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SOME THEOREMS ON GENERALIZED DEDEKIND SUMS

L. CARLITZ

1. Introduction. Using a method developed by Rademacher [ 5 ] , Apostol

[ 1 ] has proved a transformation formula for the function

oo

d a ) GP{X)= Σ
 n'PχMn ( l * l < ι ) >

m, Λ=I

where p is a fixed odd integer > 1. The formula involves the coefficients

μ(mod k)

where (A, i ) = l , the summation is over a complete residue system (mod k)9

and Pr(x)« Br(x)9 the Bernoulli function.

We shall show in this note that the transformation formula for (1.1) implies

a reciprocity relation involving cr(h, k)9 which for r-p reduces to ApostoΓs

reciprocity theorem [ 1 , Th. 1; 2, Th. 2] for the generalized Dedekind sum

Cp(h9 k) In addition, we prove some formulas for cr(h9 k) which generalize

certain results proved by Rademacher and Whiteman [ 6 ] . Finally we derive a

representation of cr(h9 k) in terms of so-called "Eulerian numbers".

2. Some preliminaries. It will be convenient to recall some properties of

the Bernoulli function Pr(x); by definition, Pr(x)- BΓ(x) for 0 < x < 1, and

Pr(x + l ) = Pr(x) Also we have the formulas

k-i . r χ

(2.1) £ PM* + - ) = kl'mpr(te)> Pr(-x)=(-lYPr(x).
r=0 * '

It follows from the second of (2.1) that cr(h9 k) = 0 for p even and 0 < r < p + 1.

We have also
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514 L. CARLITZ

(2.2) co(h,k) = c p + ί(h, k) = k'P

provided (h, k) - 1. Further, it i s clear from the second of ( 2 . 1 ) that

( 2 . 3 ) c Γ ( - λ , k) = ( - l ) Γ c Γ ( A , k).

Now as in [ 5 , 3 2 1 ] put x = e 2 7 7 l V ,

iz + h iz" + h'
7" — 7" —

* ' k

so that, on eliminating 2, we get

(2.4) T' = —Lt— (hh' + kk'+ 1 = 0);
kτ~ h

thus (2.4) is a unimodular transformation. Now Apostol's transformation formula

[ 1, Th. 2] reads (in our notation)

iP 1 /2π\P βp + i (2ττi) p

I — I r— + cD(h, k)
2z \ k I (p + 1 ) ! 2 P ! P

Making use of (1.2), (2.2), and (2.3), we easily verify that this result can be

put in the form

(2.5) Gp(e27TiT) = (kr-h)P-ιGp(e27Tir')+ ^ " ^ ^ f(h,k;τ),

where

(2.6) f(h,k;τ)= £ lP*l)(kτ-h)P'rcr(h, k ) .
r=o * Γ '

We remark that (2.6) can be written in the symbolic form
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(2.7) (kτ-h)f(h, k; r) = (AT- h + c(h, A))^
 + ι
,

where it is understood that after expanding the right member of (2.7) by the

binomial theorem, cr(h> k) is replaced by cr(h, A).

We shall require an explicit formula for /(0, 1; r). Since, by (1.2),

c Γ (0, 1) =

it is clear that (2.6) implies

1 P + ι
(2.8) /(0, 1; T) = - T

T f?0 \ r I >

If in (2.4) we replace r by -1/τ, then r' becomes

(2.9) τ* = ~ T + ,
ΛT + A

and (2.5) becomes

By (2.5) and (2.8) we have

(2.11) Gp(e27Tir)= rP'ιGp{e'2πi/τ) + ( 2 7 Γ t ) P

 t (β
2r(p + l)!

and by (2.5) and (2.9),

(2.12) G p (e 2 π ι ' τ ) = (λτ+ k)P-ι Gp(e27Tiτ*)+ ^ l /(-A, A; r).
2(p + 1)!

Comparison of (2.10), (2.11), (2.12) yields

/(-£, h; r) = τP-1 flh, A; - I\ + I (β
\ T I T

or with r replaced by -1/τ,
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+ r(2.13) /(A, k; T) ~ rP'1 fLk, Λ; - ί ) + I

(For the above, compare [3, pp. 162-163]).

3. The main results. In (2.7) replace h, k9 r by -k, h9 - 1 / τ respectively;

we get

kτ-h I 1\ ίkτ-h \P+i

/ ( - * • * ; - - ) « ( + c(~A, A))

By (2.3), it is clear that (2.13) becomes

(3.1) τ(kτ-h + c(h, k))P+ι

= {τc(k, h) - rk + h)P+ι + (kr- h)(B + τB)P+ι.

Comparison of the coefficients of τ Γ + ι in both members of (3.1) leads immedi-

ately to:

THEOREM 1. For p odd> 1, 0 < r < p,

(3.2) lP*l)kΓ(c(h, A)-A)P+ι-Γ = lP + l\hP-r(c(k,h)-k)r+ί

In the next place, if for brevity we put w = kτ~ht then (3.1) becomes

(3.3)

We now compare coefficients of u/ + ι in both members of (3.3); a little care

is required in connection with the extreme right member. We state the result as:

THEOREM 2. For p odd> 1, 0 < r < p,

(3.4)
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+ 1

+ 1

where

p+i-r

s = o ' s

For r= 0, (3.4) becomes

(p+l)hkPcp(h, k) + kPcp + i(h, k)

= ( p + l ) Λ P | c p + ι (A, λ ) - A c p (

which reduces to

( 3 . 5 ) (p + DihkPcp (A, A) + kPhcp (k9 h)\ = (p + 1)(BA + S A ) ^ + ι + P S p + ι

This is Apostol's reciprocity theorem.

If we take r = 1 in ( 3 . 4 ) , we get

= - 2{hkPcp (A, k) + pAÂ Cp (A, k)\ + pβ p + ι + 2(βfc + B'hψB'h.

If in this formula we interchange A and k and add we again get (3.5), while if

we subtract we get

( 3 . 6 ) p\h2kPcpml(h9 k)-k2hPcpml{k$ A)}

(Af k)-khPCp(k, h)\~{Bk + Bh)P(Bk-Bh).

In view of (3.6), it does not seem likely that Theorem 2 will yield a simple

expression for

Pcp.Γ(A, k) + {-l)rkr+ιhPcpmΓ{k, h) (r > 0 ) .

We remark that Theorems 1 and 2 are equivalent. Indeed it is evident that
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(3.2) is equivalent to (3.1), and (3.4) is equivalent to (3.3); also it is clear

that (3.1) and (3.3) are equivalent.

4. Some additional results. We next prove (compare [6, Th. 1]):

THEOREM 3. For p, q > 1, 0 < r < p + 1, we have

(4.1) cr(qh9 qk)=qr"Pcr{hf k) .

Note that we now do not assume p odd, (h, k) = 1.

To prove (4.1), we have, using (1.2),

qk)

v (mod q)
p (mod k )

p (hPΛ

= qr-Pcr(h,k).

For brevity we define

Γ . V

(4.2) b Γ ( h , k ) = ( c ( h , k ) - h ) Γ = Σ ( - 1 ) Γ " 5 ( ) h r ' s c s ( h $ k ) ,
s=o * 5 ^

which occurs in Theorem 1. Clearly

cr(hf k) = (b (A, k) + h)

THEOREM 4. For p, 7 > 1, 0 < r < p + 1, we have

(4.3) 6 Γ M
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By (4.1) and (4.2) we have

br(qh, qk)- Σ, (~1 ) Γ 'S {qhVscs(qh, qk)
s=o ' S '

= Σ (-lY-s(r)hr s

q

r-Pcs(h,k)

= qr-Pbr(h,k).

If we define

( 4.4 ) ar (h, k ) = ( c ( h9 k ) - h ) r c p + 1 " Γ ( A, A:) ,

which is suggested by Theorem 2, we get:

T H E O R E M 5. For p, q > 1, 0 < r < p + 1,

(4.5) ar(qh, qk) = #a r (A, A).

The proof, which is exactly like the proof of (4.3), will be omitted.

We note that (4.4) implies

( 4 . 6 ) hrcP + ι-r(h$ k) = T ( ~ l ) s Γ)as(hfk)=(l-a(h,k))r,s
s I

Also using (4.2) and (4.6), we get

(4.7) hP + ι'rbr(h, * ) - ( l - α ( Λ , k))P + ι'rar{h, k) 9

and reciprocally from (4.4),

(4.8) a r ( h 9 k ) = ( b ( h , k ) + h)P + i m r b Γ ( h , k ) .

Using ar(h, k) and br{h, k), we can state Theorems 1 and 2 somewhat more

compactly.

5. Another property of cΓ(λ, k). For the next theorem compare [6, Th. 2].

THEOREM 6. For p >_ 1, 0 < r < p, and q prime, we have
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(5.1) £ c r ( A + m*f ? * ) « ( ? + ql~P)cr(h9

By (1.2), the left member of (5.1) is equal to

- qlmrcr(qh, qk) + qcr (A, k) - q1^cr(qh, k)

= (qi"P + q)cr(h,k)-ql-rcr(qh$k),

by (4.1).

It does not seem possible to frame a result like (5.1) for the expressions

bτ(h9 k) or αΓ(A, k) defined by (4.2) and (4.3).

6. Representation by Eulerian numbers. If k > 1, pk = 1, p ^ 1, we define

the " E u l e r i a n number" //m ( p ) by means of [ 4 , p . 8 2 5 ]

1 —
(6.1) — -

m=o

Then it is easily verified that [4, p. 825]

" " 1

which may be put in the more convenient form
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(6.2)

Now consider the representation (finite Fourier series)

k-i

(6.3) P m l - Uζm

s=o

If we multiply both members of (6.3) by ζrt and sum, we get

mkum

(tfί 0 )

(ί = 0 ) ,

by (6.2) and (2.1). Thus (6.3) becomes

(6.4) p m

Thus substituting from (6.4) in (1.2), we get after a little reduction

(6.5) cr(h,k)= P * W ' + r ( p + 1 ~ r ) V - ^ —

Thus cΓ(A, A) has been explicitly evaluated in terms of the Eulerian numbers.

One or two special cases of (6.5) may be mentioned. For r = p we have

(6.6) cp(h, k) = — (p > 1 ) ,

while for r = p = 1 we have

1 1

where 7(A, A) = Cj(Λ, A). Note that's (A, k) = s (h, k) + 1/4, where s(A, k) is

the ordinary Dedekind sum [ 6 ] . We also note that (6.4) becomes, for m=\r
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( \ l l ^"ι C"μs

k I ~~ 2k k ^~* fs ~ 1 '

which is equivalent to a formula of Eisenstein.

Possibly (6.5) can be used to give a direct proof of Theorem 1 or Theorem 2.
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THE RECIPROCITY THEOREM FOR DEDEKIND SUMS

L CARLITZ

1. Introduction. Let ((x)) = x - [x] - 1/2, where [x] denotes the greatest

integer < x9 and put

(i.i) ΪU.*>- Σ l ίτMτi

the sumπtation extending over a complete residue system (mod k) >x Then if

{h, &) = 1, the sum's {h, k) satisfies (see for example [4])

(1.2) 12hk{J(h, k) + J{k, h)\

Note that's (A, k) = s(h, k) + 1/4, where s(h, k) is the sum defined in [4],

In this note we shall give a simple proof of (1.2) which was suggested by

Redei's proof [5]. The method also applies to Apostol's extension [1]; [2].

2. A formula for s{h, k). We start with the easily proved formula

«•» ω - 5 •!.?,£
which is equivalent to a formula of Eisenstein. (Perhaps the quickest way to

prove (2.1) is to observe that

r=o W*// 1-1/2 (k \ s ) ;

inverting leads at once to (2.1)).

Now substituting from (2.1) in (1.1) we get

Received August 11, 1952.
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524 L. CARLITZ

(
, k-l -is x r i -i A>1 -hrs

1 ι p I I 1 ι p

1 ι \r* p I I 1 ι \ r p I

Λ λ k-l Λ k-l

= 1 + 1 Σ τP

Since the inner sum vanishes unless s + fit = 0 (mod k), we get

II*'1 1

J(Λ *) £

or, what is the same thing,

(2.2) 7(Λ, k) = — + - Σ, ~

where £runs through the A th roots of unity distinct from 1.

3. Proof of (1.2) In the next place consider the equation

(3.1) (xh-l)f(x) + (xk-l)g{x)-x-l,

where fix), gix) are polynomials, deg fix) < k — 1, deg gix) < A - l . Then

if £has the same meaning as in (2.2), it is clear from (3.1) that

Uh-i)fU)-ζ-i.

Thus by the Lagrange interpolation formula

( 3 . 2 ) 1
k

k(x- 1) k ζji x- ζ

Similarly, if η runs through the Ath roots of unity,

< 3 . 3 , ,(,,.Uίi> ' £ _!_ 4z
l A U - 1 ) A vfι x - η η k ^ l

Now it follows from ( 3 . 1 ) that A / ( l ) + kg (I) = 1; hence subst i tut ing from ( 3 . 2 )

and ( 3 . 3 ) in ( 3 . 1 ) we get the identity
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(3.4, > Σ < 41L ' 2 ; _ ! _
* tfi *~ζ ζh-l h vfiι x - η

x-l 1

(xk-l)(xh-l) hk(x-l)

Next put » a l + ί in (3.4) and expand both members in ascending powers of t*

We find without difficulty that the right member of (3.4) becomes

, x h + k-2 A2 + 3M + A ; 3 A 3 A ; + 1
(3.5) + t +

2hk \2hk

Comparison of coefficients of t in both sides of (3.4) leads at once to

_1 y _C 1 1 y _J 1_

Uhk

Therefore by (2.2) and the corresponding formula for s(k, h), we have

s(h9 k) + s{k, A) ,

which is the same as (1.2).

4. The generalized reciprocity formula. The identity (3.4) implies a good

deal more than (1.2). For example, for x = 0, we get

while if we use the constant term in (3.5), we find that

(42) i v ± + iyJL.i±!

Again if we multiply by x and let x —» oo, we get
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(4.3) 1 ^ ,

1
ζ-1 1 η-1 1

More generally, expanding (3.4) in descending powers of x, we have

( 1 < r < h + k-l)
hk

, - l ( r . l
A*

By continuing the expansion of (3.5) we can also show that

k- 1 ) .

* Σ * Σ (r > 1 )

is a polynomial in A, λ, but the explicit expression seems complicated. A more

interesting result can be obtained as follows. First we divide both sides of

(3.4) by x — 1 so that the left member becomes

I τ _±_ l_l M + 1 T - 2 - I- -
k Ϋ ζ h _ l \ x - ζ x - l ) h ^ η k _ λ \ x - η x - l

TΣ
ζ 1

+ —
h + k-2

2MU-1)

by (4.2). We now put x = eι. Transposing the last term above to the right we

find that the right member has the expansion

1 h + k (m-l)βmίm- 2

where the Bm are the Bernoulli numbers. In the left member we put

m=o

tm

where the Hm(ζ) are the so-called 'Έulerian numbers"; we thus get
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(4.6) IΣ!1Σ,—HM~1) ' - ' " - Λ"('"' )

Dut by [3, formula (6.6)], for p odd > 1,

— Σ P-^7h = sp(h> *>

where [ l ]

r ( m o d / c ) ^ A ; / X k J

and ^-(Λ;) is the Bernoulli function Thus the coefficient of t?'1 /(p — l ) ! in

(4.6) is

(4.7) 1
P

ιsp{k, h)\ ,

while the corresponding coefficient in (4.5) is

(4.8) . 1 . . . . (Bh + Bk)P" + ^ S p + ι

Hence equating (4.7) and (4.8) we get Apostol's formula [ 1, Theorem 1]:

(p + 1) \hkPsp (h, k) + khPsp{k, h)\ = {Bh + Bk)P+ι + p δ p + ι

f o r p o d d > 1 . N o t e t h a t sx(h, k ) = s " ( A , k ) .

REFERENCES

1. T. M. Apostol, Generalized Dedekind sums and transformation formulae for certain
Lambert series, Duke Math. J. 17 (1950), 147-157.

2. , Theorems on generalized Dedekind sums, Pacific J, Math. 2(1950), 1-9.

3. L. Carlitz, So/πe theorems on generalized Dedekind sums, Pacific J. Math. 3(1953),
513-522.

4. H. Rademacher and A. Whiteman, Theorems on Dedekind sums, Amer. J. Math.
63(1941), 377-407.

5. L. Redei, Elementarer Beweis und Verallgemeinerung einer Reziprozitatsformel
von Dedekind, Acta Sci. Math. Szeged 12, Part B (1950), 236-239.

DUKE UNIVERSITY





IDENTIFICATIONS IN SINGULAR HOMOLOGY THEORY

EDWARD R. FADELL

INTRODUCTION

0.1. Given a Mayer complex M, a subcomplex M' is termed an unessential

identifier for M if the natural projections from M onto the factor complex M/M'

induce isomorphisms-onto on the homology level (see [1, §1.2]). The present

paper is a continuation and improvement of certain results obtained by Rado' and

Reichelderfer (see [1] and [3]) concerning unessential identifiers for the

singular complex R of Rado' (see [1, § 0.1]). We shall make use of the results,

terminology, and notation in [1] and [3] with one exception. Because of a con-

flict in notation in [1] and [3], we shall use the notation η for the homomor-

phisms

η :CS-*CR,
ip p p »

defined as the trivial homomorphism for p < 0, and for p > 0 as follows:

ηp(d0, *•• f dp9 T ) = (c? O j ••• > d p , T )

(see [1, §0.3]).

0.2. The principal results of the present paper may be described as fol-
lows. Let N (σp βp ) denote the nucleus of the product homomorphism

°pβp ••Cp^Cp

THEOREM. The system { N (σ_ β Λ ) } is an unessential identifier for R.

Furthermore, for each p we have

Received July 13, 1952.
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530 EDWARD R. FADELL

where { Δ } and {Γ } are the largest unessential identifiers for R obtained by

Reichelderfer [3, §3.6] and Rado'[ 1, §4 .7] , respectively. Thus {Λ(σ βR)i

is the largest unessential identifier presently known for R and imposes all the

classical identifications in /?.

Let N ( β ) denote the nucleus of the barycentric homomorphism

THEOREM. The system \ Λ ( β ) \ is an unessential identifier for S.

It is interesting to note that the foregoing theorem gives for the Eilenberg

complex S the result corresponding to that of Reichelderfer for the Rado' complex

R (see [3, §3.2]).

I. P R E L I M I N A R I E S

1.1. Let v0, ••• , vp denote p + 1 points in Hubert space E^. The bary-

center b = b (i>0, , vp ) of these points is given by

b = (v0 + + Vp )/ (p + 1 ) .

The following lemmas are easily verified.

1.2. LEMMA. Let Vj (j = 0, , p) denote p + 1 points in £oo, and

P

;=o

where μ. is real for j - 0, * , p. Then

P P μ, P P μ, P

7 = 0 /=/ ' + ι /=o /=/ ^ + L /=o

1.3. LEMMA. Let VJ (7 = 0 , ••• , p ) denote p + 1 points in £00, α/w/

P

7=0

ίίΛ μ. (7 = 0, , p) reaZ a/ιc? satisfying
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μ 0 ϊ- ιι

ι> >ιιp >

Then

x =

7=0

with

(/ + 1) (μ - μ. + ι ) /or / = 0, , p - 1 (provided p - 1 > 0) ,

λ p = (p + l ) μ p ,

and

P P

Σ λ/ = Σ *V '
7=0 7=o

1 4 As in [ l ] , let rf0, dlf d2, ••• denote the sequence of points (1, 0, 0,

0, ), (0, 1, 0, 0, ), (0, 0, 1, 0, ), in £«,. For integers p, q such

that p > 0, 0 < q < p + l, the homomorphism

in the formal complex K of £oo is defined by the relation

vOt ••• f Vp) for q = 0,

vq, . . . ,

for q=*

for 1 < (7 < p,

1.5. For p > 0, let τp denote an element of Tp0 (see [3, §1.9] ) , and let

v ιo> # ip ) denote the permutation of 0, , p which gives rise to Tp. Then

we let sgn Tp denote the sign of the permutation (iQ 9 , ip ): i.e , sgn Tp is

+ 1 or - 1 according as an even or odd number of transpositions is required to

obtain ( i 0 , ••• , ip).

The following lemmas are then obvious.

1.6. LEMMA. For p > 0 and τ

p + ι £ Tp+ι0t there exists a unique πp E TpOf
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and a unique q% 0 < q < p + 1, such that

1.7. LEMMA, for p > 0, Ze£ £p+i denote the set of ordered pairs (q, πp)9

L ^ S P + l* 7 7 /?^ ^po Jhere exists a biunique correspondence

ζ :
p + i

such that

1.8. Let

denote a homomorphism in K such that

Ap (c?o * * * dp ) = i (WQ9 ••• 9 Wq )

Then [Ap] will denote the usual affine mapping from the convex hull \dQ9 9dq\

of the points d09 , dq onto the convex hull | w09 - , Wq \ of the points

wQ9 , Wq such that [Ap ] (cί, ) = M J for i = 0, , q.

1.9. Let j8 denote the barycentric homomorphism in R9 and p^ the bary-

centric homotopy operator in R of Reichelderfer ( s e e [ 3 , § 2 . 1 ] ) . The bary-

centric homomorphism

in S may be given by

S : Cs

P

 U

P

βp-σ

P

βPηP ( s e e [ 2 , § 3 . 7 ] ) .
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The corresponding homotopy operator

P*p Cp

is given by

V

1.10. Employing the structure theorems for β^9 p^p (see [3, § 2 . 2 ] ) we

obtain the following:

LEMMA. For p > 0,

ό p 0 τ p ] ) s ,

0, ...,rfp, T)s = Σ, Σ
A=o rpeTpk

Proof. We have

do,-.',dp,T)R

09 ••• 9 dp), T)
T p 0

A=O T p €

P
Σ, Σ, ( ~ 1 ) A f P ^ W o . • - . ψ + i. T[bpkτp])s
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1.11. In [ 2 ] , Rado' makes use of the following identities which we state in

terms of p^ :

P*P ηP °P = °P + i P*P' - o o < p < o o ,P*P ηP °P °P + i P*P'

p p p p p βp

R, - o o < P < o c .

The proof of (1) may be modeled after the proof for the corresponding identity

stated in terms of the classical homotopy operator p^ (see [2, § 3 . 5 ] ) . From

identities (1) and (2), we have

4 σp = σp + ι

for all integers p.

1.12. Let Pi and P2 denote the following propositions:

Pi Let c denote a p-chain of S such that

βp

Then

ip CP - °

P2 Let c denote a p-chain of R such that

Then

THEOREM. Pt = P2> ^ e > ̂ 1 i 5 ί Γ w e if and only if P2 is true.

Proof. Assume Plt and let c denote a p-chain of R such that
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Then via identity (3) we have

R

°P

Therefore

But via identity (5), we have

and P 2 follows.

= 0.

Now assume P29 and let c denote a p-chain of S such that

βS

p 4 - 0.

Then since

we have

Therefore, via P2, we have

But via (5) and the fact that σ 7/ = 1, we have

CP = βpS+i P * P σ p ηp CP = β p + i P P C P

and Pi follows.

