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ON SELF-ADJOINT DIFFERENTIAL EQUATIONS

OF SECOND ORDER

R U T H LIND P O T T E R

Introduction. This paper is concerned with the behavior near x = oo of

solutions of the self-adjoint differential equation

(1) [ r ( x ) y ' ] ' + p ( x ) y = 0,

where r(x) > 0 and r(x) and p(x) are continuous for positive values of x. A

solution is said to oscillate near x = oc if it has no largest zero. We study the

oscillation and boundedness of solutions of equations of the form (1). Repeated

use is made throughout the paper of the Sturm comparison and separation theo-

rems and of two theorems due to Leighton [6; 5]. Leighton's theorems are the

following.

T H E O R E M L 1 # If r ( x ) a n d p { x ) a r e c o n t i n u o u s a n d r ( x ) > 0 o n t h e i n -

t e r v a l 0 < x < o c , a n d

/•oo dx Γx
lim I = oc and lim / p {x )dx == oo,

%-*oo J i r ( x ) %->oo J i

then every solution of (1) vanishes infinitely often on the interval ( 1 , o°).

T H EOREM L 2 . If r(x) and p {x ) are continuous, and r (x ) p (x ) is a positive

monotone function of x for x large, a necessary condition that solutions of (1)

be oscillatory near x = oc is that not both limits

dx .. . . . .
)ax

/

x dx [x
, l i m I p ( x t

r(x) x-*oojι

exist and are finite.

We proceed to the study of conditions under which solutions of equation (1)
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4 6 8 RUTH LIND POTTER

are oscillatory,

1. Oscillation theorems. In this first section we consider the so-called

" n o r m a l " form of equation ( 1 ) in which r{x) = 1. It will be useful to set

p U ) = h'2(x),

where h(x) i s p o s i t i v e and of c l a s s C2 when x > a > 0. Equat ion ( 1 ) then

becomes

(1.1) y " + h'2(x)y = 0 .

To study the oscillation of solutions of equation (1.1), it is useful to consider

also the equations

(1.2) [h2(x)z']'+ z = 0,

r l h'2(χ) h"(χ)]

Nonnull solutions of these four differential equations are oscillatory1 or non-

oscillatory simultaneously, for one may readily verify that the derivative of

a solution of (1.1) is a solution of (1.2), equation (1.3) is obtained from (1.1)

by the substitution η = h"ι/2 (x)γ, and (1.4) is obtained from (1.2) by the sub-

stitution £= hι/2 (x)z.

We define

( 1 . 5 Hx(x) =
1 2 Jh{χ) Mix)

and

1 h z { x ) h ( x )(1 6) ' w b w ]•
1A solution is said to be oscillatory on an interval if it vanishes infinitely often

on the interval.
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It follows from Sturm's comparison theorem that if Hγ{x) < 0 or H2(x) < 0 for

large values of x, the solutions of ( 1 . 1 ) are nonoscillatory. Similarly, it follows

from Theorem Lγ that if2

fx dx
lim / = oo,

Ja h(x)

solutions of (1.1) are oscillatory if

ίx

lim / H{ (x )dx = + oo,
Ja

or if

fx
lim / H2 (x )dx - + oc.

Ja

We proceed with a proof of the following result.

T H E O R E M 1.1. //

ίx

lim / H2(x)dx ~ + oc,

Ja

the solutions o / ( l . l ) are oscillatory.

Note first that lim fa

x h"ι(x)dx cannot be finite, for then h'(x)—> - oo;

and h(x) could not be positive, as assumed. An application of Theorem Lι com-

pletes the proof of the theorem.
The following lemma will be useful in the sequel.

LEMMA 1.2. If h(x) is a positive monotone function, a necessary condition

that solutions of (1Λ) be oscillatory is that

. -. dx
lim

Γx dx
l i m / TΓ~\ = °°#

Ja hyx)

To prove the lemma let us suppose that its conclusion is false; that is,

suppose

fx dx
lim / < oo.

Ja h(x)

2All limits taken in this paper will be limits as x—»°o. Unless otherwise indicated,
αis a suitably chosen positive number.



470 RUTH LIND POTTER

Then by a well-known theorem on infinite integrals, lim xh"1 (x) = 0, so that

for any fixed value of n, h~ι (x) < (nx)'1, for x sufficiently large. Since so-

lutions of the equation

y"+ (nxY2y = 0

are nonoscillatory whenever n >_ 2, an application of Sturm's comparison theorem

yields the contradiction, and the truth of the lemma is established.

T H E O R E M 1.2. //

lim / Hi(x )dx = oo,
Ja

a necessary and sufficient condition that the solutions of (1.1) be oscillatory

is that

lim
fx dx

ιm J ττ~\= °°*
Ja hyx)

The sufficiency of the condition follows from Theorem L t applied to equation

(1.3).

