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CHANGES OF SIGN OF SUMS OF RANDOM VARIABLES

P . E R D O S AND G. A . H U N T

1. Introduction. Let xi9 x2» be independent random variables all having

the same continuous symmetric distribution, and let

Our purpose is to prove statements concerning the changes of sign in the se-

quence of partial sums s i9 s2, ••• which do not depend on the particular distri-

bution the x^ may have.

The first theorem estimates the expectation of Nn9 the number of changes

of sign in the finite sequence s i9 ••• , sn + ι Here and later we write φ(k) for

2 < [ * / 2 ] + l ) / * \ 2 . k ~ { 2 π k ) . W 2

j f c + l \[k/2]

THEOREM 1.

It is known ( s e e [ l ] ) that, with probability one,

( 1 ) lim sup = 1
n-*°° {n l o g l o g n ) ί / 2

when the x^ are the Rademacher functions. We conjecture, but have not been

able to prove, that (1) remains true, provided the equality sign be changed to

< , for all sequences of identically distributed independent symmetric random

variables. We have had more success with lower limits:

THEOREM 2. With probability one,

Received November 13, 1952. The preparation of this paper was sponsored ( in p a r t )
by the Office of Naval Research, USN.

Pacific J. Math. 3 (1953), 673-687

6 7 3



6 7 4 P. ERDOS AND G. A. HUNT

v • t N n X

lim min —> log n

By considering certain subsequences of the partial sums we obtain an exact

limit theorem which is st i l l independent of the distribution of the x^\ Let OC be

a positive number and a the first integer such that ( 1 + C ί ) α >_ 2; let 1', 2 ' , •••

be any sequence of natural numbers satisfying (A + 1 ) ' > _ ( 1 + OC)A;'; and let

N^ be the number of changes of sign in the sequence s^9 ••• , s ^ + 1 > where s^

stands for s^ .

THEOREM 3. E{/V'} > [n/a]/8, and, with probability one,

= 1.

For &' = 2 , it is easy to see that E{ Nή\ = ra/4; so with probability one the

number of changes of sign in the first n terms of the sequence sίf s2, ••• ,

5 fc , is asymptotic to w./4.

The basis of our proofs is the combinational Lemma 2 of the next section.

When translated into the language of probability, this gives an immediate proof

of Theorem 1. We prove Theorem 3 in § 3 and then use it to prove Theorem 2.

A sequence of random variables for which /VΛ/log n —> 1/2 is exhibited in §4;

thus the statement of Theorem 2 is in a way the best possible. Finally we

sketch the proof of the following theorem, which was discovered by Paul Levy

[2] when the x^ are the Rademacher functions.

THEOREM 4. With probability one,

Our results are stated only for random variables with continuous distri-

butions. Lemma 3, slightly altered to take into account cases of equality, re-

mains true however for discontinuous distributions; the altered version is strong

enough to prove the last three theorems as they stand and the first theorem with

the extreme members slightly changed. The symmetry of the x, is of course

essential in all our arguments.

2. Combinatorial lemmas. Let α i , , o Λ be positive numbers which are

free in the sense that no two of the sums ± o t ± ±an have the same value.
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These sums, arranged in decreasing order, we denote by Sl9 , S n; qtis the

excess of plus signs over minus signs in SJ; and Q ι~ qγ + + q^ It is clear

that Q n = 0 and that Q. = Q n . for 1 < i < 2n.

LEMMA 1. For 1 < i < 2n~ι,

The proof of the first inequality, which is evident for n = 1, goes by in-

duction. Suppose n > 1 and i < 2n~ι. Define S ' and Q1 for 1 < / < 2n"1 just

as Sj and Qj were defined above, but using only aί9 ••• , anm\ Let A: and / be

the greatest integers such S£ - an > S^ and S^ + αn > S .̂ It may happen that

no such k exists; then i = I and the proof is relatively easy Otherwise k < ί,

k < 2n'2, and i = k + I. If Z < 2""2 then

ρ . = Q'k - k + ρ ; + / = ( ρ ^ - A ) + ( ρ ; - z ) + 2Z > i .

If 2 n ' 2 < Z < 27*'1 then

= ( £ £ _ * ) + (<? 2 Γ l . U / - 2 ^ 1 + Z) + 2n"1 -

Finally, if Z = 2"" 1 then, recalling Q'nml = 0, we get

In order to prove the second inequality we note that for each i the maximum

of Qi is attained if the ai are given such values that S > S^ implies q >^ q^

— this happens if the αy are nearly equal. Assume this situation. Then if n is

odd qi is positive for i < i0 = 2n~ ι and Q^ - i is maximum for i = i0. We have

A similar computation for n even gives

Λίί 1 __

/2
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for the index iQ of the maximum and the same expression for Q — iQ. This

completes the proof.

If cί9 • •• , cn + ι are real numbers let m(cι, « »C/ι + i ) be the number of

indices / for which

We now consider n + 1 positive numbers al9 ••• , α n + 1 which are 'free' in the

sense explained above, and define

M = M ( a i 9 ••• , a n + ι ) = ^ m ( ± a ί 9 » » , ± α Λ + t ) ,

the summation being taken over all combinations of plus signs and minus signs.

LEMMA 2.

2»+ 1 < M < 4([/ι/2] + l ) / n \.
~ ~ \[n/2]J

It is clear that M = 2n + ι if

and we reduce the other cases to this one by computing the change in M a s

an + ι 1S increased to dγ + + α n + 1. Using the notation of Lemma 1, we sup-

pose that Sj + i < α/i + i < Si, where i of course is not greater than 2n~ , and that

α^ + 1 is a number slightly greater than S;. We now compare M{al9 ••• , an> α^ + i)

with M ( α ! ,••• ,an9 α ^ + i ) . The inequality an+χ < Si becomes a>ή + ι > Si if

an + ι is replaced by aίi+if a n ( ^ w e s e e that there is a contribution + 4 to Λί coming

from the terms ±a^ + i in the four sums ± S j ± α ^ + i In like manner, each + αy oc-

curring in Sj contributes — 4 to M, and each — αy in Sj contributes + 4 if / is l e s s

than n + 1. So

- M{al9 , α Λ , α^ + 1 ) = 4 (ςrt - 1) ,

where <JN has the meaning explained at the beginning of this sect ion. Thus in-

creasing an+1 to a i -f + an + 1 decreases M by
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and Lemma 2 follows from Lemma 1.

There is another more direct way of establishing the first inequality of

Lemma 2. Since the inequality is trivial for n = 1, we proceed by induction.

Considering the numbers {a,ι + a2), a3, , an + χ we assume that there are

at least 2n'2 inequalities of the form

(2) a} > U (j > 2 )

or

( 3 ) ( α t + α 2 ) > F ,

where the right members are p o s i t i v e , and U i s a sum over (aί + a2 ) , α 3 , ••• ,

α/-i> α/ + i> ••• , cin + i with appropr ia te s i g n s , and V i s a sum over α 3 , ••• , an + lΛ

From ( 2 ) we obta in an inequa l i ty ( 2 ' ) by dropping the p a r e n t h e s e s from (ai+a2)

in U; from ( 3 ) we obta in an i n e q u a l i t y ( 3 ' ) : aγ > a2 - V or av > V - a2 a c -

cording a s α 2 i s g rea ter or l e s s than V ( w e a s s u m e without l o s s of g e n e r a l i t y

t h a t a,χ > a2). We c o n s i d e r a l s o the numbers ( α t - a2 ), α 3 , ••• , an + ι and

i n e q u a l i t i e s

(4) aj > U ( / > 2)

( 5 ) ( α t - a 2 ) > V,

of which we assume there are at least 2n~2. From ( 4 ) we derive an inequality

( 4 ' ) by dropping the parentheses from {aγ - α 2 ) in ί/, and from ( 5 ) we derive

an inequality ( 5 ' ) : aγ > a2 + V. It is easy to see that no two of the primed

inequalit ies are the same. Hence there must be at least 2 2 Λ " 2 = 2 n " 1 in-

equalit ies

ai > Σ ± aj (1 < i < n + 1)

iti

in which the right member is positive. Taking into account the four possibilities

of attributing signs to the members of each inequality we get the first statement

of the lemma.

We now translate our result into terms of probability.

LEMMA 3
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Here of course the random variables satisfy the conditions imposed at the

beginning of § 1, and φ(n) is the function defined there. Since the joint distri-

bution of the %ι is unchanged by permuting the %ι or by multiplying an %ι by

- 1 , we have

n+l

n + 1

S
E\ m (xί9 ,

E

*. > Xj

E{M(\Xι\ , . - . ,

where m and Λ/ are the functions defined above. Since | xγ | , , | xn + ι \ are

'free' with probability one (because the distribution of the X{ is continuous),

Lemma 3 follows at once from Lemma 2.

Our later proofs could be made somewhat simpler than they stand if we could

use the inequality

m

m + n

rc+m

x i
n+ 1

for m < n. This generalization of Lemma 3 we have been unable to prove; and

indeed a corresponding generalization of Lemma 2 is false. However, we shall

use

(6) Pm,n < 6φ([n/m]) < 3[/ι/m]" l / 2,

and establish it in the following manner:

Let a = [ n/m ] , and write
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where the γ^ have the same distribution as the XJ, and the XJ and y^ taken

together form an independent set of random variables. Let E be the set on which

the four inequalities

\w\ < \u ± v ± z I

hold; by Lemma 3 the probability of any one of these inequalit ies is at leas t

1 —<£(α + l ) ; hence E has probability at least 1 — 4 ^ ( α + l ) Similarly the

probability of the set F on which the two inequalit ies | υ ± z \ < \u\ hold in at

least 1 - 2φ(a) Now clearly |w + f | > \w\ on E F and also

3. Proofs of Theorems 1, 2, 3. It is easy to see that the probability of

Sfc and Sβ. + 1 differing in sign is one-half the probability of s^ + 1 being larger in

absolute value than s^. Thus

E ί / V n } = Σ P r \ s k s k + ι < 0 ί = i £ P r { | * , + 1 | >\sk\\,

and Lemma 3 implies Theorem 1.

Let us turn to Theorem 3. Clearly the probability of s£ and

2k'

S2k'= ΣXj
1

differing in sign is 1/4. Also, Sj.+ α ~s

2k' 1S independent of both sk and s2^./,

for

(A + o ) ' > ( 1 + α ) α £ ' > 2k'.

Thus sΓ+ ~~s2k' ^ a s a n e v e n chance of taking on the same sign as s 2»*; so
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we must have

Now, if s^ sjί+a < 0 then must be at least one change of sign in the sequence
sk> 5&+i' " " ' sk+a* ^ e n c e » ti Pk * s ι ^ e probability of s£ and s^ + ι differing

in sign, we have

1

~ 8

and consequently

(7) E ί Λ ί = £ P / f > - ίn/a].
l 8

This proves the first half of the theorem.

As a preliminary to proving the second half of the theorem we show that the

variance of N^ is O(n) by estimating the probabilities

Suppose that i < j ; set

7 ~ s i + i'

and define the events

A : uv < 0,

β : | u I < 11; I ,

C : (u + v + w)z < 0 ,

D : \u + v + w\ < \z\ ,

D': \w\ < \z\,

E : \ z — w\ > \u + v\ ,

Then
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p. = Fτ{AB\, p. = Pr\Cϋ\, and p. . = P r U f i C D i .

One sees immediately that /I, /?, C, D ' are independent, and that ED -ED'.

Writing £" for the complement of E9 we have

A BCD = EABCD + E A B CD' C E + A B CD',

and

D ' C £ + D.

Hence

P r U θ C D ! < P r ! £ ! +Pτ\A BC\Pτ{D'\

<Pr\E\ +Pr\ ABC] (Pv\E\ + Pr{D\)

< P r U B } P r { C } P r { Z ) } + 2 P r ί £ ! = p. p. + 2 P r { ί ; } .

Note now that z — w is the sum of (/ + 1 ) ' — ( i + 1 ) ' of the Λ ' S , and u + v is

the sum of ( i + 1 ) ' , of the Λ ' S , and that moreover

We may thus apply the inequality ( 6 ) following Lemma 3 to obtain

P r { £ ! < 3 [ ( l + α y - ι - 2 ] " 1 / 2

provided j - i > α This yields an upper bound for p^ . a similar argument

yields a corresponding lower bound. We have finally

Pitj - P i P j + 0 { | l + α | -

for all i and y. This estimate shows that

(8) E ί / v ; 2 u Σ Pi,

-. Σ P . P/ + Σ o i ( i + α)-l i->l/2j = Eί/v i 2 + o ( Λ ) .

Let us denote E { N'k \ by fe^. It follows from ( 7 ) , ( 8 ) , and Tchebycheff 's



682 P. ERDOS AND G. A. HUNT

inequality that

Pr μ - l > e <
€2k

for an appropriate constant c and for all positive e. Thus

Pr
V

— 1

is the Λ th term of a convergent series, so that according to the lemma of Borel

and Cantelli

with probability one. Note also that

V
1 .

Now for every natural number n we have

5

with A so chosen that k2 < ra < (k + I ) 2 . Since the extreme members tend to

one as n increases, the proof of the second half of Theorem 3 is complete.

Theorem 2 is obtained from Theorem 3 in the following way. Let r be a large

integer and let l ' , 2 ' , be the sequence

r, ( r + 1 ) ,

r 2 , r ( r + 1), ( r + 1), ( r + I ) 2 ,

r ' , r M ( r + l ) , . . . . ( r

rm, r m " 1 ( r + 1), . . . .
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where m is defined by

r m + ι

Let us call j 'favorable' if (j + 1 ) ' = (1 + 1/r)/' Then it is easy to see that:

a) ( 1 + l / r ) / ' < (; + l ) ' < (1 + r)j' for all j

b) there are k + o (k) favorable / less than k (as k —» oc)

c) log&'=λ: l o g ( l + l/r) + o(k).

Now, if j is favorable then

; ' - r | ( / + l ) ' - / ' !

and we may apply Lemma 3 to s ' and s ' + 1 - s . . Thus

Hence

/favorable

Note that for every natural number n

P r l s ' s ' < 0 l > -
7 7 " 2 ( r + l )

log n log (k + l ) "

where k is chosen so that k' < n < (k + 1)'. Consequently

2 / v "
lim inf >_ lim inf = lim inf

τι->oo log n k-*oo log(A + l ) ' (k + 1) log ( 1 + 1/r)

Ni 1
> lim inf

E{ Λ£ I (r + 1) log (1 + 1/r) (r + 1) log (1 + 1/r)
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Letting r —> oo we have Theorem 2.

4. An example. Our construction of a sequence Λ;^ ΛJ2, for which

/V,j/log n —> 1/2 with probability one depends on the following observations.

For given k define the random index i - i ( k ) by the condition

\xi\ = \ \

and let A^ be the event \x(\ > Σ*\xj\9 where the summation is over / Φ i9

1 < ΐ < ^ + l Let /j. be the characteristic function of the event 's^ 5^. + 1 < 0 /

and g^ is the characteristic function of the event 'i{k) = k+l and further

(xι + + xjς )xk + ι < 0\ It is clear that gχ9 g2, ••• are independent random

variables, that

and that the strong law of large numbers applies to the sequence g 9 g 2 , •••

also ffc^gfc on A^\ if moreover Y^Vτ\A^\ < oo (here A^ is the complement

of Ah) then, with probability one, f^ - g^ for all but a finite number of indices.

In this case we have, with probability one,

the last step being the strong law of large numbers applied to gχ9 g 2,

Thus, in order to produce the example, we have only to choose the Xj so that,

say,

PrU^} = 0{k'2).

To do this we take Xj = ± exp (exp 1/uj ), where ul9 u29 ••• is a sequence

of independent random variables each of which is uniformly distributed on the

interval (0, 1) and the ± stands for multiplication by the th Rademacher func-

tion. For a given k let y and z be the least and the next to least of « i , , ^ + ι

The joint density function of y and z is

(A + l H U - s ) * " 1 ( 0 < y < z < 1 ) .

Consequently the event
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1 1 1
Dk :->- + —

k J ' k2

has probability

* ( * + l ) /** / / C + 0 dy f l

 o {\-z)kmldz - l + O U " 2 ) ,
«/o Λ 2 y/(/c 2 -y)

and the event £ ^ : \/z > 3 log A; also has probability 1 + 0(k~2) It is easy

to verify that the event Ak defined above contains D^ E^; thus

Pτ{Ak\ = 0(k'2),

and our example is completed.

5. Proof of Theorem 4. We prove Theorem 4 in the form

Tn = 2 1 T = - l o S n + o (log n)

i<k<n k Z

sk>0

by much the same method as we proved Theorem 2. First,

1 * 1 1

1

Next, the inequality following Lemma 3 yields

I k Ί ι / 2

— J ( / > 2 * ) f

so that

\i/2

for I > k. Consequently

1 lk\
- + θ ( τ )
4 \l /

k\i/2

)
1 lk\

Pτ{sk > 0 & si > 0} = - + θ ( τ ) (/ > k).
4 \l /
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This implies that

E\T2} = — P r ί s A > 0 & S / > 0}
k, ί< n

: k< n k2
Σ. —
Γ?ι* k l

k< ί< n

- ( l o g n)2 + O ( l o g n).
4

T h u s t h e v a r i a n c e of Tn i s of the order of log n* S e t t i n g n(k) = 2^ , vve h a v e ,

a c c o r d i n g to T c h e b y c h e f f ' s i n e q u a l i t y ,

Pr
ιn(k)

log re(A )
- 1

e2 k2

for an appropriate constant c and all positive 6. Since the right member is the

A th term of a convergent series, the lemma of Borel and Cantelli implies that

ln{k)

l o g n(k)

with probability one. Note also that

log n (k + 1)

l o g n(k)

Now, for any n,

Tn{k) ^ Tn

•1.

n(k+l)

log n (k + 1) log rc l o g n ( λ )

where A; is so chosen that n(k) <n <^ n(k + l). Here the extreme members

almost certainly tend to one as n increases . This proves Theorem 4.
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ON LINEAR INDEPENDENCE OF SEQUENCES IN A BANACH SPACE

P. ERDOS AND E. G. STRAUS

1. A. Dvoretzky has raised the following problem:

Let x\9 %2, ••• , *n> ••• b e a n infinite sequence of unit vectors in a Banach

space which are linearly independent in the algebraic sense; that is,

k
2 2 ci Xnt = 0 =Ξ> Ci = 0 (i = 1, ••• , k).

Does there exist an infinite subsequence l*/^} which is linearly independent

in a stronger sense?

We may consider three types of linear independence of a sequence of unit

vectors in a normed linear space:

c Λ Λ ; n = 0 = Φ cΛ = 0 (n - 1, 2,
71= I

II. If φ (k) > 0 is any function defined for k = 1, 2, , then

I cn^ \ < Φ(k) (7i, A: = 1, 2, )

and

oo

l i m Σ c(nk) xn = °

imply

lim c^A ) = 0 (τι = 1, 2, . . . ),

Received October 29, 1952.

Pαci/£c /. Math. 3 (1953), 689-694
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690 P. ERDOS AND E. G. STRAUS

III. lira Σ,cnk)χ

n = ° = > L™ c<A) = 0 (n = 1, 2, ) .

k—> oo fczzi k —* oo

It is obvious that III implies both II and I; and if

lim inf φ(k) > 0

then II implies I. It is easy to show that the converse implications do not hold.

In this note we give an affirmative answer to Dvoretzky's question if in-

dependence is defined in the sense I or even II for arbitrary φ(k). However the

answer is in the negative if indepence is defined in the sense III.

2. The negative part is proved by the following example due to G. Szegδ

[ 1 ; I, P 8 6 ] :

THEOREM. // \λn\ is a sequence of positive number with λn—»oc, then

the functions \ l/(x + λn) \ are complete in every finite positive interval.

Obviously every infinite subsequence of { l/{x + λn)S satisfies the condition

of the theorem and is therefore complete.

3. For the affirmative part of our r e s u l t we prove the following:

THEOREM. Let \xni\ be an infinite sequence of algebraically linearly

independent unit vectors in a Banach space and let φ{k) > 0 be any function

defined for k - 1, 2, . Then there exists an infinite subsequence \xni\ such

that \c{Jn)\ < φ{i) ( j , m = 1, 2, . . . ) and

lim
m__>oo

1 = 1

imply

lim c(m) = 0 (* = 1, 2, - . . ) .
I

It was pointed out to us by the referee that it suffices to prove the theorem

for a separable Hubert space. The separability may be assumed since we may

restrict our attention to the subspace spanned by {xn j . Now every separable

Banach space can be imbedded isometrically in the space C(0, 1) of continuous
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functions over the interval (0, 1); and C (0 , 1) C L 2 ( 0 , 1) , where linear in-

dependence, in any of the above defined s e n s e s , in L2 implies the same in-

dependence in C Let ί zn \ be the orthonormal sequence obtained from \xn\ by

the Gram-Schmidt process; then

with \anm I < 1 and ann £ 0.

Since ί anm \ is bounded for fixed m, we can select a subsequence ί xn. \ such

that

lim an{m = bm
i —• 00

exis ts for every m.

If we prove the theorem for ιp(k) > φ(k), then it is proved a fortiori for

φ(Jc). Hence we may se t

φ{n) = max { 1, φ( 1 ) , •• , φ{n)!,

so that ψ(n) > 1 and ψ(n) is nondecreasing.

If the theorem we false then for every infinite subsequence {y^ \ of \xni 1

there would exist a sequence of sequences { c j^M with

\ c (

k

m ) \ < φ { k ) (A, m= 1, 2, . . . )

and

while

lim sup I c[m' I ^ 0 /or some /i%ec? k0 .
m-»oo °

We can then select a subsequence of sequences j c^,mίM such that

lim cW = c.
k H
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exists for every k, and ck φ 0. For convenience of notation we assume

} •= cklim
n —* oo

Since Cfc jί 0, there would exist a least kγ > k0 such that

Φ(k)\c, for all k > kx .

This implies

( 1 ) |4 <2k'kι for all k > &! m > m0 ,

Case A: bn^ - 0 for j = 1, 2, ,

In order to simplify notation we assume bni - 0 for all i = 1, 2, by omit-

ting all terms with n{ ^ n(. from our subsequence. We select the subsequence

ί y^ \ as follows:

where

4^0(4
for / = 1, 2, , ik

We write yk=xlk*

If the theorem were false then there would exist a sequence of sequences

{ c\m'} with the above properties such that

Σ An
0 as m —> oo

If we take the Â  defined in (1), then

aιk,ιkί

but for all m > m0 we have
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1 0<*)K,

and hence

(k = kι , kι + 1, o . ) ,

Λm)
ck ak aιk,ιkί

< Z

We can now choose m so large that

Am) and

Then for the left side of ( 2 ) we obtain

while for the right side of ( 2 ) we have

a contradiction.

Case B: bn. ^ 0 except for a finite number of i.

Without loss of generality we may assume bn. ^ 0 for all i by omitting a

finite number of elements from } xni !. We se lect the subsequence \jji\
 a s f°l"

lows:



694 P. ERDOS AND E. G. STRAUS

where

bn,

ι°»i*+ 1.», - S - i < for / = 1, 2, . . . ,

For simplicity we again write y, = x^ «

If the theorem were false then there would exist sequences {c^ ' I with the

foregoing properties such that

Π Σ c l m ) y J I = em — > 0 a s m—> o o

If we let kι be defined as in ( 1 ) , then on the one hand we have

i, , τ r h ί k > ί k ι b,, _ , _ r r A ^ , / / c 1 +

2 | c < m ) |

, ( m ) ι 1-4- Σ
2-2 k-ki

for all m > mo; on the other hand, we have

U=1

1

2 " * i ' ^ 4A , l > T l c A l l > 0

for all sufficiently large m, a contradiction.
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ON SUMS OF SERIES OF COMPLEX NUMBERS

HAIM HANANI

1. Introduction. We recall certain facts about the convergence of series.

l . l Let Σ ° l 1 α be a series of real numbers, a^ —»0. Then it is obvious

that a sequence of signs e. = + 1 (i = 1, 2, ••• ) may be chosen so that

ΣI°C

=1 βj a. is convergent. It is, furthermore, well known that all the possible

sums so obtained form a perfect set, and if Σ ° l t | ai \ - oc then any preassigned

sum may be obtained.

1.2. The first statement remains true also for complex numbers. Aryeh

Dvoretzky and the author [2] proved that if Σ ° l 1 c^ is a series of complex

numbers with CN —» 0, then a sequence of signs ei = ± 1 (i = 1, 2, •• ) may

be chosen so that Σ ^ l , £• c converges and

1 = 1

< V 3 max I c. I (n = 1, 2, ) .

1.3. The object of the present paper is to determine the sets of points which

may be sums of the series Σ^L. e c when suitable sequences e. are chosen.

2. Notation and definitions. In this paper the following notations and defi-

nitions will be used.

2.1. N O T A T I O N .

c = a + ib denotes a term of a (finite or infinite) series of complex num-

bers, a being its real and ib its imaginary part;

C = A + iB also denotes a complex number;

γ ~ α + iβ denotes a direction in the plane of complex numbers, and also

a unit vector in the same direction;

(C, C ) is the scalar product of the vectors C and C"; that is (C, C ) =

AA* + β β ' ;

Received September 5, 1952.
Pacific J. Math. 3 (1953), 695-709
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y ' denotes a direction perpendicular to y; that is, (y, y ' ) = 0;

e denotes ± 1;

Σ without summation limits denotes summation by the summation index

from 1 to oo. In any other cases the summation limits will be indicated.

2.2. DEFINITION. C will be called an attainable point of the series Σ c ^

if a sequence 6. (i = 1, 2, ) exists, such that Σ e. c^ = C.

2.3. DEFINITION. Let Σc^. be a series of complex numbers with ci —> 0

and Σ | c I =oo. We say that y is a direction of divergence of the series **cι if

a subseries Σ ci * of Σ ci exists such that

and

*,-*» y)
0 .

If y is a direction of divergence, then clearly also the inverse direction — y is

such. The directions y and — y form an axis of divergence. It can easily be seen

[3, p. 93] that if Σ | CN | = OO, then Σ c . has at least one axis of divergence.

2.4. DEFINITION. Let Σ c be a series of complex numbers with c^ —-> 0

and Σ I c { I = oo. We define the convergence strip of Σ c { as follows:

If Σ ci has at least two axes of divergence, the convergence strip is the

whole plane.

If Σ c . has exactly one axis of divergence, then the convergence strip is

composed of all the lines parallel to this axis which contain attainable points

of the series Σ[γ'(ci9γ')], where y ' is a unit vector perpendicular to the

axis of divergence.

According to 1.1, the convergence strip is either i ) a cartesian product of a

perfect set by a straight line or i i) the whole plane. It is obvious that every

attainable point of Σ c> is a point of the convergence strip.

3. Theorem. We shall establish the following result.

3.1. THEOREM. Let Σ c . be a series of complex numbers which tend to
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zero, and let Σ | ci \ - oc; then the attainable points of Σ c form a set which

is dense in the convergence strip of Σ c { . s and within this strip is dense on

every straight line not parallel to the axis of divergence of Σ c .

Proof. We may, without restricting the generality of the theorem, suppose

the axis of divergence to be the real axis.

The following statement is clearly equivalent to our theorem: Let C - A + iB

be any point of the convergence strip, 8 any real number, and η any positive

number however small; then there exists an attainable point C ' = A' + iB*

of Σ c such that | C ^ C ' | < η and A - A' = 8(B - B'). This will now be

proved.

