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1. Introduction. In this paper we develop sets of harmonic polynomials in
%, ¥, z which are orthogonal over prolate and oblate spheroids. The orthogo-
nality is taken in several different norms, each of which leads to the discus-
sion of a partial differential equation by means of the kernel of the orthogonal
system corresponding to that norm. The principal point of interest is that the
orthogonality of the harmonic polynomials in question does not depend on the
shape of the spheroids, but only on their size. More precisely, the polynomials
depend only on the location of the foci of the ellipse generating the spheroid,

and not on its eccentricity.

The importance of constructing these polynomials stems from the role which
they play in the calculation of the kernel functions and Green’s functions of
the Laplace and biharmonic equations in a spheroid. One can compute from the
kernels, in turn, the solution of the basic boundary-value problems for these
equations. As a particular case, one arrives at formulas for the solution of the

partial differential equation

?f 1 of 9

—_— - — 4+ — =0

which arises in discussion of axially symmetric flow.

Results of the type presented here have occurred previously in the work of
Zaremba [ 10], and are related to recent developments of Friedrichs [3, 4] and
the author [5]. The polynomials investigated in this earlier work are in two
independent real variables and yield formulas for solving the Laplace and bi-
harmonic equations in two dimensions. Thus it is natural to suggest that the

basic results generalize to n-dimensional space. In this connection, it is
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586 P. R. GARABEDIAN

easily verified that a part of the theory carries over to arbitrary ellipsoids in
three-dimensional space.

2. Notation and definitions. We shall make use of rectangular coordinates

%, ¥, 2z, cylindrical coordinates p, ¢, z, and spherical coordinates r, 6, ¢.

Thus

R
n

p cos ¢ =r sin O cos ¢,
y =p sin ¢

z

It

r sin 0 sin ¢,

r cos 6.

The Laplace integral formula

(n+h)

P:(cos 0) = f (cos 0 + i sin 0 cos t)" cos ht dt

i

for the Legendre polynomials P, (cos 6)=P:(cos 0) and the associated
Legendre functions P;'(cos @) is basic for our work. In terms of Laplace’s

integral we obtain the solid spherical harmonics in the form

+h)!
r Ph(cos 0) cos h¢~—£—n——h—)— /W (z + ip cos t)" cos hep cos ht dt,
0

mr n:
(n+h)!

r”P:(cos 0) sin h¢) = —r-L———f (z + ip cos t)" sin h¢p cos ht dt.
mi

They are homogeneous harmonic polynomials of degree n in x, y, z

We shall be interested in obtaining complete orthogonal systems of har-

monic polynomials in the interior of the prolate spheroid

2 2
z P
+ =1,

ch?« sh? o

(1)

and in the interior of the oblate spheroid
22 p?

(2) +
sh?a  ch?u

Thus it is convenient to introduce coordinates u, v defined by the relations
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z+ip=cos (u~iv)=cosuchv+isinushov
for the prolate case, and defined by
p+iz=sin(u+iv)=sinuchv+icosushv

for the oblate case. In both cases, the boundaries of the above spheroids have
the equation v =&,

We define
Un 1 (py 2) (n+h)!]m . /”P( : ) cos ht d
nh\pPy 2)= Y e nlZ +1ip cost)cos htdt,
( B! 1/2 .n-h
Vab(p, z)= i ] : /WP,,(iz—-pcos-t)coshtdt.
’ (n—-h)! 7 Jo

By the addition theorem for the Legendre polynomials we obtain the well-

known expressions

- 111/2
Un,h(p, 2) = :n——-_—'_f—;!] P:(cos u)P:(chv),
n+h)!
—R)171/2
Va, b (ps z)= En Z;'] in'hP:(cos u)P:(ishv),
n+h)!

where in the first case u, v are coordinates in the prolate spheroid (1) and in

the second case u, v are coordinates in the oblate spheroid (2).

Here

P:(ch v) = shv Prfh) (chv),

P,fl(i shv) = chv Pn(h) (ishv).