II. T H E P R O O F O F P t

2.1. We shall use throughout this section the notation Ί for the p-cell
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(dQ9 ••• > dp, T) when there is little chance for ambiguity. Under this con-

vention a chain c having the representation

n
cp ~ Z^ λy(cf0, , dp, Ίj )

may be written Σ y = i λy 7y. Thus Ί represents both a transformation from the

convex hull | rf0, , dp \ into the topological space X and the p-cell {dQ9 9

2.2. For p < 0, the proposition P t is trivial. For p = 0, ί\ is also trivial.

For since β** = 1 and σ η = 1, we have

implying

whence clearly

* PS cS=0.
I r * 0 0

Now, take a fixed p > 1. Let

denote a p-chain of S such that

Via §1.10,

;=1 τ p € T p 0

Let E denote the set of ordered pairs (/, τp)f 1 < / < n, rp 6 Tp0. Then
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(2) βS

p c S = Σ, λ ; S 8 n TP Γ/f°P + i ho τp}-

(/.Tp)€E

We now define a binary relation "= " on E as follows:

if and only if Tj[Op + l bp0 τp], Tj*[Op + ι bp0 τp] are identical p-cells. Then

" = " as defined is obviously a true equivalence relation and induces a parti-

tioning of E into nonempty, mutually disjoint sets Es (s = 1, , t) with

t

E = U £ s .

Therefore, via (2), we have

Σ Σ λ7

Take 1 < 5 < s' < t. Then for (/, Tp) G £ 5 , (/', Tp ) G Es, , the p-cells

bp0 τpX 7y/[0p + i όp0 Tp] are distinct. Therefore, since

we must have for each s, 1 < s < ί,

(4) Σ /̂ S 8 n TP /̂'•Op + i bp0 τp] = 0,

and hence

(5) T λ

since all p-cells occuring in (4 ) are identical.

2.3. Again via § 1.10,
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= Σ £ Σ Σ
j = ί k=0 rp6Tpk Tp+xβ T

(-l)k sgn τp sgn

Applying the lemma of § 1.7, we obtain

(7)
P P + l

k = 0 q-0

sgn

Thus, to prove that

λ ; Tj[bpk rp] [ 0 p + 2

7 = 1 rpeTpk πp6Tp0

[Op+2

we are led to consider for a fixed k and q$

pression

<^p, 0 <_ qr < p + l , the ex-

Ykq = Σ Σ Σ λ/
7=1 rp €Tpk ττpeTp0

TP

Now to prove Pi we need only show that Y^q ~ 0 Therefore k and q will remain

fixed throughout the remainder of this section; and even though subsequent

definitions will depend upon k and q, they will not be displayed in the notation.

2.4. For

(see [3, §1,9]) there exists a unique permutation {nQ9

such that in < < ink Let

) of 0, , k

τp =

where /̂  = ίΠί for Z = 0, , k9 and j^ = î  for k + 1 < Z < p. Then there exists



IDENTIFICATIONS IN SINGULAR HOMOLOGY THEORY 539

a unique permutation (m 0 , , mk ) of 0, , A, namely (τι0, , n^ )" 1, such

that

7 p = l~p(jmQ, . . . , j m k , p

Furthermore, let /4 (τ p ) denote the set of πp G 7p 0 defined as follows. For

πp = πp ("o> > Mp ) G Tp0

we have a unique set of integers Zo, ••• , Z ,̂ 0 < Zo < < l^ <p such that

(WZO> ••• > ulfς ) is a permutation of 0, , k. Set πp G A (τp) if and only if

mo = u l 0 > *••

2.5. Let i5 denote the set of ordered pairs (τp, πp), τp £ 7p0, 77p G /4 (T^),

and S ' the set of ordered pairs (τp9 πp), τp G Γp^, 77p G TpQ. We define a

mapping

γ:B — • β '

as follows:

where τp-τp and 77p = τrp One shows with little difficulty that γ is biunique.

Therefore

/=ι Tp e TpQ τrp e A{τp)

[ 0 p + 2

2 . 6 . L e t A = A (τp(Q9 9 p)) F o r τp E Tp0 w e d e f i n e

as follows. For πp (u0, , up ) E /4, there exist integers Zo, , lk ,

0 < Zo < < I, < p, such that u, = 0, , u, = k. Define

/ πp = πp (wo, , Up
p

as follows. Let
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τp = τp(j0, . . . , jp) and τp - τp{jmo, . . . , ; m f c , j k + ι, , / p ) ,

where (mo> 5 ra^ ) is a permutation of 0, , k. Set u[ = m09 , α/̂ . = m^,

and M/= UΓ for r ^ Zo, , Ẑ  Here again it is easy to show that fr is bi-

unique. We have then

r p € T p 0 τrp

and hence

t

Σ Σ Σ
= i 77p eA (/, τp)eEs

[Op+2 ^p + 1

(see §2.2).

2.7. LEMMA. TαA e πp{u0, ••• , wp) € Tp0 αwcf Zeί

α = [ 0 p + 2 6 p + 1 0 q r ^ πp(p + l ) p +

Lei

p+i

^ = Σ ^ ί//-
; = o

p+1

ftjίl Q* / = 0, > p + 1, and y M

7=0

denote a point of \d0, ,

7=0
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where

( i ) aj > 0, j = 0, , p + 1

( i i ) α ; =
7=0

( H i ) aUQ >aUί > ••• > aUp;

Tp0 and

au0* ••• >aup> independent of πp; i.e., if πp = πp{u,Q, 9Up)S

<X' = [Op+2

p + l

/=o

Proof. We consider only the case 1 < q < p since the fringe cases ςr = 0,

p +* 1 follow in a completely analogous manner* In case 1 < q < p we have

where

0, ••• , <7 - 1, wq

Therefore,

P+i

;=0

p + l p + l

Σ

(see §1.2). Let



5 4 2 EDWARD R. FADELL

α p + l = 2 ^ 'Ί 7 > α "r = 2 ^ 7 7 f θ Γ Γ = 0, . , ςr - 1
/ = 9 ' + 1 /=r / + 1

and

f o Γ Γ = ^'

Clearly, aU(j9 ••• , α α , ctp + i are independent of πp in the sense of ( i v ) , and
au0 > > α u Furthermore, αy > 0 (/' = 0, , p -+ 1) , and

p+l p + i

7=0 7=o

Also,

ς-i P p + i

7=0 j=q 7=0

and the lemma follows.

2.8. LEMMA. Take {j, rp) and (/', Tp) G £ s (see §2.2), 1 < s < t, and

π* β A. Then

jlhpk p̂J LOp + 2

j'VOpk Tp J LUp+2

Proof. Since (/', ^ ί , (/^ ^ ) lie in Es, we have

Let

πP = ^τp πp = πp(uQ> * *# » u p ί> ^p ~ fτ£ πp = ^p (uό> * * * up ) >
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Furthermore, let

τp = rp (£ 0, , ip), τp = τp (; 0 , . , jp ) ,

-T

We have permutations (m 0 , , mjc)9 ( n 0 , , τ%k) of 0, , h such that

"' ' jmk

Take an arbitrary point of | c?0, , dp+γ j , say

p+ι p + i

/=0 / =o

Then via the lemma of § 2,7 we have

p+ι

and

7=o

p+l p+l

α'(Λ ) = 2 2 α7* ̂ / w i t h «/ > °> 22 α7^ = 1> « ^ > ' > α ί j >
7=o 7=0

with

au0 = α u g » ••• » ̂ lip = «Up a n d α p + ι = « p + ι .

Now

y = f dj , , cίy , b{dj , , c?y ), , b(dj 9 , dj )] .

Hence
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γ a ( x ) = α 0 dj + ••• + <*jςdj + a k + ι b ( d j , , dj ) + . . . +

α " 0 dim0

dp + x b{dj , ••• , dj )

aD +1 b(dj , • • • , < / / )
f ' o P

+ cip + i b (di Q , 9 d(p ) .

Now take integers Zo> •••>/&» 0 < l0 < <lk < P, such that (u/ Q , , mk

i s a permutation of 0, , k. Since πp ^ ^ ( 7p ), we have m 0 =" w/Q, •••,/??£ = w/̂

Hence α m Q > ••• > amjc.

In a similar fashion we obtain

γ'a'(x) = α^Q cfj/ + . . . + α ^ rf, / + α ^ + ι 6 (cf^ , , rf, / ) +

with α^Q > > α,JΛ and if ZQ, , tf, 0 < ZQ < < lζ < P, are integers such

that {ufζ f juf') is a permutation of 0, , k, we have

Applying §1.3, we get

k
a d d ]m0 di0 +

Z=o

with

y z = ( Z + l ) ( α m / ~ α m / + 1 ) for Z = 0, . . , k - 1,
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γk = (k + 1 ) a m k ,

and

k k

Σ yι = Σ Qmι
/=o Z=o

Similarly,

* /=o ° ι

with

and

A: k

/=0 /=0

However, since

* p ' p *

we have

lo ^ lo> •• 9 lk = lk a n d u r = uf f o r r £ lQ9 •• f lk.

Therefore, o u , = o^Λ > » α u; — ^u/' » a n ( ^ hence

0 0 k k

= aή0> "

T h u s

y r = y * for r = 0, ••• , k.

Furthermore,
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aur - aUr f°Γ τ ^ ô 9 9 Ifo 9 and ap+ι = αp

Therefore,

k p

γa(x) = £ y / b(di0> ••• »̂ iz )+ Σ α / + 1

. . . d')+ Vs

9 9 ** J I £m*4

with

k p p + 1

/=o l-k ί=o

Let

/=o

with

Λy = γj for / = 0 9 9 k — 1,

A/ = α

7 + 1 f°Γ / = A + 1, 5 p.

Clearly,

P

hj > 0 ( = 0, 9 p ), and ]|P Ay = 1,

/=o

Then

P

γa(x) = 21 hl
/=o

and
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P
y'oc'U) = £ hι b(diζ9 . . . , dif) = [0p + ι

Therefore, since

we have

Ίj γa(x) - 7 7 ' y ' α ' ( * ) .

Since Λ; is arbitrary in | dQ9 , rfp + i | , our lemma follows.

2.9. LEMMA. For any s, 1 < s < t9 and π£ £ A,

Λj sgn Tp sgn / ITp = u

(j,τp)βEs

 P

Proof. Since

sgn -^ sgn / τ TΓp = sgn 7p sgn Πp ,

we have

2 2 λ ; sgn -Tp sgn fτ πp = sgn π* ^ λy sgn -Tp = 0
(/, rp)6Es

 P (j,τp)6Es

via (5) of §2.2.

2.10. Employing §§2.8, 2.9, and (11) of §2.6, we see that Ykq = 0, and

hence Px follows. Let us note also that since Pi s P2$ P2 also is valid.

HI. R E S U L T S

3.1. In [ l , § 4 . 2 ] , Rado'has established a lemma, which we state here for

the barycentric homotopy operator p^ .

LEMMA. Let \Gp\ be an identifier for R, such that the following conditions

hold:

( i ) Gp DA* (see [ 1 , § 3 . 4 ] ) ,
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( i i ) cR G Gp implies that σ βR cR = 0,

(ii i) cR G Gp implies that pR

p c
R G Gp + ι .

Then 1 Gp \ is an unessential identifier for R.

The proof of this lemma is identical with the proof of the corresponding

lemma as given by Rado'with p (classical homotopy operator) replacing £>

Since

σ a*
PPP

is a chain mapping, the system {/V(σ β )} of nuclei of the homomorphisms

σ β is an identifier for/? (see [1 , § 1.2])• Furthermore,

N^pβp)^Ap "ince °pβp

R = β$

p°p

(see §1.11). Applying P2 directly, we see that N (σ βR) satisfies ( i i i ) of

the foregoing lemma. Therefore, since N (σ β ) is the largest identifier,

satisfying ( i i ) , we have the following maximum result yielded by the same

lemma:

THEOREM. The system {N (σ βR)} is an unessential identifier for R.

3 2. In order to compare our results with those of Rado'[l] and Reichelderfer

[3] let us first note that

kσpβ«)-N{σpβ*),

where N (σp β£) is the division hull of N {σ βR), since CR is a free Abelian

group. Then since

(see [3, §3.6]) we have

(see [1, §4.71).
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The writer has been unable to determine as yet whether N (σ β ) is ef-

fectively larger than either Δ or Γ

3 3. The following lemma (see [ l , §4.1]) is immediate from the fact that

satisfies the well-known "homotopy identity,"
+

LEMMA. Let {Gp\ be an identifier for S such that the following conditions

hold:

( i ) Cp € G implies that βS cS = 0,

( i i ) cp £ G

P implies that p*p c* e Gp + i .

Then { Gp \ is an unessential identifier for S.

The system of nuclei \N(β )} clearly is an identifier for S since β is a

chain mapping. Therefore, applying Pi we obtain the maximum result of the fore-

going lemma.

THEOREM. The system \N(β )} is an unessential identifier for S.
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A METHOD OF GENERAL LINEAR FRAMES

IN RIEMANIAN GEOMETRY, I

H A R L E Y F L A N D E R S

1. Introduction. In this paper we shall derive the basic quantities of Riemann-

ian geometry, such as parallelism, curvature tensors, and so on, from a consider-

ation of all linear frames in the various tangent spaces. This procedure has the

advantage of subsuming both the classical approach through local coordinate

frames and the more modern approach through orthonormal frames. The exact con-

nection between these methods is thus made quite explicit.

The principal machinery used here is the exterior differential calculus of E.

Cartan. (See [ 1, p.201-208; 2, p.33-44; 3, p.4-6; 4, p. 146-152; 7, p.3-10].) We

shall follow the notation of Chern [3] with exceptions that we shall note in the

course of the paper. It is important to keep in mind the following specific points

of this calculus.

On a differentiable manifold of dimension n one has associated with each

p = 0, 1, 2, the linear space of exterior differential forms of degree p (p-

forms). The coefficients form the ring of differentiable functions on the manifold.

The 0-forms are simply the functions themselves, and the only p-form with p > n

is the form 0. Locally, if uι, ••• , un is a local,coordinate system then a one-

form ω may be written

(1.1) ω- Σ / U)**1';

and, more generally, a p-form ω may be written

(1.2) ω = Σ h . . . U ) duiι ...duip

( < < < < ) l P

— 2-/ fι i (u) du ι dup with the Λ .v skew-symmetric.
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If ω is a p-form and η a ^-form, then

(1.3) ωη = (-I)pq ηω

is the exterior product of ω and 77, and is a (p + g)-form.

The operation d of exterior differentiation is intrinsically characterized by

the following properties:

(A) d sends a p-form ω into a (p + 1 )-form dω;

(B) d(ωι + ω2) - d(oί + dω2

(C) d(dω) = 0;

(D) df- Σ(df/duι)duι, where / i s a 0-form (function) and (u) is a local

coordinate system;

(E) d(ωη) - dωη + (-1 ) p ωdη, where ω is a p-form.

We shall also use matrices whose elements are differential forms. If A is such

a matrix, tA will denote its transpose and dA will denote the matrix whose ele-

ments are obtained by applying d termwise to the elements of A. If A and B are

square matrices of p-forms and qr-forms respectively, then it follows from (1.3)

that

(1.4) \AB) = (-I)?? ιB 'A.

If A is a nonsingular matrix of functions (0-forms), then

(1.5) d(A~ι) = -A"1 dA A"1.

This is the case because AA~X =1, the identity matrix, hence

dA A"1 + AdA~ι = 0.

2. Linear frames. We shall now define the objects of this investigation. We

begin with a differentiate manifold Sί of dimension n and class C°°. (See [8,

p.20].) On such a manifold one may form the space C(3?) of all infinitely dif-

ferentiable real-valued functions on 3?. If P is a point of J?, a tangent vector at

P is an operator v on C(Ψκ) to the reals satisfying

(A) v(/+g) = v(/) +

(B) v(fg) = /(P) v(s) + g{P) v(f), for all/, ginC(ίl).

It is well known [5, p. 76-78; 6] that the set of all tangent vectors at Pforms a

linear space of dimension n under the usual operations of addition and scalar
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multiplication of operators. If 12 is a coordinate neighborhood on 3ί with a local

coordinate system uι

9 ••• , un

9 then the operators

d d
(2.1) e t = , . . . , en =

duι dun

may be considered as tangent vectors at each point P of 11, where if / i s in C(Jf)

we have

(2.2) βi(/) = {df/du*)p.

The vectors of (2.1) in fact form a basis for the tangent space of each P in 11.

A vector field {vector, for short) is an assignment of a tangent vector \p at

P to each point P of 3? [5, p. 82-83]. In terms of the basis (2.1), one may write

a given vector field v on 11 as follows:

(2.3) v = λ ι 'e., with λ1' = λ ' U 1 , . . . , un).

Here we use the Einstein summation convention, as we shall do in what follows.

The vector field v is infinitely differentiable if each of the coordinate functions

λι of the variables υJ is so. In the future we shall deal only with this kind of

vector so that "vector field" or "vector" will always mean infinitely differenti-

able vector. It is important to note that that this definition is independent of the

particular local coordinate system we have choosen, since a change in local co-

ordinates merely effects a nonsingular linear transformation with C°° coefficients

on the λ ι, in accordance with the usual tensor rules.

By a linear frame we shall mean a set e l f « , eΛ of vectors which form a

basis for the tangent space at each point P of a given coordinate neighborhood

U. One may visualize this as a choice of oblique coordinates in each of the tan-

gent spaces at the various points of U in such a way that the coordinate axes

and units vary smoothly in moving from point to point. The vectors of (2.1) form

an example of a linear frame, and we shall call such a frame a coordinate frame

to indicate that it is derived from a local coordinate system.

The manifold 5? is called a Riemannian space if it carries the following add-

itional structure. For each P in J? one is given an inner product in the tangent

space at P, making this space into a euclidean space. This assignment of inner

products to the various tangent spaces must be infinitely differentiate in the

following sense. If v and w are any two vectors on 3ί, then v w, the inner product

of v and w, which clearly is a point function on Jί, must be of class C°°. This

implies (and is equivalent to) the following. If e p ••• , en is the coordinate

frame of (2.1), then
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(2.4) e { . ek = gik(uι

9 •• , un),

where the functions g., are C°° functions on U. In this case one custimarily

writes

(2.5) d s 2 = gik\duιduk\,

where { } denotes the ordinary tensor product of the differentials, as distinguished

from the exterior product.

An orthonormal frame βp ••• , βn is a frame satisfying

(2.6) e; ek = δ k , the Kronecker δ .

If e ι t , en is a frame on the space 3ΐ, then there is uniquelly determined a

(dual) basis σ 1, , σn of the space of differential forms of degree one. This

is the case because the algebraic dual of the space of tangent vectors at a point

is precisely the space of 1-forms at that point. (Cf. [5, p. 81].) As is customary,

we shall formally write

(2.7) dP = σ ι 'e.,

and think of this displacement vector dP as a tangent vector whose components

are differentials. (See [ 1 , p. 34, 52, 101; 3, p. 10; 6, Chapter 2].)

3. Existence of parallel displacement. We shall now generalize the develop-

ment of [3, § 5]. We first of all select a linear frame el9 , en, and have

(3.1) dP = σ'e;,

where P is the variable point of 11 and the σι are one-forms on 11. We set

(3.2) *i *k = £ik>

which defines a positive definite symmetric matrix | | gik \\ of functions on 11.

We next wish to define differential forms ωί of degree 1 so that if we set

(3.3) dβi = ω/ey,

then the equations

(3.4) d(dP) = 0,

(3.5) deέ . e ^ e . dek = Πk
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will be formally satisfied. The first yields

d(dP) = d(σi e, ) = dσ' e, - σl ω( e. - 0,

hence

(3.6) dσJ' - σl ω{ = 0 .

The second equation becomes

(3.7) ω{βjk+ ωk &il = d8ik*

THEOREM 3.1. The equations (3.4), (3.5) define unique I'forms ωl.

Proof. It is convenient to work with covariant components. We set

(3.8) ωir = ω{ g / r, ηr = dd gjr,

and our equations become

(3.40 olωiτ - ηr,

(3 ^') ω L + α>i. = ^ ^ L.
\ v «-» / ικ tii ~ικ

The one-forms σ ι , , σ" are linearly independent, and so we may write

1
(3 9) 77 = — λ , σ σ ,

(3.10) dgik = c.kl σl

9

where the hτst and c ^ are known functions on 11 satisfying

We seek unknown functions Vjk such that

(3.12) ω\ - Γ{kσ
k,

or

(3.13) ωiτ = Γirk σk with Γirk = Γ'<Jfc g / r

We now have
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and so our equations ( 3 . 4 ' ) , (3 .5 ' ) become

(3.4") Γirk-Γkri = Kik>

O.5") r i W + r m = cikl.

These equations have a unique solution. To prove this, we derive as a con-

sequence of our equations the expression

Tiτk " hτik + Γkτi = hτik + ckri ~ Γrki

= Kik + c i r i ~ hkri ~ Γikr = hrik + c*ri " V i ~ Ci*r + ΓΛir

= Kik + Ckτi ~ hkri ~ Cikτ + hikr + Γrik

= Arifc + cAri ~ hkri ~ cikτ + hikτ + Crik ~ Γirk'

This implies that the only possible solution is given by

( 3 1 4 ) Γirk = 1 {hΠk + hikr ~ hkri^> + J ^Crik + Ckri ~ Cikr^

Substitution of this expression into the original equations (3 .4 ' ) , ( 3 . 5 " ) shows

that this indeed is a solution.

The functions Γ ^ are the components of the Christoffel symbols of the first

kind —with respect to a general frame rather than a coordinate frame as is usual.

In case of a coordinate frame (2.1) we have

σ* = du\ dσ1 = 0, hrst = 0;

only the terms in the cfi^ appear in (3.14). Since in this case

d&ikm ciki duί>

we have

iki γ'
du

and so (3.14) is precisely the formula of Cartan [ l , p . 3 7 ] . In case of an ortho-

normal frame, the g^ are constant, hence the c^ all vanish; only the terms in

the hriji appear in (3.14). Thus formula (3.1) of [ 3 ] results. In view of these

special cases and the right side of (3.14), it would appear that somehow a gen-

eral frame can be decomposed into a coordinate frame and an orthonormal frame.

This possibility seems worthy of further investigation.
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We now can express our result in a convenient matrix form. We set

(3.15) G = \\gik\\> e = ' ( e ^ . ^ e j , σ = ( σ 1 , . . . , σ Λ ) , Ω = | | ω f | | .

We then have the vector equations

(3.16) dP = σe , de = Ωe, e . *e = G,

and the form equations

(3.17) do = σΩ, </C = ΩG + G Ώ .

It is perhaps well to keep in mind the relation in ordinary differentials

(3.18) ds2 = dP . dP = βtflσ 'σM = IσG %σ\.

Suppose that X = λ e is a (contravariant) vector field on 11, where λ =

( λ ι , . . . , λ71). We have

(3.19) dX = dλe + λrfe = {dλ + λΩ) e .

The vector field is said to be generated by parallel displacement along a sub-

space if the components of dX vanish on that subspace. Thus the condition is

(3.20) dλ + λΩ = 0.

If Y = μe is a second vector field, also generated by parallel displacement, so

that

dμ + μΩ = 0,

then we have

X Y = λ G ' μ ,

hence

d(X . Y) = dλ G V + λd G V + λ G %dμ

= - λ Ω G V + λ(ΩG + G*Ω)*μ - λ G ' β ' μ - 0.

This shows that parallel displacement is a euclidean transformation.

The differential forms given in (3.19) are often called the components of the

absolute differential of the given field X. (See [1, p.38].) These are given ex-

plicitly by
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(3.21) Z)λ=</λ + λ Ω , Dλ = ( D λ ι , ••• ,Dλn).

If we express these forms in terms of the basis σ, we obtain the coefficients

of the covariant derivative of λ:

(3.22) Dλ1 = λι',;. σ>, or Z)λ = λ,σ, where λ, = | | λ\j | | .

One deals with covariant (form) fields and tensor fields similarly. Suppose for

example that

T - λ</ . , e.

is a contravariant tensor field of order two. Here

denotes the tensor product of the vectors βj and βy. We have

(3.23) dτ = itfi e. e . + λ1' ω? e, e. + λι/ ω\ e£ β,,
* / I K ] J I I

hence

(3.24) dτ = Dλίy' βi e / t Z)λ^ = rfλ1^' + λ*' ω^ + λiZ ωj.

