SOME THEOREMS ON GENERALIZED DEDEKIND SUMS

L. CARLITZ
SOME THEOREMS ON GENERALIZED DEDEKIND SUMS

L. CARLITZ

1. Introduction. Using a method developed by Rademacher [5], Apostol [1] has proved a transformation formula for the function

\[G_p(x) = \sum_{\substack{m, n=1 \atop m, n > 0}} n^p x^{mn} \quad (|x| < 1), \]

where \(p \) is a fixed odd integer > 1. The formula involves the coefficients

\[c_r(h, k) = \sum_{\mu \equiv r \pmod k} P_{p+1-r} \left(\frac{\mu}{k} \right) P_r \left(\frac{h\mu}{k} \right) \quad (0 \leq r \leq p + 1), \]

where \((h, k) = 1\), the summation is over a complete residue system \((\text{mod } k)\), and \(P_r(x) = B_r(x) \), the Bernoulli function.

We shall show in this note that the transformation formula for \((1.1)\) implies a reciprocity relation involving \(c_r(h, k) \), which for \(r = p \) reduces to Apostol's reciprocity theorem [1, Th. 1; 2, Th. 2] for the generalized Dedekind sum \(c_p(h, k) \). In addition, we prove some formulas for \(c_r(h, k) \) which generalize certain results proved by Rademacher and Whiteman [6]. Finally we derive a representation of \(c_r(h, k) \) in terms of so-called "Eulerian numbers".

2. Some preliminaries. It will be convenient to recall some properties of the Bernoulli function \(P_r(x) \); by definition, \(P_r(x) = B_r(x) \) for \(0 \leq x < 1 \), and \(P_r(x + 1) = P_r(x) \). Also we have the formulas

\[\sum_{r=0}^{k-1} P_r \left(t + \frac{r}{k} \right) = k^{1-m} P_r(kt), \quad P_r(-x) = (-1)^r P_r(x). \]

It follows from the second of \((2.1)\) that \(c_r(h, k) = 0 \) for \(p \) even and \(0 \leq r \leq p + 1 \). We have also

Received August 11, 1952.
Pacific J. Math. 3 (1953), 513-522

513
provided \((h, k) = 1\). Further, it is clear from the second of (2.1) that

\[
(2.3) \quad c_r(-h, k) = (-1)^r c_r(h, k).
\]

Now as in [5, 321] put \(x = e^{2\pi i \tau}\),

\[
\tau = \frac{iz + h}{k}, \quad \tau' = \frac{iz^{-1} + h'}{k},
\]

so that, on eliminating \(z\), we get

\[
(2.4) \quad \tau' = \frac{h' \tau + k'}{k \tau - h} = \frac{h' \tau + k'}{(hk' + kk' + 1 = 0)};
\]

thus (2.4) is a unimodular transformation. Now Apostol's transformation formula [1, Th. 2] reads (in our notation)

\[
C_p(e^{2\pi i \tau}) = (iz)^{p-1} C_p(e^{2\pi i \tau'}) - \frac{1}{2} \left(\frac{2\pi z}{k}\right)^p \frac{B_{p+1}}{(p+1)!} + \frac{i^{p-1}}{2z} \left(\frac{2\pi}{k}\right)^p \frac{B_{p+1}}{(p+1)!} + \frac{(2\pi i)^p}{2 \cdot p!} c_p(h, k)
\]

\[
+ \frac{(2\pi i)^p 2^{p+1}}{2(p+1)!} \sum_{r=0}^{p-2} \left(\frac{p+1}{r+1}\right) e^{\pi i (r-1)/2} z^{r+1} \sum_{\mu=1}^k P_{p-r} \left(\frac{h' \mu}{k}\right) P_{r+1} \left(\frac{\mu}{k}\right).
\]

Making use of (1.2), (2.2), and (2.3), we easily verify that this result can be put in the form

\[
(2.5) \quad C_p(e^{2\pi i \tau}) = (k \tau - h)^{p-1} C_p(e^{2\pi i \tau'}) + \frac{(2\pi i)^p}{2(p+1)!} f(h, k; \tau),
\]

where

\[
(2.6) \quad f(h, k; \tau) = \sum_{r=0}^{p+1} \left(\frac{p+1}{r}\right) (k \tau - h)^{p-r} c_r(h, k).
\]

We remark that (2.6) can be written in the symbolic form
(2.7) \((k\tau - h) f(h, k; \tau) = (k\tau - h + c(h, k))^p + 1, \)

where it is understood that after expanding the right member of (2.7) by the binomial theorem, \(c'(h, k) \) is replaced by \(c_r(h, k) \).