The expressions
Un,h(p, z) cos he, Un,n(p, 2) sin ko,
Va,h (p, 2) cos ke, Va,b(p, z) sin h¢

are harmonic polynomials in x, ¥, z of degree n.
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We shall be concerned here with the new polynomials

d
Xn,h == Un+1,h
dz

(n+1+h)']

(n+1-h)! f P/ (z+ipcost)cos htdt
n+

and

d
Yo,n = E Vn+l,h

(n+1+h)171/2 jnoh
T ( 1-4)! / P4y (i z —pcost) cos ht dt.
n+1-— !

The functions
Xn,1(p, z) cos he, Xn,h(p, z) sin h¢,
Yo, (p, 2) cos he, Yo,1(p, 2) sin h¢

are linear combinations of the classical spherical harmonics. The functions
Xn,0and Y, o involve only zonal harmonics and satisfy the partial differential
equation

9 19 9%

ap2 p % 9z

of axially symmetric flow.

Let us denote by D either the prolate or the oblate spheroid described
above, and let us denote the Dirichlet integral over D by

B of dg If 9g 9f 05}
(f ) = ﬂf[ax 3% T3y 9y T35 9. WY

fff—do, (Ag = 0),

where S is the surface of D, and where v and d o denote outer normal and area
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elements on S. Since z+ip=cos(u-i v) and p+iz=sin(u+i v) are
isogonal mappings, we obtain, on the spheroid S,

d ]
do — =pdd dy —.
aau p¢u¢9v

Hence

3 (fe) = _[ff%pwdw/;"/:"fg—fpdsédu-

3. Orthogonality. If 1 £ k, we have by the orthogonality of ordinary Fourier

series
(Un,h cos he, Um,k cos k¢) = 0,
(Un,n sin ko, Un,k sin k) = 0,
(Un,h cos ke, Un,k sin k¢) = 0,
(Un,p cos ke, Un,h sin k¢p) = 0,

and similarly for ¥, ;. For h = k we obtain in the prolate spheroid

aUm,h

(Un,h cos hp, Um,h cos hep) = /W/zﬂ Un,h (cos?he)p dep du
o Jo

v

(n=-Hh)!

7 P Ceha) [sho PA*1(cha)+h cha P! (cha)]
n+ .

77(1+60h)

. /” P:(cos u) Pg(cos ©) sin u du
)

27(1+5,,)
-— 1%— PH(cha) [shaP*! (ch ) + b ch o PP (ch )] Sum,
n +

where 8, =0 for n # m and &, = 1.

Similarly
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(Up,n sinhp, Up,p sin hep)

2m

2n +1

Ph(cha) [shaP ! (cha)+k cha PP (ch )] 8nm.

For the oblate spheroid we have in like manner
(Va,h cos hpy Vp,p cos hep)

(n=h)!
=7(1+8,,) (-'-1——}:% i"*m-2h ph(;sho) [i ch o P#*1 (i sha)
n+ !

by T oh h .
+hsh(XPm(zshO()] Pn(cosu)Pm(cos u) sin u du
0

277(].+80h)

= ——— GV PG sha) [ieha P G sha)
n +

+hsha PH(isha)] Sum.

Also
(Vn,n sin hpy Vi, h sin hep)

27

T om+1

(~1)"k Pk (i sho) [i cha P#*1 (i sha) + hshat PP (i sh )] Sam-

We have therefore proved:

THEOREM 1. The harmonic polynomials Uy, j cos h¢s Uy p sin hep form a
complete orthogonal system for the interior of the prolate spheroid (1) in the
sense of the Dirichlet integral. The harmonic polynomials V, j cos h¢, Vi p
sin h¢ form a similar system inside the oblate spheroid (2). The polynomials
Un,o and Vn,o alone form, respectively, complete orthogonal systems for the
equation of axially symmetric flow inside the spheroids (1) and (2).

We turn next to a less obvious result for the polynomials X, 5 and Y, ;.

