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ON THE HITCHCOCK DISTRIBUTION PROBLEM

MERRILL M. FLOOD

1. Introduction. Frank L. Hitchcock [ 1 ] has offered a mathematical formula-

tion of the problem of determining the most economical manner of distribution

of a product from several sources of supply to numerous localities of use, and

has suggested a computational procedure for obtaining a solution of his system

in any particular case. L. Kantorovitch [2 ] , Tjailing C. Koopmans [3] , George

B. Dantzig [4b], C. B. Tompkins [5] , Julia Robinson [7; 8], Alex Orden [ 6 ] ,

and others [4] have also discussed the computational aspects of this problem;

paper [ 5] illustrates the use of the "projection method," due to C. B. Tompkins,

as a computational process applicable to either of the Fundamental Problems of

the present paper.

We shall be concerned only with the mathematical justification of computa-

tional procedure, and shall limit our attention to one specific method of solution

of general validity. No attempt will be made to compare the various methods

already proposed, either as to their mathematical similarity or as to their rela-

tive efficiency in any particular case.

2. The problem. The problem is to find a set of values of the mn variables

%ij, subject to the following conditions:

(2.2)

Received January 25, 1952. The author's interest in the problem was aroused by
papers on transportation theory presented by Koopmans [4a] and Dantzig [4b] at a con-
ference on linear programming in Chicago during June, 1949, under the auspices of the
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other papers presented at this conference are of closely related interest. Professor
Koopmans, in his Introduction lo the Conference Proceedings [ 4 ] , also discussed the
background and interrelationship of the conference papers — including the bearing of
some of these on the Hitchcock distribution problem. The results of the present paper
have been presented in three seminar lectures: once in December, 1949, at The RAND
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National Bureau of Standards in Washington, D.C. The author is especially indebted
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(2.3) = minimum

if]

The numbers m9 n> r^ cy, and d(j are given positive integers with ΣLCJ = Σ r j .

The indices i and y are understood always to range over these same integers

m and n, respectively; it is also assumed, for convenience, that m > n. Any

set of values %(j that satisfies all these conditions is called a solution of the

problem.

There is no loss of generality in assuming that the dη are positive integers,

rather than rational numbers, since the problem is essentially unchanged if

dij is replaced by adij + b, where a and b are any positive rational numbers. We

have not examined the case in which some of the quantities ΓJ, cy, and dij are

irrational. The only effect of irrationality on the results of the present paper is

a possible lack of convergence of the iterative process of solution. These con-

siderations are not of importance in the usual applications.

It will sometimes be more convenient to use an alternative statement of the

problem, in matrix notation, as follows:

(2.4)

(2.5)

(2.6)

M'y > b,

y > o ,

a'γ — minimum ,

It is easily seen that the two formulations are equivalent if y, α, 6, and M* are

defined as follows:

j = xij
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where In is the identity matrix of order n, and /j is the m x n matrix with all

elements zero except for the iύ\ row in which each element is unity. Of course,

y, α, c, and r are column matrices (or vectors) with components y /. t\ + ->
a

n(i- ι) +j9 cj> a n ^ Γ(i respectively, and a prime denotes the transpose of a

matrix (or vector).
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3. Fundamental theorems. There are several fundamental theorems con-

cerning systems of linear inequalities that are useful for this paper. I reproduce

their statements here in a form given by A, \fy. Tucker in an unpublished note

dated December, 1949. The interested reader can find proofs of these theorems,

and of others of similar type, in a paper by Gale, Kuhn, and Tucker [4c],

FUNDAMENTAL PROBLEMS. (Here lower case roman letters denote one-

column vectors, while capitals denote rectangular matrices; M, α, and b are

given, but d is to be determined.)

PROBLEM I. To satisfy the constraints Mx < a, x > 0, and make b'x = d

for d maximal in the sense that no x satisfying the constraints makes b 'x > d.

PROBLEM II. To satisfy the constraints M'γ > b, y > 0, and make a'y = d

for d minimal in the sense that no y satisfying the constraints makes a'y < d.

Problems I and II are said to be dual.

FUNDAMENTAL F E A S I B I L I T Y T H E O R E M . The constraints in a problem

are feasible (that is, satisfied by some x or y) if and only if the dual problem

in homogeneous form (that is, with b — 0 or a = 0) has a null solution.

