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SOME THEOREMS ON GENERALIZED DEDEKIND SUMS

L. CarLITZ

1. Introduction. Using a method developed by Rademacher [5], Apostol
[1] has proved a transformation formula for the function

(L1) Gplx) = 3 nPx™ (Jx] < 1),

m, n=1

where p is a fixed odd integer > 1. The formula involves the coefficients

(12 o(hk)= 3 ppﬂ.,(%)p,(%) O<r<p+ 1),

wp(mod k)

where (h, k) =1, the summation is over a complete residue system (mod k),
and P,(x)= B;(x), the Bernoulli function.

We shall show in this note that the transformation formula for (1.1) implies
a reciprocity relation involving ¢, (h, k), which for r = p reduces to Apostol’s
reciprocity theorem [1, Th. 1; 2, Th. 2] for the generalized Dedekind sum
cp(k, k). In addition, we prove some formulas for c; (k, k) which generalize
certain results proved by Rademacher and Whiteman [6]. Finally we derive a
representation of ¢, (A, k) in terms of so-called ‘““Eulerian numbers”’,

2. Some preliminaries. It will be convenient to recall some properties of
the Bernoulli function P;(x); by definition, P,(x)= B;(x) for 0 < x < 1, and
P.(x +1)= P,(x). Also we have the formulas

2l Y P (H;c'-) = KR (kt), Pr(=x)= (~1)Pr().

It follows from the second of (2.1) that ¢, (h, k) =Ofor p evenand 0<r<p + L.
We have also
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514 L. CARLITZ

(2.2) co(hy k) = cpsy(hy k) = kPBpay
provided (4, k) = 1. Further, it is clear from the second of (2.1) that
(2.3) cr(=hy k) = (=1) cr(h, k).

Now as in [ 5, 321] put x = €277,

iz+h , iz7'+h’
k

T =

so that, on eliminating z, we get

hT+ k’

k- h

(2.4) T° (hh’ + EE’+ 1 = 0);

thus (2.4) is a unimodular transformation. Now Apostol’s transformation formula
[1, Th. 2] reads (in our notation)

. P B
Gp(ezrri'r) - (iz)p-le(ez'rri'r ) — i (w) p+1

2\ k) G+
P-t 127\P Bps (27i)P
) e e
2z k (p+1)! 2.p!

@O (pr N o, e, (B a
W 2t () e ()
+z(p+1)!§o(r+1)e ? El PR TG

Making use of (1.2), (2.2), and (2.3), we easily verify that this result can be
put in the form

miT - mir’ (27i)P .
(2.5) Gp(e? ) = (k7= h)P"! Gy(e? )+m fChy k5 T),
where
pti
(2.6) k)= 3 (””) (k7= BYP oy (hy B).
r=o * T

We remark that (2.6) can be written in the symbolic form
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(2.7) (k7=h) f(hy ks 7) = (k7= R+ c(h, k))PHY,

where it is understood that after expanding the right member of (2.7) by the
binomial theorem, c¢" (A, k) is replaced by ¢, (&, k).

We shall require an explicit formula for f(0, 1; 7). Since, by (1.2),
c,(O, 1) =Pp+l-7(0) Pr(o) = Bp+l-r8r9

it is clear that (2.6) implies

1 P ypil
(2.8)  f(O,L;7) =~ 3 (

r=0

1
) Bp4yer Br 7PV = — (B + T7B)P*!,
T

r

If in (2.4) we replace 7 by —1/7, then 7’ becomes

~k’T+ R’

2.9) T* =
( hT +k

and (2.5) becomes

) hT+ k\P! . (270)P 1
2.10) G, (e2"i/T) = ( ) G, (e2miT*) 4 —2mt) (;L, _ _),
( ) ple ) T ple )+2(p+1)! fih & T

By (2.5) and (2.8) we have

) , (2mi)P
2miTy _ ,p-1 -2mi/T +1
(2.11)  Gple )= TP 1Gp(e )+——————27_(p+1)! (B + TB)P*,
and by (2.5) and (2.9),
(2.12) Gp(ez'”i") = (hT+ k)P! Gp(e”iT*)+——2—L— f(=k, k; 7).
2(p+1)!

Comparison of (2.10), (2.11), (2.12) yields
1 1
f(=k, by 7) = TP"[(h, k; ——) + = (B + TB)P*!,
T T

or with 7 replaced by —1/7,



516 L. CARLITZ

(2.13) fChy k; 'r)=TP"f(—k, h;—-1-)+ 1—(B+'rB)p"“.
T/ T

(For the above, compare [3, pp.162-1631).

3. The main results. In (2.7) replace h, k, 7 by —k, h, ~1/7 respectively;
we get

kT—h 1 ) ptt
flrmm=) - (2 v ecnm) .

T T T

By (2.3), it is clear that (2.13) becomes
(3.1) Tkt —h+c(h k)P
=(7c(ky B) = 7k + k)P*' + (b7~ R)(B + TB)P*!,

Comparison of the coefficients of 7"*! in both members of (3.1) leads immedi-
ately to:

THEOREM 1. Forpodd>1,0<r<p,

(3.2) (” + 1) (e (h k) = h)PHT (P + i) RPT(e (ky B) = k)T+E
T

r+

+ kBp+l-TBl' "th-rBr{-l .
In the next place, if for brevity we put w= k7~ k, then (3.1) becomes

(3.3)  EP(w+h)(w+c(h k)P

= ((w+h)c(k k) —wk)P* 4 w(Bk + (w+h)BW'.
We now compare coefficients of w’*! in both members of (3.3); a little care
is required in connection with the extreme right member. We state the result as:

THEOREM 2. Forpodd> 1,0 <r < p,

1
(3-4) (p+ )hkpCp-r(h’ k)+ (p+ l)kpcpi-[-r(h’ k)
r

r+
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p+1 p+1
= ( l)hp"(c(k, R) = k) * P (k h) + ( . )(Bk+ B’R)P*ITRT,
+

r

where

pti-r
(BE + BRPHTB T = S (

s$=0

p+l-r .
) Bp+yer-s Bras EPH1TShS
s

For r=0, (3.4) becomes
(p+1)hkPcy (hy k) + kPcpay (h, k)
= (p+1)hP tcpsy (K, h) ~kep (K, h)} + (p + 1) (BE + BR)P*,
which reduces to

(3.5)  (p+1){hkPcp(h, k) + kPhep (ky k)Y = (p + 1)(Bk + BR)P*' + pBp ..

This is Apostol’s reciprocity theorem.

If we take r=1in (3.4), we get

pUR2kP ey (hy k)~ k2hPcpoy (k, b))}
=~ 2{hkPcp (h, k) + pkhP cp (hy k)Y + pBp4y + 2(Bk + B*h)P B’A.

If in this formula we interchange & and % and add we again get (3.5), while if

we subtract we get
(3.6) p{hzkpcp.l(h, k)—k2hpcp.1(k, k)}
=(p~1){hkPep(h, k) - khPecp (K, h)} — (Bk + Bh)P(Bk — Bh).

In view of (3.6), it does not seem likely that Theorem 2 will yield a simple

expression for
K kP ey (hy k) + (=1) K™ AP oy (K, B) (r>0).

We remark that Theorems 1 and 2 are equivalent. Indeed it is evident that
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(3.2) is equivalent to (3.1), and (3.4) is equivalent to (3.3); also it is clear
that (3.1) and (3.3) are equivalent.

4. Some additional results. We next prove ( compare [ 6, Th, 1]):

THEOREM 3. Forp,q > 1,0 <r < p+1, we have
(4.1) cr(qhy gk)=q"Pec, (b, k).

Note that we now do not assume p odd, (%, k) = 1.

To prove (4.1), we have, using (1.2),

h
olah b= X Poeir (£) ()
w(mod gk) qk k /e

vk + p h(vk +p)
- Z Pp+l-r< ) Pr ( )
v (mod gq) qk k
p(mod k)

£ (8 T

 Enfi) o [2)

qr-p Cr(h, k)o

i

i

For brevity we define

(4.2) br(hy k) =(c(h, k)~h) = Z (- 1)"3( )h" cs (hy k),

which occurs in Theorem 1. Clearly

ey (hy E)Y=(b(h, K)+R) .
THEOREM 4. Forp,q > 1,0 <r < p + 1, we have

(4.3) by (qh, gk) =q"Pb,(h, k).
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By (4.1) and (4.2) we have
r

br(qh, qk) = Z (=1)7° (r) (gh)"* cs (gh, qk)
s

S$=0

= (-1)"8( )h"sq"Pcs(h, k)
§$=0

r
s
=q"Pb,(h, k).
If we define
(4.4) ar(h, k) = (c(hy k) = h) P (h, k),
which is suggested by Theorem 2, we get:

THEOREM 5. Forp,q¢>1,0<r<p+1,
(4.5) ar(qh, qk) = qar (h, k).

The proof, which is exactly like the proof of (4.3), will be omitted.

We note that (4.4) implies

(4.6) WP T(h k) =3 (-1)8( )as(h,k)=(1—a(h,k))’.

,
< s

Also using (4.2) and (4.6), we get

(4.7) RPYTh (hy k) = (1~ a(h, £))P*1Ta"(h, k),

and reciprocally from (4.4),

(4.8) ar(hy k)= (b(h, k) + h)P*1TH"(h, k).

Using a,(h, k) and b, (k, k), we can state Theorems 1 and 2 somewhat more
compactly.

5. Another property of c,(k, k). For the next theorem compare [ 6, Th. 21.

THEOREM 6. Forp > 1,0 < r < p, and q prime, we have
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g-1 .
(5.1) Z cr(h+mk, qk)=(q+q " Ple,(hy k)Y ~q" " c,(ph, k).

m=0

By (1.2), the left member of (5.1) is equal to

gt gk ® (h+mk)p
Pp+l-r (—)Pr (—_——)
qk gk

3
i
Q
x
I
-

u=1 m=0 q
9k h
p B\ .
= z Pp+1-r('—)Pr (—) gt
e qk k

& e 3) ) (5) o)

= ¢""c; (qh, qk) + gcr (b, k)= q'Ter(gh, k)

= (q'"P+q)er(hy k) ~q " cr(qh, k),

by (4.1).

It does not seem possible to frame a result like (5.1) for the expressions
by (hy k) or a;(h, k) defined by (4.2) and (4.3).

6. Representation by Eulerian numbers. If £ > 1, pk=1, p # 1, we define
the ““Eulerian number’® H,, (p) by means of [ 4, p.825]

1-p

(6.1) 7,

o0 tm
=0 m:

e

Then it is easily verified that [ 4, p.825]

k-1 r m
Em-t 2 Per (7‘7_) = p—_._l Hm-l(P-l)’
=0

which may be put in the more convenient form
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r

(6.2) Bt 3 P, (k

m
)= S Hm-l(P.l)°
r (mod k) p—1

Now consider the representation ( finite Fourier series)
r k-1 "
(6.3) Pn (-l:) = s};; Ag LS (¢= e2milky,

If we multiply both members of (6.3) by " and sum, we get

l-m
IR [y A (¢ 4 0)
kA, = 24"?,,,(;): -1
’ kl-mBm (t = 0),
by (6.2) and (2.1). Thus (6.3) becomes
I ket Hp (£7F)
(6.4) P, (_) = K™ By 4 mk™ 5 Loes
s=1 CS -1

Thus substituting from (6.4) in (1.2), we get after a little reduction

Bp+1-rBr rip+1-r) k-1 Hp-r(cht)Hr-l(C-t)
+

(6.5) (h, k) = X
E kP el Ve IS DYV

Thus ¢, (h, k) has been explicitly evaluated in terms of the Eulerian numbers.
One or two special cases of (6.5) may be mentioned. For r = p we have

B Hpu (¢
(6.6)  cplhk)=> 3 pri (¢

(P > 1)’
BP oo (Ehto1)(¢t-1)

while for r = p = 1 we have

1 1kt 1
—(h’ k)=_ - ]
° T E TFD@D

where s (A, k) =c, (h, k). Note that's (h, k) = s (h, k) + 1/4, where s (h, k) is
the ordinary Dedekind sum [6]. We also note that (6.4) becomes, for m=1,
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1 1kl poms
SORERS>
k 2k ks_l 5 -1

which is equivalent to a formula of Eisenstein.

Possibly (6.5) can be used to give a direct proof of Theorem 1 or Theorem 2.
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THE RECIPROCITY THEOREM FOR DEDEKIND SUMS

L. CArRLITZ

1. Introduction. Let ((x))=x - [x]- 1/2, where [x] denotes the greatest
integer < x, and put

o ez ()

the sumnfation extending over a complete residue system (mod k). Then if
(h, k) =1, the sum s (h, k) satisfies (see for example [4])

(1.2) 120485 (h, k) +5(k, h)} =R+ 3hk + k% + 1.

Note that s{&, k) =s(h, k) + 1/4, where s(h, k) is the sum defined in [4].

In this note we shall give a simple proof of (1.2) which was suggested by
Redei’s proof [5]. The method also applies to Apostol’s extension [1]; [2].

2. A formula for's (&, k). We start with the easily proved formula
k- -rs

LA\ DL p _ ami/k
(2.1) ((k))_ TR i (p=e2Tilk),

which is equivalent to a formula of Eisenstein. (Perhaps the quickest way to

prove (2.1) is to observe that

{1/(ps—1) (k¥s)
-1/2 (k| s);

inverting leads at once to (2.1)).
Now substituting from (2.1) in (1.1) we get
Received August 11, 1952.

Pacific J. Math., 3(1953), 523527
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524 L. CARLITZ

_ 1 1 k-1 p-ts 1 1 k-1 p-hrs
S(h’k)=2[—§'z+7;z ][—2—k+"];'2 ]

r t=1 Pt—1 s=1 p° =1

k- k-
- _1_ + _}_ zl 1 : p-r(shﬂ).
4k k2 S, t=1 (Ps—l)(Pt—-l) r=0

Since the inner sum vanishes unless s + Az = 0 (mod k), we get

1 1 k! 1
S(hyb)=— + — ,
Ak -k k2=1 (p=s = ) (phs - 1)
or, what is the same thing,
1 1 1
(2.2) S(hy k) = — + —

4k c#zx (Cr-D(h-1)
where { runs through the kth roots of unity distinct from 1.
3. Proof of (1.2) In the next place consider the equation
(3.1) (" = D f(x) + (#F = 1)g(x) =2 -1,

where f(x), g(x) are polynomials, deg f(x) < k—1, deg g(x) < h— 1. Then
if { has the same meaning as in (2,2), it is clear from (3.1) that

(- =¢-1.

Thus by the Lagrange interpolation formula

f(1) 1 ¢ ¢-1
(3.2) flx)=( k-1)[————+— > ]
% o E(x~1) k& g;lxx‘é é—h_l

Similarly, if n runs through the Ath roots of unity,

[ s(D) 1 1 ”'1]
(3.3) f‘f(")"[h(x—l)Jﬁw,zl x=n gh-1)

Now it follows from (3.1) that 4f(1) + £g (1) = 1; hence substituting from (3.2)
and (3.3) in (3.1) we get the identity
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2 C C'—]- +lz Ui T]"l

_ x~1 1
(xF-1)(xP-1) hk(x-1)"

Next put x =1 + ¢ in (3.4) and expand both members in ascending powers of ¢.
We find without difficulty that the right member of (3.4) becomes

h+k-2 h2+3hk+k2—3h—3k+1t
- +oeee,
ok 12k

(3.5)

Comparison of coefficients of ¢ in both sides of (3.4) leads at once to

h? +3kk+ k2 —3h -3k +1
12k )

Therefore by (2.2) and the corresponding formula for s (%, &), we have

h? e 3hk+ k2 +1

S(hy k) +5(k h) = ,
s ( )+s ( ) T

which is the same as (1.2).

4. The generalized reciprocity formula. The identity (3.4) implies a good
deal more than (1.2). For example, for x = 0, we get

1 -1 1 n-1 1
(4.1) -2 += 2 =1-—,

FrINAES SR R hk
while if we use the constant term in (3.5), we find that

1 1 h+k-2
(4.2) - 'Zé;' b= T - e,

kgf ¢h-1 b o gf-1 2hk

Again if we multiply by x and let x — o, we get
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(4.3)

A

??"P—‘

g2
T n
T 1
More generally, expanding (3.4) in descending powers of x, we have

L G<r<hsr-n
l-1 1 7-1 hk

+—= 27

L1 ¢h-1 hoFy nf-1

1
1-— (r=h+k-1).
hk

By continuing the expansion of (3.5) we can also show that

¢ 7

h + k2
g% (-1 (¢h-1) nF1 (n =1V (n%-1)

(r>1)

is a polynomial in %, %, but the explicit expression seems complicated. A more
interesting result can be obtained as follows. First we divide both sides of
(3.4) by x — 1 so that the left member becomes

72 @‘il(ig S R o] P

n

1 1 n 1 h+k—2

fo X —

1x—§ & ” n_lx—n~2hk(x—1)

a~|r—'

4
by (4.2). We now put x = e’. Transposing the last term above to the right we

find that the right member has the expansion

1 2 (Bh+BE)"t™? h+k & Bnt™' 1 2
(45) — <
W= " ohk >

m!

where the B,, are the Bernoulli numbers. In the left member we put

1-¢

e —

oo P
=”§Hm(é);l-!-,

where the H,,( () are the so-called ‘“Eulerian numbers’’; we thus get
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(4.6)

= " Hn({Y) 1
2z 7
meo ™ T (-1 -1) kT

Bl

But by [3, formula (6.6)], for P odd > 1,

p Hp-,(<)
T (-1t 1)

sp(h, k)

where [1]

k)= ¥ B (k) B(}:),

r(mod k)

and B.(x) is the Bernoulli function. Thus the coefficient of P t/(p-1)!in
(4.6) is

(4.7) l{kp-lsp(h, k) + kP sk, h)],
p

while the corresponding coefficient in (4.5) is

1 1
4.8) — (Bh+BEP* 4 ——— B,
( T DRk R BT gy B

Hence equating (4.7) and (4.8) we get Apostol’s formula [ 1, Theorem 11:

(p+ 1) LhkPsp (hy k) + khP sp(k, h)} = (Bh + BE)P* + pBp,,

for p odd > 1. Note that s, (h, k) =5 (h, k).
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IDENTIFICATIONS IN SINGULAR HOMOLOGY THEORY

EpwarDp R. FADELL

INTRODUCTION

0.1. Given a Mayer complex M, a subcomplex #* is termed an unessential
identifier for ¥ if the natural projections from ¥ onto the factor complex M/M*
induce isomorphisms-onto on the homology level (see [1, §1.2]). The present
paper is a continuation and improvement of certain results obtained by Rado” and
Reichelderfer (see [1] and [3]) concerning unessential identifiers for the
singular complex R of Radd (see [1, §0.1]). We shall make use of the results,
terminology, and notation in [1] and [3] with one exception. Because of a con-
flict in notation in [1] and [3], we shall use the notation My for the homomor-

phisms
Mp C: - 615 ’
defined as the trivial homomorphism for p < 0, and for p > 0 as follows:
Mp(dos ++= 1 dpy T)° = (doy 2+ dp, TIF

(see [1, $0.31).

0.2. The principal results of the present paper may be described as fol-
lows. Let N (o, B:,z) denote the nucleus of the product homomorphism

R . R S
%, 'BP : Cp — CP .
THEOREM. The system { N (op BPR)} is an unessential identifier for R.

Furthermore, for each p we have

R AR - T~R
N(apBP)D Ap D Fp ,
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where {&R} and {fR} are the largest unessential identifiers for R obtained by
Reichelderfer [3, §P3.6] and Radd [1, $4.7], respectively. Thus {N(ap B§ )
is the largest unessential identifier presently known for R and imposes all the

classical identifications in R.

Let N(BS) denote the nucleus of the barycentric homomorphism

S.rS S
,Bp : Cp — CP .
THEOREM. The system {N ([3;)} is an unessential identifier for S.

It is interesting to note that the foregoing theorem gives for the Eilenberg

complex S the result corresponding to that of Reichelderfer for the Radd” complex
R (see[3, $3.21).
I. PRELIMINARIES

1.1. Let vy, «++, vp denote p + 1 points in Hilbert space Ew. The bary-

center b = b(vg, +++, vp) of these points is given by
b=(vg+e++vp)/(p+1).
The following lemmas are easily verified.

1.2, LEMMA. Letv;(j=0, .-, p) denote p + 1 points in Ex, and

P
x = %ﬂ]—b(vos ""'Uj);
]:

where B isreal for j=0, ++«, p. Then

SRR .
x = —_ v;, wit = 7
bl = S B j=0§ I+ 1 g% 7

1.3. LEMMA. Let v; (j=0, «-+, p) denote p + 1 points in Ew, and

P
x = z BiYjs
] =0

with ’ (j=0,+++,p) real and satisfying
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Bo 2 By 2o 2y 2 0.

Then

p
X = Z )\]‘b(vo--- v]'),
j=o0
with

A= G+ D)= pyy,) for j=0,+ee, p=1(provided p~1 > 0),

Ap = (p+1)ﬂp7

and

. Ai:

p p
Ky -
j=0 j=o

1.4. As in [1], let d,, d,, d;, +++ denote the sequence of points (1, 0, 0,
0,+-+), (0,1,0,0,..), (0,0,1,0, ¢+ ), e+« in Eoe. For integers p, g such
thatp > 0, 0 < ¢ < p + 1, the homomorphism

9up Cp-—leﬂ
in the formal complex K of E,, is defined by the relation
(dp+1y vgs =2+ 5 vp) for ¢=0,
q*p(UO’ R} vp)= (=1)9(vgy + =+ VUg-1» dp+l’ Vgs ***» vp) for 1 <q<p,

(=1)P* (vgy eeey vp, dp+1) for g=p+1.

1.5. For p > 0, let 7, denote an element of Tp, (see [3, $1.91), and let

(igy *++, i ) denote the permutation of 0, «++ , p which gives rise to 7,. Then
P P p g

we let sgn 7, denote the sign of the permutation (ig, +++, ip): i.e., sgn 7, is

+1 or =1 according as an even or odd number of transpositions is required to

obtain (igy s+« ip).

The following lemmas are then obvious.

1.6. LEMMA, Forp > 0 and To+1 € Tp+1 o» there exists a unique mpy € Tpo,
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and a unique q, 0 < g < p + 1, such that

(doy e dy,,

7;)+l(d0’...’d )=q*P7TP(p+1) ).

pti pti

1.7. LEMMA. For p > 0, let E, 4, denote the set of ordered pairs (q, mp),
0<qg<p+1,m € Ipo. There exists a biunique correspondence

i Tpuro —Eps,y

with
ETh4y = (@ 7)),
such that
Tp+l(d°’ ey dp+1) = q*pﬂ’p(P + 1)p+l(d0’ ey dp+l)
and
+g+1
Sgn 7,4, = (=1)P79% sgn e
1.8. Let

hp : Cp —
denote a homomorphism in K such that
hp(do cee dp) =+ (wo, eeey wq).

Then [hp] will denote the usual affine mapping from the convex hull |dg,+ -+, dg|

of the points dg, +++, dg onto the convex hull |wg, <+, wg| of the points

Woy =+ + 5 wg such that [A,] (d;) =w; for i=0, .-+, q.

1.9. Let B: denote the barycentric homomorphism in R, and pfp the bary-
centric homotopy operator in R of Reichelderfer (see [3, $2.1]1). The bary-
centric homomorphism

S.rS S
BP : Cp — Cp
in S may be given by

B: =0, B;} Mp (see [2, §$3.71).
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The corresponding homotopy operator

S S S
p*p C —_)Cp+l

is given by

S R
Pip = %41 Pup Mp

1.10. Employing the structure theorems for Bg, pfp (see [3, $2.21) we

obtain the following:

LEmmA. Forp > 0,

By(doy +oesdp, TV = 32 sgn Tp(dos +++ 5 dp, T[Op+y bpo 1%,

Tp € Tpo

pop(dos e s dp, T)° = z S (=1 sgn 7, (doy v 5 dpary Tlopr D5
=0 TpéTpk

Proof. We have

R R
0, BR(dg, +ev s dp, T)

B:(dos MR dp: T)S

I

Gp 2 (0p+1 bpo 7b(do, tecy dp), T)R

7p € Tpo
= 2 sen pldoseensdp, T10p4 bpo 1%,

and

S R
pfp(do, veesdp, T =0, p*p(d yoresdy, T)

p+1z 3 (bpk B(doy+ev s dp), DI

k=0 T, € Tp

P
= Z: Z (—l)k sgn 7@(110, cey dp+1, T[bpk 7i7])s-

k=0 T, € Tpk
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1.11. In [2], Rado’ makes use of the following identities which we state in

R .

terms ofp*p :
R R
(1) 0p+l p*p 17p ap = CTp+1 p*p’

R _ R
(2) o, B mp 0y =0, B

- <p < o,

—x <p<w.

