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1. Introduction. Let X be a complex Banach space, and 7 be a closed dis-
tributive operator whose domain and range are in A. We suppose the spectrum

o (T) of 7 does not cover the whole plane, and write
"y 1 23
(AT=T) =1‘)\(T)

for N o (7). In the case that T is bounded, N. Dunford [2] and A. E. Taylor

[13] have defined an operational calculus for T by the formula
1
(1.1) (1) = ——_/f(A)[(A(T)d/\,
271 YC

where f is analytic on ¢(7), and C is a suitable bounded contour enclosing
o(7T). Such functions f form an algebra, and the mapping f— (7)) is a homo-

morphism of this algebra into the algebra of bounded operators on X.

When 7 is assumed to be closed but not bounded, the problem of developing
an operational calculus for 7 meets with the difficulties that the domain D(T)
is a proper subspace, and o(7) is in general unbounded. A modification of

(1.1),

. 1
(1.2) J) = )l — [0 &y (D,

has been used by Taylor [ 14] when f is analytic on o(7) and at infinity. Here
C is a bounded contour enclosing the singularities of f. Although most of the
theory for the bounded case may be carried over, the class of functions f is

restricted; and polynomials in 7, being unbounded operators, need a separate
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treatment.

In this paper we consider the case that 0(7) lies in a strip S of finite
width, and [[ R, (7)]|| is bounded outside any strip containing S in its interior.
This is a common sitation for differential operators ( for example, T = d/dt in
Lp(—c, ), p > 1) These assumptions enable us to define an operator cor-
responding to any function analytic and of finite order in a strip containing S.
The operator (7 ) is bounded or unbounded depending on the growth behavior
of f. In this it resembles the operational calculus for unbounded self-adjoint

operators in Hilbert space ([ 8], | 12]), and in fact reduces to it in this case.

In €<2-4 the calculus is constructed from a postulated set of conditions
on 1 and R, (7). H f is absolutely integrable in a strip containing S, the oper-

ator f( 1) is defined by a variant of formula (1.1),

1
f(7) = 2_/1 FON R, (T)dA,
we

where " is an infinite contour running up one side of S and down the other. If
f is of order n — 2, roughly speaking, then f{7)x is defined for x in the sub-

space
DalT) = (x| 2, Tay oeny 1™ € D(T))
by the formula

(] = T)H" fOYRy (T)x
f(I)x = - . dA,
2mi I (G — )™

where ¢ is any point exterior to ['. ¥quivalently,

oWy 1 [ fOOR(T)T"

flix = £T7Lx+—_ —= )
io i! 27 *1 A7

The usual honiomorphism rules hold, and the results are consistent with those

of Taylor. A closed extension of f(7) is obtained which coincides with the

Stone-von Neumann operator in the case of self-adjoint 7 in Hilbert space.

In $5 we assume a further growth condition on || Ry (T)|| near o(T), and
investigate operators corresponding to bilateral transforms. This section is
largely a reformulation for our situation of results of Hille [ 3, Chap. 15] for an

operational calculus for the case that ¢(7) is confined to a half plane and [ is
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a one-sided transform. In ¢ 7 we prove a theorem on the construction of inverses

of such operators by limits of polynomials in 7.

As an application we take T the operation of differentiation in the spaces

Cand L, (1 <p < ) on the real line and the unit circle. For the case of the

line where o(7) is the imaginary axis, if

0 =[°° MG (E)de

converges absolutely in a strip containing o(7), then

[(T)x(t) = f°° C(&)x(t - &)dE.

Consider the Stieltjes transform

¢(t) = l [: sech —gx(t-— EVdE,

m

for which f(A) = [cos #A]"!. Writing

oo 2
cos T\ = H (1——)\——):

k=1 (k-1/2)?

we see from the inversion theorem of < 7 that

n 1 d2
(1.3) li 1w ———— — | ¢(t) = x(2),
n oo ,g ( (k-1/2)* di? )¢ i

where convergence is in the norm topology of any of the spaces mentioned.

This example is typical of a class of inversion theorems for which the theorem

of $7 gives a uniform treatment. Inversion formulas of this sort have been proved
by different methods for L,(~a, ) by Pollard [ 9] and for C{~cc, o) by Widder
[16] (see Hirschman and Widder [ 4, 5, 6 and 7] for extensive re=ults on the

corresponding local problem). The case p # 2 does not seem to have been con-

sidered before. Our method also applies to inversion of transforms

[:H(ax(t-@df

in the corresponding spaces on the circle.
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2. Construction of the calculus. l.et 7 be a closed operator whose domain
U (7) is a prescribed subspace. We suppose:
A. i'he spectrum o (7)) lies in the vertical strip
—y <o <y A=0+i7, 0<y<a).
3. The resolvent f\’)\( 7) = (M~ TY! satisfies
(DY < M), Jol >t 0>yt

The strip containing ¢ (1) is taken to be vertical merely for convenience.
The symbol p(7) will denote the resolvent set, and [ X'] the set of bounded
linear operators mapping X into itself. We shall need the following known re-

sults:
(a) As T is closed, 1’\‘/\('[) is in [X] for A€ p(T) [14, p.1101].
(b) If £,(T) are the subspaces defined by
(1) = X, Dp(T) = (x| x, Ty ooe s T € L(T)) (n>1),
then for any polynomial
P(A) = agh™ + a; A" v eee 4 q, (ag # 0),
the corresponding operator P (1) with domain £/,( 1 ) is closed, and [ 14, p. 202].
Ry(DYP(T)x = P(T)R\(T)x
(¢) ¥ x€ 0,(T), and & is any complex number, then
no(T g (T=al)"TH R (T)x

(2.1) Ry(T) =3 — + ,
A i=0 ()\—CA)Hl (/\_C()n+l

and for any'm and n, RY' (T) maps D,(T) one-to-one onto Dy 4n(T) [ 14, p. 204~
205 1.