FUNDAMENTAL EXISTENCE THEOREM, i. The vectors x and y are solu-

tions of Problems I and II if and only if they satisfy their constraints in the two

problems and make a'y ~ b'x. Such x and y exist if the constraints in both

problems are feasible.

ii. A problem has a solution if and only if its constraints are feasible and

its homogeneous form has a null solution.

FUNDAMENTAL DUALITY THEOREM. A problem has a solution (for a

unique d) if and only if the dual problem has a solution (for the same d).

4. The dual and combined problems. We note that the problem, as stated in

relations (2.4)-(2.6), is a Fundamental Problem of form II. The dual problem

is:

(4.1) Mx < a>

(4.2) x > 0,

(4.3) b'x — maximum.

This can be rewritten in a more convenient form, for our present purposes, as
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follows:

(4.4) VJ- ui < dij,

(4.5) maximum.

where Vj - XJ - xn+j, and Ui = - %2n+i + X2n+m+i > w e o m i t t n e condition (4.2),

that x > 0, since this imposes no limitation on UΪ and fy.

THEOREM 1. The problem has a solution.

Proof. By the Fundamental Existence Theorem, there is a solution if and

only if the constraints are feasible and γ = 0 is a solution of the problem when

b = 0. Now

so

Ti

Hj

satisfies the constraints. When 6 = 0, obviously the only values that satisfy the

constraints are xq = 0, and so the theorem is proved.

By the Fundamental Duality Theorem, we see:

COROLLARY lA. The dual problem has a solution.

THEOREM 2. The numbers Xij, and wls VJ9 are solutions of the problem and

the dual9 respectively, if and only if they satisfy:

(4.6) Σ,xij " ri> Σ,xij = ci> %ίϊ - °'

(4.7) dη + ui - VJ > 0,

(4.8) xij(dij + ui - VJ) = 0.

Proof. Since (4.6) and (4.7) are simply the constraints for the problem and

the dual, respectively, it remains only to show that (4.8) is equivalent to the

condition a 'y - b 'x - 0. Now
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a'y - b'x = 22 xij dij - Σcj vj + Σ,Γi Ui

i,j j i

i, / ί, / i, j i, j

Since each term in this sum is nonnegative,

a 'y — b 'x = 0

if and only if

xij(dij + Ui - Vj) = 0.

We refer to the problem of finding values for χq9 u{9 and VJ that satisfy

(4.6)-(4.8) as the "combined problem", and note that the combined problem

always has a solution.

5. Linear graphs. It will be convenient, for some purposes, to associate

linear graphs [9] with certain subsets of the elements of a matrix S = | | s ^ | | .

If / is a given subset of the elements of S, we define the I-graph L of S as

follows: the vertices of L are all the points (h, k) in the Cartesian plane for

which s^i ζ- I; the arcs of L are all line-segments joining pairs of neighboring

vertices with either equal abscissas or equal ordinates, where two vertices with

equal abscissas (ordinates) are neighboring if they are not separated by another

vertex of L with the same abscissa (ordinate). For the moment, denote the

vertices of L by symbols a, b, c, , /, and the arcs by symbols such as

ab, bc9 ••• , cf (no distinction is made between the arcs ab and ba). Then a

chain is a set of one or more distinct arcs that can be arranged as ab,bc, , de9

ef, where vertices denoted by different symbols are distinct. A cycle is a set of

distinct arcs (at least four are necessary) that can be ordered as ab, be, , ef,

fa, the vertices being distinct as in the case of a chain. A graph is connected

if each pair of vertices is joined by a chain. A forest is a graph containing no

cycles, and a tree is a connected forest.

If L contains v vertices, a arcs, and p connected pieces, the number

μ = a — v + p is known as the cyclomatic number (or first Betti number) of L.

It follows from a well-known theorem [9] concerning linear graphs in general

that: ( i ) L is a forest if and only if μ = 0, and (i i) L contains just one cycle

if and only if μ = 1.

Note that L contains a cycle if and only if there is a subset of / that can be

arranged as a sequence
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Shιkl9
 s h ι k2> $h2 k2> $h2 k3 > * * 9 Shσ kσ 9 Shσ kx 9

where the h's and A 's are distinct among themselves; and L contains a single

cycle if and only if / contains just one subset that can be arranged in the dis-

played form. We call such a subset of / an I-circuit on S, and denote it by [Sσ ].