The proof of (1) may be modeled after the proof for the corresponding identity
stated in terms of the classical homotopy operator pg (see [2, $3.5]1). From

identities (1) and (2), we have

(3) B:”p=op Bf,

R
Pep %p = Tp+1 Pap

S S R R
(5) Bp+l Pip %9 = %p+1 Pp+1 Pup

for all integers p.
1.12. Let P, and P, denote the following propositions:

Py, Let cg denote a p-chain of S such that

Then

s s S_
Bp+1 Pp ©p = 0.

P,. Let c}f denote a p-chain of R such that

Then

R R R _
Up+l p+lp*pcp—~00

THEOREM. P, = P,;i.e., Py is true if and only if P, is true.

Proof. Assume P,, and let c: denote a p-chain of R such that
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Then via identity (3) we have

Therefore

But via identity (5), we have

R R _R_
%p+1 Bpar Pup & = 05

and P, follows.

Now assume P,, and let c: denote a p-chain of S such that

s s
=0,
Bp <p
Then since
s R
Bp =9, By mps

we have
R s _
% 'BP 1 p 0.
Therefore, via P,, we have
R R s _
Tp+1 Bpay Pup Mp p = 0+
But via (5) and the fact that o, np =1, we have

R R S _aS S S_ a5 5 .S_
9541 Bprr Pup Mp €p = Bpur Pup %p Mp €5 = Bpay Pip 9 0,

and P, follows.

II. THE PROOF OF P,

2.1. We shall use throughout this section the notation 7 for the p-cell
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(dgs =<+ 5 dp, T)5 when there is little chance for ambiguity. Under this con-

vention a chain c: having the representation

n
S
Cp = Z )\](do, e ’dp: T])S
j=t

may be written Z7=1 Aj Tj. Thus T represents both a transformaticn from the
convex hull |dg, +++, dp| into the topological space X and the p-cell (dgy+-+,
dp, T)5.

D

2.2. For p < 0, the proposition P, is trivial. For p = 0, P, is also trivial.

For since B(’f =land o n =1, we have

0
implying

whence clearly
N S
By pfo ¢y = 0.

Now, take a fixedp > 1. Let

=X NT; (Aj # 0)

j=1

denote a p-chain of S such that

Via $1.10,

n
(1) BIS) cs: 2 /\jsgn'@]}[Opi-l bPO Tp]c
j=1 Tp€Tpg

Let £ denote the set of ordered pairs (j, 7,), 1 <j < n, 7 € Tpo. Then
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(2) ,3: c: = Z )\j sgn ’Tp T]'[Op+1 bpo TP]‘
(j,75)€E

We now define a binary relation ““="’ on £ as follows:
Gs ) = (j5 73)

if and only if T;[0p+1 bpo 71, Tj7[Op4y bpo 751 are identical p-cells. Then
““=” as defined is obviously a true equivalence relation and induces a parti-

tioning of £ into nonempty, mutually disjoint sets Eg (s =1, «++, ¢) with
¢
E= UE.

s=1

Therefore, via (2), we have

(3) Bf) Cs =2 2 Aj sgn 7 Tj[0p 41 bpo 1.
s=1 (j, p) € Eg

Take 1 <'s < s’ <t Then for (j, Tp) € Es, (j5 1) € Es», the p-cells
T]'[Op+l bpo '7;,], Tj»[0p+1 bpo TP'] are distinct, Therefore, since

S S
=0
p °p ’

we must have for each s, 1 <s <¢,

(4) > Ajsgn B Tj[0p41 bpo 1 =0,
(j, Tp)EEg
and hence
(5) > Ajsgn 7 =0,
(j, Tp) EE

since all p-cells occuring in (4) are identical.

2.3. Again via §1.10,
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n P
(6) B, 0%, o= 2 >>

j=L k=0 1, €Tpp Tp+1€ Tp+1g

(~1)* sgn T sgn Toay A Tilbpe 71 (0545 bpuy o741 1e
Applying the lemma of § 1.7, we obtain

ptt n
(7) B:H pfp c; = Z Z (=1)Pta+k+1 Z Z Z Aj sgn Tp
=0

k=0 q j=t Tp €Tpk Tp € Tpg

sgn mp Tilbpk 751 [0p42 bp+10 9up ap(p+ Dp+1l },
Thus, to prove that
S S S
Bp+i Pipcp = 0,

we are led to consider for a fixed k and ¢, 0 < k < p, 0 < g < p+1, the ex-

pression
n

(8) Yeg= 3 Aj sgn 7, sgn mp Ti[bpr 71
j=t Tp €Tpy 7 € Tpg

[0p+2 bp+1 094p ap (p+ 1psy 1.

Now to prove P; we need only show that Y;4 = 0. Therefore & and g will remain
fixed throughout the remainder of this section; and even though subsequent
definitions will depend upon k& and g, they will not be displayed in the notation.

2.40 For
T = 7i1(’:09""ip) € Tpo

(see [3, $1.9]) there exists a unique permutation (ng, +++, ng) of 0, «vv, k
such that ing <o+e <inge Let

7_b = ?p(jo,...,]'p),

where j, =ip; for [ =0, «+, k, and jy =i, for k+1 < 1< p. Then there exists
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a unique permutation (mg, +++ , mg ) of Oy +++ , k, namely (ng, +++, ng )", such
that

’jp)'

= 7i7(].mo' cov s Jmps Jper?
Furthermore, let A(7,) denote the set of m, € T,, defined as follows. For

mp = np(uo, sy up) S Tpo

we have a unique set of integers lg, <2+, 1, 0 < [y <-++ <[, <p such that
(ulo’ e+, u ) is a permutation of 0, +++, k. Set mp EA(7;,) if and only if

m0=ulo, cee mk=u1k,

2.5, Let B denote the set of ordered pairs (7;,, p ), T € Tpo’ mp € A (7b),
and B’ the set of ordered pairs (7;,', rr};), ’rp' € Tpk’ n}; € Tpo- We define a

mapping
y:B —B’
as follows:
Y(Tps mp) = (75, mp

, —_—

where 7= 7, and mp = mp. One shows with little difficulty that y is biunique.
Therefore

2 Aj sgn T, sgn mp Tl-[bpk?p]

[0p+2 bp+10 9.p mp(p+ 1)p41 1.
2.6, Let 4 =A(7i’(0’ ceeyp)h For7;, € Tpo we define

fT A —A(7)
P

as follows. For np(uo, ey up) € A, there exist integers [y, +++, lk’
0<lg<eee<l, <p, such that uy, =0, 000, u, = k. Define

fo 7o = 7 s o5 )

as follows. Let
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?p=’7;,(jo,...,jp) and 7, = E(imo""’jmk’ fk+1”"’jp)'
where (mgy « ¢« ”’k) is a permutation of 0, -+« , k. Set u[o =Mgy e ul'k =my,

and u=u, for r # ly, +++, l,. Here again it is easy to show that f_ is bi-
P
unique. We have then

n
(10) qu= > 2. )jsgn 7 sgn f_rp mp TjLbpk 7]
j=1 T7p€Tpg M EA

[0p+2 bp+1o 9yp f.rp mp(p+1)p+1],

and hence

t
(11) qu=z: Z )\jsgn};,sgnf,’_pﬂp Tf[bPk 7TP]
s=1 m €A (j, 7p) €EEg

[0p+2 bp+l 09p f'rp ”p(P + 1)p+1]

(see $2.2).

2.7. LEMMA. Take mp(ugy o=+ 5 up) € Tpo and let

A = [0p+2 bp+10q*p "p(P+l)p+1]-

Let
pti
x=2 #djs
j=o
with
p+t
FJZ.O, j=0:""[7+1, and z: p,j-_— 1,
j=o

denote a point of |dgs +++ 5 dp4y |s Then

ptt

a(x) = Z aj d]',

j=o
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where

(i) aj 20, j=0,---,p+1;

p+l
(ii) 2 aj = 1;
]':
(iii) Gug 2y, > o002 Gy

(iv) Qugs *** 5@y, , Gp+y aTE independent of mp; i.e., if np = ﬂ};(u(,,---,ul;)e

Tpo and
o= [Op+2 bp+1o 9xp g (p + 1)p+l]’
then
pt+1
W(x) = 2~ afd;
j=o
with

’ ’ ’
Gug = Guf»*** 2 Gup = Gugs Gpar = Gpey

Proof. We consider only the case 1 < g < p since the fringe cases ¢ =0,
p +'1 follow in a completely analogous manner. In case 1 < g < p we have

o = [b(wo)b(wo, wl) e b(wos ey wp+1)],

where

wy=dy;,, l=0,c00 g~ wg=dpsy,wy=dy, ;, I=q+1+ee,p+1.

Therefore,
pt+t ptt [p+1 #l
O((x)=2uib(w0,---,wj)=2 Z —|wj
j=o j=o \ 15 I+1

(see $1.2). Let



542 EDWARD R. FADELL

pt1

By P*L o,
ap+y = -—,au=2' for r=0,+4,9g-1
I= l+1 A |
and
pt+il "Ll
ay, = for r=gq, «+e, p.

l=r+1 L+

Clearly, a, y+--, Quys Gp+y are independent of 7, in the sense of (iv), and
Qug 2 *2v > ayy. Furthermore, aj > 0 (j=0, <<+, p+1), and

pti ptl
Z aj = Z pi=1.
Jj=0 ]j=o

Also,

p+i

=2 9dj,
j=0

q-1 P
a(x) = Z aujdu; + apr1dpr + Z ay; du,
j=0 I=q9
and the lemma follows.

2.8. LEMMA. Take (j, 7,) and (j5 ) € Es (see $2.2), 1 <s <t, and
np € A. Then

T][bpk -7;] [0p+2 bp+lo q*P pr Tr;(p + 1)P+1]

=T lbpk 7" 100042 bp4r 0 9up frh mp(p+1)parl.

Proof. Since (j, 1), (j% %) lie in Es, we have

Tj[0p+1 bpo 1= Tj+ L0ps1 bpo 7571,
Let

”p=f'rp ap=mp(ugy +++ 5 up), 1r1;=f-,-5 ap=mp (ugy <+ sup),

U= [0p+2 bp+1 0 q*p ﬂp(P + 1)p+1]’ o= [0p+2 bp+1 ) q*p ﬂ};(P + 1)p+1],

y = [bpk —7—;,], and y’ = [bpk "Fp']



IDENTIFICATIONS IN SINGULAR HOMOLOGY THEORY 543

Furthermore, let
B = pliooeesiph B=Tplig sy,

Ty = Ty (igs oo sip)y T = Ty (g vees ]";).

We have permutations (mgy *++ , mg), (ngy +++ 5 ng) of 0, +++ , & such that
B = B Umgs -+ mps gass o+ )
7i;___ ’@'(j';o"°"j"‘k’ j1:+1’ ..-,j;)

Take an arbitrary point of |dg, +++ 5 dp+, |, say

ptt p+1
x=2p.].d]. yj20,2uj=l.
j=0 ]=0

Then via the lemma of $ 2.7 we have

pt+1 pt1
C((x):Z a]d] with a]'ZO, zaj=1,au0_>_..._>_a,up,
j=o j=o
and
ptt p+t
«(x)= 3 afd; with af >0, 3 af =1, 01:62"'?_‘11:{, ,
j=o j=o
with
a, =aurss++sa, =a,’ and a = a}
ug u§ » Qup up p+1 p+ie
Now

y = [dfo LR | djk’ b(djo, R} djk)’ A ] b(djo’ e d]p)]-

Hence
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you(x) = a4 dj +--v+akd +ag,, b(djo, ‘."djp)+...+

ap+1 b(d]o, MR ] d]p)

=0am, dfmo trectamy dfmk Ty b(djo’ ot ’djk)+...+
ap+1 b(djoy"',djp)
= m, djmo+'“+amk djmk+ak+lb(djmo’ ]mk)+“'+

ap+y b(dj,,, ""’d]mk djk“,---,djp)

=apmy dig+eoctapm, dip +a,, b(d;

,o--,dik)+.oc
+ap+1 b(dioa"',dip)-

Now take integers lgye«eyl, 0 < Iy <e++<lp < p, such that (ulo’”"ulk)
is a permutation of 0, -+, k. Since p € A (7;,), we have m = Ulgs === sy = Ul

Hence Amg 2+ 2 Amy, .
In a similar fashion we obtain

y’O('(x)=a,fo a’iof +eeetan, di;c +ak'+l b(dig ,--.,di]:)+--~

+agey bldigseeerdig),

with af > «ee>ay, 5 and if [§y++o, I, 0 < 1§ <+ <I{ < p, are integers such
nyg 2 2 Qny, 0 k 0 kS P

that (u[s sesey ul',:) is a permutation of 0, «++, k, we have

’ ’
n0=u16 ,...’nkr—uli:.

Applying § 1.3, we get

L b(dig s eee s dip)

Amg dig +++* +am, d

IIME"

with

Y1=(l+1)(aml-aml+l) for [=0,+e0,k-1,
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yk = (k+l)amk N

and
k k
Z)’l"‘ 2 amy -
l=0 =
Similarly,
k
ny dif + e +an, dis = Z b(df,...,dil,)
with
yl’=(l+1)(a,{l -a,{lﬂ) for [=0,¢00,k~1,
= (k+1)a"k
and

k k
2 v[=2 .
l=0 l=0
However, since
p = frp ﬂ;’ "F; = f-rg ";’
we have

=l(',,-u,lk=l,: and u; =u; for r # lO""’lk'
Therefore, Guy = al:l’é s By = a,:l'kv , and hence
4 4
Amy = Gngs s Gmy = dp o

Thus

'yrz ‘yr’ for r=0,""k.

Furthermore,
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ay, = ay! for r £ lg, o0, 1, and apiy = agsy .

Therefore,

k P
yO((x)= Z ylb(diog“'adil)'i- za“,lb(dio""’dil)’
l=k

l=o0
k P
yrai(x)__:Zylb(dia’...,dil')+ a[+lb(di6,...,dil’),
=0 L=k
with
k p pt+1
2+t =2 9-=1
l=0 l=k =0
Let
y=2 hid
j=0
with
hj= Yj for j=0,+2,k-1,
b =¥k + 94y
hi=aj+x for j=k+1,«-4,p.
Clearly,
p
hi> 0 (j=0y+++,p), and Z hj = 1.
j=0
Then
pP
y o(x) = Z hl b(diO, cen, dil) = [0p+1 bpo 7;;](}’)

1=0

and
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P
}”C(’(x) = Z: hl b(dz.és M ] d‘l') = [0p+1 bpo 72)’](}’)-
l=0

Therefore, since

Tj[0p+1 bPO 7;;]()’)= Tj'[op-l»l bpo 7;)’]()’)’
we have
Tiya(x) = Tj y* o’ (x).
Since x is arbitrary in |dgs +++ , dp+1 |, our lemma follows.
2.9. LEMMA. Foranys,1 <s <t,and mp €4,
> Aj sgn T, sgn pr 7p = 0.
(j, mp)EES
Proof. Since

sgn 7, sgn f,rpn;;=sgn’rp sgn mp ,

we have
> Aj sgn 7, sgn f,rp mp = sgn mp > Ajsgn 7, =0
(j, 7pEE; (jymp)EES
via (5) of §2.2.

2.10. Employing §89.8, 2.9, and (11) of $2.6, we see that qu =0, and
hence P, follows. Let us note also that since P, = P,, P, also is valid,

ITII. REsuLTS

3.1. In [1, $4.2], Radd has established a lemma, which we state here for
the barycentric homotopy operator pfp .

LEmMA, Let {Gp} be an identifier for R, such that the following conditions
hold:

(i) Gp D A: (see [1, §3.41),
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(ii) c € Gp implies that % B =0,

P P

R oR
(iii) c, € Gp implies that p*P p € Gp+1 .

Then t Gp Y is an unessential identifier for R.

The proof of this lemma is identical with the proof of the corresponding

lemma as given by Rado”with p;{ (classical homotopy operator) replacing pfp.
Since
o BR :CR 5 ¢8
ptp P P

is a chain mapping, the system {N(o_RR)} of nuclei of the homomorphisms
%, B[If is an identifier for R (see [1, $1.2]). Furthermore,

R R _. R _ AS
N(ap BP)DAP since o, Bp = Bp 7,

(see $1.11). Applying P, directly, we see that N(op B ) satisfies (iii) of
the foregoing lemma. Therefore, since N(o BR) is the largest identifier,
satisfying (ii), we have the following maximum result yielded by the same

lemma:
THEOREM. The system {N(ap Blf)} is an unessential identifier for R.

3.2. In order to compare our results with those of Radd' [1] and Reichelderfer
[3] let us first note that

N R R
N(ap ,BP) = N(crp ,BP),

where ﬁ(op B;f) is the division hull of N(op ﬁzlf ), since C§ is a free Abelian
group. Then since

R R R R
N(op BP) D AP = N(Bp) + AP
(see [3, $3.6]) we have

R AR ~ 1R
N(UPBP)D Ap Drp

(see [1, $4.7]).
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The writer has been unable to determme as yet whether N (o Bg) is ef-

fectively larger than either AR or FR

3.3. The following lemma (see [1, $4.1]) is immediate from the fact that

pfp satisfies the well-known ‘‘homotopy identity,’’

s s S_ ;S
ap+1 *p +p*p-l\ap~ﬁp—1'

LemMmA. Let { Gy} be an identifier for S such that the following conditions

hold:

. N I . . S .S =
(i) cp GP implies that BP ¢y 0,

ii) cS€ cS €
(ii) cp Gp implies that p*p o Gp+1 .

Then 1 Gp} is an unessential identifier for S.

The system of nuclei {N(Bs)} clearly is an identifier for S since ﬁg is a

chain mapping. Therefore, applying P; we obtain the maximum result of the fore-

going lemma.

THEOREM. The system { N (Bg)} is an unessential identifier for S.
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A METHOD OF GENERAL LINEAR FRAMES
IN RIEMANIAN GEOMETRY, I

HARLEY FLANDERS

1. Introduction. In this paper we shall derive the basic quantities of Riemann-
ian geometry, such as parallelism, curvature tensors, and so on, from a consider-
ation of all linear frames in the various tangent spaces. This procedure has the
advantage of subsuming both the classical approach through local coordinate
frames and the more modern approach through orthonormal frames, The exact con-

nection between these methods is thus made quite explicit.

The principal machinery used here is the exterior differential calculus of E.
Cartan. (See [ 1, p.201-208; 2, p.33-44; 3, p.4-6; 4, p. 146-152; 7, p.3-10].) We
shall follow the notation of Chern [3] with exceptions that we shall note in the
course of the paper. It is important to keep in mind the following specific points

of this calculus.

On a differentiable manifold of dimension n one has associated with each
p=0, 1, 2, -+« the linear space of exterior differential forms of degree p (p-
forms ). The coefficients form the ring of differentiable functions on the manifold.
The 0-forms are simply the functions themselves, and the only p-form with p > n
is the form 0. Locally, if ul, ..., 4" is a local.coordinate system then a one-

form » may be written
(1.1) o =2 f(u)du;

and, more generally, a p-form  may be written

(1.2) @ 2 fieees,(®) du'leen dy'?

1°°° ¢
(1£i  <eee<ip<n)

g el

1 . .
— Z .  (u) du't «os du'®  with the f,., skew-symmetric.
Y i p 6 y
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If © is a p-form and 5 a g-form, then
(1.3) 3% =(-_1)pq nw

is the exterior product of » and 7, and is a (p + ¢)-form.

The operation d of exterior differentiation is intrinsically characterized by

the following properties:

(A) d sends a p-form w into a (p + 1)-form d w;

(B) dw; +w,) =do, + do,;

(C) d(dw) = 0;

(D) df=2_(3f/du’)du’, where fis a O-form (function) and (u) is a local

coordinate system;

(E) dlwn) =don + (-1)P wdy, where » is a p-form.

We shall also use matrices whose elements are differential forms. If 4 is such
a matrix, 4 will denote its transpose and d4 will denote the matrix whose ele-
ments are obtained by applying d termwise to the elements of A. If 4 and B are

square matrices of p-forms and g-forms respectively, then it follows from (1.3)
that

(1.4) “(AB) = (-1P9 B 4.
If A is a nonsingular matrix of functions ( O-forms), then
£1.5) d(A7') = =471 dA A1,

This is the case because A4A™! =1, the identity matrix, hence
dA A™" + AdA™! = 0.

2. Linear frames. We shall now define the objects of this investigation. We
begin with a differentiable manifold % of dimension n and class C*. (See [8,
p-20].) On such a manifold one may form the space C(R) of all infinitely dif-
ferentiable real-valued functions on R. If P is a point of R, a tangent vector at

P is an operator v on C () to the reals satisfying

(A) v(f+g)=v(f) +v(g),
(B) v(fg) = f(P) v(g) + g(P) v(f), for all f, g in C(R).

It is well known [5, p.76-78; 6] that the set of all tangent vectors at P forms a

linear space of dimension n under the usual operations of addition and scalar
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multiplication of operators. If Il is a coordinate neighborhood on R with a local

1

coordinate system u', ..., u”, then the operators

d d
(2.1) € = —— , .00, € =
du! ou"
may be considered as tangent vectors at each point P of U, where if fis in C(R)
we have
(2.2) ei(f) = (3f/9u’),.

The vectors of (2.1) in fact form a basis for the tangent space of each P in 1.

A wvector field (vector, for short) is an assignment of a tangent vector vp at
P to each point P of Rt [5, p.82-83]. In terms of the basis (2.1), one may write

a given vector field v on 1l as follows:
(2.3) v=2e,, with A% = M (ul, ..., u").

Here we use the Einstein summation convention, as we shall do in what follows.
The vector field v is infinitely differentiable if each of the coordinate functions
A" of the variables &/ is so. In the future we shall deal only with this kind of

vector so-that ‘“‘vector field”’ or “‘vector’’

will always mean infinitely differenti-
able vector. It is important to note that that this definition is independent of the
particular local coordinate system we have choosen, since a change in local co-
ordinates merely effects a nonsingular linear transformation with C* coefficients

on the A, in accordance with the usual tensor rules.

By a linear frame we shall mean a set e, ..., e, of vectors which form a
basis for the tangent space at each point P of a given coordinate neighborhood
1. One may visualize this as a choice of oblique coordinates in each of the tan-
gent spaces at the various points of 1 in such a way that the coordinate axes
and units vary smoothly in moving from point to point. The vectors of (2.1) form
an example of a linear frame, and we shall call such a frame a coordinate frame

to indicate that it is derived from a local coordinate system.

The manifold R is called a Riemannian space if it carries the following add-
itional structure. For each P in R one is given an inner product in the tangent
space at P, making this space into a euclidean space. This assignment of inner
products to the various tangent spaces must be infinitely differentiable in the
following sense. If v and w are any two vectors on &, thenv.w, the inner product
of v and w, which clearly is a point function on R, must be of class C*. This
implies (and is equivalent to) the following. If e, ---, e, is the coordinate
frame of (2.1), then
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(2.4) ei'ek=gik(u1""vun)’

where the functions g, are C* functions on U. In this case one custimarily

writes
(2.5) ds? = g, Ldu' duF},

where { } denotes the ordinary tensor product of the differentials, as distinguished

from the exterior product.

An orthonormal frame e, -++ , e, is a frame satisfying
(2.6) e - e =3,, the Kronecker §.

Ife,, .-+, e, is a frame on the space R, then there is uniquelly determined a
(dual) basis ¢!, <<+, 0" of the space of differential forms of degree one. This
is the case because the algebraic dual of the space of tangent vectors at a point
is precisely the space of 1-forms at that point. (Cf. [3, p.81].) As is customary,

we shall formally write
(2.7) dP = o'e,,

and think of this displacement vector dP as a tangent vector whose components
are differentials. (See [1, p. 34, 52, 101; 3, p. 10; 6, Chapter 2].)