This again defines the covariant derivative

4. Consequences; the curvature forms and the Bianchi identities. We begin

with the basic relations (3.17). By differentiating the first of these, c?σ = σΩ,

we obtain

0 = dσίl - σdύ = σ(Ω 2 - rfΩ).

Thus if we set

(4.1) Θ = rfΩ - Ω 2,

we obtain the relation

(4.2) σΘ = 0.

The elements of the matrix

Θ -
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are two-forms, usually called the curvature forms. We set

( 4 . 3 ) "i ~~ a Urn σ σ

with

defining the Riemann symbols of the second kind. The relation (4.2) may now be

written

nk ί I 771 r\

ilm

By expressing this 3-form in skew-symmetric canonical form, we obtain

U Λ \ Z?& . nk . nk r\
4> Rilm + Rlmi + Rmiί = °

We next differentiate the relation ( 4 . 1 ) to obtain

d@ = -rfΩΩ + ΩrfΩ = - ( Θ + Ω 2 ) Ω + Ω(Θ + Ω 2 ) .

This gives the Bianchi relations:

U ζ) d® = Ω Θ - Θ Ω.

It is easily shown that further differentiation of this relation yields nothing new.

Now let us work on the second relation,

dG = ΩG + G*Ω,

of (3.17). This implies

0 = rfΩG - ΩdG + dG'Ω + G ιdΌ.

= (Θ + Ω 2 )G - ΩίΩG + G^Ω) + (ΩG + G ί Ω ) ί Ω + G ( ί Θ - ( ί Ω ) 2 ) ;

hence we have

(4.6) Θ G + G *Θ = 0 .

One also verifies that differentiating this formula leads to nothing more. One now

introduces the covariant components of Θ by setting

(4 7) θh = 07' £ z,
V4*.* / v

t k wι ojk

This implies
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with

Riklm = R1ilm 8jk-

These new symbols R are the Riemann symbols of the first kind (in the case of a

coordinate frame) and are also called the components of the covariant curvature

tensor. Their tensor nature will be verified in the next section. The relation

(4.6) now has the simple expressions

We also have from the relations (4.3) and (4.4),

On combining (4.9) with (4.10), one obtains in the usual way the symmetry re-

lation

5. Change of basis. Suppose that e* is second frame on 11. Then

(5.1) e* = A e,

where A is a nonsingular matrix of functions. For convenience we set B = A~ι

9

so that

dB = -BdAB.

The relation (5.1) implies

(5.2) σ— σ A y o r σ — σ B .

From the relation (3.16) we have

e . 'e = G.

This implies

G* = AG'A.

Next we obtain the main transformation law:
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THEOREM 5.1. Under the change of basis (5.1) we have

(5.4) Ω* = AζlA~ι + dAA-1.

Proof. According to Theorem 3.1, the matrix Ω* is uniquely determined by

the formulas

rfσ* = σ*Ω*, Ω*C* + G* Ώ * = dG*.

By differentiating (5.2), we obtain

dσ* = dσB - σdB = α Ω S + σBdAB = σ*(AΩB + dAB)t

which shows that the expression given in (5.4) satisfies the first of these con-

ditions. The verification of the second condition is this:

(AQB + dA B) AG *A + AG'A (ιB ιΩιA+ ιB ιdA)

- AQG'A + dAGU + AG'Q'A + AG ιdA

= dAGιA + AdGxA + AGHA = d{AGιA) = dG*.

COROLLARY 1. The curvature forms transform according to the law

(5.5) Θ* = A® A'1

Proof. We have

da* = dAaB + A da B + A da B + A ΩB dA B + dA B dA B

and

Ω*2 = Aa2 B + AaB dA B + dAaB + dABdA B,

hence

Θ* = rfΩ* -Ω*2 = A daB-Aa2 B = A®A~ι.

COROLLARY 2. //X= λe = λ*e* is a vector field on U, the following trans-

formation laws hold:

(5.6) λ* = λ , r ι , Z)λ* = Dλ A'1.

Proof. The first relation is simply the statement that λ satisfies the contra-

variant transformation law, and is obvious. The second relation is true because
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£>λ* = rfλ* + λ*Ω* = d\B - \B dA B + \B{AΩ B + dA B)

= dλ B + λΩ S = Dλ B.

Corollary 1 asserts that the forms Ql which compose the matrix Θ transform

as a mixed tensor of order two. Theorem 5.1 gives the transformation law for the

forms ωJ , and can easily be converted into a transformation law for the Christof-

fel symbols Γ/, of §3. What is more important, however, is the assertion of Corol-

lary 2, that the components Dλ1 of the absolute differential of X transform by the

contravariant tensor rule. This proves incidentally that parallel displacement is

intrinsic.

6. The volume element and Gaussian curvature. We set

(6.1) γ - \ G \ ι ' 2 σ ι , σ".

Thus γ is a nonzero ra-form on U. Here | G | denotes the (positive) determinant of

the positive-definite matrix G. It follows from equations (5.2) and (5.3) that

under a change of frame we have

(6.2) I G * ! 1 ' 2 = eA \ A \ . | G | " 2 , σι,- -,σn = \A\σ*\...,σ*n,

where

eA = s g n \A\.

Thus we have the transformation law satisfied by the volume element γ:

(6.3) y * = eA γ.

It is thus possible to define the volume of an orientable ^-dimensional portion of

3x by integrating γ over that portion.

We now borrow some information from the theory of skew-symmetric matrices.

Let S= ll^iyH be a generic skew-symmetric matrix of even dimension n = 2m.

Then there is a unique homogeneous polynomial P {xη) of degree m with the fol-

lowing properties:

(a) \S\ = [ P ( % i y ) ] 2 ;

(b) if S* = AS tA9 where A is nonsίngular, then

? ( * * . ) = \A\ P ( * . ; . ) ;

( c ) P has value 1 for the specialization
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Now assume that our space $t has even dimension n = 2m. The matrix // = Θ G

is skew-symmetric, by equations (4.7) and (4.9). Also the elements of H are 2-

forms, and hence lie in the commutative ring generated by all forms of even de-

gree. We set

(6.4) ξ=-P(H)/\G\ι/2.

This form ξ is of degree n and is called the Gaussian curvature form [ 5 ] . When

we combine (b) above with equation (6.2), we obtain the transformation law

(6.5) ξ* = eA ξ.

Since γ is a nonzero rc-form, and there is only one linearly independent rc-form,we

have

(6.6) ξ-Kγ,

where K is a function called the Gaussian curvature. We may combine (6.3) with

(6.5) to obtain the intrinsic character of this quantity:

(6.7) K* = K.

7. A property of | G\ In this section we shall set

g - \G\.

The equation (5.3) then implies that

where

a = \A\.

The following result is known [ 1 , p. 44] for the classical case of a local coordi-

nate frame.

T H E O R E M 7.1. //

S(Ω) = Σ, ω
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denotes the trace of the matrix Ω, then

1 dg
(7.1) - — = S ( Ω ) .

2 g

The proof of this theorem will rest on the following known lemma.

LEMMA 7.1. If A is a nonsingular matrix of functions, and

o = \A\,

then

da

(7.2) — = S(dA . A'1).
a

We shall include a short proof of this result for completeness. We set

C = coίA, B = A"1 = α"*1 C.

Then

where ηi is the determinant formed from | A \ be replacing the i row of | A \ by

the row (da^ , ^ , </α^). Thus

It follows that

da = 2Z ( ̂ ai •) c i > summed on £ and /.

On the other hand,

A~ι) = a-lS(dA . C) = α"1 Σ (ώ, , ) ca

as asserted.

Proof of Theorem 7.1. We shall first show that the formula (7.1) is valid,
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provided that it is valid for a single moving frame. We have, under the change of

frame (5.1),

dg* = lag da + a2 dg;

hence

2 g* = 2 g + a '

Next, from equation (5.4) we have

S(Ω*) = S(Ω) + S(dA .A'1).

It now follows from Lemma 7.1 that

^ ( )

2 g* 2 g

Finally, we note that for an orthonormal frame, Ω is skew-symmetric, hence

S(Ω) = 0, while G = /, g = 1, and so g"1 dg = 0.
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THE NEUMANN PROBLEM FOR THE HEAT EQUATION

W. FULKS

1. Introduction. By the Neumann problem we mean the following boundary-

value problem: to determine the solution u(x, t) of the equation

(1.1) "%*(*» ' ) " M*> ' ) = 0

in the rectangle or semi-infinite strip IvbfC': { 6 < Λ; < c; α < ί < Γ < o o } , given

u (x, a) on b < x < c and M* ( b, t) and H X ( c, t) on a < t < T. There is a formula

in terms of the Green's function (essentially given by Doetsch in [ 2 , p. 361])

which gives the answer to this problem if the closed rectangle is in the interior

of a larger region in which u(x, t) is a. continuous solution of (1.1) . This formu-

la is as follows: let d - c - b9 and let

where $ 3 is the Jacobi Theta function; then

(1.2) «(*,*)= Γ F(b'c\x,t;y,α)u{y,α)dy- [' F(b'c\x,t;b, s) uAb,s)ds
Jo Jα Λ

)(x9t; c,s) u(c,s)ds.
x

V
Jα

The purpose of this paper is to extend the use of formula (1.2) in the following

manner: w,e will give conditions under which a solution of the heat equation can

be written in the form (1.2) wherein u(α, y) dy, etc.* are replaced by dA(y) or

by α(y) dy, where A(y) £ BV (that is, of bounded variation) or α(y) G L. And

we will examine the senses in which these extensions of formula (1.2) solve the

boundary-value problem; that is, the manner in which the solutions tend to the

prescribed boundary data for approach to a boundary point. Furthermore, we will

obtain criteria for the unique determination of the solutions of these generalized

boundary-value problems.
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We will normalize our rectangle to be R: {0 < x < 1, 0 < t < T < oo{, and for

this region we will delete the superscripts from the Green's function and denote

it simply by F(x, t; y, s). And we will denote by H the class of solutions of

(1.1) for which both uxx and u% are continuous.

It will be convenient to display here the formula ( see [2, p. 307])

(1.3) £ U/2, ί) = U ί Γ 1 / 2 Σ, e x p (*4+

t

n ) Γ

from which it is clear that f' *c'(x, t; y, s) is a uniformly continuous function

of all six variables if d is bounded away from both zero and infinity, and if the

point (x, t) is bounded away from the point (y, s).

It also follows easily from ( 1.3) that

Fχ(x, t; 0, s) = -Gγ(x, t; 0, s) and Fχ{x, t; 1, s) = -Fχ( 1 - x9 t; 0, s),

where

is the Green's function for the corresponding Dirichlet problem. (See [ 3; 4; 5; 6;
7].)

2. The Stieltjes integral representation. Our first main theorem gives the so-

lution to one of the generalized boundary-value problems.

THEOREM 1. For u(x, t) to be representable in R by

(2.1) u{x, t) = [l F{x, t;y,0)dA(y) - Γ F{x, t; 0, s) dB(s)
Jo Jo

Γ F(x9 t; 1, s)dC(s),
Jo

+
/o

where A(y) G BV ( 0 <y< 1) and B(s), C(s) G BV ( 0 < s < s 0 ) for every

sQ < T, it is necessary and sufficient that

( ί ) u{x, t) G H in R,

( 2) fι I ux (x, s) I ds < Mi uniformly for Q < x <x0 and x t < x < 1 for some

x0, xl9 where Mt depends only on t9
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( 3 ) Q I u ( y, t) I dy < M uniformly for 0 < t < t0 for some t0.

Proof. To prove the sufficiency, let (x9 t) € R. Then there exist α, b9 c > 0

such that u(x9 t) i s given by ( 1 . 2 ) . But, by condition ( 3 ) ,

A {x) = fX u{y, a) dy G B V [ O < % < 1 ]

uniformly in a for 0 < α < ί0. Hence the uniformity holds for any sequence of

values of α tending to zero, and thus by the well-known convergence theorems of

Helly and Bray (see, for example, [9, p. 29-31 ]) there exists a subsequence \an \

and a function A (x) G BV (0 < x < 1), to which AQn(x) converges substantially,

such that

lim fC F(b'c\x, t; y9 a) dAa (y) = [° F(b>c\x, t; y, 0) dA(y).
n-^oc Jb n n Jb

Then (1.2) becomes

(2.2) "(*,*)= [CF<<b>cHx,t;y,0)dA(y)- Γ F(b>c\x9t;b9s) ux{b,s)ds
Jb Jθ

+ V F(b>cHx, t;c9s) ux(c,s)ds,
Jo

where the e x i s t e n c e of the two lat ter i n t e g r a l s i s guaranteed by condi t ion ( 2 ) .

Furthermore,

BAt) = (* ux(b, s) ds and Cίt) = Γ ux(c, s) ds E B V [ 0 < t< t]b Jo c Jo - - o

for every t0 < T uniformly for 0 < b < x0 and xx<c<l. Hence the uniformity

holds for any sequence of values of b tending to zero and of c tending to one.

Hence there exist subsequences { bn \ and { cn \ and functions

B(t),C\t) E hV(0<t<tQ)

such that

lim Γ F(bn'Cn\x, t; b . s) dB. {s) = f* F(x, f, 0 , s) dB(s)
n-*oo Jo n Jo

and
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lim [' F{bn'CnHx, t; cn, s) dCCn(s) = [' F{x, f, I, s) dC(s).
n-*oo JQ JO

Hence u(x, t) has the representation asserted.

We will later show that A, β, C are independent of the particular sequences

of a, b, c used here ( s e e Theorem 3) .

To prove the necessity of condition ( 1 ) we must differentiate under the inte-

gral sign. The only difficulty encountered in this is the disposition of the terms

which arise from the variable upper limit. If, however, one forms a difference

quotient it is easy to see that the contribution arising from the variability of the

upper limit must always vanish, due to the strong convergence to zero of the

kernel as s — » t - 0.

To establish ( 2 ) we write

[ Fx(x,t;y90) dA(y) - [% Fx(x, t; 0, 5) dB(s)
o Jo

+
Jo

Now

Γ Fx(x, t; 1, s) dC(s)
Jo

= [l Fx{x,t;y,O)dA(y) + Γ Gy{x, t; 0, s) dB{s)
Jo Jo

+ I Gy (1 - x, t; 0, 5) dC ( 5)

= # ! ( * , * ) + i/ 2(*» 0 + V3(x, t).

\U2(x, t)\ < V Gy(x9 t; 0, s)\dB{s)\ = v2(x, t)
Jo

and

U3(x, t)\ < I Gy(l-x, ί O, s ) | r f C ( s ) | = v3{x9 t),
Jo

where v2(x, t) and v3(x, t) are nonnegative solutions of (1 .1) . Then, by [ 3 ,

p. 22-23] and [7, p. 373], v2(x, t) and V3(x, t) must satisfy condition ( 2 ) .

Hence so must U2(x, t) and U3(x, t).

To examine Uι(x, t) we need to note that, by (1.3), for 0 < x, y < 1,
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r(x, t; y, 0 ) = exp exp I-
4 τ τ 1 / 2 ί 3 / 2 l 4 ί J 4 / r 1 / 2 ί 3 / 2 l

( * + y - 2 ) f ( * + y - 2 ) 2 l _
exp I 1 + u χ ( x , y, t),

w h e r e u t i s bounded, s a y \uγ\ < B ι # T h e n

f \Uι(x,s)\ds < [' [l T Ljf^J expί- i l l |,M(y)|rfβ
Jθ Jo JO „ _ , A _ l / 2 o 3 / 2 I 4 s J

x VAl),

where ax = x — y, o 2 = x + y, a3 = x + y — 2, and V^( 1) is the variation of

Then

— I/n /β

2π

ι/2
ds\dA(y)\

( 3 / 2 + ί δ , ) VA ( 1 ) ,

the change of order of integration being permissible by Fύbini's theorem. Since

Vχ(x, t), U2(x, t), and U3{x, t) separately satisfy condition (2), so must their

sum, ux(x, t ) .

To verify condition (3) we write

/•l Γί ft
u(x, t) = / - / + / = ui(x, t) + u2(x, t) + u3(x, t ) ,

Jo Jo Jo

and first consider

u2(x, ί) - - f* F(x, ί O, s) dB(s).
Jo
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But, by (1.3),

F(x, t;09s) = n-
ι/2(t-s)~1'2 e x p L * j + Έ2(x9 t, s),

where "u2 is bounded, say by B2 Then

[ * \u2{x, t)\ dx < I π~ι/2{t- s)~ι/2 I exp dx\dB(s)\

Jo Jo Jo I 4>(t-s)i

+ B2VB(t),

- t

 X \dx\dB{s)\ + B7 VB(t)9

Similarly,

" \u3{x, t)\ dx < ( l + β 3 ) Vc(t).

We turn now to U 1 ( Λ , ί ) :

ί ' l ^ U 01 ώ < Γ [l F(x9t;y,0)dx\dA{y)\
Jo Jo Jo

But, again by (1.3),

FU. y.0) = i ( ^
22 I I 4ί J I 4ί

f U
+ exp

where α^ is bounded by, say, B4. Then

f U+2-2^11 .

[ ( v + v - 2 ) 2 11
- i - J J dx\dA(y)\ + B4
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Γ 2 [°° exp \-—]dx\dA(y)\ + S4
Jo J-oo I 4>t i2

< VΛ(1){2+B4)

H e n c e , f o r 0 < t < ί 0 ,

fl \ u ( x , t ) \ d x < VA(1) ( 2 + S 4 ) + F β ( ί 0 ) ( l + β 2 ) + F c ( ί 0 ) ( l + β 3 ) = M
Jo

This completes the proof.

3. The behavior at the boundary. We are now prepared to examine in detail

the behavior near the boundary of solutions of our generalized boundary value

problem considered in section 2. The main result of the section is:

THEOREM 2. If u(x9 t) is representable in R by (2.1), then

(1) lim u{x,t) = A\x)

and

(2) lim ux(x, t) = β ' ( ί - 0 ) ; lim ux(x, t) = C'( t - 0)
#->o + x -* 1-0

/ , β ( ί - 0 ) - β ( ί - A ) , \
I where B ( t — 0 ) = lim , and similarly for C ( t - 0) I ,
\ Λ -•()+ h I

wherever the derivatives in question exist.

Proof. If u(x, t) is representable by (2.1), let

u{x, ί ) = / - / + / = uγ{x, t) + u2(x, t) + us(x, t)
Jo Jo Jo

as before. Let / be any open interval whose closure is contained in {0 < x < 1}.

Then for x G /, F(x9 t; 0, s) and F(xy t; 1, s) both converge uniformly to zero

as t—»0+, as can be seen from (1.3). Then clearly u2(x, t)9 u3(x, t)—»0 as

ί — » 0 + , for A; G /.

Also, for* e I, by (1.3),

Fix, t y, 0 ) = ( 4 τ r ί ) " 1 / 2 exp [ - ( * " y ) I + o ( l )

uniformly as ί — > 0 + . Hence
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u , U t) = / l ( 4 7 7 ί ) " " 1 / 2 exp I - X ~ y I dΛ(y) + o ( l ) .
Jo I 4 ί J

Then ( s e e [ 3 , p. 25-26 and 65-66] and [7 , p . 393-394])

l i m u ι ( x 9 t ) = A ( x )
ί->o+

wherever this derivative exists. Since any x E ί 0 < * < 1} can be caught in such

an /, this establishes ( 1 ) .

To verify conclusion (2) we write, as before,

ux(x, 0 = (l Fx{x, t; y9 O)dA(y) + [ Gγ(x, t; 0, s) dB(s)
Jo Jo

+ Γ c y ( l - * , ί O, s) dC{s),
Jo

= Ux(x,t) + U2(x,t) + U3(x,t).

As x—»0+, V\{Xy t) and U3(x, t) vanish since the kernels converge uniformly

to zero, and as x — > 1 - 0 , Vx(x9 t) and U2(x, t) vanish for the same reason.

Then by [ 5 ] , ux(x, t) tends to B ( ί - 0 ) or C (t — 0) according as x tends to

zero or one, whenever the derivatives exist.

We can now give criteria for the existence of boundary values of the function

u ( x, t) itself on the sides x = 0, and x = 1.

COROLLARY 1. If u{x, t) is representable in R by (2.1), then u(0+, 0

exists if B (t — 0) does.

Proof. Let 0 < x0 < 1; then

u{x, t) = / ux(y, t) dy + u(x0, t) (0 < * < 1 ) ,
Jχo

and the integrand is bounded in 0 < x < x0. Hence the integral exists for x = 0

and defines u(0+, t).

We might also note in passing that for such ί, the x difference quotient at the

boundary also tends to B (t — 0); for, by the mean value theorem,

u(h, f ) - ι * ( 0 + , t)
= ux(Έ, t) —> B U - 0 )
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as h—*0.

From Theorem 1 we have:

COROLLARY 2. For u(Q+, t) to exist it is sufficient that

Γ~° (t-sΓ^2 \dB(s)\
Jo

converge.

Proof. Define

f(t) = fl F(09t;y90)dΛ(y) + Γ F(0, *, I, s) dC(s)
Jo Jo

V I / 2(ί-*Γ1 / 2 £ exp f- -_ί
n = t I ( ί -U - s )

"° ( ί - s ) - l / 2 rfβ(s),
0

and consider

l i m s u p \ u { x , t ) - f ( t ) \
x —»o +

f t- f Γ x 2

<π~1/2 lim sup / " (t - 5 ) ~ ι / 2 l l - exp 1 | | f l ί β ( s ) | .
χ->o + J 0 I I 4 ( ί - s )

Now given e > 0 there exists a δ > 0 such that

\dB{s)\ < e,

so that

lim sup I u{x, t) - / ( ί ) |

| l - e x p [ l l \dB(s)\ + 2e = 2e.
I L 4 ( ί - s)JJ
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Let e —»0 to get

l i m u { x , t) = a ( 0 + , t) = f ( t ) f
X -»0 +

which completes the proof.

We may also note that if B(s) were monotone, then, since exp [ - # 2 / 4 ( ί - s)]

converges to unity in a monotone way, we could invoke, the monotone conver-

gence theorem to obtain the convergence of the integral as a necessary and suf-

ficient condition for the existence of α(0+, t).

Also with Theorem 2 at our disposal we can now prove:

THEOREM 3. Let u(x9 t) be representable by (2.1); then the functions

A{x), B(t), C(t) are uniquely determined by u{x, t), so that, at every point of

continuity^

Γx
Λ(x) - lim / u(y, a) dy

α-»o+ Jo

and

B(t) = l im / ux{b, s) ds; C ( ί ) = l im / ux(c, s) ds.
b -»o+ Jo c-* ι~o Jo

Proof. F o r s u p p o s e B ί { t ) a n d B 2 { t ) a r i s e f r o m t w o d i s t i n c t s e q u e n c e s .