Put

Let Nι be such that \c>\ < η' for every i > Λ\ According to 1.1 , there exist

N2 2l ^ ι a n d a sequence e^ ( i ' = 1, 2, ••• , N2 ) such that

We put

ct = Σ v <*'•

It is evident [3] that the series Σ ^ ^ + 1 c can be separated into two

subseries Σ c . " and Σc/// so that for Σ c // we have
A A; \

oo and 2-^| b- " \ < η' .
K

According to 1.2, there exists a sequence ε t " ' (k = 1, 2, ••• ) such that the

series Σ €.//> c.^^ converges and
ιk ιk

I ^ e . ̂ /̂  c. ̂ / I < y/Ίϊ η ' .
k Ίc

Let us put C = C + Σ e ^ / " ĉ ./*/. Now, according to 1.1 there exists a
K K
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sequence € • " (k = 1, 2, ) such that Δ* e•" {a- " — δb " ) converges and
ιk ιk ιk ιk

Σ,e » U " - δb.») = U-A2) - 8 ( B - B 2 ) .
ιk ιk ιk

P u t t i n g C = C2 + e ^ ' c ^ / / , w e g e t A - A ' = δ ( B - B ' ) a n d
k k

whence

\C - C'\ < η

The series Σ ê  cf is composed of a finite subseries Σ ^ ^ e^ c ,̂ and two

interwoven subseries Σe.// c . " and Σe./// c.^^ which are evidently con-
k lk lk lk

vergent and in which the order of terms remains unchanged. Consequently

3.2. In special cases every point of the convergence strip can be an attain-

able point of ^ C;, but generally this is not true. A few examples are given

showing the possibility that the attainable points do not cover the convergence

strip and even are not dense on every straight line parallel to the axis of di-

vergence:

a) For

1 1

3
C"=-n+Tnl>

on every line parallel to the axis of divergence (real axis) there is at most

one attainable point.

b) When the convergence strip is connected, a similar example may serve,

namely:

1 1

n 2

n

cn = ~ + — ι •

Here on every line parallel to the real axis there are at most two attainable

points.

c) The case when the convergence strip covers the whole plane is more

complicated. The following example may suit:
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l i ni:[ .2 " .2

n 10"2 ;=o ;=°

No attainable point is, for example, on the line through (0, i/9) parallel to the

real axis. For let us suppose that C* = /4* + i/9 is such a point; then

C * = 2 - t J — + i , where | tn \ < 10" .

On the other hand, there exists N* such that for

N* .2

hi > Σ, l0> (£ = 1, 2)
/•o

we have | c^ - c^ | < 1. Consequently, for re > W*, we have | tn \ < n. It follows

that l 2

where \tn\ < n for n > /V*, which clearly is impossible.

4. Plane of attainable points. We now turn to the special cases in which

every point of the complex plane is an attainable point.

4.1. THEOREM. Let Σ c be a series of complex numbers which tend to

zero, and let Σ | c J =00. // Σ ^ has at least two axes of divergence, then

every complex number C is an attainable point of Σ,c.

Proof. By an affine transformation the two axes of divergence may be identi-

fied with the real and imaginary axes respectively.

The definition of axes of divergence implies the existence of two disjoint

subseries Σ-c ' and zLc " of L c such that:
k k

V
— * 0, Σ | α ' j =00 and α > ^ 0 U = 1, 2, •),

a* k k

ιk

ai"

— I > 0, Σ I V I = °° a n d bi " ± ° (A: = 1, 2, . . . ) .
6.̂ / k k

l
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We shall now fix finite subseries

Σ ci'U) a n d Σ ci"M ( n ~ I

of Σ c ' and Σ c ^ , respectively, and Nn (n = 1, 29 » ) as follows:

a) for every i > Nn > I cι I < 2

b ) for e v e r y i'. > N , 16 ./ / α * | < 2" 7 1 , a n d
Λ n ιk ιk

for every if' > A n̂, | α. ̂  / 6. *, \ < 2"n

Λ n ιk ιk

n- 1 n-1

- ί=i ιχ - ί-i ιz

From b) and d) we obtain

We denote by Σ ci "* what remains of the series Σ ^ after the subseries
K

T. Σ c.'{n) and y y c.,,U)

are removed.

According to 1.2, there exists a sequence e^** (&= 1, 2, ••• ) such that

Σ e^" c^" converges. We put C^ = Σ e^** c^". We construct by induction

a sequence of points CR {n = 1, 2, ). Sίuppose that we have already fixed

C t, C2, ,Cn; we proceed to construct CΛ + 1 We fix signs e^(n) (Z = l , 2, kn )

so that, by addition of — €-/(n) «j'(n) t 0
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this expression either diminishes in absolute value or changes sign*. We put

then

Similarly we put

c = c + T
n n ί—*

1 = 1

Cή

where £;"(„) (Z= 1, 2, ••• , &w")are fixed so that, by adding -e.»(n) bi » (n) to

q = \

this expression either diminishes in absolute value or changes sign*. The series

Σ,€- cf. is composed of three interwoven subseries

Σ, βi'(n) C;'(n)» Σ Σ €i;
//(n) c /^ (n) , and

l l l l
^ i
k k

which evidently are convergent and in which the order of terms remains un-

changed. Consequently Σ* e^ ci converges; and, as Cn —> C, also Σ e . c. = C.

4.2. THEOREM. Let 2*c be a series of complex numbers which tend to

zero? having exactly one axis of divergence. If Σ ci can be separated into two

subseries Σ cj- and Lcj=, such that the convergence strip of Σ c r is the

whole plane, and the attainable points of Σ C T 1 cover a segment not parallel

to the axis of divergence? then every complex number C is an attainable point

ofZc..

This theorem is a direct outcome of Theorem 3.1.

4.3. THEOREM. Let Σ c . be a series of complex numbers which tend to

zero, having exactly one axis of divergence, and let y' be a direction perpen-

dicular to this axis. If ΊZc^ can be separated into two subseries Σ c . / and
K

4 Whenever this expression equals zero we put the next € equal to + 1.
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ΣL c " such that the convergence strip of Σ c / is the whole plane, Σ | c »
lk lk k

converges9 and

(1) 0 <
ιk

(γ',y')| = l , 2,

then every complex number C is an attainable point of iLc..

Proof. As usual, we assume that the axis of divergence is the real axis.

Let 2^ c~"(i) be a tail of the series Σ c " such that
l

and let η be any real number satisfying

(2) 0 < n < I hrr,.

We form finite subseries

kή

of Σ C N / so that the following conditions are satisfied:

for every term ci /(ra) (Z = 1, 2, , k^ τι = 1, 2, « ) , we have

l, 2,

( 3 ) I o, '(»)•! < 2'rπ-3

and

0 <
"ij'ί")

ty-n-2 .
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K
(4) 1 < Σ !«,•'<»> I < 1 + 2 - n " 3 .

ί-i '

Consequently we have also

( 5 ) Σ I *,•'(») I < 7 2 - n - 1 .

We denote by Σ c^ '" what remains from the series Σ c. after the series

Σ Σ ci0(n) a n d / .cj"(ι)
n / = ι

are removed. In consideration of

we get

and consequently also

The convergence strip of Σ c. >» is therefore the whole plane. By Theorem

3.1, there exists a sequence e^" (k = 1, 2, ) such that Σ 6^" CN >// = C {9

with

(6) A, =A, IB'- δ, I < η .

We denote by Σ / = x

 c

ι

 / /(n) some head and by Σ^. c r ^ ( Λ + l ) the corresponding

tail of Σcj-//( π ), and we construct by induction a sequence of points Cp,

a increasing sequence of integers np and a sequence of integers kp' (p= 1,2, •• •)

having the following properties:
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(7) \A-A \< Σ K"(p-i) l + I"*'2'1 inml = nQ = 0),

B-Bp\ < i

1 ' 2 ^ **" ( p )

It can easi ly be verified with the use of ( 6 ) , ( 2 ) , and ( 1 ) that ( 7 ) , ( 8 ) ,

and ( 9 ) hold for p = 1.

L e t us now suppose that we have already

nq and Σci"W (<7 ~ 1> 2, , p - 1 ) and C (q = 1, 2, , p ) ,

and we proceed to construct

^ > 2 3 ci"(p) ' a n d ^p + i*

We fix ^ ' ( n p i l + l) (Z = 1, 2, ••, A^ + ι - 1) so that by addition of

q=i * y

this expression either diminishes in absolute value or changes sign. Now
ei'(n -i + 0> where Q = k^ + 1 , is fixed so that

B _ / v £ V ( n p i + o V ( n p i

We put then

a
Cp = Cp + Σ, %'inp.
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and fix n > n m{ so that

( 1 0 ) η . 2 n p < -

We proceed as before and fix "e^^ (Z = 1, 2, •••, k'\ q = n +2, Λ + 3 , >

) h dd fn ) so that by addition of

' + Σ Σ ? 'c)β 'w+ Σ ? '(ί)« '(β))l

this expression either diminishes in absolute value or changes sign. If

np kg

w e l e a v e e . / ( g ) = ^ . - ' ( σ ) * o t h e r w i s e w e p u t € ^ ( q ) = - e.'(q). I n e i t h e r c a s e ,
, I I I I

we denote

kq

By (8), (5), and (9), we have

| β- f l p " i <

2 " > l p " r l < 7 Σ I * ϊ : -
4 A:

On the other hand we have, by (10), | B - B*' \ > \ B - B£ \ > 677 2'Up . Conse-

quently,

( I D 6 , . 2"^ < | β - δ p " | < 7 Σ,\b7"(p)\
^ 4 k

We now fix ê  //(p) so that
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[ β - ( β " + β , , ( p ) fc,^(p))]. (B-B") < 0,
P *! ι

t P

and e^/(p) (Z = 2, 3, , k") so that by addition of

r i lΊ

1 1 l * q=l Q Q

this expression diminishes in absolute value without changing sign, b. "{

being the last term of Σ6τ//( p ) for which such operation is possible, P

Such b.»(Ό\ exists in view of (11) and (1).
ιk"

p

We put

A "

The construction of n , Σ^fχ

 cj"(p)> and C + is thus completed. It re-

mains to show that conditions (7)-(9) are fulfilled for these indices.

We have

but in view of (7), (4 ), and (3 ),

and

Z=i
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Consequently,

kfcp

l = ι

so that (7) holds for this index.

For (8), we note that clearly

and therefore, in view of (1),

Finally, if

+ e .« ( p ) ύI "(p))] ( β - β p " ) > 0,

then in view of (11) we have

i

1

4

If, on the other hand

[β - (β p " + e.« ( p) 6^( P ) ) ] (β - δ p " ) < 0,

then by (1) and (11) we have

Thus (9) holds in either case.

In order to prove that Σ e t Cί converges it is sufficient to point out that this

series is composed of three interwoven subseries
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Σ,βi'''Ci'" > ΣL Σ βif(n) V( Π ), and £ > ; " ( ! ) C "
k k n 1=1 l L k k

( l )

which are evidently convergent and in which the order of the terms remains

unchanged.

As, according to (7) and (8) above, we have C —> C, it follows that

Σe^-C.

4.4. The following examples illustrate the way in which the above result

may be applied:

a) Let

be the series in question.

If we put

* k k\yf¥ 2k I

that is, the subseries of those terms for which n is a power of 2, and Σ ^ cn ',

the remaining subseries, then the assumptions of Theorem 4.3 are fulfilled,

and therefore every complex number C is an attainable point of our series.

b) The terms of the subseries Σ ; c /* may be composed of two or more

terms of the series Σ c , as the following example shows:

where

If we put

0 < an + ι - an (^ = 1> 2, • • • ) , % —>0, and naR —> ω .
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and Δ-*ι cn' the remaining subseries, the assumptions of Theorem 4.3 are fulfil-

led, and in this case too every complex number C is an attainable point of CJ.

5. Further considerations. We make the following observations.

5.1. For an absolutely convergent series Σ c of complex numbers, the

attainable points form a perfect set. The proof does not vary from the proof of

a well-known similar theorem for series of real numbers (see 1.1).

5.2. Instead of e = ± l , more general convergence- and sum-factors have

been introduced by E. Calabi and A. Dvoretzky [ l ] They call a set Z of com-

plex numbers a sum-factor set if, given any series Σ c. ( Σ | ci \ - oc, ci —»0),

and any number C, there exists a sequence ζn £ Z (n - 1, 2, ) for which

Σ n ζn cn- C. It was shown by them that a bounded set Z is a sum-factor set

if and only if 0 is an interior point of its convex hull.

5.3. All the theorems proved in this paper may reasonably be extended to

results concerning vectors in ^-dimensional Euclidean spaces.
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ON THE PRIME IDEALS OF THE RING OF ENTIRE FUNCTIONS

MELVIN HENRIKSEN

1. Introduction. Let R be the ring of entire functions, and let K be the com-
plex field. In an earlier paper [6 ] , the author investigated the ideal structure of
/?, particular attention being paid to the maximal ideals. In 1946, Schilling [ 9,
Lemma 5] stated that every prime ideal of R is maximal. Recently, I. Kaplansky
pointed out to the author (in conversation) that this statement is false, and con-
structed a nonmaximal prime ideal of R (see Theorem l ( a ) , below). The purpose
of the present paper is to investigate these nonmaximal prime ideals and their
residue class fields. The author is indebted to Prof. Kaplansky for making this
investigation possible.

The nonmaximal prime ideals are characterized within the class of prime

ideals, and it is shown that each prime ideal is contained in a unique maximal

ideal. The intersection P* of all powers of a maximal free ideal M is the largest

nonmaximal prime ideal contained in M. The set PM of all prime ideals contained

in M is linearly ordered under set inclusion, and distinct elements P of PM cor-

respond in a natural way to distinct rates of growth of the multiplicities of the

zeros of functions / i n P.

It is shown that the residue class ring R/P of a nonmaximal prime ideal P of

R is a valuation ring whose unique maximal ideal is principal; R/P is Noetherian

if and only if P = P*. The residue class ring R/P* is isomorphic to the ring

K\z\ of all formal power series over K. The structure theory of Cohen [2] of

complete local rings is used.

2. Notation and preliminaries. A familiarity with the contents of [6] is as-

sumed, but some of it will be reproduced below for the sake of completeness.

DEFINITION 1. If / G R, and / is any nonvoid subset of /?, let:

(a ) A(f) = [z£.K\f(z)-Q]( Note that multiple zeros are repeated. Unions

and intersections are taken in the same sense.);

( b ) A ( l ) = [ A ( f ) \ f e I];

Received December 5, 1952.
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( c ) A (/) be the sequence of distinct zeros of /, arranged in order of in-

creasing modulus.

In 1940, Helmer showed [ 5 , Theorem 9] that if A (/) n A (g) is empty, there

exist s, t in R such that

(2.1) sf+ tg = 1.

More generally, if d is any element of R such that

A ( d ) = A ( f ) n A ( g ) ,

then d is a greatest common divisor of /and g, unique to within a unit factor, and

the ideal (/, g) generated by f and g is the principal ideal (d). It easily follows

that every finitely generated ideal of R is principal.

He proved this by showing that if ί an \ is any sequence of complex numbers

such that

lim a — oc,a

and wΓlf/€ is any set of complex numbers, then there is an s in R such that

(2.2) s{k) (an) = wnfk, (n = 1,2, - . . ; £ = 0, • • • , ln).

The latter was shown independently by Germay [ 3 ]

REMARK. In [ 4 ] , Germay extended (2.2) to the ring of functions analytic in

I z I < r, where l i m ^ ^ an l ies on | z \ = r. Hence (2.1) follows for this ring, as

will most of the results in [6] and the present paper, with minor modification.

It follows that if/ is an ideal of /?, then ,4(7) has the finite intersection prop-

erty. So we make the following definition.

DEFINITION 2. If Π, 7 A{{) is nonempty, then / is called a fixed ideal.

Otherwise, / is called a free ideal.

DEFINITION 3. ( a ) If A* (/) = { an }, let 0n(f) be the multiplicity of an as a

zero of /.

( b ) If A is a nonvoid subset of i * ( / ) , let On(f:A) be the function 0n(f)

with domain restricted to A.

( c ) L e t m ( / ) = s u P / ϊ , 1 0 n ( / ) , i f / ^ 0 . L e t m ( O ) = oc.

3. Prime ideals of R, Kaplansky's construction of nonmaximal, prime ideals
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of R is given in Theorem l ( a ) , below. The only fallacy in Schilling's demon-

stration (referred to in the Introduction) is the false assumption that a prime

ideal necessarily contains an /such that m(f) = 1. Hence a characterization of

these nonmaximal prime ideals may be given,

THEOREM 1. (a ) There exist nonmaximal prime ideals of R.

(b) A necessary and sufficient condition that a prime ideal P of R be non-

maximal is that m (/) = oo, for all f G P.

Proof, (a ) Let

S = [/G R\m(f) < oc].

Clearly, S is closed under multiplication and does not contain 0. If g 4 0 is in

R - S, g is contained in a prime ideal P not intersecting S (see [8, p. 105]).

Since, as noted in [6, p. 183], any maximal ideal contains an /such that m(f) =*

1, P cannot be maximal.

(b) The sufficiency is clear from the above. If / G P with m(f) < oc, the

primality of P ensures that there is a g G P with m(g) = 1. Suppose the maximal

ideal M contains P, and let h G M. By (2.1), there is a d G M such that

A{d) = A(g) nA(h).

Now g = g d, where A(g ) n A(d) is empty, since m(g) = 1. Since P is prime,

it follows that either gχ G P or c? G P. But M ̂  R, so gt is not in P. It follows

that dy and hence h, is in P, whence P = M

COROLLARY. Any prime9 fixed ideal of R is maximal.

THEOREM 2. Every prime ideal P of R is contained in a unique maximal

(free) ideal U.

Proof. By Theorem l ( b ) and [6, Theorem 4 ] , the ideal (P, /) is maximal if

m{f) = 1 and A(f) intersects every element of A (P). Let / , / be any two such

functions, so that M =(P, f ) and M - (P, / 2 ) are maximal ideals containing

P. If

A(d) = A(fγ) n A(f2),

then M = (P, d) is a maximal ideal containing P, and Mγ C M, M2 C M9 so that
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More concrete constructions of nonmaximal prime ideals are given below in

terms of maximal free ideals.

THEOREM 3. If M is a maximal free ideal of R9 then

oo

p* = n Mk

k= l

is a prime ideal$ and is the largest nonmaximal prime ideal contained in M,

Proof. Since every finitely generated ideal of R is principal, P* is easily

seen to be the set of all / G R expressible in the form h^d^9 with d^ G M9 k - 1,

2, . Thus, if / G M, f G P if and only if m(f/e) = oo whenever e divides /

and e G R - M9 (whence f/e G U). Suppose / , / are not in P . Clearly, / /

is not in P* except possibly when both / and / are in M. In this case, there

exist βj dividing /̂ , with βj G R - M such that m^f^/e^) < oo, ( i = 1, 2). Since

M is prime, eιe2 G R - M and τn(fχf2/eιe2) < mif^e^ + m(/ 2 /e 2 ) < oo. So

/ / is not in P*, whence P* is a prime ideal.

The second part of the Theorem is a direct consequence of Theorem 1 (b).

We proceed now to identify the remainder of the class PM of prime ideals con-

tained in M. This is done by considering the rates of growth of the functions

0n(f) on the filter A(M). Results of Bourbaki [ l ] are used without further ac-

knowledgement.

DEFINITION 4. If /, g E M9 and there is an e G M such that

Λ*(e) c A*{f) nA*(g)

with

On(fιA*(e)) >On(g:A*(e))9

t h e n f>g ( g < f ) .

It is easily seen that the relation ">" is reflexive and transitive. Moreover:

LEMMA 1. If f9 g e M9 either f > g or g > f.

Proof. Let

A(d) = A(f) nA(g),

and let
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A x - [ z € A * ( d ) \ O n { f ι \ z \ ) > O n ( g : \ z \ ) ] 9

A 2 = [ z G A * ( d ) \ O n ( f : { z \ ) < O n ( g : U l ) ] .

Since Av r\A2 i s empty, Aγ u A2 =A*(d); and since M i s prime, one and only

one oi A l9 A2 G M. Hence / > g or g > /.

D E F I N I T I O N 5. Suppose f, g e M.

( a ) If there exist positive integers Nϊ9 N2 such that f ι > g and g 2 > /,

then f ~ g.

( b ) If / > gN for all positive integers /V or if / = 0, then f » g(g « f).

LEMMA 2. ( a ) Tλe relation * ~ ' is αw equivalence relation.

( b ) Tλe relation ' » ' is transitive.

( c ) If f> g έ M, one and only one of f ~ g, f » g, f « g holds.

Proof. The relations ( a ) and ( b ) follow easily from the observations that

0n(fN) = /V ()„(/), and i f / > gthenf" > gN.

It is clear that at most one of the relations ( c ) can hold. By Lemma 1, / > g
0 Γ 8 ^ /• Suppose f > g and not f ~ g; then f > g for all N, whence / » g.

Similarly, if g > f.

LEMMA 3. Let f be an element of a prime ideal P of PM. If g > /, or g ~ f9

then g E P.

Proof. Suppose first that g > f. Then, as is evident from the construction in

Lemma 1, we can write

where

A*(dι) -A*(d2), 0n(d2) > ( ) „ ( < * ! ) ,

and / , g are not in M. Hence dχ G P; and, since d2 is a multiple of dl9 d2 and

g e P.lί g ~ f, then gN > f, for some N. By the above, gN G P. But P is a prime

ideal, so g G P.

THEOREM 4. ( a ) Let Ω be any subset of M, and let

PQ = [fβ M\f» g9 for all gβ Q].



716 MELVIN HENRIKSEN

Then P Q is a prime ideal.

(b) If P is a prime ideal, then P = PQ, where Ω = M — P.

Proo/. ( a ) Note first that if gχ9 g2 G M and ^ ^ ?έ 0

A =A*(8ι) n 4 * ( g a ) ,

then

0 Λ ( « t - β 2 ^ ) = m i n ί θ n ( g 1 : i 4 ) , ( U ^ ' . Λ

If ^ e J I , ^ G Λ, gχ g2 £ 0, then

It now follows from the lemmas above that P is an ideal. The primality of P fol-

lows from the observation that

Pg = [feM\ f»g]

is a prime ideal, and that P Q is an intersection of a descending chain (under set

inclusion) of ideals of this form.

(b) If P is a prime ideal, the relations / E P, g E M — P, imply that / » g9

by Lemma 3.

COROLLARY. The ideals of Py are linearly ordered under set inclusion.

By the Theorem above, every element of PM is the upper class of a Dedekind

cut (under « ). If P contains a least element /, then

If M - P has a greatest element g> then P = Pg as defined in the proof of the

theorem. It is clear that PM contains the greatest lower bound and least upper

bound of any set of elements.

Note, moreover that Pf = Pf (P/+ = Pt ) if and only if / ~ /„ .
J1 J2 J ί J2 ι 2

LEMMA 4. ΓAe seί P* — {0} Aαs no countable cofinal or coinitial subset.

Moreover, if\f }, {f n\ are two sequences of nonzero elements of P*, such

that

' I , τ ι + 1 J l,n J2,m ; 2 , m + i > ; 9 9

then there is an f E P* such that
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fι,n» f» f2,m> foralln,m.

Proof. See [1, p. 123, exercise 8 ] .

The author is indebted to Dr. P.-Erdos and Dr. L. Gillman for the following

Theorem.

THEOREM 5. The set PM has power at least 2**1.

Proof. It is implicit in arguments of Hausdorff and Sierpinski [10, p. 62] that

every set satisfying Lemma 4 contains a subset similar to the lexicographically

ordered set S of ω^sequences of 0's and l ' s , each having at most countably

many l ' s By [ l l ] , S is dense in the set of all dyadic ω t-sequences, which has

power 2**1. Since the set PM is complete, card {PM) > 2**1.

Since card (Pu) < 2°, where c is the cardinal number of the continuum, we

have:

COROLLARY. // 2**1 = 2C, in particular i/fr^ = c, then card (PM) = 2C.

4. Residue class rings of prime ideals. We adopt the following definition of

Krull [7, p. 110]:

DEFINITION 6. An integral domain D such that if /, g G D, then / divides g

or g divides /, is called a valuation ring.

It is easily seen that a valuation ring possesses a unique maximal ideal, con-

sisting of all its nonunits.

THEOREM 6. The residue class ring R/P of a prime ideal P of R is a valua-

ring whose unique maximal ideal is principal.

First, we prove a lemma.

LEMMA 5. If P £ PM, then f is singular modulo P if and only if f G M.

Proof. Consider the equation

fX ^ 1 ( m o d ? ) .

If / G M, the equation clearly has no solution since A(f) n 4̂ (p) is nonempty for

all p G P (see [6, Theorem 4 ] ) .

On the other hand, if f is not in M, there is a p G P such t h a t ^ ( / ) Π A(p)

is empty. Let A*(p) = { an 1, with 0n(p) - ln9 in which case / ( a n ) ^ 0. The
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equation in question has a solution if and only if there exists a g G R such that

(i) g(an) = \f(an)Γι,

and

( i i ) (fg){k) {an) = 0, k = 1, . . . , / „ .

Since

ik){k) = fg(k)

 + Σ (1) / ( 0 ^ Λ where <*) = T ~ ^ ,

( i i ) is satisfied if

(iii) g<*> (αB) = - { / ( α j ! " 1 Σ (?) /(° («») «(*"° («»>•
I = 1

Such a g can be constructed by (2.2), whence

fg= 1 ( m o d ? ) .

Proof of Theorem 6. By Lemma 5, every element of R — U is a unit, so we

may assume that /, g G M. Let

A(d) = 4 ( / ) n i ( g ) ,

so that A (f/d) n A {g/d) is empty. Clearly, at least one of f/d9 g/d G R - M,

and hence is a unit modulo P. So /?/? is a valuation ring.

If, in particular, / is chosen to be in U - M2, f/d cannot be in M9 so g is a

multiple (modulo P) of /. Therefore the unique maximal ideal M/P of R/P is gen-

erated by /, and hence is principal.

If P Φ ?*> R/P possesses the nonmaximal prime ideals Pί/P9 where F t i s a

nonmaximal prime ideal of R properly containing P. Moreover:

THEOREM 7. The residue class ring R/P of a nonmaximal prime ideal P is

Noetherian if and only if P — P .

Proof. Every nonzero element of M - P* i s in Mk ~ Mk~ι, for some unique

positive integer k. Hence every nonzero ideal of R/P* is of the form (/ ), where

f e M ~ M2.

If / G P - ?*, construct fk such that
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A*(fk) = A*(f)

0n(fk) = m a x i θ Λ ( / ) - A , l l .

Then fk+ι is a proper divisor (modulo P) of /^. Hence the ideal generated by all

the ffo does not have finite basis.

The residue class ring R/P* is concretely identified below by the use of the

structure theory of complete local rings [ 2 ] of Cohen. First we make a definition.

DEFINITION 7. (a) If the nonunits of a Noetherian ring D with unit form a

maximal ideal M such that

oo

n Af* = ( o ) ,
k = i

D i s called a local ring.

( b ) If / , , fn is a minimal basis for M such that /,•••, f^ generate a

prime ideal (i - 1, , n), S is called a regular local ring.

( c ) Using the powers of M as a system of neighborhoods of 0, (thereby to-

pologizing D)9 we call D complete if every Cauchy sequence in D has a (unique)

limit.

THEOREM 8. The residue class ring R/P* is isomorphic with the ring K{ z I

of all formal power series over K.

Proof By Theorems 3, 4, 6, R/P* is a local ring and is trivially regular

since M/P* is principal. Cohen [2, Theorem 15] has shown that every regular,

complete, local ring, whose unique maximal ideal is principal, and such that D/M

is isomorphic to K, is isomorphic to K{ z }. By [6, Theorem 6 ] ,

(R/P*) A M/P*) s R/M zK.

The proof is completed by the following Lemma.

LEMMA 6. The residue class ring R/P* is complete.

Proof Let \ f^\ be any Cauchy sequence in R/P*. We may assume without

loss of generality that /^+ - f^ G M , since a Cauchy sequence has at most

one limit. Let
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with all α^ distinct. Let

Clearly, B^ £ A(M), and Π̂ L

an / G R such that

is empty. Hence, we may construct by (2.2)

and

Then

U ) - / j * > ( z )

whence

4 = / (mod^),

^ ~ 4 - Λ
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COMPLETELY CONTINUOUS NORMAL OPERATORS

WITH PROPERTY L

IRVING KAPLANSKY

1. Introduction. Two matrices A and B are said to have property L if it is

possible to arrange their characteristic roots

A : λp λ25 9 λn

B'- V-v μ-2' β β 9 μ-n

in such a way that for every OC, the characteristic roots of Ok A + B are given

by (X λj + μi In [ 1 ] this property is investigated, and among other things a con-

jecture of Kac is confirmed by showing that if A and B are hermitian, then they

commute. In [2] this is generalized by replacing "hermitian" by "normal".

