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Introduction. The study of harmonic functions in the plane is essentially
facilitated by the invariance of the Laplace equation

under the group of conformal mappings. The transformations leaving the bi-

harmonic equation

d%u d*u 9*u
+ 2 + =0

(1) Vi = -
dx* dx " dy? dy*

invariant are much more restricted; they only form the group of similarity trans-
formations in the (x, y)-plane. On the other hand, more general transformations
leaving the biharmonic equation invariant may be obtained if u is not treated as
a scalar which does not change its value under the transformations, but trans-

formations of the more general type

x'= ¢ (x, y)
(2) }"=‘/'(x>~y)
u’ = y(x, y)u

are permitted. We assume the functions ¢, ¢, and  to be four times continuously
differentiable, and X # 0. That such nontrivial transformations exist follows
immediately from the well-known representation of a biharmonic function u in

the form
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(3) u=h(x, y)r* + hy(x, y),

with suitable harmonic functions A, and k,, and r? = x? + y2, If a transformation

by reciprocal radii is applied, which in polar coordinates is given by
1 4

(4a) r’=-, 0°=90,
r

and u is transformed according to the formula

1
(4b) u'= —u,
.2
then ©” becomes
(3a) u'=hy (x5 y) + by (x5 92,

with 4, ’ and h,” being the harmonic functions of x% y” obtained from A, and

k, by the transformation (4a). This shows that u” is biharmonic in x* and y”.

By combination of the transformation obtained with arbitrary similarities,
more general transformation of type (2) may be obtained. In order to write them

in a simple way we set
z=x+1iy, 2" =x"+ iy’.

One sees easily that the composed transformations can be written in one of the

following forms:

Gz + dz’
(5%) z'=z—’8, u' =k =z u;

yz + 6 dz

UZ + dz’
(5°%) 2z’ = B, u' =k |—| u.

yZ + 8 dz

The constants ¢, 8, vy, 8, k£ are only subjected to the conditions
“p
y &

Each Moebius transformation in the (x, y )-plane may, therefore, be extended to

£0, k# 0, k real.

a transformation in the (x, y, u)-space leaving the biharmonic equation in-

variant. The extended transformations are analogues of those introduced by
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W. Thomson in his study of the Laplace equation in 3-space.

In the first section of this paper we shall show that formulas (5’) and (5*)
represent the only transformations of type (2) leaving the biharmonic equation
invariant. They form a group M in the (x, y, u)-space depending on seven real
parameters.

The introduction of M has the advantage that if a problem concerning the
biharmonic equation is solved for a domain B of the (x, y)-plane, it can also
be solved for any domain B’ obtained from B by a Moebius transformation. A
further advantage consists in the possibility of introducing domains having
z = in the interior or on the boundary. All definitions regarding the behavior
of a biharmonic function u at z = @ are obtained by using one of the transfor-
mations (5) transforming z = w into a finite point z°=a”’, and considering the
transformed biharmonic function u” at z“=a’. For example, u is called regular
at z=c if u’ is regular at z”=a’. Also the concept of a biharmonic Green’s
function I' (x, y) with the boundary conditions =0 and du/dn = 0 requiring
that u and the normal derivative are zero on the boundary (Green’s function of
the clamped plate) may be extended to the case where the domain considered
contains z = o in its interior, and o should be the pole of I'. The singular
part of I', belonging to a finite pole a’ is given by r’? log r’, r” denoting the
distance of z’=x"+iy” from a’. By using a transformation (5) transforming
a’ into infinity, one obtains a biharmonic function satisfying the same boundary
conditions in the transformed domain whose singular part at z =0 is —c logr,
with a positive constant ¢, and r representing the distance of z from z =0 or
from any other fixed point of the z-plane. In order to make the definition definite

we set ¢ = 1.