For a particular arrangement of [Sσ ], we also refer to the terms sh & as odd-

terms, the others as even-terms.

In case / consists of all s^k > 0, as it frequently will, we speak of the

positive graph of 5, positive circuits on S, and abbreviate such statements as

"the positive graph of 5 is a forest" to "S is a forest".

6. The method of solution. In the method of solution to be developed for

the problem, we start with a special set of values X° = | | # ? . | | that satisfy the

constraints (4.6). We then test to determine whether or not there exist U( and

Vj satisfying the relations (4.7) and (4.8) for the given X°. If so, then X° is

a solution, otherwise not. The method next yields a new trial matrix ^ l = | | * λ ||>

iί X° is not a solution, such that

hi

After a finite number of steps this process necessarily must terminate, and it

leads to an exact integral solution of the problem.

The first trial matrix 1 ° is a forest of t trees, and has m + n - t nonzero

elements. According as t = 1 or t > 1, two essentially different cases may be

met at each stage of the solution process. *

At each stage when X - \\xij\\ is a tree, the equations (4.8) have a general

solution for u( and VJ with one free parameter, say uί. However, the quantities

dij + Ui — VJ are uniquely determined in this case, so it is sufficient to calcu-

late them and note whether or not they are all nonnegative in order to decide

whether or not X is a solution. If some

These are the nondegenerate and degenerate cases in the work of Dantzig [4bJ.
We shall use these terms also. The method of solution developed by Dantzig [4b J for
the nondegenerate case is essentially the same as the one in the present paper, al-
though the derivations of the results are quite different. Orden [6] has subsequently
given an elegant method for reducing the degenerate case to the nondegenerate one, as
an extension of the £-method proposed by Dantzig [4b] . The author believes that the
treatment of the degenerate case provides the only results in the present paper that are
new, or at least fresh for the Hitchcock problem, and also of some mathematical in-
terest. It also seems likely that the method given here will often be more efficient
computationally, in the degenerate case, than the Dantzig-Orden £-method.
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dHίι + UH ~ vh < °'

then there is a unique /-circuit [ ^ s ] on X, where / consists of %ι y and all

positive %jy, that may be arranged with χiijι

 a s the second term, say. Let g

denote the smallest odd-term of [Λ! s]. Then the new trial matrix X* is obtained

from X by adding g to the even terms of [Xs ], subtracting g from the odd-terms,

and leaving the other elements of X unchanged.

At each stage when X is a forest of t > 1 trees, the equations (4.8) have a

general solution for U{ and vj with t independent parameters, and the quantities

d(j + iii — VJ involve t — 1 independent parameters. The rows and columns of the

matrix X are rearranged so that it can be represented as a square matrix of order

t whose t2 elements are submatrices Xab such that Xab = 0 if α ^ b, and Xaa

is a tree with ma + na - 1 nonzero elements and is of order τna x na. It may also

be assumed that each Xaa is a solution of its subproblem. We can select

to be the t parameters. If we assign these the value zero and denote this parti-

cular solution of (4.8) by uι and VJ , then we may define numbers

Pi/ = dίj + »i- η .

We partition the matrix P= llp^ vll into submatrices corresponding to the Xaι,

and denote them Paf) Let pa^ be the smallest element in Pa^ and define the

square matrix P of order t by P = \\ p f l^ | | . To designate the position of p f l^ in

the matrix P = | | p. . | | , we may write pab alternatively as

- ia ίb
Pa b >

the subscripts referring to the submatrix and the superscripts to the rows and

columns in the submatrix. When it introduces no ambiguity, the subscripts on

the superscripts will be omitted in order to simplify the notation.