We shall require an explicit formula for \(f(0, 1; \tau) \). Since, by (1.2),

\[
c_r(0, 1) = P_{p+1-r}(0) P_r(0) = B_{p+1-r} B_r,
\]

it is clear that (2.6) implies

(2.8) \(f(0, 1; \tau) = \frac{1}{\tau} \sum_{r=0}^{p+1} \left(\binom{p+1}{r} \right) B_{p+1-r} B_r \tau^{p+1-r} = \frac{1}{\tau} (B + \tau B)^p + 1. \)

If in (2.4) we replace \(\tau \) by \(-1/\tau\), then \(\tau' \) becomes

(2.9) \(\tau' = \frac{-k' \tau + h'}{h \tau + k} \),

and (2.5) becomes

(2.10) \(G_p(e^{2\pi i/\tau}) = \left(\frac{h\tau + k}{\tau} \right)^{p-1} G_p(e^{2\pi i \tau'}) + \frac{(2\pi i)^p}{2(p+1)!} f(h, k; -\frac{1}{\tau}). \)

By (2.5) and (2.8) we have

(2.11) \(G_p(e^{2\pi i \tau}) = \tau^{p-1} G_p(e^{-2\pi i /\tau}) + \frac{(2\pi i)^p}{2\tau(p+1)!} (B + \tau B)^p + 1, \)

and by (2.5) and (2.9),

(2.12) \(G_p(e^{2\pi i \tau}) = (h\tau + k)^{p-1} G_p(e^{2\pi i \tau'}) + \frac{2\pi i}{2(p+1)!} f(-k, h; \tau). \)

Comparison of (2.10), (2.11), (2.12) yields

\[f(-k, h; \tau) = \tau^{p-1} f(h, k; -\frac{1}{\tau}) + \frac{1}{\tau} (B + \tau B)^p + 1, \]

or with \(\tau \) replaced by \(-1/\tau\),
(2.13) \[f(h, k; \tau) = \tau^{p+1} f\left(-k, h; -\frac{1}{\tau}\right) + \frac{1}{\tau}(B + \tau B)^{p+1}. \]

(For the above, compare [3, pp. 162-163]).

3. The main results. In (2.7) replace \(h, k, \tau\) by \(-k, h, -1/\tau\) respectively; we get

\[\frac{k\tau - h}{\tau} f\left(-k, h; -\frac{1}{\tau}\right) = \left(\frac{k\tau - h}{\tau} + c(-k, h)\right)^{p+1}. \]

By (2.3), it is clear that (2.13) becomes

(3.1) \[\tau(k\tau - h + c(h, k))^{p+1} = (\tau c(k, h) - \tau k + h)^{p+1} + (k\tau - h)(B + \tau B)^{p+1}. \]

Comparison of the coefficients of \(\tau^{r+1}\) in both members of (3.1) leads immediately to:

Theorem 1. For \(p\) odd > 1, 0 < \(r\) < \(p\),

\[(3.2) \quad \binom{p + 1}{r} k'(c(h, k) - h)^{p+1-r} = \binom{p + 1}{r + 1} k^{p-r}(c(k, h) - k)^{r+1} + kB_{p+1-r}B_r - hB_{p-r}B_{r+1}. \]

In the next place, if for brevity we put \(w = k\tau - h\), then (3.1) becomes

(3.3) \[k^p(w + h)(w + c(h, k))^{p+1} = (w + h)c(k, h) - wk)^{p+1} + w(Bk + (w + h)B)^{p+1}. \]

We now compare coefficients of \(w^{r+1}\) in both members of (3.3); a little care is required in connection with the extreme right member. We state the result as:

Theorem 2. For \(p\) odd > 1, 0 < \(r\) < \(p\),

\[(3.4) \quad \binom{p + 1}{r + 1} k^p c_{p-r}(h, k) + \binom{p + 1}{r} k^p c_{p+1-r}(h, k) \]
\[
\left(\begin{array}{c}
p + 1 \\
\end{array} \right) h^{p-r} (c(k, h) - k)^{r+1} c^{p-r}(k, h) + \left(\begin{array}{c}
p + 1 \\
\end{array} \right) (Bk + B'h)^{p+1-r} B^{rs},
\]
where
\[
(Bk + B'h)^{p+1-r} B^{rs} = \sum_{s=0}^{p+1-r} \binom{p+1-r}{s} B_{p+1-r-s} B_{R+s} k^{p+1-r-s} h^s.
\]

For \(r = 0 \), (3.4) becomes
\[
(p + 1) hkPc_p(h, k) + kPc_p(h, k)
\]
\[
= (p + 1) h^p \{ c_{p+1}(k, h) - kc_p(k, h) \} + (p + 1) (Bk + Bh)^{p+1},
\]
which reduces to
\[
(3.5) \quad (p + 1) \{ hkPc_p(h, k) + kPc_p(k, h) \} = (p + 1) (Bk + Bh)^{p+1} + pB_{p+1}.
\]

This is Apostol's reciprocity theorem.

If we take \(r = 1 \) in (3.4), we get
\[
p \{ h^2 kPc_{p-1}(h, k) - k^2 hPc_{p-1}(k, h) \}
\]
\[
= -2 \{ hkPc_p(h, k) + pkhPc_p(h, k) \} + pB_{p+1} + 2 (Bk + B'h)^p B'h.
\]

If in this formula we interchange \(h \) and \(k \) and add we again get (3.5), while if we subtract we get
\[
(3.6) \quad p \{ h^2 kPc_{p-1}(h, k) - k^2 hPc_{p-1}(k, h) \}
\]
\[
= (p - 1) \{ hkPc_p(h, k) - khPc_p(k, h) \} - (Bk + Bh)P (Bk - Bh).
\]

In view of (3.6), it does not seem likely that Theorem 2 will yield a simple expression for
\[
h^{r+1} kPc_{p-r}(h, k) + (-1)^r h^{r+1} kPc_{p-r}(k, h) \quad (r > 0).
\]

We remark that Theorems 1 and 2 are equivalent. Indeed it is evident that
(3.2) is equivalent to (3.1), and (3.4) is equivalent to (3.3); also it is clear that (3.1) and (3.3) are equivalent.

4. Some additional results. We next prove (compare [6, Th. 1]):

Theorem 3. For \(p, q \geq 1, \ 0 \leq r \leq p + 1 \), we have

\[
(4.1) \quad c_r(q^h, q^k) = q^{-r} c_r(h, k).
\]

Note that we now do not assume \(p \) odd, \((h, k) = 1 \).

To prove (4.1), we have, using (1.2),

\[
c_r(q^h, q^k) = \sum_{\mu \equiv h (\mod qk)} P_{p+1-r} \left(\frac{\mu}{qk} \right) P_r \left(\frac{h \mu}{k} \right).
\]

\[
= \sum_{\nu \equiv h (\mod q)} P_{p+1-r} \left(\frac{\nu + \rho}{qk} \right) P_r \left(\frac{h (\nu + \rho)}{k} \right)
\]

\[
= \sum_{\nu} P_r \left(\frac{\nu h}{k} \right) \sum_{\rho \equiv h (\mod k)} P_{p+1-r} \left(\frac{\nu}{q} + \frac{\rho}{qk} \right)
\]

\[
= q^{-r} \sum_{\rho} P_{p+1-r} \left(\frac{\rho}{k} \right) P_r \left(\frac{h \rho}{k} \right)
\]

\[
= q^{-r} c_r(h, k).
\]

For brevity we define

\[
(4.2) \quad b_r(h, k) = (c(h, k) - h)^r = \sum_{s=0}^{r} (-1)^r \binom{r}{s} h^{r-s} c_s(h, k),
\]

which occurs in Theorem 1. Clearly

\[
c_r(h, k) = (b(h, k) + h)^r.
\]