This extension of the concept of Green’s function will be utilized in §2,
which is concerned with a question of Hadamard [3] regarding the sign of the
Green’s function. He asked whether it may oscillate in sign. R. J. Duffin [1]
indicated that the answer is affirmative by constructing solutions of the bi-

harmonic Poisson equation
4
Vi =plx,y)

in an infinite straight strip satisfying the boundary conditions

which oscillate in sign although p is positive. In §2 simple examples of domains
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bounded by analytic Jordan curves are constructed in which Green’s function
for suitable choice of the pole may oscillate in sign. Other examples were found

by G. Szegs [ 4] and P. R. Garabedian [2].

There are indications that in the exterior of a convex curve with the pole at
infinity a change of the sign of the Green’s function cannot occur. In the last
part of § 2 we prove only that this conjecture is equivalent to positivity of the

. . 2
harmonic function VT,

The fact that the biharmonic equation is absolutely invariant only under the
group of similarities does not exclude the possibility that for an individual bi-
harmonic function u other conformal mappings exist which transform u into a new
biharmonic function. Indeed, we shall show in $1 that in general there exists a
one-parameter family of conformal mappings which are not similarities and which
transform u into biharmonic functions. In particular one can construct in this
way from one Green’s function a one-parameter family of Green’s functions of
nonsimilar domains. (Only the case of a circle has to be excluded here.) This

also will be discussed in § 1 and applied in § 2.

1. Transformations of biharmonic functions. We shall prove that the trans-
formations of type (2) leaving the biharmonic equation invariant form the group
M described by equations (5). All transformations are assumed to be one-to-one

and four times continuously differentiable, and the Jacobian shall never vanish.

We make use of the well-known fact that the biharmonic equation is the

Fuler-Lagrange equation of the variational problem

(6) Bff(vzu)zdxdy—.-o.

If the integral of (6) is subjected to a transformation of type (2), an integral in
the (x% y’)-plane must be obtained whose Euler-Lagrange equation must again

be the biharmonic equation

v,4u' = 0.

The new integrand is a quadratic expression in the second derivatives of u” with

respect to x and y”’, and the second degree terms are evidently given by
xy 92u’ ox’\2 ox’\?2

(= 1) (5)
xy’ dx’? Ox dy

9%u’ [ax' gy’ dx” dy”’ ] %u’ (ay' )2 0}/')2] r
+ 22— —_—t — + — vl R (—— ’
ox’dy’ L dx ox dy dy ay’? Wox dy

1
(7) —
NP
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J being the Jacobian of the transformation from the (x7 y’)-plane into the
(%, v )-plane.

Already from the expression (7) one can derive the fourth order terms of the
Euler-Lagrange equation, which by assumption is again the biharmonic equation.

This leads by a simple computation to the equations

o \? 9x\? dy’\? Ay “\?
® &) () -G) ()
Ox dy ox dy

and we see that the mapping must be conformal.

In order to obtain further conditions on the transformation, we specialize u
to an arbitrary harmonic function of x and y. Since it is then also a harmonic
function of x* and y’, we have

’2

(09 v dx du dx Ou ]

u'=uv'2><+2[—, —t—
dx’ ox dy’ ody

and further,

(97) 0=V =uV 4 4[8V’2X o WV x o ]

—— + —
dx” dx’ dy” dy”’

9%y 9% d*y 9%u Py 9%
+ 4 = + 2 — — + ]
0x"* 9x*2 dx‘dy” 0dx’dy dy’% 9y’?

2 . . .
Since V' u=0 represents the only relation between the derivatives of u”

with respect to x” and y” up to the second order, we may conclude.from (9”’) that

82 82 62
(10) X X s 'X ~ = 0.
9x’%  9y’?  dx"dy

The only functions satisfying these conditions are those of the form
(11%) Y = colx’? + 97%) + 2c.x” + 2c,y" + c3

(cgs ¢y 5 Ca5 c3 arbitrary constants ).
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Application of the same considerations to the inverse transformation leads to a

similar formula for the reciprocal of y:

(11*) l: co’(x% + ¥2) + 2¢,%x + 2¢,7y + 37,

X
with suitable constants ¢y, ¢;”, c3”, c3”. Consider now first the case of a
nonconstant Y . According to (117) and (11°°), the level lines of y are in both
planes systems of concentric circles each of which may degenerate into a sys-
tem of parallel lines. But a conformal mapping transforming such systems into
each other must be, as is well known, a proper or improper N.oebius transforma-

tion.

