
Pacific Journal of
Mathematics

ON THE UNIQUE DETERMINATION OF SOLUTIONS OF THE
HEAT EQUATION

WATSON BRYAN FULKS

Vol. 3, No. 2 April 1953



ON THE UNIQUE DETERMINATION OF SOLUTIONS

OF THE HEAT EQUATION

W. F U L K S

1. Introduction. Recently it has been shown independently by Hartman and

Wintner [5] and by the present author [4] that if u(x, t) has continuous deriva-

tives uxx and ut, and is a nonnegative solution of the heat equation

(1) u

Xχ(χ* *) " ut^Xf ^ = °

in a rectangle R: {0 < x < 1 0 < t < k < 00!, then u(x, t) can be represented in

the form

(2) u(x,t)=fl~°G(x,t;y90)dA(y)
Jo +

+ [t G U , t; 0 , 5 ) d B ( s ) - V GAx,t; 1, s ) d C ( s ) ,
Jo y Jo y

where

( 3 ) G ( * , t ; v , i ) - - U , I — , ί -

and where ^ 3 is the Jacobi theta function. The integrals are Riemann-Stieltjes

integrals with nondecreasing integrator functions, A, B9 and C. The first integral

may be improper but is absolutely convergent. It was further shown ( see [5] and

[3]) that

(4) a U , 0 + ) = A\x)

and

(5) u(0+, ί ) = S ' ( t - O ) ; ι » ( l - 0 , 0 = C ' ( ί - O )

at every point where the derivatives in question exist.
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2. Theorem. As to the question of the extent to which ( 4 ) and ( 5 ) uniquely

determine u(x9 t)9 it is clear that they do not do so completely, for the singular

solution Gy(x, t; 0, 0 ) , called a heat explosion by Doetsch [ 2 ] , has normal

boundary values identically zero on the three boundaries x = 0, x = 1, and t = 0

of R. Yet A9 B, C, through formula ( 2 ) , do uniquely determine u; hence one

might expect that by proper choice of the path of approach to the boundary, zero

boundary values would assure the vanishing of u. In particular, because of the

central role played by G and Gy in the representation ( 2 ) , one might expect

those paths to be the curves along which these functions become unbounded.

This leads us to the following:

T H E O R E M . Suppose

( a ) u ( x 9 t ) is a nonnegative solution of ( 1 ) in R ;

( b ) uxx and ut are continuous in R;

( c ) u(x9θ + ) = 0 (0<x< 1 ) ;

( d ) for every s ( 0 <s < k), lim u{x, t) = 0 as {x, t) tends to ( 0 , s) along

some parabolic arc of the form t - s = ax2, a > 0, and lim u(x9 t) = 0 as (x, t)

tends to ( 1 , s) along some parabolic arc of the form t — s = a{x — 1) , α > 0.

Then u(x9 t) == 0 in R.

3. P r o o f . A s w e r e m a r k e d i n t h e f i r s t s e n t e n c e , c o n d i t i o n s ( a ) a n d ( b ) p e r -

m i t r e p r e s e n t a t i o n of u i n t h e f o r m ( 2 ) . F r o m t h e f o r m u l a

\-{x + 2n)2\

(6) #3(*/2, o = uo- 1 / 2 Σi eχp [—•£•—]»
n oon = -o

which can be found in [ 2 ] , it is easily seen that for 0 < x < 1 the two latter inte-

grals in formula ( 2 ) — » 0 as t —» 0 + . Furthermore,

r l-o Γ δ

/ G(x,t;y,0) dA{y) = ] G(x9 ί y, 0 ) dA{y)

+ Γ ~ δ G(x9t;y,0) dA(y) + f l"° G(x9 t y9 0) dA(y) 9

Js Ji-δ

where δ < (1/2) min [%, 1 -%] and is taken so small that, given e > 0,

I Γ 5 G ( Λ , ί y, 0) di4(y)| < e and I Γ " ° G(x, t y, 0) dA (y ) | < €
I Jo + I Iji~δ I

uniformly in ί, for 0 < t < t0 for some ί0. Possibility to do this is ensured by [ 5 ,
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Lemma 2, p. 385]. Now

G(x,t;y,0) dA(y) = exp
\~(χ-y)2

dA(y)

-

exp

exp

- (# - y + 2n]

- U + y +

The two latter integrals are easily seen to vanish with t. Since also the left side

of (2) —-> 0 as t —»0, it follows that, if δ ' < δ,

TίπΓ exp

lim exp

Let e —»0 and obtain

lim Γ ~ 8 ( 4 τ r ί Γ 1 / 2 exp
t-> o+ ^δ

dA(γ) < 2e.

= 0 .

By [ 6 , T h . 7 ] , we see that A(y) is constant between δ ' , and 1 - δ ' . Let δ ' — > 0 .

This ensures the vanishing of the first integral of ( 2 ) .

Now let us turn to the boundary x = 0. Suppose that for some ί0 the boundary

function B(s) is not continuous. If σ is the jump (posit ive since B (s) is in-

creasing) in B (s ) at 5 = ί0, then for t > ί0, s ince Gy (x, t 0, 5 ) > 0 ( s e e [ 5,

p. 3 7 0 ] ) .

u(x9 t) > / Gy{x9 t; 0, 5) dB(s) > σ Gγ(x, t; 0, t0)

~y/2 (t-to)~3/2 exp

- σπ~ι/2 (t-t0Γ
3/2

exp
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Since u(x, t)—>0 as (%, t)—>(0, t0 ) along t - t0 = ax2 for some a > 0, we have

u(x,t) > - σπ~ί/2 x~2 α ~ 3 / 2 exp
" " 2 4α

1 -1/2 -3/2— σ;r x a 3 / 2

9

2n + x
—— exp

As x —>0+, the sum clearly —> 0; but

lim u(x,
) ( )

n̂  ~ σπ~ί/2 x~2 α~ 3 / 2 exp — U oo
O 2 4 α

This is a contradiction. Hence σ = 0, and Z? (s ) is continuous for 0 < s < k.

Now let ί = t0 + ax2. Then

u(x, t) > Gγ(x, t; 0,

, + αxV2

where

Q{x,t;s)=

Clearly the latter integral vanishes with %, Since in the interval of integration

we have

exp > exp
-x

exp
- 1

2a

and

t - s < ax ,
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it follows that

[ l l ] [ L ^\ - B ( ί o ) l + o ( l )u(x,t) > -i π"UΊ α~3 / 2 x~2 exp [ l l ] [β

+ o ( l ) ,> X
ax2/2

where K is a positive constant. Letting x —> 0, we obtain

0 > hm

Hence, by [ 1, p . 5 8 0 ] , B{s) i s a monotone decreasing function. Since it is non-

decreasing, it must be constant. Similarly it can be shown that C(s) is constant .

This completes the proof.

It seems probable that conditions ( b ) , ( c ) and ( d ) would ensure the van-

ishing of u(x, t) if it were represented by ( 2 ) with A9 B, C of bounded varia-

tion, but the proof eludes the author.
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