Let

[f, gl = ff fgdxdydz.
D
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Then clearly, if & £ k,
[X5,h cos hpy X, i cos k] =
[Xn,h sin hpy Xp, sin k¢p)/= 0,
(X, 5 cos hpy Xp i sin k] =
[X,,,;, cos hpy Xpm,p sin he] =

and similarly for ¥, 5. Now

3z dz du 9z dv
when z + ip=cos (u~iv). Also

du dv d(u-iv) d(z—-ip) du+iv) du=-iv)

EFR P d(z +ip) T d(u+iv) d(z-ip) d(z+ip)

d(u, v)
d(z, p)

sin (u+iv).

Therefore

(X, 4 cos ko, f]

oU U
=— ffffcos h¢l ;+l'h sinu ch v - ;“'h cos u sh v
A u

(

d(u, v)
. dé dp d
a(z,p)" ¢ dp dz
17172 .
E::i+l]:;|] /./ 2 fcos hep sinushv

. [Ph (ch v) Ph+l (cos u)sinuchv

n+1

+P n+l

(cos u)Ph l((:h v) cos u sh v]dqb dudv.

The last integral vanishes when f is a harmonic polynomial of the form
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h h
P (cos u) P, (chv) cos he

with m < n, since

n+i

/ pht !(cos u)smuP (cos u)sinudu=0
0

T bh h .
/(; P, (cos u) cos u P (cosu)sinudu=0

Hence for n # m

[Xn,hcos hdpy Xpp,p cos hpl =0
and similarly

[Xn,h sin hpy Xy h sin hp] =0
For m = n, we have

n+l+h

f=Xn,hcos hp = [n+1 h

] (27 +1) Up,p cos hp +«+ ,

where the dots indicate harmonic polynomials of lower degree, which are
orthogonal to X, ; cos h¢. Thus

[Xn,h cos hp, Xpp cos kel

! ™
=(2n+1) (n+Z;'ff /2 cos? hg sin u sh v P/ (cosu)Ph(chv)

[Ph+1 (cos u) ph

1 (chv)sinuchov

+ P n+l (cos u) P:Hl(ch v) cos u sh v] d¢ du dv

(n=h)!
-_-n(1+80h)( +h)'// :ﬂl(cosu)z :(chv)

nﬂ(ch v)shv chv sinu dudv
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(n-h+1)! fapr
sn(1+5,,) W/ofo Pk, (cos u)? PH(chv)

P,f:ll(Ch v) sh?v sin u du dv

2”(1 + 50}1)

(n+1+h)/aPh(chv) sh v
2n+3 o 7

[(n+2+h)P"+l(ch v)chv+ P2 (chv)sholdo.

n+1

The same value is obtained if we replace cos ¢ by sin h¢ throughout, & > 0.

For the oblate spheroids, we have, on the other hand,

d du 4 dv 4

— d—

5;=5-z-£ dz dv

with p + iz = sin (u + i v). Hence

du dv  dlu-iv) dlp+iz) dlu+iv) d(u=-iv)
9z 9z dz+ip) d(u+iv) dlp+iz) dz+ip)

C9(u, v)
d(p, z

cos (u+iv).

Therefore

Ly, b cos ke, 1

v, av
- ffffcosh(ﬁl P sinu shov- ’;ﬂ'h cos u chv

v

9y, v) d¢ dp d
. z
3(p o) TP
1 4
= nti-h t::i+::'] ff 2 f cos hep sinu chv

n,“(L shv) Prf':ll(cos u)sinu shov

- [
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(cos u) PhY

n+1

+ '(ishv)cosu chv]dgp dudu.

n+1

This integral vanishes when f is a harmonic polynomial
P;:(cos u) Pﬁ(i sh v) cos h¢

of degree m < n, since

f Ph*1(cos u) sin u P,:(cos u)sinu du=0
0

n+i

7 ph h .
./0. Pl (cos u) cos qu(cos u)sinu du=0.