In the case of a constant y we may proceed as follows: We compose the
transformation with one of the transformations (5) having a nonconstant y , and
apply to the composed transformation the previous result saying that now the
(x, v Fplane is subject to a Moebius transformation. Using the group property
of the Moebius transformation, we conclude that also the original transformation

of the (x, y »-plane is a Moebius transformation.

We now have to investigate how the coefficients ¢; in x depend on the
Moebius transformation to which the (x, y)-plane is subjected. Since we already
know the transformations (5), it is sufficient to consider only the identity

transformation. We know already that ¥ must have the form
x = colx? + ¥2) + 2c,x + 2¢,y + c3,

and multiplication of any biharmonic function uz by x must again lead to a bi-

harmonic function. Setting

u=x?+y?

gives immediately the result ¢y = 0. Setting further

u=x(x2+y2) or u=y(x2+y2)

gives then ¢; = c, = 0, and we see that y must be a constant. We have thus

arrived at:

THEOREM 1. The most general transformations of type (2) which leave the

biharmonic equation invariant are represented by formulas (5°) and (5%).

As was already mentioned in the introduction, there exist in general for an
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individual biharmonic function u (%, y) conformal mappings which are not simi-
larities, and which transform u again into a biharmonic function. In order to
derive them we make use of the well-known Goursat representation of a bi-

harmonic function,
(12) u=RN{zp(z) + q(2)},

where p(z) and ¢ (z) are analytic functions of z = x + iy, and the symbol I in-
dicates the real part of the quantity in parentheses. The representation is

unique modulo a change of p and ¢ into
(13) p, =p+a+icz, q =q—az +id
(a, ¢, d constants, ¢ and d real).

We write further the Laplacian in the more convenient form

9%y

(14) V% = 4 —
dzdz

Without loss of generality we may restrict our attention to proper conformal

mapping. Let
(15) z’=f(z)

be such a mapping transforming u into a biharmonic function in the (z’= x " +iy”)-

plane. We have

gy S T k& =5R[i€ = —”lf;]=m[dp, i'-l;]
dz’dz’ dzdz dz’ dz’ dz dz’ dz dz’ dz
and
4 d? d?%z
(16”") _Ju__ =m[ P ]
9z°%9z"? dz*% dz7’2
and, therefore,
d* d*z
(16) sr[ P 2]=o
dz*? dz’?
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Excluding now the trivial case of linear mappings characterized by

d?z
-0,
dz*?
we conclude from (16) that
d? d?
(17) P = ic z (¢ areal constant),
dz*? dz*?
and hence
(18) p=icz + Gz’ + f3 (%, B constants).

We may exclude also the possibility & = 0, since then p = icz + 8 and according
to (12) our function u is harmonic. But in this case (15) may be any conformal

mapping. If & # 0 we have
(19) z’=a(p—-icz)+b (a, b, ¢ constants, a # 0, c real).
We have thus arrived at:

THEOREM 2. A proper conformal mapping transforming a given biharmonic
but not harmonic function u with the Goursat representation (12) again into a

biharmonic function is either a similarity or one of the transformations (19).

REMARK 1. For the functions u with constant Laplacian V?u, the mappings
(19) coincide with the similarity mappings, and these are the only biharmonic
functions of this type.

REMARK 2. By combination of the transformations (19) with transformations
of type (5), more general mappings may be obtained transforming u into a bi-

harmonic function.

2. A question of Hadamard regarding the sign of Green’s function of the
clamped plate. As was already discussed in the introduction, Hadamard asked
whether Green’s function of the clamped plate may change its sign. We shall
construct here very elementary examples showing that this is the case. In order
not to interrupt further considerations, we shall first derive several simple

lemmas which will be used in our constructions.