T h e n c l e a r l y i f B 3 ( t ) = B x ( t ) - B 2 ( t ) , w e h a v e

Γ F(x, t; 0, s) dB3(s) s 0 in R.
Jo

Hence, differentiating, we get

V Gγ(x, t; 0, s) dB3(s) ~ 0
Jo

We first show B3(s) is continuous: suppose it has a jump α at ίo; then, for t > ί0,

ft
0 = / Gy{x, t; 0, s) dB4(s) + σ Gγ(x, t; 0, t0),

Jo

where B4{s) i s the boundary function remaining after the jump σ at t0 i s re-

moved. Then
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Γ 4 ( ί - ί o ) l
r l

exp I + o (1)2π1/2(t-t0)
3 I 4 ( ί - ί 0 :

Choose 8 so small that

β 4 - v°-δ)< ¥ '
set t - ί0 = * 2 / 4 , and take a; so small that * 2 /4 < δ. Then

/ t o +* 2 /4 Λ; ^
0 = / exp - flίB4(s)

4σ
+

*2 L-
4 | g |

1/2 2 /«_$ o _ l / 2 / , _ „ , ».2/ /.\3/2"" t ' | Λ / , _ „ , , S ,

4 | σ | / o V 4
0 > — r m — Ϊ - / exp I

- e ι / 2 x 2 JtS ι/2( 2/4)3/2 [eπι/2x2 Jto-S 2πι/2(tQ-s + x2/4)3/2 [ 4 ( ί 0 - * + * 2 / 4 )

The maximum of the integrand is at s = ί0, so that

4 | g | 2 | g | 2 | g |
0 > - — , .- , + o (1) = + o ( l ) ,

- e 7 T i / 2 * 2 enι/2x2 en1/2x2

and we have a contradiction as x —» 0 + .

Similarly the jumps of C( ί) are determined.

Suppose Aι(x) and A2(x) arise from two distinct sequences, and A3(x) =

A ι(x) - A2(x)l then, as before,

0 = Γ Fix, t;y,0)dA3(y) in /?.
Jo

And suppose it has a jump of σ at # 0 ; then, as before,

0 = σ(4τr ί ) " 1 / 2 + ( 4 τ τ * Γ ι / 2 Γ exp [-

Jo L it

If δ is so small that
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F ^ U o + δ) ~ F ^ U o - δ ) < |σ | /2 ,

then

O = σ(4τ7iΓ 1 / 2 + ( 4 ^ ί ) " l / 2 Γ ° + S exp L
Jχ0 -8 I0 -8 I 4 ί

0 > | σ | ( 4 τ τ ί Γ ι / 2 - | σ | ( 4 τ r f ) " ι / 7 2 + o ( l ) = | σ

and as t —>0 + we get a contradiction.

Then Λ39 B39 C3 are continuous functions of bounded variation, and by Theo-

rem 2 their derivatives are zero almost everywhere. Each of them must then have

an infinite derivative on a nondenumerable set. (See e.g. [8 , p. 128].) This then

implies that lim u(x9 t) and lim ux(x9 t) must become infinite on a nondenumer-

able set, which is a contradiction, and the functions Λ39 B39 C3 are constants.

Hence, since every sequence of α's, b's, or c's contains a subsequence for

which Aa(x)9 etc., converges to a common limit, the limit must also be attained

for continuous approach. Thus the last statement of the theorem is established.

4. The Lebesgue integral representation. We are now in a position to estab-

lish:

THEOREM 4. For u(x9 t) to be representable in R by

(4.1) ι * ( * , ί ) = fl F(x9 t;y9θ)a(y)dy - f* F (x9 t; 0, s) b(s) ds
Jo Jo

rt
+ / F(x9 t; 1, s) c(s) ds9

Jo

where a(γ) £ L (0 < y <l) and b{s)9 c(s) £ L (0 < 5 < s 0 < Ί < oc) for every

sQ9 (0 < s0 < T)9 it is necessary and sufficient that

(1) u(x9 t) £ H in R9

( 2 ) lim P \ux(y9 s) - ux(y\ s)\ ds = 0
y,y -» o+ Jo

and

rt
l im / \ux(y9 s) - ux(y'9 s)\ ds = 0

y,y'-> 1-0 Jθ

for every t (0 < t < T)9 and
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( 3 ) lim fl \u(y, s) - u(y, s')\ dy = 0 .
.. o ' Λ Jo

579

s,s

Proof. For the sufficiency, let the closed finite interval / C ί 0 < s < Γ 1 be

prescribed, and let e be any measurable set in /. Given € > 0, there exists δ =

δ( €, /) such that

f \ux{y> s) - ux{y% s)\ ds < e / 2 for y , y ' < 8.
Je

Then

I \ux(y, s)\ds < I \ux(y',s)\ ds + I \ux(γ9 s) - ux(y', s)\ ds
Je Je Je

\ux(y% s\ ds + e/2.

N o w k e e p y'fixed a n d t a k e m(e) s o s m a l l t h a t

j \ux(y\ s)\ ds < e/2,

so that, forO < y < δ,

I \ux{y, s)\ ds < e

if m(e) i s s u f f i c i e n t l y s m a l l . H e n c e Bb(s) a r e u n i f o r m l y a b s o l u t e l y c o n t i n u o u s ;

c o n s e q u e n t l y , s o i s B(s), a n d dB(s) c a n b e r e p l a c e d by b(s) ds, w h e r e B'(s) =

b(s) a l m o s t e v e r y w h e r e . S i m i l a r l y dC( s) = c(s) ds and dΛ(y) - α(y) dy.

T h e n e c e s s i t y of ( 1 ) f o l l o w s by T h e o r e m 1. T o p r o v e t h a t of ( 2 ) w e w r i t e

b ( s ) = b x { s ) - b 2 ( s ) 9

where bι(s) and ό2 ( s ) are both nonnegative, say, for example,

b χ ( s ) - \ b ( s ) \ a n d b 2 ( s ) = \ b ( s ) \ - b ( s ) .

L e t

u(i){x, t) = - f* F ( Λ , ί; 0 , 5 ) bi(s) ds {i = 1, 2 ) .
Jo

Then

4 ° ( ^ O = Γ Gy{x,t,0fs) bi(s)ds (£ = 1 , 2 ) .
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We know from Theorem 2 that

lim u^\x9 t) = bi(t) (i = 1, 2),

almost everywhere, and, by Theorem 3,

lim Γu{ΐ\x>s)ds= Γ bi(s)ds ( ί = l , 2 ) .
%-*o+ Jo Jo

Since the uχ\x9 t) are nonnegative (see [4, Remark 1, p.975]), we can say

(see [4, p. 977])

(4.2) lim Γ |u ι '(x, S) - ^ ( s ) | ds = 0 ( £ = 1 , 2 ) .
X -* 0+ JO

Now consider

(4.3) f K U ί ) - l ( i ) | ώ < Γ I »<»>(*, s ) - bι(s)\ds
Jo Jo

+ Γ \ux

2)(x,s) - b2{s)\ds + Γ\ [l Fx{x, s y, 0) o ( y )
Jo Jo I Jo

dy ds

i: Gγ(l-χ9 s; 0, τ) c ( τ ) dτ
o I Jo

rfβ.

As x —> 0+, the first and second integrals on the right vanish by (4.2), and the

fourth since Gy( 1 — x, s; 0, T) tends to zero uniformly in 5 and T as x — * 0 + .

To estimate the third we note

Fχ{x>s; y' 0) = - ιv**'* l U " " y ) exp V ^ i r
Γ (x + y)2]\

+ (*+ y) exp f+ u(x, y, s ) ,
L 4 s JJ

where u = o( 1) uniformly in y and s as x —> 0+. Then

\Fx(x,s;y,0)\ < 1 \\x-y\ exp [- U "

f
+ (* + y) exp I

But
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e x p L £ 1 * . A Γ . - ,-t/a *, <
I 4 s J \a\ Ja2/Λt "

Hence

*t

/oJo

for x sufficiently small. Thus the third integral on the right side of (4.3) is

dominated by

[ l \ ° ( y ) \ Γ\Fχ(*> * ; y . o ) | ds dy < 2 fι \a(γ)\ dy.
Jo Jo Jo

Then by the dominated convergence theorem we can pass to the limit under the

integral sign, by which we get zero as a limit, since Fx(x9 s; y, 0) tends to

zero. This proves

lim
x

ft
im I I ux(x, s) - b(s) \ ds ,
••0+ Jo

from which condition (2) follows immediately.

Condition (3) follows similarly, but more easily.

5. Uniqueness. We now turn to the question of the extent to which the boun-

dary data uniquely determine the solution of the boundary-value problem. We get

one result as an immediately corollary of our Theorem 4.

COROLLARY 3. // u(x, t) is representable by (4.1) in R, and has zero

boundary values almost everywhere for approach along the normal, then u(x, t) =

0 in R.

Proof. By Theorem 2, a{y), b(s)9 and c(s) vanish almost everywhere.

The situation in the case of the Stieltjes representation is not so simple (see

[ 6 ] ) : We can have a function representable in R by (2.1) which has boundary

values identically zero for approach along the normal, yet which is itself not

identically zero; for example, for 0 < tQ9 let

u(x, t)
0 (0 < t < t0 ) ,

-F(x, t; 0, ί 0 ) (t0 < t).

This is a nontrivial solution of the heat equation, representable by (2.1), for

which
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u(x9 0 + ) = 0, ux(Q+9 t) = 0, ux{l - 0 , t) = 0.

However we can assert:

THEOREM 5. Suppose u(x, t) is representable in R by ( 2 . 1 ) , that

u(x9 0 + ) = 0 (0 <x < 1 ) ,

and that B(s) and C{s) are monotone for 0 < s < J < o c . Let

lim ux(x, t) = 0 as (#, ί) —» (ϋ, s )

along a parabolic arc of the form t - s ~ ax2, ( a > 0 ) and

lim ux (x, £) = 0 as (x, t) —» ( 1, s )

a l o n g a p a r a b o l i c a r c o f t h e f o r m t - s = b ( x - I ) 2 ( b > 0 ) f o r e v e r y s ( 0 < s < T ) .

T h e n u { x , t ) = 0 m /{

Proo/. Let Λ; be fixed, 0 < x < 1. Then, by ( 2.1) and (1.3),

u(x, t) = / ί ' (* , f; y, 0) cW(y) + o ( I ) as ί — » 0 + .

Choose 0 < 5 < ( 1/2) min (x, 1 - x)9 so that

u(x, t) = / ( 4 τ 7 θ ~ 1 / 2 exp L J . \dA(y) + o ( l ) ,

' ( 4 τ τ O " 1 / 2 exp - ϋ .

Γδ 2 2 Γ z 2 λ

/ — w o q/9 e x P
J-δ 4 ? 7 1 / 2 ί 3 / 2 L 4 ί J

z2λ A{x+ z)-A(x)

T h e n

4 U ) 4 U ) δ z2/ 4 U + z ) - 4 U ) Γδ
α (x9 t) > Inf /

- δ < 2 < § z J-h
exp I rfz + o ( 1),

L 4 ί J

4 (x + z) - A (x) Γ δ / 2 ί ι / 2 2
Inf /

-δ<z<δ z J~S/2tι/2 πι/2
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L e t t — » 0 + :

Λ(x+z)-A(x)
u(x,0 + )=0> I n f

Let 5—>0:

0 > DA(x).

Similarly,

0 < DA(x)

for every x ( 0 < * < 1) . Now Λ(x) is continuous, for if it had a jump it would

violate one or the other of these conditions. Then by [ 1 , p . 5 8 0 ] , it must be both

nonincreasing and nondecreasing, and hence constant.

Furthermore,

rt
ux(x, t) = I Gγ(x, t: 0 , s)dB{s) + o ( l ) a s (x, t)—> ( 0 , s ) .

J o

T h e n , b y [ 6 ] , B{s) i s c o n s t a n t . S i m i l a r l y o n e s e e s C(s) i s c o n s t a n t . T h i s c o m -

p l e t e s t h e p r o o f .
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ORTHOGONAL HARMONIC POLYNOMIALS

P. R. GARABEDIAN

1. Introduction. In this paper we develop sets of harmonic polynomials in

x, y$ z which are orthogonal over prolate and oblate spheroids. The orthogo-

nality is taken in several different norms, each of which leads to the discus-

sion of a partial differential equation by means of the kernel of the orthogonal

system corresponding to that norm. The principal point of interest is that the

orthogonality of the harmonic polynomials in question does not depend on the

shape of the spheroids, but only on their size. More precisely, the polynomials

depend only on the location of the foci of the ellipse generating the spheroid,

and not on its eccentricity.

The importance of constructing these polynomials stems from the role which

they play in the calculation of the kernel functions and Green's functions of

the Laplace and biharmonic equations in a spheroid. One can compute from the

kernels, in turn, the solution of the basic boundary-value problems for these

equations. As a particular case, one arrives at formulas for the solution of the

partial differential equation

dp2 P dp dz2

which arises in discussion of axially symmetric flow.

Results of the type presented here have occurred previously in the work of

Zaremba [10], and are related to recent developments of Friedrichs [3, 4] and

the author [5]. The polynomials investigated in this earlier work are in two

independent real variables and yield formulas for solving the Laplace and bi-

harmonic equations in two dimensions. Thus it is natural to suggest that the

basic results generalize to n-dimensional space. In this connection, it is

Received September 21, 1951. The author wishes to express his thanks to Professor
G. Szegδ, who has given the first proof of the orthogonality of the polynomials intro-
duced here, and who has shown a most friendly and encouraging interest in the ques-
tions related to them, for his collaboration in developing the results of this paper.

Pacific J. Math. 3 (1953), 585-603

585



586 P. R. GARABEDIAN

easily verified that a part of the theory carries over to arbitrary ellipsoids in

three-dimensional space.

2. Notation and definitions. We shall make use of rectangular coordinates

x, γ, z9 cylindrical coordinates p, φ, z, and spherical coordinates r, θ, φ.

Thus

x = p cos φ = r sin θ cos φ,

y = p sin φ = r sin (9 sin <£,

2 = r cos ^.

The Laplace integral formula

P Λ ( c o s θ) = ( " + A ) ! f77 {cos θ + i sin 0 cos I ) Λ cos ht dt

for the Legendre polynomials P^(cos θ) - P® (cos θ) and the associated

Legendre functions PR (cos ^) is basic for our work. In terms of Laplace's

integral we obtain the solid spherical harmonics in the form

rn Ph(cos θ) cos hφ = / (z + ip cos t)n cos hφ cos ht dt,
πihn\ JQ

rnPh(cos θ) sin hφ = - ^ — '- / (z + ip cos t)n sin ^ cos ht dt.
πihn\ Jo

They are homogeneous harmonic polynomials of degree n in x$ y9 z.

We shall be interested in obtaining complete orthogonal systems of har-

monic polynomials in the interior of the prolate spheroid

c h 2 α s h 2 α

and in the interior of the oblate spheroid

z2 p2

(2) + — - = 1.
sh2 α ch 2 α

Thus it is convenient to introduce coordinates u, v defined by the relations
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z + ip = cos ( ι t - ΐ ι ) a cos u ch v + i s in w sh i;

for the prolate case, and defined by

p + i z = sin (u + i v) = sin u ch v + i cos u sh v

for the oblate case. In both cases, the boundaries of the above spheroids have

the equation v - (X.

We define

\(n + h)\]ί/2 1 fπ
Vn,h(p, z)=\ , ΓTT r / Pn(z + *P c<>s O cos Aί dt,

L(Λ - A ) ! J π ih Jo

r / Λ [ ( ^ + A ) ! 1 1 / 2 i ^ fπ t

Vn,h\Pf z ) = : Γ T 7 / Pn\i z - p cos t) cos ht dt.
l(n-h)\l π Jo

By the addition theorem for the Legendre polynomials we obtain the well-

known expressions

U - A ) M ι / 2

Π7

where in the first case u9 v are coordinates in the prolate spheroid ( 1 ) and in

the second case u$ v are coordinates in the oblate spheroid ( 2 )

Here

P f ( c h t ) = shhvPJ;h) (chv),

υ) = chhv

The expressions

Un,h(p, z) cos hφ, Un9h(p, z) sin hφ,

Vnfh(p> z) cos hφ, VΛfh(Pf z) sin hφ

are harmonic polynomials in x9 y> z of degree n.
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We shall be concerned here with the new polynomials

Xn,h = —
dz

πih Jo

and

d
Ynth = — ^n + l, h

dz

Γ U + i + Λ ) ! l ι / 2 in'h r-rr
= - —r\ I Λz'+iίi z -p cos ί ) cos ht dt.

l ( π + l - λ ) I J π Jo

The functions

Xn,h(p> z) cos hφ, Xn,h(p, *) s i n hΦ >

Yn,h(p>z) cos hφ, Yn,h(p>z) sin hφ

are linear combinations of the classical spherical harmonics. The functions

Xn,o and Yn9θ involve only zonal harmonics and satisfy the partial differential

equation

d2f 1 df d2f
+ - — + = 0

dp2 P dp dz2

of axially symmetric flow.

Let us denote by D either the prolate or the oblate spheroid described

above, and let us denote the Dirichlet integral over D by

ίίί ldf dg df dg df

ψ \-X-X

+ Ty-y + -z

ϊldσ, ( Δ g = 0 ) ,

where S is the surface of D, and where v and dσ denote outer normal and area
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elements on S. Since z + ip = cos (u — i v) and p + iz = sin (u + ί t;) are

isogonal mappings, we obtain, on the spheroid S,

d d
dσ — = p dφ du .

dv dv

Hence

i f v f> C Ή C2.TT θ ε
(3) (/, g) = // / -r- pdφdu=\ I f-lpdφdu.

V dv Jo Jo dv

3. Orthogonality. If h £ k, we have by the orthogonality of ordinary Fourier

series

(Unfh cos hφ, Um9k cos kφ) = 0,

(Un9h sin hφ, Vm§k sin kφ) = 0,

(Un9h cos Aψ, J7m>^ sin kφ) = 0,

(ί/π>Λ cos A<£, ί/m>Λ sin A<̂ ) = 0,

and similarly for Vn9h For A = k we obtain in the prolate spheroid

/

77 pTΓ dVmth
/ #n,Λ —r (cos2hφ)p dφ du

Jo dv

7 T T T P π

* / Pn^C03 u) Pm^cos u) s i n u d u

Jo

P
2n + l

where δ π m = 0 for n 7̂  ^ and δ n π = 1.

Similarly
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(Un9h sin hφ9 Umth sin )

2π h

2n+l n

For the oblate spheroid we have in like manner

(K,h cos hφ, Vm9h cos hφ)

αPm

Λ(ί shα)]

s h α ) [*" c h α P m l {i s h

Also

( ^n,Λ sin hφ , Fm>Λ sin hφ )

= — - ( - D ^ P f d s h α ) Γ * c h α P Λ + ι ( i s h α ) 4 - A s h α P Λ ( j s h α ) l 8nm.
2 ^ + 1 L n n Λ

We have therefore proved:

THEOREM l The harmonic polynomials ί/̂ /j cos hφ, Unfh sin hφ form a

complete orthogonal system for the interior of the prolate spheroid (1) in the

sense of the Dirichlet integral. The harmonic polynomials FΛ>/j cos hφ9 VUfh

sin hφ form a similar system inside the oblate spheroid (2) . The polynomials

Un,o anά Vn,o alone form9 respectively, complete orthogonal systems for the

equation of axially symmetric flow inside the spheroids (1) and (2) .

We turn next to a less obvious result for the polynomials Xn>h
 a n d YΛ>Λ

Let

f g dx dy dz .
D
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Then clearly, if h £ k9

[Xn,h
 c o s hφ> Xm,k cos kφ] = 0,

ίXn,h sin hφ, Xmfk sin kφy= 0,

[Xnth cos hφ, Xmtk sin Λφ] = 0,

[Xnfh cos λ<£, Xm9h sin λ<£] = 0,

and similarly for Ynth Now

d du d dv d

dz dz du dz dv

w h e n z + i p = c o s ( u — i t>). A l s o

d u dt> i ( u - i ι ) c ί ( 2 - i p ) c ? ( u + i ι ; ) c ί (

(9z 5 z ( / ( z + i p ) d { u + i v ) d ( z — i p ) d ( z + i p )

d ( u , v )

s l n

Therefore

cos

flit LAd»*uh . . U.A
- /1 / / cos Λ0 l sin u ch v - cos ushi;

**y du dv

• — pdφdpdz
σ(z, p)

I — — — — I I I I ] cos hφ sin u sh v

L ( / ι + l + A ) ! J Jo Jo Jo J Ψ

( c h v ) Pπ + il ( c o s u ) s i n u c h v

+ Pn+i ( c o s u)P^l(chv)cos ush v]dφdudv.

The last integral vanishes when / is a harmonic polynomial of the form
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P^icos u) P^(chv) cos hφ

with m < n, since

P x, (cos u ) sin u P (cos u ) sin u du = 0,

ίπ h h
/ P . (cos w) cos M P (cos u) sin a

Jo

Hence for n Φ m

[Xn,h cos /*<£, ̂ m>/j cos Λ 6̂] = 0,

and similarly

[XUfh sin A^, iYm>Λ
 s i n hφ] = 0.

For m — n, we have

cos /*<£ = (2n + 1) ί/ΠfΛ cos
L I h J

=
L n + I — h J

where the dots indicate harmonic polynomials of lower degree, which are

orthogonal to Xn,h
 c o s hφ Thus

[^7i,h cos hφ, Xnth cos hφ ]

( τ i — A ) ! Z α / 77- Λ27Γ _ L L

1) — / / / cos2 A^sinusht;Pn

Λ(cosα)P*(chi;)

{n + h)l Jo Jo Jo n

* [ P ^ + i l ( c o s u ) Pn + l ( c h r ) s i n w c h v

+ P «+i ( c o s w ) Pn+ι(<chv) c o s " s h f l ^ ώ rfv

n + ί(ch v) s\ι v ch t; s in w C/M dv
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(n- h + 1) ! Z α fπ

"> tek")

v) sh 2 vs inu

— — U + l + λ) fa Ph(c\ιv) shi ;
2rc + 3 Jo n

. [ U + 2 + A) P n \ t (ch «) ch v + P**/ (ch v) sh v] dv.n + l

The same value is obtained if we replace cos hφ by sin hφ throughout, h > 0.

For the oblate spheroids, we have, on the other hand,

d du d dv d

dz dz du dz dv

w i t h p + i z - s i n ( u + i v ) . H e n c e

du dv d{u - i v ) dip + i z ) diu + i v ) diu — i v )

dz dz diz + i p) diu + iv) dip + i z ) diz + i p)

diu9 v )

, z)
(u + i v)

Therefore

[Ynh cos hφ, f]

-ill f cos hφ
du

— sm u s h t ; cos u ch v
dv

d(u,v)

d(p,z)
pdφ dp dz

•n+i-Λ ' Γa pπ f2ττ

Jo Jo Jo
cos λ<£ sin α ch v

i sh t;) P Λ

Λ

+ \ ι (cos α ) sin w s h t ;
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+ * P * + i ( c 0 S u)P^(i8hv)co8 u ch v]dφ dudu.

This integral vanishes when / is a harmonic polynomial

P^(cos u) P^iish υ) cos hφ

of degree m < n, since

/ P^+

+ ι(cos u) sin u P^icos u) sin u du = 0,
Jo

/ P^+ (cos w) cos w P (cos u) sin w du = 0.
Jo

Hence, for n ^ m,

[Yn>h cos hφ, Ym>h cos hφ] = O,

and also

ίYn,h s i n A^» ym,Λ sin λ<£] = 0.

For m — n, we note that

/= yn>Λ cos A<̂  = - [ ^ | ^ ] (2n + 1) F M cos hφ + . . . ,

where the dots represent harmonic polynomials of lower degree, which are

orthogonal to Yn ^ cos hφ. Therefore

[ y , cos hφ, Yn h cos hφ]
TL y ΓL Th j fit

( B ~ * ) 1 ΓΓ [2\os>hφ sin uchv
(n + h)\ Jo Jo Jo

P ^ ( c o s u ) P ^ ( i s h v ) . [ P ^ + ι ( i s h t ; ) P / f +

+

1

l ( c o s M ) s i n M s h t;

i Pn +. ( c o s u) P + j 1 ( i s h v) c o s α c h v ] G?<£ cfo c?v
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/ PHi shv)chv
Jo n2n + 3

. [{n + 2 + h)P^ι(i s h t ; ) s h v + i P^{{i shv) c h v] dv.