3. Existence of parallel displacement. We shall now generalize the develop-

ment of [3, §5]. We first of all select a linear frame e, -+ , e,, and have
(3.1) dP = gle;,

where P is the variable point of Il and the o’ are one-forms on 1l. We set
(3.2) e - e =g,

which defines a positive definite symmetric matrix || g;, || of functions on U.

We next wish to define differential forms w{ of degree 1 so that if we set
(3.3) de,-=coije]~,
then the equations

(3.4) d(dP) =0,

(3.5) de; - e, + e, . de, =dg,
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will be formally satisfied. The first yields
d(dP) = d(o' ¢;) = dol ej ~ o' w] e, = 0,
hence
(3.6) dol - o' ol = 0.
The second equation becomes

j !
(3.7) w} it Yk Bl = dgiy-

THEOREM 3.1. The equations (3.4), (3.5) define unique 1-forms w{

Proof. It is convenient to work with covariant components. We set
(3.8) 0y = @ 8jpr M, = 4ol g
and our equations become

(3.4’) Ut(l.)ir = nr’
(3.5%) Wi + o = d gy

The one-forms ¢!, «++ , ¢" are linearly independent, and so we may write

1
(3.9) 77,-='2_ h USUt;

rst

(3.10) dg; = ¢y
where the &__, and ¢, ; are known functions on 1 satisfying

(3.11) h . +h, =0,

rst rts Cikl = CRil-

We seek unknown functions Fijk such that

555

(3.12) ) = T, oF,
or

k ; j
(3.13) Oir = Firk o with Ty = l_‘Iik &jr+

We now have
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and so our equations (3.4), (3.5°) become
(3.47) Uik = Uhri = hrigs
(3.5") Citt + Uit = Cina-

These equations have a unique solution. To prove this, we derive as a con-

sequence of our equations the expression

ik = Prig + Ui = Prige + Cppy = Uiy

= h’rik t Chri T hkri - I_‘ikr = hrik * Chri T hkri = Cir t I1!|:z'r
= hrik * Chri T hkri = Cikr t hikr + I1rik
= hrik t Cpr T hkri = Cikr T hikr t Cu T l—‘irk'

This implies that the only possible solution is given by

1 1
(3.14) Cie =5 Chrig + higr = Ppers) + 5 (Cpige + Chri = Citr ).

Substitution of this expression into the original equations (3.47), (3.5"’) shows

that this indeed is a solution.

The functions I';,, are the components of the Christoffel symbols of the first
kind -- with respect to a general frame rather than a coordinate frame as is usual.

In case of a coordinate frame (2.1) we have

ol =dut, dot =0, h_, =0;

rst

only the terms in the ¢, appear in (3.14). Since in this case

dgip = Cipg 95
we have
98
Cikt = 70

and so (3.14) is precisely the formula of Cartan [1, p.37]. In case of an ortho-
normal frame, the g, are constant, hence the c ., all vanish; only the terms in
the hrik appear in (3.14). Thus formula (3.1) of [3] results. In view of these
special cases and the right side of (3.14), it would appear that somehow a gen-
eral frame can be decomposed into a coordinate frame and an orthonormal frame.

This possibility seems worthy of further investigation.
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We now can express our result in a convenient matrix form. We set
(3.15) G = llgyll, e="‘(e, e en), o=1(c%---,0"), Q=]of].
We then have the vector equations
(3.16) dP =oe, de=Qe, e.'e=0C,
and the form equations
(3.17) do =0Q, dG =QG6 + G 'Q.
It is perhaps well to keep in mind the relation in ordinary differentials

(3.18) ds? = dP . dP = g lo'o*} = {0 G o}.

Suppose that X = Ae is a (contravariant) vector field on U, where \ =

(AY, «eo, A™). We have
(3.19) dX =dle + Ade = (d)A + AQ) e.

The vector field is said to be generated by parallel displacement along a sub-
space if the components of d X vanish on that subspace. Thus the condition is

(3.20) d)L+I\,Q= 0-

If Y = pe is a second vector field, also generated by parallel displacement, so
that

du + pQ =0,
then we have

X.Y=AGY,
hence

d(X.Y) d)\Gzy+)\dCtu+)\thp

“AQGH +AMQG+ G -AGT Y = 0.

This shows that parallel displacement is a euclidean transformation.

The differential forms given in (3.19) are often called the components of the
absolute differential of the given field X. (See [1, p.38].) These are given ex-
plicitly by
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(3.21) Drx=dXx +AQ, Dix= (DA, ...,DA").

If we express these forms in terms of the basis g, we obtain the coefficients

of the covariant derivative of \:
(3.22) DA = )\i,l- o/, or DX =)0, where A, = H)\i,,‘H-

One deals with covariant (form) fields and tensor fields similarly. Suppose for
example that

T = A/ e. e.

t g

is a contravariant tensor field of order two. Here
ee =e ® e;

denotes the tensor product of the vectors e; and e;. We have

(3.23) dT =d\if e;e; + A mi-‘ e, e + A w§- e e,
hence
(3.24) dT = D)\ e; ej, DAV = dAT + \H @b + AP o

This again defines the covariant derivative
DA = )i, oF.

4. Consequences; the curvature forms and the Bianchi identities. We begin
with the basic relations (3.17). By differentiating the first of these, do =0Q,

we obtain
0=doQ -0dQ = 0(Q?% - 4Q).
Thus if we set
(4.1) 0 = 4a - Q?,
we obtain the relation
(4.2) c®=0.

The elements of the matrix
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are two-forms, usually called the curvature forms. We set

m

k
(4.3) 01’ Rllm

with
Rk

ilm

+ Rzml

defining the Riemann symbols of the second kind. The relation (4.2) may now be
written
RE 4t ol 6™ = 0.

ilm

By expressing this 3-form in skew-symmetric canonical form, we obtain

(4.4) R%

ilm

+ RF 4 Rm;l

Imi
We next differentiate the relation (4.1) to obtain
d® = -dQQ + QdQ = -(0 + 02)Q + Q(0 + Q2?).
This gives the Bianchi relations:

(4.5) d® =00 - 0Q.

It is easily shown that further differentiation of this relation yields nothing new.

Now let us work on the second relation,
dG = Q6 + G'Q,
of (3.17). This implies

0=dQG - QdG + dG'Q + G 'dQ
=(0+0%)6-0(26+6G'Q) + (AG+G Q) A+ G('O -(Q)?);

hence we have
(4.6) 8G+G'®=0.

One also verifies that differentiating this formula leads to nothing more. One now

introduces the covariant components of @ by setting
(4.7) O = 6} 8-

This implies
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—

(4.8) 6 o™

ik = 5 Viklm o
with
Riklm = R{'lm gjk'

These new symbols R are the Riemann symbols of the first kind (in the case of a
coordinate frame) and are also called the components of the covariant curvature
tensor. Their tensor nature will be verified in the next section. The relation

(4.6) now has the simple expressions
(4.9) Ok + Ok = 05 Ryppp + Rpyypy = 0.

We also have from the relations (4.3) and (4.4),

(4.10) Rijim * Rigmi =05 Ry + Ry + Ropiy = 0.

On combining (4.9) with (4.10), one obtains in the usual way the symmetry re-
Jation

(4.11) Rikim = Rimin-

5. Change of basis. Suppose that e* is second frame on U. Then
(5.1) e*=A4e,

where 4 is a nonsingular matrix of functions. For convenience we set B= A7,
so that

dB = -BdAB.
The relation (5.1) implies
(5.2) og=0"4, or ¢" =0oB.

From the relation (3.16) we have

This implies
G* = AG'.

Next we obtain the main transformation law:
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THEOREM 5.1. Under the change of basis (5.1) we have
(5.4) Q* = AQA7' + dd A7,

Proof. According to Theorem 3.1, the matrix Q* is uniquely determined by
the formulas

do* = o* Q*, Q*CG* + G*'Q* = dG*.
By differentiating (5.2), we obtain
do* = doB —0dB = 0QB + 0BdAB = ¢*(AQB + dAB),

which shows that the expression given in (5.4) satisfies the first of these con-

ditions. The verification of the second condition is this:

(AQB+dABYAG A+ AG'A ('B'Q 4 +'BldA)
=AQG'A+dAG' + AG'Q 4 + AG tdA
dAG' + AdG'A + AG'A = d(AGt4) = dG*.

CoROLLARY 1. The curvature forms transform according to the law
(5.5) 8% =404
Proof. We have
dQ* = dAQB + AdQB + AdQB + AQBJdAB + dA4 BdA B
and

Q*2 = AQ?B + AQBdA B + dAQB + dABdA B,

hence
B =dQ* -Q*2 = AdQB-4Q2B = A4,

COROLLARY 2. IfX = Ae=)\*e* is a vector field on 1, the following trans-
formation laws hold:

(5.6) A =247, DA* =D)AL

Proof. The first relation is simply the statement that A satisfies the contra-

variant transformation law, and is obvious. The second relation is true because
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DX¥ =dX* + \*Q* = dAB -~ ABdAB + AB(AQB + dA B)
dAB + AQ B = D) B.

Corollary 1 asserts that the forms ei/’ which compose the matrix ® transform
as a mixed tensor of order two. Theorem 5.1 gives the transformation law for the
forms mij, and can easily be converted into a transformation law for the Christof-
fel symbols F{:k of $3. What is more important, however, is the assertion of Corol-
lary 2, that the components D \* of the absolute differential of X transform by the
contravariant tensor rule. This proves incidentally that parallel displacement is

intrinsic.
6. The volume element and Gaussian curvature. We set
(6.1) y=|(;11/2 olyeee, 0",

Thus y is a nonzero n-form on 1. Here | G| denotes the (positive) determinant of
the positive-definite matrix G. It follows from equations (5.2) and (5.3) that

under a change of frame we have

Gll/2’ 01’...’0'”:‘14\a’*l’.-.’g*n’

(6.2) |G*|Y2 =€, |4] -

where

€, =sgn|A4].
Thus we have the transformation law satisfied by the volume element y:
(6.3) y = EA Y.

It is thus possible to define the volume of an orientable n-dimensional portion of

R by integrating y over that portion.

We now borrow some information from the theory of skew-symmetric matrices.
Let S =||x;j|| be a generic skew-symmetric matrix of even dimension n=2m.
Then there is a unique homogeneous polynomial P (x;;) of degree m with the fol-

lowing properties:

(a) |S| =[P (x;)1%
(b) if S* = AS A, where A is nonsingular, then

P(x?j) = |4] P(xi].);

(c) P has value 1 for the specialization
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Om Im
S =
~In Om

Now assume that our space & has even dimension n = 2m. The matrix H =0 G
is skew-symmetric, by equations (4.7) and (4.9). Also the elements of H are 2-
forms, and hence lie in the commutative ring generated by all forms of even de-

gree. We set
(6.4) &=-P(H)/|G|Y2.

This form £ is of degree n and is called the Gaussian curvature form [5]. When

we combine (b) above with equation (6.2), we obtain the transformation law

(6.5) & =€, ¢

Since y is a nonzero n-form, and there is only one linearly independent n-form, we
have

(6.6) §=Ky,

where K is a function called the Gaussian curvature. We may combine (6.3) with

(6.5) to obtain the intrinsic character of this quantity:
(6.7) K* = K.

7. A property of | G|. In this section we shall set

g=16].

The equation (5.3) then implies that

where
a=|4].

The following result is known [ 1, p.44] for the classical case of a local coordi-

nate frame.

THEOREM 7.1. If

S(Q) = T o
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denotes the trace of the matrix ), then

dg

1
. - — =3 .
(7.1) 2 2 (Q)

The proof of this theorem will rest on the following known lemma.
LEmMA 7.1. If A is a nonsingular matrix of functions, and
a=|4],

then
da _
(7.2) — =S5(d4 .+ A7Y).
a

We shall include a short proof of this result for completeness. We set
C=cofd, B=A"'=aqa"'C.
Then

da = Z Mis

where 7, is the determinant formed from | A | be replacing the ith row of | 4] by
the row (dail’ ++e, da; ). Thus

n
n; = Z (dai].) Ciie

=1

It follows that

da

> (dai].) Ciis summed on ¢ and j.

On the other hand,

S(dA - A7) = a”'5(dd - €) = a™* 3 (day;) ¢;; = a” da,

as asserted.

Proof of Theorem 7.1. We shall first show that the formula (7.1) is valid,
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provided that it is valid for a single moving frame. We have, under the change of

frame (5.1),
dg* = 2ag da + a?dg;
hence

dg* 1 dg da
* =

1
2 g 2 g a

Next, from equation (5.4) we have
S(Q*) = S(Q) + S(d4 . 47Y).

It now follows from Lemma 7.1 that

1 dg* 1
S(%) - — = - s(0) - = =£.
2 g 2 g

Finally, we note that for an orthonormal frame, Q is skew-symmetric, hence

S(Q) =0, while G =1, g =1, and so g~! dg = 0.
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THE NEUMANN PROBLEM FOR THE HEAT EQUATION

W. FuLks

1. Introduction. By the Neumann problem we mean the following boundary-

value problem: to determine the solution u(x, t) of the equation
(1.1) u,, (% ¢t) - ut(x, t) =0

in the rectangle or semi-infinite strip R®7¢): {b<x<c; a<t<T < al, given
u(x,a)on b<x<cand uy(b, t) and u,(c, t) on a <t < T. There is a formula
in terms of the Green’s function ( essentially given by Doetsch in [ 2, p. 3611])
which gives the answer to this problem if the closed rectangle is in the interior
of a larger region in which u( x, ¢) is a continuous solution of (1.1). This formu-

la is as follows: let d = ¢ ~ b, and let

1 - t - - -
F(b’c)(x, by, s) = — [13 (x y’ S) .\ 3 (x+y 2b’ t s)]
2d 3\ 2d d? 3 2d d?

where 83 is the Jacobi Theta function; then
¢ ¢
(1.2) u(x t) =ﬁ F®) %, 1;9,a) u(y,a>dy—f F® X, 155, 5) u (b, s)ds
a
t
+ / F®:) (x o 0,8) u (e, s) ds.
a x

The purpose of this paper is to extend the use of formula (1.2) in the following
manner: we will give conditions under which a solution of the heat equation can
be written in the form (1.2) wherein u(a, y) dy, etc.; are replaced by d4(y) or
by a(y) dy, where A(y) € BV (that is, of bounded variation) or a(y) € L. And
we will examine the senses in which these extensions of formula (1.2) solve the
boundary-value problem; that is, the manner in which the solutions tend to the
prescribed boundary data for approach to a boundary point. Furthermore, we will
obtain criteria for the unique determination of the solutions of these generalized

boundary-value problems.

Received June 30, 1952. The work on this paper was performed under sponsorship of
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We will normalize our rectangle to be R: {0 <x<1,0<t< T <}, and for
this region we will delete the superscripts from the Green’s function and denote
it simply by F(x, & ¥, s). And we will denote by H the class of solutions of

(1.1) for which both uy, and u, are continuous.

It will be convenient to display here the formula ( see [ 2, p.307])

hnd - 2
(1.3) l’a (x/2, t) = (mt)”1/2 Z exp [ (x4+tn) ],

n=-oo

from which it is clear that F(b’c)(x, t; y, s) is a uniformly continuous function
of all six variables if d is bounded away from both zero and infinity, and if the

point (x, t) is bounded away from the point (y, s).

It also follows easily from (1.3) that

Fx(x, 50, s) = —-Gy(x, t; 0, s) and Fx(x, t1,s) = —Fx(l—x, t0,s),

where

1 X -y x+y
G(x,t;y,s):—z— [Z’s( 5 ,t—-s)—l’s( 5 ,t-—-s)]

is the Green’s function for the corresponding Dirichlet problem. (See [ 3; 4; 5; 6;

71.)

2. The Stieltjes integral representation. Our first main theorem gives the so-
lution to one of the generalized boundary-value problems.

THEOREM 1. For u(x, t) to be representable in R by
(2.1) ulzx, t) = /l F(x, ty,0)dA(y) - [tF(x, t; 0, s) dB(s)
0 0
t
+ f F(x, 1, s) dC(s),
0

where A(y) € BV (0<y<1) and B(s), C(s) € BV (0 < s < s,) for every
sq < T, it is necessary and sufficient that

(1) u(x,t) € HinR,

(2) fot fux (%, s)| ds < M; uniformly for 0 <x < x, and x, < x < 1 for some
Xgs %y, where M, depends only on t,
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(3) f} luly, t)| dy < M uniformly for 0 < t< ¢, for some t,.
Proof. To prove the sufficiency, let (x, ) € R. Then there exista, b, ¢ > 0

such that u(x, ¢) is given by (1.2). But, by condition (3),

4,(x) = fx u(y, a)dy € BV[0<x<1]

o

uniformly in @ for 0 < @ < ¢,. Hence the uniformity holds for any sequence of
values of ¢ tending to zero, and thus by the well-known convergence theorems of
Helly and Bray ( see, for example, [9, p.29-31]) there exists a subsequence {a, }
and a function 4(x) € BV (0 < x <1), to which Aan(x) converges substantially,
such that

lin [ PO (s 6y, 0,) ddg (7) = [F PO 55,00 dd ).

n —oo

Then (1.2) becomes
t
(2.2) u(x, t) = L FO) (g, 4 y,o>dA(y>-/o FO:)x t5b,5) uy(b,s)ds

t
+f F(b'c)(x, t; ¢, s) ug(e, s)ds,
o

where the existence of the two latter integrals is guaranteed by condition ( 2).

Furthermore,

4 t
Bb(z)=fo ux (b s) ds and C,(2) =/ uglc, s)ds € BV[0O < t< ¢]

o

for every ty < T uniformly for 0 < b < x4 and x; < ¢ <1. Hence the uniformity
holds for any sequence of values of b tending to zero and of ¢ tending to one.
Hence there exist subsequences { b, } and { ¢, } and functions

B(t), C(t) € BV(OStSto)

such that

. t (bycy) ¢
lim F (=, t; bn,s) de (s) = F(x, 0, s) dB(s)
i n 0

n—oo

and
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n—,0

L
lim f‘F”’"’c")(x, t cn,s)dCc,,(s)=f F(x &1, s) dC(s).
[1] V]

Hence u(x, t) has the representation asserted.

We will later showthat 4, B, C are independent of the particular sequences

of a, b, c used here ( see Theorem 3).

To prove the necessity of condition (1) we must differentiate under the inte-
gral sign. The only difficulty encountered in this is the disposition of the terms
which arise from the variable upper limit. If, however, one forms a difference
quotient it is easy to see that the contribution arising from the variability of the
upper limit must always vanish, due to the strong convergence to zero of the
kernel as s—¢-0.

To establish (2) we write

uy(x, t) = fl Fyulx, t;y,0) dA(y) ~ ftFx(x, t 0, s)dB(s)
0 0

¢
+ f Fo(x, t; 1, s) dC(s)
0

[ Fem sy 00 a1+ [*6,05 50, 5) dB(s)
0 0

¢
+/ Gy(l—-x, t 0, s)dC(s)
0

Uz, t) + Uy(x, t) + Uy, t).
Now
¢
1Uy(x o) 5/ Gy (% 50, $)|dB(s)| = v, (%, ¢)
0
and
v ¢
|Us(x, t)| 5/; Gy (1 -z, 0, s)|dC(s)| = vy(x,¢t),

where v,(x, t) and v;(x, t) are nonnegative solutions of (1.1). Then, by [3,
p.22-23] and [7, p.373], v,(x, t) and vy(x, t) must satisfy condition (2).
tence so must U, (x, ¢) and U, (x, t).

To examine U, (x, ¢) we need to note that, by (1.3), for0 <%, y <1,



THE NEUMANN PROBLEM FOR THE HEAT EQUATION 571

F,(x, t;y,0) = -

-y [_ (x—y)2]_ (x+9)? o (x+y)2

p —
471/ 243/2 4t 471724372 4t

(x+y-2) [ (x+y-2)2

4¢ ]+El(xsy’ t)’

4"1/2t3/2

where %, is bounded, say |z,| < B,. Then

¢ tpr 2 |a, | a?
f(;lUl(x,stsg./;./; s —_exp[-— Z;]|¢1A(y)|ds

ne1 4nl/2g3/2
+ tB, V, (1),

where ¢, =x~-y, a,=x+y, a3 = x+y~2, and V4(1) is the variation of 4.
Then

3

t 1 1 [t | an | [ a,f]
/;|Ul(x,s)|ds§4ﬂl/2£'/; n}:_ oo |- 22| ds |dA(p)]

1 §

+ tBl VA(l),

i

1 1 3 ) e o
an/zfo > /;2/4cess Y2 ds |dA(y) | + ¢B, V4 (1),
n=1 n

3

271/2

<N

flfw e s™V % ds|dA(y)| + tB, Va (1),
0 JO

(3/2+¢tB,) Vq(1),

i

the change of order of integration being pemmissible by Fubini’s theorem. Since
U,(x,t), Uy(x, t), and U, (x, t) separately satisfy condition (2), so must their

sum, u, (x, £).

To verify condition (3) we write

u(, z>=f0‘-[0'+jo’=ul(x, 0) + uy(x, 0) + ug(# 1),

and first consider

¢
uy(x, t) = —‘/; F(x, 0, s) dB(s).
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But, by (1.3),

%2

4(t-s)

F(x, £0,s) =g V2(t-s)"1/2 exp[ ]+'ﬁz(x,t,s),

where %, is bounded, say by B,. Then

2

1 b ocwag,_ y-w2 [P [_ x ]
./(;luz(x,tﬂdxg‘/; w (t=s) j(: exp 105 dx | dB(s) |

+ By Vg (1),

t _ _ oo x2
<j(; - 1/2(t_.s) 1/2./; exp [— 4(t—-s)]dxldB(S)l + 32 VB(t)’

= (1+B,) Vg(e).
Similarly,
fo‘ lug (%, )] dz < (1+ By) V(2.

We turn now to u,(x, ¢):

1 1 f1
./o.|ul(x,t)‘dx§/0../; F(x, t; y,0) dx |dA(y)].

But, again by (1.3),

1 Ry )
F(x, t;y,0) = -2~(77 t)"V 2 [exp _ (x4'ty) ]+ exp [— (x;rt}’) ]

[ (x+y 2)? ”
+ exp —_—t (x,y, t),

where u, is bounded by, say, B,. Then

- 2 2
/ Iul(x’ t)ldx< —(ﬂt) 172 [/ [exp[ (x Y) ]+exp _(x.;;y) ]

[ (x+y-2)2
Y

1 1 1 (x—y)?
Larn [ ([ oo |22
- 2(77 ) 0 -1 P 4t

(x+y-2)2
N /0'1 exp [_ T] dx] 1dA(y)| + By ¥, (1),

” dx |dA(y)| + By Va(1),
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1 _ o x2
E(”t) 1/2 -/(')1 zf_m exp [-—H]dxldA(y)l + B, VA(I),

V,(1)(2+ By)

IA

IN

Hence, for 0 < £ < ¢,

/0‘|u(x, t)| dx < V, (1) (2+ By) + Vg () (1+ By)+ V(o) (14 By) = M

This completes the proof.

3. The behavior at the boundary. We are now prepared to examine in detail
the behavior near the boundary of solutions of our generalized boundary value

problem considered in section 2. The main result of the section is:

THEOREM 2. If u(x, t) is representable in R by (2.1), then

(1) lim u(x t) = 4°(x)
t—0+
and
(2) lim uy(x, ¢) =B (t=0) lim ug(x t)=C’(t-0)
xXxX—0+ X — 1-0

, B(t-=0)~B(t-h
(whereB(t—O): lim (¢-0) (e )

, and similarly for C*(t - O)) ,
hoo+ h

wherever the derivatives in question exist.

Proof. If u(x, t) is representable by (2.1), let

u(x, t)=./;l-_/‘)t+-/;t=u‘(x,t)+uz(x,t)+u3(x,t)

as before. Let I be any open interval whose closure is contained in {0 <x < 1},
Then for x € I, F(x, t; 0, s) and F(x, t; 1, s) both converge uniformly to zero
as t—> 0+, as can be seen from (1.3). Then clearly u,(x, ¢), uz(x, t) — 0 as
t— 0+, forx € I

Also, forx € I, by (1.3),

)2
F(x, 679 0) = (4m£)"V2 exp [-— (x_‘“l] + o(1)

uniformly as t — 0+. Hence
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x~7y)?

u,(x, t)='/0'l(4-77t)_1/2 exp [-—( = ]d/l(y)+o(1).