Theorem 4. For \(p, q \geq 1, \ 0 \leq r \leq p + 1 \), we have

\[
(4.3) \quad b_r(q^h, q^k) = q^{-r} b_r(h, k).
\]
By (4.1) and (4.2) we have

\[b_r(qh, qk) = \sum_{s=0}^{r} (-1)^{r-s} \binom{r}{s} (qh)^{r-s} c_s(qh, qk) \]

\[= \sum_{s=0}^{r} (-1)^{r-s} \binom{r}{s} h^{r-s} q^{-r} c_s(h, k) \]

\[= q^{r-p} b_r(h, k). \]

If we define

\(a_r(h, k) = (c(h, k) - h)^r c^{p+1-r}(h, k), \)

which is suggested by Theorem 2, we get:

Theorem 5. For \(p, q \geq 1, 0 \leq r \leq p + 1, \)

\(a_r(qh, qk) = qa_r(h, k). \)

The proof, which is exactly like the proof of (4.3), will be omitted.

We note that (4.4) implies

\(h^r c^{p+1-r}(h, k) = \sum_{s=0}^{r} (-1)^s \binom{r}{s} a_s(h, k) = (1 - a(h, k))^r. \)

Also using (4.2) and (4.6), we get

\(h^{p+1-r} b_r(h, k) = (1 - a(h, k))^{p+1-r} a^r(h, k), \)

and reciprocally from (4.4),

\(a_r(h, k) = (b(h, k) + h)^{p+1-r} b^r(h, k). \)

Using \(a_r(h, k) \) and \(b_r(h, k) \), we can state Theorems 1 and 2 somewhat more compactly.

5. Another property of \(c_r(h, k). \) For the next theorem compare [6, Th. 2].

Theorem 6. For \(p \geq 1, 0 \leq r \leq p, \) and \(q \) prime, we have
By (1.2), the left member of (5.1) is equal to

\[
\sum_{m=0}^{q-1} c_r(h + mk, qk) = (q + q^{1-r}) c_r(h, k) - q^{1-r} c_r(ph, k).
\]

(5.1)

By (1.2), the left member of (5.1) is equal to

\[
\sum_{m=0}^{q-1} \sum_{\mu=1}^{qk} P_{p+1-r} \left(\frac{\mu}{qk} \right) P_r \left(\frac{(h + mk) \mu}{qk} \right)
\]

\[
= \sum_{\mu=1}^{qk} P_{p+1-r} \left(\frac{\mu}{qk} \right) \sum_{m=0}^{q-1} P_r \left(\frac{h\mu}{qk} + \frac{m\mu}{q} \right)
\]

\[
= \sum_{\mu=1}^{qk} P_{p+1-r} \left(\frac{\mu}{qk} \right) P_r \left(\frac{h\mu}{k} \right) q^{1-r}
\]

\[
+ \sum_{\nu=1}^{k} P_{p+1-r} \left(\frac{\nu}{k} \right) \left[q^{p} P_r \left(\frac{h\nu}{k} \right) - P_r \left(\frac{qh\nu}{k} \right) q^{1-r} \right]
\]

\[
= q^{1-r} c_r(qh, qk) + QC_r(h, k) - q^{1-r} c_r(qh, k)
\]

\[
= (q^{1-r} + q) c_r(h, k) - q^{1-r} c_r(qh, k),
\]

by (4.1).

It does not seem possible to frame a result like (5.1) for the expressions \(b_r(h, k)\) or \(a_r(h, k)\) defined by (4.2) and (4.3).

6. Representation by Eulerian numbers. If \(k > 1, \rho^k = 1, \rho \neq 1\), we define the "Eulerian number" \(H_m(\rho)\) by means of [4, p. 825]

\[
(6.1) \quad \frac{1 - \rho}{e^t - \rho} = \sum_{m=0}^{\infty} H_m(\rho) \frac{t^m}{m!}.
\]

Then it is easily verified that [4, p. 825]

\[
k^{m-1} \sum_{r=0}^{k-1} \rho^r B_m \left(\frac{r}{k} \right) = \frac{m}{\rho - 1} H_{m-1}(\rho^{-1}),
\]

which may be put in the more convenient form
Now consider the representation (finite Fourier series)

\[(6.3)\]

\[P_m \left(\frac{r}{k} \right) = \sum_{s=0}^{k-1} A_s \zeta^{-rs} \quad (\zeta = e^{2\pi i/k}).\]