We obtain the same value if cos hφ is replaced by sin hφ.

This completes the proof of:

THEOREM 2. The harmonic polynomials Xn>h cos hφ, XUfh sin hφ form a

complete orthogonal system for the interior of the prolate spheroid (1) in the

sense of the scalar product

[/, g]= JJJ fgdxdydz.
D

The corresponding system in the oblate spheroid (2) is

Y , cos hφ, Yn L sin hφ

JAe zonal polynomials Xnf0 and Ynf0 are complete and orthogonal for the equa-

tion of axially symmetric flow in their respective domains ( 1 ) and ( 2 ) .

Friedrichs [4] has investigated the eigenvalue problem

r , , ", ίf(n(df/dz)2dxdγdz
i]Z9 Jz J D

= maximum
1 + (df/dz)2\dx dydz

for harmonic functions / in quite general regions D of space. It is clear from

Theorem 1 and Theorem 2 that we have:

THEOREM 3. The ei gen functions for the problem

= maximum, Δ/ = 0,

in the prolate spheroid (1) are

U , cos hφ, U , sin hφ,

and in the oblate spheroid (2) they are
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Vn,h c o s hΦ> Vn,h s i n hΦ

The corresponding eigenvalues are

{n + l + h)
P*+,(ch v) ch v+P^ (ch v)sh v]dv

P*+ 1 (ch α) [sh α P**/ (ch α) + A ch α P*+ 1 (ch α)]

/or ίAe prolate spheroids and (n+l + h)Qf where Q is the expression

i / α P Λ ( ίi / o

α P n

Λ ( ί sh v) ch υ[(n + 2 + A) P * + , (» sh w) sh v + i PΠ

Λ

+

+/ ( i sh v ) ch υ]rfυ

Pf+1 (ί sh α) [i ch α PJ!ϊ}ti sh α) + h sh α PΛ

Λ

+1 (i sh α)]

/or ίΛe oblate spheroids.

Friedrichs was led to this extremal problem through his investigation of

Korn's inequality and existence theorems for the partial differential equations

of elasticity. We shall show in the following how the eigenfunctions can be

used to solve the biharmonic equation.

One sees easily from Theorem 3 that

Un,h c o s hΦ> Un,h s i n hΦ

and

Vn9h
 C O S hΦ> Vn,h S i n hΦ

are a lso orthogonal in the norm

However, we do not go into details since this norm leads to no apparent ap-

plication.

One can obtain quite interesting results, on the other hand, by using the

orthogonality of the XΠfh
 a n ( l t n e In,A o v e r the interior of the ellipses (1) and
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(2) for all values of (X to obtain a corresponding orthogonality of the same

polynomials over the surface of the spheroids with respect to a suitable weight

function. Indeed, we have

d
—
ad

cos hφ, Xm,k cos kφ]

d Γ<x u
/ P*(chv)βht;

da Jo n

whence

su,,.cos

A)P π

A

+ 1 (chi;)cht; + P*++ι (ch v) sh v] dv,

c o s k φ ] \ l - ( z + i p ) 2 \ ι / 2 dσ

P n

Λ (chα)shα

[(n + 2 + h) P* + ι (ch α) ch α + P^l (ch α) sh α] 8hk 8nm.

Likewise, by the same reasoning,

C O S Ymfk
 C O S

ί . ( _ 1 ) n - Λ + i p Λ ( ί s h α ) c h α

. [(n + 2 + A) PΛ

Λ

+ι (i sh α)sh α + £ P ^ 1 (i sh α) ch α] 8hk δnm,

with exactly the same formulas in both cases if cos hφ is replaced by sin hφ.

This calculation yields:

THEOREM 4. The polynomials Xn ^ cos hφ, Xn ^ sin hφ are complete and

orthogonal over the surface of the spheroid (1) in the, sense of the scalar pro-

duct
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\US\- JJ f g \ l - ( z + i p ) 2 \ ι / 2 d σ

with weight function \l ~ {z + ip)\ι/2 equal to the square root of the product

of the distances from ( p , φ9 z) to the points (0 , 0, 1) and ( 0 , 0 , - 1 ) . The

harmonic polynomials YR ̂  cos hφ, Yn ^ sin hφ are complete and orthogonal

over the surface of the oblate spheroid ( 2 ) in the sense of the scalar product

There exist quite clearly further orthogonality properties of the polynomials

Un ^ and VR h which do not depend on the shape of the spheroids (1) and (2) .

However, we make no pretense here at tabulating all possible orthogonal har-

monic polynomials of this type (cf. [ 8 ] ) , but proceed rather to apply the re-

sults already obtained to the Laplace and biharmonic equations.

4. The kernels. The Green's function G(P, Q) for the Laplace equation

in a region D is a harmonic function of the coordinates x9 γ9 z of the point

P in Z), except at Q, where

G(P, Q) - + harmonic terms,

and it vanishes for P on the surface S of D. Here r{P9 Q) denotes the distance

from P to Q. The Neumann's function N(P9 Q) has a similar fundamental singu-

larity,

N (P9 Q) + harmonic terms ,
Γ \* 9 V )

while its normal derivative is constant on S and

N(P9Q)dσ(P) = 0.
s

The harmonic kernel function K(P9 Q) is defined by the formula [ 2 ]

K(P, ρ ) = — ! Λ ' ( P , Q)-G(P, Q)}.
4,π
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K fn(P) * s a complete orthonormal system of harmonic functions in D in the

sense

with

s

then one has the Bergman expansion

oo

K{P,Q)- Σ fn(P)fn(Q).

On the other hand, if gn(P) is a complete orthonormal system of harmonic

functions in D in the sense of the scalar product

/,g!= JJ fgωdσ
S
JJ

S

corresponding to an arbitrary positive weight function ω on S, then the kernel
oo

H{P,Q)= Σ SniP)gn(Q)

is given by [ 7 ]

1 ff 1 dG(T,P) dG(T,Q)

(4τ7)2 Y ω(7") dv(T) du{T)

For P on S we have

The Green's function Γ ( P , (^) of the biharmonic equation

Δ Δ F = 0

is a biharmonic function of the coordinates of P9 except at Q9 where
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Γ(P, Q) = - r{P, Q) + biharmonic terms,

and for P on S it satisfies

If hn(P) is a complete orthonormal system of harmonic functions in the sense

[hn, hm] = δnm,

then the kernel function

k(P,Q)= Σ hniP)hn(Q)
n = l

is given by the identity [5, 10]

k(P,Q) = Δ(P)Δ(ρ)Γ(P, <?).
8ττ

The relation here between the harmonic functions hn and the biharmonic kernel

function A: is a consequence of the nature of the energy integral

(ΔF)2 dxdydz
D

for the biharmonic equation.

We discuss here the expansion of the kernels Kf H9 and k in terms of the

orthogonal polynomials of § 3 for the case where D is a prolate or oblate

spheroid. One obtains easily from Theorems 1, 2, and 4, together with the

computation of the related normalization constants, the following results:

THEOREM 5. In the prolate spheroid ( 1 ) we have

K{p, z9 φ; p ' , z% φ')

^ (2n + l)Un§h(p,z)Un9h(p',z')c<»hiφ-φ')

) f [ f + ι Λ ) ]
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where C is a constant chosen to agree with the normalization of Neumann9s

function. In the oblate spheroid (2),

K(ρ ,z, φ; p', z', φ')
~ A ~ 2,(1 + δoΛ)

Vn>h^,z)Vnth(p',z') cos

where again C is a suitable constant.

THEOREM 6. In the prolate spheroid (1) ,

, / ^ / / \ V * v * (2n + 3)

fo
α Pn

Λ(ch υ)sh t;

/n ίAe oblate spheroid (2),

/ o

α P n

Λ ( i sh v) ch t>t(i» + 2 + A) P * + ι (i sh v) sh v + iP^+V (* sh υ)ch v]cfo*

THEOREM 7. /n the prolate spheroid (1) ,

oo n i n , q \

H(p, z, φ; p\ z\ φ') = T Σ\
έ j j f c 2n(l + δoh){n+l + h)

Xn>h{p,z)Xn>h{p',z') cos h(φ-φ')

P n

Λ (ch α ) sh α [{n + 2 + A)P n

A

+ 1 (ch α ) c h α + pj£ (ch α ) sh α ]P n + 1

when ω = 11 — (z + ip)2 \ 1 / 2 // ω = 11 — (p + iz ) 2 | ι / 2 , we Aαι>e, /br

oblate spheroid (2) ,
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H{p,z,φ;p',z',φ')=
n-0

Yn,h(p> z)Yn>h(p',z') cos hiψ-φ')

Λ)P* + ι (i sh α)sh α + t P * ^ 1 (ί sh α)ch α]

Theorem 7 is of interest because it yields, say for (1), the relation

4*

- φ')

when the point p, z, <̂  lies on S. This formula can be compared with the cor-

responding, more classical, formula which follows from Theorem 5.

Theorem 6 permits one to calculate the biharmonic Green's function for

prolate or oblate spheroids, and thus in turn to solve the biharmonic boundary-

value problem in this case. Indeed, we have (cf [ 5 ] )

o) J- iff dσ{T) -— ίίί fff^./OaMn^*)
> V 2π nJ r(T, P)r{T, Q) 2π ψ ψ r(T,P)r(R,Q) '

It is significant to note in this connection that all our results can be extended

to the case of the region outside a spheroid. One has merely to replace for this

purpose the Legendre functions P^ by the Legendre functions Q^ of second

kind [6]. Thus UUfh should be replaced, for example, by

I Qn ( z + i P cos t) cos ht dt,
Jo

and V i should be replaced by

I Qn(i z -^p cos t) cos ht dt.
Jo

Finally, by combining both kinds of functions, one can obtain orthonormal

systems in the region between two confocal spheroids. Thus one might develop
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elaborate formulas for the solution of the biharmonic equation in such shell
regions using the basic method of this paper.
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DISTRIBUTION OF ROUND-OFF ERRORS
FOR RUNNING AVERAGES

R. E. GREENWOOD AND A. M. GLEASON

1. Statement of the problem. Let G p G 2, ••• be scores (positive integers)

obtained in a sequence of plays in a certain game. For purposes of handicapping

matches it is desired to use running averages, and on the hypothesis that the

score of the last play is more significant than any prior score, the following for-

mula is used for computing the running averages {Sn \:

(1.1) S
n + 1

where k is a positive integer. Certain modifications in (1.1) may be necessary

when n <k.

The running averages defined by (1.1) are not necessarily integers. It is

therefore convenient to define a rounded running average (which will be integral)

by the relation

(k-l)Tn + Gn+1 + D
(1.2) Γ n + ι =

k

It is convenient to use three set of values for D in the foregoing relation.

fc + 1 -&+ 3 & - 1 1
Case A. For k odd, D = A e ] , . . . f.

I 2 2 2 J

f-A -k k\
Case B. Fork even, D = B e\ + 1, + 2, ••• , — I.

1 2 2 2 J

f-& - * k]
, D = C β\ , + 1, , —- f.

1 2 2 2 J

Case C For k even

For each n > k define the error En by the relation
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Pacific J. Math. 3 (1953), 605-611
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(1.3) En = Tn - S π .

(For n < ky the error would depend on the modifications made in relation (1.1).)

For n>_ k, then,

{k-l)En + D
(1-4) En + ί = Γ Λ + ι - Sn + ί =

k

For Case A, if at some stage \En\ < ( k - l ) / 2 , then

, x , Γ . ( A - l ) ( A - D / 2 + (Λ
( 1 . 5 ) l^/ i+i l < :

k

For cases B and C, if at some stage \En\ < k/2, then by a similar procedure

one obtains

(1.6) | £ π + 1 | < A/2.

Thus the errors introduced by the rounding off process are bounded if | Ei | <

(k — l)/2 or A /2 for the odd and even values of k respectively.

It is assumed that the scores { G;} are such that equal probability values are

realistic. In case C, where there will sometimes be a choice for round-off, one

might choose to round-off to the even integer. Thus, one would sometimes add

k/2 and sometimes subtract k/2, corresponding to the two end-values with proba-

bilities l/(2&), while the intermediate values would have probabilities l/k. It

is desired to find a limiting distribution for the error En; in this paper such

limiting distributions are found for a few special cases.

Allowing one's intuition free rein, one sees that limiting distributions for the

error En exist in all three cases. If such distributions exist, then relation (1.4)

may be used to determine means and variances, if any. Thus

(1.7)

(1.8) k2 Var ( £ n + 1 ) = (k- I ) 2 Var (En) + Var(D).

It is easy to verify that

μ U ) = 0 , Var {A) = (& 2 -l)/12,

μ(B) = 1/2, Var (B) = (k2-l)/12,

μ(C) = 0, Var (C) = (k2+2)/l2.

Then for the limiting distributions EΛ, EB, Ec for the three cases one gets
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μ(EΛ) = 0, Vβr(EA)

μ(£B) = 1/2, V a r ( £ β ) = ( * 2 - l ) / 1 2 ( 2 * - l ) ,

0, V a r ( £ c ) =

(1.10)

2. Distribution of the round-off error for k = 2, Case B. For the special value

A; = 2 and for Case B, one may take Eί = 0. Let Fn(x) be the cumulative distri-

bution for En, and let { fa n\ be the jumps in Fn(x) at the points of discontinuity.

One readily obtains the functions

(2.1)
FΛx)

0, x < 0,

1/2, 0 < x < 1/2

.1, 1/2 < x.

{fit3\ = ί 1/2 at 0, 1/2 at 1/21.

0, x < 0,

(2.2)
FΛx) (/= 1,2,3),

1, 3/4 < x.

ί/i,3* = ί 1/4 at 0, 1/4 at 1/4, 1/4 at 1/2, 1/4 at 3/4}.

By induction one gets

0, x < 0

F->.(x) = .
(2.3)

\n < x < j/2n (/= 1, . . , 2n

1, ( 2 π - l ) / 2 7 1 < x.

ί fi,n+1! = I jumps of 1/2" at points j/2n, / = 0, 1, , 2n - 1}.

In this simple example, heuristic considerations suggest that there is a limit-

ing cumulative distribution function

(2.4) Fix) =

0, x < 0,

%, 0 < x < 1,

1, 1 < x,

and its associated distribution function

(2.5) f(χ)
1, 0 < x < 1,

0 elsewhere.
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In order to deal with continuous functions insofar as possible, it is conven-

ient to take Fourier transforms of the jumps { h^n }. The finite Fourier transform

may be defined by relations

(2.6) φn(u) = [°° eiut d Fn(t)

= £ . fj.n e xP
all;

Thus we get

(2.7) Φ2(u) = 1/2+ (1/2) exp(iα/2)

1 sin(a/2)
= exp (iu/4<) cos (u/4) = — exp (iu/4>) —

2 sir

(2.8) Φn+i^11' = ~ 2-, ey

1 1 - exp ( iu)

¥ 1-exp (ΪV2 Λ

1 sin(u/2)
exp \ιu

The sequence of transforms { φ } has a limit φ( u),

sin u/2
(2.9) φ(u) = exp(m/2).

u/2

In order to transform back, it is convenient to use another definition of the

Fourier transform,

(2.10) φ(u) = f °° eiut f{t) dt.
J-oo

Then, whenever f(x) is of class L (~oo, oc) and of bounded variation in the

neighborhood of t [ 1, p. 83, Theorem 58] ,

(2.11) — [/(ί + 0) + / ( ί - 0 ) ] = lim — / e~iut φ(u) du.
2 λ-»oo 2π J~λ

Direct computation of the inverse transform (using 2.11) of φ(u) as defined
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by (2.9) might be troublesome. However, the Fourier transform (2.10) of the

supposed limiting distribution function of (2.5)

/(*) =
1, 0 < x < 1,

0 elsewhere

is just the limiting function φ(u) as given by (2.9). Since f(x) is of class

L 2 (-oo, oc) and is of bounded variation, the theorem quoted above enables one

to identify (2.5) as the limiting distribution function of the error for Case B,

except for the values /(0) and /(I) where /should be chosen as 1/2.

The use of the Fourier transform φn(u)> (as defined by (2.6)),is equivalent

to the use of the characteristic functions of the jump distributions \fjfn\. With

this interpretation, it is possible to use Lέvy's theorem [2, p. 101-102] to the

effect that convergence of φn(u) to φ(u) implies the convergence of Fn(x) to

the limiting form F(x) given by (2.4) and that φ(u) is the characteristic func-

tion of the cumulative distribution function F(x).

The mean and variance of f(x) as given by (2.5) (with or without modifica-

tions at 0 and 1) are 1/2 and 1/12 respectively, and thus agree with the values

called for by relations (1.10).

3. Distribution of round-off errors for k = 2 , Case C. Case C has symmetry

noticeably lacking in Case B. For convenience, take Ex s 0 as before. Let

Gn{x) and { g. \ be the cumulative and point-wise distribution functions. For

this case

(3.1)
GΛx)

0, * < - l / 2 ,

1/4, -1/2 < x < 0,

3/4, 0 < x < 1/2,

1, 1/2 <x,

{ g ! = { 1/4 at -1/2, 1/2 at 0, 1/4 at 1/21.

Designate the finite Fourier transform (2.6) by ψ2{u). Then

(3.2) φ2(u) = (1/4) exp (-ίn/2) + 1/2 + (1/4) exp (iu/2)

= (1/4) [exp (ΰi/4) + exp (-iu/4)] 2 = cos2 («/4).

This may be written in the form

(3.3) ψ (u) = (1/4) [x + 1/x]2 where x = exp (iu/4).
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Notice that to get { gy>3 } from { g/>2 ! and the set { C\, I C I = ί - 1 , 0, 1! with

probabilities {1/4, 1/2, 1/4} respectively, one merely takes 1/4 of the set

{ gj$2 \ on a smaller range at one end of the new range, 1/2 of the set } gjf2 } on a

smaller range at the middle, and 1/4 of the set { gj>2 \
 o n a smaller range at the

other end of the new range. In effect, one goes from ψ2(u) to φ3{u) by replacing

x by x2

9 multiplying by

[(1/4)* 2 + 1/2 + l/(4* 2 ) ] = ( l / 4 ) [ * + l / % ] 2 .

and then identifying x = exp (iu/&).

By this rule, one gets

(3.4) <A3U) = ( 1 / 4 ) 2 U + 1 / * ) 2 U 2 + 1 Λ 2 ) 2 = cos 2 (ι ./4)cos 2 (u/8).

Proceeding by induction, one gets

(3.5) Ψn+Λu) = cos2(α/4) cos2(w/8) ••• cos2( u/2n+ι).

The sequence of transforms \φn(u)\ has a limit,

sin2(u/2)
(3.6) φ(u) = lim φn(u) =

(u/2) 2

by use of a well-known infinite product.

Direct computation of the inverse transform of (3.6) may be troublesome.

However, it may be verified quite readily that if

(3.7)

1 + x, - 1 < x < 0,

1 -%, 0 < x < 1,

0, elsewhere,

the Fourier transform of g(x) is just φ(u) of (3.6). Then, by use of (2.11), it

follows that g{x) as defined above may be taken as the pointwise distribution

function for the limiting distribution EQ,

Direct computations show that

μ(Ec) = 0, V a r ( £ c ) = 1/6,

which values are in agreement with relations (1.10).

4. Conclusion. For higher values of k, the limits of the Fourier transforms

may be difficult to obtain.
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A somewhat more general problem would be to take

(k-m) Sn + mGn+ι

instead of (1.1), where k and m are both positive integers. In effect, however,

this merely allows the k in ( 1.1) to be a positive rational number instead of a

positive integer.

An equivalent statement of the problem would be to consider the distribution

of M (d), where

1
(4.2) M(d) = -

k
k . Λ \ k I

i = 0

and where { d^ \ is selected from the set D according to the value of k and the

end-point choice. For the expansion of M(d) is

(4.3) M(d) = ( \/k) \ d0 + (k — 1 )/k \ dχ + { k - 1 )/k { d2 + ! Π ,

and this is just the scoring used in ( 1.4) but with reversed numerical ordering.

Thus for k = 2 and Case B, M is uniformly distributed on (0, 1), while for Case

C, M has a house-top distribution on ( - 1 , 1).
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THE SPACE HP, 0 < P < 1, IS NOT NORM ABLE

ARTHUR E. LIVINGSTON

1. Introduction. For p > 0, the space HP is defined to be the class of

functions x(z) of the complex variable z, which are analytic in the interior of

the unit circle, and satisfy

Set

Γ27T . a

sup / \x(retθ)\P dθ < oo.
o<r< i Jo

A ( r ;* ) = ( — ί2π \x(reiθ)\P dθ)ι/P
\2πJo I

and

\x\\ β s u p Ap(r; x ) .
0<r<l

S. S. Walters has shown [ 2 ] that HP, 0 < p < 1, is a linear topological space

under the topology: U C HP is open if x 0 £ U implies the existence of a

"sphere" S: H * - * o l l < r such that S C £/. He conjectured in [ 3 ] that HP,

0 < p < 1, does not have an equivalent normed topology, and it is shown here

that this conjecture is correct. Since the conjugate space (HP)* has sufficiently

many members to distinguish elements of HP, the space HP, 0 < p < 1, affords

an interesting nontrivial example of a locally bounded linear topological space

which is not locally convex.

2. Proof. For x € Hp
9 p > 0, it is known [4, 160] that Ap(r; x) is a non-

decreasing function of r. Consequently, if P (z ) is a polynomial, then P £ HP

and || P || = Ap(l; P) . This observation will be used below.

According to a theorem of Kolmogoroff [ 1 ] , a linear topological space has

an equivalent normed topology if and only if the space contains a bounded open

convex set. It will be shown here that the "sphere" Kx: \\x\\ < 1 of HP,
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0 < p < 1, contains no convex neighborhood of the origin; this is clearly suf-

ficient to show that H?, 0 < p < 1, contains no bounded open convex set, and

hence is not normable.

To accomplish this, the contrary is assumed. Thus, it is assumed that

Kγ contains a convex neighborhood V of the origin. Since V is open, V contains

a " s p h e r e " Ke: \\x\\ < e. There will be exhibited xit , Xjγ £ K€ , and

α t > 0, , a ft > 0, with Σα^, = 1, such that Σ α ^ ^ (. Kt and, a fortiori,

Σta^x^ fc V, in contradiction to the assumed convexity of V*

If x(Θ) is a complex function of the real variable θ £ /: 0 < S < 2π9 define

A(x)-l±-f2π\x{θ)\Pdθ)l/p.
\2πJo ' /

Once and for all, k is any integer in the range 1, , N Let 1^ denote the

interval

2kπ
< θ << θ < ,

yv N

and let i^ denote the degenerate interval consisting of the point (2π/N) (λ —

1/2). Define the continuous function cjc(θ) to be zero on l — l^, to be equal to

eNι/p on i^j and to be linear on each of the two intervals in 1^ - i^ Let

a -R k~ι/Pak - ΰNk >

so that a^ > 0 and Σα^ = 1. It is easily verified that

A(ck)= e ( P + 1T1/P <

and

Σ, *M Γ / p

Since BN is bounded away from zero below, N can be chosen such that

A(Σ,ak ck) > 1.

Each Cfciθ) is absolutely continuous on /. Given 0C > 0, it follows that
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there is a trigonometrical polynomial

mk

such that

\Tk(θ) - ck(θ)\ < α

uniformly in θ Setting

pk(θ)- eimkθTk(θ)

gives

uniformly in θ Set

\Pkiθ) - eimkθ ck{θ)\ < α

Ck(θ)- eίmkθck(θ).

It is clear that A (Ck ) = A (c^ ) and ^(Σα^. Ĉ  ) = /lίΣα^c^). Since ^4(Λ;)

is a continuous function of x, it follows, if OC is small enough, that A (pk ) < e

and A (Σα^ pk) > I.