The test as to whether or not I is a solution consists of forming all sums

P = P + P + + P
t'aia2 ah ^aγa2 ^a2 a3 ^ah aγ

for h — 2, 3, , ί, where ( o t 02 ••• β l ι ) is any permutation of h different

positive integers, none greater than ί; X is a solution if and only if all such

sums are nonnegative.
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If any

Paίa2 . ah »

then there is a unique /-circuit [ ^ s ] on X, where / consists of all positive al-

together with all xij that correspond to the terms

^ ° P^i a2 . . . ah '

which can be arranged to involve all

ak ak

as even-terms. If g is the smallest odd-term in [/Ys], then (as in the nonde-

generate case) the new trial matrix X* is obtained by adding g to the even-terms

of [ ^ s ] , subtracting g from the odd-terms, and leaving the other elements of X

unchanged,

7. The initial trial solution. An X that satisfies (4.6) will be called a

trial solution. It would be all right to take the positive values

for the initial trial solution X° = | | # ° | | . An alternative is to construct an initial

trial solution that is a forest. It is always possible to do this in integral values.

The following theorem certifies the existence of such an integral trial solution.

The method of proof shows how to construct one.

THEOREM 3. There is a matrix X°=\\χ9. | | with integral elements that

satisfies ( 4 . 6 ) and is a forest.

Proof. The theorem is trivial for m = 1. Assume the theorem is true for m and

consider the case m + 1.

Let the notation be chosen so that

r i > Γ2 ^ '•• > rm + ι > 0> a n d c i > C2 > * •* ίi cn > 0.

If n < m + 1, then cx > rm + ι . If n = m + 1 then c t > rm + ι unless CJ = ry = λ
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(for all i and j); in this latter case X° = λ satisfies the conditions of the theo-

rem. Hence, by the induction hypothesis, there is a set of nonnegative integers

x*j (i - 1, , m) such that

is a forest. Then X°, defined by

i/ " xij> m + 1 j ~ ° i y ro+l '

satisfies (4.6). Now since the (m + 1) st row, with only one positive element,

clearly cannot contribute terms to a positive circuit, X° is also a forest; the

theorem is proved.

To apply this method, in the construction of a trial solution, search for the

smallest rj and the largest CJ , and then set

* ? • = r . .

In effect, this deletes the i t s t row, after cjί is replaced by CJ - r ^ , and the

process is repeated (with interchanged rows and columns as necessary) until

all %?. have been determined. For automatic machine calculation, the procedure

is easily made unique, for any one starting order of rows and columns, by speci-

fying that the search is first on row-totals when the number of rows is the same

as the number of columns at any stage, and that the row-total or column-total

with the smallest index is chosen whenever at any stage there are several equal

values to choose from. This initial trial solution will be called ''preferred" for

identification. 2

THEOREM 4. A trial solution that is a forest of t trees has m + n — t non-

zero elements.

Proof. Observe first that if the trial solution X is a forest of t trees, the

rows and columns of X can be rearranged so that X has the form

2Sometimes, as in this instance, we indicate how to make a unique choice among
possible alternatives at each computational step, but usually do not. It is necessary
to do this in order completely to routinize the computing steps, of course, but the matter
presents no difficulty and we omit it here.
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Xn 0 0

0 X22 0

0 0 . . . X tt

where each Xaa is a tree. Consequently, the theorem amounts to proving that an

m x n matrix with no zero rows or columns, which is a tree, has m + n — 1 posi-

tive elements. If m + n — 2, this is obvious, so assume the statement to be true

for all matrices for which m + n — k and consider one for which m + n = k + 1.

Since m >_ n9 clearly some row has only one positive element, as otherwise

there would be a positive circuit. Delete this row and apply the induction hypo-

thesis.

In actual cases when m and n are relatively small, or when there is other

reason to believe that an initial trial solution better than the preferred one can

be found by trial and error, it may be better to construct the initial trial solution

in some other way than the one given in the proof of Theorem 3, in order to

reduce the number of steps required in the iterative process.

The methods developed in this paper apply directly for any trial solution that

is a forest, and are readily extended for other cases. It is easy to see that there

must be at least one solution which is a forest.

8. Nondegenerate case. We consider now the case of a trial solution X

which is a tree. Let the positive elements of X be

ιa Ja

We shall need the following theorem.

THEOREM 5. If X is a trial tree, the set of equations

(8.1) dij + ui - VJ = 0 for (i, j) = ( i α , j a ) ,

has the general solution

m + n-l).

i = u + z, VJ = v +

where {u*, v*) is a particular solution and z is arbitrary.

