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Introduction. In the preceding paper J. W. Green considers for a given

convex body K in the euclidean plane the minimum of the isoperimetric ratio r

(ratio of squared perimeter I2 to area a) taken over all affine transforms k of K.

He then investigates the maximum value taken over all K of this minimum ratio,

shows by variational methods that such a maximum is attained by some polygon

of five or fewer sides, and conjectures that it is, in fact, attained by a triangle

with 12γ3, the isoperimetric ratio of an equilateral triangle, as the minimax

ratio. I shall prove this conjecture directly by refining an estimation used by

Green, the precise statement of results being as follows:

I. Let K be an nontriangular plane convex body; there then exists an affine

transform k of K with r(k) < 1 2 \ J Ί Ϊ .

II. L e t T be a nonequilateral triangle-, then r ( T ) >

Before taking up the proof of these results we dispose of a lemma.

III. Let k be a possibly degenerate convex body with s C k C t, wherein t

is an equilateral triangle, and s a side of t; there then exists a number x with

0 < x < 1 such that

^ V 3 ) l(t)

a ( k ) > x a ( ί ) ,

s i m u l t a n e o u s e q u a l i t y o c c u r r i n g if a n d o n l y if e i t h e r x = 0 9 k = s o r x — 1 , k = L

Proof of III. Let p be that supporting strip of k parallel to the line-seg-

ment s; and let x be the ratio of the width of p to the width or altitude of ί. Thus

0 < x < 1, with x — 0 or x — 1 according as k — s or k — t. Choose a point at which

k touches the side of p opposite 5, and define k* to be the triangle with this

point as apex and s as base. Define k to be the trapezoid formed by intersection

of p and ί. Clearly s C ^ C K ^ C ί ; and k^= k = k* if and only if k = s or k = t.
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Since k D k*9 it follows that a(k) 2 α (^*)> with equality if and only if k = k*.

And since k C k*, it follows that l{k) <;/(&*) with equality if and only if A; = k*.

These inequalities become, upon the easy computation of a(k*) and/(&*), the

asserted inequalities of III.

Proof of I. Let K be the given nontriangular convex body. Since the area

functional is continuous, it easily follows from a compactness argument that a

triangle J of maximal area can he 'inscribed in K. Let the three sides of T be

labelled S( ( i = 1, 2, 3), and let V ι be that vertex of T opposite S;. Because the

area of T is maximal, the line L{ through Vι and parallel to S( is a line of sup*

port of K. The triangle formed by the three lines L{ then circumscribes K and

also T; it is composed of four nonoverlapping congruent triangles T and T} ,

where Tj is labelled so as to have S( as a side. That part K( of K in Γ/is a

possibly degenerate convex body with S; C K; C 7\ . Now any triangle can be af-

finely transformed into any other triangle. In particular, T can be affinely trans-

formed into an equilateral triangle t9 with 7\ going into £;, S/ into s t , K( into &;,

and K into k. Therefore s; C k^ C ίj, and ίj is congruent to ί. According to III,

ratios %ι exist giving inequalities on l(kι) and α(kι). Furthermore, since K and

hence A; is nontriangular, not all X{ = 0 and not all %{ - 1. Therefore 0 < x < 1,

where x = 2^ #j/3. Evidently A: is composed of the four nonoverlapping sets t and

kι in such a way that

a(k) = 2 ^ a(ki) + a( t) > ( 1 + 3 * )

whereupon

r(k) < r(t) = 1 -
1 + 3 %

as was to be shown.

Proof of II. Through II is merely a matter of trigonometry, and very likely

can be verified by exhibiting a neat but perhaps unperspicuous trigonometric i-

dentity, I shall here prove it by the sort of methods used above.

Let T be a nonequilateral triangle. Define S;, Fj, Lj as above. Since T is

nonequilateral, some two of its sides, say Sι and S2, are unequal. Let v3 be that

point on the line L 3 , regarded as a linear mirror, at which vi = Vί is reflected

when viewed from v2 = V2; and let t be the so symmetrized isosceles triangle
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with vertices vι and sides s^. Then the path sι s2 is shorter than S t S 2, so

l(t) < l{ T); and, since both triangles have the same base and altitude, a(t) =

a(T). Therefore r(t) < r ( 7 ) . Consequently if the minimum isoperimetric ratio

among triangles is attained, it is attained by an equilateral triangle only; where-

upon it would follow that r( T) > 12\/~3> a s w a s to be shown. Now all possible

triangle isoperimetric ratios are realized by triangles of fixed perimeter con-

taining a fixed point. By a compactness argument, some such triangle achieves

a maximum area and hence a minimum isoperimetric ratio. This completes the

proof.
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