Then (see [ 3, p. 25-26 and 65-66] and [ 7, p. 393-394])

lim u,(x,¢) = A'(x)
oo+

wherever this derivative exists. Since any x € {0 < x < 1} can be caught in such

an /, this establishes (1).

To verify conclusion (2) we write, as before,
1 t

ug (%, ) = / Fulx 6y, 0) dA(y) + / Gy(x 10, s) dB(s)
0 0

+ ./.t Gy(l—x, t; 0, s) dC(s),
0

= Ul(x’ t) + Uz(x, t) + U3(x’ t)-

As x —> 0+, U;(x, t) and U,(x, t) vanish since the kernels converge uniformly
to zero, and as x — 1 -0, U,(x, ¢) and U,(x, t) vanish for the same reason.
Then by [5], u,(x, ¢) tends to B(t=0) or C°(¢t-0) according as x tends to
zero or one, whenever the derivatives exist.

We can now give criteria for the existence of boundary values of the function

u(x, t) itself on the sides x =0, and x = 1.

COROLLARY 1. If u(x, t) is representable in R by (2.1), then u(0+,t)
exists ifB'( t—-0) does.

Proof. Let 0 <xy < 1; then
u(x, t)=fx ue(y, t) dy + ul(xg, t) (0<x<1),
X0

and the integrand is bounded in 0 < x < x,. lience the integral exists for x = 0
and defines u(0+, t).

We might also note in passing that for such ¢, the x difference quotient at the
boundary also tends to B’(t-0); for, by the mean value theorem,

u(h, t) - u(0+’ t)

- = u,(k, t) — B(t-0)
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as h — 0.

From Theorem 1 we have:

COROLLARY 2. Foru(0+, t) to exist it is sufficient that

f"°(t_s)'v2 [dB(s)]
0

converge,

Proof. Define

1 t
= F 3y, 0) dA F(0,1¢ 1, s)dC
fo) = [T P, 55,0 a4 + [ "RG0, 51, 5) dCCs)
o2, _ 172 - [__ n? ]
4—2'/‘0 7 (t-s) D exp ——(t—s) dB(s)

n=1

- g V/2 /’t-o (t-s)"Y2 dB(s),
0
and consider

lim sup |u(x, ¢) - f(2)|

x =0+

_ 2
<ﬂ_l/21imsupftO(t-s)-l/z[l-exp [* - ]]IdB(S)‘
< o s)

x—0+ 4(t-
Now given € > 0 there exists a § > 0 such that

x2

4(t—~s)

”-1/2.[:0(,:_8)—1/2 exp [_ ]]dB(s)l

< n'1/2f';°(t-s)'1/2 |dB(s)| < €,

so that

lim sup |u(x, t) ~ f(2)|

x—0+
2

(¢—s)

t-
< 7”2 lim supf (t-s)7V2 [l—eXP [— i ]}IdB(s)l+2€=2€-
0

xX— 0+
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Let € —0 to get

lim u(x, t) = u(0+ t) = f(¢),

xX—0+

which completes the proof.

We may also note that if B(s) were monotone, then, since exp [-x2/4(¢~s)]
converges to unity in a monotone way, we could invoke, the monotone conver-
gence theorem to obtain the convergence of the integral as a necessary and suf-

ficient condition for the existence of u(0+, £).
Also with Theorem 2 at our disposal we can now prove:

THEOREM 3. Let u(x, t) be representable by (2.1); then the functions
A(=x), B(t), C(t) are uniquely determined by u(x, t), so that, at every point of
continuity,

A(x) = lim f" u(y, a) dy
0

a -0+

and

B(t) = lim ftux(b,s)ds; C(t) = lim ft uy (c, s) ds.
0 0

b-o+ c—1-0

Proof. For suppose B,(t) and B,(t) arise from two distinct sequences.
Then clearly if B;(t) = B,(¢) — B,(t), we have

t
f F(x, t; 0, s) dB,(s) =0 in R.
0
Hence, differentiating, we get
¢
/; Cy(% 60, 5) dBy(s) =0
We first show B;(s) is continuous: suppose it has a jump o at ¢,; then, for £ > ¢,

t
0= fo Gy (% 5 0, 5) dB4(5) + 0 Gy, 50, 2),

where B,(s) is the boundary function remaining after the jump ¢ at ¢y is re-
moved. Then
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0 ¢ x x2 4B
"fo 2712 (s -s5)3/2 °F [‘ 4(t—s)] +(s)

x0 [ x? ] (1)
+ —————— exp |~ ———— ]|+ 0 .
20t 2(t—1ty)3 4(t-1¢)

Choose § so small that
lo|

VB4(t°+5) - VB4(£O—5) < —? ’

set t — t, = x2/4, and take x so small that x2/4 < §. Then

to+x2/4 x x2
0=f exp |- dB,(s)
to- 8 272 (ty —~ s + x2/4)3/2 4(ty — s + x2/4)

4o

+o0(1),

enl/? x2
4|0 to+x2/a x x?

02 —53 _/ . exp|-

ern x to-S 2”1/2“0 -S4+ x /4)3/2 4,.(t0 —-s+x2/4.)
{dB4(s)| + o(1).
The maximum of the integrand is at s = ¢, so that
4|o 2|0 2|0

or Mol 2ol el

en'/? x2 en x ent/?x?

and we have a contradiction as x — 0+.
Similarly the jumps of C(¢) are determined.
Suppose A,(x) and A,(x) arise from two distinct sequences, and 4;(x) =
A (x) ~ A,(x); then, as before,
0= j" F(x t;y,0) dd;(y) in R.
0
And suppose it has a jump of o at x,; then, as before,

_ 2
0 = 0(4nt) V2 4 (47¢)"V/2 [‘ exp [- (—yz’l’-] dA,(y) + o(1).
0

If § is so small that
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VA4(x0+8) - VA4(xO—5) < lel/2,

then
x,+8 - 2
0=a(4nt)“/2+(4nt)'”2/ o p[—(—}-,-——fg)—]dA4(y)+0(l),
X =8 4t
0> ol (47t)™ V2 — |o| (47t)™Y2/2 + 0(1) = |o| (47t)"Y2/2 + 0(1),

and as ¢ — 0+ we get a contradiction.

Then 45, B3, C3 are continuous functions of bounded variation, and by Theo-
rem 2 their derivatives are zero almost everywhere. Each of them must then have
an infinite derivative on a nondenumerable set. (See e.g. [8, p.128].) Thisthen
implies that lim u(x, ¢) and lim u, (x, t) must become infinite on a nondenumer-
able set, which is a contradiction, and the functions 43, B,, C; are constants,
Hence, since every sequence of a’s, b’s, or ¢’s contains a subsequence for
which 4,(x), etc., converges to a common limit, the limit must also be attained

for continuous approach. Thus the last statement of the theorem is established.

4. The Lebesgue integral representation. We are now in a position to estab-
lish:

THEOREM 4. Foru(x, t) to be representable in R by
(4.1) u(x, t) = le(x, &y, 0)a(y)dy - ftF(x, t0,s) b(s)ds
0 0

¢
+/ F(x,t;1,s)c(s)ds,
0

where a(y) € L(0<y<1)and b(s), c(s) € L (0<s<sy,<T<x) for every
59, (0 <sy <T), it is necessary and sufficient that

(1) u(x, t) € H in R,
t
(2) yle0+.L lux (3, ) — ux(ys)|ds =0
and
¢
l’im j; |ux(y, s) — ux(y5 s)| ds =0
¥,y = 1-0

for every t (0<t<T), and
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. 1 ’
(3) lim f lu(y, s) — u(y, s”)| dy = 0.
’ 0
s,8"=0

Proof. For the sufficiency, let the closed finite interval I C {0 < s < T} be
prescribed, and let e be any measurable set in I. Given € > 0, there exists § =
5(€, I) such that

flum,s) gy’ s)| ds < €2 for y,y” < 5.
e

Then

./;lux(y,s)ldsgflux(y’;s)ldsnt f |ux(y, s) — ux(y’ s)| ds

< /; lug(y% s| ds + €/2.
Now keep y” fixed and take m(e) so small that
[1utrods < 2,
so that, for0 <y < §,
_ﬂlux(y, )| ds < €

if m(e) is sufficiently small. Hence By (s ) are uniformly absolutely continuous;
consequently, so is B(s), and dB(s) can be replaced by 6(s) ds, where B’(s) =
b(s) almost everywhere. Similarly dC(s) = c(s)ds and dA(y) = a(y) dy.

The necessity of (1) follows by Theorem 1. To prove that of (2) we write
b(s) = by(s) - b,(s),
where b, (s) and b, (s) are both nonnegative, say, for example,
b(s) =|b(s)| and b,(s) = |b(s)| - b(s).

Let
9 (%, t)=—ftF(x, 50, s) b;(s) ds (i=1,2).
0

Then
. t
u{) (x, 0) =f Gy (% 4 0, 5) by(s) ds (i=1,2).
0
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We know from Theorem 2 that

lim ) (x, t) = b;(t) (i =1,2),

x—0+

almost everywhere, and, by Theorem 3,

I

lim /' ) (x, s) ds =f’ b;(s) ds (i=1,2).
0 0

x—0+

Since the ug)(x, t) are nonnegative (see [4, Remark 1, p.975]), we can say
(see [ 4, p.9771)

(4.2) lim ./tlui(x,s)-—bi(s)lds=0 (i=1,2).
)

x — 0+

Now consider

(4.3) ft|ux(x, s) = b(s)|ds < /tlu;‘)(x,s) - b,(s)| ds
0 0

+ft|u§¢2)(x,s)-—b2(s)]ds+ s; % 0)a(y)| dyds
0

ds.

fs Gy(l—x, 550, T) c(T)dT
0

As x — 0+, the first and second integrals on the right vanish by (4.2), and the
fourth since Gy( 1-x, s; 0, T) tends to zero uniformly in s and T as x — 0 +.

To estimate the third we note

_v)2
Fo(x, s; 9, 0) = - _1.__ [(x-—y) exp [__(i_y)_]

471232 as

(x+y)2

+ (x+ y) exp [ ]}+ u(x, 5, s),

where Z = 0(1) uniformly in y and s as x — 0+. Then

1 (% - 7)2
F : -_ xor
| Fx(x, 559, 0)] < RZIRVZ [Ix ¥ eXP[ ]

2
+ (x+y) exp ( +y) ]}+|u|

But
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¢ 2 9 00 1/2
f s73/2 exp [— -a—] ds = — f e vT2 dv < 2n
0 4s la| Ja?/at |a]

Hence

t
f |F(x s59,0)|ds <1+ o0(1)<2
o

for x sufficiently small. Thus the third integral on the right side of (4.3) is
dominated by

t
/o'lamtfo tFx<x,s;y,o>|dsdyszfo‘ la(y)| dy.

Then by the dominated convergence theorem we can pass to the limit under the
integral sign, by which we get zero as a limit, since F,(x, s; y, 0) tends to
zero, This proves

lim /t lug(x, s) = b(s)| ds,
0

x— 0+

from which condition (2) follows immediately.

Condition (3) follows similarly, but more easily.

5. Uniqueness, We now turn to the question of the extent to which the boun-
dary data uniquely determine the solution of the boundary-value problem. We get

one result as an immediately corollary of our Theorem 4.

CoROLLARY 3. If u(x, t) is representable by (4.1) in R, and has zero
boundary values almost everywhere for approach along the normal, then u(x, t) =
0inR.

Proof. By Theorem 2, a(y), b(s), and ¢(s) vanish almost everywhere.

The situation in the case of the Stieltjes representation is not so simple (see
[6]): We can have a function representable in R by (2.1) which has boundary
values identically zero for approach along the normal, yet which is itself not
identically zero; for example, for 0 < 24, let

Y (0<t<ty),
u(x, t) =
-F(x, £ 0, ty) (g < t).

This is a nontrivial solution of the heat equation, representable by (2.1), for

which
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u(x, 0+) = 0, uy(0+,¢) =0, u(1-0,¢)=0.
tlowever we can assert:
TneEoREM 5. Suppose u(x, t) is representable in R by (2.1), that
ulx, 0+) = 0 (0<x<1),
and that B(s) and C(s) are monotone for U< s< T <. Let
lim uy(x,2) =0 as (x,¢t)—(0,s)
along a parabolic arc of the form t— s = ax?, (a>0) and
lim uy(x, ) =0 as (x,t)—>(1,s)

along a parabolic arc of the formt —s = b(x ~1)? (b>0) for every s (0<s<T).
Then u(x, t)=0 in R

Proof. Let x be fixed, 0 < x < 1. Then, by (2.1) and (1.3},
1
u(x,t):f F(x, & 9,0)dA(y) + o(1) as t—0+.
0

Choose 0 < S <(1/2) min(x, 1 —x), so that

(y —x)?]

v JdA(y) +o0(1),

x+§
u(x, t) =f (478)"V2 exp [—
x=3

x - 2]
[ @it e [— (—yT:‘)—Jd[Am—A(x)] +o(1),

x - - 2]
f*g _r-r exp[_(y N 4G = 40T dy 10 (1),

-5 Aql/2p3/2 it
$ 2?2 221 A(x+2z)-A4(x)
=.I;8 —_——4n1/2t3/2 P [—-E—t . dz + 0(1).

Then

u(x, t) > Inf

A(x+2z) - A(x) fS z?

22
s 4gl/243/2 exp [”E]dz +0(1),

-5<z< 8 z

A(x+2) -~ A(x) $/2t1/2
= Inf f

2 é:2_€2d 0
5<z<8 z s/211/2 7172 ¢ ¢+ o(1).
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Let t —0+:

A —
u(x10+)=02 Inf (x+z) A(x)

-8<zL% z
Let § —0:
0>DA(x).
Similarly,
0<DA(x)

for every x (0 <x<1). Now A(x) is continuous, for if it had a jump it would
violate one or the other of these conditions. Then by [ 1, p.580], it must be both

nonincreasing and nondecreasing, and hence constant.

Furthermore,
t
uy (%, t) = f Gy(x, £:0, s)dB(s) + o(1) as (x, £)— (0, s).
0

Then, by [6], B(s) is constant. Similarly one sees C(s) is constant. This com-

pletes the proof.
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ORTHOGONAL HARMONIC POLYNOMIALS

P. R. GARABEDIAN

1. Introduction. In this paper we develop sets of harmonic polynomials in
%, ¥, z which are orthogonal over prolate and oblate spheroids. The orthogo-
nality is taken in several different norms, each of which leads to the discus-
sion of a partial differential equation by means of the kernel of the orthogonal
system corresponding to that norm. The principal point of interest is that the
orthogonality of the harmonic polynomials in question does not depend on the
shape of the spheroids, but only on their size. More precisely, the polynomials
depend only on the location of the foci of the ellipse generating the spheroid,

and not on its eccentricity.

The importance of constructing these polynomials stems from the role which
they play in the calculation of the kernel functions and Green’s functions of
the Laplace and biharmonic equations in a spheroid. One can compute from the
kernels, in turn, the solution of the basic boundary-value problems for these
equations. As a particular case, one arrives at formulas for the solution of the

partial differential equation

?f 1 of 9

—_— - — 4+ — =0

which arises in discussion of axially symmetric flow.

Results of the type presented here have occurred previously in the work of
Zaremba [ 10], and are related to recent developments of Friedrichs [3, 4] and
the author [5]. The polynomials investigated in this earlier work are in two
independent real variables and yield formulas for solving the Laplace and bi-
harmonic equations in two dimensions. Thus it is natural to suggest that the

basic results generalize to n-dimensional space. In this connection, it is

Received September 21, 1951. The author wishes to express his thanks to Professor
G. Szegd, who has given the first proof of the orthogonality of the polynomials intro-
duced here, and who has shown a most friendly and encouraging interest in the ques-
tions related to them, for his collaboration in developing the results of this paper.
Pacific J. Math. 3 (1953), 585-603

585



586 P. R. GARABEDIAN

easily verified that a part of the theory carries over to arbitrary ellipsoids in
three-dimensional space.

2. Notation and definitions. We shall make use of rectangular coordinates

%, ¥, 2z, cylindrical coordinates p, ¢, z, and spherical coordinates r, 6, ¢.

Thus

R
n

p cos ¢ =r sin O cos ¢,
y =p sin ¢

z

It

r sin 0 sin ¢,

r cos 6.

The Laplace integral formula

(n+h)

P:(cos 0) = f (cos 0 + i sin 0 cos t)" cos ht dt

i

for the Legendre polynomials P, (cos 6)=P:(cos 0) and the associated
Legendre functions P;'(cos @) is basic for our work. In terms of Laplace’s

integral we obtain the solid spherical harmonics in the form

+h)!
r Ph(cos 0) cos h¢~—£—n——h—)— /W (z + ip cos t)" cos hep cos ht dt,
0

mr n:
(n+h)!

r”P:(cos 0) sin h¢) = —r-L———f (z + ip cos t)" sin h¢p cos ht dt.
mi

They are homogeneous harmonic polynomials of degree n in x, y, z

We shall be interested in obtaining complete orthogonal systems of har-

monic polynomials in the interior of the prolate spheroid

2 2
z P
+ =1,

ch?« sh? o

(1)

and in the interior of the oblate spheroid
22 p?

(2) +
sh?a  ch?u

Thus it is convenient to introduce coordinates u, v defined by the relations
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z+ip=cos (u~iv)=cosuchv+isinushov
for the prolate case, and defined by
p+iz=sin(u+iv)=sinuchv+icosushv

for the oblate case. In both cases, the boundaries of the above spheroids have
the equation v =&,

We define
Un 1 (py 2) (n+h)!]m . /”P( : ) cos ht d
nh\pPy 2)= Y e nlZ +1ip cost)cos htdt,
( B! 1/2 .n-h
Vab(p, z)= i ] : /WP,,(iz—-pcos-t)coshtdt.
’ (n—-h)! 7 Jo

By the addition theorem for the Legendre polynomials we obtain the well-

known expressions

- 111/2
Un,h(p, 2) = :n——-_—'_f—;!] P:(cos u)P:(chv),
n+h)!
—R)171/2
Va, b (ps z)= En Z;'] in'hP:(cos u)P:(ishv),
n+h)!

where in the first case u, v are coordinates in the prolate spheroid (1) and in

the second case u, v are coordinates in the oblate spheroid (2).

Here

P:(ch v) = shv Prfh) (chv),

P,fl(i shv) = chv Pn(h) (ishv).

The expressions
Un,h(p, z) cos he, Un,n(p, 2) sin ko,
Va,h (p, 2) cos ke, Va,b(p, z) sin h¢

are harmonic polynomials in x, ¥, z of degree n.
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We shall be concerned here with the new polynomials

d
Xn,h == Un+1,h
dz

(n+1+h)']

(n+1-h)! f P/ (z+ipcost)cos htdt
n+

and

d
Yo,n = E Vn+l,h

(n+1+h)171/2 jnoh
T ( 1-4)! / P4y (i z —pcost) cos ht dt.
n+1-— !

The functions
Xn,1(p, z) cos he, Xn,h(p, z) sin h¢,
Yo, (p, 2) cos he, Yo,1(p, 2) sin h¢

are linear combinations of the classical spherical harmonics. The functions
Xn,0and Y, o involve only zonal harmonics and satisfy the partial differential
equation

9 19 9%

ap2 p % 9z

of axially symmetric flow.

Let us denote by D either the prolate or the oblate spheroid described
above, and let us denote the Dirichlet integral over D by

B of dg If 9g 9f 05}
(f ) = ﬂf[ax 3% T3y 9y T35 9. WY

fff—do, (Ag = 0),

where S is the surface of D, and where v and d o denote outer normal and area
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elements on S. Since z+ip=cos(u-i v) and p+iz=sin(u+i v) are
isogonal mappings, we obtain, on the spheroid S,

d ]
do — =pdd dy —.
aau p¢u¢9v

Hence

3 (fe) = _[ff%pwdw/;"/:"fg—fpdsédu-

3. Orthogonality. If 1 £ k, we have by the orthogonality of ordinary Fourier

series
(Un,h cos he, Um,k cos k¢) = 0,
(Un,n sin ko, Un,k sin k) = 0,
(Un,h cos ke, Un,k sin k¢) = 0,
(Un,p cos ke, Un,h sin k¢p) = 0,

and similarly for ¥, ;. For h = k we obtain in the prolate spheroid

aUm,h

(Un,h cos hp, Um,h cos hep) = /W/zﬂ Un,h (cos?he)p dep du
o Jo

v

(n=-Hh)!

7 P Ceha) [sho PA*1(cha)+h cha P! (cha)]
n+ .

77(1+60h)

. /” P:(cos u) Pg(cos ©) sin u du
)

27(1+5,,)
-— 1%— PH(cha) [shaP*! (ch ) + b ch o PP (ch )] Sum,
n +

where 8, =0 for n # m and &, = 1.

Similarly
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(Up,n sinhp, Up,p sin hep)

2m

2n +1

Ph(cha) [shaP ! (cha)+k cha PP (ch )] 8nm.

For the oblate spheroid we have in like manner
(Va,h cos hpy Vp,p cos hep)

(n=h)!
=7(1+8,,) (-'-1——}:% i"*m-2h ph(;sho) [i ch o P#*1 (i sha)
n+ !

by T oh h .
+hsh(XPm(zshO()] Pn(cosu)Pm(cos u) sin u du
0

277(].+80h)

= ——— GV PG sha) [ieha P G sha)
n +

+hsha PH(isha)] Sum.

Also
(Vn,n sin hpy Vi, h sin hep)

27

T om+1

(~1)"k Pk (i sho) [i cha P#*1 (i sha) + hshat PP (i sh )] Sam-

We have therefore proved:

THEOREM 1. The harmonic polynomials Uy, j cos h¢s Uy p sin hep form a
complete orthogonal system for the interior of the prolate spheroid (1) in the
sense of the Dirichlet integral. The harmonic polynomials V, j cos h¢, Vi p
sin h¢ form a similar system inside the oblate spheroid (2). The polynomials
Un,o and Vn,o alone form, respectively, complete orthogonal systems for the
equation of axially symmetric flow inside the spheroids (1) and (2).

We turn next to a less obvious result for the polynomials X, 5 and Y, ;.

Let

[f, gl = ff fgdxdydz.
D
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Then clearly, if & £ k,
[X5,h cos hpy X, i cos k] =
[Xn,h sin hpy Xp, sin k¢p)/= 0,
(X, 5 cos hpy Xp i sin k] =
[X,,,;, cos hpy Xpm,p sin he] =

and similarly for ¥, 5. Now

3z dz du 9z dv
when z + ip=cos (u~iv). Also

du dv d(u-iv) d(z—-ip) du+iv) du=-iv)

EFR P d(z +ip) T d(u+iv) d(z-ip) d(z+ip)

d(u, v)
d(z, p)

sin (u+iv).

Therefore

(X, 4 cos ko, f]

oU U
=— ffffcos h¢l ;+l'h sinu ch v - ;“'h cos u sh v
A u

(

d(u, v)
. dé dp d
a(z,p)" ¢ dp dz
17172 .
E::i+l]:;|] /./ 2 fcos hep sinushv

. [Ph (ch v) Ph+l (cos u)sinuchv

n+1

+P n+l

(cos u)Ph l((:h v) cos u sh v]dqb dudv.

The last integral vanishes when f is a harmonic polynomial of the form
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h h
P (cos u) P, (chv) cos he

with m < n, since

n+i

/ pht !(cos u)smuP (cos u)sinudu=0
0

T bh h .
/(; P, (cos u) cos u P (cosu)sinudu=0

Hence for n # m

[Xn,hcos hdpy Xpp,p cos hpl =0
and similarly

[Xn,h sin hpy Xy h sin hp] =0
For m = n, we have

n+l+h

f=Xn,hcos hp = [n+1 h

] (27 +1) Up,p cos hp +«+ ,

where the dots indicate harmonic polynomials of lower degree, which are
orthogonal to X, ; cos h¢. Thus

[Xn,h cos hp, Xpp cos kel

! ™
=(2n+1) (n+Z;'ff /2 cos? hg sin u sh v P/ (cosu)Ph(chv)

[Ph+1 (cos u) ph

1 (chv)sinuchov

+ P n+l (cos u) P:Hl(ch v) cos u sh v] d¢ du dv

(n=h)!
-_-n(1+80h)( +h)'// :ﬂl(cosu)z :(chv)

nﬂ(ch v)shv chv sinu dudv
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(n-h+1)! fapr
sn(1+5,,) W/ofo Pk, (cos u)? PH(chv)

P,f:ll(Ch v) sh?v sin u du dv

2”(1 + 50}1)

(n+1+h)/aPh(chv) sh v
2n+3 o 7

[(n+2+h)P"+l(ch v)chv+ P2 (chv)sholdo.

n+1

The same value is obtained if we replace cos ¢ by sin h¢ throughout, & > 0.