Let

n = -mk

so that -P^(β* ) β Pβ(0). As previously remarked,

and

\\Σ°kPk\\ = A

P<<l>Σak Pk) = A(Σak pk).

Since Pi, ••• , PN G X€ C F C Kt C ffP, α t > 0, , aN > 0, Σ α ^ = 1, and

Σ,ak Pk fc Klfvfe have obtained the required contradiction.
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ON THE ORDER OF THE RECIPROCAL SET OF A BASIC
SET OF POLYNOMIALS

M. N. MIKHAIL

1. Introduction. For the general terminology used in this paper the reader

is referred to J. M. Whittaker [2], [3]. Let

be a basic set, and let

z "= Σπni pΛz).
~ nι

The order ω and type γ of \pn(z)\ are defined as follows. Let Mi{R) be the

maximum modulus of p^(z) in \ z\ < /?. Let

(1) ω»(R)-Σ,\πni\Mt{R),
i

(2) ω(/?) = lim sup
n-*oo n log n

(3) ω= lim ω(R);
R-+OQ

and, for 0 < ω < oo f let

(4) y ( Λ ) « l imsup{ω n (Λ)} ι / ( 7 l ά ) ) e/(nω),

(5) γ= lim γ(R).

If

/>„(*)- Σ l Γ . Z\

Received July 2, 1952
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then \Pn{z)\ is called the reciprocal set of \pn(z)\. We shall establish for

certain basic sets new formulas expressing upper bounds of the order of the

reciprocal set in terms of the data of the original set.

2. Theorem. The following theorem holds only if an infinity of πnn £ 0; then

the whole proof should be carried out for those values of n for which πnn ^ O

This is a genuine restriction since there are basic sets such that πnn = 0 for

all n; for example, for h = 0, 1, 2, , let

p U
3 Λ

„ (7\ _ , 3 h _ _ , 3 Λ + 1 j . _ , 3 Λ + 2

NOTATION. For a fixed n, let pnh' be the set of all nonzero elements

and let

h

THEOREM 1. Let \ Pn(z ) \ be a basic set of polynomials, such that

lim sup = a (a > 1) ,
n—»oo n

and of increase less than order ω and type y, and suppose that

K = lim inf
n-*oo n log /i

α/icί

log \Pn'\
k = lim inf

Λ_»oo ri log n

Then its reciprocal set is of order Ω, where

i ) if k > ω, ίλe i Ω <; co — K
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i i ) if k < ω, then Ω < 2 ω - K — k.

Proof. Let γχ > γ; then in view of ( 4 ) we have

( 6 ) ω n ( Λ ) <
\ e /

for values of n > n0 and for sufficiently large values of R > Ro > 1. From ( 1 ) ,

we have

K J Mn(R)< ωn(R).

Then

kπnl |pnι-l R* < ω,

that is

ωn(R)
\Pni\ <

Also

then

(8) \*:Λ < ~
ω,(R)

min*\Pih'\ IP. '1

From the definition of a reciprocal set, and in view of (1), we get

ΩΛ(Λ) < Σ IP l Σ |ιr..| Ri < JL— RUn T Σ

by (7); that is, by (8),

ωn(R)
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The

Q ι . ( * ) < RDn-Dn\F(R)+ Σ, "1 Γ

I I

ω»(Λ) D

l"nnl
F(R)+

i = π o + ι I P i '
by ( 6 ) ,

where F(R) is a function independent of n.

Then for sufficiently large values of n > ra0 and R > Ro, we get

ω«(Λ) D

OJ F(R) (where A;t >̂

Hence:

i ) If k > ω (this implies kx > ω), then (nωγι/n ι ) , for values of

w > n0, will be a small quantity compared to F(R) Therefore,

lim lim sup —
R->OQ n-+oo n log n

<^ lim lim sup
[log ωn{R) Dn log R log | πnn \ log DΛ l o g F{R)\

— — — — — — — 4- — — — — — — — — — — — — — 4. — - ^ ^ _ — _ -L 1

R -+ oo /I _• oo * I Λ l o g 71 71 l o g Ίl Π l o g Λ 71 l o g Π Ίl l o g 71 I

in view of (2 ) and (3); then

Ω < ω — K

i i ) If A: < ω, then as kί approaches k we find that F(R) will be very small

compared to \nωyχ/n ι I7160 for n > n0 Therefore,

log ωτι (Λ )
lim lim sup < lim lim sup

R —* oo 71 -+ oo 71 l o g 71 Λ —» oo 71 —» oo

Dπ log β + 2 log DΛ

n log 7i

log \πnn I

7i log n n log 7i

nω (l ί-Jlogn

n log 7i

n ω log ω y

n log 7i
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in view of (2) and (3 ); then

Ω < c ω - / c + ω — A = 2 ω — K — A .

N. B. In the case of simple sets, the restriction mentioned above for πnn is

satisfied. In this case we have

— K = lim sup
7i log n

COROLLARY. // {pΛ(z)J is a simple set of polynomials,

i) if k > ω, then Ω < ω - K

ii) if k < ω, then β < 2ω — K - k
where K = — lim sup

IP«

n-*oo n log n

3. Examples. We shall look at four examples.

Let P n U) = n3n zn - n2n zn'1 - n 3 n 2 n + ι (nodd),

p π ( Z ) = n 2 n z π - n

3 / ι (neven),

then

0 (nodd),

zn = n-2 npn(2) + Π

n p 0 (z ) (neven).

By Theorem (1) of [1], we get ω = 1. Since K = — 3, k = 2, we get, according

to case i) of the theorem, Ω < 1 + 3 = 4. This is true because Ω = 4 by Corol-

lary (1.1) of [1].

N. B. This example and the following examples show that the values given

in the conclusion of the above theorem are "best possible."

ii) Let pn{z) = n2n zn-n3n/2 z2n-n2n {nodd),

)
P » U ) = ( l ) 2 " - ( 7 ) > with P o (z)
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Then

zn = n 2npn(z) + n'7n/2p2n(z) + (l+nn/2)p0(z) Uodd),

" 3 n / 2 ln\n/2

(l) P°U ) U e v e n ) '

Applying theorem (1 ) of [ l ] , we get ω = 1/2. Now K = - 2, k = 3/2. Then accord-

ing to case i), of the theorem, we get

Ω < - + 2 .

~ 2

This is true because Ω = 5/2 by Corollary (1.1) of [ l ]

iii) Let pn(z) = nn zn - nn/2 zn'1 -n3n/2 Uodd),

pn(z) = (n + 1 ) ( Λ + ι ) zn - (n +

- ( n + l ) 5 ( Λ + ι ) / 2 (neven) ,

P o ( ^ ) = 1.

Then

zn = 1 \nnpn(z) + n-3n/2pn^{z) + (nn/2

 + nn)p0(z)\ (n odd),

1 - nn^2 I J

„ e v e n ) .

Applying theorem ( 1 ) of [1], we get ω = 1. Now K = - 1, k = 1/2. Then according

to case i i ) of the theorem, we get

1 5
Ω < 2 + 1 = - .

2 2

This is true because Ω = 5/2 by Corollary (1.1) of [ l ] .
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o(n-i) θ(n-i) nn
^ Δ 71

(n - 1 ) 3 ( Λ " I

22(Λ-I) ( n _ i)(π-i)

+ — zn'1 (nodd),

2(n-ι) n

2 n + (n-l)3{nml)

2n nn (n

(n even),

Then

- (n - l)a<»-»> p Λ - ι ( z ) - π 5 * p 2 n + ι ( z ) ( Λ odd),

l \ n / l \ 2 n

Applying theorem ( 1 ) of [ l ] , we get ω = 1. Now K = 2, k « - 3. Then according

to case i i ) of the theorem, we get

This is true because Ω = 3 by Corollary (1.1) of [1].
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ON THE LINEAR INDEPENDENCE OF ALGEBRAIC NUMBERS

L. J. MORDELL

1. Introduction. Besicovitch [ l ] has proved by elementary methods in-

volving only the concept of the irreducibility of equations the following:

T H E O R E M . Let

a i β blPl> a2 = ^ 2 P 2 » •*• » as β bs Ps 9

where pi9 p29 ••• , p$ are different primes, and bl9 b29 . . . , bs are positive

integers not divisible by any of these primes. If xi9 x29 9xs ore positive

real roots of the equations

and P(xχ, X2' > #s ) * 5 α polynomial with rational coefficients of degree less

than or eqv d to nx — 1 with respect to xl9 less than or equal to n2 — 1 with

respect ί. x29 and so on9 then P(xι x29 ••• , xs ) can vanish only if all its

coefficier ts vanish.

It i i rather surprising that this has not been proved before, since results of

this kind occur as particular cases of a general investigation in the theory of

algebraic numbers, and some have been known for many years. We have the

well-known general problem:

PROBLEM. Let K be an algebraic number field, and let xl9 x2f ••• f xs be

algebraic numbers of degrees ni9 n2f ••• , ns over K. When does the field

K(xϊ9 x2f •• 9 xs ) have degree nx n2 •• ns over K?

This holds if either the degrees or the discriminants over K of the fields

K(xί)9 K(x2), , K(xs) are relatively prime in pairs. The first part is a

simple consequence of the usual theory of reducibility when s = 2, and the ex-

tension is obvious. The second part for s = 2 is given as Theorem 87 in Hubert's

report on algebraic number fields, and its proof depends on algebraic number

Received July 8, 1952.
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theory. The result for general s follows easily.

We discuss here the special case when xl9 x29 ••• , xs are specified roots

of the respective equations

\l) x - al9 x z - a29 9 x = as >

where al9 a2, ••• , as

 a r e numbers in K. In the particular case when nιaί9

n2 a2, , ns as are relatively prime in pairs, the discriminants of the fields

K{xί ), K(x2), , K(xs ) are certainly relatively prime in pairs, and the

foregoing conclusion holds. We consider two types of more general fields K.

For the first, K and xl9 x2, , xs are all real. For the second, K includes

all the ^ t t h , n2th9 ••• , τιsth roots of unity, and then the fields

K(xι),K{xa),...,K(xs)

are the so-called Kummer fields and have been known for many years. The

elementary ideas used in their discussion are similar to those employed by

Besicovitch. We have now the result really asked for in the problem, but stated

as follows:

THEOREM. A polynomial P(xi9 x29 ••• , xs) with coefficients in K and

of degrees in X\?x29 ••• , xS9 less than nl9 n29 ••• , nS9 respectively, can

vanish only if all its coefficients vanish provided that the algebraic number

field K is such that there exists no relation of the form

(2) < ι ^ ί-«.

where a is a number in K9 unless

Vγ = 0 (mod n<ι ), v2 = 0 (mod n2)9 9vs = 0 (mod n s ) .

If K is of the first type, then a particular case, which includes the result

of Besicovitch and is equivalent to it, arises when K is the rational number

field, the x's are all real, the α's are integers, ar (r = 1, 2, , s ) is exactly

divisible by a prime power pr

 r (that is, by no higher power of p) with (Ctr, rcΓ) =

1, the pr are all different, and pr is prime to at when r ^ U The condition im-

plied in (2) is satisfied, as follows easily from the lemma below.

When K is of the second type, the theorem is given by Hasse [ 2 ] , in the

equivalent form that K includes all the nth roots of unity, where n is the least
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common multiple of nu n2i ••• > ns Hasse, however, is also investigating the

relation of the Galois group of the field K(xi9 x2, > xs ) to those of K (xγ ),

K(x2 ), and so on, and so his proof is not particularly elementary. In view of all

this, an elementary proof of the theorem may be worth while.

2. Lemma. We prove first, for completeness, a well-known result:

LEMMA. Let K be an algebraic number-field such that either K is real and

the equation xn - a = 0, where a is in K, has a real root, or K contains all the

nth roots of unity. Then the equation xn - a = 0 is reducible in K if and only

if a is the Nth power of a number in K for some N > 1 dividing n. When K is of

the first type, a real root is the root of an irreducible binomial equation in K.

When K is of the second type, xn - a factorizes completely into binomial factors

xm — b in K and irreducible in K.

Proof. Let us suppose that xn - a = 0 is reducible in K. Write it as

xn-a = f{x) g{x),

where

fix) = xm + bxx
m'1 + . . . •+ bm9

the b's are in K, and f(x) is irreducible in K When K is of the first type, we

may suppose x', a specified real root of xn - a = 0, is a root of f(x) = 0. All

the roots of f(x) = 0 are roots of xn - a = 0, and so they have the form e'x'f
where e ' is an nth root of unity and x' is any specified root of xn - a = 0, but

the specified real root when K is of the first type. From the product of the roots

of/(*) = 0,

where e is an nth root of unity. Hence x' is also the root of an equation

xm = b,

where b is in K since, for the first type, e= ±1. Hence the irreducible equation

/(#) = 0 of degree m must be the same as the binomial equation xm - b = 0.

Further, the equations xn - a = 0, xm - b = 0 have a common root. Write

d = (m, n), n = dN, m = dM, where (N, M)= 1 and aM = bN. There exist rational

integers u, v such that uM + vN = 1. Then
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α * auM+vN - (buav)N,

where N | n. Conversely if a*=AN, where A is in K and N \ n, the equation

xn — α = 0 is obviously reducible in X.

This proves the lemma

3. Proof of theorem. The ideas involved are not essentially different from

those of Besicovitch The given conditions imply that the theorem holds for

s = 1. It will be proved by induction on sf and so it may be assumed that no

such relation as P = 0 holds for 5 or fewer roots of equations satisfying the

given conditions. We then prove it for s + 1 roots. Suppose a relation such as

(3) P(xu x2, . . . , x s + ι ) - 0

holds, so that xχ is a root of the equation, supposed irreducible in K,

(4) Pox
r + ? ι Λ ; r - ι + . . . + PΓ « 0,

where POf Pl9 , Pr are polynomials with coefficients in K9 and of degrees in
χ2> X3> ** ' » *s + i respectively less than n2, 7i3, . . . , n s + 1 . Since 1/PO can be

expressed as a polynomial in x2, x$9 ••• » *s + i with coefficients in K9 we may

take Po m 1. We write

P ι = P \ ( χ 2 ) β Λ ( * 2 » xz> ••• y x s + ι ) ,

and so on, according to the variable occuring in Px which we wish to emphasize.

Each root of the equation (4) in x can be written as

x = e'xi9 where €* ι » l

Hence from the product of the roots of (4), xt is also a root of an equation

e / = ± Pr, where e"1 « 1,

Also € β 1 when the field K is of the first type. Write

Xx^ex[, and so *»ι « α [ .

Then by the lemma, A^ is a root of an equation irreducible in K,
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where Ax is in K. Also,

(5) xιm±pr

say. Hence the relation ( 3 ) is replaced, when the new variable Xx is introduced,

by the relation ( 5 ) which is in general simpler. The equation

( 6 ) ( Q ( x ) ) N ι - A x = 0

has a root x « x2; and since * 2 - α2 is irreducible in the field K(x3, x4t . • ,
xs + ι) by ^ e hypothesis for s variables, each root of x 2 - α2 = 0, for example,

the conjugate x'2ol x2f must be a root of (6); so

where Xι is one of the conjugates of Xι since X ι - At is irreducible in K.

Now Λ̂ & = Q{x2) is the root of the equation in K(x39 x4, . , Λ̂ S + I ) ,

F = {X-Q(x2)) ( A - < ? ( ^ ) ) . . . = 0,

where the product is extended to all the conjugates of x2 Since all the roots

of the equation F = 0 in X are conjugates of Xίt and since, by the hypothesis

for s variables, X ι - Ax i s irreducible in K(xS9 x49 ••• , « s + 1 ) , we must have

for some integer Mx > 0, and so n2 « MιNι* Since /Vj > 1, on comparing coef-

ficients of X 2 " , we obtain

(7) ΣQ(X'2) = o, Σχ; = o,

where the sum is extended over all the conjugates of x2 and Xi9 respectively.

There are of course exactly Mx conjugates of x2 which give the same Xχ.

Write now

X - Q(χ)
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where BQ = BQ(x3, x4, ••• , xs + ί), and consider all the relations obtained by

changing x into x2 and all its conjugates. By addition, on noting (7), we get

β Π 2 . ι = 0 . Write now

Xί /χ2 = X[.

Then by our condition and by our lemma, Xγ must be the root of an irreducible

equation in K,

and the conditions involved in (2) still hold. Proceeding as before, we get

Bn 2 = 0, and so on until Bχ = 0. By the theorem for s variables, a relation

such as

Xt/xn

2*'l-B0

is impossible since Xx /x^ is the root of an irreducible binomial equation.

This finishes the proof.
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ALTERNATING METHOD ON ARBITRARY RIEMANN SURFACES

LEO SARIO

1. Introduction. Schwarz gave the first rigorous construction of harmonic

functions with given singularities on closed Riemann surfaces, by means of his

alternating method for domains with annular intersection [16]. The method also

is directly applicable to open Riemann surfaces of finite genus, since these can

always be continued so as to form closed surfaces [7; 8 ] . For surfaces of infi-

nite genus, this continuation is no longer possible. 13ut if the surface is of para-

bolic type, Schwarz's method can still be used, a "null boundary" having no

effect on the behaviour of the alternating functions [5; 11]. In the general case,

there are two obstacles which prevent using Schwarz's method as such. First, if

the surface has a large (ideal) boundary, the alternating functions are not deter-

mined by their values on the relative boundaries. Second, Schwarz's convergence

proof fails, since the Poisson integral is inapplicable on arbitrary Riemann do-

mains. We are going to show that, by certain changes of Schwarz's original meth-

od, these difficulties can be overcome.

This paper is a detailed exposition of a reasoning outlined in preliminary

notes [9-11] . The manuscript of the paper was communicated (in French) to the

Helsinki University in December, 1949. In the meanwhile, the author published a

linear operator method [13], which also can be used to establish the results of

these notes. A presentation of the classical alternating method for arbitrary

Riemann surfaces seems, however, to have independent interest from a methodo-

logical viewpoint; such a presentation is the purpose of this paper.

The alternating method on Riemann surfaces, as sketched in [9-11] , was re-

ferred to also in the recent papers of Kuramochi [ 1 ] , Kuroda [z]9 Mori [ 3 ] , and

Ohtsuka [ 6 ] . A historical note on the method was given in [15] .

2. Functions with vanishing conjugate α0-periods. We start with two lemmas,

which are basic for the alternating procedure.

Let R be an arbitrary Riemann surface, and G a subdomain, compact or not.

The relative boundary aQ of G, that is, the set of boundary points of G, interior

Received July 8, 1952.

Pacific /. Math. 3(1953), 631-645
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to R, is assumed to consist of a finite number of closed analytic Jordan curves.

On α 0 , let /be a real single-valued function, harmonic in an open set containing

α 0 .

LEMMA 1. There exists always a harmonic single-valued function u in G

with the following properties:

1°. u takes on the values f on α 0 .

2°. u is bounded in G and satisfies

( 1) min / < u < max /.
α 0 α 0

3°. u has a finite Dirichlet integral over G,

( 2 ) D ( u ) = JJ | g r a d u\2 dx dy < oc.

Here z - x + iy is a local uniformizer of R.

4°. The period along a0 of the harmonic function v, conjugate to u, vanishes,

(3) ί dv = 0.
Ja0

Proof. If G is compact, the lemma is evident. Suppose now G is noncompact.

We form an exhaustion Gι C G2 C G3 C •• of G, such that the boundary of Gn

consists of α 0 and a set an of closed analytic Jordan curves tending, for n—»oc,

to the ideal boundary of G. Let un be a harmonic function in Gn which coincides

with / on α 0 and assumes on an a constant value cn. By Schwarz's reflexion

principle, it is easy to see that un is harmonic still on aQ + an.

We fix the constant cn as follows. We observe that un depends continuously

on cn. The same is also true for the normal derivative dun/dn on α0 and, conse-

quently, for

r r dvn r dun

I dvn = / — ds = / — ds,
JaQ Ja0 o s Ja0 on

r r n r dun

(4) / /
JaQ Ja0 o s Ja0

where the meaning of vn and ds is evident. If we choose

cn = min /,

then obviously dun/dn > 0, if n denotes the interior normal of an with respect to
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Gn. Hence, the period ( 4 ) is nonpositive in this case. If we had chosen

cn = max /,
ao

we would have found by the same reasoning that the integral (4) is nonnegative.

Thus, there must exist a value cn such that

min / < cn < max /,

and such that the integral (4) vanishes. In the sequel we suppose that the con-

stant cn has been selected according to this condition. We have then in Gn the

uniform estimate

( 5 ) m i n / < un < m a x /•

In the sequence of the uniformly bounded functions un9 there is a subse-

quence which converges uniformly in every closed subdomain of G to a single-

valued function u, harmonic on G + α 0.

In order to see that u is uniquely determined, we shall prove that the se-

quence ί un \ itself, not only a subsequence, converges. Let xn be the harmonic

function in Gn with xn = 0 on α 0, x

n = I on an. The sequence j xn \ decreases

monotonically, converging to a harmonic function x on G with x = 0 on α 0. If

x = 0, u is necessarily unique, since the difference « ' - u" of two functions u

would assume, by

'd{υ' - v") = 0,

both positive and negative values, and would be dominated by a multiple of x.

Hence we can confine our attention to the case x jέ 0.

By Green's formula

where yn is the harmonic conjugate of xny we have

Jan/σ0

( 6 ) *„ = -

flence cn converges to a unique constant c. Now let z be an arbitrary (fixed)
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point of G. For sufficiently large n, z is an interior point of Gn. Let gn be the

Green's function of Gn with the logarithmic pole at z. Draw a small circle C

about z. The Green's formula

I un dhn - gn dvn = 0,

where hn is the harmonic conjugate of gn, yields, if we let C shrink to the point z,

(7) un(z) = - i [/* /rfAn + c n ( 2 τ τ - / rfUl.
2 77 |yα 0 \ ^α 0 /J

This shows the convergence of un{z) and thus uniqueness of u.

In order to prove that the function u satisfies the conditions 1° — 3°, we note

that the un converge uniformly even on the closure of Gn In fact, for 6> 0 and

for m, q sufficiently large, we have {um — iiq) < 6 on an; and on a0 this differ-

ence vanishes. By the maximum principle, the Cauchy criterion is fulfilled on

the closure of Gn. In view of the harmonic boundary values and Schwarz's reflex-

ion principle, the convergence is uniform even in a domain slightly extended be-

yond α 0 and an. From this we conclude that all derivatives of um converge in the

closure of Gn.

From the uniform convergence it follows that u takes on the value / on a0.

The condition 2° is guaranteed by (5) . In order to study the condition 3° we ob-

serve that, for p > 0,

(8) D(u) = lim Z ) Λ ( α ) = lim lim Dn ( u n + p ) ,
n —* 00 jι —• 00 p —• 00

where D refers to G and Dn to Gn. We have

(9) Dn(un+p) < Dn+p(un+p) = J un+p dvn+p.

In this expression, we have

(1°) / un + p dvn + p = cn+p / dvn+p = cn+p / dvn+p = 0 .

•Όtn + p Jan+p Ja0

Since the integral on the right in (9) extended over aQ converges because of the

-uniform convergence of the un and grad vn9 this integral is uniformly bounded.

Hence, the condition 3° is fulfilled.

The condition 4° follows again by the uniform convergence of grad vn on α 0 .
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This completes the proof of Lemma 1.

3. Functions with nonvanishing conjugate α0-periods. Suppose now that the

region G is not compact.

LEMMA 2. There exists always a single-valued harmonic function u on G

which coincides with f on α 0 , and whose conjugate function v has the period

( 1 1 ) [ d υ = l .
Ja0

Proof It suffices to consider the case / = 0 ; in order to pass to the general

case we have only to add to the constructed function a function furnished by

Lemma 1.