To prove the necessity, let us suppose that

rx dx
lim / 7 7 ^ ; < oo.

Since

fx
lim / Hί (x)dx = oo,

Ja

it is readily seen that lim Λ ' ( Λ ; ) = + OO, a n d hence h{x) is monotone for large

values of x It follows from Lemma 1.2 that then the solutions of (1 .1) are

nonoscillatory, contrary to the hypothesis.

The proof of the theorem is complete.

THEOREM 1.3. //lim fa

x h"ι(x)dx = oo and9 for large values of x,

[h'(x)]2 <k2<4,

solutions of ( 1 . 1 ) are oscillatory.



ON SELF-ADJOINT DIFFERENTIAL EQUATIONS OF SECOND ORDER 4 7 1

Under the hypotheses of the theorem,

Γx Γ 1 1 Γx I 1 \ dx 1
lira / Hί(x)dx > lim - λ ' ( * ) - - λ ' ( α ) + / 1 Γ

Ja l ~ I 2 2 Ja \ 4k2lh(x)\
oo,

so that Theorem Lγ implies that solutions of (1.3), and hence that solutions

of (1.1), are oscillatory.

THEOREM 1.4. If h(x)H2(x) is a positive monotone function, a necessary

condition that solutions of (1.1) be oscillatory is that

Γx dx
l i m /

Ja h(x)

dx
lim / ——- = + oo.

)

To prove the theorem note first that it follows from Theorem L2 that not

both the limits

dx
lim / , lim / H2(x)dx

Γx dx Γx
l i m / 7 T ^ ' l i m / ^ ( * -

Ja h \x ) Ja

can be finite. Suppose the conclusion of the theorem were false. Then the

positiveness of H2(x) would imply that the second limit above would also be

finite. From this contradiction we may infer the truth of the theorem.

The following result is useful in the application of the theory.

THEOREM 1.5. // lim h^{x)~L exists, solutions of ( 1 . 1 ) are nonoscil-

latory if L > 2, and oscillatory if L < 2. 3

This theorem is proved by using Sturm's comparison theorem with the aid

of the relation

h(x) = h(a) + [X h'{x)dx.

If L = 2, solutions may or may not be oscillatory depending on h(x), as the

following example shows.

EXAMPLE 1.1. For the equation

„ a2 + 1/4 l o g 2 *
y + y 0

3 Part of this theorem is contained in a theorem of Hartman and Wintner [ l ]
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we have

(α 2

 + l / 4 l o g 2 * ) 1 / 2

and lim h'(x) — 2, whereas the solutions of the equation are oscillatory or not

according a s α 2 > 1/4 or α 2 < 1/4.

COROLLARY 1.5. // lim fa

x h'1 (x)dx = co, and Hι(x) and H2(x) are non-

negative and not identically zero for large values of x, a necessary condition

that solutions of (1.1) be nonos dilatory is lim h'(x) = 2.

If

'% dx

/
Ja
'a h(x

and either

fx
im / Hι(x)dx -

Ja

fx
lim / H2(x)dx = oo,

Ja

application of Theorem Lχ to (1.3) or (1.4), as the case may be, shows that

solutions of (1.1) are oscillatory. Therefore, if solutions of (1.1) are assumed

nonos cillatory,

fx
lim / Hί(x)dx < oo

Ja

and

lim / H2 (x )dx < OD,

Ja

in which case lim h'{x) may be seen to exist. Since

[XHι(x)dx « I A ' ( * ) _ I Λ ' ( O ) + 1/4/"* - i - U-h'\x)Ux,
Ja 2 2 Ja h ( x )
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H2(x)dx = --h'(x) + -h'(a) + 1/4 [X — ! — [4-h'2(x)]dx,
a 2 2 Ja h ( x )

and the limit of the difference of the two integrals exists, lim h'{x) exists.

Moreover, since

0 < / * * [ # , ( * ) + H2(x)]dx,
Ja

lim h'2 (x) < 4. Therefore, by Theorem 1.5, lim hA{x)~29 and the corollary

is establ ished.

An extension of Theorem 1.5 to the more general equation ( 1 ) can be made

if either

Γx dx
lim / = oc

Ja r(x)

or

Γx

lim / p ( x ) dx = oo.
Ja

W e a s s u m e t h a t r ( % ) > 0 a n d p ( x ) 2 l 0 , a n d t h a t Γ ( Λ ) a n d p { x ) a r e f u n c t i o n s

o f c l a s s C w h e n 0 < α < x .

T H E O R E M 1.6. //

rx dx
iim / — - ^ = oo,

Ja r(xt'(x)

and

limr(x)—[r(x)p(x)Tι/2 = L,

dx

the solutions of (1) are oscillatory if L < 2? and nonos dilatory if L > 2.