For the oblate spheroids, we have, on the other hand,

d du 4 dv 4

— d—

5;=5-z-£ dz dv

with p + iz = sin (u + i v). Hence

du dv  dlu-iv) dlp+iz) dlu+iv) d(u=-iv)
9z 9z dz+ip) d(u+iv) dlp+iz) dz+ip)

C9(u, v)
d(p, z

cos (u+iv).

Therefore

Ly, b cos ke, 1

v, av
- ffffcosh(ﬁl P sinu shov- ’;ﬂ'h cos u chv

v

9y, v) d¢ dp d
. z
3(p o) TP
1 4
= nti-h t::i+::'] ff 2 f cos hep sinu chv

n,“(L shv) Prf':ll(cos u)sinu shov

- [
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(cos u) PhY

n+1

+ '(ishv)cosu chv]dgp dudu.

n+1

This integral vanishes when f is a harmonic polynomial
P;:(cos u) Pﬁ(i sh v) cos h¢

of degree m < n, since

f Ph*1(cos u) sin u P,:(cos u)sinu du=0
0

n+i

7 ph h .
./0. Pl (cos u) cos qu(cos u)sinu du=0.

Hence, for n # m,

[Yn,h cos hep, Y , cos hgp]=0

m,
and also

[y, psinhg, Y, sin hél =

For m = n, we note that

n+l+h

/
m_—h] (2n+l)Vn,hcoshq§+---,

f=Yn,h cosh¢=—[

where the dots represent harmonic polynomials of lower degree, which are

orthogonal to ¥ , cos k¢ . Therefore

[Yn,h cos he, Y, ; cos heh ]

-
=—(2n+1)i2"'2h+1( h;'./..[ ./‘mcos h¢ sinu ch v
n+

P:(cos u)P’f(i sh v). [P:+l (i sh v)P::ll(cos v)sinushov

h
+an+1

(cos u)Ph (i shv)cos uchvldgdudv
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277(1+80h)

3 (-—1)"'h+li(n+1+h)./0.al’:(ish v)chv

. [(n+2+h)P,:’+l(i sh v) sh v+iP:++ll(ish v)choldv.

We obtain the same value if cos A is replaced by sin Ad.

This completes the proof of:

THEOREM 2. The harmonic polynomials X, j cos he, X p sin k¢ form a
complete orthogonal system for the interior of the prolate spheroid (1) in the

sense of the scalar product
[f, gl= f/]fgdx dy dz.
D

The corresponding system in the oblate spheroid (2) is

Yn,h cos h, Yn,h sin ho.
The zonal polynomials X, o and Y, o are complete and orthogonal for the equa~
tion of axially symmetric flow in their respective domains (1) and (2).

Friedrichs [4] has investigated the eigenvalue problem

(fz f2] 1T (3f/02)* dx dy dz |
B = maximum

(5 N [T 1(3f/0x) + (3f/0y)? + (8f/02)*} dx dy dz

for harmonic functions f in quite general regions D of space. It is clear from

Theorem 1 and Theorem 2 that we have:

THEOREM 3. The eigenfunctions for the problem

[fZ’ fZ]
(£ N

= maximum, Af =0,

in the prolate spheroid (1) are
Un p €OS he, Un 5 sin he,

and in the oblate spheroid (2) they are
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V., cos he, nh sin h¢.

n,

The corresponding eigenvalues are

[ Ph(ch v)sho[(n+ 2+h)P (ch v)ch v+Ph+1(ch v)sh v]dv
(n+1+4h)

PR (cho)[sho PRI I(cha)+hcho PR (cha)]

for the prolate spheroids and (n+1+h)Q, where Q is the expression

i [ Ph(z shv)chol(n+2+h)PE 1 (ishv)shv+i P (ishv)chovldo

n+1

’
n+l(zsh0’)[z chO(Ph+1(zsh0()+hshO(Ph (ish(x)]

for the oblate spheroids.

Friedrichs was led to this extremal problem through his investigation of
Korn’s inequality and existence theorems for the partial differential equations
of elasticity. We shall show in the following how the eigenfunctions can be
used to solve the biharmonic equation.

One sees easily from Theorem 3 that
Un,h cos ho, Un,h sin ho
and

n,

V. , cos ke, Vn,h sin h¢

are also orthogonal in the norm

({2 + (L) -t

However, we do not go into details since this norm leads to no apparent ap-
plication.

One can obtain quite interesting results, on the other hand, by using the

orthogonality of the X, 1 and the Y, ; over the interior of the ellipses (1) and
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(2) for all values of & to obtain a corresponding orthogonality of the same

polynomials over the surface of the spheroids with respect to a suitable weight

function. Indeed, we have

d
—_ [X,,,}, cos hd, Xpm i cos k¢l

do
27(1+8,)(n+1+2)8,, 8, d ra
- — | Ph(chv)sh
res G
.[(n+2+h)P,f+l(chv)chv+P:++l‘(chv)shv]dv,
whence

"]‘{Xn,h cos he X, ; cos kel [1-(z+ip)?|2%do
S

2n(1+80h)(n+h+ 1)

PM(ch o) sh a
2n+3 "(c )s

[(n+2+h)PE (choa)cha + PP (cha)shals,, 5, .

Likewise, by the same reasoning,

ff{Yn,h cos h¢ Y, , cos kol |1=(p+iz)?|Y2do
S
2m(1+38,;,) (n+h+1)

. “h+1 phy .
53 i(-1)" IPn(zshO()chO(

[(n+2+h)PE (isha)sha+iP!(isha)chals,, s,

with exactly the same formulas in both cases if cos A¢ is replaced by sin Ad.

This calculation yields:

THEOREM 4. The polynomials X, ;, cos h¢, X, sin h¢p are complete and
orthogonal over the surface of the spheroid (1) in the. sense of the scalar pro-

duct
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if, gt= ff fell=(z+ip)*|% do
S

with weight function |1~ (z +ip)|'/? equal to the square root of the product
of the distances from (p, ¢, z) to the points (0,0, 1) and (0,0, —1). The

harmonic polynomials Yn,h cos he, Y ,h Sin h¢ are complete and orthogonal

n
over the surface of the oblate spheroid (2) in the sense of the scalar product

if, gl = ff fell=(p+iz)*|"? do.
S

There exist quite clearly further orthogonality properties of the polynomials
Un,h and Vn,h which do not depend on the shape of the spheroids (1) and (2).
However, we make no pretense here at tabulating all possible orthogonal har-
monic polynomials of this type (cf. [8]), but proceed rather to apply the re-

sults already obtained to the Laplace and biharmonic equations.

4. The kernels. The Green’s function G (P, ) for the Laplace equation
in a region D is a harmonic function of the coordinates x, y, z of the point
P in D, except at (), where

G(P’ Q) =

+ harmonic terms,

1
r(P, Q)

and it vanishes for P on the surface S of D. Here (P, Q) denotes the distance
from P to (). The Neumann’s function N (P, Q) has a similar fundamental singu-

larity,

N(PsQ)=

+ harmonic terms,

r(P, Q)

while its normal derivative is constant on S and

f N(P, Q)do (P) = 0.

S

The harmonic kernel function K (P, Q) is defined by the formula [ 2]

1
K(P, Q) = e {N(P, Q) - G(P, Q).
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If f,(P) is a complete orthonormal system of harmonic functions in D in the

sense

(fn: fm) = anm,

I 1o,
s

then one has the Bergman expansion

with

K(P,Q) = 2 fa(P)fn(Q).

n=1

On the other hand, if g,(P) is a complete orthonormal system of harmonic
functions in D in the sense of the scalar product

corresponding to an arbitrary positive weight function w on S, then the kernel

H(P, Q) = 2 gn(P) (Q)

n=1
is given by [ 7]

ff 1  dG(T,P) 9G(T, Q)

H(P, Q) =
(P, Q) (4m)? ¢ «(T) ov(T) ov(T)

do(T).

For P on S we have

1 9dG(P, Q)
P)H AR
w(P)YH(P, Q) = 30

The Green’s function I' (P, Q) of the biharmonic equation
AAF =0

is a biharmonic function of the coordinates of P, except at (), where
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['(P, Q) == r(P, Q) + biharmonic terms,
and for P on S it satisfies

or (P, Q)

F(P:Q)= aV(P)

If A,(P) is a complete orthonormal system of harmonic functions in the sense
[hm hm] = 5nm1
then the kernel function
E(P, Q) = 2° ha(P)ha(Q)
n=1

is given by the identity [5, 10]
1
E(P, Q) =- = A(P)YA(Q)T (P, Q).
7

The relation here between the harmonic functions %k, and the biharmonic kernel

function % is a consequence of the nature of the energy integral

ff[ (AF)? dx dy dz
D

for the biharmonic equation.

We discuss here the expansion of the kernels K, H, and k in terms of the
octhogonal polynomials of §3 for the case where D is a prolate or oblate
spheroid. One obtains easily from Theorems 1, 2, and 4, together with the

computation of the related normalization constants, the following results:

THEOREM 5. [In the prolate spheroid (1) we have

K(P, zy &3 P', z’ ¢')

=f: ; (20 + 1)U, 4 (ps2) U, 4 (p%27) cos h (¢~ ¢7)

+ C,
n=t h=o 2m(1+8,,) P*(cha)lsha P** (cha)+h cho P* (cha)]
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where C is a constant chosen to agree with the normalization of Neumann’s
function. In the oblate spheroid (2),

© 2 (=D (2 +1)
K( 9:¢;P,, z"¢")=
pos nz=:1 % 277(1+80h)

Vn'h(p, z) Vn’h(p', z’)cos h(p—¢”)
Ph(isha)li cha PH*1(isha) + hshaP?(isha)l

+C,

where again C is a suitable constant.

THEOREM 6. In the prolate spheroid (1),

(2n +3)

k 3 <y H ” ” ’ =
(psz, 45 p°, 25 ¢%) Z Z 2n(1+50h)(n+1+h)

Xn’h(p,z)Xn’h(p',z') cos h(¢p—o”)
Iy P:(ch v)sh v[(n+2+h)P” (chv)ch v+P?  (chv)shvldy

nti nt+i

In the oblate spheroid (2),

(o)

n (-1)"h i (20 +3)
k(py 2, 5 p%5 2% %) =
(pr 2, &5 9% 2% ¢7) ,,Z;Z,Eo 27(1+8;) (n+ 1+4)

Yn,h (py 2) Yoh (p%5z") cos h(p—¢*)
f:P:(i shv)chol(n+2+4) P,’:ﬂ(i shv)shov+ iPh+l(i sh v)ch v]dv.

nt+1

THEOREM 7. In'the prolate spheroid (1),

(2n +3)
27(1+3,;,) (n+1+h)

] n
H(Pv 2, ¢; P'y Z’y ¢') = 2 z:
n=0 h=0

Xn,h(P' Z)Xn,h(”” z’) cos h(gp—¢’)
Ph(cho)sha[(n+2+h)Ph (cha)cho+ PAH (cha)shal

n+1

when o= |1-(z+ip)?|/2 If o=|1-(p+iz)?|'% we have, for the
oblate spheroid (2),
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(20 +3)i(=1)*h

Alpnz 65072567 = 2 20 sy

n=0 h=0

Yn,h(p, z) Yn’h(p', z”)cos h(p— )
Ph(isha)chal(n+2+Ah)Pk (isha)sho+iPPl(isha)chal

Theorem 7 is of interest because it yields, say for (1), the relation

1 0dG y 2y @5 " ’! ’ = " 2 3
S L X ndiph B8 (g 3 D)
4 dv n=o h=o 2ﬂ(l+50h)(n+l+b)

Xn’h(p, z)Xn,h(p', z’)cos h(gp—-¢”)
Ph(cho)shal(n+2+h)PE (cha)cha+PEH(cha)shul

when the point p, z, ¢ lies on S. This formula can be compared with the cor-

responding, more classical, formula which follows from Theorem 5.

Theorem 6 permits one to calculate the biharmonic Green’s function for
prolate or oblate spheroids, and thus in turn to solve the biharmonic boundary-

value problem in this case. Indeed, we have (cf. [5])

- Wbty I

D

It is significant to note in this connection that all our results can be extended
to the case of the region outside a spheroid. One has merely to replace for this
purpose the Legendre functions P: by the Legendre functions Qr}: of second
kind [ 6]. Thus Un,r should be replaced, for example, by

m
/ On(z +ipcost)cos ht dt,
)
and Vn,h should be replaced by

fw Q,(iz~p cos t)cos htdt.
0

Finally, by combining both kinds of functions, one can obtain orthonormal

systems in the region between two confocal spheroids. Thus one might develop
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elaborate formulas for the solution of the biharmonic equation in such shell

regions using the basic method of this paper.
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DISTRIBUTION OF ROUND-OFF ERRORS
FOR RUNNING AVERAGES

R. E. GREENWOOD AND A. M. GLEASON

1. Statement of the problem. Let G,, G,, +++ be scores (positive integers)
obtained in a sequence of plays in a certain game. For purposes of handicapping
matches it is desired to use running averages, and on the hypothesis that the
score of the last play is more significant than any prior score, the following for-

mula is used for computing the running averages { S, }:

(k=1) S +Gpyq
k

(1.1) Spe1 =

where & is a positive integer. Certain modifications in (1.1) may be necessary
when n < k.

The running averages defined by (1.1) are not necessarily integers. It is
therefore convenient to define a rounded running average (which will be integral)
by the relation

(k=1)Tp+Gpyy+ D

(1.2) Tpyy = k .

It is convenient to use three set of values for D in the foregoing relation.

~-k+1 -~k k-
Case A. Forkodd, D = A€ [k + , +3, ,—.—1]
2 2 2

-k -k k
Case B. Forkeven, D = Be[— +1, — + 2,...,_],
2 2 2

[~k -~k k
Case C. Forkeven, D= Ce -é—,—+ 1, eee, .2_]

For each n > k define the error E;, by the relation

Received July 21, 1952,
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606 R. E. GREENWOOD AND A. M. GLEASON

(1.3) Ey=T,-S,.

(For n < £, the error would depend on the modifications made in relation (1.1).)
For n > k, then,
(E-1)E,+D

(1.4) Enyy = Tpey = Spay = A

For Case A, if at some stage | E,| < (k£ ~1)/2, then

(k-1 (k-1)/2 kE-1)/2 E-1
(1.5) |Epnsq| < A 7 +{ A = 5 "

For cases B and C, if at some stage | £, | < k/2, then by a similar procedure

one obtains’
(1.6) |Ensq| < E/2.

Thus the errors introduced by the rounding off process are bounded if | £, | <
(k~1)/2 or k/2 for the odd and even values of k respectively.

It is assumed that the scores { G;} are such that equal probability values are
realistic. In case C, where there will sometimes be a choice for round-off, one
might choose to round-off to the even integer. Thus, one would sometimes add
k/2 and sometimes subtract k/2, corresponding to the two end-values with proba-
bilities 1/(2%), while the intermediate values would have probabilities 1/k. It
is desired to find a limiting distribution for the error E,; in this paper such

limiting distributions are found for a few special cases.

Allowing one’s intuition free rein, one sees that limiting distributions for the
error £, exist in all three cases. If such distributions exist, then relation (1.4)

may be used to determine means and variances, if any. Thus
(1.7) kI.L(En,-'.l):(k"]-) ll(En)»"‘ #(D)y

(1.8) k? Var (E,4,) = (k=1)2 Var (E,) + Var (D).

It is easy to verify that

u(4) = o, Var (4) = (k% -1)/12,
p(B) =1/2, Var (B) = (k?-1)/12,
p(C) =0, Var (C) = (k% +2)/12.

Then for the limiting distributions E 4, kg, E ¢ for the three cases one gets
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pu(Ey) =0, Var (E4) = (k2 ~1)/12(2k - 1),
(1.10) u(Eg) =1/2, Var (Kp) = (k2 =1)/12(2k ~ 1),
ulkc) =0, Var (E¢) = (B +2)/12(2k-1),

2. Distribution of the round-off error for k = 2, Case B. For the special value
k = 2 and for Case B, one may take £, = 0. Let F,(x) be the cumulative distri-
bution for E,, and let { f; ,} be the jumps in F, (x) at the points of discontinuity.

One readily obtains the functions
0, x<0,
Fy(x) =41/2, 0 < x < 1/2
1, 1/2 < x.

(2.1)

{f;,2} ={1/2 at 0, 1/2 at 1/2}.

0, x<0,
Fi(x) =1j/4, (j-1)/4 < x < j/4 (j=1,23),
1, 3/4 < x.

(2.2)

{fi,s} =11/4 at 0, 1/4 at 1/4, 1/4 at 1/2, 1/4 at 3/4}.
By induction one gets

0, x<0
Fpo(x) =4j/2", (j-1)/2" <= < j/2" (j=1,¢00,2" 1),
1, (2"-1)/2" < =x.

(2.3)

{fi,n+1} = {jumps of 1/2" at points j/2", j= 10,1, -+, 2" = 1}.

In this simple example, heuristic considerations suggest that there is a limit-
ing cumulative distribution function
0, <0,
(2.4) F(x) ={x,0< x<1,

1, 1< x,
and its associated distribution function

1, 0<x<1,
(2.5) f(x) =

0 elsewhere.
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In order to deal with continuous functions insofar as possible, it is conven-
ient to take Fourier transforms of the jumps { f; ,}. The finite Fourier transform

may be defined by relations

(2.6) bn (1) = f" eitt g Fo (1)
= z fi,n exp (iuj).
all j
Thus we get

(2.7) $,(u) = 1/2 + (1/2) exp (iu/2)
sin (u/2)

= exp (iu/4) cos (u/4) = _é— exp (iu/4) sin (u/4)’

j=2"-1 .
(2.8) Py (2) = 2. "P(zj_)
j=o

2”
1 —exp (iv)
T oon 1 - exp (iu/2")
1  sin (u/2) ( 2"—1)
= — ————— exp |iu—
2" sin (u/20t1) T \MTgni

The sequence of transforms { ¢;n} has a limit ¢ (u),

(2.9) 5(u) = sin u/2

exp (iu/2).

In order to transform back, it is convenient to use another definition of the

Fourier transform,

(2.10) d(u) = [_” et f(t) dt.

Then, whenever f(x) is of class L2(-co, a«) and of bounded variation in the
neighborhood of ¢ [ 1, p. 83, Theorem 58],

-— 00

(2.11) "l'[f(t+0)+f(t—-0)] = lim L ./'?\ et 4 (u) du.
) 2 Ao 27 -2

Direct computation of the inverse transform (using 2.11) of ¢ (u) as defined
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by (2.9) might be troublesome. However, the Fourier transform (2,10) of the
supposed limiting distribution function of (2.5)

1, 0<x <1,

f(%) =

0 elsewhere

is just the limiting function ¢(z) as given by (2.9). Since f(x) is of class
L,(- @, ) and is of bounded variation, the theorem quoted above enables one
to identify (2.5) as the limiting distribution function of the error for Case B,
except for the values f(0) and f(1) where f should be chosen as 1/2.

The use of the Fourier transform ¢>n( u), (as defined by (2.6)),is equivalent
to the use of the characteristic functions of the jump distributions { f; ,}. With
this interpretation, it is possible to use Lévy’s theorem [2, p.101-102] to the
effect that convergence of ¢, (u) to ¢ (u) implies the convergence of F,(x) to
the limiting form F(x) given by (2.4) and that ¢y (u) is the characteristic func-

tion of the cumulative distribution function F(x).

The mean and variance of f(x) as given by (2.5) (with or without modifica-
tions at 0 and 1) are 1/2 and 1/12 respectively, and thus agree with the values
called for by relations (1.10).

3. Distribution of round-off errors for k = 2, Case C. Case C has symmetry
noticeably lacking in Case B. For convenience, take £, = 0 as before. Let

G,(x) and {g}. .} be the cumulative and point-wise distribution functions. For

this case
0, =x<-1/2,
1/4, -1/2 < x <0,
G =
(3.1) 2% =10 0<n<1/2,

1’ 1/2Sx,

{g;,} =11/4 at -1/2,1/2 at 0, 1/4 at 1/2}.

Designate the finite Fourier transform (2.6) by ¢, («). Then

(3.2) Yy(u) = (1/4) exp (=iu/2) + 1/2 + (1/4) exp (iu/2)
= (1/4) [exp (iu/4) + exp (—iu/4)]? = cos? (u/4).

This may be written in the form

(3.3) ¢2(u) =(1/4) [x + 1/x]1> where =x = exp (iu/4).
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Notice that to get { gj, 3} from {g; ,} and the set { C}, { C} = {-1, 0, 1} with
probabilities {1/4, 1/2, 1/4} respectively, one merely takes 1/4 of the set
{ gj,21 on a smaller range at one end of the new range, 1/2 of the set { gj,,} on a
smaller range at the middle, and 1/4 of the set {g]',2} on a smaller range at the
other end of the new range. In effect, one goes from ¢/, (u) to y3(u) by replacing

% by %2, multiplying by
[(1/4)%% + 1/2 + 1/(4x%)] = (1/4) [x + 1/x]%.

and then identifying x = exp (iu/3).

By this rule, one gets
(3.4)  ¥,(u) = (1/4)% (x +1/2) (2% + 1/x%)? = cos? (u/4) cos® (u/8).
Proceeding by induction, one gets
(3.5) Yns1(u) = cos?(u/4) cos?(u/8) +++ cos?(u/2"1).
The sequence of transforms { ¢/ (%)} has a limit,

sin? (u/2)

(25) o) = Jim o) = S5

by use of a well-known infinite product.

Direct computation of the inverse transform of (3.6) may be troublesome.

However, it may be verified quite readily that if

1+x, -1<x<0,
(3.7) glx) =4{1-x%, 0<x<1,
0, elsewhere,

the Fourier transform of g(x) is just iy (u) of (3.6). Then, by use of (2.11),it
follows that g(x) as defined above may be taken as the pointwise distribution

function for the limiting distribution E¢.

Direct computations show that
w(Ec) =0, Var(Ec) = 1/6,
which values are in agreement with relations (1.10).

4. Conclusion. For higher values of %, the limits of the Fourier transforms
may be difficult to obtain.
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A somewhat more general problem would be to take

(k-m) S, + mG,4,
k

2

(4.1) Spe1 =

instead of (1.1), where & and m are both positive integers. In effect, however,
this merely allows the & in (1.1) to be a positive rational number instead of a
positive integer.

An equivalent statement of the problem would be to consider the distribution
of M(d), where

1 & (k-1y
(4.2) M(d) == 2= di(————) )
k2 k
1¥0
and where {d;} is selected from the set D according to the value of k and the

end-point choice. For the expansion of M(d) is

(4.3) M(d) = (1/k) fdo + (k- 1)/k{d + (k=1)/ktdy + .-+ 111,

and this is just the scoring used in (1.4) but with reversed numerical ordering.
Thus for £ = 2 and Case B, M is uniformly distributed on (0, 1), while for Case
C, M has a house-top distribution on (-1, 1).
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THE SPACE HP, 0 < p < 1, IS NOT NORMABLE

ARTHUR E. LIVINGSTON

1. Introduction. For p > 0, the space HP is defined to be the class of
functions x(z) of the complex variable z, which are analytic in the interior of
the unit circle, and satisfy

27 "
sup |x(re*¥)|P df < oo
o<r<1 Jo

Set
Ap(r; x)=(§1;/0” | % (rei®)|P de)‘/P

and

llx]] = sup 4p(r;2).
ogret

S. S. Walters has shown [2] that HP, 0 < p < 1, is a linear topological space
under the topology: U C HP is open if x, € U implies the existence of a
‘“‘sphere’” S: ||x —x, || < r such that S C U. He conjectured in [3] that HP,
0 < p < 1, does not have an equivalent normed topology, and it is shown here
that this conjecture is correct. Since the conjugate space ( HP )* has sufficiently
many members to distinguish elements of HP, the space HP, 0 < p < 1, affords
an interesting nontrivial example of a locally bounded linear topological space
which is not locally convex.

2. Proof. For x € HP, p > 0, it is known [4, 160] that Ap(r; x) is a non-
decreasing function of r. Consequently, if P (z) is a polynomial, then P € HP

and || P|| = 4,(1; P). This observation will be used below.