We shall also need the following elementary consequence of the definition

10ne may show through the Phragmen-Lindeldf theorem (the proof in [15, p. 177]
holds for operator-valued fulnct|ions) that B is implied by the apparently much weaker
condition || Ry (T)[| = 0(e#' 7N, g< 1.
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of a closed operator.

Levya 2.1, Let K be closed with domain D, and let
[]nC[X] (n:1929'°°),
with

Hx = lim {1, x
n—oo

defined for each x € X, If x € D, and
I, Kx = KH,x
for each n, then llx C D and KHx = HKx.

Our procedure for assigning operators f(7T) to functions f(A) will be a
variant of the contour integral approach of Dunford and Taylor. it will be con-
venient to set up the correspondence first for a particular class of functions

and use this class to treat less restrictive cases.
DEFINITION 2.1. We denote by £ (0, y) the class of functions [ satisfying:
(a) fis analytic in a strip —r < 0 < r, r > y (r may vary with ).

(b) As T — tw, flo+i7) —0 uniformly with respect to o, --r; < o < ry
for any r; < r.

(c) f |flo+iT)|dT< (=r <o <r)

The class £(0, y) is an algebra, although strictly speaking not an algebra
of functions, since the functions f do not have a common domain. To get con-
dition (c) for products, we note that if f€ £ (0, y), f(o+i7) is bounded in
7 for fixed o (=r < o <r). Thus if |f, (0 +i7)| <M (o fixed),

f_: Vi lo+iT) flo+iT)| < M /:: |f,(0+iT)[dT < co.

["or convenience we adopt a convention with regard to contour integrals. If
f is analytic in ~7 < o < r, where r > y, the symbol I'.(@w) will denote a con-
tour composed of the two parallel line segments o= 2*c¢, ~w <7 < w, where

y < ¢ < r; the positive sense along o0 = ¢ will be upward, and that along 0 =—- ¢
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downward. The symbol I, will denote the contour obtained by letting w —» 0.
We now define operators corresponding to functions in £ (0, y).

DEFINTION 2.2. For f€ £(0, y), we set
1
2.2) T)x = — R .
( f(D)x = — fr FOORy (T)xdA

This formula defines an operator in [ X], the integral converging absolutely

and uniformly in x. It is easily seen to be independent of ¢ except for the re-
striction y < ¢ < 1.

Tueorem 2.1. If f, g € L(0, y), then
(a) (f+g)(T)=f(T)+g(T),
(b) (fg)(T)=f(T)g(T).

Proof. Statement (a) is obvious. To prove (b) let f and g both satisfy the
the conditions of Definition 2.1 in the strip [-r. 71, and let ¢ and ¢’ be chosen

so that y < ¢ < ¢’ < r. Using the functional equation
(2.3) Ry(T) = R (T) = (p=M)Ry (TR, (T),

we see readily that f(7)g(7) is given by the expression

/ fOOR, (T)dA __/ g(#)

277L

+

1 1
fr g IR, (T)di

2mi c’ )

Since ¢ < ¢’

1 () 1 g(p)
-_ A\ = dp = g(A).
2ri /r x A0 /; A

Formula (b) now follows.

THEOREM 2.2. Let fE€ L(0,y), x €D,(T), and P(T) be a polynomial in
T of degree n. Then f(T)x € D,(T), and
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PO f(T)x = f(T)P(T)x.

Proof. For fixed m let (i, m) (i=1,2,+...) be a sequence of partitions

of the contour I; (m) whose meshes go to zero as i — oc. Setting
H, x = Zﬂ(i’ oy FOG) g = N DRy (T,
we have

P(T)Himx = Hip P(T)x

for each i. Now letting i — w, we see from [.emma 2.1 that

1 /‘
H x = —
m . I“

2L

oy [VEA(DxNE D (T,

c

and

7 ( T)me = Hmp (T)x.
We now apply the lemma again as m —» «c.
We note also the following useful consequence of (2.3).
LEvMA 2.2, Let f€ L(0, y) and [F ()] > ¢. Then

FO B, (T)x

K (T) f(T)x = dX.
Kol T f{Tx = o L~ o-x

To assign operators to functions with less restrictive growth properties than
those of £ (0, y), we must overcome the problem of the convergence of the in-
tegral in (2.2). As motivation, suppose that f € £(0, y) and x € U, (7). Then,
by the Lemma 2.2,

R™MT 1)x = — —_—d,
a( )f( )x 2wi Fc (C(_)\)n

or, by use of Theorem 2.2,

1 / f()\)R/\(T)(OL] - T)'x
T = —
f( )x 2wi I, (= A)"

dA.

The convergence-producing factor in the denominator suggests the following

development.
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Dervinition 2.3, Foreachn > 0, let
Sln, y) = (f] fO) (=AY € L(0, y) for |R(c)]| > y),

and let £ (e, y) = U7_ L(n, y).

The definition of £ (n, y) does not depend on «, since if € L (n, y) for
one ¢ it is in for any other with | ® («)| > y. We note that

Lo,y c (1, y) .