Transforming equation (1 ) by the substitution

Γx dx
1 = Ja 7ΰ)

leads to the equation
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d2y
+ r{x)p(x)y = 0 .

dt2

The theorem follows immediately upon application of Theorem 1.5 to this equa-

tion. (Note that L < 0 is incompatible with the assumption r(x)p(x) > 0.)

THEOREM 1.7. Ifp(x) is positive for large values of x, and

ίx

lim / p (x)dx = oc

Ja

and

l i m r U ) - p - [ r U ) p ( * ) ] " 1 / 2 = M,
dx

the solutions of (1) are oscillatory if M > — 2 and nonoscillatory if M < — 2.

If γ is a solution of equation (1), z - r(x)y' is a solution of the differential

equation

(1.7)
(x)

Thus the solutions of (1) and those of (1.7) are oscillatory or nonoscillatory

together. Application to equation (1.7) of the procedure used on equation (1)

in the proof of Theorem 1.6 establishes the stated result.

The examples which follow indicate the sensitivity of the results of this

section.

E X A M P L E 1.2. For

(1.8) y " + a2xny = 0,

we note that

Λ ( * ) * .
2 a

To study the equation we distinguish three cases.

Case 1: n > - 2 . Then lim h'{x) = 0, so that the solutions of (1.8) are
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seen to be oscillatory by Theorem 1.5.

Case 2: n < —2. Then lim h'(x) = oo, and Theorem 1.5 can again be applied,

showing the solutions of (1.8) to be nonoscillatory here.

Case 3: n = - 2 . Then lim h'(x)=l/a. The solutions are oscillatory if

a2 > 1/4 and nonoscillatory if a2 < 1/4, by Theorem 1.5. Theorem 1.5 fails

to give any information if a2 - 1/4 (lim h'(x) = 2). In this case, however,

H^x) = 0, and the solutions are nonoscillatory. The equation

y " + l/4*~2y = 0

is thus in a sense a limiting equation.

E X A M P L E 1.3. For

y " + U/4*" 2 + e-*)y = 0,

since lim h'(x) = 2, Theorem 1.5 gives no information about the solutions.

However, for large values of x, Hι(x) < 0 and the solutions are accordingly

nonoscillatory.

EXAMPLE 1.4. Another equation for which lim h'(x) = 2 is

y" + l/4*" 2 log" 1 * ( l + log*)y = 0.

The solutions of this equation are oscillatory by Theorem 1.1 since

ίx

lim / H2(x)dx — oc.
J a

The limitations of the theory of this section are indicated by the fact that

from the theorems which have been given here it is not possible to determine

whether the solutions of the equation in Example 1.1 are oscillatory or not.

2. Counting the zeros of a solution. We consider first the differential

equation (1.1), where h(x) > 0 and of class C on the interval 0 < x < oo.

Let N (α, x) represent the number of zeros of a solution y{x) of (1.1) on the

interval4 (a9 x) where a > 0. This number differs by at most one for all so-

lutions, and hence for the present purpose can be considered as depending only
4In designating intervals it will be convenient to use the following conventions:

[α, b\ means the interval α < % ^ 6 , (α, b\ means the interval a < x < b, [α, 6) means the
interval α<Λ:<6, (α, b) means the interval a < x < b.
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on the differential equation and not on a particular solution.

In the preceding section it was shown that the solutions of equation (1.1)

are oscillatory whenever lim h'(x) < 2, and are nonoscillatory whenever

lim h'(x) > 2. There are equations with oscillatory solutions and others with

nonoscillatory solutions for which lim h'{x)-2. Wiman [ 8 ] has given an

asymptotic formula for N (a, x) when lim h '(x ) = 0:

1 Γx dx
N(a,x) - -

π Ja h(x)

An asymptotic formula is readily found whenever 0 < lim h'{x) < 2, by con-

sidering the set of differential equations

y " + (m2 + 1/4 )*f2y = 0,

m
where m is any real number. For a particular value of m, N (a, x) = — log# + k

(k is a constant), and h'(x) = (m2 + l /4V l / 2 . π

THEOREM 2.1. //, in equation (1.1), lim h'(x) = m < 2,

1/ 1 1 \ 1 / 2

(2.1) N(a,x) ~ l o g * .
π \ m

2 4 /

Any differential equation included in Theorem 2.1 is also included in the

stronger Theorem 2.3 giv^n below.

The Wiman formula can be extended to an equation of the form (1).

THEOREM 2.2. / /

Λx dx Γx
lim

then whenever

Γx dx Γx
im / = oo or lim / p(x)dx = oc,

Ja r{x) Ja

U ) [r{x)p(x)]"ί/2 = 0
dx

the relation

N

holds.

1 Γx I :
(a, x) / V p(x)r' ι (x)dx

π Ja
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If lim fα

x r'1 {X )dx = oo, we apply to (1) the transformation

t = / r~ι (x)dx
Ja

and obtain

d2y
(2.2) — + r(x)p(x)γ = 0.