Proof. The theorem is apparent for m = 1, and we proceed by induction.
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Suppose the theorem is true for all trial trees of m rows, and let X be an

(m + 1) x n trial tree. Obviously, there must be at least one row of X that has

exactly one nonzero element; we may suppose it to be xm+ιn without loss of

generality —also that

Since A! is a trial tree, the matrix obtained from X by deleting the last row (or,

if m + 1 = n, its transpose) is also. The induction hypothesis implies that the

general solution of (8.1), with the final equation omitted, is of the form

ui = ui + z> vj =

We note next that this final equation becomes

The theorem follows easily.

It will be convenient to call the particular solution U{9 VJ of (8.1) obtained

by setting uι = 0 the preferred trial solution of the dual problem corresponding

to the trial tree X, As an obvious consequence of Theorem 5, we state:

COROLLARY 5A. If X is a trial tree, then it is a solution of the problem if

and only if the corresponding preferred trial solution {u($ VJ) of the dual problem

satisfies

dij + Ui - VJ > 0

for all i and j .

All that is needed now in order to establish the method for the nondegenerate

case is to show how to construct a new trial matrix X*9 if X is not a solution,

such that

hi

In this case, it follows by Corollary 5A that

dkl + uk ~ vl
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for at least one pair {k9 I) and, of course, x, , = 0.

THEOREM 6. // the trial solution X is a tree, and x^ = 0, then there is a

unique l-circuit on X, where I consists of all positive x^ together with x^.

Proof. It suffices to show that the /-graph of X has cyclomatic number

μ — 1. By assumption, the positive graph of X has cyclomatic number zero; and

since X must have positive elements xQ^ and x^ for some a and b, the /-graph

of X has two more arcs, one more vertex, and the same number (one) of con-

nected pieces. Hence μ = 1, and the proof is complete.

Now arrange this unique /-circuit [ ^ s ] with x, , as the second term, and let

g be the minimum of the odd-terms of [A! s] in this arrangement. If we subtract

g from the odd-terms, add g to the even terms, and leave the remaining elements

of X unchanged, we get a matrix X* that satisfies (4.6) and is a forest (since

[Xs ] is unique ).

THEOREM 7. The following relation holds:

Proof. L e t

[Xs] = [xiιjl9
 xiγ j 2 $

 xi2 j 2 > xi2ϊz ' *# * ' xis is' %is 7 i

where

x i ι h = xkl'

Then

hi

Uίl "

The theorem follows.

If A* is a tree, then the whole process is repeated until at some stage a

trial matrix is obtained that either ( i ) is a solution, or ( i i ) is not a solution



ON THE HITCHCOCK DISTRIBUTION PROBLEM 381

and is a forest of t > 1 trees. We shall now discuss ( i i ) .

9. The degenerate case. Let X be a trial matrix which is a forest of t > 1

trees. As we have seen, we may suppose that the rows and columns of X are

ordered so that

X =

Xn 0 . . . 0

o x 2 2 . . . o

0 0

where each submatrix Xaa of order ma x na is a tree. We can apply the methods

of the nondegenerate case to the subproblems corresponding to the submatrices

ί α α , and either obtain a solution to each subproblem or further decompose the

matrix X; thus we may also assume that each Xaa is a solution to its sub-

problem.

By Corollary 5A, we know that

(9.1) - v £; ia = h ' ' ,ma\ ja = 1, « o ) ,

where ua9 va is the preferred trial solution of the dual subproblem corresponding

to the solution Xaa, and that

(9.2) ί f *'

We recall also that the most general values for uι

a and vJ

a are given by

V =

where the 2α are arbitrary parameters.

It follows from Theorem 2 that X is a solution if and only if there are values

of za that satisfy inequalities corresponding to (4.7), or in our present notation:

(9.3) ua ~ ylb

But (9.3) has a solution for za if and only if the following inequalities have a

solution for za :

[9.4) Pab + Za ~ zb
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where

ua ~ v ί Pα6 = m i n

( /)

We have proved:

LEMMA A. The matrix X is a solution if and only if there are real numbers

za such that

> 0 (a, b = 1, . . . , ί ) .