L (o, y) is an algebra.

THEOREM 2.3. Iff, g € L(n, y), then of+ Bg € L(n, y) If f €2 (m, y)
and g C«E(n, y), then fgCLC(m+n, ¥ )

We omit the proof, which follows from the fact £ (0, y) is an algebra.
DEFINITION 24. For fCeC(n, y), and x in Dp(T), we choose & such

that | R ()| >y, and define

dA

/ f(/\)‘\A(T)(ul—Y)nx

(2.4) (Tx = .
f x 2mi Ic (QL,_)\)n

To show that this definition is independent of o, let f€ L(n, y), n > 1,
x € U, (T), and | R ()], | B(B)] > ¢c. By Lemma 2.2,

dA

: FOORN (TR - TYx
1 A
J

RM(T)
a ¢ (B__A)n

i

dA

i

1 f f()\)l\/\ T)( A —T)Y'x
2mi Te (B=M)"(a = \)"

VBRI (BT = T)"

= dA
2wi T}, (6 = M)

/ fIMR )\(T)(OI—T)"
- )"

dA.
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Since RZ( 7) has an inverse,

d\.

drn = -
c (o —A)" 2mi e (2~ a"

1 /’ FON (T (] = T 1 /‘ f(k')z’{/\('l)(,’i/—'/)”x
T

We remark also that when x € . (n, v}, it is also in « (2 + 1, v} and if
x € D,y (1), Temma 2.2 shows that formula 2.1 for both n and n+ 1 yields

the same operator.,

THEOREM 2.4, Let (€ 3 (m, y), g€ Sn, v), and x € L.yt 1), Then
g(T)x CDH(T), and f(T)g(T)x = (fg)(T)x.

Proof. We note that

fgC:Cr(m 40, y) and g(/)x €10, 1)

by Theorems 2.2 and 2.3. Now if we write
AV = FOO (o= A E(M) =gAM@ = A and " (o) -y
then, by Theorems 2.1 and 2.2,

fF(T)g(T)x = h(T)(al =T L (T) (! =T 1"

(al =T B (TYE(T)x

(ol = T)"tn (hEY(T)x = (fg)(T)x.

1

We are led to another formula for f(7) in the following way. Suppose first

that f € £(0, y) and x € D,( 7). Then in the integral (2.2) we may substitute

net g Ry(T)T™

1

I3 n
i=o A A
to obtain 2

2 A formula of this type for n= 2 is used by Hille {3, p. 2391,
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et () gy 7 F(MR(T) T
FH(0) T 1 A
TYx = 2: dA.
f( )x 1=0 LY " 277i ‘/I:C An

This formula has meaning when f € L (n, y) instead of £ (0, y), and we shall

establish it. In fact we prove more generally:

TueorREM 2.5. Let f€ L(n,y) and x € Dy(T). If |R(a)| < ¢, then

dX.

b Dy (T-al)i 1 FOOR, (TH(T = D)%
(2.5) f(T)x= N
ez '/I:c (A=)

i=0

;! 271

Proof. We suppose first that | R («)| > y, and choose ¢’ such that y < ¢”<
| R ()] < c. Then

1 FOOR(THI(T = al)"
f(1) = — J. d\
2ni "L, (A=)

1 fOVRNTH(T = D)™
- / dX,
¢ (A=)

where C is a small circle described counterclockwise enclosing ¢« and not inter-

secting ['; or I'c . Substituting from (2.1) in the second integral, we have

1 / FOORNTI(T — al Y'xdr
2mt  YC (A=)

1 nlo) fF(A) L
= — T dAM(T -l
— fcmeA( Jxdh + }?:0 — /cu_a)k (T ol

nt e (B)(g)
=2

k=0

(T - al)ex.

This establishes (2.5) when |R(a)| > y. However, the right side of (2.5) is
independent of o and analytic in «. Thus (2.5) holds in the larger region.

The calculus developed above has the disadvantage that if P (A) is a poly-

nomial of degree n, and hence is at best in LC(n+2, y), the operator corre-
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sponding to P (A) is defined only on D, .+,(T). We check that this operator is
really the formal polynomial in T in the typical case f(A)= A, For x in D;(7),

using the series formula, we have

(Tye = 1x s 2 [ W

A e P CR
since f(0)=f’"(0)=0. But

R, (T)T3«

)\ ) dT

————— 5 3 —
(2.6) 46 —— i gzﬂl(c)nTxl\f_w -

_2a || Pl d (o)

C

The left side is independent of ¢, and must vanish since ¥ (¢ ) is nonincreasing.

In passing we note without proof some facts which we shall not need later.

If for x € D, (T) we write

n

Hxll, = 22 7%l

=0

then D,(T) with this norm is a Banach space X (”); and if fCOC(n, y), the
operator f(7) defined on X" to X is bounded. If D(T) is dense in X (a condi-
tion of §5), then D,,(T) is dense in X form > n.

3. Consistency with Taylor’s operators. For an arbitrary closed operator
with nonempty resolvent set, Taylor [ 14] has defined an operator corresponding
to any function f analytic on ¢ (7 ) and at infinity. In our situation, let us denote
by G (y) the class of functions whose singularities lie in bounded sets in the
two half-planes 0 < — y and ¢ > y. If f € G (y), and Q, and Q, are clockwise

contours in p (7 ) enclosing these sets, then Taylor’s formula defines
(3.1) (1=l s == [ foor, (T
. = 4+ — .
* 2mi Ql + 92 A

This operator is bounded, and the correspondence f — f[T] preserves sums

and products. In our theory, G (y) C £(2, y); and the corresponding operator
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f(T) are defined only on D,(T). We shall show that f[ 7] is an extension of
f(T). First we note the relationship between ((y) and the classes L (n, y).