According to the Wiman theorem, the number of zeros ΛKαj, t) of a solution

y(t) of (2.2) is asymptotically equal to

Γ- Γ [ r ( % ) p U
π Jaγ

provided

lim — [ r ( * ) p ( * ) r l / 2 = 0.

But this is equivalent, under the transformation, to the first half of the theorem.

If

ίx

lim / p (x )dx = co,

we apply the transformation

Γx
s - I p (x)dx

Ja

to equation (1.7), noting that the zeros of a solution of (1) and those of a

solution of (1.7) separate each other, and proceed as above.

An application of a variant of the foregoing method yields a generalization

of the Wiman theorem for equation (1.1).

T H E O R E M 2 . 3 . // the function g{x) = [ x2h'2 (x) - 1 / 4 ] 1 / 2 i s real and

positivey and

(2.3) limχ[g-ι(x)]'= 0 ,
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then

[
π Ja

To prove the theorem we transform (1.1) by the substitution y = x z and

obtain

(2.4) [ * * ' ] ' + g2(x)x'ιz = 0.

The proof of the theorem may now be completed by applying Theorem 2.2 to

equation (2.4).

Theorem 2.3 is more general than the Wiman theorem. Applying the law of

the mean to h" {x), we see that the Wiman condition, lim h'(x) = 0, implies

lim xh~ι {x) - oc, and it is readily verified that whenever the Wiman condition

is satisfied equation (2.3) holds. On the other hand, Theorem 2.3 applies to

differential equations for which the Wiman theorem is not available; e.g., 5

(2.5)
4% log%

It should be observed that Theorem 2.3 includes all equations covered by

Theorem 2.1, whereas Theorem 2.1 is not applicable to equation (2.5) since

lim A'(*) = 2.

Still more refined results are obtainable if instead of using the transformation

which led to equation (2.4), we use the substitution y = qι/2 (x)z, where q(x)

is so chosen that fx q"ι(x)dx diverges more slowly than log x. This suggests

the use of the sequence

x log%, x log% Iog2%, , x log% loĝ Λ;,

(cf. [61).

To show that such a sequence can be used, the following theorem is in-

cluded.

THEOREM 2.4. In the differential equation

(2.6) [ r n _ i ( x ) y ' ] ' + p ( x ) y = 0 ,

L See Example 1.4. This equation was shown to have oscillatory solutions.
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where

ro(x) = x, rn(x) = rnmi{x)loμnx,

if

(2.7) lhn/ ̂ U ) —[rnml{x)p(x)ri/2 = 0 ,

dx

and

( 2 . 8 ) p"Hx)= o t r ^ U ^

( 2 . 9 ) l i m / • „ ( * ) — [ r n ( x ) p ( χ ) ] ' l / 2 = 0 ,

Moreover, (2.9) Joes rioi imply (2.7).

The proof is clear once the limits in question are evaluated.

3. Boundedness of the solutions of a particular equation, ΐn this section we

study the question of boundedness near x = + oo of solutions of the self-adjoint

differential equation

(3.1) [r(x)y'Y- p ( x ) γ = 0 .

We assume that r(x) and p(x) are positive continuous functions of x for x

large, and that r'(x) is continuous.

A CANONICAL FORM. It is useful to develop a canonical form for the

solutions of ( 3 . 1 ) . This form is suggested by the special case

r{x)p(x) = k\

In this instance the general solution of (3.1) may be written

Cιe
v{x) + c2e-v{x\



480 RUTH LIND POTTER

where v (x) = k"2 \* p (x )dx, and cι and c2 are arbitrary constants.

Direct computation and an application of the fundamental existence theorem

for systems of differential equations yield the following result.

THEOREM 3.1. The general solution o/(3.1) may be written

cιU(x)eυ{x) + c2u{x)e'v{x),

where u(x) and υ(x) are functions of class C which satisfy the pair of equa-

tions

(3.2) τu*{(ru'Y - pu] = - 1 ,

(3.3) ru2v'= 1.

S i n c e u(x) i s a f u n c t i o n of c l a s s C2 s a t i s f y i n g ( 3 . 2 ) a n d ( 3 . 3 ) , u{x) c a n -

n o t v a n i s h .

THEOREM 3.2. The general solution of (3.2) is given by the relation

(3.4) u2 = ay2 + by2 + 2cyty2

where y and γ are linearly independent solutions of (3.1) and a9 b9 and c are

any constants satisfying the relation

ah = _ Γ 2 + c 2 ,

if k is the constant

r(x)[yι(x)y'2(x) - γ;(x)y2(x)].

To prove the theorem, the solution given by (3.4) can be substituted directly

in (3.2).

BOUNDEDNESS OF SOLUTIONS OF (3.2). We first prove a lemma.