Consider first a finite domain B, and let I'(z,, z,) be its biharmonic
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Green’s function now considered as function of a pair of points z, and z, in B.

Because of the well-known symmetry
I'(zy, 25) = T (2,9, 2,),
it is irrelevant which of the points is considered as pole. We have:
LEMMA 1. For any choice of m points zy, z55 *++ , 2z, in B, the determinant

Uz, 2y) Tlzy,25), 000,02y, 2p)
(20) D= [z, 20) T(zg, 295000, Ulz0, 211)

I_‘(Zm» Zl)y F(zms 22)’ cee, F(stzm)

satisfies

D> 0.

This is an immediate consequence of the well-known fact that I'(z,, z,)

represents a positive definite kernel.

In particular, ['(a, @) > 0; but the equality sign cannot hold since then
the inequality

I'(a, a) I'(a, z)
=-T1%a,2)>0
I'(z,a) T'(z, z)

would lead to I'(a, z) =0 for all z in B, which is evidently impossible. We
have, therefore:

LEMMA 2.°  For all points z in B, we have

(21) I'(z,z) > 0.

We assume now B to contain oo in its interior, and state, for its Green’s

function with the pole at infinity, which we will call I" (z):

—

It is, for example, sufficient to assume the boundary of B to be three times con-
tinuously differentiable to ensure the existence of I

2Hadamard ascribes the first proof of inequality (21) to M. Boggio. His formula for
the variation of I'(z, z) on p.28 of the already quoted paper also implicitly contains
a proof.
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LEMMA 3. I'(z) can be represented in the neighborhood of z = @ in the

form
(22) [(z) =-logr + agr® + 2a,x + 2a,y + I'1(2)
(r = |z, ap, a;, a, constants),

with a remainder 1y bounded in the neighborhood of z = w, and the constant

aqy is positive.

Proof. 1f we apply to [ (z) the transformation (5°) corresponding to z’=1/z,
I'(z) changes into Green’s function I'“(z”) of the transformed domain B’ with

the pole in z’= 0. But for ['” we have
T(z%) =r?logr’+ ag + 2a,x" + 2a,5" + +++,

the dots indicating quantities of at least second order. The constant g, is

positive by Lemma 2. Transforming back, we obtain the contents of Lemma 3.

We introduce now the Goursat representation of I', writing it in the form
(23) T(z) = N7 p(z)} - h,

where p(z) is analytic and %4 harmonic.® From Lemma 3 we can easily con-
clude that the free constants in the choice of p and A can be selected so that

the following conditions are satisfied:
(a) The function p(z) has at infinity a simple pole with a positive p“(w).

(b) The function % differs from log r by a harmonic function in B, regular

also at infinity.

By the conditions (a) and (b), the functions p and h are uniquely deter-

mined.

We shall now derive properties of p(z) characterizing it independently of h.
We use the analytic function

(2) =2 2h
w\z) = azo

3We assume from now on that B is simply connected, in which case p(z) is always
single-valued.
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Its expansion at infinity starts with the term 1/z. From (23) and the boundary

conditions satisfied by I' we conclude that, on the boundary of B,

(24) 0= — = —1{; —_
dz 2 p(2)+a’zz

ar 1 dp __] dh
dz

This equation evidently completely expresses the boundary conditions on I’

modulo an additive constant. We have proved, therefore:
LEMMA 4. The function p(z) is characterized by the two properties:
(a) It has at infinity a simple pole with a positive derivative p’(w ).

(b) The function

coincides on the boundary of B with a function which is analytic in B and whose

expansion at «c starts with 1/z.