Let now un be a harmonic function in Gn which vanishes on α 0 and assumes

a constant value dn on an, such that the period of the conjugate function vn of

u n i s

(12) f dυn = \.
Ja0

This choice is always possible, since the value of the foregoing integral is pro-

portional to dn. Obviously un is a multiple of the harmonic measure of an.

By Green's formula

/ (un+p dvn - unp p 0 ,
ao+an

we have

(13) / u>n+p dvn = dn-
Jan

On the other hand, for the functions un+p, positive in Gn+ι, we can use Ijarnack's

principle, which can be expressed, in the present case, as follows. For all the

functions un+p9 there is a constant M < oc such that, on an, interior to Gn+ lf

(14) max un+p < M min u Λ + p .

Hence, by (13) and

/ dvn = 1,
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we have

max un+p < M I un+p dvn = M dn.
an Jan

Thus, by the maximum principle, the functions un+p are uniformly bounded in Gn

and form a compact family.

4. Oscillation of functions. In order to prove the convergence of the alter-

nating functions, we still need a lemma concerning oscillations of functions.

Let R be an arbitrary Riemann surface and Ro a compact closed point-set on

/?. Consider all single-valued harmonic functions u on R,

LEMMA 3. There exists a positive constant q < 1, independent of u, such
that for every u the oscillations of u on R and Ro,

S(u, R) - sup u - inf u
R R

(16)
S(u, Ro) = max u - min u,

satisfy the inequality

( 1 7 ) S { u , R 0 ) < q S ( u , R ) .

Proof. For the two cases S( u, R) = 0 and S{u9 R) = oc, the proposition (17)
is evident; thus, it suffices to consider bounded nonconstant functions u. We
normalize these functions, without loss of generality, by adding a constant and
multiplying by a constant such that

(18) sup u = 1, inf u = 0 .
R R

This being done, we have to prove the existence of a constant q < 1 such that

S(u, RQ) < q. If such a constant did not exist, there would be a sequence of

functions ul9 u29 u3, ••• such that

(19) lim S{un, Ro) = 1,
n

and, consequently,

( 20 ) max un —> 1, min un —* 0 .
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Among the functions un9 uniformly bounded on /?, one can select a subsequence,

say again {un}, which tends uniformly to a function u*, harmonic and single-

valued on /?. The points Pn and Qn where un assumes maximum and minimum

values, respectively, on the closed set Ro, accumulate at some points P* and

Q*oiR0,

(21) Pn-*P\ Qn-+Q*'

It is easily seen that

(22) α*(P*) . 1 and α*((?*) = 0.

In fact, if u*(P*) were < 1, let € be a positive constant, £ < 1/2( 1 - u*(P*)).
By the continuity of u*9 there would be a neighborhood K of P* such that, at
each point P of X,

»*(P) < u*(P*) + e.

On the other hand, by the definition of P Λ , for sufficiently large n,

*n(Pn) > 1 - €,

and the points Pn lie on K. Thus, at these points Pn , one would have

ttnCi ) ~ u*(Pn) > 1 - u*{P*) - 2€ = const. > 0,

in contradiction to the uniform convergence of the un to u*. This proves the first
equality (22). The second one is proved in the same manner.

Consequently, the function u* would be harmonic, single-valued, and noncon-
stant on /?, and would assume its maximum and minimum values at interior points
of./?. This violation of the maximum principle disproves our antithesis. The
lemma follows.

5. The existence theorem. After these preparations we are able to establish
existence of the harmonic functions in question on the whole surface. Let Ro be
a subdomain of R whose relative boundary, that is, the set of boundary points in-
terior to /?, consists of a finite set of closed analytic Jordan curves. The com-
plement G as R — RQ then consists of a finite number m of disjoint domains
G( ( i as 1, 2, •• , m), compact or not. Let now αt be the common part of the
boundaries of Ro and Gt .

In each G{ , let ut be a given function, vanishing on α;, harmonic, single-
valued and nonconstant in a neighborhood of α/, having otherwise arbitrary singu-
larities and, in case G( is noncompact, an arbitrary behaviour at the common



638 LEO SARIO

(ideal) part of the boundaries of R and G(. Denote by ds an arc element of α;,

and by όuj dn the normal derivative of U{ in the interior direction of Gt .

THEOREM. // Ro is compact, then the condition

d u;

(23) YΛ I -ds = 0
dn

guarantees the existence of a function f on the whole surface R, satisfying the

following conditions:

1°. The function is harmonic, single-valued and nonconstant outside the pos-

sible singularities of the U(

2°. The difference f - U( is harmonic, single-valued, and bounded in the

whole region Gt , and has a finite Dirichlet integral over G(.

In case Ro is noncompact, the existence of f satisfying 1° and 2° is always

assured, independently of the condition (23) . If this is satisfied, f is bounded

in Ro and has there a finite Dirichlet integral.

Proof. Consider first the case where Ro is compact. Let R be another com-

pact region (C R), containing the closure of Ro in its interior, and bounded by a

finite number of closed analytic Jordan curves. The intersection H{ = R n G{ is

supposed to consist of one single region, bounded by α; and the intersection 6;

of Gι and the boundary of R . Denote, for the time being, ιx; by u ι 0 . In R , let /

be the harmonic function coinciding with u{0 on b( In Gj, form, by the procedure

of Lemma 1, a function hi t , harmonic and single-valued in Gt , coinciding with

/ 0 on aι, bounded by the inequalities

m m /o £ ^t i £ m a x ίo 9
ai <*i

possessing a finite Dirichlet integral over G;,

Di(hit) < oo ,

and satisfying the condition

dkix = 0,f
where k^ i s the harmonic conjugate of Λ t l . Write, in Gj ,

( 2 4 ) Mil = uio + A* i
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Let /\ be the harmonic function in R coinciding with u^ on i t . We then form

again by the procedure of Lemma 1 a harmonic function A ι2 *n &i which assumes

the values /\ on α; and has the corresponding boundedness properties. We thus

obtain successively a sequence of functions hιn and U(n in G t, and fn in R , de-

termined by the conditions

(25)

fn = uin on b.,

Aj(Λ + 1) = /„ onα^ ( n = 0, 1, 2,

io
i n

and having the properties

(26) min fn < A i ( n + t) < max /n ,

(27) ϋi(fiin) < oo,

(28) f dkin = 0 ,

where kιn is the conjugate function of A/Λ

One has to prove the convergence of the functions fn and wlfl toward a desired

common function /. We shall show first the convergence of the functions fn on the

closure R of R .

By Cauchy's criterion, this convergence is assured as soon as the difference

fn+p — fn t e n ( l s , for n> p—»oo, toward zero on the boundary b of R . In order to

use Lemma 3, we shall reduce estimation of this difference to that of its oscilla-

tion on by

(29) | / n + p - / n | <S{fn+p - / „ ; b),

this inequality being valid as soon as

(30) min \fn+p - fn\ = 0 .

R

We shall now prove the latter relation.

Let %ι be, in Hi - R n Gj, the harmonic function vanishing on αβ and assum-

ing the constant value 1 on 6t . Let y; be the conjugate function of #;. The con-

dition (30) is satisfied if
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(31) Σ, [
i Jbi

In order to establish this equation, we make use of Green's formula

ί L (fn dϊi ~ *i dgn) = 0,

where gn is the harmonic conjugate of fn. It follows, by

Σ ί dgn = 0,

that

(32) Zf fndyi=

On the other hand, the formula

( " i ( / i + i ) dJi - *i (

gives, in view of (23), (28), and, accordingly, of

the relation

(33) Σ / Mί(n+ι) rfy* = Σ A w*(ιi+ι) rfy*

By (25), (32), and (33), we have

(34) Σ ί ϊndji= Σί fn+i dVi.
Jbέ Jbt

This yields the desired equality (31).

The problem of convergence of fn has herewith been reduced to the estima-

tion of the oscillation S(fn+p — fn; b). We have first
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( 3 5 ) S ( / n + p - / „ ; b) < £ S ( / n + m - / π + m _ i ; b ) .
m = l

To estimate S ( / π + ι - fn 6), note first that

( 3 6 ) fn+ι ~ /n = Aι(n+i) - A*n on bif

(37) fn ~ fn-i = hi(n+ι) ~ A** on α;.

Since the functions Aj(n+ι) and A, π were constructed by the procedure of Lemma

1 as limits of certain harmonic functions coinciding with fn and fn-v respective-

ly, on a}, and satisfying the condition (26), the difference AJ(,J+1) — AiΠ can be

considered as defined by the procedure of Lemma 1, with the boundary values

ίn — ίn- l o n ai* Thus, this difference satisfies the corresponding condition in the

whole G;:

(38) min(/n - fn-ι) < A,-(n + l ) - hin < max(/n - / π -ι )
a a

The relations (36) - (38) yield

(39) S ( f n + x-fn; b ) < S ( f n - / n . ι ; α ) ,

where a is the boundary of Ro.

On the other hand, by Lemma 3, applied to the difference fn - / π - l f the do-

main R'y and the boundary of RQ, we have

(40) S ( / B - / „ - , ; α) < q S(fn - fn.r, b ) ,

q being a positive constant < 1. Thus,

( 4 1 ) S ( / B + 1 - / „ ; & ) < ? S ( / n - / • „ „ , ; 6 ) .

By repetition of the same reasoning starting from fn - /π_i, and so on, we obtain

the desired estimate

(42) S(fn+ι- fn; b ) < q n S 0 ,

where So signifies the constant S{fί--f0; b ) .

Applied to (35), this yields

(43) S(fn+p - /„; 4) < q" Jl- .
1 9
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The right side tends to zero, independently of p. By (29), Cauchy's criterion

is satisfied and the uniform convergence of the functions fn to a single-valued

harmonic function / in R has been proved.

The convergence of the functions AίΓί follows immediately. In fact, the rela-

tion (38), applied to the difference h^n+p) - hin, gives

| A j ( π + p ) ~ hin\ < m a x \fn+p-ι - f n - ι \ .
G i a

This implies, by the convergence of fn, that of hιn. The limit function A; is har-

monic and single-valued in G;. The corresponding limit of the functions wlΛ is
ui + hi* where we use again ιi{ instead of w ί0.

The functions / and U( + hi are identical in H( = R n Gι. In fact, the differ-

ence fn — uιn vanishes on b( and coincides with fn - fn^ι on α;, thus tending to

zero on α̂  + b( and hence on H^

Denote in the sequel by /the function thus obtained on the whole surface /?.

It remains to show that it satisfies the conditions 1° - 2° of the theorem.

Since the difference /— uι — hi is harmonic and single-valued in G;, the same

is true of the function / except at the singularities of u^ We shall show that /

does not reduce to a constant.

Let hi be the harmonic function in Gj, constructed by the procedure of Lemma

1 to coincide with A£ = /— U( on α;. Then h[~ hιn is the function in G; corres-

ponding, by this procedure, to the values Λ/— hιn on α t . By the relations

min {hi - hin) < h[ - hin < max (A, - hin ) ,
ai in-

valid in Gj, and by the convergence hιn —> A/ on α t , the functions Aίπ converge

uniformly to Af in Gt ; that is, Aj = A;. By Lemma 1, this implies that

(45) min / < A; < max / .
aι aι

If now / were constant, the same would be the case with Aj, hence also with uι =

/ - Aj, contrary to our assumptions. This proves the property 1°.

Property 2° follows from the fact just mentioned that Aj = /— uι is a harmonic

function in G; constructed by the procedure of Lemma 1. This completes the

proof of the theorem for the case where Ro is compact.

The case where Ro is noncompact reduces simply to the preceding case. We

only have to isolate the common part of the boundaries of Ro and R from R - Ro
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by a finite set α 0 of simple analytic Jordan curves which divide Ro into a com-

pact domain /?Q and a noncompact domain Go, By Lemmas 1 and 2, there exists

in Go a function u09 harmonic and single-valued, vanishing on α 0 and having a

prescribed period for the conjugate function v0. We select this period in accord-

ance with the condition

(46) ί dv0 = - T ί

All the assumptions of the first part of our theorem are thus satisfied, ίience,

there exists a function f on R which fulfills the conditions stated in the latter

part of our theorem.

6. Applications. The theorem thus proved has applications to the classifica-

tion of Riemann surfaces and to the theory of Abelian integrals as announced in

[ 10; 11 ]. Here we confine our attention to some typical corollaries.

COROLLARY 1. There are Green's functions on a Riemann surface R if and

only if the boundary has a positive harmonic measure.

Proof, Suppose there is a Green's function g on R, Let P: z — 0 be its loga-

rithmic pole, in a parameter disc K: \ z \ < 1. In G ι = R — K9 let u be the harmonic

function constructed by the procedure of Lemma 1 for values u = g on ax: | z \ = 1.

Then g - u is bounded in Gi9

\g~u\ < M < oc,

and has a nonvanishing conjugate period. This clearly implies the existence of a

nonvanishing harmonic measure ω in Gί.

Conversely, suppose ω έ 0 in Gx, Multiply ω by such a constant that the con-

jugate of the function uί thus obtained has the period 277 along ax. Take as the

domain Ro of our theorem the annulus 1/2 < | z \ < 1. In G 2 : | z \ < 1/2 write u2 =

log 1/| z | . By our theorem, there is a function g 'on R with the pole log 1/| z \ at

2 = 0 and such that g'— ux is bounded in G. The existence of a Green's function

follows.

This result [10], proved later also by Virtanen [18] and Kuroda [ 2 ] , shows

that the classification of Riemann surfaces in those with "null-boundary" and

"positive boundary" coincides with Riemann's classification on the basis of

existence or nonexistence of Green's functions.

Another application of our theorem is a criterion for the existence of single-
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valued nonconstant harmonic functions which are bounded (HB) or have a finite

Dirichlet integral (I1D). It was stated by Nevanlinna [4] and Virtanen [17] that

there are functions 1113 or ΠD on R if and only if R has a null-boundary. This

assertion has been disproved by Ahlfors and Royden. A correct criterion fol-

lows:

COROLLARY 2. There are functions HB or HD on a given Riemann surface

R if and only if some function u of class R3 or HD respectively in G satisfies

the conditions u = 0 on a, f dv — 0.

The condition of a positive harmonic measure is equal to the first condition

given above [ 8 ] . Thus, the inadequacy of Nevanlinna's statement is due to the

lack of the second condition.

A further application deals with Abelian integrals. The following problem was

stated by ίViyrberg in 1948 (October 13, at Helsinki University): Does there exist

a nonconstant harmonic function with a finite Dirichlet integral on an arbitrary

open Riemann surface R. The above theorem gives [11] :

COROLLARY 3. On an arbitrary Riemann surface of positive genus there

exist Abelian integrals of the first, second, and third kind which possess a

finite Dirichlet integral outside a neighborhood of the singularities.

The Abelian integrals, the existence of which was thus proved, have later

been investigated by Virtanen and Nevanlinna. The existence proof can also be

performed by adapting the classical reasoning of Weyl.

Another immediate consequence of the foregoing theorem is the following re-

sult, proved first by Nevanlinna [5] using integral equations. Let R be an open

Hiemann surface of parabolic type, and let A and B be two noncompact subdo-

mains such that A n B is a doubly connected region, bounded by two analytic

Jordan curves. Let a and b be two single-valued harmonic functions in A n B.

COROLLARY 4. If the difference of the conjugate functions of a and b is

single-valued, then there exists a harmonic function f on R such that f— a in A,

f—bin B, are harmonically continuable, single-valued, and bounded.

To prove this, we have only to select as the domain Ro of our theorem a re-

gion interior to A n B, separating the two boundary curves of the latter, and the

existence of / i s assured.

In several related problems, an extremal method [14] seems to be more power-

ful than the alternating methods. A comparative survey on these methods was

given in [15] .
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ITERATES OF ARITHMETIC FUNCTIONS AND A PROPERTY
OF THE SEQUENCE OF PRIMES

H A R O L D N. S H A P I R O

1. Introduction. In a previous paper [ 2 ] , the author has investigated certain

properties of the iterates of arithmetic functions which are of the following form.

For n = Π pf1,

(1.1) /(«) = Π /(Pέ) [A(Pi)frl,

where / ( p t ) is an integer, 1 < f(p ) < p , and ^ ( p t ) is an integer < p.9 for odd

primes p ; ; whereas /(2) = 1, A (2) = 2. We shall denote the set of these arith-

metic functions by K, These conditions ensure that for n > 2, /(n) < n, and hence

if / (n) denotes the k-th iterate of /there is a unique integer k such that

(1.2) / * ( * ) » 2 .

For this k we write k = CΛn). We define

Cf(l) = Cf(2) = 0.

In this paper we propose to consider the problem of determining a g G K such

that for all odd primes p, and all / G X,

(1.3) Cg(P)>Cf(p).

The solution to this problem produces an interesting property of the sequence of

primes in that we shall show that (1.3) is equivalent to having g skip down

through the primes. More precisely, if p = 2, p = 3, , and in general p. de-

notes the i-th prime, (1.3) is equivalent to having g ( 3 ) = 2, g ( 5 ) = 4 or 3,

and

(1.4) g(p.) = p . β l for i > 3 .

2. A theorem concerning functions of K. In carrying out the proof of the result
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stated in the introduction, we shall require a certain property of the iterates of

the functions of K, which we now derive.

For n = Π p ,we define the arithmetic function A(n) as

Λ{n) -

where the A (p.) are as given in (1.1). It then follows that, for all integersm and

n,

A(mn) = A(m) A(n) and A (n) < n.

LEMMA 2.1. For any divisor d of n, we have for f G K,

Aid) fin)

(2.1, -KTΓ^'

where A(d) f(n)/f(d) is an integer.

Proof. We can write

f{n) = Aίn) Π
p\n

Ai \ n / ( p ) π
= Λ{n) 11 —— 11

p \ d ^ ( P ) p i n

where

A(d) # A(d') '

d'= Π P,
P I

so that d'divides n. Since A (n) is completely multiplicative, we have then

A(n) = AI^\ A{d'), or 7̂ =

Hence
Ajd) fjn)

fid)
A\ —
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where clearly A(d) f(n)/f(d) is an integer.

LEMMA 2.2. For f E Kf if e(n) = 0 or 1 accordingas n is odd or even,

(2.2) Cf(2n) < Cf(n) + e(n).

Proof. S i n c e f G K, we h a v e / ( 2 ) = 1, A ( 2 ) = 2 , and h e n c e

f(2n) = 2/U) or f(n),

where if n is odd f(2n) = / ( Λ ) and Cf(2n) = Cf{n). Otherwise, continuing, we

have

/ 2 ( 2 * ) = 2/2(/») or f2{n)

.
and in general

fk(2n) = 2 / A ( Λ ) or / A ( i ι ) .

Then taking k = Cf(n) we get

/ Λ (2rc) = 4 or 2,

so that

(^(2/0 < k + 1 = C^.(n) + 1.

THEOREM 2.1. If x is such that for all z < x, Cf(z) < Cf(x)f where f £ K9

then for all y9

(2.3) Cf(xy) < Cf(x) + Cf(y) + e(x).

Proof. We have

a x f(χ)Ky)A(d)
f ( x y ) = JiT) '

where d=^(x,y). Letting

f(x)A{d)

β

we know from Lemma 2.1 that βχ is an integer less than or equal to x; and
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Then similarly

fHχy)-βaf
2(y),

where

y - ( / 3 t

Thus in general we have:

f k ( χ y ) = β k f k ( y ) , β k < β k - ι $ • - < )8

so that, letting & = C/(;y), we get

fk{xy) = 2 j % , βk < x .

Then if /3^ < x we have via Lemma 2.2, and our hypothesis,

Cf(xy) = ίγ(y) +

< Cf(y) + Cf(βk) +

< Cf(y) + Cf(x).

On the other hand, if βk = x we have

Cf(xy) = C ^

< Cf(y) + Cj(x) + e{x),

and the theorem is proved.

3. Derivation of the main result. In carrying out the proof of the equivalence

of (1.3) and (1.4) we shall need certain estimates from elementary prime number

theory. These results are given in the following lemma. As is conventional, we

shall write pχ = 2, p 2 = 3, » » , and let p^ denote the i-th prime.

LEMMA 3.1. Letting π(x) = the number of primes < xy we have

( a ) 2 P / - 2

 > pi for ι > 5 >

( b) for all positive integers x > 2f

(3.1) π(x) - TΓ/-
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Proof. Both of the above are deducible from a result of Ramanujan [ l ] which

asserts that for x > 300,

/«, n\ / \ ίx\ x/6 - 3 \ίx
(3.2) π{x) - π - ) > — i —

\2/ log x

Ramanujan gives explicitly the result that for x > 11,

π(x) - 7r|—) > 2,

which implies ( a ) . As for (b) , we note that since, for x > 10,590,

(-_ x - 3 V^) > yβ ,
log * \6 /

we have (3.1) for all x > 10,590. We can check (3.1) for all x < 10,590 very

quickly. We check up to x - 17. Then let

α0 = 10,590, a i = 2,309, α 2 = 653,

α 3 = 229, α 4 = 103, α 5 = 59,

α 6 = 37, α 7 = 23, α 8 = 17;

inspecting tables of primes, we see that these numbers have the property that

ττ(α, + 1 ) - π{

which completes the proof of ( b ).

We now give our main result as:

THEOREM 3.1. If g(x), g 6 K> is such that Cg(x) is maximal for all primes

p, that is Cg(p) > Cf(p) for all f E K and all p, then g (3) = 2, g (5) = 4 or 3,

and, for i> 3, g(pi) = Pi-ι

Proof. Since g £ K, we clearly have g(2) = g ( l ) - 1; and g(3) = 2. Now

in choosing g(5) < 5, we consider all possible values and choose the one which

makes Cg(5) a maximum. Symbolically, we may write

g(5) = C - ι { m a x [ C ( ; ) , 0 < / < 5] 1 = 4 or 3.

Thus g (5) has two possible values 4 or 3. Similarly proceeding to p 4 = 7 and

ρ 5 = 11 we have
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g(7) = C"Mmax [ C ( / ) f 0 < / < 7]} = 5

and

g ( l l ) = C"M max[C(/) , 0 < / < 11]} = 7.

In general, for the ι-th prime we must have

(3.3) e ( p f ) = C~ι { max[C(/) , 0 < / < p . ]J .

Now it would seem that the determination of this value gip^), since it depends

upon the C ( ; ) , which in turn may require the values of g(n) for composite n,

would remain undetermined so long as nothing is said about the function A(n).

However, as we shall see, the maximum of these C(/) , required in (3.3), will

turn out to be completely independent of A (n).

We have noted that the theorem is true for i = 4, 5. Proceeding by induction,

assume it true for all i'f 4 < i'< n, and consider n > 5. From (3.3) we see that

in order to complete the proof we need only show that for any x such that

O . 4 ) Pn > x > ?„_,

we must have

(3.5) C(x) < C(pn_ι) = n - 2.

Assume that for some x satisfying (3.4), (3.5) is false, and let x be the smallest

one satisfying (3.4) for which

(3.6) C(x) > n - 2.

Then we have also

(3.7) C(g(x)) > n - 3.

We shall now show that g(x) £ pn_χ For suppose that g{x) = PΛ_ 1 Then #.

must have a prime divisor q such that g{q) = p _ But from (3.4) we see that

q < Pfl-j which is impossible.

If g(x) < Pn^ί9 by our inductive hypothesis we would have

C(g{x)) < C(pn_2) = n- 3.