In this note we launch the project of generalizing such results to (complex)

Hubert space. However, since it is not clear how to formulate the problem for

general operators (especially in the presence of a continuous spectrum), we

shall content ourselves with the completely continuous case. For self-adjoint

operators we obtain a fully satisfactory generalization (Theorem 1). For the

more general case of normal operators we find ourselves obliged to make an

extra assumption roughly to the effect that nonzero characteristic roots are

paired only to nonzero roots. In the finite-dimensional case such an assumption

would be harmless; indeed, by adding suitable constants to A and B, we could

even arrange to have all the characteristic roots of A and B nonzero. It would

nevertheless be of interest to determine whether this blemish can be removed

from Theorem 2.

2. Remarks. Before we state the results, some remarks are in order. The

number λ is a characteristic root of A if A — XI has a nonzero null space. If

A is a completely continuous normal operator, its characteristic roots are either

finite in number or form a sequence approaching zero. We have an orthogonal

decomposition of the Hubert space:

Received August 23, 1952. The preparation of this paper was sponsored (in part) by
the Office of Naval Research.
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H = H(O) © / / ( A ^ Θ H{λ2)® . . . ,

where A acts on H(λι) as a multiplication by λ;. The dimension of H (A;) is

called the multiplicity of the characteristic root λf, it is finite except possibly

for the characteristic root 0.

Now even though A and B are both to be normal, QkA + B = C need not (a

priori) be normal. We must accordingly give further attention to the meaning of

the multiplicity of a characteristic root v of C. For our purposes virtually any

reasonable definition would do; we select the following one. We note that the

null spaces of the operators C — vl, (C — vl)2, «•« form an ascending chain,

and we form their union; the dimension of this union is the multiplicity of v

Note that this agrees with customary usage in the finite-dimensional case.

We shall need the (easily proved) additivity of the multiplicity. In detail:

suppose H is an orthogonal direct sum of two closed subspaces both invariant

under C; then the multiplicity of v in the whole space is the sum of its multi-

plicities in the two subspaces.

3. Results. We are now ready to define property L. We do this in a way

that is adequate for the proof, although it does not treat A and B symmetrically.

Let A and B be completely continuous normal operators. Let there be given

two sequences A/, μ; of complex numbers. We say that A and B have property L

(relative to the two sequences) provided:

(1) The λ's constitute precisely the nonzero characteristic roots of A9

each counted as often as its multiplicity.

(2) If, for a certain (X and v, there are k values of i such that v~ Cίλj + μf ,

then <xA + B has i / a s a characteristic root at least of multiplicity k.

THEOREM 1. Let A and B be completely continuous self-adjoint operators

with property L, Then A and B commute.

THEOREM 2. Let A and B be completely continuous normal operators with

property L9 relative to the sequences λ t and μ;. Suppose further that the μ's

are all nonzero. Then A and B commute.

4. Proof. The two theorems can conveniently be proved simultaneously.

We can suppose that λι is a characteristic root of maximum absolute value, that

is, I A. x I = \\A | | . For brevity write A = λ l 5 μ = μ 1 . By an application of the

definition of property L, with (X = 0, we see that μ is a characteristic root of

β. We are going to prove that there exists a nonzero vector x with
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Ax = \x, Ex = μx.

If μ Φ 0, we are ready to proceed. If μ = 0, then by hypothesis both A and B

are self-adjoint We replace B by A + B which is again self-adjoint; this re-

places μ by

So in any event we are entitled to assume that μ is nonzero.

l e t H(μ) be the (finite-dimensional) characteristic subspace of B for the

characteristic root μ, and K the orthogonal complement; let E and F be the

projections on H{μ) and K. We note that B - μl is nonsingular on K; let S be

defined as its inverse on K and as 0 on H(μ). Thus we have

(1) S F ( β ~ μ / ) = F .

Next we consider E (A - XI)t as an operator on H(μ), and we are going to

prove that it is singular. Suppose the contrary and define R to be its inverse

on H(μ), 0 on K. Then R will satisfy

( 2 ) R ( B - μ I ) = 0, R ( A - λ I ) E = E, RF = 0.

Choose (X ̂  0 so that

(3) | | < x S F ( i 4 - A / ) ( F - / i i 4 i 1 ) | | < 1.

By hypothesis, the operator ttA + B has αλ + μ as a characteristic root, say

with characteristic vector y φ 0. We have

(4) OL(A - λ / ) y + ( £ - μ / ) y = 0 .

Write y = £y + Fy in (4), apply R, and then use (2); we find that Ey — — RAFy9

and so

(5) y = Eγ+ Fy=(F~RAF)y.

Next apply SF to (4), and use (1) and ( 5 ) :

< 6 ) Fy = -aSF(A-λI)(F~RAF)y.

On contemplating (6) in conjunction with (3) we see that Fy must be 0. But

then y = 0 by (5) . This contradiction shows that we were in error in supposing

E (A - XI)E to be nonsingular on H(μ). Consequently we can find in //(μ)
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a nonzero vector x annihilated by E (A — λI)E* Then since Ex = x, we have

EAx = λx. Form the orthogonal decomposition

(7) Ax = EAx

But

since the norm of A is | λ | . Hence in (7) we must actually have Ax = λx Also

Bx - μx since x is in H (μ), and we have fulfilled our initial objective.

Let M be the orthogonal complement of x. It follows from the additivity of

multiplicity (see above) that when the operator a A + B is confined to M, the

multiplicity of its characteristic root Cίλ + μ is diminished by precisely 1, while

all other characteristic roots have unchanged multiplicity. Thus A and B, con-

fined to M9 satisfy property L relative to the sequences λj and μι for i >_ 2.

The procedure may now be repeated to get within M another joint characteristic

vector for A and B, In this way we proceed down the nonzero characteristic

roots of A. Finally we are left with the null space of A, which of course com-

mutes with whatever is left of B, Hence A and B commute.

5. Remark. As soon as we know that A and B commute (and hence can be

simultaneously put in diagonal form), we can assert that they satisfy property

L symmetrically, and indeed various stronger statements are obvious conse-

quences of simultaneous diagonal form.

REFERENCES

1. T. S. Motzkin and 0. Taussky, Pairs of matrices luith property L, Trans. Amer.
Math. Soc. 73 (1952), 108-114.

2. N. A. Wiegmann, A note on pairs of normal matrices with property L, Proc. Amer.

Math. Soc. 4 (1953), 35-36.

UNIVERSITY OF CHICAGO AND

NATIONAL BUREAU OF STANDARDS, LOS ANGELES



SOME RANDOM WALKS ARISING IN LEARNING MODELS I

SAMUEL KARLIN

Introduction The present paper presents an analysis of certain transition

operators arising in some learning models introduced by Bush and Mosteller

[2] They suppose that the organism makes a sequence of responses among a

fixed finite set of alternatives and there is a probability pj1 at moment n that

response s will occur. They suppose further that the probabilities ps

 ι ' are

determined by the pj1, the response sn made after moment n, and the outcome or

event rn that follows response sn. We shall examine in detail the one-dimensional

models which occur in their theory. These models can be described in simplest

form as follows: There exist two alternatives Ax and A2, and two possible out-

comes Γγ and r 2 , for each experiment. There exists a set of Markoff matrices

Fq which will apply where choice i was made and outcome ry occurs. Let p

represent the initial probability of choosing alternative A2f and 1 — p the prob-

ability of choosing Aχ Depending on the choice and outcome, the vector (p,

1 - p) is transformed by the appropriate F/y into a new probability vector which

represents the new probabilities of preference of A2 and AΪ9 respectively, by

the organism. The psychologist is interested in knowing the limiting form of the

probability choice vector (p, 1 — p) .

The mathematical description of the simplest process of this type can be

formulated as follows: A particle on the unit interval executes a random walk

subject to two impulses. If it is located at the point x, then x—> Fxx = σx

with probability 1 - φ(x), and x —• F 2 * = l - a + O# with probability φ(x)

The actual limiting behavior of x depends on the nature of φ{x). The transition

operator representing the change of the distribution describing the position of

the particle is given by

(TF)(x)= [X/σ[l-Φ(t)]dF + [(Xl+a)/a Φ(t)dF.
Jo Jo

We introduce an additional operator, acting on continuous functions, and

given by
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Uπ(t) = (1 - φ{t)) π(σt) + φ(t) π{ 1 - Oί + at).

It turns out that T is conjugate to U; hence knowing the behavior of U one ob-

tains much information about T. This interplay shall be exploited considerably.

The operator T is not weakly completely continuous, nor does it possess any

kind of compactness property; thus none of the classical ergodic theorems apply

to this type [3]. The limiting behavior of TnF depends very sensitively on the

assumptions made about the operators F; and the probabilities φ(x).

Section 1 treats the case where φ(x) = x. This causes the boundaries 0

and 1 to be absorbing states, and thus the limiting distribution concentrates

only at these points. However, the concentration depends on the initial distri-

bution. By examining the corresponding U in detail, we have been able to obtain

much additional knowledge. For example, we have shown that if π is m times

continuously differentiable then {Unπy' converges uniformly for each 0 <̂  r <_

m - 1. It is worth emphasizing that the knowledge of the convergence of the

distributions does not imply the uniform convergence of Unπ for any continuous

function 77. Additional arguments are needed for this conclusion. In this con-

nection, we finally remark that R. Bellman, T. Harris, and H. N. Shapiro [ l ]

have analyzed only this case independently. They did not point out the con-

nection between the operators T and ί/ The methods they used to establish the

convergence of TnF are probabilistic. Our paper in § 1 overlaps with theirs in

some of the theorems, notably 6, 8, 9, 12, and 15; our results subsume theirs,

and their proofs are entirely different from ours. Section 2 considers the case

where φ(x) is monotone increasing and

\ Φ i χ ) - Φ ( y ) \ < u < l .

This leads to the ergodic phenomonon, or steady-state situation, where the

limiting distributions are independent of the starting distributions.

In §3, we examine the situation φ(x)=l — x This corresponds to com-

pletely reflecting boundaries, and of course the ergodic phenomenon holds.

Other interesting properties of the operators are also developed. We consider

in §4 the case where φ(x) is linear and monotonic decreasing. Section 5 intro-

duces a further possibility where we allow the particle to stand still with cer-

tain probability. This type has been statistically examined by M. M. Flood [5].

In § 6 we investigate the general ergodic type where φ(x) is not necessarily

linear. The arguments here combine both abstract analysis and probabilistic

reasoning involving recurrent event theory. Furthermore, it is worth emphasizing,

the proofs given in § 6 apply without any modifications to the case where we

allow any finite number of impulses acting on the particle. In a future paper we
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shall present the extension of this model to the circumstance where changes

in time occur continuously and the possible motion of the particle has a con-

tinuous or infinite discrete range of values.

The last section studies some of the properties of the limiting distribution

in the ergodic types. It is shown in all circumstances that the limiting distribu-

tion is either singular or absolutely continuous, and the actual form depends

on the value of Ot + σ.

Most of the analysis carries over to higher dimensional models where more

alternatives are allowed. In a subsequent paper we shall present this theory

with other generalizations. We finally note that this paper represents a combina-

tion of abstract analysis and probability; it is hoped that the methods used

will be useful for future investigations of this type.

It has been brought to my attention by the referee that the material of [6],

[7], [8], and [9] relate closely to the content of this paper. This techniques

seem to be different.

1. Λ particle undergoes a random walk on the unit interval subject to the

following law: If the particle is at xf then after unit time x —» Ot + (1 -CC)%

with probability x, and x —> σx with probability 1 - x, where 0 < Ot, σ < 1. If

F(x) represents the cumulative distribution describing the location of x at the

beginning of the time interval, with the understanding that F (x) = 1 for x >_ 1

and F(x) = 0 for x <^ 0, then the new distribution locating the position of the

particle at the end of the time interval is given by

(1) G U ) = Γ
fx/σ /*(λ>α)/(l-α)
/ (l-t)dF(t) + tdF(t).

Jo Jo

Indeed, the probability dG(x) that after unit time the particle is located at

x can materialize in two ways; namely, the particle was at x/σ and moved with

probability 1 - x/σ to x, or it jumped with probability (%-C()/(l-Ct) from

{x — Ot)/(1 — Ot) to x during the unit time interval. This yields

dG(χ) = 11--)dF(-) + dFl ),
\ σj \σl 1-ot \ l-0 ί/

which easily implies the conclusion of equation (1).

Equation (1) represents the transition law for the particular Markoff process

on hand.

The transformation T is easily seen to furnish a linear bounded mapping

of the space of functions of bounded variation (V) on the unit interval into
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itself. Furthermore, T takes distributions into distributions and is of norm 1.

This section investigates the behavior of Tn for large n with the aim of deter-

mining limiting properties of Tn.

We consider the following additional mapping U applied to the space of

of continuous functions defined on the unit interval C[θ, 1]:

(2) { U π ) ( t ) = ( l - t ) π ( σ t ) + t π ( θ i + ( 1 - O ί ) ί ) .

The operator ί/has a probabilistic interpretation which we shall speak about

later; but its direct relevance to T is given in Theorem 1. The inner-product

notation

(π,F) = / π(t) dF(t)
Jo

will be extensively used.

THEOREM 1. The conjugate map {/* to U is T.

Proof. I t i s n e c e s s a r y to verify t h a t (Uπ, F) = (π, TF) for a n y c o n t i n u o u s

funct ion π(t) a n d a n y d i s t r i b u t i o n F(t) w i t h F(t) = 1 for t >_ 1 a n d F ( ί ) = 0

for ί < 0 ~ . I n d e e d ,

(Uπ, F ) = f ( l - t ) π ( σ t ) d F ( t ) + J t π ( θ L + ( 1 - α ) ί ) d F ( t ) .

By a change of variable, we get

Γ / t\ /t\ c t - α /£ - α \
(ί/ττ, F ) = / (1 \π(t)dF[- + /τr(ί) rfFI )

J \ σf \σl J 1-α \ l - α /

^π(t)dG(t) where G ( ί ) = TF.
• / •

The value of Theorem 1 is that, by studying the iterates of ί/Λ, we deduce

corresponding results about the conjugate operators Tn We proceed now to

study this operator ί/. To be complete, we should denote the operator by Uσt0L9

but where no ambiguity arises we shall drop the subscripts. Let W denote the

isometry

IΓιr(ί) = ι r ( l - t ) .
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Clearly W'1 = W. We now observe the identity

( 3 ) £ / i . α , i - σ - W/σ,αV.

The mapping ( σ , α ) — • ( l - α , 1 - σ ) of the parameter space into itself has

the effect of mapping the triangle of the unit square bounded above by l - ( X - σ = 0

into the other triangle located in the unit square. This isomorphism property

( 3 ) enables us to restrict our attention to the case where 1 - Oί - σ >_ 0. Cor-

responding theorems valid for the other circumstances, where l - ( X - σ < 0,

are deduced easi ly by virtue of ( 3 ) and will be summarized at the end of this

section. From now on in § 2, unless explicitly stated otherwise, we shall as-

sume that 1 - α - σ > 0.

The next two theorems, which we state for completeness, are immediate

from ( 2 ) .

THEOREM 2. The operator U preserves the values at 0 and 1.

THEOREM 3. The operator U is positive; that is, it transforms positive

continuous functions into positive continuous functions.

In particular, if πχ(t) > π2(t), for al l ί, then JJπγ >_ Uπ2

THEOREM 4 . If π9 π',..., π(n) > 0, then Uπ, (ί/ττ)', . . . , (Uπ)(n) > 0.

Proof. A s imple ca lcu lat ion y i e l d s

( 4 ) (Uπ)M = (1 - t)σn πM(σt) + t(l -a)n πM(0L + (1 -OL)t)

+ n ( l ~ α ) n - 1

 π(
n-ιHa + (l-0L)t)-nσn-1 π{n'ι)(σt).

Since

σt < t < a + ( 1 - α ) ί ,

we conclude s i n c e π (t) i s monotonic increas ing that

π(n-ι)(0L + ( l - 0 ί ) ί ) > π(n-ι)(σt) > 0 .

The assumption that 1 -(X > σ implies that (1 - α ) " " 1 > σ11'1. As π^n\t) >_ 0,

it follows that (Uπr11' >_ 0* The same conclusion and argument apply to

(Uπ)(i){oτ 0 < i < n - 1 .
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In particular, U transforms positive monotonic convex functions into func-

tions of the same kind. Although in the proof of Theorem 4 we assumed the

existence of derivatives, the argument can be carried through routinely at the

expense of elegance, by use of the general definitions of convexity and mono-

tonicity.

THEOREM 5. // c > πU)(t) > 0 for 0 < i < n9 then (Urπ){ί)(l) < K( for

0 < i < n and hence (Urπ){i)(t) < Ku

Proof. The proof is by induction. By Theorem 2, the theorem is trivially

true for i — 0. Suppose we have established the result for the t'th derivative

with 0 <̂  i <^ n - 1. Equation (4) yields

(5) ( ί y f f )
( π ) ( l ) - 7 7 ( π ) ( l ) = c1(α)7r(

where cι(d) and c2(cr) are constants depending only on Cί and σ respectively,

and on n. If

7 7 ( n ) ( l ) > M(<X,σ, c ) ,

w h e r e M i s a c o n s t a n t su f f ic ient ly l a r g e , then ( 5 ) y i e l d s

(Vπ)M{D < πM{l).

Since Cj(α) and c 2 (σ) do not depend on k, and by the induction hypotheses

\{Ukπ)*ml(x)\ <M

uniformly in k and x, we find in general that when {U π) (1) becomes larger

than M ( α , σ, c ), then

(ί// c + ι τ r ) ( π ) ( l ) < (Ukπ)in)(l).

Consequently, the iterates (U 7 r ) ^ n ' ( l ) for k >_kQ are bounded by

M(α, σ, c) + cx(a)M + c2(σ)M.

This trivially implies the conclusion of Theorem 5.

The proof of the next theorem is due originally to R. Bellman. We present
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it for completeness.

THEOREM 6. There exists at most one continuous solution of Uπ = π for

which π (0) = 0 and π (1) = 1.

Proof. (By contradiction.) Let πx and 7Γ2 denote two solutions with the

prescribed boundary conditions. Put π0 = πt - 7τ2; then πo(0) = ^o( l ) = 0 Let

ί0 be a point where π0 achieves its maximum. Since

π(to)=(l-to)π(σto) + ί o τ r ( α + ( 1 - α ) ί 0 ) ,

we deduce that σt0 is also a maximum point. Iterating, we find by continuity

that 77(0) = 0 is the maximum value of π(t). A similar argument shows that

0 = min ττ(ί), which implies that πι = Ή2

THEOREM 7. For any function π(t) = tr with 00 > r >_ 1, Un(tr) converges

uniformly as n—^00.

Proof. Clearly t >_tΓ > p(t), where

0 for 0 < t < t0

' for t0 < t < 1
1 — £0

and t0 is close to 1 with r fixed. Since Ut is convex by Theorem 4, and the

values at 0 and 1 are fixed, we find that t >_ Ut. Hence

Unt > ί/n + ιί > 0,

and lim Unt = θ(t) for every ί. Since θ ( ί ) is convex, and by Theorem 5 the

derivatives of Unt at 1 are uniformly bounded, we conclude that θ(t) is con-

tinuous. By Dini's theorem the convergence of Unt to θ(t) is uniform. Obviously,

Uθ= θ. On the other hand, if t0 is close to 1 then ( ί / p ) ' ( l ) < p ' ( l ) ( s e e the

proof of Theorem 5 ) . Since Theorem 4 guarantees the convexity of ί/p, and the

slope at 0 is 0, it follows that Up < p, and hence Unp < ί/n+ιp5 therefore

lim Unp = φ{t). Again, φ(t) is a continuous fixed point, and therefore by

Theorem 6 we infer that φ(t) = θ(t). On account of Unt > ί/V > Unp, we

deduce that lim Untτ = φ(t) with the convergence being uniform*

We denote this unique fixed point of U by φσfa(t)> or by φ(t) whenever no

ambiguity arises.
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THEOREM 8. The iterates Un converge strongly (that is, Unπ converges

uniformly for any continuous function π)

Proof, The constant functions are fixed points of Un Consequently by

Theorem 7, Unq converges uniformly for any function q(t) in the linear space L

spanned by the functions ( 1 , tΓ\ The set L is dense in the space of continuous

functions. Moreover, as -j | ίy* 11 = 1, by a well-known theorem of Banach, Vnq

converges strongly when applied to any continuous function q(t)

The actual limit is easily seen to be given by

( 6 ) lim Unq(t) = q(l)φσt0L(t) + q ( 0 ) [ 1 - φσfCl(t)] .
n-*oo

This is an immediate consequence of the fact that the fixed points of U consist

of the two-dimensional space spanned by the function 1 and φσta Equation (6)

shows that two functions qΛ and q2 which agree at 0 and 1 have the same limit.

This enables us to show:

THEOREM 9. If q(t) is any bounded function continuous at 0 and 1, then

Unq converges strongly.

Proof. Let q(t), in addition to being continuous at 0 and 1, possess finite

derivatives at 0 and l Then clearly there exist two continuous functions hx(t)

and h2(t) with

h x ( t ) > _ q ( t ) > h 2 ( t ) ,

where hγiO) = h2(0) and / ^ ( l ) = h2(l). We conclude the result from this using

the argument of Theorem 7 and equation ( 6 ) If now q(t) is only continuous at

0 and 1, then we can find for any e a qe(t) satisfying the properties assumed

about q ( t ) in the first part of the proof with \q(t)~q£(t)\ < €. As 11 Un \ \ = 1,

the conclusion of the theorem now follows by a standard argument.

T H E O R E M 1 0 . / / \ π ( i \ t ) \ < c t f o r 0 < i < m , t h e n \ U n π ( i \ t ) \ < c i f o r

0 < i < m.

Proof. The proof is by induction. For r = 0, the result is trivial since U

preserves positivity, and the constant functions are fixed points of U Suppose

we have established the result for r = m — 1. We note that

Uπ(m) = ( l - f ) σ m τ 7 ( m ) ( σ ί ) + t ( 1 - α ) ( m ) τ r ( m ) ( α + ( 1 -

+ m ( l - α ) w - ι ι r ( ϊ l I - ι ) ( α + ( l - α ) ί ) - i ι i σ l l | - ι ι r ( l l | - ι ) ( σ ί ) .
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This easily yields that

where

| | < λ raax|;r(m)U)| + C max 177 ( m" ι )(ί) | ,
t

λ = m a x [ ( l - ί ) σ m + ί ( l - 0 ί ) m ] < 1.
t

Therefore,

m a x | ( ί A r ) ( m ) ( ί ) | < λ max \(ϋkmlπ)M(t)\ + C max I ( ϋkmiπ)m'1 (t) I
t t

< λ max \(U(k'ι)π)(m\t)\ + K

by our induction hypothesis. Iterating this last inequality gives that

Λ-i

m a x \ ( U k π ) { m ) ( t ) \ < Ύ\ λ ' K + λ k m a x I τ τ ( m ) ( ί ) I < M .
t ~~ ~ t

This establishes the theorem.

THEOREM 11. Ifq(t) belongs to Cn (n continuous derivatives), then

lim [Umq(t)Ϋr)

converges uniformly for 0 < r < n - 1.

Proof. We prove the theorem only for r = 1, for the other cases are similar.

On account of Theorem 10, the uniform boundedness of (Umq) implies the

equi-continuity of Umq \ Thus we can select a subsequence converging uni-

formly since Umq are also uniformly bounded. Let

Ψ(ί) = lim ί/V0.

Since lim U ιq converges uniformly to a unique limit θ(t)9 we obtain that

θ / ( ί ) = Ψ(ί ) As 0 ' ( ί ) is independent of the subsequence chosen, the con-

clusion of the theorem easily follows.

THEOREM 12. The fixed point φσ>a is analytic for 0 £ t < 1 with φjf a >. 0.
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Proof. Let p(t) denote a function infinitely differentiate with p (ί)>_ 0

and p (0) = 0, p ( l ) = l . By virtue of Theorem 11 and Theorem 4 we deduce that

lim ( ί / * p ) ( r ) = φ(r) > 0.

Therefore φσ$a *s absolutely monotonic and hence, by a well-known theorem,

is analytic.

At this point it seems desirable to summarize the analogous results of

Theorems 2 through Theorem 12 for the case where OC + σ <_ 1. We enumerate

the corresponding theorems.

T H E O R E M 4'. If ( - I ) 1 ' " 1 π{i)(t) > 0 for i = 0, 1, 2, . . . , n9 and π{t) > 0,

then(-lY'ι(Uπ){i)(t) > 0.

In particular, positive increasing concave functions are transformed into

functions of the same kind.

THEOREM 5 ' // C > π(t) > 0 and C > (-1) 1 ' " 1 π{i)(t) > 0 for 1 < i < n,

then 0 < (-IΫ'1 {VΓπ)U)(0) <Ki9 and hence \ Ur π{i)(t)\ < Kt for 1 < i < n.

Theorem 6 remains unchanged and is valid independent of the conditions on

α and σ, provided only they lie in the open unit interval.

Theorem 7 holds with a modification of the proof where p(t) is replaced by

the concave function

pit)

1 for 1 > t >_ t0'

1
— t for 0 < t < t0

to

and the functions tr are replaced by l - ( l - ί ) Γ . These also constitute, with

the constant function, a family of functions whose linear span is dense in

C[0, 1 ] . This enables us to infer the validity of Theorem 8. Theorems 9, 10,

and 11, with suitable changes in their statements which we leave for the reader,

are established by simple appropriate modifications similar to that indicated

above for Theorem 7. The unique solution φσta for this situation, where 0ί + σ <: 1,

is completely monotonic and hence analytic. In the remainder of this section the

theorems are established without any specification as to the value of OC + σ.

THEOREM 13. The functions
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ΦmU)- Σ Vn(t(l-t))

converge geometrically to 0.

Proof. It i s immediate from ( 6 ) that

t e n d s uniformly t o z e r o . S i n c e the d e r i v a t i v e a t 0 and l o f ί ( l — ί ) i s l and — 1,

we c o n c l u d e by T h e o r e m 11 that for n s u f f i c i e n t l y large there e x i s t s an

s u c h that

[ l - O ) < λ ί ( i - ί )

with λ < l Let kn0 denote the last integer k for which kn0 < m. We obtain

o < Φm(t)<ΦknoU) < — Σ, vHt(i-t)) < c\k < cP

(n°*ι)k <cP

m,

where

ι/(/ιo + i) ,
p = λ < l

T H E O R E M 1 4 . // q ( t ) i s c o n t i n u o u s , \ q ' ( l ) \ < oo a n d | ς r ' ( O ) | < o o ,

ίAen lim Un[q(t)] converges geometrically.

Proof. We first establish the result for special functions tr with 1 <̂  r <̂  oo.

A simple calculation shows that

- C ί ( l - f ) < U(tr) - ίΓ < C ί ( l - f ) .

For /i < m, we obtain upon continued application of ί/ and summation that

n n

-c £ i/^ίd-o) < ί/n(ίΓ)-ί/m(ίΓ) < c Σ, ί/'ud-o).

The conclusion now follows from Theorem 13. The general function q(t)9 satis-

fying the hypothesis of Theorem 14, can be bounded from above and below by

two polynomials Pι(t) and P2(t) which agree at 0 and l The result now follows
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directly from this fact and the first part of this proof.

We observe easily the identity

£ / ί - f = ( α + σ - l ) ί ( l - ί ) .

Applying successively V and adding, we obtain

oo

( 7 ) 0 σ , α = lim υmt = t + (α + σ - 1 ) £ ί £ ί ( l - ί ) .

This is useful for purposes of calculation.

Some remarks describing the dependence of φσ,a

 o n σ a n ( l & a r e *n order.

We consider the following identity:

1-0

If f(t) is any function with bounded derivatives, then we obtain by the mean-

value theorem that

Applying equation 8 to f(t) = φσ'iσ?y and remembering that inequalit ies are

preserved by Theorem 2, we obtain

\K,aΦσ',a-Φa',a'\< C( | σ - σ'| + |α - d'| ) Σ V
1=0

Allowing n to go to oo, we have easily that

! < ? W χ - φσ',a'\ <K(\σ-σ'\ + | α - α ' |

where £(77) is finite, provided that 0 < η < OC, Oί'σ, σ ' < 1 - 77 < 1.