In order to establish a criterion for the solvability of (9.4), we consider a

special case of the original problem, defined as follows:

dab = Pab' Γ α = Cb = X ' a> b = ^ " ' ' l*

We call this the special problem, the corresponding dual the special dual, and

now consider the special combined problem:

6 α

Pα6 + 2α " n > 0. rα 6(Pα6 + Za " Wb^ = °

If we set yab = δ β ^, then for this trial solution the conditions reduce to:

Pab + za~ wb>-° f o r α ^ 6 ,

Paa + Zα "" ^α = °

Since p α α = 0, it follows that za = u>a, and so these conditions are equivalent to

(9.4). Hence, by Theorem 2, (9.4) has a solution if and only if | | δ f l ^ | | is a

solution of the special problem. Using Lemma A, we now have:

LEMMA B. The matrix X is a solution of the original problem if and only if

the identity matrix is a solution of the special problem.

THEOREM 8. The matrix X is a solution of the problem if and only if

P α i α 2 . . . α f t > ° U = 2 f 3 , . . . , ί ) ,
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where {au a2, 5 ah) is any permutation of h different positive integers^ none

greater than t9 and

Paχ a2 . . . ah

 F Paχ a2

 + Pa2 a3

 + " ' + Pah at *

Proof. By Lemma B, it suffices to show that the condition of the theorem

is equivalent to the statement that |j δ f l^ j | is a solution of the special problem.

First of all, it is easy to see that at least one solution Y ~ | | y α ^ | | of the

special problem is a forest, and hence has less than 2ί nonzero elements. That

the elements of Y are all either zero or unity can be seen by induction as fol-

lows. The basis of the induction is obvious, and we consider the case t + 1,

assuming the statement for ί. There must be at least one element of Y that is

unity, as otherwise Y would have at least 2ί nonzero elements. We may suppose

that this element is yί + l ί + l # But then the induction hypothesis implies that each

element ya^ (α, b = 1, ««• , t) is zero or one. It follows that there are exactly

t elements of Y that are unity, whence we can write

Σ yabPab = Paιbι + Pa2b2

 + > " Patbt>
a, b

where (aί a2 at) and ( i^ b2 «« bt) are permutations of the first t integers.

Then | | δab \ \ is a solution of the special problem if and only if always

Pa.b, + Pa2b2 +•'•+ Patbt > Pn + P22 + ' ' ' + P« = °

The proof is completed by noting that this sum can be written as

with {a± a2 ah) as described in the theorem.

We now need to show how to construct an improved trial solution X* in the

event that X is not a solution. In this case, we know from Theorem 8 that there

is a sum

o o -o o - , °, °
p ι J + p ι / + . . . + pι J < 0.
tJaι a2 ^ ra2 α 3

 τ ^ah aγ

Let / consist of all positive elements xι1 together with all
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akak+l

of X. Then we assert:

THEOREM 9. There is a unique I-circuit on X that can be arranged to in-

volve as even-terms all the

Proof. The positive graph of X has m + n — t vertices, m + n — 2ί arcs, and

t connected pieces. Also, for each

x '
akak + l

there are nonzero elements

Hence in passing from the positive graph to the /-graph, h vertices and 2h arcs

are added, and the number of connected pieces is decreased from t to t - h + 1.

Thus the cyclomatic number of the /-graph is

μ = (2h + m + n - 2ί) - (h + m -f n - ί ) + (ί - h + 1) = 1,

so there is a unique /-circuit [Xs] on Z. Since the graph obtained by omitting

from / any

x
ak

clearly has no cycle, [Xs] contains all of these.

Evidently [Xs ] can be arranged, for example, as

so that all

0 0 -1 0 0 1 .0-0
aχ a2 > Xa2 i2>~m> \ a2 > Xa2 a3

%ak ak + l
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appear as even-terms.

As in the nondegenerate case, let g be the smallest odd-term in [Xs ] (hence

g > 0), and define a new trial matrix X* by replacing the elements of X that

appear in [Xs ] by new ones increased by g for even-terms and decreased by

g for odd-terms; the other elements of X are left unchanged. Again X* satisfies

the conditions for a trial matrix. To complete the discussion of the degenerate

case, it remains only to prove:

THEOREM 10. The following relation holds:

hi

Proof. Since λ and X* differ only on

[ * s ] = [ x i i j ι , x i x j 2 > % i i h * % i 2 J 3 ' ' • • ' X i s i s > X i s ί ι

then

hi

The proof is completed by noting that

dij=~Pij+1}j-~ui a n d Pf/ = 0 i f

so that

i] ιj ij S v P α i α 2 . ah' -

hi
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