LEuma 3.1, Let f € G(y). Then fE€ Lk, y) (k=0,1) if and only if

it has a zero of order at least 2 — k at infinity.

Proof. First let f€ L£(0,y)nG(y), and let R be the radius of a circle

about the origin containing the singularities of f in its interior. Since clearly

flw) =10, we may write

A
f()\):-a—+ 8 ),
A A2

where g is analytic, and
lg (M) <M for |A| > R.
Then if @ # 0,

n . 1 n Y n dT
[orniarz taltog 7 -n 2 =,

,,-2
or

lim /: [fGT)|dT = oo,

n —oo

which contradicts Condition (C) of Definition 2.1. Thus f has a zero of order

two at infinity. The converse is clear. For the case &k = 1, we use the foregoing
argument on f(A) (¢t — A)7L

TueoreMm 3.1. Let fE€ L0, y) nG(y). Then f(T) = f[T].

Proof. Let K be a large circle of radius r centered at zero, and let ¢ be

chosen (¢ > y) so that the singularities of f lie interior to K but exterior to

I'.. Let
I (w) (w = \W)

denote that part of Iy cut off by K, and let S be the two arcs of K (described
counterclockwise ) which lie exterior to [, In formula (4.1), for f[ 7] we may
take
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Q+ Q=8+ T (w).
Now, by Lemma 3.1,

| f)] = 6(X%)

for large values of A. Also by Condition B of § 2, IRy (T)]| is bounded if
o] > c¢. Thus

I /Sf(A)RA(T)dAH = 0(}).
As

lim I, (@) = I,

the theorem is proved.
CoroLLARY 3.1. If f€((y), then
fIT)x = f(T)x
for x in D,(T).
Proof. Let
g(A) = f(A) (o = A)2,
Then
g€ L0, ) nG(y) and g[T]=g(T).
But (see [14, p.2031)
f(T)x = (= T)2g(T) = (¢.I-T)2glT]=fT].
Similarly one shows if f € £(1, y) n((y) then
f(T)x = fIT)x

forx in D(T).

4. A closed extension of f(T). Let { be in £(n, y), but not in £ (n -1, y).
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The operator f(7T), defined on D,(T), need not in general be closed on this
domain, However, we can describe an extended domain on which it will be

closed. As before, we set
EA) = F(A) (@ = M7 [R@] >y,
and write
f(TYx = (= T h(T)x.
DEFINITION 4.1. We define
D(F(T)) = (x | A(T)x € Dy(T)),
and define
F(T)x = (I =TYh(T)x

for x in D(F(T)).
Since A€ £(0, y), D,(T) C D(?(T)) by Theorem 2.2. The inclusion may

be proper. We shall need a lemma.

LEMMA 4.1. Let f in G(y) have a zero of order n (but not n+1) at in-
finity. Then x € Dpp(T) (m > 0) if and only if fIT 1x € Dy yn(T).

Proof. Necessity is proved by Taylor [14, p.203]. To prove sufficiency
first suppose that n = 0, i.e., f(c) # 0, and that

fIT 1x €Dp(T).

If x € Dk(T), where 0 < k& < m, then

[l = f@)x e = [ fOOR(Dxn

me 1134,
= f(oo)x + LT Ix,

where h(A) = f(A) — f(w). As h has a zero at infinity, /[T ]x€ D, . (T) by
the first half of the lemma. But as k < m,

fIT1x€D,, (T) C Du(T),
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and hence x € D, (7). By repeating the argument, we see that x € D,,(T).
fn>1 and

flT ) x € Dy (T),
we set

g(A) = (o =M)" f(X)

and note that
fUTlx = RE(T)glT Jx.
As RM(T) maps Dy 4, (T) one-to-one onto Uy (T),

glTIx €D, (T).

But since g(w) # 0, x € U, (T) by the case n =0 just proved.

THEOREM 4.1. The subspace D(?( 7)) is independent of &, and ]"V( T) with
domain D (f(T)) is a closed extension of f(T).

Proof. Tf |R(e)], |R(B)| > y» o # B we denote by D, (f(T)), Dg(f(T)),

hss and hg the respective domains and functions f(A)(%—~A)" and f(A) (B=A)".
Then

P (X)hg(X)
ho (X)) =hg(N) = ————— = g(A)hg (X)),
(o=2)"

where P is a polynomial of degree n — 1. The function g is in G (y), and g[ 7]
carries D, (T) into itself (in fact into D, 4+, (7)) by the lemma. Since

(ghg) (T) = g[ T 1hg(T)
(apply Rg(T) to both sides),
ho(T) = hg(T) + g[ T 1hp(T)
and

Da(F(T)) € D(F(T).
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Symmetry gives the reverse. Now fixing & and associated A (A), let
xn € D(f(T)) (n=1,2,+4+),
and suppose
lim % = % and lim f(T)x, =y,.
Then
lim h(T)xpm = h(T)xg,

as h(T) is continuous. As h(T)me DU, (T), and (&l = T)" is closed on
Do(T), h(T)xg € Dy (T); iven 2o € D(f(T)), and

F(T)xe = (o = T h(T)xy = ¥,
When

n
f(A): z a; Al (anré 0);
i=0
the operator fN( 7) is the formal polynomial in 7. For if

(XN = f (W) (o= ) (*2)

then k€ ((y), with a zero of order exactly two at infinity. By Lemma 4.1,
AT 1x (=h(T)x) C[)n+2(7)

if and only if x € D,(7). Hence

D(T) = L(f(T)).
If x€ D, (T),
R™2(T)f(T)x = h[Tlx = R™2(T) 3 a, T'x,
=0

SO

~

f(ry=> aiTi.
=0
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By similar reasoning one shows that ]7( T)=f[T]for f€E Q(y).