It is worthwhile to discuss the nature of φσ>a for (σ,0C) lying on the boundary

of the unit square. First, we observe by direct verification that when (X + σ - 1,

then φσ9a(x ) = x. Next let OC = 0 and σ < 1; then
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Uφ = (l-x)φ(σx) + xφ(x).

Therefore, if φ is a fixed point with φ(0) = 0 and φ(l) = 1, then for x ^ 1 we

have that φ (x) = φ (σx), and hence φ(x)^φ(0) = 0 (0 <^ x < 1) provided

that φ is continuous at 0. Similarly, when σ = 1 and 0C < 1 then the only fixed

point φ continuous at 1 and satisfying φ(0) = 0, φ (1) = 1, is φ(x) = l for

0 < x < 1. On the other two boundaries of the unit square the solutions are

easily calculated and turn out as follows: If 0 < σ < 1 is arbitrary and (X < 1,

then

φσ.l = l - Π
Γ=0

while when σ = 0, 0 < Gί < 1, then

r=o

where L° = / and the operation L applied to x gives (X + (1 -0t)#. Finally for

α = 0, σ - 1 the operator U reduces to the identity mapping. We now investigate

the dependence of φσ%a

 o n σ and 0L as we allow σ and (X to tend to the boundary.

We limit our attention for definiteness to studying the case where (σ, (X)—»(σ0, 0)

with σ0 < 1, and we show that φσiα converges pointwise to 0 for 0 < x < 1,

and φσ9α (1) = 1 otherwise. Moreover, the convergence is uniform in any interval

0 < * < 1 - δ < 1° L e* (σn, (Xn) —> (σ 0 , 0); then without loss of generality

we may assume that 1 - σn - 0Ln > 0. Therefore the φσnfαn

 a r e convex, mono-

tonic increasing and positive, with φσn,αn (0) = 0. Also, for any interior in-

terval 0 <x < l - σ < 1, the first derivatives φ'σnf0Ln

 aτe uniformly bounded.

Since this implies the φσn,αn

 a r e equi-continuous over the subinterval, and as

0 ^. Φσ ,α £. 1> w e c a n select a subsequence which may be denoted as φσ f0Lr

converging to Ψ ( ί ) uniformly, for any interval of the form 0 < Λ ; < l ~ δ < l As

we get Ψ ( l ) = l and similarly Ψ ( 0 ) = 0. The uniform convergence of φσrtαr

guarantees the continuity of Ψat zero.

Put

^r = Vσr,αr> Vθ = ^o-0,o and φr = φcrnαr'
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We consider the following identity:

ψ - ί/oφ = (Ψ - φΓ) + (φΓ - ί/rΨ) + (I/ΓΨ - ί/0Ψ) = 7t + /2 + / 3 .

We take a fixed x < 1; then trivially | / | = ( Ψ - φr | < e when r is suf-

ficiently large. Also

| / J = |e£ r -ί/ r Ψ| = |f/ r ( ί6 r-t/ rΨ| = \(l-x)[φΓ(σrx)-y(σrx)]

But for X-XQ < 1 fixed, we observe that 0ίΓ + (1 — <XΓ)XQ varies in an

interval < 1 - δ as 0ίr —» 0, and the same applies to σrx. The uniform conver-

gence of φr —»ψ inside 0 ;< x < 1 - δ yields \I2\ < e . By construction,

I 73 I <C 6 for r large. Thus we infer the equality Ψ = t/oΨ for 0 <^x < 1, and

by direct verification for x - 1. However, the fixed point to the equation f/oΨ = Ψ

with Ψ ( 0 ) = 0, Ψ ( l ) = l and Ψ continuous at 0 is Ψ (*) = 1 for 0 < x < 1

and Ψ (1) = 1. Thus the limit function Ψ is the same for every subsequence of

φσn,an>
 and hence we deduce that φσn,<xn converges pointwise. We furthermore

note that Ψ is independent of σ0 < 1. A similar analysis applies to the case

where (σ, Cί)—»(1, Oί) (Cί > 0). The continuity properties of the solution for

the other two boundaries yield to simpler analysis. Summarizing, we have es-

tablished the following theorem:

THEOREM 15. The fixed points φσja satisfy the following continuity

properties: IfO<η<a,a'<^l and 0 < σ, σ' < 1 - 77, then

I * - σ ' | + |θC - < * ' | 1 .

// (σ,0ί)—» (CΓQ, 0) with GQ < 1, then φσja(
χ}—* 0 pointwise for 0 <̂  x < 1

and φσta( 1) = L // (σ, α) —> ( 1 , α 0 ) with α 0 > 0, ίAe/i φσ,a(x) —> 1 point-

wise for 0 < Λ; < 1.

Finally, a word concerning convergence of Unπ for π continuous when the

parameter values lie on the boundary. When α = 0, σ < 1, then Unπ converges

pointwise. The same conclusion holds when CC > 0 and σ = 1. On the other two

boundaries the convergence is uniform for Unπ We omit the proofs.

We now return to the study of the operator T.

THEOREM 16. For any distribution the iterates TnF converge in the sense
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of distributions to the distribution

G(x) = Iχ(x)fφσtadF + I0{x)j(l-φσ>a)dF,

where I0(x) and Iχ(x) are the distributions concentrating fully at 0 and 1 re-

spectively.

Proof. From the convergence of Vnπ for any continuous function π and

Theorem 1 follows the weak*convergence of TnF. This is equivalent to the

convergence of ΊnF in the sense of distributions. The actual form of

lim TnF = G
n-*oo

as given in the theorem follows directly from (6)

By choosing the distribution F = I X Q , we obtain from Theorem 6 that

Φσ,a(χQ ) represents the probability with which the limiting distribution con-

centrates at 1, or in other words-as can be easily shown-the probability with

which the particle beginning at xQ will converge to 1. This furnishes a prob-

ability interpretation to the fixed point of the operator U which is different

from a constant.

In connection with Theorem 8, we remark that Unπ cannot converge for an

arbitrary Lebesgue measureable bounded function. In fact, if we assume that

Unπ converges for every bounded measureable function π(t), then TnF would

converge weakly if F were absolutely continuous. Since the space of all in-

tegrable functions L [ 0 , l ] is weakly complete, and T maps distributions into

distribution, we could find a fixed point TF = F with F absolutely continuous

and total variation 1. However, in view of (16) the only fixed distributions

which exist concentrate only at 0 and 1, and hence cannot be absolutely con-

tinuous.

Finally, we present a slight application of Theorem 14. We show that the

expected position of the particle converges geometrically for any starting dis-

tribution, although the iterated distributions converge slowly to the limiting

distribution. The expected position of the particle is given by

Γ xdF(x) = (x, F),
Jo

where F is the cumulative distribution describing the position. The expected
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position at the nth step is given by

( * , TnF) = (Unx9 F ) .

On account of Theorem 14, Unx converges geometrically, which establishes the

assertion. The same conclusion applies to all the moments. This observation

is very useful for computational and estimation purposes.

Finally, we note that the spectrum of the operator T cannot consist of the

isolated point 1. Otherwise, by standard techniques one can show that Unπ

converges for any measurable bounded function π

Z. In this second model the random walk is described as follows: If the

particle is at x, then x —» Cί + (1 - (λ)x with probability φ(x) and x —> σx

with probability 1 — φ(x), where

\φ(x)-φ(y)\ < μ < 1.

The analogous transition operator to ( 1 ) becomes

(9) G ( * ) = 7 T = Γ
Jo

with the same understanding concerning F applying as before. Let

( 1 0 ) Uπ- ίl-φ(t)] π(σt) + φ{t) π((X + ( 1 - α ) ί ) .

In this section, we take 0 < Ot, σ < 1; the case where boundary values for 0C

and σ are considered is easy to handle but not of great interest. The spaces

on which they operate are the same as in § 1. Again, in a similar manner to

Theorem 1, we obtain:

THEOREM 17. The operator T is conjugate to the operator U.

We now further a s s u m e t h a t φ(t) i s monotonic i n c r e a s i n g . T h i s model in-

c l u d e s the important c a s e where φ{t) = λ + μt, where λ + μ <_ 1; and w h e n e v e r

λ + μ = 1 t h e n λ > 0.

THEOREM 18. The operator U preserves positivity and positive monotonic

increasing functions.

Proof. Direct verification.
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Since the hypothesis on φ(t) implies either φ{l) < 1 or φ{0) > 0, we

analyze the case where φ ( 1 ) < 1. The other circumstance can be treated in

an analogous manner. Furthermore, we now assume that if <^>(0) = 0, then <^>'(0)

exis ts and is finite.

THEOREM 19. If π{t) is monotonic increasing bounded and positive, then

Unπ converges uniformly to a constant.

The proof can be carried out easily using the techniques employed above.

The hypothesis on φ(t) easily yields the fact that the only continuous

fixed points of Uπ = π are constant functions. The proof is similar to the proof

used in Theorem 6. This fact directly connects with the result of Theorem 21

below. First, we complete the proof of convergence of Unπ for any continuous

function π( t).

THEOREM 20. The operators Unπ converge uniformly for any continuous

function.

Proof. Since | | Un\\ = 1, and the space of all monotonic positive continuous

functions spans a dense subset of the set of all continuous functions, the

theorem follows by a well-known theorem of Banach.

THEOREM 21. For any distribution F, the distribution TnF converge as

distributions to a unique distribution G for which TG = G which is independent

ofF.

Proof. The weak*convergence of TnF follows directly from Theorem 20 and

Theorem 16. To complete the proof we must establish that if lim TnF = G and

lim TnH = K, then G = K. Indeed, let Ψ denote any continuous function. We

have that

(11) (Ψ, G-K) = Hm (Ψ, Tn(F-//)) = lim ( ί/nΨ, F-H) = a ( [dF-

as F and H are distributions. Hence

Ψ U W F ( ί ) =]

for any continuous function ψ, and therefore G = K.

It seems extremely difficult to determine the complete nature of this unique
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fixed distribution. We shall say more about it in a future section. We denote it

by Fσta.

THEOREM 22. The distributions FσtOi is a continuous function of σ, CC;

that is, if (σn, an) —» (σ, Cί) with 0 < σ, a < 1, then Fσnian —> Fσf(L at every

point of continuity of Fσf0L.

Proof. Let {σn, (Xn)—»(σ, Oί); by Helly's theorem we can choose a sub-

sequence Fr - Fσn an converging to the distribution F at every continuity

point. Write Tr for Tσjι Λn and T for Γ σ > α . Let π{t) denote any fixed continuous

function. We consider the quantity

(77, F - TF) = U, F - FΓ) + (TΓ, FΓ ) - U, TFr) + (π,TFr-TF).

Since Fτ —> F as distributions, we find for r sufficiently large that | (77, F -

FΓ)\ < β. Now we note that

I (IT, F Γ ) - ( I Γ , Γ F Γ ) | - | (IΓ, r r F r ) - ( 7 r , TFr) \ = | ( ϋΓ π ~ t/τr, FΓ) | .

Since ί/ = Uσn ajι converges strongly to U = C/σ>α» a s i s trivial to verify, it

follows that UΓ converges uniformly to Uπ. Whence, as FΓ are distributions, we

infer that

|(ί/Γjr- Uπ, Fr)\ < max \VΓπ - Uπ\ < e
t

when r is chosen large enough. Evidently, with r large we get as before that

|(fr, Γ ( / v - F ) ) | = | ( ί / τ 7 , F r ~ F ) | < e .

Therefore we obtain for r large that | (π, F - ΓF ) | <̂  3e, and hence (7r, F) =

(77, ΓF). Since π is any continuous function, we infer F = ΓF and therefore

^ = Fσfa by Theorem 21. Consequently, as any limit distribution of Fσntan must

be F σ > α the conclusion of Theorem 22 is now immediate.

3. The model considered in this section is with φ(x) = 1 - x In this case

φ is monotonic decreasing. The operator U becomes

( 1 2 ) Uπ{t) = tπ(σt) + ( 1 - t) π(l - 0 ί + α ί ) .

Note that we have replaced (X by 1 —01. This is only for convenience in Theo-

rem 28, and does not restrict any generality. In this model the closer the par-

ticle moves to the ends 0 and 1 the greater probability there is of moving back
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into the interior. The situation described here is of completely reflecting

boundaries. Again it is easy to show that the only continuous fixed points

Uπ - π are the constant function. Therefore, we shall find as in § 2 that the

distributions describing the position of the particle converge to a limit distribu-

tion independent of the initial distribution. We first proceed to analyze conver-

gence properties of Vnπ In this case it is no longer true that U preserves the

class of positive monotonic functions. Only positivity is conserved by the

mapping U. However, a new quality as described in Theorem 23 serves here

well.

Throughout this section in order to avoid trivial changes of proof and dif-

ferent results at times, we suppose that 0 < OL, σ < 1.

THEOREM 2 3 . If π(t) has a continuous derivative, then

m a x \ ( U π ) ' ( t ) \ < m a x | n r ' ( ί ) L
t t

with equality holding if and only if π ( t ) is linear.

Proof. By direct computation, we obtain

Hence, with the aid of the mean-value theorem we get

(13) max | ί/ττ'(ί)| < max | tσπ\σt) + (1 - t) Cίτ7'(l - (X + c α ) |
t t

π ( σ t ) ~ π(l - Ct + a t ) I
+ ( σ ί - ( l - C t ) - O U )

σ ί ~ ( l - α ) - c u I

< max [tσ + ( 1 - ί ) Ct + l - C t - ( σ - G t ) ί ] max | τr'(f) | « max | π'{t)\
"" ί t t

If equality holds, then let t0 denote a point where

max I π'{t) \ = j π'{t0 ) \.
t

It follows easily from (13 ) that

I r r ( σ t 0 ) - π(l ~ α
( 1 4 ) max \π'(t)\ = | * τ ' ( σ ί o ) | = | τ r / ( l - α + α ί o ) | =

σt0 - ( 1 - α ) - Ctί0
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This yields that π(t) is linear for σt0 < t <_ 1 - OC + CU0, or otherwise some-

where between σt0 and 1 — Ot + CCί0 the slope has greater magnitude than the

slope of the chord subtended by π{t) at these points . Equation (14) yields a lso

that σt0 and ( 1 - C ί + CU0 ) are maximum points of π'(ί). Repeating this argu-

ment success ive ly then shows that equality in ( 1 3 ) requires π{t) to be linear.

T H E O R E M 2 4 . // π ( t ) belongs to Cm ( π ( t ) possesses m continuous d e -

r i v a t i v e s ) , t h e n m a x j | ( U n π ) ' ( ί ) | is uniformly bounded in n for each r ( 0 <

r <£ m )

Proof. The proof is similar to that of Theorem 10.

THEOREM 25. // π(t) possesses two continuous derivatives, and σ £ Ct,

then Unπ converges uniformly to a constant.

Remark. The reason why the two cases σ — (X and σ ^ OC are distinguished,

and necessarily so, will be explained later.

Proof. In view of Theorem 23 and Theorem 24, the first and second deriva-

tives of Όnπ are uniformly bounded. Thus l)nπ and (Unπ)' constitute equi-

continuous families of functions. We can thus select a subsequence τij such

that U ιπ converges uniformly to φ(t), and (U ιπ)' converges uniformly to

φ'(t). It follows trivially that U ι π tends uniformly to Uφ and

U π —> U φ

Moreover, by virtue of Theorem 23,

(15) max | ( £ / % ) ' | > max | ( ί Λ + l ι τ ) ' - | > max | ( £ / Π i + V ) ' | .
t t t

H e n c e

l i m m a x \ ( u π) \ = l i m m a x \ ( U π) \ = l i m m a x \ ( U π) | .
l' — oo £ / —» oo t t —» oo ί

Therefore, by the uniform convergence of the derivatives, we secure

max \φ'(t)\ « max | ( ί / ψ ) ' ( ί ) | = max \(ϋ2φY(t)\.
t t t

Invoking Theorem 23 yields that φ(t) and Uφ(t) are linear. However, if Ot / σ

and φ(t) contains a term with ί, then ί/<£ is quadratic. This impossibility
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forces φ(t) to be identically a constant. Let i be chosen sufficiently large

so that

Then

I f/Πt + 177- c j <_ 11 Uniπ(σt) - c I + (1 - t) I Unίπ(l -CC + GU) - c | < € .

Repeating this argument shows that

\Vni+Pπ-c\ < e

for any p. This establishes that Unπ converges uniformly to c.

THEOREM 26. If π{t) is continuous and σ Φ- (X, then Unπ converges uni-

formly.

Proof. The space of all functions with two continuous derivatives spans

linearly a dense subset of the space of all continuous functions. Since | | ί/ n | | = l,

we obtain the result using Theorem 25 and a well-known theorem of Banach.

In the next two theorems we establish the uniform convergence of Unπ for

the case where 1 > σ = (X > 0, We note in this case the interesting fact that

U applied to a polynomial does not increase its degree. Particularly,

Uxn = [an - nOLnml(l - 0L)]xn + Pn-ι(x)9

where Pn-ι(x) denotes a polynomial of degree n — 1,

THEOREM 27. If P (t) is any polynomial, then UP converges uniformly

to a constant and the convergence is geometric.

Proof. The proof is by induction on the degree of the polynomial. Clearly

if P is a constant = c then UP = c. Suppose we have shown for any polynomial

Pn.ι of degree < n - 1 that the iterates U Pn-ι converge uniformly. To com-

plete the proof, it is enough to verify that U x11 converges uniformly. Let

λ = an - π o c n " ι ( l - α ) ;

then I λ I < 1 since 1 > α > 0. We obtain
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Uxn = λxn + Pnml(x).

Repeating, we get, for k >_ 1,

/c-i
rik^n \kΛ/.n . Ĉ"* \rr;/or-l r>
U X = Λ X + 2^, Λ u tn-1

r=0

This last sum is of the form

k
CL Ui

r k-r>
r-o

with Σ I α r I < oc, and lim^.=oo b^ix) exists. It is a well-known theorem that

lim cΛx) exists uniformly whenever

converges uniformly. Thus, I) xn converges uniformly to a fixed point which

must be a constant function. Finally we note that in this case where σ — (X (the

rate of learning, so to speak, is the same regardless of the outcome of the ex-

periment), then UnP for any polynomial converges geometrically. The proof

can be carried through easily by induction.

This yields the fact that the expected position converges geometrically to

a limiting expected position with similar statements applying to higher moments.

THEOREM 28. // π{t) is continuous and σ- CX > 0, then Unπ converges

uniformly.

Proof. Similar to Theorem 26, since the set of all polynomials is dense.

We now note the important example that when OC = σ = 0 it is no longer true

that Unπ converges. It is easily verified that in this case U2nπ and U2n ιπ

converge separately but that a periodic phenomenon occurs otherwise. The

argument of Theorem 27 breaks down in this case as the quantity λ is - 1 . We

only mention that other difficult convergence behavior occurs when (X, σ traverse

the boundary of the unit square for this model. In particular, when OC = 1 and

σ < 1 it is not hard to show that ί/" aπ does not necessarily converge for every

continuous function 77, and even for the circumstance where 77 is a polynomial.

The case where σ = (X = 1 produces for I) the identity operator for which the

convergence of Un is trivial. For α < 1 and σ = 1 we can conclude again a lack
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of convergence. However, when (X = 0 and 1 > σ > 0, or σ = 0 and 1 > Cί > 0,

then ί/£ α7r converges for every continuous function π.

We return now to the hypothesis 0 < 0C, σ < 1.

THEOREM 29. If π(t) belongs to Cm

9 then {Ukπ)ij\t) converges uniformly

for 0 < r < m.

Proof. This follows easily from Theorems 24, 26, and 28. Let

Let

Γx/σ / U α l ) / α
TF = / ίc/F(O + / (l-t)dF(t).

Jo Jo

This represents the transition law for the distribution describing the position of

of the particle for this model. By arguments analogous to those employed in the

preceding sections, we can establish the following theorems, using the con-

jugate relationship between Jand V.

THEOREM 30. For any distribution F the distributions TnF converge as

distributions to a unique distribution F σ > α for which TFσf0L = Fσf0L9 which is

independent of F,

THEOREM 31. The distributions Fσf0L constitute a continuous family of

distributions in the sense of Theorem 22

Again it seems very difficult to determine any more explicit information

about FσfCL.

4. The model examined here is such that 1 ~ φ(x) = λx + μ, with λ + μ < 1

and at least 1 > λ or 0 < μ. The operator U has the form

(16) Uπ= (λx + μ ) π(σx) + ( 1 - λx - μ) 7r(l -Oί + ax).

Of course, as before, 0 < α , σ < 1. Convergence questions for Unπ turn out to

be very elementary in this case in view of the following theorem which is easily

proven.

THEOREM 32. If π{x) has a bounded derivative, then

max \{Uπ)'(x)\ < a max \π'(x)\
x x

with a < 1.
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An immediate consequence of Theorem 32 is that (U π)' converges geo-

metrically to 0. Let T denote the transition operator of distributions for this

model. In the standard way, we obtain:

THEOREM 33. For any distribution F the distributions TnF converge to

the distribution Fσf(X which is a continuous function of (σ, (X), and TFσi(X — Fσt0L.

Moreover, Fσ^a is independent of F.

5. This section is devoted to some variations of the preceding models.

A new feature added first is that we allow in addition to the two impulses of

motions towards the two fixed points 0 and 1 by the transformations

Fxx ~ σx and F2x = 1 — CX -+- OLx

the possibility of a third motion where the particle stands still with certain

probability. These models are particularly important in learning problems, and

much statistical investigation on this type has been done by M. M. Flood [ 5 ] .

They are referred to as the pure models. The mathematical description of the

first model of this type is as follows: A particle x on the unit interval is sub-

ject to three random impulses: (1) x—> σx with probability πχ(l — x); (2)

x —> 1 - a + CLx with probability π2x; and (3) x —> x with probability

(1 — TΓi ) ( l — # ) + ( l — 77*2 )x, where 0 < πx , π2 < 1. This is similar to model I

where absorption takes place at the boundaries 0 and 1. The operator analogous

to (2) becomes

(17) υπ 2

+ π2x π(l ~<X + <Xx).

Again, let T denote the transition operator which maps the distribution locating

the particle into the corresponding distribution at the end of the experiment.

Theorem 1 is valid for this setup, and T is consequently conjugate to [/. It is

easy to verify that U fulfills the conditions of Theorems 2 and 3 and also pre-

serves the property of monotone increasing functions. Furthermore, we obtain:

THEOREM 34. If π, π' and π" > 0, then (Uπ)" > 0 if and only if

(1 -σ)πx + 772 ( α - 1) > 0,

and otherwise Uπ preserves with π and π' >_ 0 the property of concavity.

Proof. The proof can be carried through by direct computation.
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We remark that the remainder of the analogue to Theorem 4 does not carry

over under the condition stated in Theorem 34 Moreover, noting that we have

here changed CC into 1 - α as compared to §2 , we obtain for πt - π2 = 1 the

condition of § 1 for preservation of convexity, and so on.

The analogues of Theorems 5, 6, 7, and 8 easily extend to this model by the

same methods, and we obtain that Unπ converges uniformly to a limit given by

where φσ a π Ή is the unique continuous fixed point of Uφ = φ with φ{0) = 0

and φ(l) = 1. The entire theory of geometric convergence, continuity of φ as a

function of σ, CX, π\9 and π2, and the form of the limiting distribution of the

particle established for the model of § 1 remains valid with slight changes in

the proofs. The general conclusion is that introducing a probability of standing

still has no effect on the convergence of the distributions or its limiting form

provided only the essential feature of absorbing boundaries still persists.

Finally, in this connection we remark that for special boundary values of the

parameters 77! and π2 the motion may become a drift to one or other of the end

points; for example, π\ = 0, π2 > 0

6. We treat in this section, the following general nonlinear one-dimensional

learning model. The particle moves with probability φ(x) from x to 1 - α + α *

and with probability l-φ(x) from x to σx. The function is only continuous

with the additional important requirement for this case that φ(x) > d > 0 and

l~φ(x) > δ > 0 for all x in the unit interval. This excludes the types of

models discussed in § § 1 and 3, but includes some subcases of the examples

investigated in § § 2 and 4. However, in those cases we obtained much stronger

results about the rate of convergence of derivatives, and so on. The transition

operators become

(20) TF = fX/σ[l-φ(t)]dF(t) +
Jo

f
o

and T is adjoint to

(21) (ί/ιr)(l) = ( 1 - 0 ( 0 ) π(σt) + φ(t) π(l - α + OlO.

We shall show that Unπ converges uniformly for any continuous function π(t).

The proof of this fact shall be based on the following highly intuitive propo-

sition. Let an experiment be repeated with only two possible outcomes, success
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or failure at each trial. Suppose further, that the probability of success pn at

the nth trial depends on the outcome of the previous trial, but that these con-

ditional probabilities satisfy pn >_ η > 0; that is, regardless of the previous

number of failures the conditional probability of success is always at least

η > 0. Then the recurrent event of a success run of length r with r fixed is a

certain event; that is, with probability 1 it will occur in finite time. This result

can be deduced in a standard way using the theory of recurrent events [ 4 ] .

We turn back now to the examination of Unπ. Let

Ftx = σx and F2x = 1 - Ot + 0C*

and by Fx denote the operation that either Fi or F2 is applied. We note the

important obvious fact that

(22) \FΓx - FΓy\ <λr \ x - y \ ,

with 0 < λ < 1, where Fr denotes r applications of Fι and F2 in some order

acting on x and y in the same way.

Next, we need the important lemma:

LEMMA. // \φ(m)(t)\<K for m = 0, 1, . . . , and \ πM(t) \ < Kl9 then

I Unπ(m)(t)\ < K2 uniformly in n and t.

Proof. The proof is similar to that of Theorem 24.

Now let π(t) denote a continuously differentiate function. Consider the

following identity:

(23) Unπ(x) - Unπ(y) = (1 - φ(x))(l - φ(y))[ϋn'ιπ(Fιx) - Un'ιπ(Fσ)]

+ φ(x) φ(y)[Un'ιπ(F2x) - Un'2π(F2y)]

+ (1 - φ(y)) φ(x)[Vn-1 π(F2x) - Unml π(Fιy)]

+ φ{y)(l-φ{x))[Un ιπ(Fix)-ϋn-ίπ(F2y)].

We continue to apply this identity to the factors Vn"1 π( ) — Un~ι π( ); and

when any term of the form Umπ(Frw) - Unπ(Frz) i s achieved, then that factor

is allowed to stand without any further reduction. All other terms are reduced

to expressions involving as factors π( ) — π( ) . Thus we obtain
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ϋnπ(x)- Unπ(y) = /" + /",

when /i consists of terms of the form

ΣpkίU
mkn{Frwk)-Umkπ(FΓzk)},

and Σ p ^ < 1 while I2 consists of the remaining terms. We now conceive of

the following probability model. Let two particles undergo the random walk

described by this model starting from x and y, respectively. We say a success

occurs if the same impulse activates both particles, and otherwise failure

occurs. The probability of success is given initially by

φ(x) φ(y) + [l-φ(x)][l-φ(y)] > 2 δ 2 > 0 ,

and it is easily seen that each p^, where p̂  is the conditional probability of

success occurring on the kth trial, satisfies

pk > 2 δ 2 > 0 .

Consequently, a success run of length r is certain to happen in finite time. In

particular as n —> oo, /" —• 0, since /£ is bounded by twice the probability of

no success run in n trials times K. On the other hand, in view of the lemma and

equation (22) we secure that /^ <̂  CλΓ. Therefore,

Πm" \Vnπ(x) - Unπ(y)\ < CλΓ,
n—*oo

which can be made arbitrarily small as r —>oo. Hence, if

lim Unπ(y) = a

exists for a single y, then

lim Unπ(x) = a

for every x. Since a subsequence can be found so that

lim Uniπ(x) = a
l - O O

for one x and hence for all xf an argument used in the close of the proof of
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Theorem 25 shows that

lim Unπ{x) = a.
n —»oo

The lemma easily implies that the convergence is uniform. Using the fact that

| | l)n\\ = 1, we can sum up the conclusions for this nonlinear model as follows:

THEOREM 35. // π{t) is continuous, then l im^^oo Unπ exists uniformly

converging to a constant limit.

THEOREM 36. If φ(t) belongs to Cm, and π(t) is in Cm, then

lim (Unπ)(m)(t) = 0
n—* oo

with convergence uniform in t.