Hence, for n # m,

[Yn,h cos hep, Y , cos hgp]=0

m,
and also

[y, psinhg, Y, sin hél =

For m = n, we note that

n+l+h

/
m_—h] (2n+l)Vn,hcoshq§+---,

f=Yn,h cosh¢=—[

where the dots represent harmonic polynomials of lower degree, which are

orthogonal to ¥ , cos k¢ . Therefore

[Yn,h cos he, Y, ; cos heh ]

-
=—(2n+1)i2"'2h+1( h;'./..[ ./‘mcos h¢ sinu ch v
n+

P:(cos u)P’f(i sh v). [P:+l (i sh v)P::ll(cos v)sinushov

h
+an+1

(cos u)Ph (i shv)cos uchvldgdudv
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277(1+80h)

3 (-—1)"'h+li(n+1+h)./0.al’:(ish v)chv

. [(n+2+h)P,:’+l(i sh v) sh v+iP:++ll(ish v)choldv.

We obtain the same value if cos A is replaced by sin Ad.

This completes the proof of:

THEOREM 2. The harmonic polynomials X, j cos he, X p sin k¢ form a
complete orthogonal system for the interior of the prolate spheroid (1) in the

sense of the scalar product
[f, gl= f/]fgdx dy dz.
D

The corresponding system in the oblate spheroid (2) is

Yn,h cos h, Yn,h sin ho.
The zonal polynomials X, o and Y, o are complete and orthogonal for the equa~
tion of axially symmetric flow in their respective domains (1) and (2).

Friedrichs [4] has investigated the eigenvalue problem

(fz f2] 1T (3f/02)* dx dy dz |
B = maximum

(5 N [T 1(3f/0x) + (3f/0y)? + (8f/02)*} dx dy dz

for harmonic functions f in quite general regions D of space. It is clear from

Theorem 1 and Theorem 2 that we have:

THEOREM 3. The eigenfunctions for the problem

[fZ’ fZ]
(£ N

= maximum, Af =0,

in the prolate spheroid (1) are
Un p €OS he, Un 5 sin he,

and in the oblate spheroid (2) they are
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V., cos he, nh sin h¢.

n,

The corresponding eigenvalues are

[ Ph(ch v)sho[(n+ 2+h)P (ch v)ch v+Ph+1(ch v)sh v]dv
(n+1+4h)

PR (cho)[sho PRI I(cha)+hcho PR (cha)]

for the prolate spheroids and (n+1+h)Q, where Q is the expression

i [ Ph(z shv)chol(n+2+h)PE 1 (ishv)shv+i P (ishv)chovldo

n+1

’
n+l(zsh0’)[z chO(Ph+1(zsh0()+hshO(Ph (ish(x)]

for the oblate spheroids.

Friedrichs was led to this extremal problem through his investigation of
Korn’s inequality and existence theorems for the partial differential equations
of elasticity. We shall show in the following how the eigenfunctions can be
used to solve the biharmonic equation.

One sees easily from Theorem 3 that
Un,h cos ho, Un,h sin ho
and

n,

V. , cos ke, Vn,h sin h¢

are also orthogonal in the norm

({2 + (L) -t

However, we do not go into details since this norm leads to no apparent ap-
plication.

One can obtain quite interesting results, on the other hand, by using the

orthogonality of the X, 1 and the Y, ; over the interior of the ellipses (1) and
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(2) for all values of & to obtain a corresponding orthogonality of the same

polynomials over the surface of the spheroids with respect to a suitable weight

function. Indeed, we have

d
—_ [X,,,}, cos hd, Xpm i cos k¢l

do
27(1+8,)(n+1+2)8,, 8, d ra
- — | Ph(chv)sh
res G
.[(n+2+h)P,f+l(chv)chv+P:++l‘(chv)shv]dv,
whence

"]‘{Xn,h cos he X, ; cos kel [1-(z+ip)?|2%do
S

2n(1+80h)(n+h+ 1)

PM(ch o) sh a
2n+3 "(c )s

[(n+2+h)PE (choa)cha + PP (cha)shals,, 5, .