Now i f C ( g ( x ) ) s τ ι - 3 9 i t would follow that g(x) = p n - ι This in turn implies

that pn^ί divides x. Since x £ Pn.1> t n ί s yields
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*>*Pn-ι > P n ,

which is a contradiction. The only alternative left is that C(g{x)) < n — 3,

which contradicts (3.7). Thus we conclude that g(x) > p so that we must

have

pn > x> g(x) > p n _ l #

Since x is the smallest integer satisfying (3.4) and not (3.5), we must have

) ) < n - 2 or C(x) <n~2; hence

(3.10) C(x) = τ ι - 2 .

Now x is not even, for if it were we would have

x Pn

which is a contradiction. Also x is not divisible by 3 for n > 5; for if it were,

g(x) would be even and we would get, using Lemma 3.1 (a) ,

But then

C(g2(x)) < C(pn_3) = τ ι - 4 .

If the inequality sign holds, this implies C(x) < n - 2 in contradiction to (3.10).

On the other hand, if the equality sign holds then g2 {x) = pn_3 This in turn im-

plies that PΛ_2 divides g(x). If g(x) £ Pn-2>
 t ' i e n

_2 >Pn ,
which is impossible. Finally, g(x) = P n_ 2 implies that x is divisible by p n - 1 >

which is impossible.

Also, if x is not divisible by 5, the argument is the same as for 3. On the

other hand if g ( 5 ) = 3, and x is divisible by 5, it results that g 2 ( 5 ) is even,

and hence

1 „ 1 2 ^ 1 2 3 Pn
3 U ) 2 ( ) U )

But this again implies that C(x) < n — 2, which is impossible.
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Suppose then that p > 7 is the smallest prime which divides x. Since x is com-

posite, 1 < x/p < x and p <\fx. It is clear from (3.3) and our inductive hypo-

thesis that for z < p, C (z) < C(p). Hence via Theorem 2.1 we have

n - 2 = C{x) < c l - \ + C(p).

Via our inductive hypothesis we see that, since p < \/lc~,

so that

(3.11) cl-\+ π(<Jx)>n-2.

Since

x x

and

C(x) = Cip^) = n - 2,

we have

C(X) - C(~\ > w(χ)

by Lemma 3.1 ( b ) ; and

(3.12) C/-J < n - 2 ~

Combining (3.11) and (3.12) yields π(^fx) > \fx9 an obvious contradiction: thus

the proof of the theorem is completed.

4. Some remarks and generalizations. From the above we note that imposing

the condition that the function Cf(n) be maximal at the primes determines u-

niquely the values of f(n) at the primes without restr ict ing A(n) in any way.

This is natural from a certain point of view, since the function A (n) plays a role

only in evaluating f{n) for powers of a prime. This might lead one to s u s p e c t

that requiring that Cf(n) be maximal at the p? in addition to the p^ would also
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determine the values of A(n). This is in fact the case, and one may prove (we

omit the proof since it is long and very similar to that of § 3) :

THEOREM 4.1. // Cg{x) is maximal at the primes and squares of primes,

then Ag (3) = 2 or 3, Ag (5) = 5 or 4, and for p { > 5, Ag (p t ) = p { or p;_ ι # Further-

more this same maximal Cg{x) is realized for any admissible choice of the Ag(pι)

(that is, as either pi or p^_ t ) .
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CONVEXITY PROPERTIES OF INTEGRAL MEANS
OF ANALYTIC FUNCTIONS

H. SHNIAD

1. Introduction. Let f^f(z) denote an analytic function of the complex

variable z in the open circle \z\ < /?. For each positive number tf the mean of

order t of the modulus of /(z ) is defined as follows:

— [*" \fireiθ)\* dθY", (0<r<R).
2π Jo J

The reader might consult [5, p. 143-144; 3; and 4, p. 134-146] for some of the

properties of this mean value function l*(r; /) .

We consider the question: does the analyticity in | z \ < R of the function /

imply the convexity of the mean 30!* (r; /) as a function of r in the interval 0 < r <

A? It is known [ l ] that:

(A) Unless the function / is suitably restricted, the set of positive values t

for which the question may be answered affirmatively has a finite upper bound.

(B) If the number t is of the form 2/A, with k a positive integer, then, for

every analytic function /, the mean of order t is convex.

(C) If the function / vanishes at the origin, then the mean 5B$(r;/) is convex

for every fixed positive number t.

(D) If the function / has no zero in the circle, then its mean of order t is

convex, provided that the positive number satisfies t < 2.

(E) If the function / has at most k zeros, k > 1, in the circle, then the mean

of order t is convex provided that the positive number t satisfies t < 2/k.

The main purpose of this paper is to prove that, for every analytic function /,

the mean of order four is convex. Moreover, we show by example that if the

number t is greater than 5.66, then there is an analytic function whose mean of

order t is not convex.

2. Means of nonvanishing functions. Assume that g(z) is analytic in \z \ < R9
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and that the e x p a n s i o n for g(z ) in the g i v e n c i rc le i s

g(z) = £ an z\

Then the integral

n =o

— [2π \g(reiθ)\2 dθ
2π Jo

has the expansion

71 = 0

valid in r < /?. Let

ρ ( r ; g , c ) = hh" - c(h')2,

where primes denote differentiation with respect to r, h i s the function h(r; g ) ,

and c i s a constant independent of the variable r and of the function g. If C i s

a c lass of functions {g(z)\, and if, for all functions g in this c l a s s C, for all

r < R9 and for a particular positive value c 0 , the inequality

Qir g, c o ) > 0

holds, then the inequality

<?(r; g, c) > 0

holds for all c < c 0 , all r < /?, and all functions g in the class C. We now specify

the class C to be the class of all functions g(z ) which are analytic and do not

vanish in | z\ < R. If f(z) is in class C, then any single-valued branch of [f(z)]a

where α is an arbitrary real number, is also in class C. Given a function fo(z)

in class C, and a fixed positive number ί, let go{z) be a single-valued branch of

[ / 0 ( Z ) ] ί / 2 ; a n d l e t

1

Then
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and since hQ is a nonvanishing function of r, we have

d2%(r;f0) _

dr2 ~ ' r'8°'

where

at(r;/B)
r = - > U

th,Q

Every function g(z) in class C is a single-valued branch of [/(z)] , where

/(2) is some appropriate function in class C. Therefore, for positive values t,

the mean Έt(r; f) is a convex function of r for all functions / in class C if and

only if

<?[r;g, ( 1 - 1 / 0 3 > 0

for all functions g in class C. Since the inequality 1 - 1/t < 1 - l/ί0 holds for

all t and ί0 satisfying 0 < t < ί0, we conclude from the preceding remarks that,

if the positive value ί0 is such that the mean ϊίj (r; /) is convex for all non-

vanishing /(z), then the mean 501̂ (r; f) is convex for all nonvanishing f(z),

provided that t is any positive value not exceeding ί0.

For a simple example of a function %lt(r; f) which is not convex, consider

the mean βf order eight of a single-valued branch of

f(z) m vTΠ in \z\ < 1 .

In this case, we have

λ(r) = 1 + 4r2 + r 4 ;

and [h(r)]i/8 is not convex in 0 < r < 1.

Since, for every analytic function /, the mean of order two is convex, it now

follows that there exists a greatest positive value ί0, in the range 2 < t0 <Q9

such that Έlt (r; t) is convex for all nonvanishing analytic functions. It will be

a corollary of our result that this greatest value t0 satisfies the inequalities

4 < t0 < 5.66.

3. Preliminary lemmata. The proof of our main theorem will be based on the

following lemmata.

LEMMA 1. Let aι (i = 1, 2, ••• ) be a sequence of positive numbers such
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that the sum

Σ l/α,
i = l

converges to the finite value U. If the sequence of real variables Xi(i = 1,2, )

is restricted to satisfy the inequality

oo

then the maximum value of the function

oo

i = 1

is (BM)ι/2.

Proof. We consider first maximizing

n

i = l

with the variables subject to the condition

n

i =1

Let

n = £ I/-,-
ϊ = 1

The critical points of the function fn are at the solutions of the simultaneous

equations

ai xi = aj xj

which are given by
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x] = B(M
n
a
2
.)

9
 (i-1, ••• ,n).

Therefore, the maximum fn is Mn(B/Mn)
i/2 or (BMn)

ι/2. Since Un <M, and all

the values aι are positive, it follows that for all n the partial sums fn are bounded

by (BM)i/2 and the conclusion of the lemma follows.

LEMMA 2. Let S be the sum

oo

S « £ V(6n 2 - 9n + 2) .
n =3

Γλen ίΛts sum S is less than 0.09504.

Proof. The function f(n) = 1 / ( 6 Λ 2 - 9Λ + 2) has the following expansion in

powers of l/(n — 1):

with o 2 = 1/6, α 3 « -1/12, 04 = 5/72. For determining subsequent values of α^

it is convenient to use the recursion formula:

The coefficients a2 and α 3 are positive and negative respectively. Therefore it

follows directly from the recursion formula that the general coefficients α& alter-

nate in sign. By another use of the recursion formula, we see that the sum ak +

α ^ + ι is equal to (a^ - α Λ - 1 ) / 1 2 , and therefore that the sign of the sum a^ +
ak+ι ι8 ^ e s a m e a s ^ a i : °̂  ^ e coefficient a^ , or of the coefficient α .̂. Since

the inequalities | α 2 | > | α 3 | > | α 4 | hold, it now follows that the numerical

values of the coefficients all decrease with increasing &• Let ζ(k) be the

Riemann zeta-function, and let s (k) = ζ(k) — 1. Since the foregoing expansion

for f(n) is an absolutely convergent series, the sum S may be expanded in an

alternating series of the form

S = 2 2 a k s(k)9
k=2

w h o s e terms d e c r e a s e in numerical va lue with increas ing k. U s i n g ( s e e [ 2 ] ) the

approximations s ( 2 ) = 0 . 6 4 4 9 3 5 , s ( 4 ) » 0 . 0 8 2 3 2 4 , s ( 6 ) « 0 . 0 1 7 3 4 4 , s ( 8 ) -

0 . 0 0 4 0 7 8 , s ( 1 0 ) = 0 . 0 0 0 9 9 5 , which are too large, and the approximations s ( 3 ) =
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0.202056, s (5) = 0.036927, s (7) = 0.008349, s (9) = 0.002008, which are too

small, we obtain the value 0.09504 stated in the lemma by summing this last

series up to and including the term for k = 10.

LEMMA 3. Let

y = V* + V° 04752 ^9x2 - 10* + 1 ,

where x lies in the range 0 < x < 1/9. Then the maximum value of y is less than

Proof. Setting the derivative of γ equal to zero, we find that the value of x

maximizing y is the solution of the equation

0.04752* (10 - 18% ) 2 - (9x 2 - 10* + 1) = 0.

This critical value of * lies between 0.07 and 0.08. Therefore

max y < y/oM + >/θ.O4752 [ 9( 0.07)2 - 10(0.07) + 1]

< 0.283 + 0.129 = 0.412.

Since (y/2 - 1) is greater than 0.414, the conclusion of the lemma follows.

4. The mean of order four. Let

gU) = [/U)] 2

have the expansion

g ( 2 ) = Σ % zΠ>
n = 0

valid in \z\ < R. Following the ideas developed in § 2 , we see that

with

n =0

and that 3K4 (r; /) is convex in r < R if and only if
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ρ ( r ) B * A " - i ( A ' ) 2 - £
4

with

Q.. = i(2i-l) + / ( 2 / - 1 ) - Άij and p. = | α | 2 ,

is nonnegative in the interval 0 ζ r < R. The only coefficient Q. which is nega-

tive is Q = - 1 . That the mean of order four is convex may be concluded from

the following theorem.

T H E O R E M . // a f u n c t i o n g ( z ) i s a n a l y t i c i n t h e circle \ z \ < R , a n d t h e

f u n c t i o n

fe2τr . - ^ I 1/4

is not convex as a function of r in the interval r < R9 then g(z)is not the square

of an analytic function in \ z \ < R.

Proof. It is pointed out in the introduction that if /"(0) = 0, then the mean

Sβ̂  (r; /) is convex for all t. Therefore we may assume that

= g ( 0 ) = p 0

is not zero. The hypothesis of the theorem implies that

takes on negative values; since Q is the only negative coefficient, this is

possible only if the value pί = \aί \2 is not zero. Therefore, we may make the

normalizations

αQ
= 1, aχ = yβ, pQ = 1, and p χ = 2 .

Let

Σ Won Po Pn
n =3
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with Qon = n(2n~ 1) and Qιn = 2 / ι 2 - 4 n + 1. Since Q(r) > Qx (r), and Qt(r)

can be negative only for values of r satisfying

2 P O P ι ~ P 2

ι r 2 < 0 ,

we have in the normalized case the result that Qx (r) is negative for some r > 1;

and the expression

£ 2 ( r ) = 4 + (12p 2 - 4)r 2 + 4p 2 + £ (127i 2 -18/ι + 4)p I r 4

L Λ = 3 J
a l s o takes on negat ive v a l u e s . The discriminant oί Q (r) a s a quadratic form

in r 2 must be pos i t i ve . Therefore we have the inequality

Λ < ( 9 p 2 - 1 0 p 2

n = 3

and the result that p is less than 1/9. Applying Lemma 1, we see that

n = 3

with

oo

Σ 2 - 9/ι + 2 ) .
Λ = 3

By use of Lemma 2, we have

Vθ.04752 V9?2 ~ 1 0 P 2

n =2

and, by use of Lemma 3, we have

oo

£ | α j <V2-1
/I = 2

Applying Rouch^'s Theorem to the function
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n = 2

we see that, if the function g(z) i s analytic in the circle \z\ < 1, then g(z)

has exactly one zero within this circle, and therefore that g(z) i s not the square

of an analytic function in this c ircle . Since the convexity of the mean must break

down only for values of r greater than one, we have establ i shed the theorem.

5. Examples of nonconvex means. Let / ( z ) be a single-valued branch of the

function [ ( 1 - z ) 2 / ( l - ez)]2/t

f with e = 0.19. We shal l show that if t > 5.66,

then the mean SDl^r; /) i s not convex in r < 1. Since

[f{z)]t/2 = 1 + ( - 2 + e)z + [ ( 1 - e ) 2

2

2 / ( l - e * ) ] ,

it follows that

with

A(r) = 1 + (4 - 4 e + e 2 ) r 2 + [ ( 1 - e ) 4 r 4 / ( l - e 2 r 2 ) ] .

By straight-forward calculation, we have

( 1 + e) A ( l ) « 6 - 2 e = 5.62; U + e ) 2 A ' ( l ) - 12 - 4 β 2 = 11.8556;

( 1 + β ) 3 λ " ( l ) = 20 + 4 e - 4 e 2 - 4 e 3 « 20.588164;

and

( 1 + e ) 4 ρ ( r ) = ( l + €)4 [ A A " - ( 1 - I / O (AO21

< (1 + e) 4 [115.71 - ( 1 - 1 / 0 (140.55)]

< 0, if t > 140.55/24.84, and therefore if t > 5.66.

Thus we have examples of nonconvex means 3Rj(r; / ) for t > 5.66 even under

the restriction that f(z) does not vanish in its circle of analyticity.
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PLANE GEOMETRIES FROM CONVEX PLATES

MARLOW SHOLANDER

1. Introduction. It is shown below that to each member of a general class of

two-dimensional convex bodies there corresponds an affine geometry in the sense

of Artin [ l ] and an S. L. space in the sense of Busemann [ 4 ] .

A two-dimensional convex body is called a convex plate. For the few ele-

mentary properties of such plates assumed here, see [ 3 ] .

Let K be a convex plate, and let K° denote its boundary curve. All construc-

tions are to be made in the plane E of K. Consider an arbitrary direction φ in E

and the two lines of support to K in this direction. Let t0 be the line of support

whose associated half-plane in the direction φ + π/2 contains K. Let ί t be the

other line of support. For 0 < i < 1, let ίj be the line parallel to t0 which divides

line segments extending from t0 to t± in the ratio of i to 1 — i. Let t{ cut K° at

points Ri and T( so that the directed segment R( 7\ has direction φ.

For 0 < i < 1 and 0 < / < 1, let S/y be the point which divides R{ Ί\ in the

ratio of / to 1 - /. The set Sj = Uf Sη is an open Jordan arc whose endpoints are

points of contact of t0 and tι with K. A set Sj is called a strut. Other struts may

be obtained by varying φ. When the direction needs emphasis, the above nota-

tions are modified by affixing the angle in parentheses, for example, R{(φ) or

Sj(φ). Two struts with no common points or all points in common are called

parallel. Clearly s.{φ) and s^iφ) are parallel.

Under the name Durchlinien, Zindler [6] studied struts of the form sί/2(φ).

It is easy to see that sι/2(φ) halves the area of K9 and that the centroid of K

is contained in the convex hull of this strut.

2. A preliminary theorem. This section is devoted to a proof of the following

theorem. An edge of K is defined as a (maximal) line segment in K°.

THEOREM. If for distinct directions φ and ψ9 struts Sjiφ) and Sj(ψ) meet

at distinct points P and Q, they meet at all points of the segment PQ. Such seg-

ments of intersection occur if and only if K has at least two edges.

Received May 19, 1952. A part of this paper was written while the author was under
contract to the Office of Naval Research.
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Proof. Let i ~ l/( 1 + a) and / = l/( 1 + b). From the affine invariant nature

of the problem, we may assume φ and ψ are respectively the positive x- and

positive y-directions in E, where P has been chosen as the origin. We may as-

sume the chords passing through P along the axes are P3P L and P\P'2, where

P l9 P2, P3, and P 4 have respectively the coordinates (α, 0), (0, b), (-1, 0 ) ,

and (0, -1) . If P4Pt is parallel to P3P29 l e* n be the line parallel to these lines

which passes through P. Otherwise let n be the line on P and the point of inter-

section of these lines. Finally, we may assume that Q lies In the first quadrant

on or above the line n. Let Q have coordinates (r, s).

Let the chords through Q parallel to the axes be Q3Qχ and Q4Q2 Coordin-

ates of Ql9 Q2, Q3, and Q4 have respectively the form (r + ap, 5), (r, s + bq),

(r - p, s), and (r, s - q). We note that P4Pl9 n, and P3P2 have respectively

the equations

ay = x — a , a ( b + l ) y - b ( a + I ) x , a n d y - b x + b .

Since Q i s on or above n9

( 1 ) 6 ( α + l ) r < α(fc + l ) s .

Because K is convex, (̂ 2 cannot be above P2P^3; that i s ,

( 2 ) s + bq ζ ό ( r + l ) .

Multiply ( 2 ) by α and add to ( 1 ) . This gives

( 3 ) τ~a s a ( s - ^ ) ;

that is, <24 is on or above Px P 4 . Moreover, equality in (3) implies equality in

( l ) a n d ( 2 ) .

Consider first the case r < a. Here, since Q4 cannot be above P\P4, it lies

on PXPA. Thus equality holds in (2) , and Q2 lies on P2P3 Since P4, Q4, and

P t are distinct and collinear, they are on an edge of K. Similarly, Q2, P 2 ,and

P 3 lie on an edge.

In the case r ^ a,

slope PAPX <; slope ^ 4 ^ ! , I/a < q/ap, and p < q.

lί s < b, Q3 cannot be below P 2 P 3 ; that is,

(4) b(r+l) £ s + bp.

T o g e t h e r w i t h ( 2 ) t h i s y i e l d s q £p. H e n c e p = q, a n d e q u a l i t y h o l d s in b o t h ( 2 )
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and (4). This shows that Q2, P2, Q3, P3 are collinear, and hence on an edge of

K. Furthermore, slope P4P ι - slope QΛQΪ$ and P 4 , Pl9 Q4, Qi are on an edge.

If s > b, Q3 cannot be above P2^3> slope Q3Q2 < slope P3P2> bq/p < b, and

q < p. Again p = q, slope P4 P x = slope Q4 Q l9 and slope P3P2 = slope @3 @2 .

An edge of K contains P 4 , Pl9 Q49 and (? l f and another edge contains Q2, Q3,

P2, and P 3 .

3. Affine geometries. Consider a convex plate K with the properties:

(i) K has at most one edge;

(ii) K has no corners.

Let / be the set of inner points of K. Consider distinct points P and Q in /.

Assume, for a given φ9 that P is on Sj(φ) and Q is on sk(φ)9 j < k. Clearly P

is on Sj-yίφ + 77), and φ is on S ^ ^ ^ + TΓ). From considerations of continuity,

there exists a direction ^ such that P and Q are on a strut sι(ψ). From this and

from the previous section we have the following result.

PROPERTY I. Two distinct points in / lie on one and only one strut.

Consider now a strut Si(φ) and a point P in /. The strut Sj(φ) which passes

through P is parallel to $i(φ). On the other hand, let Sjc(ψ)$ φ £ φ$ pass through

P. Since sι(φ) and s^(ψ) have endpoints which separate one another on K°.

these struts have some point of / in common, and the following holds.

PROPERTY II. Given a strut s and a point P in /, there is one and only one

strut through P and parallel to s.

PROPERTY III. There are three points of / not on a strut.

These three properties are Axioms I, II, and III of Artin [ l ] . Listed in Lattice

theory [2, p. 110] as APGl, APG2, and APG3, they classify / as a plane affine

geometry.

It would be of interest to know what sets / satisfy Artin's Axiom IV (see

Appendix), or even what sets have nontrivial dilatations. An ellipse K yields an

/ with all the desired properties. To show this it is sufficient to consider the

case where K is the circle

Consider the sphere

x2 + y2 < a2 ,

S: x2 + y2 + ( z - α ) 2 « a2,
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resting on the origin of the #;y-plane E. The line

x cos φ + y sin φ — R

in E projects from the center of 5 into a great half-circle on S. This half-circle

projects perpendicularly on E into a half-ellipse, the strut Sj(0), where

2* = 1 + R/y/R2 + α 2 .

Thus the mapping which takes (r, θ) in / into the point (R, θ) of £, where

places the struts in one-to-one correspondence with straight lines. In this ex-

ample, we have a finite model for Euclidean geometry.

4. Other geometries. In general we may obtain a plane projective geometry

from a plane affine geometry by adjoining an ideal line (see [2, p. 110]). In this

case K° serves as the ideal line. The affine and projective geometries associ-

ated with K are examples of matroid lattices.

In § 3 we mapped an elliptical / onto the Euclidean plane £. A similar map-

ping may be defined for any / so that struts map on curves in E which satisfy the

hypotheses of [4, p. 89, Th. l ] . It follows that a metric may be introduced (in E

and hence) in / which makes of / an S. L. Space of Busemann: / will be finitely

compact, convex in the sense of Menger, externally convex in the sense of

Busemann, and the struts will be geodesies under this metric. This S. L. space

also satisfies the Euclidean Parallel Axiom. In fact, all Hubert's (plane) Axioms

[5] are satisfied except the congruence axioms. The determination of the condi-

tions under which the latter hold is an open problem.

5. Appendix. Artin's Axiom IV, not readily available to all readers, is given

below after necessary introductory material. Using Axioms I-IV, we may assign

coordinates ( 01, β) to points so that the equation of a "strut" is linear.

The set of points considered is called a plane. A mapping σ associates with

every point P a point P = σ{P) A mapping is called a dilatation if to each pair

of points P, Q correspond parallel struts s and s ' such that P and Q lie on s,

and P and Q lie on s'. The identity mapping of the plane is denoted by 1. A

translation is a dilatation which is either 1 or else has no fixed points. A trace

of a dilatation o is a strut which contains a point P and its image P . (If P ^ P ,

there is a unique trace on P.) A homomorphism is a correspondence from trans-

lation T to translation Tα such that each trace of T is a trace of Tα and such that
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AXIOM IVa. Given P and (), there exists a translation carrying P into Q.

AXIOM IVb. Given translations Ίx and T2 (neither equal to 1) with the same

traces, there exists a homomorphism Tαsuch that T? = T2 .
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