THEOREM 37. For any distributions F9 TnF converges to a distribution

Fσ,a independent of F with TFσf0L = Fσ,<χ and ^σ,α continuous with respect to

σ, α.

This last theorem follows on account of the conjugate relationship of T and
U.

Finally, we note that the method used in this section can be employed to

analyze the random walks with any number of impulses

7. In the present section we investigate the nature of the limiting distri-

bution obtained in the various models. In the case where the boundaries were

absorbing states as in §§1 and 5, we find that the limiting distribution is dis-

crete and concentrates at the two ends 0 and 1. The weight at 1 depends on the

starting distribution F and is given by

Jo

where φσta is the unique continuous fixed point of Uφ = φ with φ(0) = 0 and

φ{\)= 1. Many properties of φσ>a are developed in those sections. In all the

other types the ergodic property was seen to hold and the limiting distribution

was independent of the initial distribution. Let us deal with the following
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general type. The random walk is given by x—*Fγx-σx with probability

l-φ(x), and x—¥ F2x = 1 -01 + α # with probability φ(x\ where l - δ >

φ(x) >_ 8 > 0. The relevant operators are given by equations (20) and (21).

Let the limiting distribution be denoted by Fσ$a.

We now distinguish two cases: (a) σ > 1 — CC and (b) σ < 1-OC Let us

examine case (b) first. We note that the union of the image sets F t [ 0 , 1] +

/^[O* 1] of Fι and F2 applied to the unit interval does not overlap with the

open subinterval (σ, 1-OC). Any two applications of ί\ and F2 leaves empty

the two additional open intervals (σ 2 , (l-OC)σ) and ( σ ( l - α ) , ( 1 - α ) 2 ) .

Proceeding in this way, we find that the limit of the total set covered by n

applications of Fj(i = 1,2) in any arrangement is a Cantor set C. It is easily

seen that F σ > α must concentrate its full probability on this set C.

Now let

We show that Unπto(x) converges uniformly to zero. Note that Uπto(t) is zero

for every t except at most one value of t; namely, F~ιtQ or F2~
ιtQ. Of course, if

σ < t0 < 1 —α, then neither inverse exists for that to; and otherwise only one

exists and

\UπtQ\ <max[φ(x), 1-<£(*)] < 1 - δ.
x

Similarly, Unπt0 <_ (1 - δ)n

9 from which the assertion follows. We now observe

that

(πto,Fσ$α) = (πtQ , TnFσ9α) = (ϋnπtQ , Fσ,μ) —>0.

Consequently, the probability of Fσ$0L at t0 is zero for any ί0 with 0 <_ ί0 <̂  1.

Summing up, we have established:

THEOREM 38. If σ < 1 -0Cf then the limiting distribution F σ > α is α singular

distribution (probability zero at every point) spread on a Cantor-like set.

We turn now to examine case ( a ) where σ >_ 1 — Ot. We note first that at

least one of the two mappings F^1 or F2'
1 is defined for every x in the unit

interval. Let π(t) denote any continuous positive function defined on the unit

interval so that π(t) >_r/ > Ofor some subinterval ί o ~ A < ί < ^ ί o + A (h > 0 ) .
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Since at least Fj*1 or F j 1 exists at tQ (say F [ ι ) , we obtain F^1 tQ = tχ. We con-

struct t2 from tγ in the same way and continue this for n steps, obtaining

tn = F"nto9 where F"n denotes a specific order of application of F [ ι or F^ 1 a

total of n times. Let Fn denote the reverse order of the operators obtained by

passing from t0

 t o tn We n o t e

\ F n x - F n y \ < λ n \ x - y \ < λ n ,

where λ < 1. Choose n so large that λn < h; then for every x we get that

| F n * - F I I t l , | . . | F B * - t o | < h.

Consequently, as

1 > 1 - δ > φ{x) > δ > 0,

Unπ is positive for all x since F~n[t0 - A, t0 + h] covers the entire unit in-

terval and 77(ί) >_η > 0 on this initial interval which is spread out by the

term in Un involving Fn. We have thus shown:

THEOREM 39. If σ > 1 -CC, the operator U is strictly positive; that is, for

each positive continuous function π(t) there exists an n depending upon π so

that Unπ is strictly positive.

Now let ττto(t) be defined as before. Again we establish that UnπtQ con-

verges uniformly to zero. To this end we observe that UπtQ has at most two

possible values at F~χ

ι tQ and F~ι tQ given by I - φ(F~ι tQ) and φ{F^ιtQ\

respectively, while l)πtQ = 0 elsewhere. Also, ϋ2πtQ has at most four possible

values and the maximum value that could be achieved for U2πtQ is

max\[l-φ(Flιt0)][l-φ(Fl2t0)}, φ{F;ιt0) φ(F;2tQ),

To secure a bound for the maximum of Unπt0, let us consider the same repeated-

experiment model set up in the previous section. The conditional probabilities

of success pn at the nth trial satisfy the uniform inequalities 1>1 — l>_Pn >.7/>^>

where success in this case is taken to be an application of the impulse ί\ to

the particle. It is readily seen by standard inequalities that the probability of

securing k (k < n) successes converges uniformly to zero as n —»oo. More-

over, it follows directly thatmax^ (probability of k successes) is a bound for
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Unπt0, and hence Unπt0 —> 0 We deduce as before that Fσt0L has probability

zero for every U Thus the cumulative distribution of F is continuous. Let

F - F\ + F2y where F\ is absolutely continuous and F2 is singular. Observing

that the transition operator transforms absolutely continuous measures into

absolutely continuous measures and singular measures into singular measures,

we find that TFX - Ft and TF2 - F2. However, as the fixed distribution is u-

nique, we deduce that either Fγ or F2 vanishes.

THEOREM 40. // σ >_ 1-CX, then the unique distribution Fσf0L is either

absolutely continuous or singular. Furthermore, Fσ$a has positive measure in

every open interval.

Proof. We have demonstrated all the conclusions of the theorem but the

last. Let π(t) denote a continuous positive function bounded by 1, and zero

outside an open interval /, and 1 on a closed subinterval / ' of /. By virtue of

Theorem 39 there exists an n such that Unπ > δ > 0 for all t. We note that

U/V,α) = U, TnFσta)=(Unπ,Fσta)> δ> 0.

But

/ •
V,α> U Fσ,a) > 8 > 0,

and the proof of the theorem is complete.

We close with the conjecture that when σ > 1 - α , then F σ > α is always

absolutely continuous. An example where this is the case is furnished by

φ{x)= 1/2, σ = 1/2= 1 - α , where F (x) = x.
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ON UNIFORM DISTRIBUTION MODULO A SUBDIVISION

W. J . L E V E Q U E

1. L e t Δ be a s u b d i v i s i o n of t h e i n t e r v a l ( 0 , oo): Δ = ( z0, zl9 ) , w h e r e

0 = zQ < zγ < ••• a n d lim zn = oo.
n —*oo

For z n - 1 < x < zn9 put

x-
*-it (*)Δ =

' A 8(x) a

so that 0 < (x)^ < l Let {x̂  j be an increasing sequence of positive numbers. If

the sequence ί ( ^ K l is uniformly distributed over [0, 1], in the sense that the

proportion of the numbers \ ^ 1 ) Δ , , \XjJ ^ which lie in [0, (X) approaches (X as

k—»oo, for each OLE [0, 1), then we shall say that the sequence {x^ \ is uni-

formly distributed modulo Δ. If Δ is the subdivision Δo for which zn = n, this

reduces to the ordinary concept of uniform distribution (mod 1), since then [x]\ =

[x]9 δ(x) = 1 for all x9 and ( ^ ) Δ = x - [x] is the fractional part of x. Even in

other cases, the generalization is more apparent than real, since the uniform dis-

tribution of one sequence (mod Δ) is equivalent to the uniform distribution of

another sequence ( mod 1). But most of the known theorems concerning uniform

distribution (mod 1) are not applicable to the sequences 1\XL)Λ \$ if Δ is not Δo>

for in such theorems x^ is ordinarily taken to be the value f(k) of a function

whose derivative exists and is monotonic for positive x. Here, on the other hand,

(xfc)Δ = φiXfr) (mod 1), and φ9 although a continuous polygonal function, is

not necessarily everywhere differentiable; and unless 8{x) is assumed mono-

tonic, φ' is not monotonic even over the set on which it exists. This lack of

monotonicity introduces serious difficulties; it is the object of the present work

to show how they can be dealt with in certain cases.

For brevity, "uniformly distributed" will be abbreviated to "u.d." . The sym-

bols " t " , " / " , "V and " V indicate monotonic approach: increasing, non-

decreasing, decreasing, and non-increasing, respectively.
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2. Put

N(a,χ) Σ 1, N(x) = N(lfχ);

xk< x

then {x^ I is u.d. (mod Δ) if and only if, for each CC £ [0, 1),

_ N ( 0 L 9 x )
lim = α.

THEOREM 1. A necessary condition that \x^ \ be u.d. (mod Δ) is that

as n —• oo.

For suppose that {x, \ is u.d. (mod Δ). Then since

we have

2, zn) N({zn + zn+ι )/2) -N(zn)

2

ΛK1/2, *„

N(zn)
+ 1 -

N(zn) (N{l/2,zn) \ i N(zn)

l + — - r - l — J ^ J -1 - 1 - -

as Λ —> oo, and so

In the same way it can be shown that

and consequently N( zn) ~ V̂
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3. The following theorem, due in a slightly different form to Feje'r (see [ 1,

p. 88-89]), expresses the fact that if / is sufficiently smooth and [ / ( * ) ] is

constant over increasingly long intervals as x increases, such that the length of

the n-th interval is of smaller order of magnitude than the total length of all

preceding intervals, then f(k) is u.d. (mod 1):

Suppose that f(x) has the following properties:

( i ) f is continuously differentiable for x > x0,

(i i) f(x) t oo as x t oc,

( i i i) / ' (%) \ 0 as x t oo,

(iv) xf/(x)—> oo as x—>oo.

Then f(k) is u.d. (mod 1 ) .

The following theorem uses the same general idea:

THEOREM 2. Suppose that, for a given subdivision Δ and a sequence \x^ 1,

N(zn) ~ N( zn-1) —* oo as rc —> oo. Then \ xk \ is u.d. ( mod Δ) if the following

conditions are satisfied:

( 0 N(zn-ι) ~ W(z n) as n—> oo,

( i i ) except possibly on a sequence of intervals [ z n . - l f

 znt) such that

m

(1) Σ, W ^ , ) - tf(*»f-i)) - o(N(znJ)9J

the relation

holds as n —> oo, the maximum and minimum being taken independently, for given

n £ nif n29 , over all k for which at least one of Xjc^ϊ cmd x^ is in [ zn~u zn].

Give the name 8n to the interval [zn~v zn]9 and put

N(8n) =

It will be shown that

N(OL,Sn)lim = α ;
„_« N(8n)

n φn i, n2f ••
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in other words, that in the limit the Xjjs which lie in δn ^ 8n are u.d. there. This

implies the theorem, for using it, (1) , and ( i ) we have, for x £ δn.

α x) n~ ι

^ Σ

o

(α+ o(D)

α
+ o ( l ) = α +

where Σ denotes summation from ι/ = l t o v = / ι - l , v ^ w t, n 2 , .

To prove ( 2 ) , suppose that n-£ nί9 n2> , that zn^ι G (*, , A;, ] , and that

min {xk - x * . ) = Xn.

Then for hn <k < kn+19 we have Λ;̂  - x^ χ = ( 1 + 6 ^ ) ^LΛ, where €kn is a posi-

tive quantity tending to zero as n —»oo. Put

en = max e, ,

and put Δ%i = x» — x, . Now if

then

kn+2

S = 1

where € ^ = 0 ( 1 ) as n —» oo. But
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t

Σ, Δ *kn+s $ tXn + tβnXn < ^n + u€nXn
s = l

where u = N(zn) - yV(z n . 1 ) . Hence

zn ~~ zn-l zn "~ zn~\
< t < α
— —

Similarly,

- z n - l Zπ ~ z n - l
— en-uen<u < e'

so that

zn - zn-x)/Xn - e'n

( zn " zn-l)/Xn ~ e'n ~ U ~ ( zn - zn-x)/Xn - 6^ - u€n '

Since /V(2:π) ~Λ/(2n-1)—•oo as τι—>oo, also (z Λ - 2n - ι)/Λ!Λ—»oo, and so

But since

uXn =O(zn - z n - i ) ; thus

- 1 -

and therefore

This completes the proof.

In case Δ = Δ o and x^ = /(&), it is easily seen that the hypotheses of

FejeYs theorem imply two of the hypotheses of Theorem 2, namely that N(zn) -
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W(2τι-i) t oo and N(zn^v) ~ N(zn) as n—>cc. But I do not know whether Theo-

rem 2 includes FejeVs theorem; the most that I can show is that the exceptional

sequence { zUt \ = {n t } mentioned in ( i i ) of Theoremo2 is in this case of density

zero, which does not imply (1 ) for all functions / satisfying the hypotheses of

FejeVs theorem. Certainly, however, Theorem 2 deals with cases not covered by

the following direct extension of FejeVs theorem, since it does not require the

monotonicity of either zn — zΛ-i or Δ xk

THEOREM 3 The sequence \ x, ! is u.d. (mod Δ) if the following conditions

are satisfied:

( i ) zn - z n -i >:zn^γ - zn_2 /brτι = 2, 3,

( i i ) Δ#£ I 0 as k too,

(i i i ) Nίzn-^ ~ N(zn) as n—> oo.

We sketch the proof. Let φ be the continuous polygonal function such that

φ{xk) = k; then 0 <φ(x) - N(x) < I. Let { ek \ be such that ek = O ( Δ Λ ^ ) and

0 < ek < Δxk/2 for k = 1, 2, . Define φχ as follows:

φ ( * ) = / k φ ( t ) d t for xElx
1 2 e , J * - 6 . Ύ I 2

(4 = 2, 3,

Then φ is continuously differentiate, and is identical with φ except at the cor-

ners of φ, where it is smooth. For 0 < α < 1, n = 1, 2, 3, , put

p is continuously differentiate except at x = 1, 2, . A function p t can now be

defined in terms of p, just as φ was determined from φ9 so that pχ is everywhere

continuously differentiable, and p differs from p only on an interval about x =

n(n = 1, 2, •) whose length €^ is of lower order of magnitude than Δ#£ if
zn € [χL ,> XL ). If ^ = w + oc is such that

κn~ι Λn

P X ( Λ ; ) = p(x), Φι(zn,ι + O L ( Z Λ - 2 Λ ^ 1 ) ) = ψ(znmml ¥a{zn-zn^ι))f

and

then
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A*k '

it follows that p'χ(x) / oo. Moreover, since

P ^ Λ + 1 ) ψ(zn) ^ N{zn)

px(n) ψ^Zn-i) N(zn-ι)

it follows that p'(x)/p (x) —>0 as x—> oo. But if / i s the function inverse to

p , these facts imply that /(x) t oo, f'(x) \ 0, and xf'(x) —» oo as x t oo. Since

f(k)—> #£ as the arbitrary numbers e^ and e'n approach zero, the conclusion fol-

lows from Fejer's theorem.

A trivial variation of Theorem 3 has, instead of ( i ) and (i i ) , the hypotheses

( Π zn - zn-ι ΐoc>

( i i ' ) i ^ t > Λ ^ for A = 2, 3, •••.

For then it will still be true that ρ[(x) / oo as # too.

4. It follows from Theorem 2 (and also from the variation of Theorem 3 just

mentioned) that if zn - zn-ι /coin such a way that zn^i ~ znf the sequence \ kθ\

is u.d. (mod Δ) for each θ > 0. In this section we examine the distribution of

{ kθ\ (mod Δ) when 8(x) \Q. This is a problem of a very different kind from the

earlier one; the result is expressed in the following metric theorem:

THEOREM 4. If 8(x) \ 0 and 8(x) = O ( Λ Γ ι ) then \kθ\ is u.d. (mod Δ) for

almost all θ > 0.

The proof depends on a principle used in an earlier paper [2]:

If C and e are positive constants and {/, } is a sequence of real-valued func-

tions such that

(3) < (/, A = l, 2,
— / i I 1 i fi \ 'max(l, \j-k\e)

then \fk(x)\ is u.d. (mod 1) for almost all x € (α, b).

This will be applied with fk(x) - φ(kx)f where φ is the function defined in

§ 1 ; it was noted there that the u.d. (mod Δ) of {xk \ is equivalent to the u.d.

(mod 1) of \φ(xk) 1. Let a and b be arbitrary positive numbers with a < b9 and

put
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ίb
 €i

J* Ja

since / , . and / .^ are complex conjugates, it suffices to consider the case / > k.

For fixed / and k9 denote by ξ , ξτ all the numbers of the form zm/j or zm/k

in the interval (α, 6), so named that ξ < < ξf. Then the function

f.(x) - fk(x) X~
xA(x) + B{x)

is linear in each interval

and Bj there. Hence

S{jx) 8(kx)j \δ(jx) 8{kx)

, ξj), A(x) and B(x) being certain constants

l=ι Jξl-y

Since / i s continuous,

and so for 1 < t < r,

Thus, using the relation

we have

l=ι

Bl =

n n - 1 / m

Σ ambm - Σ Σ «
m = l w ι = l \ / χ = /

iA,

6Λ £ α f

and so
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(4)
r-ι

At At \Ar\

B y t h e f a c t s t h a t ξ > a > 0, 8 { x ) \ O a s % — * o o , a n d

A,-—L-->..

it is clear that

At> C{j-k)>0

for t = 1, 2 , , r, s o that ( 3 ) wi l l fol low from ( 4 ) if it can be shown that for

some c, e > 0, the inequal i ty

r - l

At At+ι

holds. Moreover, writing

and

Σ i c . i - Σ c t - 2 Σ < : , - - - — - 2 Σ c t ,
t = I

where Σ is the sum over those t for which Ct < 0, we see that it suffices to

show that

We consider three cases. Suppose first that ί is such that ζt+ι = z

m/j f°Γ

some m, but that for no / is ^ ί + = z^/k. Then

A. =
7

1 8 ( z m ^ ) δ ( k ξ t ) ' ί + I 8 ( z m ) 8 ( k ξ t ) 9

s o t h a t A t + ι > A t , a n d t h e t e r m Ct d o e s n o t o c c u r i n Σ . I f
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then zm > Z{ and

Finally, if £ = z^/k for some Z, but £ j4 2^/7 for every m, then

Thus, writing δ ( x + ) and δ(%~) for lim + δ(<f)andlim _δ( <f ), we have

Σ ' ι r I < * Σ '
1 L ' ~~

( /δ (/*-/*) - A/δ( Z / _ χ ) ) (j/8(;2 /

+/4) - k/8 ( ^ ) )

where Σ denotes summation with respect to I with z^/k £ (α, ό). But

and

δ(/*;/*) <

and so

Σ | c t ι .<

If now δ(Λ ) = 0 ( 1 / Λ ) , then
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and the proof is complete.

5. The preceding result can be generalized considerably by using the fol-

lowing transfer theorem:

T H E O R E M 5 . Suppose that \ x k \ is u.d. ( m o d Δ ) , where Δ = I zn }, and that

{is a function which is differentiable except possibly at the points zίf z2> ••• ,

such that f{x) t oo a s x t oo and

( 5 ) inf / ' ( * ) ~ sup / ' ( * ) .
χ€(zn^l9zn) xe{zn-u zn)

Then the sequence \x^\ = \ fix^) i ι s u d. (mod Δ*), where Δ* = {/(z n) 1.

Put

/ V ( a , * ) = Σ 1 , N ( l 9 x ) = N ( x ) 9 N * { O L 9 X ) = Σ, 1 , N * ( l , x ) - N * ( x ) t

where Σ denotes summation with x^ < x and (x^)^ < Ot and Σ, denotes

summation with x^ < x, \ ^ ) ^ * < &>• Since / is an increasing function,

By assumption, the relation

,. N(OL,X)
hm = α

Λ -OO N(X)

holds for <X€ [0, 1] So we need only show that N*(θL, fix)) ~ Λ^(α, x) as

x—>oo, and by Theorem 1 it suffices to prove this as x runs through the sequence

{ zn I But

n
N(0L,zn)= Σ iN(zm.1 + a(zm~zm.ι))-N(zm.i)\,

m = 1

and so

ΛTία./U.))- £ IΛTί. ^ + αd - . ^ ) ) - ^ ^ . ^ !
7W sr 1

= i V ( α , z n ) + £ { ^ ( 4 _ ι + o c ( 2 * - z * _ 1 ) ) - y V ( Z m _ 1 + α ( Z m - 2 m _ 1 ) ) l .
771 = 1
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Thus the problem reduces to showing that

m = l

or what is the same thing, that

m = l

Put

Zm-1

If it can be shown that

where 6^—» 0 as m —> oo, then for every € > 0,

- N{vm(a))\
m = 1

\m = 1

*„) ) -O(eN(zn)),

which implies (6 ) .

Now

and

hence
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To maximize um{θi) - t?m(α), we must have

There is a Z 0 G ( z m - p 2 m ) such that

f(*m) -f(z
zm ~ zm-i

and a corresponding Ct0 G (0, 1) such that

( Z o ) ,

(so that u^{ αQ) - t>̂ (Cί ) = 0) for which

μ m ( α ) - , m ( α ) | < l « m ( α o ) - » m ( α o ) |

for all αG(0, 1). But

/(Zo)-/(*„-,)
()

SO that

/(Zo ) -
2/n-l +

Γ(z0)

and

whence

sup
z e δ m

1 -
f(Z)-f{zm_ι)

~ zm-m-l

< sup 1 -
/'(Z)
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and this last upper bound is o ( l ) as m —• oo. Thus (7) holds, and the proof is

complete.

If the /of Theorem 5 is taken to be an arbitrary increasing polygonal function,

with vertices on the abscissas x = z l9 z2, , then the condition (5) on the de-

rivative is trivially satisfied. Such a transformation merely represents a change

of scale inside each interval δn, and the distribution modulo Δ of any sequence

ί xk ) is identical with the distribution of {f(χfc) 1 modulo Δ*.

In case / ' i s monotone, (5) can be replaced by the simpler condition

( 5 0 Γ U π - ι ) ~ /'(*,») as 7i—»oo.

Combining this version of Theorem 5 with Theorem 4, we have:

THEOREM 6. The sequence \f(kθ)\ is u.d. (mod Δ ) for almost all θ > 0 if

f(x) t o o , f'is monotonic, and

f'(Γl(zn)) ~ / ' ( / - ι ( 2 π - 1 ) ) ,

where f"~ι is the function inverse to /.

COROLLARY. The sequence \QL \ is u.d. (mod Δ) for almost all CX> 1 if

zn ~ g{n), where g is an increasing function with monotonic logarithmic deriva-

tive such that

( 8 )

For writing ak as ek g α, we see that we can take the /of Theorem 6 to be

the exponential function, and the conditions displayed there become

log zn - log zn^ι \ 0,

log zn - log zn-ι = θ ( - ) ,
Uoe: zn I

Of these, the third is implied by the first. Since
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d
— log g(x) \ 0,
ax

it is clear that log g(n) — log g(n - 1) \ 0 . From the extended law of the mean,

G(χ)-G(x-1) G\X)

— = — , A G ( « - l , x ) ,
H{x)-H(x-l) H (X)

it follows that if G\x) =0(H\X) ), then

G{x) - G(x-l) =0(H{x) - H(x-l)).

Taking

G(x) = log g(x), H(x) = log e^ = yfx,

we have by (8) that

logg(τι) - l o g β ( Λ - l ) = 0 ( τ ι " ι / 2 ) .

But it also follows from the relation G'(X) = 0{H'(X) ) that G(x) = 0(H{x));

hence

and the proof is complete.

For sufficiently smooth g, (8) can be replaced by the condition g (#) =

0(exp \fx).
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DERIVATIVES OF INFINITE ORDER

L E E L O R C H

1. Introduction. The major purpose here is to reexamine, chiefly from the

standpoint of summation by Borel's exponential means, a number of problems

concerning the existence and form of

Hm fM(x),
n —> oo

for x a real variable in an interval. Several articles have been contributed on

this topic [5, 6, 11, 16], all of which take the limit process involved to be

ordinary convergence. In one [ 5 ] , however, Boas and Chandrasekbaran point

to the desirability of interpreting the limit process in a more general sense

and state without proof that one of their results (the case (X = 1, λn = 1 for

all n, of Theorem 4 below) can be established by their method for any (pre-

sumably linear) summation method T having the property that, as n —»oo,

(1) Γ-lim sn exists and equals s implies 7-lim sn. t exists and equals s.

Borel's method of exponential means, like his integral method, possesses

property (1) although, curiously, not its converse, as Hardy [cf. 9, pp.183,

196] pointed out. Methods satisfying both (1) and its converse include ordinary

convergence and the summation methods of Abel, Cesaro, Euler, Holder, and,

when regular (see below), Voronoi-Nδrlund

It is not clear from [5] just how their proof of the cited result (that

f^n'(x)—> g(x) dominatedly in (a9 b) implies g(x) = kex) can really be

carried over to all linear summation methods of type (1) . Since the transform

\Fm{x)\, m discrete or continuous, of the sequence {f^n'(x)\ converges

dominatedly, it follows that

lim
JTl —» o c/

x fx

Fm(t)dt - I g(t)dt9 uniformly for c$ x in (α, b).
Jc
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But further argumentation is needed to justify interchanging (in the left mem-

ber) the integral and whatever limit process may be involved in defining Fm (x)

in terms of \ f^nHχ)\, which would seem to be the next step in the proof.

Where Fm{x) is a finite linear combination of /(#),••• , f^m'(x)9 as in the

Cesaro, Euler, Holder, and Voronoi-Nδrlund methods, this is trivial. In the

Abel and Borel methods, for example, however, the transforms involve infinite

series. The usual difficulties incident to an interchange of limits therefore

intrude themselves at this point of the argument. Perhaps this difficulty can

be overcome; but [ δ ] does not suggest how.

In the case of Borel's exponential means these difficulties can be avoided

and more complete results obtained otherwise by rather simple arguments which

get to the heart of the problem more directly. Borel's exponential means provide

a natural tool for working with the problems at hand; for, when applied to the

sequence \ f^n'(x)}, they give rise to the Taylor expansion of f(x). Repeated

use can then be made of the property that the value to which the Taylor series

of an analytic function converges is independent of the point around which

the expansion is taken, since the hypotheses of most of the theorems below

either assume or imply that f(x) is analytic.

A sequence {sn i, n - 0, 1, 2, , is said to be Ba'Sumτnable to the value

s if

(2)

When (2) is satisfied, it is also written as

(3) βα- lim sn = s.
n-*oo

This method is regular (sometimes called permanent) in the sense that any

sequence 1 sn \ converging in the ordinary sense to a value s is also βα-sum-

mable and to the same value s.

If Cί = 1, the definition (2) describes summation by Borel's exponential

means. #t-summation is denoted simply as β-summation, and, when (X = 1,

(3) is written BΊim sn = s.

Z?α-summation possesses property (1) when Oί is a positive integer, since

β-summation does: Let βα-lim sn = s and define t^ to be &sn when k - Cίn and

to be 0 otherwise. Then β-lim t^ - s and, upon OC applications of (1), β-lim

tj€ma= s. But this last is the same as asserting Ba-lim sn.ι = s, completing
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the proof.

2. Borel limits of the sequence of derivatives. We shall establish the

following result.

THEOREM 1. If f(x) is analytic in the real interval (o, b), and if

β-lim fM(xQ) = keX°
n —» oo

for a single x0 in (a, b), then

β-lim fM(x) = kex

n—*oo

for each x in (α, b). The convergence is uniform if the interval (a$ b) is finite.

Proof. The function fix) can be represented by its Taylor series in (α, b),

being analytic in that interval. Thus

°° / ( n ) U o )
(4) f(t) = T {t-xo)

n ioτt,x0in(a,b).

The power series has an infinite radius of convergence in ί for xQ in (α, b),

since the existence of the Borel limit of f (XQ) may be written (with r-t—x^)

oo f ^ \ x 0 )
( 5 ) lim e'(t'Xo) T (t-xo)

n = ke*°.