According to a theorem of Kolmogoroff [1], a linear topological space has
an equivalent normed topology if and only if the space contains a bounded open
convex set. It will be shown here that the ‘‘sphere’ K,;: ||x|] < 1 of HP,

Received July 2, 1952. The work in this paper was supported by a grant from the
Graduate School of the University of Oregon.

Pacific J. Math. 3 (1953), 613-616
613



614 ARTHUR E. LIVINGSTON

0 < p < 1, contains no convex neighborhood of the origin; this is clearly suf-
ficient to show that HP, 0 < p < 1, contains no bounded open convex set, and

hence is not normable.

To accomplish this, the contrary is assumed. Thus, it is assumed that
K, contains a convex neighborhood V of the origin. Since V is open, V contains
a ‘‘sphere” K.: ||x|| < €. There will be exhibited x,, +++, xy € K., and
a, > 0,+-.,ay >0, with Zak =1, such that Eakxk £ K, and, a fortiori,

Zakxk £ V, in contradiction to the assumed convexity of V.

If x(6) is a complex function of the real variable 8 € I: 0 < 6 < 27, define

1 pron 1/p
A(x) = (5;/0 12(0) [P da) :

Once and for all, £ is any integer in the range 1, «+-, N. Let [, denote the

interval

2a(k-1) 2k
— << .
N N

and let iy, denote the degenerate interval consisting of the point (2n/N) (k-
1/2). Define the continuous function ¢, () to be zero on I -1, to be equal to

eN'/P on i}.» and to be linear on each of the two intervals in [, ~ i, . Let

N
a, = By k"', B, =(§_jk-1/p -1
1

so that @, > 0 and Zak = 1. It is easily verified that
Ac,) = e(p + 1YYP < e

and

1

N
A(Zak ¢,)=€By(p + 1)-v/p (Z k") 1/p

Since B, is bounded away from zero below, N can be chosen such that
A (Zak Ck) >1.

Each ¢, (8) is absolutely continuous on /. Given 0. > 0, it follows that
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there is a trigonometrical polynomial
my
T.(6)= 2 a, einf
n=~my
such that
| T,(6) = ¢, (0)] < a
uniformly in 6. Setting
img 0
gives

imy 6

Ip(6) — e e (0)] < a

uniformly in 6. Set
C,(0) = ™% ¢ (6).

It is clear that A(Ck)=A(ck) and A(Zak Ck) = A(Zak Ck)' Since 4 (x)
is a continuous function of x, it follows, if o is small enough, that A(p, ) < €
and A(Za,t7 p) > L.

Let
mg
+
Plz)= 2 ayz t,
n=-"mp
so that Pk(eie) = p,(6). As previously remarked,
12,11 = 435 2,) = A(p,)
and

122, B |l = 4,(1;2a, B) = 4(2a, p, ).

Since Py, e+, Py € K, CV CK,CHP, a; > 0,+e¢,ay >0, Zak =1, and
Zak P, # K., we have obtained the required contradiction.
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ON THE ORDER OF THE RECIPROCAL SET OF A BASIC
SET OF POLYNOMIALS

M. N. MikHAIL

1. Introduction. For the general terminology used in this paper the reader
is referred to J. M. Whittaker [2], [3]. Let

pn(z) = .ani zi
12
be a basic set, and let
Dn
2" = g Toi pi(z).

The order w and type y of {p,(z)} are defined as follows. Let M;(R) be the

maximum modulus of p,(z)in [z] < R. Let

(1) on(R) = 2 | mi | M; (R),
1 (R)
(2) ®(R) = lim sup B
n— o0 nlogn
(3) o= lim o(R);
R — o0

and, for 0 < w < @, let

(4) y(R) = lim sup {wn(R)}‘/("“’) e/(nw),
(5) y = lim }’(R).

R — 00
If

Po(z) = 2o, 2,
]
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618 M. N. MIKHAIL

then { P, (2)} is called the reciprocal set of {p, (z)}. We shall establish for
certain basic sets new formulas expressing upper bounds of the order of the
reciprocal set in terms of the data of the original set.

2. Theorem. The following theorem holds only if an infinity of ,, # 0; then
the whole proof should be carried out for those values of n for which =,;, # O.
This is a genuine restriction since there are basic sets such that n,, = 0 for

all n; for example, for k=0, 1, 2, ..., let

1 1
psh(z) 2_5_ zsh +_Zah+1 + — z3h+2

1 1
3h 3h+1
Papsr(2) =— 27—z

1 1 1
- 3h 3h+1 3h+2
p3h+2(2)~-52 +E'Z el 4 .

2

NoraTiON. For a fixed n, let p,,- be the set of all nonzero elements p_,,
and let

m}:P Ppn’® = Pp’ -

THEOREM 1. Let{p (2)} be a basic set of polynomials, such that

D,
limsup — = a (e > 1),
n—oo 1

and of increase less than order w and type y, and suppose that

log | man |
k = lim inf———nn—-
n - 00 nlogn

and

log | p, |
k = lim inf ————
na nlogn

Then its reciprocal set is of order Q, where

i) ifk> w,thenQ < & - «;
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ii) ifk < w, then Q< 20 - k ~ k.

Proof. Lety, > y; then in view of (4) we have

nwy, nw
(6) w, (R) <
e
for values of n > n, and for sufficiently large values of R > R, > 1. From (1),
we have
| fan | Mn (R) < wpn (R).
Then
|Tan | 1Pyl R < 0n(R);
that is
op(R)
@) il € o’
l”nn‘
Also
l”,’j‘ M]-(R)S_ w;(R);
then
(8) | m,

1< S = = .
i] M](R) mllzl'l lpih" [pi'l

From the definition of a reciprocal set, and in view of (1), we get

Dn . wn(R) D Dy
Q"(R)S- Z le'I Z l"ij' R < R Z Z |’7,']'l
j =0 j I”nnl i=0 ]
by (7); that is, by (8),
a (R) Dn i (R
0 (R) < — R 3 N = )

| 7nn | i=o0 lP,"l )
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Then
wn(R) Dn i (R)
Q. (R) < R D AF(RY+ 3
I"nnl i=ng+1 ‘Pi'i
on(R) Do (iwy)™
< R™.D,{F(R) + > ——t by(6),
l”nnl i=ng+1 lpi'l

where F(R) is a function independent of n.

Then for sufficiently large values of n > n, and R > R, we get

(On(R nwyl nw

)
RP» . D, {F(R) + D, (where k&, > k).

[”nn ky/»
n

Q.(R) <

Hence:

i) If k> o (this implies k, > ), then (nwyl/nkl/w)nw, for values of

n > ny, will be a small quantity compared to F (R). Therefore,

log Q,(R)
lim lim sup =——————
R—o00 n—oo nlogn

) log w, (R)  DplogR log |myy, | log D, log F(R )l
< lim lim sup

- + +
R-+00{ n 00 nlogn nlogn nlogn nlogn nlogn I’

in view of (2) and (3); then
Q< o~«.

ii) If k¥ < o, then as k, approaches k we find that F(R) will be very small

compared to {rwy, /n! “}m forn > ng . Therefore,

log wn (R) log wp (R) log | mnn |
lim lim sup ————— < lim lim sup -
Rooo nooo nlogn Roaoo nooo nlogn n log n
b-2)
D, log R+ 2 log D, ne 1—: log n no log 0y,
+ : +

+
nlogn nlogn nlogn
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in view of (2) and (3); then
Q<o~k+0-k=20-~-«-k.

N. B. In the case of simple sets, the restriction mentioned above for my, is
satisfied. In this case we have

_ log | p,, |
~ k = limsup ———un .
nso nlogn

COROLLARY, If {pn(z)} is a simple set of polynomials,

i) ifk> o, then Q< @ - & log |p,, |
where k = — lim sup ———— .
i) ifk< o thenQ< 20~ k- k e nlogn

3. Examples. We shall look at four examples.

i) Let p,(z) = 03" 2" — 2" ;"1 - APLAR (n odd),

sn (n even),

p,(z) =n? 2" = n
po(z) = 1.

then

2" = 73" plz)+ 0" (n - 1)"2(r-1) . (2)+(n+ 1)-2(nt1) Pps,(2)

=)D 7y (e DI (2) (0 0dd),

zn

=n?"p(z)+n"p(z) (n even).
By Theorem (1) of [1], we get w = 1. Since k=~ 3, k=2, we get, according
to case i) of the theorem, @ < 1 + 3 = 4. This is true because Q = 4 by Corol-
lary (1.1) of [1].

N. B. This example and the following examples show that the values given
in the conclusion of the above theorem are ‘‘best possible.”’

ii) Let pn(z)=n2" Z" — p3n/2 y2m _ pon (n odd),
n 3n/2 20
Pn(z)=‘(5) Z"—(E) , with po(z) =1 “+ even),
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Then

2"=n""p (2)+n7 7™ 2p (2)+ (1+n"?) p(2) (no0dd),

n\"3n/2 n\*/2
zn=(.5) pn(z)+(-§) Po(2) (n even),

Applying theorem (1) of [1], we get w = 1/2. Now k =~ 2, k = 3/2. Then accord-
ing to case i), of the theorem, we get

Q< —+2.
2

This is true because Q = 5/2 by Corollary (1.1) of [1].

iii) Letp (z)=n"2z"—n"/2 ;01 _ ,3n/2 (rodd),
Pr

p(z)=(n+ 1)(+1) on (5 4 1)2(41) L(a+1)
n

_(n+1)5(n+1)/2 (n even),
po(z) =1.
Then
1 v
z"=——/—ln'" p,(z) + n"3n/2 Pp-i(2) + ("2 + n™) po(z)l (n odd),
l_nn 2
1
"= (n+17(*)p (2)
1-(n4+1)*t1)/2
+pn“(z)+2(n+1)3("“)/2 po(z)l (n even).

Applying theorem (1) of [1], we get @ = 1. Now k =~1, k = 1/2. Then according

to case ii) of the theorem, we get

Q<2+1-

N o=
]
[\ Y,

This is true because @ = 5/2 by Corollary (1.1) of [1].
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9(n-1) 9(n-1) .n
iv) Let p(z2) = 2" 4 —
2("'1) n2n ¥ (" _ 1)3("-1) z(n-l) n2n + (" _ 1)3(n-l)

93(11) (5 1))

"1 (n odd),
oln-1) p2n (n- 1)3(n-1)
92n (n+ l)z(nﬂ) n
p,(z)= - 2" - . z"H!
9n nn("+1)2(n+l)+n4n 2n(n+1)2(n+l)+n3n
n(n 1))
7 z2n*2 (n even),

2% (n + 1)2(n+l)+ n3n
po(z)=1.

Then
2" = 2" p"(z)— n 30 pzn(z)

_(n_1)2(n-l)pn-l(z)_n5n p2n+x(z) (nodd),

"—(ln()l)m (2) (n even)
z" = -2-n) p,(z +(5n Posilz n even).

Applying theorem (1) of [1], we get @ = 1. Now k = 2, k = — 3. Then according
to case ii) of the theorem, we get

Q<2-2+3=3.

This is true because Q = 3 by Corollary (1.1) of [1].
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ON THE LINEAR INDEPENDENCE OF ALGEBRAIC NUMBERS

L. J. MorpELL

1. Introduction. Besicovitch [1] has proved by elementary methods in-
volving only the concept of the irreducibility of equations the following:

THEOREM. Let
a = bl Py G = b2P2i“‘9as = bg ps ,

where py, p,, «++, ps are different primes, and b,, b,, «.., by are positive
integers not divisible by any of these primes. If x;, x,,+++, %5 are positive
real roots of the equations

ny n

n
x —a!=0,x2

—a2=0,"',xs—as=0,

and P(xy, 3. «++, %5 ) is a polynomial with rational coefficients of degree less
than or equd to n, — 1 with respect to x,, less than or equal to n, — 1 with
respect t. %,, and so on, then P(x, x,, +++, %5) can vanish only if all its
coefficierts vanish,

It i4 rather surprising that this has not been proved before, since results of
this kind occur as particular cases of a general investigation in the theory of
algebraic numbers, and some have been known for many years. We have the
well-known general problem:

PROBLEM. Let K be an algebraic number field, and let x,, x,, +++, x5 be
algebraic numbers of degrees n;, nj, +++, ng over K. When does the field

K(x,, %5y +++ , %) have degree n,n, +++ ngs over K?

This holds if either the degrees or the discriminants over K of the fields
K(x,), K(x;),+++, K(xs) are relatively prime in pairs. The first part is a
simple consequence of the usual theory of reducibility when s = 2, and the ex-
tension is obvious. The second part for s= 2 is given as - Theorem 87 in Hilbert’s
report on algebraic number fields, and its proof depends on algebraic number
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626 L. J. MORDELL

theory. The result for general s follows easily.

We discuss here the special case when x;, x5, +++, x5 are specified roots

of the respective equations
n n n
(1) x1=al,x2=a2,...,xs=as,

where a,, a,, +++, as are numbers in K. In the particular case when n,a,,
Ny@gy, »+s , ngag are relatively prime in pairs, the discriminants of the fields
K(x,), K(x,),++-, K(xs) are certainly relatively prime in pairs, and the
foregoing conclusion holds. We consider two types of more general fields K.
For the first, K and x,, x,, .-+, x5 are 2ll real. For the second, K includes

all the n th, nyth, -+, nsth roots of unity, and then the fields
K(xl )’ K(xz)’ ety K(xs)

are the so-called Kummer fields and have been known for many years. The
elementary ideas used in their discussion are similar to those employed by
Besicovitch. We have now the result really asked for in the problem, but stated

as follows:

THEOREM. A polynomial P(x, x,, +++, x5) with coefficients in K and
of degrees in xy,%,, -+, x5, less than n,, n,, «++, ng, respectively, can
vanish only if all its coefficients vanish provided that the algebraic number

field K is such that there exists no relation of the form
vy V2 Vs _
(2) x ' x teeex® = a,

where a is a number in K, unless
vy =0(modn,), v, = 0 (mod ny)y+++,vs = 0 (mod ng).

If K is of the first type, then a particular case, which includes the result
of Besicovitch and is equivalent to it, arises when K is the rational number
field, the x’s are all real, the a’s are integers, a, (r=1,2, +++, s) is exactly
divisible by a prime power pra' (that is, by no higher power of p) with (o, n;)=
1, the p are all different, and p, is prime to a, when r # ¢. The condition im-

plied in (2) is satisfied, as follows easily from the lemma below.

When K is of the second type, the theorem is given by Hasse [2], in the

equivalent form that K includes all the nth roots of unity, where n is the least
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common multiple of ny, ny, +++, ns. Hasse, however, is also investigating the
relation of the Galois group of the field K(x,, %3, +++, x5 ) to those of K(x,),
K(x,), and so on, and so his proof is not particularly elementary. In view of all
this, an elementary proof of the theorem may be worth while.

2. Lemma. We prove first, for completeness, a well-known result:

LEMMA. Let K be an algebraic number-field such that either K is real and
the equation x" — a = 0, where a is in K, has a real root, or K contains all the
nth roots of unity. Then the equation x™ — a = 0 is reducible in K if and only
if a is the Nth power of a number in K for some N > 1 dividing n. When K is of
the first type, a real root is the root of an irreducible binomial equation in K.

When K is of the second type, x™ — a factorizes completely into binomial factors
x™ — b in K and irreducible in K.

Proof. Let us suppose that " — a@ = 0 is reducible in K. Write it as
x" - a = f(x) g(x),

where
flx) = 2™+ by a™! +eee 4 by,

the 4’s are in K, and f(x) is irreducible in K. When K is of the first type, we
may suppose x’y a specified real root of x" -~ a =0, is a root of f(x)= 0. All
the roots of f(x) =0 are roots of x" —a =0, and so they have the form €’x’,
where €’ is an nth root of unity and x” is any specified root of " - a = 0, but

the specified real root when K is of the first type. From the product of the roots
of f(x)=0,

™ =t €by,

where € is an nth root of unity. Hence x” is also the root of an equation

where b is in K since, for the first type, € = +1. Hence the irreducible equation
f(x)=0 of degree m must be the same as the binomial equation x™ - b= 0.

Further, the equations x" -a =0, x™ ~b=0 have a common root. Write
d=(m,n), n=dN, m=dM, where (N, M)=1 and a™ = bV, There exist rational
integers u, v such that uM + vN = 1. Then
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a = auMﬂzN - (b"au)N,

where N | n. Conversely if a =AY, where 4 is in K and N | n, the equation
%" — a = 0 is obviously reducible in K.

This proves the lemma,

3. Proof of theorem. The ideas involved are not essentially different from
those of Besicovitch, The given conditions imply that the theorem holds for
s = 1. It will be proved by induction on s, and so it may be assumed that no
such relation as P = 0 holds for s or fewer roots of equations satisfying the
given conditions. We then prove it for s + 1 roots. Suppose a relation such as

(3) P(xl, xz,..-,xs4.1)=0
holds, so that x, is a root of the equation, supposed irreducible in K,
(4) Pox" + P 4+ ece 4+ B, = 0,

where Py, Py, +««, P, are polynomials with coefficients in K, and of degrees in
X35 X3, *+v, X4 respectively less than n,, ng3, e+, ng4q. Since 1/P, can be
expressed as a polynomial in x,, %3, +++ , x54; with coefficients in K, we may
take P, = 1. We write

Px = Pl("z) = Px("zs X3y 0 > Xs41)s

and so on, according to the variable occuring in P; which we wish to emphasize.

Each root of the equation (4) in x can be written as

n
x = €' x,, where € ! = 1.

Hence from the product of the roots of (4), x,; is also a root of an equation

ex"=+Ph, where €'! =1,
Also € = 1 when the field K is of the first type. Write
X‘ = exr and so Xlnl = a:

"

Then by the lemma, X, is a root of an equation irreducible in K,
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N
X‘x=Al’

where 4, is in K. Also,

(5) X, =12 P =Q=Qx;) = Qx, x3, 0025 x544),

say. Hence the relation (3) is replaced, when the new variable X, is introduced,

by the relation (5) which is in general simpler. The equation

(6) QNM -4, =0

2

. n - “N. .
has a root x = x,; and since x > — a, is irreducible in the field K(x3, x4y +++,

%s+1) by the hypothesis for s variables, each root of x"2 — a, = 0, for example,
the conjugate %7 of x,, must be a root of (6); so

Q(x]) = X,

where X| is one of the conjugates of X, since xM o 4, is irreducible in K.

Now X, = Q(x,) is the root of the equation in K(x3, x4y +¢+ 4 x54,),

F=(X-0Q(x)) (X -Q(%3))++=0,

where the product is extended to all the conjugates of x,. Since all the roots
of the equation F =0 in X are conjugates of X,, and since, by the hypothesis
for s variables, xM_ A, is irreducible in K(x;, x4, ++«, %54 ), We must have

Fa(x"M_a)H"

for some intengerl M, > 0, and so n, = M; N,. Since N, > 1, on comparing coef-
ficients of X "2, we obtain

(7) 2Q(x) = 0, 2X{ =0,

where the sum is extended over all the conjugates of x, and X,, respectively.

There are of course exactly M; conjugates of x, which give the same X,.

Write now

X=Q(x)=Boa" " + Bia" " 4,000, 4 By,
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where By = By(x;, %4, *++, %541 ), and consider all the relations obtained by
changing x into x, and all its conjugates. By addition, on noting (7), we get

B,,-1 = 0. Write now
X, /%y = X{.

’ . .
Then by our condition and by our lemma, X; must be the root of an irreducible
equation in K;
’ ,

XN 4%,

and the conditions involved in (2) still hold. Proceeding as before, we get
Bp,-2 =0, and so on until B, = 0. By the theorem for s variables, a relation

SllCh as
X /36n2-l = B
1 2 = Yo

P . . na-1 . . . . . .
is impossible since X, /xz2 is the root of an irreducible binomial equation.

This finishes the proof.
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ALTERNATING METHOD ON ARBITRARY RIEMANN SURFACES

LEo Sario

1. Introduction. Schwarz gave the first rigorous construction of harmonic
functions with given singularities on closed Riemann surfaces, by means of his
alternating method for domains with annular intersection [16 ]. The method also
is directly applicable to open Riemann surfaces of finite genus, since these can
always be continued so as to form closed surfaces [7;8]. For surfaces of infi-
nite genus, this continuation is no longer possible. But if the surface is of para-

3

bolic type, Schwarz’s method can still be used, a ““null boundary’’ having no
effect on the behaviour of the alternating functions {5; 11]. In the general case,
there are two obstacles which prevent using Schwarz’s method as such. First, if
the surface has a large (ideal ) boundary, the alternating functions are not deter-
mined by their values on the relative boundaries. Second, Schwarz’s convergence
proof fails, since the Poisson integral is inapplicable on arbitrary Riemann do-
mains. We are going to show that, by certain changes of Schwarz’s original meth-

od, these difficulties can be overcome.

This paper is a detailed exposition of a reasoning outlined in preliminary
notes [ 9-11]. The manuscript of the paper was communicated (in French) to the
lelsinki University in December, 1949. In the meanwhile, the author published a
linear operator method [ 13], which also can be used to establish the results of
these notes, A presentation of the classical alternating method for arbitrary
Riemann surfaces seems, however, to have independent interest from a methodo-

logical viewpoint; such a presentation is the purpose of this paper.

The alternating method on Riemann surfaces, as sketched in [9-11], was re-
ferred to also in the recent papers of Kuramochi [ 1], Kuroda [2], Mori [3], and
Ohtsuka [6]. A historical note on the method was given in [15].

2. Functions with vanishing conjugate a,-periods. We start with two lemmas,

which are basic for the alternating procedure.

Let R be an arbitrary Riemann surface, and G a subdomain, compact or not.
The relative boundary a, of G, that is, the set of boundary points of G, interior
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632 LEO SARIO

to R, is assumed to consist of a finite number of closed analytic Jordan curves.
On ay, let f be a real single-valued function, harmonic in an open set containing

ay.
LEMMA 1. There exists always a harmonic single-valued function u in G
with the following properties:
1° u takes on the values f on a.

2° u is bounded in G and satisfies

(1) min f < u < max f.
ag a,

3% u has a finite Dirichlet integral over G,
(2) D(u):ff |grad u|? dx dy < cc.
G

Here z = x + iy is a local uniformizer of R.

4° The period along a, of the harmonic function v, conjugate to u, vanishes,

(3) f dv =0.
%o

Proof. 1f G is compact, the lemma is evident. Suppose now G is noncompact.
We form an exhaustion G, CG,C G; C+++ of G, such that the boundary of G,
consists of a, and a set a, of closed analytic Jordan curves tending, for n—cc,
to the ideal boundary of G. Let u, be a harmonic function in G, which coincides
with f on a, and assumes on @, a constant value ¢,. By Schwarz’s reflexion

principle, it is easy to see that u, is harmonic still on a; + aj,.

We fix the constant ¢, as follows. We observe that u, depends continuously
on ¢,. The same is also true for the normal derivative du,/dn on a, and, conse-

quently, for

dv, du,
4 dv, = / ds = f ds,
(4) ./a-0 on ay Js ° a, On °

where the meaning of v, and ds is evident. If we choose

¢, = min f,
Qg

then obviously du,/dn > 0, if n denotes the interior normal of a, with respect to



ALTERNATING METHOD ON ARBITRARY RIEMANN SURFACES 633

Gp. Hence, the period (4) is nonpositive in this case. If we had chosen

¢, = max f,
%
we would have found by the same reasoning that the integral (4) is nonnegative.

Thus, there must exist a value c, such that

min f < ¢, < max f,

and such that the integral (4) vanishes. In the sequel we suppose that the con-
stant ¢, has been selected according to this condition. We have then in G, the

uniform estimate

(5) min f < u, < max f.

In the sequence of the uniformly bounded functions u,, there is a subse-
quence which converges uniformly in every closed subdomain of G to a single-

valued function u, harmonic on G + a,.

In order to see that u is uniquely determined, we shall prove that the se-
quence { u, } itself, not only a subsequence, converges. Let x, be the harmonic
function in G, with x, =0 on ay %, =1 on a,. The sequence {x,} decreases
monotonically, converging to a harmonic function x on G with x = 0 on a,. If

’

x = 0, u is necessarily unique, since the difference u’~u"" of two functions u

would assume, by

both positive and negative values, and would be dominated by a multiple of x.

llence we can confine our attention to the case x # 0.