L E M M A 3 . 3 . L e t r ( x ) , r ' { x ) > and p{x) be continuous and r ( x ) p ( x ) be

positive and monotone for large values of x . If u ( x ) is a positive solution of

equation ( 3 . 2 ) , the relations l i m u ( x ) = cc and l i m u ( x ) < oc cannot hold

simultaneously.

Suppose that the hypotheses of the theorem are satisfied when x > α, and
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that lim u(x) = oo and lim u (x) < oc. Since u{x) is of c lass C , there are an

infinite number of relative maximum points and of relative minimum points of

u(x) on (α, oc). We rewrite the equation ( 3 . 2 ) in the form

( 3 . 2 ) ' ( ™ ' ) ' = r-ιu'3(rpu4 - 1 ) .

From the h y p o t h e s e s of the lemma, lim [r(x)p(x)] e x i s t s and i s n o n n e g a t i v e .

If lim [r(x)p(x)~\ > 0, t h e r e e x i s t s a r e l a t i v e maximum p o i n t xM of u (x ) for

which

[r{xM )u'{xM ) ] ' > 0 and r(xM)u'{xM) = 0.

T h i s impl ie s t h a t t h e r e i s a p o s i t i v e number e s u c h t h a t u'{x) > 0 when xy <

x < xM + € , which i s i m p o s s i b l e . If lim [r(x)p(x)] = 0, from equa t ion ( 3 . 2 ) '

we s e e there i s a r e l a t i v e minimum poin t xm of u{x) for which

[r(xm )u'{xm )] ' < 0 and r(xm ) u '(xm ) = 0.

T h i s i m p l i e s tha t t he re i s a p o s i t i v e number e' s u c h t ha t u'(x) < 0 when xm <

x < xm + € ' » wh ich i s i m p o s s i b l e .

T h u s , in any c a s e , the a s s u m p t i o n lim u{x)~ oc and lim u(x) < oc l e a d s

to a c o n t r a d i c t i o n . T h e truth of the lemma f o l l o w s .

THEOREM 3 . 3 . Let r(x), r'(x), and p(x) be continuous^ and r(x)p(x) be

positive and monotone increasing for large values of x. Then every solution

u{x) of equation ( 3 . 2 ) is bounded near x - oc .

We recall that a solution u(x) of equation (3 .2 ) cannot vanish, and note

that if u(x) is a solution, so is — u{x). Let a be a positive real number such

that the hypotheses of the theorem are satisfied when x > a. Suppose then that

u(x) > 0 and let m(x) and M(x) be respectively the minimum value and the

maximum value of u (x ) on [α, x ]. Let xm and x^ be such that

u ( x m ) = m ( x ) , u ( x M ) = M { x ) .

Since

[ r { x ) u ' ( x ) Y - r ( x ) p ( x ) u 2 ( x ) + r ( a ) p ( a ) u 2 ( a )

u 2 ( x ) [ r ( x ) p ( x ) V d x + u ' 2 ( a ) = u'* ( x ) + [r ( a ) u ' ( a ) ] 2 ,f
a
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it follows that

(3.5) [r(xm)u'(xm)]2 + c\ < m'Hx) + r(a)p (a)m2 (x) + c 2 ,

(3.6) [r(xM)u'(xM)]2 + c[2 >M-2(x) + r(a)p(a)M2(x) + c'2,

w h e r e cl9 c2, c[, c 2 ' a re r e a l c o n s t a n t s . We ident i fy two c a s e s a c c o r d i n g a s

[r(x )u'(x ) ] 2 i s b o u n d e d or n o t .

C a s e 1. If [r(x )u'(x)]2 i s b o u n d e d , i t fo l lows from i n e q u a l i t y ( 3 . 6 ) t h a t

M (x ) i s b o u n d e d , and h e n c e t h a t u (x) i s b o u n d e d .

Case 2 . If lim [ r (x )u'(x ) ] 2 = oo, we a s s u m e u {x) i s n o t b o u n d e d . T h e n

lim M(x) = oc a n d lim u{x) = oo

by L e m m a 3 . 3 . But e q u a t i o n ( 3 . 2 ) ' t h e n i m p l i e s t h a t ( r w ' ) ' i s e v e n t u a l l y p o s i -

t ive or lim [r(x)u'(x)] =oo. It fo l lows from i n e q u a l i t y ( 3 . 5 ) t h a t lim m" (%) = oc

and h e n c e t h a t lim m (x ) = 0. T h e n by L e m m a 3 . 3 , u (x) i s b o u n d e d .

We give a c o m p a n i o n r e s u l t when r (x)p (x) i s m o n o t o n e d e c r e a s i n g .

T H E O R E M 3 . 4 . lfr{x), r'{x), and p(x) are continuous, and r(x)p(x) is

positive and monotone decreasing for large values of x, every solution u(x) of

( 3 . 2 ) is bounded away from zero.

The proof of this theorem is similar to that of Theorem 3.3.

The following theorem specializes Theorem 3.3 to the "normal form" of

( i ) .