We know from Theorem 2 that p (z ) maps our domain B onto a domain B, (not
necessarily schlicht) with preservation of the Green’s function with pole at
infinity. In order to bring Lemma 4 into a form in whichk B and B, play a sym-
metric role, we introduce the function z = g({) which maps the exterior of the

unit circle | {| = 1 onto B so that
(25) gle) = 0, g’(w) > 0.
In a similar way,
(&) =p(g())
maps the exterior of | {| = 1 onto the domain B, and we have again
(25) flx) =0, f(c)>0.
Lemma 4 can now be expressed by saying that

— df A ——

coincides on | {| = 1 with the boundary values of a function analytic in | {| > 1
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whose Taylor expansion at infinity starts with the term (g”(cc)¢)™'. Multi-
plication with dz/d{ leads, therefore, to:

LEMMA 5. The function f({) is characterized by the following properties :
(a) It is analytic in | {| > 1 and has at infinity a simple pole with f’(w) > O.

(b) The function

(26) ()

coincides on |{| =1 with the boundary values of a function w(() analytic in

| £| > 1 whose expansion at infinity starts with the term 1/{.

As soon as () is determined, it is easy to construct the Green’s function
s y

by using equation (24). It gives, after transformation into the {-plane,

(27) 23—Z;=w(/;) (1< > 1).

An integration of w () determines A modulo an additive constant which is to be

adjusted to the boundary condition I" = 0.

Lemma 5 will now be utilized to find simple examples of domains whose
Green’s function oscillates in sign. The simplest choice of g({) one might try

would be

By
g(§)=é+—é— (1Bl < 1),

which maps |{| > 1 onto the exterior of an ellipse or, in the limiting case

| B, | =1, onto a slit domain. In this case, one verifies easily that

{-B/<

(28) f(§) = ——
2(B,B, +1)

and a simple computation gives, for I" written as function of {, the expression

B1 By

1 _
29 U073 ’- -1 -1 ’ =Py 1).
2 21+ B By \© +B1Bi| ~logp, ([ {l=psp21)

But one verifies easily that I' is here always positive. We try, therefore,
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for g(£) an expression*
1
(30) g(§)=é+—+—é—

and shall show that for suitable choice of the constants 8, and 8, we obtain a
schlicht map of |{| > 1 on a domain B with a Green’s function whose sign

oscillates.

First we shall show that the corresponding f(() is of the form

Oy Oy
(31) f(é)=c[§+ a0+—+—],c>0.
¢

In order to verify this we introduce the analytic functions

~ 1 — _
(327 gl ==+ B¢+ By &,

N

~ 1 _
(3279 (o) = C[Z+ Ao + Uy ¢+ Uy 42],

which coincide on |{| =1 with g({) and f({), respectively. According to
Lemma 5, we have to show that the constants ¢, &, 0, C(, can be chosen in

such a way that

~ dg ~ df
(33) w(é)=f(é)z;+ g(éf)z

has an expansion in 1/ starting with the term 1/£. We have

(34) w(C)=c[%+’CA_O+'OTl ¢+ T, 42”1_%_32_2]

+c[%+,§l £+ B 42”1“2;_'-3;;}

or

4N. Mouskhelichvili gave a general procedure telling how to construct Green’s func
tion of a domain whose mapping function g({) is rational. We have to compute it in case
(30) in all details. See [43. N. Mouskhelichvili, Application des intégrales analogues ¢
celles de Cauchy a quelques probléeme de la physique mathématique, Tiflis, 1922,
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(34%) w(é):c[(oTz+E;)CZ+(’GT1+B_1)€—-(072,81 v By oy~ o)

2072,32+2E;“2+a151+510(1—2 ]
Foeee b,
¢

The conditions on f({) are, therefore, satisfied if
(357) Uy + By =0, ty + B, =0, O‘o=alﬁz+[3_10‘2:
and

c(20y By + 2B20z + Gy By + B1 &y = 2) = = 1,

which gives

(35) U1 = - By, Gy =- By, O(o=-23_132,
and

ct=2(1+ ﬁlﬁl + 2, B—z)-

Our function f((¢) is, therefore, given by

o _ BB
39 (0=l Bz ) [o-2R pam= —Zj—}

In order to obtain I', we have to compute, according to formula (23), the real
part of f({)g({). Using the expression (36), we obtain