T h u s f{t)9 t in ( α , 6 ) , p o s s e s s e s a u n i q u e a n a l y t i c e x t e n s i o n φ ( t ) , a n d t h i s

f u n c t i o n i s an e n t i r e f u n c t i o n . T h u s ( 5 ) c a n be w r i t t e n a s

( 6 ) l i m e"c φ ( t ) = k .
ίί-»oc

Expanding φ(t) about an arbitrary point x in (α, b), multiplying both sides of

(6) by ex, and placing r - t — x completes the proof of the theorem, except for

the part dealing with uniform convergence.

To prove that the convergence is uniform when (a, b) is finite, let e > 0

be given and find t0 (whose existence is assured by (6)) such that

\e"t φ ( t ) - k\ < e for t > t0 .
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Then

\e'{tmχ)φ(t)-kex\ < eex < e e

for t > tQ and all x in (α, b), and

.-<-*)

n=0

for t > t0 and all x in (o, 6).

Hence, putting r = ί - x, we get

n\
-ke* < e e

for r > tQ — a and all x in (α, 6). This completes the proof.

An examination of this proof makes it clear that the point x0 and the in-

terval (a, b) do not have to be required to be real. What is essential is to

have the quantity t - x0 become positively infinite through real values, to

conform to the definition of Borel summation. With this in mind, we can re-

phrase Theorem 1 in the following somewhat more general form:

THEOREM 1/ // f{x + iγQ \ regarded as a function of the real variable

x> is analytic for a < x < b, γQ fixed9 and if

β-lim / (# + iyQ ) exists and equals ke ° °

for a single x0 in {a$ b), then

δ-lim f^n\x + iγ ) exists and equals ke* iγ°
n —• oo

for each x in (a9 b). The convergence is uniform if the interval (a9 b) is

finite.

This theorem enables one to pass from a fixed point z0 — x0 + iy0 in the

complex plane to any other point in a certain interval on the horizontal line

passing through z o B u* w n a * about points z not on this line? The proof of

Theorem 1 is not adequate to cover this situation, since it must be shown that
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the limit in (6) exists and has the value k as r=t — z becomes positively

infinite through real values. (Here the complex value z replaces the real

number x.) This is required by the very definition of Borel summation. In turn,

moreover, this necessitates establishing that the limit (6) exists and equals

k as t becomes infinite to the right, not only on the given horizontal line

y = yQ, but also on other horizontal lines. This can be done in certain circum-

stances.

THEOREM l ' ' Let f(z) be analytic in S, a horizontal half-strip, quadrant,

or half-plane, opening to the right:

z = x + iy9 x = a, c < y < d.

Let f(z) = 0(ez) as z becomes infinite in S. Suppose that

B-lim f 0
n —»oo

for a single z0 in S. Then

β-lim / ' Λ ' ( z ) exists and equals kez

for all z in S. If c and d are finite, then the convergence is uniform in c + 8 <

y < d - δ for any positive δ. // S is a quadrant or half-plane, then the con-

vergence is uniform in any half-strip in its interior.

Proof, In the preliminary discussion, it has been noted that only one issue

needs be settled in order to extend the proof of Theorem 1 to this theorem as

well: That is the existence and value of the limit in (6) as ί - z , z an arbi-

trary point in S, becomes positively infinite through real values, where the

imaginary parts of z and z0 may be unequal. This limit, for z arbitrary in S,

does exist and have the value k under the assumption made here that f{z) =

0{ez) as z—»oo in S. This follows from MonteΓs theorem [15, p. 170],

after that theorem has been expressed in terms of the horizontal strips in-

volved here, rather than the vertical strips used in [15]. The conclusion con-

cerning uniformity is also a consequence of this formulation of Montel's theo-

rem.

THEOREM 2. // f(x) belongs to a Denjoy-Carleman quasi-analytic class

in the (open) interval (a, b) and if
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-Iim / \Xo )
n-*oo

for a single XQ in the open interval (a, b)9 then f(x) is analytic in (α, b)

(and

β-lim fM(χ) = kex

n —»oc

for all x9 a < x < b).

Proof. It is sufficient to prove the first half of the conclusion, the ana-

lyticity of f(x)', the other half is then a consequence of Theorem 1.

As in the previous proof, the Borel summability of the sequence {f^n'(xo)\

implies that the right hand member of (4) has an infinite radius of convergence,

and so defines an entire function φ(t). Expanding φ(t) in a Taylor ser ies

about the point x0 in (α, b) shows that

rh^i r } — f(n^ (T } (n — Cί λ 9 •)
<p \XQ ) ~~ J V-*o ' \n — \J9 ±9 Δ7 * j

The analyticity of f(x) in (a9 b) is a consequence of the following result of

Bang [ 1, p 84], as quoted in [6]: *'••• If f(x) belongs to a quasianalytic

class on a < x < b and g(x) is analytic, then f {XQ) = g (XQ) for all

n and a < χ0 < b implies f(x) = g(x) . " This completes the proof.

The next theorem provides a simple set of necessary and sufficient con-
ditions on the structure of f(x) as well as on that of g(x) That these con-
ditions are not sufficient if convergence is used instead of Borel summation
is shown by the example

f(x) = kex + sin x.

The Borel limit of the sequence of derivatives exists and equals kex for all

xf whereas the (convergence) limit of this sequence does not even exist.

Analyticity is not assumed in the necessity part of the theorem, but is in-

ferred as in Theorem 1 of [5].

THEOREM 3. A set of necessary and sufficient conditions that

β-lim fM(x) = g(x)
n —»oo

for each x in (a, b)9 where g(x) is finite, is ( i ) that f(x) coincide in (a, b)
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with an entire function φ(x), having the property that

φ(x)- kex + o(e*),

as x becomes infinite, and ( i i ) that

g(x) = kex

9 x in (a, b) •

Proof of sufficiency. Here

0 ( 0 = Ae* + o ( e ' ) ; 0 ( 0 = / ( O , f o r ί i n ( α , 6 ) ,

and 0 ( 0 is an entire function. Then

^ ^ ( ) (t~x)n, x in (a,b).
~ n!

By hypothesis,

lim e- ( ί -* } 0(O = Ae*,
ί-»oo

whence, with r = t - x9

completing the proof of sufficiency.

Necessity. Putting r = t - xf wje can write the assumption of Borel sum-

sumability as follows:

lim e~^tmχ' Ύ\ — (t - x)n = g(x) for each x in (α, b)
'-00

This implies that the radius of convergence of the power series above is in-

finite for each x in (α, ό). Hence f(t) is analytic in (α, b), as a consequence

of a theorem of Pringsheim [13] for which a complete proof was supplied

first by Boas [4] and again later by Zahorski [17]. In fact, f{t) has as ana-

lytic continuation an entire function, 0 ( O Then
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lim e'^"x^ φ{t) = g(x) for each x in (α, b),
t—* oo

whence

lim e" φ(t) = e~* g ( # ) for each Λ; in (α, 6 ) .
t-*oo

The left side is independent of x since <£(ί) is, and this is the case because

the values of an analytic function do not depend on the point in the region of

analyticity around which the function is expanded. Hence the right side must

be a constant k. This completes the proof.

3. Subsequences of \f^nHx)\ For the proof of the theorem below, the

following lemma is needed. The proof given first is due to Julian H. Blau.

LEMMA 1. If a sequence of polynomials, \Pn(x)\9 defined in the closed

interval [ c , d\ each of which is of degree at most β9 has a limit h(x) in

[ c, d\ then this limit is likewise a polynomial of degree at most β.

Proof of lemma (by induction). Let each Pn(x) be written as a polynomial

in x — c.

(i) The lemma is obvious for β = 0.

(ii) Assume that the result is valid for all integers y, 0 < γ < β . Let

{Pn(x)\ be a convergent sequence of polynomials of degree at most y + l

Then

Pn(x) - Pn(c)—>h(x) ~ h(c).

The left s ide is divisible by x - c, giving a sequence \Qn(x)\ of polynomials

of degree at most y , and

Pn(x)-Pn(c) h(x)-h(c) . . .

Q() U έ )
X — C X — C

From the induction hypothesis, the right member is a polynomial of degree at

most y. Hence h(x) is a polynomial of degree at most γ + l This completes

the induction.

The referee suggests the following alternative proof of the lemma: If

Pn(x) converges pointwise, so does Δ^+ 1 Pn(x); but these differences are
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all zero, and so Δ^ + ι A(Λ;) = 0 (for all spans )• It is well known that the

polynomials of degree < β are characterized among measurable functions by

the property of having vanishing (β + l)th differences; and h{x) is even of

the first Baire class

He also comments that the lemma is well known, but that, like the author,

he can think of no specific reference.

The case (X = 1, λn = 1 (all n) of Theorem 4 below is proved in the opening

remarks of [ 5 ] . Theorem 3 of [ 5 ] is also included in Theorem 4 below, which

gives somewhat more precise information than is formulated in the statement

of Theorem 3 of [ 5 ] , even for the case α = 1, which is the case analyzed in

Theorem 3 of [5]. The proof below is fashioned after that of the latter theorem.

THEOREM 4. Let \λn] be a given sequence of constants; let (X be a

fixed positive integer; and let

f(an)(x)
( 7 ) lim = g(x) dominatedly in a < x < i.

Then the following statements are true for a < x < b.

(i) //

lim _ _ _ = 0 ,
n -~»oo Xn

then g(x) = 0 almost everywhere. If ( 7 ) holds uniformly, then g{x) = 0.

( ϋ ) //

lim = L £ 0 ,
n-*oo Xn

L finite, then Lg^Hx) = g(x )

(i i i ) // the sequence {λn-ι/λn} has an infinite limit-point, then g ( # ) =

Λz-i (χ)f where Pa~γ (x) is a polynomial whose degree does not exceed OC - 1.

(iv) // the sequence \λn-ι/λn\ has at least two limit-points, of which

at least one is finite, then g{x) = 0.

Proof. T h e common h y p o t h e s i s g i v e s the f o l l o w i n g e x t e n s i o n of ( 3 ) of
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[ 5 ] in all four cases, since the sequence obtained by integrating a dominatedly

convergent sequence converges uniformly [10, p. 290, p. 304], whence suc-

cessive termwise integrations are valid for x9 c in [α, £>]:

lim
n —»00

(8) - i
λ

Λan

f{an'a)(x) f{an"a)(c)

/ I . . . / g(xx)dxι
Jc Jc Jc

Moreover,

dx

( * - c )

g{x),

since implies s^-i — > s

To prove ( i ) , note that the first term of the left member of ( 8 ) approaches

zero. Then, from Lemma 1, the combined remaining terms have as their col-

lective limit a polynomial Pa-ι(x) whose degree does not exceed Ot — 1. Dif-

ferentiating both sides of ( 8 ) Ot — 1 times, under these circumstances, shows

that / c* g{t)dt is constant for all x in [α, 6 ] , whence g(x) - 0 almost every-

where, as asserted in the first part of ( i ) . If (7 ) holds uniformly, then g(x)

is continuous and hence identically zero.

To prove ( i i ) , note that ( 8 ) becomes, as above,

Lig{x)-g(c)]-Pa,ι(x)~ f*a ... Γ
Jc Jc

dxa

Differentiating both sides (X times with respect to x completes the proof of

(ϋ).

To prove ( i i i ) , rewrite ( 8 ) by using λn.ι/λn as a factor of all the terms

within the brackets and not just of the terms in the braces. Then the (new)

expression inside the brackets must approach zero (since the right member of

( 8 ) is finite) as n becomes infinite through a subsequence for which the cor-

responding λn.ι/λn becomes infinite. Using Lemma 1 again shows that
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g(x) - g(c) - Pa-iix) = 0;

and, of course, g(c) can be absorbed in Pa-ι(χ)f completing the proof of

( i n ) .

To prove (iv), consider first the case in which there are exactly two limit-

points, one of which is zero. The presence of the zero limit-point implies (by

use of an appropriate subsequence of { λ π . ι / λ n \ in the proof of ( i ) ) that

g(x) = 0 almost everywhere. The other limit-point may be finite or infinite.

If finite, the same modification is introduced into the proof of ( i i ) , showing

g(x) to be continuous. If infinite, ( i i i ) applies directly, again showing g(x)

to be continuous. Hence, in this case, g(x) = 0.

In the remaining ("general") case of ( iv), there is a finite nonzero limit-

point L, whence, modifying ( i i ) as above, we obtain

( 9 ) Lgia)(x) = g(x)

and either another finite nonzero limit-point M9 implying

with L Φ- M, or an infinite limit-point, in which eventuality g(x) is a poly-

nomial whose degree does not exceed Ot - 1, from ( i i i ) . Comparing either of

these alternatives for g(x) with ( 9 ) shows that g(x) = 0.

This completes the proof of (iv ) and of the theorem.

Theorem 4 ( iv) does not exclude the possibility that

lim inf

may be zero. For the case Cί = 1, therefore, it overlaps —and partially gener-

alizes—Theorem 3 ( i ) of [ 5 ] in which it is assumed, instead of (7 ) , that

uniformly in [α, b]t as in Theorem 4 ( i ) here, in order to infer that g(x) = 0.

This casts further light on the significance of counter-examples connected

with Theorem 3 ( i ) of [ δ ] (which is the case (X = 1 of Theorem 4 ( i ) above).
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One is due to Boas and Chandrasekharan [5], another to Bang [ l ] , described

also in the final paragraph of [6] . Each exhibits a sequence \f '{x)/λn\

converging dominatedly to g(x) in [σ, b] with lim (λn.ι/λn) = 0 and g(x) not

identically zero there, although, of course, it is zero almost everywhere. In

their examples, in fact, g{x) is zero except for a single point.

In addition to the examples due to these authors, Philip Davis has called

attention to earlier constructions [ 2a; 3; 7, pp. 38-42; 8; 12, p. 244; 14] of

functions differentiate infinitely often on an interval and analytic on that

interval except for one or more interior points at which the successive deriva-

tives increase arbitrarily rapidly. Taking λn to be the nth derivative at a

singular point converts these constructions into examples of the phenomenon

described above.

R. P. Boas, who transmitted Davis's information to the author, added a

reference to another exposition [2b] of S. Bernstein's examples.

Theorem 4(iv) shows, i. α., that it is impossible to construct similar

counter-examples in which the condition on the λn 's is weakened to

lim inf = o

with lim (λn'i/λn) nonexistent.

This last remark can be inferred also from a consideration of formula (3)

of [ δ ] , which is valid for dominatedly convergent sequences and which reads

as follows:

λπ-i \ f{n'ι)(x) f{n"l)(c) ,
lim \ \ = / g{t)dt, a < c < b.

n-*oo An I An. i ">n-l

Γx
I g{t)dt,a

Jc

Choose c to be a point such that g ( c ) ^ 0 , x a point at which g(x) = 0.

The right member is zero, s ince g(x) = 0 almost everywhere. Thus

λ n -i
lim — - g(c) = 0, g(c) £ 0 ,

n->oo λn

whence

n 1
lim = 0.

JI-+00 λn
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When λn = 1 for all n, Theorem 4 (of which only part ( i i ) is now relevant)

can be extended readily to certain summation methods. Consider the trans-

formation

(10) T: tr(x)= £ cn(r)sn(x),
n=o

where r is continuous or discrete.

DEFINITION. The transformation Tol (10) will be said to be of dominated

type in the interval (α, b) with respect to a sequence of Lebesgue integrable

functions {sn(x)\f defined in (α, 6), if the infinite series (10) taking the

sequence { s n ( % ) } into tΓ(x) converges dominatedly (in the sense that all its

partial sums are uniformly less, in absolute value, than a fixed Lebesgue

integrable function) in (α, b) for each sufficiently large r.

Any row-finite or row-bounded matrix transformation is of dominated type

with respect to all sequences of Lebesgue integrable functions. This includes

all Hausdorff and Voronoi-Norlund methods, in particular Cesaro's and Euler's.

All regular (or even merely convergence-preserving) transformations given

by (10) are of dominated type with respect to any sequence of Lebesgue in-

tegrable functions dominated as a whole by a single Lebesgue integrable

function.

LEMMA 2. Let T be a summation method of dominated type with respect

to the sequence of Lebesgue integrable functions {sn(x)\ in (σ, b) Suppose

that {sn(x)\ is dominatedly T-summable in (a, b) to s (x). Then

(11) Γ-lim [* sn{t)dt = [* s{t)dt9

Jc Jc

uniformly for c9 x in (α, b).

Proof. The transformation T being of dominated type, it follows [ 10,

pp.290, 304] as in the justification of (8), that

I sn(t)dt= I Σ, cn(r)sn(t)dt9
J c Jc n=o

uniformly for c, x in (α, b), for each sufficiently large r. In turn, the right

member approaches the right member of ( 1 1 ) uniformly for c, * in (o, i ) as
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r—»oo, s ince the integrand approaches s(t) dominatedly. The left member is

the Γ-transform of the integral of sn(t). Hence the lemma is es tabl i shed.

THEOREM 5. Let T be a summation method satisfying (1) and of dom-

inated type with respect to the sequence \f \x)\9 x in (α, 6), where OC is

a fixed positive integer. If

T-lim f(an)(x) - g ( * ) ,

dominatedly in (α, b)9 as n —>oo, then g(x) satisfies the differential equation

Proof. By CC applications of Lemma 2 we obtain

OO

lim Y, cn{r) [f{an-a)(x) - / ( α "- α ) (c)]
Γ - * OO

- li» £ cn(r)

fxa f
/ ••• /

Jc Jc

x2
^ ( ^ ^ ^ i . . . dxa

uniformly for c, x in (α, ό). Lemma 2 actually gives the existence and value

of the limit of the difference of the two sums, rather than the difference of

the limits of the individual sums, as written above. However, once the exis-

tence of the first limit above is established, that of the second is immediate.

Writing (λn — (X as (X(n - 1), we see from (1) that the first limit exists and

is g(x) - g(c). Lemma 1, with β = Ot — 1, shows that the second limit, whose

existence is now assured, is a polynomial in x — c of degree at most CC — 1,

say Pα_ t (x — c ), vanishing for x - c. Then

/

x fxa Γ*2

/ •*• /
J c Jc

Continuity and then OC-fold differentiability follow from this equation. Dif-

ferentiating α times completes the proof.

Some open questions. If lim / (x)f n —*oo, (X a fixed positive integer,

exists, and is finite for each x in (α, b)9 then must the convergence necessarily
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be dominated or perhaps even bounded or uniform? If this is not the case for

general indefinitely differentiate functions, would it be true for f(x) in a

quasi-analytic class? If not then, what if f(x) is analytic? If (X = 1, then the

answer to the first (and hence to all) of these questions is affirmative. If the

answer to any of these questions is affirmative for other Oί, it would then fol-

low, from Theorem 4 ( i i ) , that the limit, g{x), satisfies the differential equa-

tion g (x) ~ g{x). Similar questions can be framed for more general se-

quences of λn's.
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SOME EXTENSION THEOREMS FOR CONTINUOUS FUNCTIONS

E R N E S T MICHAEL

1. Introduction. In a recent paper, J. Dugundji proved [ 11, Th. 4.1] that

every convex subset Y of a locally convex topological linear space has the

following property:

(1) If X is a metric space, A a closed subset of X, and / a continuous

function from A into Y, then / can be extended to a continuous function from
x into y.

Let us call a topological space Y which has property (1) an absolute ex-

tensor for metric spaces, and let absolute extensor for normal (or paracompact,

etc.) spaces be defined analogously. According to Dugundji's theorem above,

the supply of spaces which are absolute extensors for metric spaces is quite

substantial, and it becomes reasonable to ask the following question:

(2) Suppose that Y is an absolute extensor for metric spaces. Under what

conditions is it also an absolute extensor for normal (or paracompact, etc.)

spaces?

Most of this paper ( § § 2 - 6 ) will be devoted to answering this question and

related questions. The related questions arise in connection with the concepts

of absolute retract, absolute neighborhood retract, and absolute neighborhood

extensor (in § 2 these are all defined and their interrelations and significance

explained), and it is both convenient and natural to answer all the questions

simultaneously. Assuming that the space Y of (2) is metrizable, we are able to

answer these questions completely (thereby solving some heretofore unsolved

problems of Arens [2, p. 19] and-Hu [18]) in Theorems 3.1 and 3.2 of § 3 ;

§ § 4 and 5 are devoted to proving these theorems. In § 6 we show by an example

that things can go completely awry if Y is not assumed to be metrizable.

Our final section ( § 7 ) , which is also based on Dugundji's [11, Th. 4.1],
deals with simultaneous extensions of continuous functions. It is entirely in-
dependent of § § 2 - 6 , and is the only part of this paper which might interest
those readers who are interested only in metric spaces.

We conclude this introduction with a summary of some of the less familiar

Received September 3, 1952. This paper was written while the author was an Atomic
Energy Commission Fellow.

Pacific J. Math. 3 (1953), 789-806
789



790 ERNEST MICHAEL

or possibly ambiguous terms used in, this paper. All our normal spaces are

assumed to be Hausdorff. A perfectly normal space is a normal space in which

every closed subset is a Gg (i.e., the intersection of countably many open

sets). A covering I) of α topological space X is called locally finite [ 10,

p. 66] if every x in X has a neighborhood which intersects only finitely many

V G I). A topological space X is paracompact [ 10, p. 66] if it is Hausdorff,

and if to every open covering U of X there corresponds a locally finite open

covering I) of X such that every V 6 U is a subset of some [/ £ U. (Every

paracompact space is normal [10, Th. 1], every metric space is paracompact

[22, Cor. 1], and a Hausdorff space is paracompact if and only if it is fully

normal [22, Th. 1 and Th. 2].) A metrizable space is topologically complete

if it can be given a complete metric which agrees with the topology. A topo-

logical space is σ-compact if it is the union of countably many compact sub-

sets.

2. Definitions and interrelations. Let us begin this section by formally

defining the concepts which were mentioned in the introduction, and which will

be the objects of investigation of most of this paper. For convenience, we will

use the following abbreviations:

AE - absolute extensor

ANE = absolute neighborhood extensor

AR = absolute retract

ANR = absolute neighborhood retract

DEFINITION 2.1. A topological space Y is called an AE (resp. ANE ) for

metric spaces if, whenever X is a metric space and A is a closed subset of X9

then any continuous function from A into Y can be extended to a continuous

function from X (resp. some neighborhood of A in X ) into Y. Similarly if "met-

ric" is replaced by the name of some other kind of space in the above.

DEFINITION 2.2. A topological space Y is called an AR (resp. ANR) for

metric spaces if, whenever Y is a closed subset of a metric space X, there

exists a continuous function from X (resp. some neighborhood of Y in X) onto

Y which keeps Y pointwise fixed. Similarly if "metric" is replaced by the name

of some other kind of space in the above.

REMARK. Observe that if Y is an AE (resp. ANE) for a certain class of

spaces, then Y is a fortiori an AR (resp. ANR) for this class of spaces.
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The concepts defined in Definition 2,2 are essentially due to Borsuk [4 and

5], who proved [5 , p. 227] that every finite simplicial complex is an ANR for

compact metric spaces; this was, in fact, Borsuk's motive for introducing

ANR's. More recently, Hanner [17] generalized that result by showing that every

locally finite simplicial complex is an ANR for separable metric spaces. Finally

this result was generalized still further by Dugundji [ 12, Th. 5.2], who proved

that every simplicial complex with J.H.C. Whitehead's CW topology is an ANE

for metric spaces.

The following propositions summarize the known relations between the

various concepts defined above. Propositions 1 and 3 are due to Hu [18], and

parts of Proposition 2 are essentially due to Dugundji [ 11 ] and Hanner [ 16 ].

PROPOSITION 2.3 (Hu). Let Y be a separable metric space. Then Y is

an AR (resp. ANR ) for metric spaces if and only if Y is an AR (resp. ANR)

for separable metric spaces.

Proof. This follows at once from [18, Th. 3.1].

PROPOSITION 2.4. Let Y be a metric space. Then Y is an AR (resp. ARN)

for metric spaces if and only if Y is an AE (resp. ANE) for metric spaces. This

assertion remains true if "metric" is everywhere replaced by "paracompact" 9

or "normal", or "perfectly normal".

Proof. The "if" assertions are clear (see the Remark after Definition 2.2),

so let us turn to the "only if" assertions. Here the metric case was proved by

Dugundji [11, Th. 7.1]; to prove the results in the other cases, we shall use the

method employed by Hanner in his proof of the normal case [ 16, Th. 3.1 and

Th. 3.2].

Let X and Y be topological spaces, A a closed subset of X9 and f:A —* Y

a continuous function. Let XυY denote the disjoint union of X and Y, and let

Z be the identification space which we get from X u Y by identifying x 6 A

with f(x) E Y. To prove our results, it is sufficient, as in Hanner's proof of

the normal case, to show that if X and Y are both paracompact (resp. normal,

perfectly normal), then so is Z. For normal spaces this was proved by Hanner

[16, Lem. 3.3], and for perfectly normal spaces the proof is almost the same as

that for normal spaces; this leaves paracompact spaces, where our proof depends

on the following two facts. The first of these is a characterization of para-

compact spaces which the author will prove in another paper, and the second is

an immediate consequence of the first.
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( 1 ) If Z is a Tιspace9 then Z is paracompact if and only if it has the

following property: If E is a Banach space, and if u is a l.s.c. 1 function from

Z to the space C(E) of nonempty, closed, convex subsets of E, then there

exists a continuous u:Z —> E such that u{z) E u(z) for every z in Z.

( 2 ) Let X be a paracompact space, E a Banach space, w:X — * C ( E )

a l.s.c. function, and A a closed subset of X. Then any continuous v:A — > E

such that v(x) E w{x) for every x in A can be extended to a continuous

w : X — > E such that w (x) E w (x) for every x in X.

We shall also need the following elementary facts about Z . L e t g be the

natural mapping from X u Y onto Z, and denote g\ X by h and g\Y by k; a l so

denote k(Y) by Y ' As observed by Hanner, A; is a homeomorphism onto Y'9

and h\X — A is a homeomorphism onto Z — Y'. It follows that a function u with

domain Z is continuous if and only if u | Y ' a n d uh are both continuous.

Suppose now that X and Y are paracompact, and let us prove that Z is a l so

paracompact. Since Z is certainly 7\, we need only show that Z has the property

in ( 1 ) . Suppose, therefore, that E is a Banach space, and H: Z — > C ( E ) a

l . s .c . function; we must find a continuous u:Z—*E such that u(z) G u(z)

for every z in Z . Now Y ' is paracompact, and u\ Y' is l . s . c ; hence, by ( 1 ) ,

there exis t s a continuous r:Y'—* E such that r{z) E u(z) for every z in Y '

Let w = uh, let h'=h\A, and let v = rh'\ then X, A, w, and v satisfy the as-

sumptions of ( 2 ) , and hence, by ( 2 ) , v can be extended to a continuous

w:X—* E such that w(x) E w{x) for every x in X. Now define u:Z — > £ by

"u(z) = r{z)iίzeY', and u ( z ) = u Λ - H z ) if z G Z - Y " ' . Clearly u{z)£u{z)

for every z in Z, and α is continuous, s ince u \ Y ' = r and uh - w are both con-

tinuous. This completes the proof.

Final ly, let us mention the following result of Hu [ 18, Th. 3 .2] .

PROPOSITION 2.5. (Hu) // Y is a completely regular space which is an AR

(resp. ANR) for completely regular spaces, then Y is an AE (resp. ANE) for

normal spaces.

Having just covered the similarities between extensors and retracts, let us

end this section with some comments about their differences. Tfiese differences

occur in two ways:

1 A function u from a topological space Z to the space of nonempty subsets of a
topological space E is called Ls.c. (= lower semi-continuous ) if, whenever U is an
open subset of Ei then { z E Z \ ίΓ(z) n U ^ φ } is open in Z.
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(a) If y is not a metric (resp. paracompact, etc ) space, then Y is (vac-

uously!) always an AR and an ANR for metric (resp paracompact, etc ) spaces.

But y need by no means always be an AE or an ANE for metric (resp. para-

compact, etc.) spaces, and when it is, this is a fact which cannot be restated

in terms of retracts. As examples, we mention the theorems of Dugundji [11,

Th. 4.1] and [12, p. 9] which we have encountered earlier in this paper.

