p. 254) says that if p χ C p 2 are prime ideals in 0, and

Pj is a prime ideal in R contracting to p 1 ? then there exists a prime ideal P 2 ,

P2 3 P i9 contracting to p 2 . Hence dim R > dim 0, and so dim R = dimO. Hence 0

is 1-dimensional if and only if 0 is 1-dimensional, and 0[%] is 2-dimensional if

and only if 0[x] is 2-dimensional.

Thus if there exist /'-rings, then there exist integrally closed F-rings, and,

taking an appropriate quotient ring, we see that there would exist an integrally

closed ^-ring 0 having just one proper prime ideal. In view of Theorem 4 (and

the close association of integrally closed rings with valuation rings) one may

ask whether an integrally closed ring with only one proper prime ideal is neces-

sarily a valuation ring. Were it so, there would be no F-rings, but it is not so:

Krull has an example [6; p.67ϋf].I"or convenience, we may mention the example:

let K be an algebraically closed field, x and y indeterminates; 0 consists of the

rational functions r(x,y ) which, when written in lowest terms, have denominators

not divisible by %, and which are such that r(0, y) G K.

3. Principal results. We now establish:

THEOREM 6. If 0 is integrally closed with only one maximal ideal p, α an

element of the quotient field of 0, and 1/α ηL 0, then G[ &] p is prime. If also

d ζf. 0, then 0[ Cc] p is not maximal.

Proof We first observe that

( 0 U 1 p, a) £ ( 1 ) ,

as an equation

1 = cQ + cι a + . . . + csa
s ( c0 G p, ct G 0),

leads to an equation of integral dependence for 1/α over 0. Let now g{x) G

0 [ % ] be a monic polynomial of positive degree. We may assume, trivially, that

(X ζμ 0; then g( (λ) = c G 0 is impossible, as g( Gί) - c = 0 would be an equa-

tion of integral dependence for α over 0; in particular, g{(λ) ^ 0. Also l/g(<X) ζμ

0, for if it were in 0, it would be a nonunit in 0, and hence would be in p, so that

1 G g(a) . p c 0[a] . p,

and this is not so. By the result on α ,
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( O [ g ( α ) ] P , g ( α ) ) ^ ( 1 ) .

Since α satisfies g(x) - g( α) = 0, 0[(X] is integral over O[g(<X)]; over any

prime ideal in O[g{d)] containing (O[g(Cί)] p, g(θi))9 there lies a prime

ideal in O[ Cί], hence

( O [ α ] p, g ( α ) ) ^ ( 1 ) .

Since 1 + g(x) is monic of positive degree, also

( O [ α ] . p, 1 + g ( α ) ) / ( 1 ) .

This shows that g(Cί) (£ O[&] p, a conclusion that also holds if g(x) is of

degree zero; that is, g (x) = 1,

We now prove that under the homomorphism g(x) —>g (Cί) of O[x] onto 0[ CC],

the inverse image of O[ Cί] p is O[#] p; this will complete the proof, as

O[x] p is prime but not maximal. Let, then,

g{x) € O[x], g(x) ^ 0[x] . p.

We write

where § 2 ( Λ ) C O [ X ] . p and no coefficient of gχ(x) is in p; in particular, this

is so for the leading coefficient c. Then g χ ( α ) / c (£ O[ α ] p, s ince g ( Λ ) / C

is monic. A fortiori, g χ ( α ) <£ O[ α ] p, whence also g( a) ^ O[ a] . p .

COROLLARY. M ίΛe case a ^ 0, i/g(%) £ O[%] and g(a) G O[a] . p,

then g(x) C 0 [ * ] . p.

THEOREM 7. Lei 0 6e an integrally closed integral domain, p a proper ideal

therein, a an element in the quotient-field of 0, but a (£ O p, I/a (£ Op. Then

0[a] p is prime but not maximal; in fact,

0[a] p n 0 = p am/ 0 [ a ] / 0 [ a ] p ~ 0/p[%],

Proo/. We know that Op[ Ct] p is prime, and

0 p [ α ] p n O[α] = O[α] - O[α] . p

by the last corollary ( and the fact that 0p p n 0 = p). Hence 0[α] p is prime.

Also here, as in the corollary, we have that if g(x) £ 0[x] and g(α) £ 0[α]

p, then ^(Λ;) £ 0[x] p; the required isomorphism follows at once.
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Theorem 7 is known in the case that 0 is a finite discrete principal order [3,

§49, p. 134-136]. The class of rings dealt with in the theorem includes this

class properly; for example, the ring 0 of the example of Krull is not a finite

discrete principal order, as xyp C 0 for all p, but γ tf. 0.

THEOREM 8. If 0 is 1-dimensional, then 0[x] is ^-dimensional if and only

if every quotient ring of the integral closure of 0 is a valuation ring.

Proof By Theorem 5, we may assume 0 to be integrally closed. If 0 is an

F-ring, then so is one of its quotient rings (Theorem 3, Corollary). This quotient

ring is not a valuation ring (Theorem 4). Conversely, suppose some quotient

ring 0ί — Op is not a valuation ring. Let OL be an element of the quotient field of

0t such that α ξf. 0ι and Of1 (£ 0x. Then 0ί[a] is at least 2-dimensional, by

Theorem 6, and O t[%] is at least 3-dimensional, as one sees by considering the

homomorphism of 0 t [%] onto O^OC] determined by mapping x into (X. So Oi is

an F-ring. Thus 0p[x] p is not minimal in 0p[x], and it follows at once that

0[x] p is not minimal in 0 [ # ] , whence 0 is an F-ring.

Let 0 be the ring of Krull's example above, and let X be an indeterminate.

The single prime ideal p in 0 is constituted by the rational fractions r(x, y)

which, when written in lowest terms, have numerator divisible by x9 i .e., are

of the form x g(x9 y), where g(x9 y) C K[x9 y]. The polynomials in 0 [ Z ]

which vanish for X = y form a prime ideal, different from (0) since xX - xy is in

it, properly contained in O [ Z ] p.

The following theorem is well known [ 4 , Th. 13, p. 376] .

T H E O R E M 9. If 0 is a Noetherian ring of dimension n9 then O[x] is(n + 1 )-

dimensional.

Proof. Taking a quotient ring or residue class does not destroy the Noether-

ian character of 0, so by Theorem 3 we may suppose 0 is 1-dimensional. Let

then p be a proper prime ideal in 0. Then 0[x] p is minimal for every principal

ideal 0[x] ( α ) , where a £ p, a φ. 0, so by the Principal Ideal Theorem [3,

p. 37], 0[x] p is minimal in 0[%], and 0[x] is 2-dimensional by Theorem 1,

Corollary. — Instead of the Principal Ideal Theorem, one could use instead that

the integral closure O is also Noetherian (see, for example, [ 1, Th. 3, p.29]; see

also [3 , §39, p. 108]). Neither proof makes use of the full force of the quoted

theorems, so it might be of some interest to find a direct proof using less techni-

cal means.

NOTE. In a forthcoming paper we will show that if 0 is a 1-dimensional ring
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such that 0 [ x ] is 2-dimensional, then 0[xl9 ••• , xn] is (n + 1)-dimensional .

Theorem 2, above, will also be completed by examples showing that for any m9 n

with n + 1< m < 2n + 1, there exist ra-dimensional rings such that O [ x ] is m-

dimensional.
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