— _ Bi Bay(= Bi By
O =¢- 26, B~ - c_] ==
- - -7 E - Bfﬁz ¢
=C§—25152§+B1'Z’—l312+Bzzj*ZT‘—Bz4—2
2B1B2B2 ﬁlﬁ?um?z Elfsz_ﬁzéz
z & e fer e

and
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B1 B . B2Bs

p? p*

(37) PRI (D = p? -

_ BIB, BiB2B:  PBiB2
_2§R|Bx,82§+ % + Iz + Zg’z l

We substitute further into the formula (34) for w({) the expressions (35) for
Ctg, Cly, CLo, and obtain

1 = = — Br 2B,
(38%) w(<)=c[2‘23162“514—32§2]Il——- ]

¢ &
1 — — B 2B,
+cl=+ Bl + Bl + —+ — 1,
¢ ¢t &
or, after a simple computation,

2(B3 B, + 2B,B2)  4B1B2B,
(38) wm:iH‘ ﬁﬁ+ﬁBz+ BiBaba|
¢ % 3

In order to obtain £ we may, according to (27), integrate w({):

,8;‘),52 +2/§152 313252
+
2

(39) w(é)d{:log(-Qc[ 7

} + C (C a constant).

Since the real part of (39) must coincide on | {| =1 with R{f({) g ()}, we
obtain, by comparison of (37) and (39),

(407) CH—BLBl‘BzB_2}=§R(C)1
or
(40) R(C) o 1= BB~ B2 B

2(1+ By By +20,B,)

From the foregoing formulas we finally obtain, by substitution into (23), the
following expression for I'(z) in terms of :
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o o
(1) e B0 BB gl D D

p? p* ¢ p?¢

_% log p - (1*3151 - Bzﬁz)’
with
(42) el =2(1+ BB+ 2B, B2)-
We can now show that the constants 3; and 3, can be chosen in such a way

that g () represents a schlicht mapping of | {| > 1, and still I'({) oscillates

in sign. Evidently we obtain an oscillating I if the normal derivative
(5)
dp2

on the unit circle | {| = 1 becomes negative in some of its points. But we have,

from (41),

p=1

9r _ _
C-l(;) =2-6B,81-20B,8;
2!

4BiB 6BiB 2BiB  4BiB _ _
—Ml- Tttt [+ 205 BB 26, Ba),
. _
(43) c-l(a_r) =4—431;§1-1632/§2-16§%§—1ﬁ (1<l =1).
dp? ¢

p=1
This expression becomes negative on the unit circle if

16|81 B2| > 4 = 4B, By ~ 16, Bs»

or

(44) |B,1 + 21821 > 1.
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The function g({) represents a schlicht mapping of the exterior of the unit

circle if the difference quotient

g(d,) - g(g)
él—éz

has positive real part there. This is the case if

|Bi] +2[B,] < 1.

But even the exterior of slightly smaller circle is mapped schlicht under this
condition if only the cases || +2|B,| =1, and B? and B; of equal argu-
ment, are excluded. If, therefore, | 81|+ 2|B,|=1, and B} and B2 have dif-
ferent arguments, all sufficiently close values f;, B, give schlicht mappings
of |£| > 1, and can be chosen so that (44) is satisfied. We thus obtain ex-

amples of domains where I oscillates in sign.

We conjecture that, for the exterior of a convex curve and pole at infinity,

I' is positive. We shall support this conjecture by proving:

THEOREM 3. For the exterior of a convex curve and pole at infinity the
positivity of I is equivalent to the positivity of VT,

.. 20 . . .
This is important because VT is a harmonic function.

First we shall prove that the positivity of ' implies the positivity of VA
Assume first that the boundary curve is analytic. Then I' can be analytically
continued beyond the bourdary curve, and we can speak of derivatives of higher
order on the curve itself. From the positivity of I' and the boundary condition
it follows immediately that the normal derivative of second order on the boundary

satisfies

But the second derivative in the tangential direction is zero again on account
- 2
of the boundary conditions. We have, therefore, V°I" > 0 on the boundary.