We now identify 7(7) in the case that X is a Hilbert space and A =— ;T
is self-adjoint [8, p.44]. If {E .} (-0 < 7 < @) is the resolution of I as-
sociated with 4, D(A4) = D(T) is the set of x for which

lim fw Tek(T)dET x

k00

exists, where e, (7) is one if —k < 7 < k and zero otherwise. If F(7) is con-

tinuous, we define D as the set of x for which

F(A)x = lim fm F(T)e, (NdE,

k— oo

exists. The operator /' (4) is normal, and hence closed on D. We write
D, = D(A") if F(T) = 7",

Taking F(7) = f(iT), we easily see that f(T)=F(A4) when fCQ(O, y)
(here y=0) and that D(A") =D, (T). Now let fCeC(n, ¥,

BN =) (a=AY" |R(a)| > 0, and H(T)=h(iT).

i
R(T)x €D, (T),
that is
H(A)x € D(A™) = D((al =i A)"™),
then

i [ F)e () dE

f— 00

= lim /‘w (0 —i7)" e (T)dE, /.w H(u)dEMx

bk — o0 o0

exists and x € Dy. The argument may be reversed. Thus
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D, = D(f(T))
and
F(A) = (] =i AYH(A) = (al = T)*h(T) = 7(T).

5. Operators corresponding to bilateral transforms. A class of operators of
particular interest in applications is the set corresponding to the subclass
U(y) ¢ £(2, y) of absolutely convergent bilateral Laplace-Stieltjes transforms
f_: e dB(€). By a well-known theorem of Hamburger {17, p.265], any func-
tion in £(0, y) is in U(y). While functions in £ (0, y) yield bounded operators,
functions from U(y) may yield unbounded operators in the absence of addi-
tional assumptions on T and Ry (7). In this section and throughout the rest of

the paper we shall assume

B [|R (D] <

lol~y’
(5.1)
C: D(T) is dense in X,°

which will ensure boundedness. The results here are essentially due to Hille;
in his book [3, Chap. 15] he constructs a calculus for operators with spectrum
in the left half-plane, the class of functions being one-sided transforms converg-
ing absolutely in a half-plane containing the spectrum. The details of the con-
struction in our case will differ sufficiently to justify giving an outline of the

development. We take the following result from Hille.

THEOREM 5.1. [3, p.307, 3221, If T is a closed operator satisfying A, B’
and C, the formulas

1 r+ioo
€0 [T AR (Drdd (£ 0,

277i -] 00

(5.2) S(&Ex={ = (&=0),

1 -reioco
- _ AE
2 G- [T M 6 <o,

3Condition C implies D,(T) is dense for n> 1. For if A € p(T), D, (T) = Rx'l(T)D(T)
is dense in RF"Y(T)X = D,(7T), and thus by a repetition of the argument is dense in D (T),
and hence in }X It will follow from Theorem 5.1 [ 3, p. 22871 that D (T) = ﬂle Dp(T) is

also dense.
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where x € X, r > vy, define a group of bounded operators 3 (&), ~w < & < w0,
where

S0+ ) = 3OB), 115 < elélr;

(&) is strongly continuous in &, and, for each x € D (T),

Ny
i 280 g
£—0 é:
Ry (T) has the representation
f°° e T () xde (o> ),
0
R}\(T)x =
0 ')\f
(5.3) —/ e S(EYxdé (o <=y,

x € X, the integrals converging absolutely.

The operator & (&) will prove to be f(T) for f(X) = M,

Let ¥ denote the vector space of complex-valued functions 8 satisfying:

(a) f is normalized and of bounded variation on (-, o).
(b) B(—oc)=lim§_+_w B(&) = 0.
(¢) There is an r > y (r depending on f3), such that [° ehE dB (&)

converges absolutely for —r < o < r.
We denote by ¥, the subclass of ¥ of B continuous at zero and write
‘p+=(B|B€\PC’ B(§)=O, ‘fs 0)1
Vo= (Bl BEY, B(£)=pB(0), 0<§).

If u denotes the function

o

(£<0),

u(€) =1 (£ =0),

1 (0 < &),
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then each 8 € ¥ has a unique representation

B= B, + B +L1B0+) - B(0-)]u,

where 8, € ¥,, B € ¥_. The latter functions are given by

B, (&) = B(&) ~ B(0+) (0 < &)

and

B.(&) = B(&) (£<0),
and 8(0~) otherwise.

DEFINITION 5.1. A function f is in U(y) if and only if
o0 = [T M apa,

where B € V. It is in ((y) if and only if fE€ U(y) and B is absolutely con-

tinuous.

We write f=f, + f. + [(0+) = B(0-)] corresponding to the decompo-

sition above, and note that

- [P Map @, ror= [T ape.

Thus f, and f_ are analytic for ¢ < r and o > —r respectively.