By Green’s formula

/ %p dUp — up dyp, = 0,
—agta,

where y  is the harmonic conjugate of x,, we have

(6) Cp = = .

Hence c, converges to a unique constant c. Now let z be an arbitrary (fixed)
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point of G. [For sufficiently large n, z is an interior point of G,. Let g, be the
Green’s function of G, with the logarithmic pole at z. Draw a small circle C

about z. The Green’s formula

/. Up Jzn"gn dv, = 0,
~agta,+C

where 4, is the harmonic conjugate of g,, yields, if we let C shrink to the point z,

1 -
7 = - Cplim — .
(7) un(2) = — [fo fdhy, + n(z /a'o dhn)]

This shows the convergence of u, (z) and thus uniqueness of u.

In order to prove that the function u satisfies the conditions 1° — 3% we note
that the u, converge uniformly even on the closure of &, In fact, for €> 0 and
for m, ¢ sufficiently large, we have (u, — ug) < €on ag; and on a, this differ
ence vanishes. By the maximum principle, the Cauchy criterion is fulfilled on
the closure of G,. In view of the harmonic boundary values and Schwarz’s reflex-
ion principle, the convergence is uniform even in a domain slightly extended be-
yond a, and a,. From this we conclude that all derivatives of u,, converge in the

closure of G,.

From the uniform convergence it follows that u takes on the value { on a.
The condition 2° is guaranteed by (5). In order to study the condition 3° we ob-
serve that, for p > 0,

(8) D(u) = lim Dp(u) = lim lim Dn(un_,,p),

n-— o n-—0o0 p—oo

where D refers to G and D,, to G,,. We have

(9) Dn(un+p) < Dn+p(un+p) = / Un+p dvn+p'

~Go+An+p

In this expression, we have

(10) / Un+p d”n+p = Cn4p / d”n+p = Cn+p / dvn+p = 0.
Gn+p Gntp {]

Since the integral on the right in (9) extended over a, converges because of the
-uniform convergence of the u, and grad v,, this integral is uniformly bounded.

Hence, the condition 3° is fulfilled.

The condition 4° follows again by the uniform convergence of grad v, on a,.
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This completes the proof of Lemma 1.

3. Functions with nonvanishing conjugate a,-periods. Suppose now that the

region G is not compact.

LEMMA 2. There exists always a single-valued harmonic function u on G

which coincides with f on ay, and whose conjugate function v has the period

(11) fao dv = 1.

Proof. It suffices to consider the case f=0; in order to pass to the general
case we have only to add to the constructed function a function furnished by

Lemma 1.

Let now u, be a harmonic function in G, which vanishes on ¢, and assumes
a constant value d, on a,, such that the period of the conjugate function v, of

u_is
ol

(12) f dv, = 1.
%o

This choice is always possible, since the value of the foregoing integral is pro-

portional to d,. Obviously u, is a multiple of the harmonic measure of a,.

By Green’s formula

f (up+p dvg = uy dvgyp) = 0,
-ap+a,

we have

(13) /; Un+p dvp = dy.

n

On the other hand, for the functions uy,4p, positive in G4, we can use liarnack’s
principle, which can be expressed, in the present case, as follows. For all the

functions uy, 4p, there is a constant ¥ < cc such that, on a,, interior to G, 4 ¢y

(14) max u,4p < M min Up +p «
ap, a,

Hence, by (13) and

/ dv, = 1,
an
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we have
(15) max upsp < M f Unsp dvg = M dy.
ap a,

Thus, by the maximum principle, the functions u,,, are uniformly bounded in G,

and form a compact family.

4. Oscillation of functions. In order to prove the convergence of the alter

nating functions, we still need a lemma concerning oscillations of functions.
ting functions, till need a 1 g llat f funct

Let R be an arbitrary Riemann surface and R a compact closed point-set on

R. Consider all single-valued harmonic functions u on R.

LEMMA 3. There exists a positive constant q < 1, independent of u, such

that for every u the oscillations of u on R and R,

S(u, R) = sup u ~ inf u
R R

(16)
S(u, Ry) = max u — min u,
0 Ry
satisfy the inequality
(17) S(u, Ry) < q S(u, R).

Proof. For the two cases S(u, R) =0 and S(u, R) = o, the proposition (17)
is evident; thus, it suffices to consider bounded nonconstant functions u. We
normalize these functions, without loss of generality, by adding a constant and
multiplying by a constant such that

(18) s;;pu:l, ilrzlfu=0.

This being done, we have to prove the existence of a constant ¢ < 1 such that
S(u, Ry) <gq. If such a constant did not exist, there would be a sequence of

functions u,, u,, ug, «+- such that

(19) lim S(un’Ro)=19

n —oo

and, consequently,

(20) max u, — 1, min z,— 0.
0 Rg
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Among the functions uy,, uniformly bounded on R, one can select a subsequence,
say again {u,}, which tends uniformly to a function u*, hamonic and single-
valued on R. The points P, and (J, where u, assumes maximum and minimum

values, respectively, on the closed set R,, accumulate at some points P* and

Q* of R,,

(21) P, — P*, Qn — G

It is easily seen that

(22) u*(P*) = 1 and u*(Q*) = 0.

In fact, if u* (P*) were < 1, let € be a positive constant, €< 1/2(1 - u*(P*)).
By the continuity of u*, there would be a neighborhood K of P* such that, at
each point P of K,

u*(P) < u*(P*) + e.
On the other hand, by the definition of P, for sufficiently large n,
up(Pp) > 1 - €,
and the points P, lie on K. Thus, at these points P,, one would have
up (Pp) = u*(P,) > 1 — u*(P*) = 2¢€ = const. > 0,

in contradiction to the uniform convergence of the u, to u*. This proves the first
equality (22). The second one is proved in the same manner.

Consequently, the function u* would be harmonic, single-valued, and noncon-
stant on R, and would assume its maximum and minimum values at interior points
of .R. This violation of the maximum principle disproves our antithesis. The
lemma follows.

5. The existence theorem. After these preparations we are able to establish
existence of the harmonic functions in question on the whole surface. Let R, be
a subdomain of R whose relative boundary, that is, the set of boundary points in-
terior to R, consists of a finite set of closed analytic Jordan curves. The com-
plement G = R — R then consists of a finite number m of disjoint domains
G;(i=1,2,+++, m), compact or not. Let now a; be the common part of the
boundaries of R, and G;.

In each G;, let u; be a given function, vanishing on a;, harmonic, single-
valued and nonconstant in a neighborhood of a;, having otherwise arbitrary singu-
larities and, in case G; is noncompact, an arbitrary behaviour at the common
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(ideal) part of the boundaries of R and G;. Denote by ds an arc element of a;,

and by du;/dn the normal derivative of u; in the interior direction of G;.

THEOREM. If R, is compact, then the condition

du;

(23) iz=:1 /;i = ds 0

guarantees the existence of a function f on the whole surface R, satisfying the

following conditions:

1°. The function is harmonic, single-valued and nonconstant outside the pos-

sible singularities of the u;.

2°. The difference f — u; is harmonic, single-valued, and bounded in the

whole region G;, and has a finite Dirichlet integral over G;.

In case R, is noncompact, the existence of f satisfying 1° and 2° is always
assured, independently of the condition (23). If this is satisfied, f is bounded

in Ry and has there a finite Dirichlet integral.

Proof. Consider first the case where R is compact. Let R’ be another com-
pact region (C R), containing the closure of R, in its interior, and bounded by a
finite number of closed analytic Jordan curves. The intersection #; = R’ n G; is
supposed to consist of one single region, bounded by @; and the intersection b;
of G; and the boundary of R, Denote, for the time being, u; by u;,. In R’, let fo
be the harmonic function coinciding with u;y on 4;. In G;, form, by the procedure
of Lemma 1, a function A;,, harmonic and single-valued in G;, coinciding with
fo on a;, bounded by the inequalities

min fo < Ak < max fo,
a; a;

possessing a finite Dirichlet integral over G;,

Di(h“) <o,

[ o,
a;

where k; | is the harmonic conjugate of 4;,. Write, in G,

and satisfying the condition

(24) Uiy = Ujp + kg
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Let f, be the harmonic function in R’ coinciding with u;, on b;. We then form
again by the procedure of Lemma 1 a harmonic function £;, in G; which assumes
the values f, on a; and has the corresponding boundedness properties. We thus

. . . . . y?
obtain successively a sequence of functions 4;, and u;, in G;, and f, in R, de-

termined by the conditions

fn = uin on bi,
(25) hitns1) = fn ona; (n=0,1,2,¢¢-),

Ui(n+1) = Ujo + hz(n+l) m Uy,

and having the properties

(26) min f, < hi(n+ 1) < max frs
a; a
(27) Di(h;p) < o,
(28) f dkin = 09
a;

where k;, is the conjugate function of A;,.

One has to prove the convergence of the functions f; and u;, toward a desired

common function f. We shall show first the convergence of the functions f, on the
closure R" of R".

By Cauchy’s criterion, this convergence is assured as soon as the difference
fa+p = fa tends, for n, p— @, toward zero on the boundary b of R’. In order to
use Lemma 3, we shall reduce estimation of this difference to that of its oscilla-

tion on b,

(29) lfn+p"fn|55(fn+p"fn; b),

this inequality being valid as soon as

(30) n}g?lfn+p"fn|=0'

We shall now prove the latter relation.

Let x; be, in H; = R" n G;, the harmonic function vanishing on @¢; and assum-
ing the constant value 1 on b;. Let y; be the conjugate function of x;. The con-
dition (30) is satisfied if
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(31) z ./b (fn+p"fn) dy; = 0.
i i

In order to establish this equation, we make use of Green’s formula

f (fn dyi = x; dgy) = 0,

-a;+ bi
where g, is the harmonic conjugate of f;. It follows, by
dg, =0,
> /;i 8n

that
(32) Zfa. fn dyi = Zfb' fn ;-

On the other hand, the formula

f ("'i(n+1) dy; — x; d”i(nﬂ)) =0
-ai+bi

gives, in view of (23), (28), and, accordingly, of

Z/; dVi(n+1) =Z:/ dvig = 0,

i b;

the relation

(33) Z/a Ui(ner) BYi =2 _/;' Ui(n+1) Yi-
By (25), (32), and (33), we have

(34) 2./; fn dy; = Z/; fn+l dy; «
This yields the desired equality (31).

The problem of convergence of f; has herewith been reduced to the estima-
tion of the oscillation S(fy4p — fa; b). We have first



ALTERNATING METHOD ON ARBITRARY RIEMANN SURFACES 641

p
(35) S(fn+p - fn; b) < z S(fn+m - fn+m-l; b).

m=1
To estimate S(f,4, — fp; b), note first that
(36) fasr = fo = hi(nsy) = hin on by,
(37) fo = fa-1 = hi(n+1) = hin on a;.

Since the functions k;(,4,) and A;, were constructed by the procedure of Lemma
1 as limits of certain harmonic functions coinciding with f; and f,_,, respective-
ly, on a;, and satisfying the condition (26), the difference k;(,4,) - k;, can be
considered as defined by the procedure of L.emma 1, with the boundary values

fn = fn-1 on a;. Thus, this difference satisfies the corresponding condition in the
whole G;:

(38) mifl(fn—fn—l) Shi(nﬂ)—hinﬁnzla.x(fn_fn—l)'

a;
The relations (36) - (38) yield
(39) S(fpe1 = fas 8) < S(fn = fa-15 @)

where a is the boundary of R,,.

On the other hand, by Lemma 3, applied to the difference f, ~ f,-,, the do-
main R’ and the boundary of R, we have

(40) S(fa = fa-13 @) < g+ S(fy = fa-1s b)),
q being a positive constant < 1. Thus,
(41) S(farr = fo3 8) < ¢ S(fo = fa-as B).

By repetition of the same reasoning starting from f, — f,.,, and so on,we obtain
the desired estimate

(42) S(fae1 = fas ) < 4" Sy,

where S, signifies the constant S(f, — fy; b).
Applied to (35), this yields

S
(43) S(fsp = fas B) < ¢" 1_°q .
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The right side tends to zero, independently of p. By (29), Cauchy’s criterion
is satisfied and the uniform convergence of the functions f, to a single-valued

. . . ’
harmonic function fin R has been proved.

The convergence of the functions h;, follows immediately. In fact, the rela-

tion (38), applied to the difference hi(n+p) ~ hin, gives
(44) m(;f‘?‘ lhi(mp) = hin| < mgx | fasp-1 = fn-1 B

This implies, by the convergence of f,, that of 4;,. The limit function A; is har
monic and single-valued in G;. The corresponding limit of the functions u;, is

u; + h;, where we use again u; instead of u;.

The functions f and u; + h; are identical in H; = R n G;. In fact, the differ-
ence f; — u;, vanishes on b; and coincides with f, — f,_, on a;, thus tending to

zero on a; + b; and hence on H,.

Denote in the sequel by f the function thus obtained on the whole surface R.

It remains to show that it satisfies the conditions 1° — 2° of the theorem.

Since the difference f— u; = A; is harmonic and single-valued in G;, the same
is true of the function f except at the singularities of u;. We shall show that f

does not reduce to a constant.

Let h{ be the harmonic function in G;, constructed by the procedure of Lemma
1 to coincide with A; = f— u; on a;. Then A/~ h;, is the function in G; corres-

ponding, by this procedure, to the values A — h;, on a;. By the relations

min (h; — ;) < hf = hjp < max (h; = hiy),
a; a;

valid in G;, and by the convergence k;, —> h; on a;, the functions A;, converge
uniformly to 4; in G;; that is, hi = h;. By Lemma 1, this implies that
(45) min f < A; < max f.

a; a;

If now f were constant, the same would be the case with %;, hence also with u; =

f - h;, contrary to our assumptions. This proves the property 1°.

Property 2° follows from the fact just mentioned that &; = f — u; is a harmonic
function in G; constructed by the procedure of Lemma 1. This completes the

proof of the theorem for the case where R, is compact.

The case where R, is noncompact reduces simply to the preceding case. We

only have to isolate the common part of the boundaries of R, and R from R - R,
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by a finite set a, of simple analytic Jordan curves which divide R, into a com-
pact domain Rj and a noncompact domain G,. By Lemmas 1 and 2, there exists
in G, a function u,, harmonic and single-valued, vanishing on a, and having a
prescribed period for the conjugate function v,. We select this period in accord-
ance with the condition

(46) f dvy = - dv;.
[am=-x [

All the assumptions of the first part of our theorem are thus satisfied. lience,
there exists a function f on R which fulfills the conditions stated in the latter

part of our theorem.

6. Applications. The theorem thus proved has applications to the classifica-
tion of Riemann surfaces and to the theory of Abelian integrals as announced in

[ 10; 11]. Here we confine our attention to some typical corollaries.

COROLLARY 1. There are Green’s functions on a Riemann surface R if and

only if the boundary has a positive harmonic measure.

Proof. Suppose there is a Green’s function g on R. Let P: z =0 be its loga-
rithmic pole, in a parameter disc K: |z| <1.In G, =R - K, let u be the harmonic
function constructed by the procedure of Lemma 1 for values u= g ona;:|z| = 1.

Then g — u is bounded in G,,
lg—u| <M< c,

and has a nonvanishing conjugate period. This clearly implies the existence of a

nonvanishing harmonic measure  in G,.

Conversely, suppose o # 0 in G,. Multiply » by such a constant that the con-
jugate of the function u, thus obtained has the period 27 along a,. Take as the
domain R, of our theorem the annulus 1/2 <|z| < 1. In G,: | z| < 1/2 write u, =
log 1/| z|. By our theorem, there is a function g”on R with the pole log 1/|z| at
z =0 and such that g’~ u, is bounded in G. The existence of a Green’s function
follows.

This result [ 10], proved later also by Virtanen [ 18] and Kuroda [2], shows
that the classification of Riemann surfaces in those with ‘‘null-boundary’’ and
““positive boundary’’ coincides with Riemann’s classification on the basis of

existence or nonexistence of Green’s functions.

Another application of our theorem is a criterion for the existence of single-
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valued nonconstant harmonic functions which are bounded (HB) or have a finite
Dirichlet integral (1ID). It was stated by Nevanlinna [4] and Virtanen [17] that
there are functions HB or liD on R if and only if R has a null-boundary. This
assertion has been disproved by Ahlfors and Royden. A correct criterion fol-

lows:

COROLLARY 2. There are functions B3 or HD on a given Riemann surface
R if and only if some function u of class HB or 1D respectively in G satisfies

the conditions u=0 on a, fa dv = 0.

The condition of a positive harmonic measure is equal to the first condition
given above [8]. Thus, the inadequacy of Nevanlinna’s statement is due to the

lack of the second condition.

A further application deals with Abelian integrals. The following problem was
stated by Myrberg in 1948 (October 13, at Helsinki University ): Does there exist
a nonconstant harmonic function with a finite Dirichlet integral on an arbitrary

open Riemann surface R. The above theorem gives [11]:

COROLLARY 3. On an arbitrary Riemann surface of positive genus there
exist Abelian integrals of the first, second, and third kind which possess a
finite Dirichlet integral outside a neighborhood of the singularities.

The Abelian integrals, the existence of which was thus proved, have later
been investigated by Virtanen and Nevanlinna. The existence proof can also be
performed by adapting the classical reasoning of Weyl.

Another immediate consequence of the foregoing theorem is the following re-
sult, proved first by Nevanlinna [5] using integral equations. Let R be an open
Riemann surface of parabolic type, and let A and B be two noncompact subdo-
mains such that 4 n B is a doubly connected region, bounded by two analytic

Jordan curves. Let a and b be two single-valued harmonic functions in 4 n B.

COROLLARY 4. If the difference of the conjugate functions of a and b is
single-valued, then there exists a harmonic function f on R such that f—a in 4,

f~ bin B, are harmonically continuable, single-valued, and bounded.

To prove this, we have only to select as the domain R, of our theorem a re-
gion interior to A n B, separating the two boundary curves of the latter, and the

existence of fis assured.

In several related problems, an extremal method [14 ] seems to be more power-
ful than the alternating methods. A comparative survey on these methods was

given in [ 15].
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ITERATES OF ARITHMETIC FUNCTIONS AND A PROPERTY
OF THE SEQUENCE OF PRIMES

HaroLp N. SuAaPIRO

1. Introduction. In a previous paper [2 ], the author has investigated certain

properties of the iterates of arithmetic functions which are of the following form.

For n = [1 p?l,
(1.1) ftn) = TT 7(p;) 1A(pI%,

where f(p;) is an integer, 1 <f(p;) <p;, and A(p;) is an integer < p;, for odd
primes p;; whereas f(2)=1, A(2)=2. We shall denote the set of these arith-
metic functions by K, These conditions ensure that for n > 2, f(n) < n, and hence
if f¥(n) denotes the k-th iterate of f there is a unique integer k such that

(1.2) ff(n) = 2.
For this k£ we write k£ = Cf(n). We define
Cf(l) = Cf(2) =0.

In this paper we propose to consider the problem of determining a g € K such

that for all odd primes p, and all f € K,
(1.3) Ce(p) 2 Colp).

The solution to this problem produces an interesting property of the sequence of
primes in that we shall show that (1.3) is equivalent to having g skip down
through the primes. More precisely, if p. =2, p, =3, ++, and in general p; de-
notes the i~th prime, (1.3) is equivalent to having g(3) = 2, g(5) = 4 or 3,

and

(1.4) g(p;) = p;_, for £ > 3.

2. A theorem concerning functions of K, In carrying out the proof of the result

Received September 10, 1952.
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stated in the introduction, we shall require a certain property of the iterates of

the functions of K, which we now derive.

Forn = I] p:.li, we define the arithmetic function A (r) as

A(n) = TT14(p)1%,

where the A (p;) are as given in (1.1). It then follows that, for all integersm and

n’
A(mn) = A(m)A(n) and A(n) < n.
LEmmA 2.1. For any divisor d of n, we have for f € K,

A(d) f(n) <

(2.1) @ =

?

where A(d) {(n)/f(d) is an integer.

Proof. We can write

fn) = A(n) [] ——
pln

)
-am I1 £2T1 22
pld () pyn Alp

ptd
A 4S9
A(d) A(d%)

where

d’ = I_I Ps
pln
ptd

so that d” divides n. Since 4 (n) is completely multiplicative, we have then

n , A(n) n
A(n)=A(27) AW, o =A(d,).

Hence
A(d) f(n)

n
e A(d—’) fla s,
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where clearly 4(d) f(n)/f(d) is an integer.
LEMMA 2.2. For f€ K, if e(n) =0 or 1 accordingas n is odd or even,
(2.2) Cf(2n) < Cp(n) + e(n).
Proof. Since f € K, we have f(2) =1, 4(2) = 2, and hence
f(2n) = 2f(n) or f(n),

where if n is odd f(2n) = f(a) and Cf(2n) = Cf(n). Otherwise, continuing, we
have

f2(2n) = 2f%(n) or fi(n)

and in general
fE(2n) = 2f*(a) or fE(n).
Then taking &k = Cf(n) we get
f5(2nr) = 4 o 2,
so that
Ci(2n) <k +1=Culn) +1.

THEOREM 2.1. If x is such that for all z <x, Cf(z) < Cf(x), where f € K,
then for all y,

(2.3) Cf(xy) < Cf(x) + Cf(y) + e(x).

Proof. We have

_ (=) f(y) A(d)

f(xy) 7

’

where d = (x,y). Letting
~ f(x) A(d)
1 f(d)

we know from Lemma 2.1 that 3, is an integer less than or equal to x; and

fxy) = B, f(y).
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Then similarly

2 (xy) = B, f*(y),

where

_ f(B1) 4(y) <8 <x
2 f()/) - M1 =
y=(B,,f(y)).

Thus in general we have:

k k

fAxy) =By [ (3), Br< By $v<B, L2,
so that, letting £ = Cf(y), we get

fk(xy)=2Bk, By <x.

Then if B, < x we have via Lemma 2.2, and our hypothesis,

Cf(y) + Cf(x)-

IN

N

On the other hand, if 8, = x we have

i

Cf(xy) Cf(y)+Cf(2x)

Cply) + Cplx) + (),

IN

and the theorem is proved.

3. Derivation of the main result. In carrying out the proof of the equivalence
of (1.3) and (1.4) we shall need certain estimates from elementary prime number
theory. These results are given in the following lemma. As is conventional, we

shall write p =2, p, =3, -+ -, and let p; denote the i-th prime.

LEmwmA 3.1. Letiing 7(x) = the number of primes < x, we have
(a) 2p, , > p; for i>35,

(b) for all positive integers x> 2,

x

(3.1) n(x) - ﬂ(;) > VE.
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Proof. Both of the above are deducible from a result of Ramanujan [1] which
asserts that for x > 300,

(3.2) m(x) - n(ﬁ) N M
2 log x

Ramanujan gives explicitly the result that for x > 11,
x
7(x) - 17(—) > 2,
2

which implies (a). As for (b), we note that since, for x > 10,590,

— (=5 -3v3) > 7,

log x \6

we have (3.1) for all x > 10,590, We can check (3.1) for all x < 10,590 very
quickly. We check up to x = 17. Then let

ap = 10,590, a, = 2,309, a, = 653,

a; = 229, a, = 103, ag = 59,
as = 37, a, = 23, ag = 17;

inspecting tables of primes, we see that these numbers have the property that
a;
m(a;+y) - 7(7) >Vai,

which completes the proof of (b).

We now give our main result as:

TuEOREM 3.1. If g(x), g € K, is such that Cy(x) is maximal for all primes
p, that is Cg(p) > Cf(p) for all f € K and all p, then g(3) = 2, g(5) = 4 or 3,
and, for i >3, g(p;) = pj-1-

Proof. Since g € K, we clearly have g(2) = g(1) = 1; and g(3) = 2. Now
in choosing g(5) < 5, we consider all possible values and choose the one which

makes Cg(S) a maximum. Symbolically, we may write
g(5) = C'{max[C(j), 0 < j< 51} =4or3.

Thus g(5) has two possible values 4 or 3. Similarly proceeding to p, = 7 and
Py = 11 we have
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g(7) =C'{max [C(j), 0<j< 7]} =75
and
g(11) = C'{max [C(j), 0 < j< 111} =7.
In general, for the i-th prime we must have
(3.3) g(p,) = C7' {max[C(j), 0 <j<pI}

Now it would seem that the determination of this value g(p;), since it depends
upon the C(j), which in turn may require the values of g(n) for composite n,
would remain undetermined so long as nothing is said about the function 4 (n).
However, as we shall see, the maximum of these C(j), required in (3.3), will

turn out to be completely independent of 4 (7).