Likewise, by the same reasoning,

ff{Yn,h cos h¢ Y, , cos kol |1=(p+iz)?|Y2do
S
2m(1+38,;,) (n+h+1)

. “h+1 phy .
53 i(-1)" IPn(zshO()chO(

[(n+2+h)PE (isha)sha+iP!(isha)chals,, s,

with exactly the same formulas in both cases if cos A¢ is replaced by sin Ad.

This calculation yields:

THEOREM 4. The polynomials X, ;, cos h¢, X, sin h¢p are complete and
orthogonal over the surface of the spheroid (1) in the. sense of the scalar pro-

duct



598 P. R. GARABEDIAN

if, gt= ff fell=(z+ip)*|% do
S

with weight function |1~ (z +ip)|'/? equal to the square root of the product
of the distances from (p, ¢, z) to the points (0,0, 1) and (0,0, —1). The

harmonic polynomials Yn,h cos he, Y ,h Sin h¢ are complete and orthogonal

n
over the surface of the oblate spheroid (2) in the sense of the scalar product

if, gl = ff fell=(p+iz)*|"? do.
S

There exist quite clearly further orthogonality properties of the polynomials
Un,h and Vn,h which do not depend on the shape of the spheroids (1) and (2).
However, we make no pretense here at tabulating all possible orthogonal har-
monic polynomials of this type (cf. [8]), but proceed rather to apply the re-

sults already obtained to the Laplace and biharmonic equations.

4. The kernels. The Green’s function G (P, ) for the Laplace equation
in a region D is a harmonic function of the coordinates x, y, z of the point
P in D, except at (), where

G(P’ Q) =

+ harmonic terms,

1
r(P, Q)

and it vanishes for P on the surface S of D. Here (P, Q) denotes the distance
from P to (). The Neumann’s function N (P, Q) has a similar fundamental singu-

larity,

N(PsQ)=

+ harmonic terms,

r(P, Q)

while its normal derivative is constant on S and

f N(P, Q)do (P) = 0.

S

The harmonic kernel function K (P, Q) is defined by the formula [ 2]

1
K(P, Q) = e {N(P, Q) - G(P, Q).
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If f,(P) is a complete orthonormal system of harmonic functions in D in the

sense

(fn: fm) = anm,

I 1o,
s

then one has the Bergman expansion

with

K(P,Q) = 2 fa(P)fn(Q).

n=1

On the other hand, if g,(P) is a complete orthonormal system of harmonic
functions in D in the sense of the scalar product

corresponding to an arbitrary positive weight function w on S, then the kernel

H(P, Q) = 2 gn(P) (Q)

n=1
is given by [ 7]

ff 1  dG(T,P) 9G(T, Q)

H(P, Q) =
(P, Q) (4m)? ¢ «(T) ov(T) ov(T)

do(T).

For P on S we have

1 9dG(P, Q)
P)H AR
w(P)YH(P, Q) = 30

The Green’s function I' (P, Q) of the biharmonic equation
AAF =0

is a biharmonic function of the coordinates of P, except at (), where
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['(P, Q) == r(P, Q) + biharmonic terms,
and for P on S it satisfies

or (P, Q)

F(P:Q)= aV(P)

If A,(P) is a complete orthonormal system of harmonic functions in the sense
[hm hm] = 5nm1
then the kernel function
E(P, Q) = 2° ha(P)ha(Q)
n=1

is given by the identity [5, 10]
1
E(P, Q) =- = A(P)YA(Q)T (P, Q).
7

The relation here between the harmonic functions %k, and the biharmonic kernel

function % is a consequence of the nature of the energy integral

ff[ (AF)? dx dy dz
D

for the biharmonic equation.