THEOREM 5.2. If f € VU (y), then the bounded operator fiT} defined by

(5.5) [T} =f_°° 5(<é)x dB(€) (x € X)

is also given by

1 r+ico
(5.6) fiThx = — (csn—f, £ (N Ry (T)xd\

wl -] 00

(61 = [T FOR (D,

-r+i o0

+ .
2mi
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Moreover,

1 r+ioo
f+{m='[_‘; B(=6)xdB, (6) = — (c,1)-f’fw £, DR, (T)xdn,

r=t

T L OOR, (T)xdh;

r+i00

00 1
AT =/O B(-§)wdp (&) = — (c,1)_f_

and if B =u, fiT}x = x, the two integrals of (5.6) each yield x/2. If x € D,(T),
f{TYx=f(T)x in the sense of $2.

We sketch the proof. Consider the first integral of (5.6). After substituting
from (5.3) and (5.5), and interchanging the order of integration, we may express

the partial integral

%f_i [1 § %] fGaink,, (Txdr

(5.7) =/°° (g, @) dB )+ [0 e v w)d (£)

0 -0Q

+ [(B0+) = B(0-)] v(0, w),

where
v (&, o) =f_°; o (c) - ZSi“:f;)i)/zda
and
o (a <0),
v(&) = x/2 o)
" (0 < &).

The classical theorem on the Fejer integral holds for vector-valued functions

(see [3, p.491). Thus

lim v(f, w) = v(f)

n —oo

for each ¢ and, in fact, uniformly in any bounded interval of continuity of v (&),
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Since 3, and f3_ are continuous at zero, one shows easily that the first integral

on the right of (5.7) vanishes in the limit, and

[B(0+) - B(0-)]
2

=61 [T R (Dra = [ 8ot

2mi 00

[B(0+)~-B(0-)]
+ 5 %.

= f{Tix

The second integral of (5.6) yields f+{ Tix+[B(0+)—-B(0-)]x, and the sum
of the two is f{T}x.

Finally, when x € U,(T) we may substitute

R (T) x Tx R)\(T)sz
)\( x=x+F+——)\2———

in (5.6). Calculation of residues yields

(MR, (T) T

{Tix = f(0) “(0)T ! / ! dr = f(T)
fiTix=f(0)x+f x+§; Fr—;2— = f(T)x.

It follows from the foregoing theorem that S(E) is f{T} for f(N) = e)\g.
If fl, f2 € U(y), one shows easily [ 3, p.309] that

fo T = [T 3(-6)2d0&) = [1T1},1T1x,
where
o= [T pe-map, .
We also note that
i< [T elel japen,

and if x € D,(T), fEVU(y) then f{T}x € D,(T). The proof of the latter
follows that of Theorem 2.2.

6. A class of kernels. We shall denote by C}O(y) those functions in g(y)
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(see $3) which vanish of infinity. Any f in C’o (y)is in G(y), i.e., is an ab-

solutely convergent bilateral Laplace transform. Our purpose is to characterize

the kernels G (¢) for which
F = [T e iz, €60

For this we shall need certain well-known results.

An entire function F is said to be of exponential type & if

‘ma~x [F(z)| = O(e(8+€)r>

Z|=T1

for every positive ¢ and no negative €. I'olya has shown [ 11, p.585] that there
is a one-to-one correspondence between entire functions of exponential type

and functions analytic at infinity as follows: If

an

(6.1) f) =3 (Ir] > ©)
n=0

/\n+1

where C is the natural radius of convergence, then

f(n) = f°° NP (E)de,

1]

where F' is the entire function

> ap "
(6.2) F(§)= 22 ——
n=o "

F is of exponential type C. Conversely, F' determines f. Further let K be the

set of singularities of f, and

k{¢) = max R(re i®)
AEK

be its support function. The function

_ et
h(¢) = lim M

Ir— 00 r



280 WILLIAM G. BADE

is called the indicator of F as it measures the growth of F in the direction ¢.

Polya shows that k(¢)=h(~¢).

THEOREM 6.1. A function f is in C}O(y) if and only if it is of the form

fm=f_°° e G(E)dE,

where

F (&) (0<¢<w),
G(¢) =
E (&) (~0 < £<0),

and F_ and F_are entire functions of exponential type satisfying
|F (E)] = 0(ef?), 8, <-y, as &+,

|F (&) = 0(ef%), 8 >y, as é—r- .

Proof. Let fCQO (y). Then we may write

. 1 fx) 1 (&)
f) == /Q1 £ &+ 5 sz En de

= L)+ f,(0),

where Q, and Q, are bounded clockwise contours lying in R (XA) > y and
R (M) < - y, respectively, which enclose the sets of singularities of f which
are in these two half-planes. The functions f_ and f, are in go(y), and the de-

composition is unique. Then
(6.3) £\ = /0“’ M OF(E)YdE, ROV > e,

where F (£) is entire of type c,. Since the singularities of f, lie in R(X) <-y,
k(m) = h(0) < =y,

and thus

|F(E)] = 0(5°+),
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where 6, < — y as £ —+ «c, and the integral (6.3) converges absolutely for
R()\) > =Y.

One shows that

f O = [" eNEF (£)de,

where —F_(£) is the entire function associated with f_ by (6.1) and (6.2) by

setting
AN=—p, glp) =1,

as the singularities of g lie in H(Ii) <=y

Conversely, if

f,(0) = f0°° MO (£)dé,

where F,_ is an entire function of exponential type with the indicated order
property, f, is analytic at infinity and its singularities lie in R(X) < = y. The

case of {_ 1is similar.