If we multiply both members of (6.3) by \(\zeta^{rt}\) and sum, we get

\[kA_t = \sum_r \zeta^{rt} P_m \left(\frac{r}{k} \right) = \begin{cases}
\frac{mk^{1-m}}{\zeta^t - 1} H_{m-1}(\zeta^{-t}) & (t \neq 0) \\
 k^{1-m} B_m & (t = 0),
\end{cases}\]

by (6.2) and (2.1). Thus (6.3) becomes

\[(6.4)\]

\[P_m \left(\frac{\mu}{k} \right) = k^{-m} B_m + mk^{-m} \sum_{s=1}^{k-1} \frac{H_{m-1}(\zeta^{-s})}{\zeta^s - 1} \zeta^{-\mu s}.\]

Thus substituting from (6.4) in (1.2), we get after a little reduction

\[(6.5)\]

\[c_r(h, k) = \frac{B_{p+1-r} B_r}{k^p} + \frac{r(p + 1 - r)}{k^p} \sum_{t=1}^{k-1} \frac{H_{p-r}(\zeta^ht)H_{r-1}(\zeta^{-t})}{(\zeta^ht - 1)(\zeta^{-t} - 1)}.\]

Thus \(c_r(h, k)\) has been explicitly evaluated in terms of the Eulerian numbers. One or two special cases of (6.5) may be mentioned. For \(r = p\) we have

\[(6.6)\]

\[c_p(h, k) = \frac{p}{k^p} \sum_{t=1}^{k-1} \frac{H_{p-1}(\zeta^{-t})}{(\zeta^{-ht} - 1)(\zeta^t - 1)} \quad (p > 1),\]

while for \(r = p = 1\) we have

\[s(h, k) = \frac{1}{4k} + \frac{1}{k} \sum_{t=1}^{k-1} \frac{1}{(\zeta^{-ht} - 1)(\zeta^t - 1)},\]

where \(s(h, k) = c_1(h, k)\). Note that \(s(h, k) = s(h, k) + 1/4\), where \(s(h, k)\) is the ordinary Dedekind sum [6]. We also note that (6.4) becomes, for \(m = 1\),
\[
P_1 \left(\frac{\mu}{k} \right) = -\frac{1}{2k} + \frac{1}{k} \sum_{s=1}^{k-1} \frac{\zeta^{-\mu s}}{\zeta^s - 1},
\]

which is equivalent to a formula of Eisenstein.

Possibly (6.5) can be used to give a direct proof of Theorem 1 or Theorem 2.

REFERENCES

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any of the editors except Robinson, whose term expires with the completion of the present volume; they might also be sent to M.M. Schiffer, Stanford University, Stanford, California, who is succeeding Robinson. All other communications to the editors should be addressed to the managing editor, E. F. Beckenbach, at the address given above.

Authors are entitled to receive 100 free reprints of their published papers and may obtain additional copies at cost.

The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is $8.00; single issues, $2.50. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues, $1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to the publishers, University of California Press, Berkeley 4, California.

Printed at Ann Arbor, Michigan. Entered as second class matter at the Post Office, Berkeley, California.
L. Carlitz, Some theorems on generalized Dedekind sums .. 513
L. Carlitz, The reciprocity theorem for Dedekind sums ... 523
Edward Richard Fadell, Identifications in singular homology theory 529
Harley M. Flanders, A method of general linear frames in Riemannian geometry. I ... 551
Watson Bryan Fulks, The Neumann problem for the heat equation 567
Paul R. Garabedian, Orthogonal harmonic polynomials 585
R. E. Greenwood and Andrew Mattei Gleason, Distribution of round-off errors for running averages ... 605
Arthur Eugene Livingston, The space H^p, $0 < p < 1$, is not normable 613
M. N. Mikhail, On the order of the reciprocal set of a basic set of polynomials ... 617
Louis Joel Mordell, On the linear independence of algebraic numbers 625
Leo Sario, Alternating method on arbitrary Riemann surfaces 631
Harold Nathaniel Shapiro, Iterates of arithmetic functions and a property of the sequence of primes ... 647
H. Shniad, Convexity properties of integral means of analytic functions 657
Marlow C. Sholander, Plane geometries from convex plates 667