We discuss here the expansion of the kernels K, H, and k in terms of the
octhogonal polynomials of §3 for the case where D is a prolate or oblate
spheroid. One obtains easily from Theorems 1, 2, and 4, together with the

computation of the related normalization constants, the following results:

THEOREM 5. [In the prolate spheroid (1) we have

K(P, zy &3 P', z’ ¢')

=f: ; (20 + 1)U, 4 (ps2) U, 4 (p%27) cos h (¢~ ¢7)

+ C,
n=t h=o 2m(1+8,,) P*(cha)lsha P** (cha)+h cho P* (cha)]
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where C is a constant chosen to agree with the normalization of Neumann’s
function. In the oblate spheroid (2),

© 2 (=D (2 +1)
K( 9:¢;P,, z"¢")=
pos nz=:1 % 277(1+80h)

Vn'h(p, z) Vn’h(p', z’)cos h(p—¢”)
Ph(isha)li cha PH*1(isha) + hshaP?(isha)l

+C,

where again C is a suitable constant.

THEOREM 6. In the prolate spheroid (1),

(2n +3)

k 3 <y H ” ” ’ =
(psz, 45 p°, 25 ¢%) Z Z 2n(1+50h)(n+1+h)

Xn’h(p,z)Xn’h(p',z') cos h(¢p—o”)
Iy P:(ch v)sh v[(n+2+h)P” (chv)ch v+P?  (chv)shvldy

nti nt+i

In the oblate spheroid (2),

(o)

n (-1)"h i (20 +3)
k(py 2, 5 p%5 2% %) =
(pr 2, &5 9% 2% ¢7) ,,Z;Z,Eo 27(1+8;) (n+ 1+4)

Yn,h (py 2) Yoh (p%5z") cos h(p—¢*)
f:P:(i shv)chol(n+2+4) P,’:ﬂ(i shv)shov+ iPh+l(i sh v)ch v]dv.

nt+1

THEOREM 7. In'the prolate spheroid (1),

(2n +3)
27(1+3,;,) (n+1+h)

] n
H(Pv 2, ¢; P'y Z’y ¢') = 2 z:
n=0 h=0

Xn,h(P' Z)Xn,h(”” z’) cos h(gp—¢’)
Ph(cho)sha[(n+2+h)Ph (cha)cho+ PAH (cha)shal

n+1

when o= |1-(z+ip)?|/2 If o=|1-(p+iz)?|'% we have, for the
oblate spheroid (2),
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(20 +3)i(=1)*h

Alpnz 65072567 = 2 20 sy

n=0 h=0

Yn,h(p, z) Yn’h(p', z”)cos h(p— )
Ph(isha)chal(n+2+Ah)Pk (isha)sho+iPPl(isha)chal

Theorem 7 is of interest because it yields, say for (1), the relation

1 0dG y 2y @5 " ’! ’ = " 2 3
S L X ndiph B8 (g 3 D)
4 dv n=o h=o 2ﬂ(l+50h)(n+l+b)

Xn’h(p, z)Xn,h(p', z’)cos h(gp—-¢”)
Ph(cho)shal(n+2+h)PE (cha)cha+PEH(cha)shul

when the point p, z, ¢ lies on S. This formula can be compared with the cor-

responding, more classical, formula which follows from Theorem 5.

Theorem 6 permits one to calculate the biharmonic Green’s function for
prolate or oblate spheroids, and thus in turn to solve the biharmonic boundary-

value problem in this case. Indeed, we have (cf. [5])

- Wbty I

D

It is significant to note in this connection that all our results can be extended
to the case of the region outside a spheroid. One has merely to replace for this
purpose the Legendre functions P: by the Legendre functions Qr}: of second
kind [ 6]. Thus Un,r should be replaced, for example, by

m
/ On(z +ipcost)cos ht dt,
)
and Vn,h should be replaced by

fw Q,(iz~p cos t)cos htdt.
0

Finally, by combining both kinds of functions, one can obtain orthonormal

systems in the region between two confocal spheroids. Thus one might develop
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elaborate formulas for the solution of the biharmonic equation in such shell

regions using the basic method of this paper.
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