7. An inversion theorem. We now prove a result which, when T is the oper-
ator of differentiation in spaces of functions on the real line, will yield the

inversion of many common convolution transforms by differential operators of

infinite order (see (1.2) and (8.3)).
Let fbe in U(y) and [f{T}1! exist. If 1/f is in L (m, y) for some m, the

calculus shows that
(AT = (fF9H(T).

When this is not the case, however, we can often construct the inverse as a
pointwise limit of polynomials or other operators. The idea is to find a sequence

{ hp} of functions in L, y) such that
ha(M) (X)) —>1

suitably near ¢ (7). The functions A,(A)f(A) may be treated by the calculus,

and under proper conditions the sequence

(hnfI(T) = hp(T)f(T)
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should converge strongly to /. We shall call a sequence {4, } an inverting se-

quence for-f € U(y) if

(1) A (N)f(\)E€VU(y) n=1,2,-++ with a common strip [-r,r] (> y)

of absolute convergence;

(2) lim A, (M) f(AM) =1 (=r <o <r);

n—oo

(3) for some integer &k > 0,

lim fr INELL = B () F(M) 1] [dA] = 0.

n—o0 r
Note that uniform boundedness of A,(A)f(X) implies (3) if k= 2.
LemMa 7.0, Ifh € L(m, y) and f and hf are in U (y), then
(hOIT Y = R(TYfET L.

Proof. Given x in X we pick x; (i=1,2,+++,) in Dy4,(T) converging
to x. Then f{T} x; and (Af) { T} x; converge to f{ T} x;and (Af){ T} x; re-

spectively. Since for each i,
(RO AT} = R(T)f AT 2 = A(T)fE T}y,
and £ (T) is closed, the result follows.
THEOREM 7.1. If{k,} is an inverting sequence for f € U(y), then

lim /Tn(T)f{Tix=x

n— oo

for each x in D, (T). The limit holds for all x in X if and only if the transforma-
tions (h,f) { T} are uniformly bounded.

Proof. For each n,

Rl TYfATY = (o)1 T}

by the lemma. Now if x € Dk (T) we may write

k1 (hND(0) T 4 hn(A) (R (T) Ty
(haf)(T)x= 3 3 t o fI p d\.
i=0 : T r A

By condition (2), all terms in the summation go to zero except the first which
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converges to x. The last term by (3) converges to

dA.

1 / R/\(T)Tkx
271 I} AE

Dut this integral vanishes by the argument to establish (2.6). Since D (T) is
dense in X we conclude the last statement from the Banach-Steinhaus theorem

and the principle of uniform boundedness [ 3, p.251.
In applications we shall take 4,(X) of the form p (1) or ec")\ p,(X), where

p, is a polynomial and ¢, is real. In each case,
ha(T) = hn(T).

For the former this was proved at the end of § 4. The latter case is left to the

reader.

8. Examples. An important application of the theory of the preceding sec-
tions is found by taking for T the operator of differentiation in certain spaces
of complex-valued functions defined on the boundary of the unit circle or on the
real line. Where functions in the spaces we consider are defined on the line,
the spectrum of T is the imaginary axis, whereas o(7) consists of the integral
points of the imaginary axis when the functions in the space are defined on the
circumference of the circle. For this reason we shall call these two groups of

spaces the continuous and discrete cases respectively,
Continuous:
l. Cl-wc, i,
[[x]} = sup,|x ()],
D(T) = (x|x"(¢) € Cl~ ) 1)
2. Ly(~aw, 0) (1 <p <),

et = ([ 1w a)e,

D(T)=(x|x(t) is absolutely continuous on each finite interval and

* (€ L, (~0 ).
Discrete:

].0 C[_ﬂ’ 77]’
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121l = sup, [x(2)],
D(T) = (x|x°(t)E Cl—-m, w]).

2. Ly(=m 7) (1 < p <),

et =( [ twre ),

D(T)=(x|x(¢) is absolutely continuous and x°(¢) CLP(-—n, 7).

In the discrete case the functions are, of course, periodic, and an x in

Cl-w, «] has limits at + ¢ and —cc.

Well-known theorems show that D(T) and, in fact, D, (T ) are dense in all
these spaces. One shows easily that T is closed. It follows that (A~ T) is
closed for any A, and (Al - T)™! is closed when it exists. Since a closed trans-
formation defined on the whole space is bounded [3, p.36], the resolvent R)x( T)

will exist if and only if A is such that the differential equation
Ay(e) = y’(¢) = x(¢)
has a unique solution y in X for each x in X. Then

Yy = R)\(T)x.

One shows easily in the continuous case (compare with5.3) that

f°° oM (s £)dé (R(A) > 0),
0

_/° e M x4 £)dE (R(n) < 0),
and

D(E)x(t) = x(t+ &),
Also

1
IRy (T)]] < \7'.

When f € ((y) (as y = 0 we shall write just G hereafter), that is,
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f()) =f_°° MG (&) de,

then

HTMU)=KMCX@xU—§M§

Also

i< [T 1@

in all the spaces.