We have noted that the theorem is true for i = 4, 5. Proceeding by induction,
assume it true for all i, 4<i’< n, and consider n > 5. From (3.3) we see that

in order to complete the proof we need only show that for any x such that
(3.4) P, > %> p,_,

we must have

(3.5) C(x)<C(pn_1)=n-—2.

Assume that for some x satisfying (3.4),(3.5) is false, and let x be the smallest
one satisfying (3.4 ) for which

(3.6) C(x) >n~ 2.
Then we have also
(3.7) C(g(x))>n-3.

We shall now show that g(x) # p, _ . For suppose that g(x)=p,_,. Then x
must have a prime divisor ¢ such that g(¢)=p,_,. But from (3.4) we see that
q< p,_,» which is impossible.

If g(x)< | by our inductive hypothesis we would have
C(g(x)) < C(p,_,) =n~-3.

Now if C(g(x))=n -3, it would follow that g(x) = p,_,. This in turn implies
that p, _ divides x. Since x # p, _,, this yields
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x22pn_l > Ppo

which is a contradiction. The only alternative left is that C(g(x)) <n - 3,

which contradicts (3.7). Thus we conclude that g(x) > Ppy SO that we must
have

p, >x>g(x)>p,_ .

Since x is the smallest integer satisfying (3.4) and not (3.5), we must have
C(g(x))<n-2o0r C(x) < n~2; hence

(3.10) C(x)=n-2.
Now x is not even, for if it were we would have

x Pn
g(x)5'5<‘5‘<?_

which is a contradiction. Also x is not divisible by 3 for n > 5; for if it were,
g(x) would be even and we would get, using Lemma 3.1 (a),
g(x) Pn

gz(x) < —2-— < —2— < | S

But then

C(g* (%) < Clp,_,) = n-4.

If the inequality sign holds, this implies C(x) < n — 2 in contradiction to (3.10).
On the other hand, if the equality sign holds then g (x) = Pn-;+ This in turn im-
plies that p, _, divides g(x). If g(x) #p,_,, then

8(x) 2 2p,_, > p,»

which is impossible. Finally, g(x) = p, _, implies that x is divisible by p__ ,

which is impossible.

Also, if x is not divisible by 5, the argument is the same as for 3. On the
other hand if g(5) = 3, and x is divisible by 5, it results that g?(5) is even,
and hence

2 3 <Pn<
o mm o =— X — .
3 5735 " Pn

R

-§g<x>s

N -

& (x) s%gzm <

But this again implies that C(x) < n — 2, which is impossible.
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Suppose then that p > 7 is the smallest prime which divides x. Since x is com-
posite, 1 <x/p <x and p <y=. It is clear from (3.3) and our inductive hypo-
thesis that for z < p, C(2z) < C(p). Hence via Theorem 2.1 we have

x

n—2=C(x)§C(
p

)+C(p)-

Via our inductive hypothesis we see that, since p <\/x,

C(p) < n(Vx),

so that
(3.11) C(§)+ 2(JF) 2 n - 2.
Since
x x
%> Ppy” = 2 ;,
and
C(x)=C(p,_,)=n=-2,
we have

C(x) - C(f) > m(x) ~ ﬂ(-’f-) > VF
p 7
by Lemma 3.1 (b); and

x
(3.12) C(—)<n——2—\/—x-.

p
Combining (3.11) and (3.12) yields #(y/x) >/, an obvious contradiction: thus

the proof of the theorem is completed.

4. Some remarks and generalizations. From the above we note that imposing
the condition that the function Cf(n) be maximal at the primes determines u-
niquely the values of f(n) at the primes without restricting 4(n) in any way.
This is natural from a certain point of view, since the function 4 (n) plays arole
only in evaluating f(n) for powers of a prime. This might lead one to suspect

that requiring that Cy(n) be maximal at the p? in addition to the p, would also
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determine the values of A(n). This is in fact the case, and one may prove (we

omit the proof since it is long and very similar to that of §3):

THEOREM 4.1. If Cg(x) is maximal at the primes and squares of primes,
then Ag(3) =2 or3,4,(5) =5 or4, and forp; > 5, A,(p;) = p; or p;_,. Further-
more this same maximal Cg(x) is realized for any admissible choice of theAg(pi)

(that is, as either p; or p;_, ).
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CONVEXITY PROPERTIES OF INTEGRAL MEANS
OF ANALYTIC FUNCTIONS

H. Suniap

1. Introduction. Let f= f(z) denote an analytic function of the complex
variable z in the open circle | z| < R. For each positive number ¢, the mean of
order ¢ of the modulus of f(z) is defined as follows:

1 am i 1/t
3]!,(r;f)=[;; fo | f(re*®) |t d0] , (0<r<R).

The reader might consult [ 5, p. 143-144; 3; and 4, p.134-1461 for some of the

properties of this mean value function 3, (r; f).

We consider the question: does the analyticity in | z| <R of the function f
imply the convexity of the mean I;(r; f) as a function of r in the interval 0 <r <
R? It is known [ 1] that:

(A) Unless the function f is suitably restricted, the set of positive values ¢
for which the question may be answered affirmatively has a finite upper bound.

(B) If the number ¢ is of the form 2/k, with k a positive integer, then, for
every analytic function f, the mean of order ¢ is convex.

(C) If the function f vanishes at the origin, then the mean I, (r;f) is convex
for every fixed positive number ¢.

(D) If the function f has no zero in the circle, then its mean of order ¢ is
convex, provided that the positive number satisfies ¢ < 2.

(E) If the function f has at most k zeros, k > 1, in the circle, then the mean
of order ¢ is convex provided that the positive number ¢ satisfies ¢ < 2/k.

The main purpose of this paper is to prove that, for every analytic function f,
the mean of order four is convex. Moreover, we show by example that if the
number ¢ is greater than 5.66, then there is an analytic function whose mean of
order ¢ is not convex.

2. Means of nonvanishing functions. Assume that g(z) is analytic in |z| <R,
Received August 10, 1952.
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and that the expansion for g(z) in the given circle is

glz)= 2 a, z".
n=o
Then the integral

Loy L 1 27 i6y2
h(r; g) = 2—”./(; lg(re*¥)|2 d6

has the expansion

[>.2]

h(rsg) = 3 la,|* r?",

n=0
valid in r < R. Let
Q(r; gy c) = hh” — c(h*)?,

where primes denote differentiation with respect to r, £ is the function A (r; g),
and ¢ is a constant independent of the variable r and of the function g. If C is
a class of functions {g(z)}, and if, for all functions g in this class C, for all

r <R, and for a particular positive value ¢, the inequality
Q(r;8,¢4) >0

holds, then the inequality

Q(r;8,¢) 20

holds for all ¢ < ¢q, all r <R, and all functions g in the class C. We now specify
the class C to be the class of all functions g(z) which are analytic and do not
vanish in |z| < R. If f(z) is in class C, then any single-valued branch of [ f(z)]*

where a is an arbitrary real number, is also in class C. Given a function fy(z)
in class C, and a fixed positive number ¢, let g, (z) be a single-valued branch of

[fo(2)172; and let

1 27
hy(r) = E;fo g, ()12 do.

Then
M, (rs f,) = Lhy 1Y%
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and since h, is a nonvanishing function of r, we have

d*My (15 fo)
— = = P Qlrg, (1-1/0)],
dr?
where
o (r;
po lrifo) o
th?
Every function g(z) in class C is a single-valued branch of [f(z)]‘/z, where

f(z) is some appropriate function in class C. Therefore, for positive values ¢,
the mean M;(r; f) is a convex function of r for all functions f in class C if and

only if
Qlr; g (1-1/6)1 >0

for all functions g in class C. Since the inequality 1 — 1/t < 1 —1/ty holds for
all ¢ and ¢, satisfying 0 <t < ¢y, we conclude from the preceding remarks that,
if the positive value ¢y is such that the mean W,o(r; f) is convex for all non-
vanishing f(z), then the mean M;(r; f) is convex for all nonvanishing f(z),
provided that ¢ is any positive value not exceeding ¢,.

For a simple example of a function M,(r; f) which is not convex, consider

the mean ef order eight of a single-valued branch of

f(z) =y1+z in |z] < 1.

In this case, we have
R(r) =1+ 4r? + r*;

and [~2(7)]*/® is not convex in 0 < r< 1.

Since, for every analytic function f, the mean of order two is convex, it now
follows that there exists a greatest positive value ¢y, in the range 2 <ty <8,
such that ?Rto(r; t) is convex for all nonvanishing analytic functions. It will be
a corollary of our result that this greatest value ¢, satisfies the inequalities
4 <ty < 5.66.

3. Preliminary lemmata. The proof of our main theorem will be based on the

following lemmata.

LEMMA 1. Let a; (i =1,2,+++) be a sequence of positive numbers such
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that the sum

2 1/a,

i=1

converges to the finite value M. If the sequence of real variables x; (i =1,2,+++)

is restricted to satisfy the inequality
o0
2
2 a; x,* < B,
i=1

then the maximum value of the function

is (BM)'/2,

Proof. We consider first maximizing

with the variables subject to the condition
n
2 _
2 a; x;,° = B.
i=1
Let

n
M, = Z l/ai.

i=1

The critical points of the function f, are at the solutions of the simultaneous

equations

a; x; = a; % (iyj=1,444,n),

which are given by
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x?=B(Mna?), (i=1,eee,n).

Therefore, the maximum f, is M, (B/M,)'/? or (BM,)'/2. Since M, <M, and all
the values a; are positive, it follows that for all n the partial sums f, are bounded
by (BM)!/2 and the conclusion of the lemma follows.

LEMMA 2. Let S be the sum

S=2 1/(6n® -9n + 2).

n=3
Then this sum S is less than 0.09504.

Proof. The function f(n)=1/(6n% — 9n + 2) has the following expansion in
powers of 1/(n - 1):

o0

f(a) = ¥ a/tn-1),
k=2

with a; = 1/6, a3 =~1/12, a4 = 5/72. For determining subsequent values of a,
it is convenient to use the recursion formula:

Gy = (af - 3ak+1)/6-

The coefficients a, and a3 are positive and negative respectively. Therefore it
follows directly from the recursion formula that the general coefficients a; alter-
nate in sign. By another use of the recursion formula, we see that the sum a; +
a;,, is equal to (a; , —a,_ )/12, and therefore that the sign of the suma, +
a,, is the same as that of the coefficient ay _,» OF of the coefficient a. Since
the inequalities |a,| > |a3| > |ag| hold, it now follows that the numerical
values of the coefficients all decrease with increasing k. Let (k) be the
Riemann zeta-function, and let s (k)= (k) — 1. Since the foregoing expansion
for f(n) is an absolutely convergent series, the sum S may be expanded in an
alternating series of the form

S = Z a, s(k),
k=2

whose terms decrease in numerical value with increasing k. Using (see [2]) the
approximations s (2) = 0.644935, s(4) = 0.082324, s(6) = 0.017344, s(8) =
0.004078, s (10) = 0.000995, which are too large, and the approximations s (3)=
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0.202056, s(5) =0.036927, s(7)=0.008349, s(9)=0.002008, which are too
small, we obtain the value 0.09504 stated in the lemma by summing this last

series up to and including the term for k = 10.
LeEMMA 3. Let

y =Vx +/0.04752 /9x% - 10x + 1,

where x lies in the range 0 <x < 1/9. Then the maxim.m value of y is less than
(V2 - 1).

Proof. Setting the derivative of y equal to zero, we find that the value of x

maximizing y is the solution of the equation
0.04752x (10 — 18x)% — (9x% ~10x + 1) = 0.

This critical value of x lies between 0.07 and 0.08. Therefore

max y < \/0.08 + 1/0.04752 [9(0.07)? - 10(0.07) + 1]
< 0.283 + 0.129 = 0.412.

Since (/2 ~ 1) is greater than 0.414, the conclusion of the lemma follows.
4. The mean of order four. Let

g(z) =[f(2)]?

have the expansion
o0
g(z) = 2° a, 2",
n=0

valid in | z| < R. Following the ideas developed in § 2, we see that
¢, (r; ) = [A(H]V/4,

with
h(r) = 2 la,|? ",

n=0

and that I, (7; f) is convex in r <R if and only if
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3 o o
Q(r) = hb” - I (h%)? = Z Qii P; P; r2litp)-2

i,j =0
with
Qii =i(2i-1)+ j(2j-1) - 3ij and p; = |q;]|?,

is nonnegative in the interval 0 <7 <R. The only coefficient Q,; which is nega-
tive is Q| =~1. That the mean of order four is convex may be concluded from
the following theorem.

THEOREM. If a function g(z) is analytic in the circle |z| < R, and the

1 m . 1/4
[— f2 |g(re‘9)|2da]
277 0

is not convex as a function of r in the interval r < R, then g(z)is not the square

function

of an analytic function in |z| <R.

Proof. 1t is pointed out in the introduction that if f(0) =0, then the mean

M, (r; f) is convex for all ¢t. Therefore we may assume that
[£(0)1% = g(0) = p,
is not zero. The hypothesis of the theorem implies that
Q(r) = 2 Qij Pi P; r2liti)=
i,j=0

takes on negative values; since ¢, is the only negative coefficient, this is
possible only if the value p; = | a,|? is not zero. Therefore, we may make the

normalizations
a, = 1, al=\/§-, po =1, and p, = 2.
Let

Q,(r) =2p,p, + (12p,p, --~plz)r2 +2p, p, r*

o0

+2 2 (Qon Py Pn r?
n=3

n-2 2n)’

+ Q@ Py Py T
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with Qpp, =n(2n~-1) and Q,, =2n% ~4n + 1. Since Q(r)>Q, (r), and Q, ()

can be negative only for values of r satisfying
2 2
2p, p, - pP;T° <0,
we have in the normalized case the result that Q, () is negative for some r > 1;

and the expression

(_72 (r)=4+ (12p2 -4)r? + 4p, + 2 (12n2 - 18n + 4)p, r4

n=3

also takes on negative values. The discriminant of Qz(r) as a quadratic form

in r 2 must be positive. Therefore we have the inequality

> (6n®-9n+2)p, < (9p;-10p, +1)/2,
n=3

and the result that p_ is less than 1/9. Applying Lemma 1, we see that

o0

> la,| </S(9p2 _10p, +1)/2,

n=3

with

S= 2" 1/(6n% - 9n + 2).

n=3
By use of Lemma 2, we have
> la,l < /b, + 004752 \/op? ~ 10p, + 1;
n=2

and, by use of Lemma 3, we have

2 le,l <v2Z-1.

n=2

Applying Rouché’s Theorem to the function
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g(z) =1+V2z+ Zanz"

n=2

we see that, if the function g(z) is analytic in the circle |z| < 1, then g(z)
has exactly one zero within this circle, and therefore that g(z) is not the square
of an analytic function in this circle. Since the convexity of the mean must break
down only for values of r greater than one, we have established the theorem.

5. Examples of nonconvex means. Let f(z) be a single-valued branch of the
function [(1 -2)2/(1 - €z)]1%/%, with € = 0.19. We shall show that if ¢ > 5.66,
then the mean %, (r; f) is not convex in r < 1. Since

[F()172 =1+ (=2 + €) z + [(1 - €)?22/(1 - €2)],
it follows that
W, (r; f) = [A(IVE,
with
R(r)=1+(4—-4e+e€)r?2 +[(1-€)*r/(1 -€%r2)].
By straight-forward calculation, we have
(1+€) (1) =6 - 2€=5.62; (1+€)? A°(1) = 12 - 4€? = 11.8556;
(1+€)*h”(1) =20 + 4€ ~ 4€? ~ 4€3 = 20.588164;
and
(1+6€)* Q(r)=(1+e) [ - (1 ~1/t) (h)?]
< (14+€)*[115.71 - (1 -1/t) (140.55)]
< 0, if ¢t > 140.55/24.84 , and therefore if ¢ > 5.66.

Thus we have examples of nonconvex means M, (r; f) for ¢ > 5.66 even under
the restriction that f(z) does not vanish in its circle of analyticity.
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PLANE GEOMETRIES FROM CONVEX PLATES

MARLOW SHOLANDER

1. Introduction. It is shown below that to each member of a general class of
two-dimensional convex bodies there corresponds an affine geometry in the sense

of Artin [1] and an S. L. space in the sense of Busemann [4].

A two-dimensional convex body is called a convex plate. For the few ele-

mentary properties of such plates assumed here, see [3].

Let K be a convex plate, and let K® denote its boundary curve. All construc-
tions are to be made in the plane £ of K. Consider an arbitrary direction ¢ in £
and the two lines of support to K in this direction. Let ¢, be the line of support
whose associated half-plane in the direction ¢ + #/2 contains K. Let ¢, be the
other line of support. For 0 <i <1, let ¢; be the line parallel to ¢, which divides
line segments extending from ¢, to ¢, in the ratio of i to 1 —i. Let ¢; cut K® at

points R; and T; so that the directed segment R; T; has direction ¢.

For 0 <i<land 0<j<1, let S;; be the point which divides R; T; in the
ratio of j to 1 ~ j. The set s; = U; S;; is an open Jordan arc whose endpoints are
points of contact of ¢, and ¢, with K. A set s; is called a strut. Other struts may
be obtained by varying ¢. When the direction needs emphasis, the above nota-
tions are modified by affixing the angle in parentheses, for example, R;(¢) or
sj(¢). Two struts with no common points or all points in common are called

parallel. Clearly s].(¢) and s, () are parallel.

Under the name Durchlinien, Zindler [ 6] studied struts of the form s, ,, ().
It is easy to see that s, ,, () halves the area of K, and that the centroid of X

is contained in the convex hull of this strut.

2. A preliminary theorem. This section is. devoted to a proof of the following

theorem. An edge of K is defined as a (maximal) line segment in K°.

THEOREM. If for distinct directions ¢ and iy, struts s;(¢) and s;(y)) meet
at distinct points P and Q, they meet at all points of the segment PQ. Such seg-

ments of intersection occur if and only if K has at least two edges.

Received May 19, 1952. A part of this paper was written while the author was under
contract to the Office of Naval Research,
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Proof. Leti=1/(1+a) and j=1/(1 + b). From the affine invariant nature
of the problem, we may assume ¢ and iy are respectively the positive x- and
positive y-directions in £, where P has been chosen as the origin. We may as-
sume the chords passing through P along the axes are PP, and P, P,, where
P,, P,, P;, and P, have respectively the coordinates (a, 0), (0, b), (-1, 0),
and (0, -1). If PP, is parallel to P;P,, let n be the line parallel to these lines
which passes through P. Otherwise let n be the line on P ard the point of inter-
section of these lines. Finally, we may assume that () lies in the first quadrant

on or above the line n. Let {J have coordinates (r, s).

Let the chords through ( parallel to the axes be @, ¢, and (), Q,. Coordin-
ates of ()}, ,, (3, and ¢, have respectively the form (r + ap, s), (r, s + bg),
(r-p, s), and (r, s — q). We note that P, P, n, and P, P, have respectively

the equations
ay =x—a, a(b+1)y = b(a+1)x, and y = bx + b.
Since ( is on or above n,
(1) bla+1)r < a(b+1)s.
Because K is convex, (), cannot be above P, P ,; that is,
(2) s+ bg < b(r+1).
Multiply (2) by @ and add to (1). This gives
(3) r—ag a(s-gq);

that is, ¢, is on or above P, P,. Moreover, equality in (3) implies equality in
(1) and (2).

Consider first the case r < a. Here, since (J, cannot be above P P, it lies
on P, P,. Thus equality holds in (2), and ¢, lies on P,P,. Since P,, ¢,, and
P, are distinct and collinear, they are on an edge of K. Similarly, ¢,, P,,and

P lie on an edge.

In the caser > a,
slope P, P, < slope Q,Q,, 1/a < ¢/ap, and p < q.
If s < b, (; cannot be below P, P;; that is,
(4) b(r+1) <s + bp.

Together with (2) this yields g < p. Hence p = ¢, and equality holds in both (2)
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and (4). This shows that ¢,, P,, ¢;, P, are collinear, and hence on an edge of
K. Furthermore, slope P, P, = slope ¢,Q,, and P,, P, Q,, Q, are on an edge.
If s > b, ¢, cannot be above P, P, slope Q;¢, < slope P3P, bg/p < b, and
q < p. Again p = g, slope P, P = slope ¢,0,, and slope P; P, = slope @;(Q,.
An edge of K contains P,, P,, Q,, and Q,, and another edge contains ¢,, (3,
P,, and P,.

3. Affine geometries. Consider a convex plate K with the properties:

(i) K has at most one edge;

(ii) K has no corners.

Let I be the set of inner points of K. Consider distinct points P and Qin /.
Assume, for a given ¢, that P is on sj(#) and ¢ is on s, (&), j < k. Clearly P
isons;_j(¢+n) and Qis on s, (¢ + 7). From considerations of continuity,
there exists a direction ¢ such that P and-Q are on a strut s; (¢/). From this and

from the previous section we have the following result.
PrRoOPERTY I. Two distinct points in / lie on one and only one strut.

Consider now a strut s;(¢) and a point P in I. The strut si(qs) which passes
through P is parallel to s;(¢). On the other hand, let sk( U)y ;é ¢, pass through
P. Since s;(¢) and sk((/:) have endpoints which separate one another on K°,

these struts have some point of / in common, and the following holds.

PROPERTY II. Given a strut s and a point P in I, there is one and only one
strut through P and parallel to s.

PrOPERTY IIl. There are three points of / not on a strut.

These three properties are Axioms I, II, and III of Artin [1]. Listed in Lattice
theory [2, p.110] as APG1, APG2, and APG3, they classify / as a plane affine
geometry.

It would be of interest to know what sets / satisfy Artin’s Axiom IV (see
Appendix), or even what sets have nontrivial dilatations. An ellipse K yields an
I with all the desired properties. To show this it is sufficient to consider the
case where K is the circle

Consider the sphere

S: 22 + y?2 + (z-a)? = a2,
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resting on the origin of the xy-plane £. The line
x cos¢ +y sing =R

in £ projects from the center of S into a great half-circle on S. This half-circle

projects perpendicularly on £ into a half-ellipse, the strut s;(¢), where

2i =1+ R/\V/R? + a?.

Thus the mapping which takes (r, ) in / into the point (R, 6) of E, where
Ry/a%?-r? = ar,

places the struts in one-to-one correspondence with straight lines. In this ex-

ample, we have a finite model for Euclidean geometry.

4. Other geometries. In general we may obtain a plane projective geometry
from a plane affine geometry by adjoining an ideal line (see [2, p.110]). In this
case K% serves as the ideal line. The affine and projective geometries associ-

ated with K are examples of matroid lattices.

In §3 we mapped an elliptical I onto the Euclidean plane E. A similar map-
ping may be defined for any / so that struts map on curves in E which satisfy the
hypotheses of [ 4, p.89, Th.1]. It follows that a metric may be introduced (in E
and hence) in / which makes of / an S. L. Space of Busemann: / will be finitely
compact, convex in the sense of Menger, externally convex in the sense of
Busemann, and the struts will be geodesics under this metric. This S. L. space
also satisfies the Euclidean Parallel Axiom. In fact, all Hilbert’s (plane) Axioms
[5] are satisfied except the congruence axioms. The determination of the condi-

tions under which the latter hold is an open problem.

5. Appendix. Artin’s Axiom IV, not readily available to all readers, is given
below after necessary introductory material. Using Axioms I-1V, we may assign

coordinates (&, ) to points so that the equation of a *‘strut’’ is linear.

The set of points considered is called a plane. A mapping o associates with
every point P a point P "= (P). A mapping is called a dilatation if to each pair
of points P, Q correspond parallel struts s and s’ such that P and ¢ lie on s,
and P" and Q" lie on s”. The identity mapping of the plane is denoted by 1. A
translation is a dilatation which is either 1 or else has no fixed points. A trace
of a dilatation o is a strut which contains a point P and its image P.(IfP£P’
there is a unique trace on P.) A homomorphism is a correspondence from trans-

lation Tto translation T% such that each trace of T is a trace of T and such that
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(T, T,)%= 1} 15.
Ax1oMm IVa. Given P and (, there exists a translation carrying P into (.

Ax1om IVb. Given translations T, and T, (neither equal to 1) with the same

traces, there exists a homomorphism T%such that 1¢ = T,.
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