Since VT is harmonic and, on account of LLemma 3,
(vri,._. >o,

the Laplacian VT s positive in the whole domain.
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The condition of analyticity of the boundary curve now can easily be dropped

by a limiting process.

We shall now prove the converse: Vr > 0 implies I' > 0. For the proof we
need some preliminary considerations regarding the following question: Which

differential operators of second order,

(45) (% y) (o y) 2 s 2 () (x, y) 2
viX, y)=a11\X Y ¢-9x_2+ A\ % Y axay'*'azzxs}’

dy?
du u

+ 2a,(%, ) — + 2a,(x, y) — + a3(x, y)u,
dx dy

transform an arbitrary bikarmonic function u(x, y) into a harmonic function

v (x, y)? The answer is given in:

X
LEMMA 6. The most general operator of the required type is of the form

Im(x, y) 0 dm(x, y) d
(46) v(x,y)=m(x,y)v2u,—2 _m_f_y_u.{._u_u +v2m.u,
dx  Jdx dy dy

where the function m(x, y) is of the form

(47) m(x, y)=co(x? +y2) + 2¢,x + 2¢,y + c3 (cg, €15 €y c3 constants).
Proof. We form

aszu 32v2u 62v2u
+ 2ay, + 8y,
dx dxdy dy

+ terms of lower order.

(48 V=ay,

Since the only relation between the derivatives of u up to the fourth order is

given by Vi =0, we see already from (48°) that
(499 ay; =0, ayy = ay,.
Calling a,, = a,, = m, we can write (45) in the form

du du
(45°) v =mVu + 2a, — + 2a, — + azu.
dx dy

From (45’) we obtain
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(48”%) Vi =2

am oV Im IV EYA
_— + — + 24a,
dx dx dy dy dx

+ a,

dy

avzu,

+ terms of lower order.

From (487’) we conclude that

dm om
(497) L
dx y
and (45°) can be rewritten as
dm 9 dm 0
(457) vemVi o) 2 28R o,
ax ax ay ay

From this equation we derive

(48"') v2v=v2mv2u_4 a2m aZu azm 82u

9%m 9%u

+ 2
dx? 9x? dxdy dxdy ’ dy? dy?

|

2
+ a3 V'u + term of lower order ,

which gives

(49”) . —

and we obtain (45) in the form (46) with m given by an expression (47). We

verify easily that for any such choice of m the Laplacian satisfies

V2v = 0.

Let B now be the exterior of a closed convex curve, and I' its Green’s

function with the singular point at infinity, and assume that VI > 0 in B.

Take a straight line which does not penetrate into the interior of the boundary

curve. By change of the coordinate system we can make this line the y-axis,

so that B lies to its left. We now apply Theorem 5 with the special choice

m = x, and obtain that

or
(50) v=xV2F—2——
dx
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is harmonic in B. On the boundary of B,

ar )
(51) — =0, VT >0

the latter inequality being a consequence of the assumption that V' > 0in B.
Since our domain lies completely in the half-plane x < 0, we conclude from (51)
that v has nonpositive boundary values. From the behavior of I at z = w ex-
pressed by Lemma 2, we see that v is regular at infinity. From the extremum
properties of harmonic functions we now conclude that v < 0 in the whole B.

In particular, on the y-axis where x = 0 we obtain the result
(52) — > 0.

Let [ now be a half line originating in a point C of the boundary curve of
B orthogonal to the tangent line at C. laying the y-axis perpendicular to [
through any of its points, we see that (52) holds in all points of /; and, since
I' = 0 at C, we arrive at the inequality I" > 0 along the whole /. But the equality
cannot hold, for otherwise I' would be zero along a whole segment of [ and,
since it is analytic, along the whole [. This contradicts Lemma 2, which im-
plies that ' — o as z —» . The whole domain B can be covered with half
lines having the properties of [. The inequality I" > 0 holds, therefore, in the
whole B.
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