Now in the discrete case the formulas above for the continuous case are all
valid if one interprets x (¢) = x (¢ + 2n 7). However, with this identity, they may

be given the more convenient form

1 m
1 — em27A /;2 My (v £)d¢ (R >0,
—e
R)\(T)x(t)=
-1
1 o2mh foz My e+ £)dé (R < 0).
—e “2m

Another representation is

A ar [t e A [T oA
- =ATT - 7 -AE
Ry (1) = —— [e ./:We X (E)dE + e /;e x(£)dé
(Mgin, n=0, £1, £2,.¢.).
For €0,
ﬂﬂﬂﬂ:[”H@MU~éma
where

H(E) = Z G(¢ + 2nm).

n=-o0

If we use the Fourier representation
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>

x(t) ~ Z xpe'™,

n=-o0

then

int
o xpet

Ry(D)x(0) ~ 55 ——

n=-o00

and, more generally,
f(T)x(t) ~ Z f(in)xnei"l,
n=-0
where the numbers f (in) are the Fourier coefficients of H (£ ). Again,

1Ry (D] < —

lo]

and

/(Y| < f_:\mf)ldf:[:w(f)ld&.

When p = 2, one may show further that

DI = sup  [f(M)]

€ o(T)

in both the discrete and continuous cases. This and the above facts are well
known. The transformations f (7 ) are special cases of factor transforms for

which one may refer to [ 3, p. 344, 361]; see also [ 1, p.991.

In view of these remarks we may state a corollary of Theorem 7.1 in the

following convenient form.

THEOREM 8.1. Let

fA) = [” eM G (&)de

o0

and
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hp(A) = ec”/\ p,(A),

where the numbers ¢, are real and the p, are polynomials. If f (A) and

ha(A) [ (A) = f“ M G(&)dE

have a common strip [—r, rl, r > 0 of absolute convergence, and in this strip
lh (X)) f(A)] <M
and

lim A, (A) f(X) =1,

n- o0
then:

(a) ifx CLP(—oo, o) (p>1),or Cl-co, ], andxCDz(T),

(8.1) lim Ay (T) [” C(E)x(t = £)dE = x(2)

n— oo

in norm. If for some M’,
(8.2) [716uerae < we (n=1,2 ),

then (8.1) holds for all x.
(b) If x € Ly(~w, @), the limit (8.1) holds for all x without (8.2).

Actually the theorem is too restrictive in L,(~ow, cc). Since —iT is self-
adjoint in this space [12, p.441], we may use the calculus of Stone and von
Neumann (see $4). With this calculus it is sufficient for the conclusion that

hn(A)f (X)) be defined and converge boundedly to unity on the imaginary axis.

As an application of the theorem above we obtain for function spaces an in-

version theorem due to Hirschman and Widder [ 7]. Let

= A
FOY =EQOTY, EO = T (1 __) MO,
k=1 ay

where a; = b, +ic, (k=1,2,..+)is a sequence of complex numbers such that
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It

ha0) = e I (1= )M (h=1,2, 00,

k=1 ak
where the d, are real numbers approaching zero, then the conditions of the

theorem on the functions f (1), A, (A)f (M) (n=1, 2,...) are satisfied in any
closed vertical strip free of zeros of £ (A). Letting

1 oo
G(&) = T M,

7Tl =100

Gl &) = —1— RO (V) M

2mi -1

these authors show that

f" |Ga(£)] dé < M < .

Thus

T 1\ foo d
(8.3) lim 3(d,) 1’1(1—_)5(5)[& G(EYx(t—ENdE=x(2) (T:E),

n— o0 k=1 ak

in norm for x in any of the spaces. We list below the kernels of some common

transforms with their bilateral transforms which fall under this discussion:

Laplace et e'eg I'(1-X)
. 1
Stieltjes — sech é-
2 2 cos A

cos (m/2) T ((1 =v=2)/2) T ({1 +v-1A)/2)

ey

2
Meijer —cos ¥ ¢ K, (&)
s 2

t\Dl»—l
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Hirschman and Widder have studied inversion formulas of this sort in great
detail (see [4, S, 6, 7, 16]; see also Pollard [10]). Their results involve the
formal differential operator D = d/dt, and are concerned with inversion at par-
ticular points rather than in the norm topology of function spaces. Their proofs
are quite different, involving a convergence argument with the kernels G,(¢)
in contrast to the present method of first proving inversion for a dense set of
functions. On the other hand, the present method seems unsuitable for obtaining
local results.

Similar inversion formulas have been proved for L,(-c, oc) by H. Pollard
[9] by use of Fourier transform methods. He needs only to prove that the pro-
ducts h,(A) f (X) converge boundedly to unity on the axis. However, in each
case he considers one can show this is true in a strip of positive width. In
several cases we are unable to show (8.2), for example in the case of the

Weierstrass transform where

e'§2
6(&) =S

v

)\2 n
P = A and 1,00 = (1 -2,

n

or the partial sums in the series for f (1), and in the case of the Stieltjes and

Laplace transforms when &, are the partial sums.

As a final application, we give an example for the case of the circle. Here

the Weierstrass transform takes the form either of a transformation of series

o0 o0 2
int-n“/4

w(t) ~ 2 wpe™, f(Dx(t) = 3 xpe ,

n=-o n=—oo

or a finite convolution
1 T
f(T)x(t):-—/ 03 (&, 1/4)x (1 ~ &) d¢,
2n J-m

where
o0

03(§5a)=\/ﬂ/& Z e'(‘f+2"77)2/4a

n=-o00

> 2
=1+2 Ze'n “cos né
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is the theta function occurring in the theory of heat conduction [ 3, p.402]. For

any x in L,(~m 7) or x in Dy(T) of the other spaces,

T2 n
lim (1-4_) F(T)x(e) = x(2)

n—o00 n

in norm.
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