THEOREM 3.5. If p{x) > 0 and monotone increasing for large values of x,

then the differential equation

( 3 . 7 ) y " - p(x)y = 0

is such that all solutions are monotone, and there is one solution y (x) which

approaches zero as x—> oc. Every solution of the differential equation ( 3 . 7 )

which is linearly independent of y {x) is unbounded on ( 0 , oo ) .

The monotone character of the solutions is apparent from the fact that if

γ{x) is a solution of (3.7), y"(x) is eventually of one sign and hence so is

γ'{x). The general solution can be written
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(3.8) y(x) = c l U ( x ) e v M + c2u (x )e"v{x),

w h e r e u(x) i s p o s i t i v e , a n d u(x) a n d v{x) a r e f u n c t i o n s o f c l a s s C2 s a t i s f y i n g

( 3 . 2 ) a n d ( 3 . 3 ) . B y T h e o r e m 3 . 3 , u(x) i s b o u n d e d , a n d h e n c e [v'(x)]~l i s

b o u n d e d . T h u s v '(x) i s p o s i t i v e a n d b o u n d e d a w a y f r o m z e r o . T h i s i m p l i e s

ϊϊ^u(x)e'vM = limu(x)e-v(χ) = 0.

We set

yγ{x) = u(x)eMx)

and let y2ix) be a positive solution linearly independent of yι(x). Since

and

yί(χ)y2(χ) - y[(χ)y2 (x) = c ,

where c is a nonzero constant,

lim y2 (% ) = oc,

and the theorem follows.

COROLLARY 3 .5 . // lim fα

% r~ι (x)dx = oo, and r(x)p{x) is a positive

monotone increasing function of x for x large, there is one solution y{x) of

equation ( 3 . 1 ) which approaches zero as x—>oo. All solutions linearly in-

dependent ofy^(x) approach + 00 or — oc as x —» 00. The solutions are all mono-

tone.

We let t = fα* r~ι(x)dx. Equation (3.1) becomes

d2y
(3.9) — - r(x)p(x)y = 0 ,

dt2

where r and p are to be considered functions of t. The theorem follows from

Theorem 3.5 applied to equation (3.9).

THEOREM 3.6. If r(χ), r'(χ), and

χ p(x) l r " U ) 1 \r'(x)
) = -i-

r ( x ) 2 r ( x ) 4 l r ( x )
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are continuous, r(x) and P {x) are positive, and P (x) is monotone increasing

for x large, there is one solution yί(x) of equation ( 3 . 1 ) such that

\imrι/2(x)γι(x) = 0 .

For every solution y(x) which is linearly independent of y (x), rι'2(x)y(x)

is not bounded.

To prove this theorem we transform equation (3.1) by means of the substitu-

tion z - r 1 ' 2 {x)y. The resulting differential equation is

z " - P(x)z = 0 .

Application of Theorem 3.5 to this equation yields the theorem.

E X A M P L E 3.1. For

{x2y')'-x2y = 0 ,

all solutions of the corresponding equation

x2u3[(x2u')'- x2u] = - 1

are bounded s ince [r(x)p(x)]'> 0 (Theorem 3.3). The general solution of the

given equation is

x ι

c2e~x).

EXAMPLE 3.2. For the equation

/ 1 \ ' x2-2

Ί- y
X

[r(x)p(x)]'< 0. By Theorem 3.4, therefore, all solutions of

— u ' \ ( * 2 _ 2)u
2

are bounded away from zero. Moreover, since

p(x) l r " U ) r

r(x) 2 r(x) 4

Ήx)
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by T h e o r e m 3.6 t h e r e i s a s o l u t i o n γ (x) of the g iven e q u a t i o n s u c h t h a t

lim x" y (x) = 0,

and for every linearly independent solution y {x ),

lim x~ι y (x ) = oo .

The general solution of this equation is

c χex

EXAMPLE 3.3. Consider the differential equation

y"- L + JL)y = 0.
2 /

By Theorem 3.5, one solution of this equation approaches zero, and all solutions

which are linearly independent of this solution become infinite. The general

solution of the equation is

cιX'
ι/2eχ2/2 + c2x'ι/2e'χ2/2.

THE RICCATI EQUATION ASSOCIATED WITH EQUATION (3.1). Since

the solutions of equation (3.1) are nonoscillatory, the transformation w = r(x)y'/γ

applied to this equation leads to the relationship

(3.10) M / = p { x ) - r'ι{x)w2,

which is valid for each solution y of (3.1) when x is sufficiently large. The

differential equation (3.10) can be used to obtain additional information on the

question of boundedness of solutions of (3.1).

THEOREM 3.7. //lim fx r~ι(x)dx < oo and lim fx p (x)dx < oo, all solu-

tions of (3.1) are bounded^ and there is a positive constant M such that

| y ' U ) | < Mfι(χ).