(b) If y is completely regular and has more than one point, then it is easy

to see that Y cannot be an AE or ANE for any class of spaces which contains

a nonnormal space. But such a Y may very well be an AR or ANR for completely

regular spaces (see Theorem 3.1 (e) and Theorem 3.2 ( e ) ) .

3. The theorems. We will now state the theorems answering question (2)

of the introduction.

THEOREM 3.1. Let Y be a metrizable space which is an AE (resp. ANE)

for metric spaces. Then:

(a) Y is an AE (resp. ANE) for spaces which are paracompact and per-

fectly normal.

(b) Y is an AE (resp. ANE) for paracompact spaces if and only if Y is

topologicallγ complete.

(c) Y is an AE (resp. ANE) for perfectly normal spaces if and only if Y

is separable.

(d) Y is an AE (resp. ANE ) for normal spaces if and only if Y is sepa-

rable and topologically complete.

( e ) Y is an AE (resp. ANE) for completely regular spaces if and only if

Y has at most one point.

THEOREM 3.2. Let Y be a metrizable space which is an AR (resp. ANR)

for metric spaces. Then:

(a) y is an AR (resp. ANR) for paracompact spaces containing Y as a

(b) Y is an AR (resp. ANR) for paracompact spaces if and only if Y is

topologically complete.

(c) y is an AR (resp. ANR) for perfectly normal spaces if and only if Y

is separable.

(d) y is an AR (resp. ANR ) for normal spaces if and only if Y is separable

and topologically complete.
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(e) Y is an AR (resp. ANR) for completely regular spaces if and only if

Y is compact (resp. locally compact and separable ).

The foregoing theorems make a rather formidable array of statements, but

because of their interdependence we will not have to prove all of them sepa-

rately. In fact, we will prove only the following assertions (whose labeling is

self-explanatory):

(*) l ( a ) , 2 ( a ) , l ( b ) "if", 2(b) "only if", 1 ( c ), l ( d ) " i f " , 2 ( e ).

Let us show that these assertions imply all the others. To begin with, the as-

sumptions on y made at the beginning of Theorems 3.1 and 3.2 are equivalent,

by Proposition 2.2. We therefore have the following implications:

K b ) "if"==> 2 ( b ) "if": by Remark after Definition 2.

2 ( b ) "only i f " = > K b ) "only if": by Remark after Definition 2.

1 ( c ) =Ξ> 2 ( c ): by Proposition 2.

K b ) "only if" and l ( c ) "only if" = > l ( d ) "only if": obvious.

K d ) = > 2 (d) : by Proposition 2.

l ( e ) : this follows from the definitions.

These implications, together with the assert ions ( * ) which we are going to

prove, cover all the asser t ions of both theorems.

Before concluding this section, let us comment on the novelty and signifi-

cance of the results ( * ) . Fi r s t of all, l ( d ) "if" has been proved by Hanner

[16, Th. 4.1 and Th. 4 .2] , and 2 ( e ) " i f" (AR) has been observed by Hu [ 1 8 ] ;

our proofs of these resul ts are short, and we include them for the sake of unity

of approach. Result K b ) "i f" follows easi ly from Arens ' [ 2 , Th. 4 .1] by means

of a technique due to Dugundji [ 1 1 ] . Resul t s l ( a ) , 2 ( a ) , 2 ( b ) "on ly if",

and l ( c ) " i f" are proved by minor variations of techniques due to Hanner [ 1 6 ] .

This leaves l ( c ) " o n l y if", 2 ( e ) "only if", and 2 ( e ) " i f" (ANR) as the only

results with some claim to originality; among these, l ( c ) "on ly if" solves a

problem of Arens [ 2 , p . 19], and the others solve some problems of Hu [ 1 8 ] .

In the next section we will prove l ( a ) , 2 ( a ) , and the " i f" parts of the

other ( * ) asser t ions; in the section after that we will prove the "only if"

parts . The lemmas and propositions in these sections have some independent

interest, and are sometimes stated with greater generality than i s needed in

their application.
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4. P r o o f s of suf f ic iency. A s s e r t i o n s l ( a ) , 2 ( a ) , l ( b ) " i f " , l ( c ) " i f " ,

and l ( d ) " i f " wi l l be p r o v e d after L e m m a 4 . 3 . A s s e r t i o n 2 ( e ) " i f " will^ be

p r o v e d af ter L e m m a 4 . 6 .

In t h e fo l lowing l e m m a s , R**° w i l l d e n o t e a c o u n t a b l y i n f i n i t e c a r t e s i a n

p r o d u c t of r e a l l i n e s .

LEMMA 4.1. Every (complete) metric space can be embedded homeomorphi-

cally as a (closed) subset in a Banach space. Every (complete) separable

metric space can be embedded homeomorphically as a (closed) subset in R **°.

Proof. It is well known (see, for instance [2θ]) that every metric space

can be embedded isometrically in a Banach space, and the first sentence fol-

lows from this fact. It is also well known [19, p. 104] that every separable

metric space X can be embedded in R**°, which proves the second sentence with

parenthetical words omitted. If X is moreover complete, then it is a G§ in

R*° [19, p. 215]. By [ 19, p. 151], X is therefore homeomorphic to a closed

subset of R N o x R**°, and the latter space is homeomorphic to /?**°. This com-

pletes the proof.

The proof of the following lemma uses an idea which the author found in

Hanner [16] who in turn ascribes it to Fox [13].

LEMMA 4.2. Let X be a normal space, A a closed Gg in X, and g a contin-

uous function from A into a metric space E. Then there exists a metric space F

containing g(A) as a closed subset, and a continuous function h from X into

F which agrees with g on A.

Proof. Let G = E x /, where / is the closed unit interval, and identify E with

Ex{0\ C G. Let F-G — (E — g(A)). Since A i s a closed G§ in the normal

space X, there ex i s t s a continuous function φ from X into the nonnegative

real numbers, which is zero exactly on A. Final ly we define h:X—>F by

h{x) = (g(x)9 φ(x))f and we see that F and h satisfy all our requirements.

LEMMA 4.3. Let X be a topological space, A a closed subset of X, M a

metric space, and f a continuous function from A into M. Suppose either that

M is a complete metric space, or that A is a Gg in X. Suppose also either that

X is paracompact, or that X is normal and M separable. Then there exists a

metric space F containing M as a closed subset, and a continuous function from

X into F which agrees with f on A.

Proof. If X is paracompact, embed M in a Banach space E according to
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Lemma 4.1. By [2, Th. 4.1] we may extend / to a continuous function g from

X into E. If M is complete, then we may suppose that M is closed in E$ and we

are through. If A is a G§ in λ, we need only apply Lemma 4.2.

If X is normal and M separable, embed M in R^° according to Lemma 4.1.

The proof now proceeds exactly as above, except that we use the Urysohn-

Tietze extension theorem instead of [2, Th. 4.1]. This completes the proof.

Proof of I ( a ) , l ( b ) "if", l ( c ) "if", and l ( d ) "if". T h e s e a l l f o l l o w

almost immediately from Lemma 4.3.

Our next two lemmas deal with locally compact spaces, and are stated

without proof. The crux of Lemma 4.4 is essentially stated as an exercise

in [6] and proved in [8] ; the first proof which the author saw was due to J. Tits.

LEMMA 4.4. The following properties of a H aus dor ff space X are equivalent:

a) A7 is locally compact.

b) If X is a dense subset of a Hausdorff space Y, then X is open in Y.

c) If X is a subset of a Hausdorff space Y9 then X = Un C, where U is

open in Y, and C is closed in Y.

LEMMA 4.5. Let X be a locally compact space? and A a σ-compact subset

of X. Then there exists an open, σ-compact subset Z of X which contains A.

One part of the following lemma is trivial, while the other part is not; we

state them together to emphasize the parallelism.

LEMMA 4.6. Let X be a completely regular space, and A a compact (resp.

locally compact and σ-compact) subset of X. Then X (resp. some neighborhood

V of A in X) can be embedded in a compact (resp. locally compact and σ-com-

pact) Hausdorff space Z such that A is closed in Z.

Proof. The assertion where A is compact is trivial. To prove the other as-

sertion, let Y be any compact Hausdorff space containing X, By Lemma 4.4,

there exists an open subset U of Y such that A is a subset of U which is closed

relative to U. Since U is open in Y, it is locally compact. Hence, by Lemma

4.5, there exists an open, σ-compact subset Z of U which contains A. Since

Z is open in U, Z is locally compact. Letting V = ZnX, we see that Z and V

satisfy our requirements. This completes the proof.

Proof of 2 (e) "if". This follows easily from Lemma 4.6 as follows: (We

will prove the part about ANR; the part about AR is even easier). Let Y be a
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locally compact, separable metric space which is an ANR for metric spaces,

and let Y be a closed subset of the completely regular space X. We must find

a neighborhood U of Y in X, and a continuous function g from U to Y which is

the identity on Y.

Since Y is a locally compact, separable metric space, it is σ-compact.

Hence, by Lemma 4.6, some neighborhood V of Y in X can be embedded in a

locally compact and σ-compact Hausdorff space Z such that A is closed in Z.

By [10, Th. 3], Z is paracompact. Since Y is a locally compact metric space,

it is topologically complete (for instance by [19, p. 200] and Lemma 4 4) .

Hence, by Theorem 3.2 (b), there exists a continuous function g from some

neighborhood W of Y in Z to Y such that g is the identity on Y. Letting ί/= WnV,

and f — g\U$ we see that all our requirements are satisfied. This completes the

proof.

5. Proofs of necessity. We start this section with the proof of 2 ( b ) "only

if". We will prove l ( c ) "only if" after Proposition 5.1, and 2 ( e ) "only if"

after Proposition 5.3

Proof of 2 ( b ) "only if". If "paracompact" were replaced by "normal" in

this assertion, and "metric" by "separable metric", then the assertion would

be contained in [16, Th. 4.1 and Th. 4.2]. To prove our assertion as it stands,

we need only modify the proof of [16,Th. 4.2]. We therefore invite the reader

to look at Hanner's proof of [ 16, Th. 4.2], and we will now point out the neces-

sary modification.

Instead of embedding X (this is the space in [16] which corresponds to our

Y) in the Hubert cube lω (which can only be done if X is separable), we embed

X in an arbitrary complete metric space M, and this space M will take the place

of lω throughout the proof. With that in mind, we now define Z just as Hanner

does, and the crux of the matter is that we must show Z to be paracompact

(Hanner only shows that Z is normal). Once this is accomplished, the remainder

of Hanner's proof goes through unchanged (except that lω is replaced by M)

to show that X is a Gg in M But this implies [19, p. 200] that X is topological-

ly complete, and our proof will therefore be complete.

We will use the notation of Hanner's proof (except that M replaces Iω).

Let { Ua \ be a covering of Z by open sets. Then, for each Ot, there exists an

open set Oα in M, and a subset Aa of Z - X', such that

Let O = U α 0 α . Since 0 is a metric space (and therefore paracompact [22,
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Cor. 1 ]), and since \0a\ is a covering of 0 by open sets, { 0a\ has a locally

finite refinement i V Ω !• Since each Vβ is open in 0, and since 0 is open in M,

it follows that each Vβ is open in M. Now let ID be the covering of Z whose

elements are the sets h"ι(Vβ) and the one-point sets corresponding to the

points of Z — h~ ( 0 ) . Let us show that 113 is a locally finite refinement of

! Ua}: It is clear that U) is a covering of Z by open sets, and that 1)J is a refine-

ment of ! Va\, so we need only show that ID is locally finite. If x £ Z - h"1 (0),

then {x \ is certainly a neighborhood of x which intersects only finitely many

elements of ID. If x £ h'ι(0), then there exists an open subset Sx of 0 such

that h(x) £ Sx, and such that Sx intersects only finitely many elements of

ί Vβ}. But then h'ι(Sx) is an open subset of Z which contains x, and which

intersects only finitely many elements of ID. This completes the proof.

The following proposition is more general than l ( c ) "only if".

PROPOSITION 5.1. // Y is a topological space which is an ANE for normal

spaces^ then every disjoint collection of open subsets of Y is countable.

Proof. Suppose that there exists a disjoint collection U of nonempty open

subsets of y which is uncountable. Then there exists a subset B of Y which

contains exactly one point from every element of U clearly B is a discrete

space in the relative topology. Now by [3, Ex. H] there exists a perfectly

normal space X, and a discrete, closed subset A of X which is homeomorphic

to B, such that no collection of open subsets of X separates 2 A. Let / be the

homeomorphism from A onto B. By assumption, / can be extended to a con-

tinuous function g from some open neighborhood V of A in X into Y. But now

the collection of all V n g'1 (U), with U £ U, is a collection of open subsets

of X which separates A. This is a contradiction, and thus the proof is complete.

Proof of l ( c ) ί(only if". This now follows immediately from Proposition

5.1, since for metric spaces the property of Y in Proposition 5.1 is equivalent

to separability [21, p. 130 ].

LEMMA 5.2. Let ξ be an uncountable ordinal, and let Q be the space of

ordinals < ξ, in the order topology. For each α in Q, let

< 2 α = U ε Q \ q > α l ,

with the relative topology induced by Q. Also let X be a subset of the cartesian

If Y is a topological space, and B a subset of Y, then a collection U of open sub-
sets of Y separates B if U is a disjoint collection, and if each U C U contains ex-
actly one element of B.



SOME EXTENSION THEOREMS FOR CONTINUOUS FUNCTIONS 799

product of ^ copies of the real line, where X is a cardinal which is less than

the cardinality of ζ. Then :

a) // α < ξ, and f is a continuous function from Qa into X, then there

exists a β in Q such that (X < β < ξf and such that f(q) = f(£) for all q > β.

b ) If Ό is a neighborhood of ί ξ\ x A' in Q x X, then there exists an ordinal

a < ξ such that Qa x X C ϋ.

Proof, a ) If X = 1, then this is proved exactly like the assertion in the

middle of page 836 of [ 9 ] . In the general case, let λ C ULe\ RL, where I is

an index set of cardinality fcξ and RL is the real line for every t G I, and for

every t G I let πL be the projection from X into Rt Letting fL = f° πL for every

L G I, we have, by the first sentence of this proof, an indexed family \ βc\t el °f

ordinals in Q such that fi{q) = fι(ζ) whenever q > βL. Letting β be the smal-

lest ordinal which is larger than all the βL, we see that β satisf ies all our

requirements.

b) The assumptions on X imply that X has a basis of cardinality < fc< ,

and hence every covering of X by open se ts has a subcovering of cardinality

< fc$ Now for each x in λ7, we can find an Cλx in Q and an open neighborhood

Vx of x in λ such that QΛχ x Vx C Ό. Thus { Vx \x £ χ is a covering of λ by open

sets, and hence there exists a subcovering \VX\X£ χ'9 where X' has cardinality

< K . If now α is the smallest ordinal which is larger than all the Cix with

x G X\ then (X satisfies all our requirements. This completes the proof.

PROPOSITION 5.3. // Y is a completely regular space which is an AR

(resp. ANR) for completely regular spaces, then Y is compact (resp. locally

compact).

Proof. Since Y is completely regular, it may be embedded in a cartesian

product of real lines. Let fc$ be the-cardinality of this product, and let ζ be an

ordinal whose cardinality is greater than ^ and greater than the cardinality of

Y. Now let Q be the space of ordinals < ξ in the order topology, let X be a

compact Hausdorff space containing X, and let

Z = {QχX)-{\ξ\x{X-X)).

Since Q and X are completely regular, so is Z. Now { ζ\ x X i s closed in Z, and

{ ζ\ x X is homeomorphic to X, and therefore there exists a retraction / from Z

onto { ξ\ x X. For each x in X, let

L -f\(Qχ\χ\).
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By Lemma 5.2, there exists for each x in X a βx in Q such that

for all q > βx. Now let β be the smallest ordinal larger than all the βx; then

β < ξ, and

for all Λ; in X. Hence

f(\β\ x J ) = { £ } x * ,

and therefore X is compact.

Let us now consider the /4/V/? case. Suppose, therefore, that X is an ANR

for completely regular spaces. Let X9 Q9 and Z be as in the last paragraph.

Then, by assumption, there exists a retraction / from a neighborhood U of

\ ξ] x X in Z onto l f ( x l . Now by Lemma 5.2, there exists an ordinal α < ζ

such that Qa x X C £/, where ζ ^ α ^ ί ^ ^ ^ l ^ ^ ^ ϊ Proceeding just as in the

last paragraph (with Q replaced by Qa), we obtain a β in Qa such that

f((β,x)) = ( 6 * )

for all x in A. If we now define the continuous function

h : \ξ]xX—*\β}xλ

by

h({ξ,x)) = (β,x),

then the restriction of h ° / to ( ί/3}xA)n£/is a retraction of({/31χ,Y)nί/ onto

ί β i x λ : . Hence {j8 i x X is closed in U β ί x Z ) n [ / ; but (\β\xX)nϋ is an

open subset of the compact set \ β } x X, and therefore both (\ β] x X) nU and

\ β\ x X are locally compact. Hence X is locally compact, which is what we

had to show.

Proof of 2 ( e ) "only if". This now follows immediately from Proposition

5.3 and Theorem 3.2 ( d ) .

6. An example. In [ 2 ] , Arens showed indirectly that there exists a compact,

convex subset of a locally convex topological linear space which, while certain-

ly an ΛE for metric spaces by [11, Th. 4.1], is not an ΛE for compact Hausdorff
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spaces. In this section we will prove this result (and a little more) by means

of a direct example, which should also indicate why we assumed the space Y

in Theorems 3.1 and 3.2 to be metrizable.

The proof of Proposition 6.1 is due jointly to V. L. Klee and the author,

and uses a suggestion by I. E. Segal.

PROPOSITION 6.1. Let X be the cartesian product of continuum many

closed unit intervals. Then there exists a closed, convex subset of X which is

not the image under a continuous function of any open subset of X.

Proof. Let us call a topological space separable if it has a countable dense

subset. Since the cartesian product of at most continuum many separable spaces

is separable [21, p. 139], it follows that X is separable. Hence any continuous

image of any open subset of X is also separable. To prove the proposition, it

therefore suffices to produce a closed, convex subset of X which is not sepa-

rable. This we will now proceed to do.

Let H be a Hubert space whose orthonormal dimension is the continuum.

Then H has continuum many elements, and is not separable. Let us show (using

a proof due to I.E. Segal) that H is not even separable in the weak topology.

In fact, if H were separable in the weak topology, there would exist a count-

ably dimensional subspace K of H which is weakly dense in H Since H is

countably dimensional, it is separable in the strong topology. Now by the Hahn-

Banach theorem, the strong closure of K is weakly closed and hence coincides

with //. But this implies that H is separable in the strong topology, contrary to

our assumption.

Now let S be the unit sphere of H in the weak topology. Then S is compact,

since H is reflexive. Also S is not separable since, as we have just shown, H

is not separable in the weak topology. To complete the proof, we must show

that S is homeomorphic to a convex subset of X. Now by definition,

where F is an index set whose cardinality is the continuum, and If is homeo-

morphic to the unit interval for every / in F. Now //*, the dual space of #, is

isomorphic to H [15, p. 31, Th 3] , and hence we may take F to be the unit

sphere of H*.

Define φ : S —>X by "(φ (x ) ) / = / ( % ) " ; then φ is a homeomorphism from S

onto φ{S) by definition of the weak topology, and φ (S) is clearly convex in X.

This completes the proof.
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COROLLARY 6.2. There exists a compact Hausdorff space which is a

convex subset of a locally convex topological linear space {and hence [ 11,

Th. 4.1] an AE for metric space) which is not even an ANR for compact

Hausdorff spaces,

7. Simultaneous extensions. The purpose of this section is to prove the

following theorem:

THEOREM 7.1. Let X be a metric space$ A a closed subset of X, and E a

locally convex topological linear space. Let C(X? E) denote the linear space

of continuous functions from X into E, and similarly for C{A, E). Then there

exists a mapping

φ : C{A$ E)-^>C(X> E)

satisfying the following conditions:

( a ) φ(f) is an extension of f for every f E C ( / 4 , £ )

( b ) The range of φ{f) is contained in the convex hull of the range of f

for every f £ C (A, E).

(c) φ is an isomorphism (i.e. a one-to-one^ bi-continuous linear trans-

formation) from C(A, E) into C{X, E)$ provided C(A, E) and C(X, E) both

carry the same one of the following three topologies:

(1) Topology of simple convergence [7, p.4]

(2) Topology of compact convergence [7, p. 5 ] 3 .

(3) Topology of uniform convergence [7, p. 5] .

Proof. We will show below that, in his proof of [11, Th. 4.1], Dugundji

has already constructed a mapping φ satisfying all our requirements. In fact,

Dugundji [ 11, Th. 5.1] and Arens [Z, Th. 2.6] have already observed that this

trivially satisfies some of our requirements; the only property of φ which will

need a nontrivial proof below is that φ is continuous for the topology (2).

We need the following fact, which is due to Dugundji [ 11 ] and was more

concisely stated and proved by Arens [2, Lem. 2.1]:

(*) There exists a locally finite covering I) of X — A by open sets, and as-

sociated with each V E I) an av E A and a continuous real-valued function

gy on X which vanishes outside F, such that:

( i ) 0 < gv(x) < 1 and Σj/ gy(x) = 1 for all x e X - A.

This topology is the same as the compact-open topology [ 1, Th. 9].
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( i i ) If a G A, and x G V9 then ρ(a, ay) < 3 p ( α , x), where p is the

metric in X.

( i i i ) If / G C(/4, £ ) , then the function / : / Y — > £ , defined by "f(x) = x

for Λ; G A, and /(% ) = Σ j/ g ^ (%) f(ay ) " ϊoτ x G A - A, is continuous.

The mapping φ may now be defined by φ(/) = /, where / is as in ( i i i ) above.

It is immediately evident that φ is a one-to-one linear transformation which

satisf ies conditions ( a ) and ( b ) of our theorem. The continuity of φ~ι for any

of the three topologies follows from ( a ) and the definition of these topologies.

The continuity of φ for topology (3)-follows from ( b ) . The continuity of φ for

the topologies ( 1 ) and ( 2 ) , finally, will be an immediate consequence of the

following lemma:

LEMMA 7.2. // C is a finite (resp. compact) subset of X, then there exists

a finite (resp. compact) subset C of A such that f(C) is contained in the con-

vex hull of f( C )•

Proof of lemma. Let us define function u from X to the finite subsets of A.

If x G A, then we let

If x G X - A, then clearly x is in the closure of only finitely many V G I),

say Vl9 , Vn, and we set

u ( x ) = \ x y l 9 ••• > * v n K

Having thus defined u, we set

ec
u(x)

for every C C X. It is clear that f(C) is contained in the convex hull of / ( C ) .

If C is finite, then C is clearly also finite. It therefore remains to prove that

C is compact if C is compact. To do this, it is sufficient to show that u is

upper semi-continuous4, because then the compactness of C for compact C will

be an immediate consequence of [14, p. 151, 21.3.4].

4 A function h from a topological space Y to the space of nonempty subsets of a
topological space Z is called upper semi-continuous [14, p. 149] at a point y G Y if,
for every open subset U of Z which contains h {y ), there exists a neighborhood W of
y in Y such that h (y ) C U for every y G W; h is called upper semi-continuous if it
is upper semi-continuous at every y G Y,
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Let us first show that u is upper semi-continuous at points of X - A. Since

V is locally finite, the closures (in X - A ) of any subcollection of I) have a

closed (in X - A ) union. Hence if x G X — A, then

B = \J\V I v G U , * j? F i

is closed in Λ' - /4, where V denotes (and will always denote below) the closure

of V in X - A. Let

Then ί/ is a neighborhood of % in X, and U ( Λ ; ' ) C U(X) whenever ίc 'G (/; this

shows that u is continuous at x

Before proving the upper semi-continuity of u on /4, we need the following

consequence of ( i i ) :

( i i * ) If a G A9 and % G F, then p{a, av) < 4 p (α> % ) .

To see this , pick a y G F such that

p U , y ) < 1/3 p U , * ) ,

and then observe that

p(a, av) < 3 p ( α , γ) < 3 ( p ( α s x) + p(x, y ) ) < 4 p (α, Λ; ) .

Let us now prove that u is upper semi-continuous on A. Let α G /4, and

let V be an open subset of λ' containing u{a) - \a\. Pick 6 > 0 such that

ί y G X I p ( α , y ) < e\ C 6'.

Now let

W =\x e X\ p ( α , Λ?) < e / 4 i .

Then W is a neighborhood of α in X Ii x £ W nA9 then u{x)~ \x\, and thus

u ( x ) C U. Ii x £ W n ( X - A ) , t h e n p(a, a v ) < e w h e n e v e r x G F b y ( i i * ) ,

and thus again u(x) C U. Hence u is upper semi-continuous on A.

This proves the lemma, and hence also the theorem.

REMARK. It is an easy consequence of Proposition 4.3 that Theorem 7.1

remains true if the requirement that X is metric is replaced by the following

weaker requirement: A is metric, and one of the following three conditions
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holds: ( a ) λ' is paracompact, ( b ) X is normal and A is separable, ( c ) X is

completely regular and A is compact,

8. ADDED IN PROOF. Many of our resul t s have been obtained independently

by Olof Hanner [ 2 4 ] , who was kind enough to send the author a pre-publication

reprint of h is paper.
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A NOTE ON THE HOLDER MEAN

T Y R E A. NEWTON

1. Introduction. Of the two better-known generalizations of the simple arith-

metic mean, the Holder mean and the Cesaro mean, the latter has been the more

extensively studied. This is primarily due to the equivalence of the two when

used to define summability methods and to the following formulas. If we define

C^, the k order Cesaro mean of the terms So, S p , Sn9 by the relation

pk i n+k\-i nk
Ln ~ [ k > V
pk i n+k\-i

where

S°n = Sn and Sk

n = £ St~l for n > 0, k = 1, 2,

then it follows [ l , p. 96] that

V = 0

n
]k+m _ y » / Λ - v + m - l \ c Λ
n /L* * m - 1 ' f

t> = 0

and

(1.2) Sπ = Σ ( ~ 1 ) 1 ; C ) 5 π - ^ ( m = ι> 2» •••)•
f = 0

The only known analogues to these formulas for the Holder mean that this writer

has been able to find are as follows. Denoting the kι order Holder mean of the

terms SQ9 Sί9 , Sn by H , and recalling the definition that

1 n

H° = S and Hk = V ff*"1 for n > 0, i - 1, 2, ,
n n n , l ^ - ^ t> —

f = 0

Received October 9, 1952, and in revised form June 9, 1953. This paper resulted from
a part of a doctoral thesis submitted to the graduate Faculty of the University of Georgia,

Pacific J. Math. 3 (1953), 807-822
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it can be proved [ 1, p. 250] that

(1.3) *

and

(1.4) ^ = Σ ^ ^
v =o

where Δα(rc) = w(rc + 1) - M(TI). These formulas follow from a more general ex-

pression for the coefficients in any Hausdorff transformation. It is easily seen

that the coefficients involved in (1.3) and (1.4) in many respects are not as

convenient to work with as those of (1.1) and (1.2).

In § 2 below, the coefficients of (1.4) are obtained in different form, being

expressed in terms of a particular set of polynomials. A few of the properties of

these polynomials are considered in § 3 , while applications with respect to

Holder summability are dealt with in § 4 .

2. A set of polynomials. It follows from the definition of the Holder mean

that

( Λ + l ) Ufι - nHk

nl\ = Hk

n

for integers k > 0 and n > 0. By iteration, it follows that there exist coefficients

A^n) such that

m

(2.1) Hk

n = Σ, (-1)7' A™(n) H\η (m = 0, 1, 2, )
; = o

if

(2.2) f f

for 0 < / < m, where

(2.3) A°o(n) = 1 and Afin) = 0

for < 0 or y > m. By virtue of the identity
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it follows that the coefficient of (1.4),

AJ(n) = φ Δ ' U + l - / ) m ,

is a solution of (2.2) satisfying the boundary condition (2.3).