It i s suff icient to c o n s i d e r only p o s i t i v e s o l u t i o n s of equat ion ( 3 . 1 ) . Ac-

cordingly, we s u p p o s e y(x) i s any so lu t ion of ( 3 . 1 ) which i s p o s i t i v e for x

large, and le t b be a p o s i t i v e number such t h a t both y(x) and y'(x) are of one
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sign when x > b. Equation (3.10) is then valid for such values of x, and w(x)

is of one sign. If w(x) < 0 when x > 6, y{x) is bounded. If w(x) > 0, when

x > b it follows from equation (3.10) that

'(x) < p(x)

and

Γx
w(x) < w(b) + I p(x)dx < K,

J b

where K is a constant. Hence

y'<*> . „.!

y(«)
Kr'ι(x)

and

log
γ(x)

y(b)

•% dx
< Kl < oo.

b r(x)

Thus, y (x ) is bounded.

To prove the last statement of the theorem we apply the first part to the

equation

for which z =

~[p-ι(x)z'V-r-ι(x)z = 0 ,

' is a solution if γ is a solution of (3.1).

Examples 3.1 and 3.2 show that the hypotheses of Theorem 3.7 cannot be

weakened to the convergence of only one of the integrals

dxr °o dx r oo

/ —rτ> p(x)dx.
J a r(x) Ja

4. Boundedness of nonoscillatory solutions of an equation of the form (1) .

In this section we study the boundedness of solutions of an equation of the form

( 1 ) when its solutions are nonoscillatory and both r(x) and p(x) are positive

and continuous functions of x for large values of x. 6 It is known that a necessary

condition for the solutions of ( 1 ) to be nonoscillatory is that not both

^Sections 3 and 4 together discuss boundedness of nonoscillatory solutions whenever
p(x) is eventually one sign, for p(x) negative and positive respectively. The case
where p (x) is not of one sign is not studied in this paper.
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*x dx
lim

and

lim

Γx dx
im /

Ja r(x'

im / p(x)dx = cc.
Ja

If r{x)p{x) is a monotone function, the convergence of both of the aforemen-

tioned integrals is a sufficient condition that (1) have nonoscillatory solutions

[ 5 ] .

We state the principal theorem:

THEOREM 4.1. A necessary and sufficient condition that an equation of

the form (1) with nonoscillatory solutions have all solutions bounded near

x = oo is that

Γx dx
lim I ——- < OD.

Ja r{x)

Whenever the solutions of equation ( 1 ) are nonoscillatory, the transformation

to (x ) - r(x)y'/y leads to the Riccati equation

(4.1) i o ' = -p(x) -
w2

which is valid for each solution y(x) of ( 1 ) when x is sufficiently large.

Let y (x)be a nonoscillatory solution of (1) such that γ{x) > 0 and y'(x) £ 0

whenever x > a > 0, where a has been chosen sufficiently large that p(x) > 0

when x > a. It is sufficient to consider only solutions which are eventually

positive since the negative of a solution of ( 1 ) is also a solution. Then if

x > α, equation (4 .1) is valid as noted above, and

w'(x) 1

Hence,

1 Γx dx
(4.2) > /

w (x ) J a r ( x )
+ •

J ( x ) J a r { x ) w ( a )
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We assume that

fx dx
lim / --—- < oo.

Ja r(x)

lίw(x) > 0 ,

y'U) 1 Γ fx dx
< /

y ( x ) r ( x ) i J a r ( x ) w ( a ) l

by equation (4.2), so that

I fx dx 1
logy (x ) < log / — — + — — + c,

\ J a r y x ) w y a )

where c is a constant. Accordingly, y (x) is bounded. If w (x) < 0, then y ' ( # ) < 0,

and y(x) is bounded. Thus, whenever

fx dx
lim / -—-• < oc,

Jα Γ ( Λ )

all solutions of (1) are bounded.

If lim f* r"ι{x )dx = oo, it follows from equations (4.1) and (4.2) that w (x)

is a positive, monotone decreasing function with lim w(x) = 0. Therefore,

r(x)y'(x)
(4.3) lim — — = 0

y\χ)

for all solutions y(x) of ( 1 ) . Let y.(x) and y (x ) be any two linearly inde-

pendent solutions of ( 1 ) which are positive for x large. From equation (4.3),

r(x)y/(x) r{x)y2'{x)

lim = 0, lim = 0.
yx(x) y2(χ)

If c is the nonzero constant such that

r(χ) ίyi'(χ)y2(χ) - yι(χ)y2(χ)'\ = c,

then

r(x)yι'(x) r{x)y2{x) c

(4.4) = — — — — .
yγ(χ) y2(χ) yί(χ)y2(χ)
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The l imit of the left s ide of the equat ion ( 4 . 4 ) i s zero. Therefore, s i n c e al l

pos i t ive s o l u t i o n s of ( 1 ) are monotone i n c r e a s i n g , a t l e a s t one of y{(x) and

y2 (x) becomes inf inite, and if

Γx dx
lim / - — = oo,

Ja r(x)

not all of the solutions of (1) are bounded.

T H E O R E M 4 . 2 . Solutions of ( 1 ) are nonoscillatory and bounded near x = oo

if r(x)p (x) is monotone decreasing and l i m fj° r"ι(x)dx < oc, or if r(x)p (x)

is monotone increasing and l i m fx p(x)dx < oo.

A solution of (1) can be written in the canonical form u {x )sin v (x ), where

u(x) and v(x) are functions of class C2 satisfying [$] , the pair of equations

ru3 [(ru')' + pu] = 1 , ru2v' = 1 .

If r (x)p (x) i s m o n o t o n e d e c r e a s i n g , t h e r e e x i s t s [ 5 ] a p o s i t i v e number m s u c h

t h a t u(x) > m. S i n c e lim f* r" (x)dx < oo,

dx ~\ Γ x dx
l i m v(x) = l i m | v (a) + / | < v (a) + ra~2lim / < o o .

~\x)
[ Γx dx 1 Γx i

v(a) + I < v (a) + m" l i m / —
Jo r(x)u2{x)\ J* '

T h u s , s o l u t i o n s of ( 1 ) are n o n o s c i l l a t o r y . Λn a p p l i c a t i o n of Theorem 4.1 now

y i e l d s the first par t of the theorem.

The proof of the s e c o n d half of the theorem i s obtained by c o n s i d e r i n g

equat ion ( 1 . 7 ) . If y{x) is a s o l u t i o n of ( 1 ) , r(x)y'(x) i s a so lu t ion of ( 1 . 7 ) .

But by the p r e c e d i n g paragraph, r(x)y'(x) i s n o n o s c i l l a t o r y and bounded when

r"ι(x)p"ι(x) i s monotone d e c r e a s i n g and lim f* p{x)dx < oo. There fore , y{x)

i s n o n o s c i l l a t o r y . T h a t y(x) i s bounded follows from a theorem of L e i g h t o n [ 3 ] .

From equat ion ( 4 . 1 ) it i s ev ident t h a t whenever lim f* p(x)dx = oc, w (x )

i s negat ive for every so lut ion y{x) of ( 1 ) . T h i s remark, together with the fact

noted in the proof of Theorem 4.1 that , when lim f* r" (x)dx~cc, w(x) i s

p o s i t i v e for every solut ion y(x) of ( 1 ) , proves the following theorem:

T H E O R E M 4 . 3 . / / l i m fα

x p(x)dx = oo, all nonoscillatory solutions y(x)

of (1) have the property that y2(x) is monotone decreasing, / / l i m f* r~ι(x)dx = co,

all nonoscillatory solutions have the property that y (x) is monotone increasing.

It should be observed that the restriction to nonoscillatory solutions in
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Theorem 4.1 is not superfluous. This is illustrated by the following example.

EXAMPLE 4.1. The differential equation

(xy'Y + -y = 0
x

has the general solution

y (x) = cγ sin log | x I + c^ cos log \x\

All solutions of the equation are bounded near x = oo, whereas

Γx dx
im / = lim log

Ja r{x)
l im

a
= o c .

From the theorems of this section it is evident that whenever the so-called

"normal form" of equation ( 1 ) with r(x) = 1 has nonoscillatory solutions, these

solutions cannot al l be bounded.

5. Remarks on a theorem of Leighton. We recall that in Theorem L t Leighton

gives, as a sufficient condition for solutions of ( 1 ) to be oscillatory, that

Cx dx fx
lim / = oo, lim / p {x)dx = oo.

Ja r(x) Ja

In the paper [6] containing this theorem there was established the existence of

a sequence of tests for oscillation, each more sensitive than the preceding.

This sequence was obtained by successively transforming an equation of the

form (1) into an equation

[ r B ( * ) y ' ] ' + Pn(x)y = 0,

where

ro(x) = x, rn(x) = r Λ β l (

It might be asked whether there is some positive function R(x) with the property

that whenever (1) is transformed into an equation

[R(x)y'V+P(x)y- 0 ,

the relations
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*x dx
lim

fx dx Γx
im I = oo, lim / P \x)dx

Ja R(x) Ja

would give a necessary as well as a sufficient condition for oscillation. That

there is no such function is shown by the following theorem.

THEOREM 5.1. // r(x) is a positive continuous function such that

Γx
lim I r~ι(x )dx = oc,

Ja

there exists a positive continuous function p(x) such that lim f* p(x)dx < oc,

and solutions of the differential equation

lr(x)y'V+p(x)y - 0

are oscillatory.

We set

U ) = l fi + [* d% 1
r(x) I Ja r(x)\

2

The truth of the theorem then follows from Theorem 1.6.
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