Another form of this solution is obtained when we consider the following set

of polynomials. For arbitrary nonnegative integers m and /, 0 < / < m, let

(2.4) F™(x)

= £ *'•(*-1)7',(x) =
m + l

m + 1

F™{x) = x ( x - l ) . . . ( x - m ) ,
m

the symbol

m + l

denoting the sum of all possible but different such products where p, q, , s

are positive integers such that p + ςr + + s = m + l Ifwe further let

(2.5) F™{x) = 0

whenever / < 0 or / > m, it follows that

(2.6) F ;

m + ι(*) = (*-/) IF^^x) + Ffix)]

for integers / and m > 0. To prove the latter relation, apply (2.4) to get

m + l

+ 5 ^ χ P ( x - l ) q .•• ( * - / + l ) Γ ( Λ ; - / ) S + 1

m +1
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for 0 .< / < m. In the first sum on the right, the exponents p, q, , r take on all

possible positive integral values such that (p + ςr + + r) + l = m + 2. In the

second sum, the integers p, q, , r, s take on all possible integral values such

that (p + <7 + + r) + (s + l ) = m + 2. It follows that if we consider both sums

on the right of (2.7) together, then their sum is Fτn*ί(x), thus completing the

proof of ( 2.6) when 0 < < m. Its truth for / < 0 or / > m follows when we further

consider (2.5) as well as (2.4).

Reconsidering equations (2.4), we note that each of the polynomials defined

there has x as a factor. Consequently there exists a unique polynomial G™(χ)

such that

(2.8) F™{x) = xGj(x)

for integral m > 0 and /. Substituting into (2.5) and (2.6), and noting that

G^(x) = 1 for all x, we see that G™ (n + 1) is a solution for (2.2) satisfying the

boundary conditions (2.3). Consequently, we assert that

(2.9) Hk

n = Σ, (-1)7' Gj{n+l)

for integers k > 0 and m > 0. x

3. Properties of the polynomials G™{x). In the work that follows, it will be

more convenient to consider the polynomials G™ {x) defined by (2.8). As might

be expected, we find a considerable number of recurrence relations and other

formulas involving these polynomials and their coefficients. Before proceeding

to the particular applications in view, we shall list a few such relations. For

integral m > 0 and /,

l r Γhe author is indebted to the referee for suggesting the above derivation of ( 2 . 9 )
which i s somewhat simpler than the proof originally presented. The referee also proposed
the following alternative derivation. We v;rite

n = 0

and then with D = d/dxf

and symbolically,

[{l-x)Dx]m Hk+m(x) = Hk{x).

Interpretation of the operator leads to the same results. This derivation is worth noting,
for it is analogous to the classical development of equations ( 1.1) and (1.2 ).
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(3-D GJ+Hx) = <*-/) IGJl^x) + Gf(χ)V,

for integral m > 1 and /,

(3.2) G ;

m + ι ( * ) = (x-1) G^ix-l) + * G ;

m U ) ;

and for integral m > 0 and jf

(3.3) (//2 + «) Gf(j/2 + x) = (-l) m + ι (//2-*) Gf(j/2-x).

Equation (3.1) is obtained by substituting from (2.8) into (2.6). The proof

of (3.2) is carried out by first deriving the relation

x) =χ[F'jι_ι(x-l) + FJ>(x)]

in the same manner as we derived ( 2 . 6 ) , then substituting from ( 2 . 8 ) . Equation

( 3 . 3 ) follows from the defining equation of F™ (x) when ( —1) i s factored from

each of the factors of the defining sum giving

for 0 < j < m. Replacing x by (j/2) + x and substituting from (2.8) yields the

desired result. This relation displays the symmetric nature of the polynomials

F™(x) - xG™(x) in that they are symmetric with respect to the line x = j/2

when m is odd, and symmetric with respect to the point (//2, 0) when m is even.

Determine coefficients j^mti such that

- jAm,oχm + iΛm,ι(3.4) i f

for m > 0. It follows from the definition that

/ m,m-ι

(3.5) iAm,i

for either i < 0, i > m > 0, / < 0, or / > m > 0, and in particular o^m,o " 1 while

0Amfi = 0 for ΐ > 0 . The following is a table of the polynomials G™(x) when

m = 1, 2, 3, and 4:

k = 1

Gι

o(x) =x

G\{x) =x ~ 1

G2(x)

G\(χ)

G2

2(χ)

k

=

=

=

= 2

X2

2x2 - 3

Sx

X

+

+ 1

2
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Gl(x)

G\(χ)

G\{χ)

G\{x)

k

= * 3

= 3*3

= 3*3

= * 3 -

= 3

- 6x2 + 4,x

- 12x2 + 1

6x2 + 11*

- 1

iix - 6

- 6

G o U )

G\(x)

G\(χ)

G\(x)

= X4

= 4x4

= 6* 4

= 4x4

= * 4 -

A =

- 1 0 * 3

- 3 0 * 3

- 3 0 Λ ; 3

- 10x3 4

4

+ 10*2

+ 55* 2

+ 80* 2

-35* 2 -

- 5 * + l

- 45x + 14

- 90x + 36

• 50* + 24

Substituting from (3.4) into (3.1), collecting like terms with respect to %, re-

placing m by m - 1, and equating coefficients, yields the recurrence relation

(3.6) jΛm,i

for integral m > 1 and /. Summing the latter expression with respect to / results

in the relation

(3.7)
f =0

/ -

f = 0

for 0 < i < m. An interesting particular case of the latter formula is obtained by

letting = m and considering (3.5). It follows that

m- l

V - 0 t> = 0

From repeated substitution, we conclude that

771

whence

(3.8)

when m > 1.

Δ* v
V = 0

Recalling the factorial notation

for ΐ < m

~ x(x - I) ••• (%~m), ^ > 0 , we ob-
tain
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But by definition, the numbers sm such that

are the Stirling numbers of the first kind [2, p. 143 ] . 2 It now follows, since

that

< 3 9 > mA

m,i " S

In turn, letting i = 0 in (3.6), we find that

.A ~ .A + . A .

As a consequence of the initial conditions that 0Amt0 = 1 and jAmf0 = 0 for / > 0,

it follows [2, p. 615] that the solution of this partial difference equation is

( 3 1 0 > jΛm,o = Φ

When considering the polynomials G™{x) as displayed in the table, we see

that, for any m, the coefficients considered by rows in light of (3.9) and (3.6)

give a possible extension of the Stirling numbers. On the other hand, when the

coefficients are considered by columns in light of (3.10), they present a possi-

ble extension of the binomial coefficients. This latter property is better dis-

played when we consider the known formula [2, p. 169]

m

*—* v ' j ,τn
v = l

where SjfTn is the Stirling number of the second kind and thus SjfTn = 0 for 0 < / <

m. Make the definitions

Pm(i,j)- Σ ( -D" vAm,i V' a n d ^ ^ / ) = Σ (-D" v
v ~ l v = o

where m > 1. It follows from a straightforward induction proof that

(3.11) P m ( 0 , 0) = - 1 and Pm (i9 j) = 0

2 The notation used here for the Stirling numbers of the first and second kind is not
the same as that used by Jordan in [2].
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whenever 0 < i < m9 0 < j < m - ί, and i + j £ 0. The induction can be carried out

by using the identity

and the fact that the truth of (3.11) implies that both

(3.12) Qm(i,j) = 0

for 0 < i < m9 0 < j < m - i, and

Qm{i, m-i) ^ Pm{i, m-i)

for 0 < i < m.

It is of interest that

m m - i

(3.13) Σ, (-1)' G™(x + in) = Σ nm"iPm(i9m-i)
i = o * = °

for m > 1, n = 0, ±1, ±2, , and all x. That is, the sum

m

Σ, (-i) ' cΓ(* + ί'n)
« = o

is a function of π and m alone, independent of x. This follows from (3.8), (3.11),

(3.12), and the identity

I = 0

t / = o

m- l

ί = o

where m > 1. Since the sum on the left of (3.13) is independent of x, we can

write

m m

Σ. (-i)'' GΓ(* + w) = Σ (-i)'' GΓ(ι»)
ί = 0 1 = 0
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for m > 1, n = 0, ±1, ±2, , and all x. Letting n = 1, recalling that G™(x) has

( « - ί ) a s a factor for i > 0 and that Gm (x) = * m , we see that

m

V-l) Ui {x + i) = U

ι=0

for m > 1 and all x. If we let n = 0 in (3.13), then

771

(3.14) Σ, (-1)1' G Γ ( Λ ; ) = X

I = 0

for m > 1 and all #. It turns out that n = 0, 1 are the only two cases where the

sum

is independent of m as well as x.

Consideration of (1.4) with (2.9) yields

(3.15) GJin) = r~ι) A> (n-j)m.

As might be expected, more is found concerning the nature of the coefficients of

the polynomial G™ (x) by studying the expression on the right of (3.15). Sub-

stituting into (3.15) from the identity

v = 1

where Sm v denotes the Stirling number of the second kind [2, p 181 ]» and sim-

plifying, we obtain the relation

Substituting from the defining relation for the Stirling numbers of the first kind,

x(v) _ y j

i = I
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collecting like terms with respect to nυ

f v = 0, 1, , m, and equating coeffi-

cients, yields the relation

m-j
A Γ̂"* (]' Ί" v \ c ( * \

/ m,i ~ Z-* j m,j + v^Sj+v,m-i ~~ ? 5/+υ,m-i + i '
v = o

for integral m > 0, i9 and /.

4. Application to Holder summability. For the remainder of this paper ί Sn \

denotes the sequence of partial sums of the arbitrary infinite series Σ, an, and

Hn denotes the k order Holder mean of the terms S o, Sl9 , Sn. If

lim Hκ = S,
n -*oo n

then Σ α n is said to be summable Holder of order k to S9 and this fact is denoted

by

Σ,an = S(H,k).

In the same manner, the sequence { Cn \ defines Cesaro summability of order k.

Likewise, Cesaro summability of order k is denoted by

Σan = S(C,k).

The Holder and Cesaro summability methods are equivalent in that

if and only if

Σ,an = S ( C , k ) .

At times it will be convenient to use the operator form of denoting the Holder

mean. That is* the kι order Holder mean of the terms p , p , , pn is denoted

by Hk (p n ). If pn = Sn_k, k > 0, and Sm = 0 for m < 0, then we have

1 1 + 1 V = 0

for k > 1, and
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It follows that

(4.1) H
m
(H

k
(

Pn
)) = H

m
+

k
(p

n
)

and

where m and k are nonnegative integers.

Letting k=—m in (2.9), m > 0, we have the following definition for Holder

means of negative integral order.

DEFINITION 1. For m^ 0,

m

(4-3) Ή~n

m = Σ (-1)1' GJ U + 1) S n_ t .
i = 0

Referring to the defining equation for the Cesaro mean,

r m i n +m \-ι cm
Ln " V m ) *n

we see that the first factor on the right is undefined for negative m when τι is

sufficiently large.

From Definition 1, it follows that (2.9) can be extended to all integral values

of k. The Holder method of summation is said to be regular since

implies

for m > 0. With respect to negative order summation, the following extended sense

of regularity is immediate.

( i ) If Σ α n is divergent, then it is not summable (//, —TO) for any m > 0.

( ϋ ) If



818 TYRE A. NEWTON

for m > 0, then

for all p > — m.

Also, the right side of (4.3) can be used to define the operator H~m. From this

definition, it follows that properties (4.1) and (4.2) are true for all integral m

and k.

Applying summation by parts to (4.3), considering (3.14), and using the op-

erator notation, we find that

m-l / i \

(4.4) z/"m(s n) = £ I Σ ί-1*7 G

7

m(» + i ) **-»• +

i = o \ / = o /

for m > 0. Applying the operator W^+m, we see that

(4.5) HHSn) =

for integers m > 0 and ^ Since

*£ I Σ. (-1)' G^n+l)] απ_J + H1+m(Sn.m)
; = o \ / = o / J

lim H1(Sn) m S
n-*oo

implies

lim HΊ+m(Sn-m) = S
n -»oo

for m > 0, we have the following theorem as a formal statement of our results.

THEOREM 1. //

(
i = 0 \ / = 0

is α necessary and sufficient condition that
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£ « „ =S(H,q).

Letting q = 0 in Theorem 1 yields a Tauberian theorem, that is, a theorem in

which ordinary convergence is deduced from the fact that the series is summable

and satisfies some further condition (which will vary with the method of summa-

tion).

Letting q = -m in Theorem 1, we have the following corollary with respect to

negative order summation.

C O R O L L A R Y 1. / /

then

m - l

lim
I = 0

(-1)7" α»-i = 0

/=o

is a necessary and sufficient condition that

, - m ) , m > 0 .

Noting that

is a polynomial at least of degree m9 it follows that

lim nm a = 0n

implies

lim (-D7 cj di β»-i = °

and consequently we assert:
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COROLLARY 2. //

then

lim nm aR = 0 , m > Q,

is sufficient for

~ i> ~τn).

Letting m = 1 in (4.5) we have

HHSn) =ff? + 1

or, applying the distributive property of this operator,

(4.6)

This relation is equivalent to a well-known analogue to Kronecker's theorem [3,

p.485] which states that if Σ,<*n is summable ( C, q)f then

Hι(nan) = 0(C, g).

Conversely, it follows from (4.6) that if Σ,an is summable (//, <? + 1), then a

necessary and sufficient condition that it be summable (//, q) is that

na = 0 ( # , g.+ l ) .

For integral q> 0 this is analogous to Theorem 65 of [ l ] However, in the fore-

going case, the statement is true for all integral q. As a further extension of the

analogue to Kronecker's theorem, we have the following.

COROLLARY 3. //

then

mΣ ( έ (-1)7' Gf(n+1)\ an_. = 0(H, q + m)
i = 0 \ / = 0 /
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for integral m > 0.

For a special case where the condition of Corollary 2 is necessary as well

as sufficient, we shall prove the following.

THEOREM 2. // Σ,an is a convergent alternating series, then

lim nm an = 0, m > 0,

is a necessary and sufficient condition for Σ α π t° be summable (H, -m).

Proof. Letting i - 0 in (3.7), we conclude that there exist constants

/ = 1, 2, , 77i, such that

k

.

(4.7)
7 = 0

kam,2 ^ ^ * + kam,m

for 0 < k < 7π. We recall from the definition of Gf (*) that , A , > 0 for 0 < k <

m. Consequently, for a given m, it follows that there exists an n0 such that for

all even k,

h

> 0;
I = 0

and for all odd k9

(-I)1' < 0
I = 0

whenever n > n0. But by hypothesis, α ^ ^ is alternating in sign with respect to

77i, whence

(4.8)
m - l / i

Σ Σ (-i)''G U) -„_,_,
ι = 0 \ / = 0 / I = 0

£(-!)/ Gf(n)
y = 0

n-i-l i

for n> nQ. Also, it follows from (4.7) that

lim n~m

Σ M
7 = 0
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consequently there exist positive constants nι > n0, M(m), and N(m) such that

nm M{m) < Σ (-iv GJ(»
; = o

< nm N{m)

for 0 < i < m and n^n^ Considering this with (4.8) yields

M(m)
m - 1/ i

Σ Σ<

for n > 7i .We conclude that

m - i - 1
X ^ / Ί \7 C*Tϊl ( \ I r\
y i ~ 1 1 u • i n ) a = = u

— - i = o \ / = o /

if and only if

lim nm an = 0 .

The theorem now follows from Corollary 1.

Letting q = - 1 in (4.6), we see that any convergent series for which

lim nan £ 0
Π-4OO

is not summable Holder for any negative order. On the other hand, Σ l / ( / ι + I ) 2

is convergent and

lim n2 an Φ 0 ,
n-*<χ>

yet it follows from direct application of Corollary 1 that this series is summable

REFERENCES

1. G. H. Hardy, Divergent series, Oxford, 1949.

2. C. Jordan, Calculus of finite differences, New York, 1950.

3. K. Knopp, Theory and application of infinite series, London, 1946.

UNIVERSITY OF GEORGIA



ON A THEOREM OF PLANCHEREL AND POLYA

R. M. R E D H E F F E R

1. Introduction. Paley and Wiener [β] have shown that the following classes

of entire functions are equivalent:

(A) those which are o{ea\z\) in the whole plane and belong to L2 on the

real axis;

(B) those which can be represented in the form

F{z) = f e i z t f(t)dt,

with f(t) G L2 on [-α, a],

A simple proof was given later by Plancherel and Polya [ 7 ] , and they showed

how the condition o ( e α l z ) could be weakened in the passage from ( A ) to ( B ) .

Their result leads at once to the following, which is the form to be used in the

present discussion:

THEOREM A (Planchere l and P ό l y a ) . Let F(z) be an entire function of

order 1, type α. If F(x) G L2 on (-00, 00) then F(z) can be represented in the

form

F(z) = fa eizt f(t)dt,
J-a

with f{t) G L2 on [-α, α ] .

The hypothesis concerning order and type means

( 1 ) lim sup log | F ( z ) | / | z | < α, | z | —> en.

Theorem A implies a nontrivial result about entire functions; namely, if F(z)

sat is f ies ( 1 ) and is in L2 on the real axis, then [ 7 ]
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Pacific J. Math. 3 (1953), 823-835
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(2) F(z) = o ( e a Γ \ s i a θ \ ) , re
i θ

We shall show here how Theorem A can be used to give very simple proofs of

other results, some of which seem accessible only with more difficulty to purely

complex-variable methods.

2. The growth of F(z). The Plancherel-Pόlya result determines the growth

of F(z) in the whole plane from the growth on the real axis:

T H E OR EM 1. Let F (z) be an entire function satisfying ( 1 ) , such that

F(χ) = 0(\x\n)

for some positive or negative integer n> as x —> oo on the real axis. Then

F(reiθ) = 0(rn e α r l s i n θ\)

uniformly in θ, as r -—» oo.

THEOREM 2. Let F(z) be an entire function satisfying ( 1 ) , such that

\F(x)\ < A

for all real x. Then

\F(x + iy)\ < Aea\y\

in the whole plane. If λ = p + iq is a zero of F(z)9 then

\F(z)\ <Ae"\y\ \z -y\/\q\.

These results (which are probably well known) can be obtained at once by

[ 8 ] ; for example, applying [8] to F(iz) e~az/(Azn + B) gives Theorem 1 when

n > 0. Since our primary purpose here is to illustrate a method, however, we de-

duce them from Theorem A. Assume that F(z) in Theorem 2 has a complex zero

λ = p + iqf q £ 0. (In the contrary case consider F( z) ( z — λ — iq)/( z - λ), where

λ is a real zero, and let q—>0.) We have

(1) G(z) = [F(z)ΓAz-λ) = -pLr fma fit) eiztdt, f{t) e h\
\2π J-ma

where m is an integer. (A similar use of the m power of a function is made in

[5] and [7] . ) By a short calculation, we get
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Γ ma f°o

( 2 ) / \ f ( t ) \ 2 d t = / \ G ( t ) \ 2 d x < A m

 n / \ q \ ,
J -m a J - oo

so that, by the Schwartz inequality in (1) ,

(3) | C U ) | 2 < - i = r If""* eiM'dt) (A2mπ/\q\), z = x + iy.
V2ττ \J-ma I

Hence

\ F ( t ) \ 2 m < \z - λ | 2

where C is constant. Taking the ml root and letting m—»oo completes the proof.

The proof of Theorem 1 is similar, if we define

G(z) = (z-λΓ1 [F(z)/p(z)]m,

where p(z) is a polynomial of degree n formed from the zeros, other than λ, of

F{z).

The second part of Theorem 2 results when we apply the first part to F{z)/

{z - λ ) ; it could be sharpened by including more zeros. As it stands, however,

this second part already gives the following:

COROLLARY. Let F(Z) satisfy the hypothesis of Theorem % and suppose

F{reiθ) - A e α Γ i s i n * l

for a particular θ, as r —*oo. Then at most a finite number of zeros λ satisfy

π + θ - δ > 2 arg λ > θ + δ for any positive δ.

3. Complex roots. A consequence of Theorem 1 is:

THEOREM 3. Let F{z) satisfy the hypothesis of Theorem 1, and let n(x)

denote the number of real roots of the equation F (z) = 0 which lie in the circle

\z\<x.lf

fr
(4) lim sup I n(x) dx/x - 2ar/π + b log r > -oo,

then the equation F( z) — 0 has at most b + n complex roots in the whole plane.

The proof is practically contained in a discussion of Levinson [ 5 ] . If N(x)

denotes the number of roots of F( z) = 0 in the circle \ z\ <x9 Jensen's theorem
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combines with the conclusion of Theorem 1 to give

(5) Γ N(x) dx/x - A = f2π log \F(reiβ)\dθ
Ji 2π Jo

< \ (n l o g r + a r I s i n θ\) dθ + B

2π Jo

- n log r + 2 ar/π + B,

where A and B are constants. Hence the number of complex zeros,

c(x) = N(x) - n(x),

satisfies

(6) I c ( x ) dx/x < (n + b) log r + C
J i

for some arbitrarily large r ' s , where C i s constant. It follows that c(x) <n + b9

a s was to be shown.

By means of the following result, Duffin and Schaeffer have given simple

proofs, and improvements, of some theorems due to Szegό, Bernstein and Boas

( s e e below):

THEOREM 4 (Duffin and Schaeffer). Let F{z) be an entire function such

that

F(z) = O(eαM).

If F(x) is real for all real x and satisfies \ F{x) \ <A9 then the equation

F(z) = A cos (az + B)

has no complex roots.

Theorem 3 contains Theorem 4, and in fact gives a slight generalization of it:

THEOREM 5. Let F(z) be an entire function satisfying ( 1 ) . If F(x) is real

for real x and satisfies

\F(x)\ < \P(x)\,
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where P(x) is a real polynomial of degree n, then the equation

F{z) = P(z) cos(αz + B)

has at most n + 1 complex roots.

A linear change of variable enables us to assume a = π, B = 0. Since F(z) -

P (z) cos πz is nonpositive when cos πz = 1, and nonnegative when cos πz = - 1 ,

the equation

F(z) = P(z) cos πz

has a root in every interval m < z < m + 1, where m is an integer (cf. [3 ] ) . Any

root occurring at the ends of these intervals is multiple. Hence if n(x) is the

number of real zeros λ satisfying | λ | < x, then n(x) is at least equal to the

function nι(x)9 defined as 0 for 0 < x < 1, as 2 for 1 < n < 2, and so on. A short

calculation gives

f" n(x)dx/x > I* nx(x)dx/x = 2 log(nn/nl) ~ In - log n,

so that Theorem 5 follows from Theorem 3 with b = 1. Since complex zeros occur

in pairs, Theorem 5 contains Theorem 4.

According to Paley and Wiener [ 6 ] , a set of functions {e \ has deficiency

d on a given closed interval if it becomes complete in L2 when d but not fewer

functions j e } are adjoined to the set. Similarly, the set has excess e if it re-

mains complete when e terms, but not more, are removed. Here we adopt the con-

vention that a negative deficiency d means an excess —d. That the deficiency d

is well defined follows from a theorem of Levinson [ 5 ] :

T H E O R E M 6 ( L e v i n s o n ) . If the set \eι n X \ is complete LP on a finite in-

terval, it remains complete when any λn is changed to another number.

The result remains true even when several λ's are equal, if we agree to re-

quire a zero of the corresponding multiplicity in the entire function

F(z) = ίa eizt f(t)dt,
J-a

which vanishes at the λ π ' s . In this setting, the previous theorems concerning

zeros appear as special cases of the following:

THEOREM 7. Let F(z) be an entire function satisfying (1) , and suppose
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F(x) =0(\x\n)

i λ, x
on the real axis. If F(z) = 0 at a set \ λn \ such that \ e n \ has deficiency d

on an interval of length 2πa9 then F(z) has at most d + n zeros other than the

λn's.

The truth of the assertion is evident from

Q ( z ) F ( z ) / P ( z ) = f f i t ) eiztdt, f ( t ) £ L 2 ,
J-a

where Q(z) is any polynomial of degree d, and P(x) i s a polynomial of degree

d + n + 1 formed from the ( supposed) extra zeros of F(z). That the result con-

tains Theorem 5 and hence Theorem 6 follows from a theorem of Levinson [ 5 ]

to the effect that ί eι n% \ has deficiency at most d on [ 0 , 27r] if

\\\ < \n\ + d/2 + 1/4;, ~oo < n < oo

(cf. also [ 6 ] ) .

4. Completeness. Pursuing the subject of completeness in more detail, we

find that some of Paley and Wiener's work can be simplified and generalized by

use of Theorem A ( cf. Theorems XXIX and XXX of [ 6 ] ) .

THEOREM 8. Let{\n\ be a set of complex numbers such that the set {e n \

has finite (positive, zero or negative) deficiency on some finite interval. Then

the deficiency is d if and only if

(7) ί ° ° x 2 d ' 2 \Fix)\2 dx < oo, f ° ° x 2 d \Fix)\2 dx = c o ,

where

Fiz) = Π ( l - zaΛ2).

We confine our attention to the case d = 1, since the general case is reduced

to that by considering P(z) F(z) or F(z)/P (z) a s heretofore. Suppose, then,

that the set has deficiency d = 1 on an interval of length la. Since the set is not

complete, there is a function G( z),

( 8 ) Giz) = f" fit) eiztdt, fit) e L2,
J-a

such that G(λn) ~ 0. By the Hadamard factorization theorem (cf. also [ 5 ] ) we
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have

(9) G{z) = F(z) e
bz
 P(z),

where P{z) is a polynomial. Now actually P{z) is constant, s ince otherwise

G(z) would have an extra zero, and the deficiency of the original se t would be

greater than 1. Hence ( 9 ) gives

( 1 0 ) F(z) = e'bz G(z)C,

where C is constant. If b has positive real part, then (10) shows that F(x) de-

creases exponentially as x —> oo. Since F is even, the same is true as x —> —oo,

and hence F(z) = 0 by a well-known result of Carlson. Similarly if b has nega-

tive real part. It follows that b is pure imaginary, so that

(11) F{x) = [ a f(t) ei(x+c)t dt, c r e a l ,
J-a

and hence Fix) £ L2 by the Plancherel theorem.

On the other hand, \ί xFix) G L2 then Theorem A yields the representation

zF{z) = f f(t)eizt dt,
J-a

since (11) ensures (1); and hence the deficiency exceeds 1.

Suppose next that the deficiency is an unknown but finite number, and that

(12) f°° \ F ( x ) \ 2 dx < oo, ί°° x2 \F(x)\2 dx = c o .

With la a s t h e i n t e r v a l o f c o m p l e t e n e s s , t h e r e i s a f u n c t i o n G(z),

G(z) = I" fit) eizt dt, f(t) G L2,
J-a

such that G( z) - 0 at all but a finite number, say n, of the λ's, and has no other

zeros. (Otherwise the set would have infinite negative deficiency). The Hada-

mard theorem gives

F(z) = e b z P(z) G(z),

where P (z) is a polynomial. If the imaginary part of b = p + iq is positive, then
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lim sup log I F ( iy )/y \ < a - q a s y —> oo,

and hence the same is true a s y —»~oo. Similarly if the imaginary part is nega-

tive. In either case, then, F(z) sat is f ies ( 1 ) . Equation ( 1 2 ) now combines with

Theorem A to show that

F(z) = f° g ( t ) eizt dt, g(
J-a

t)

so that the set \e \ is not complete. Thus the deficiency is at least 1.

On the other hand, if the deficiency is n > 1 then the Hadamard theorem, as

before, gives

bz = fa f { t ) eizt
P{z) F(z) ebz = / f(t) eιzt dt, f(t) G L2

J-a

where P ( z ) is a polynomial of degree n — 1. As before, the presence of b causes

no difficulty, so that P(x) F(x) G L2. This contradicts (12).

Theorem 8 contains Theorem 6 for the case L 2 , although Levinson's general

case LP seems somewhat deeper. We give an application:

T H E O R E M 9. Let

F(z) = Π ( l - *2/λ2

n),

where the λn are complex numbers, and let the equation F(x) -A have roots λn,

where A is a complex nonzero constant. If { eι^x \ has finite deficiency d and

I e \ has finite deficiency d\ then d < 0 implies d'' « d> and d > 0 implies

d' = 0. // d = 0 then d' > 0.

It should be observed that d/ is restricted to be finite in the hypothesis of

the theorem, and only then can we evaluate d'move exactly. With regard to this

assumption, the following may be said. First, the set exp (iλ^x) cannot have in-

finite excess; that is, d' 4 -oo. In the other direction, the set is complete on

every interval of length less than the interval for \λn\ (which does not mean,

however, that d' is finite). For the case of real λn, an elementary but long argu-

ment shows that in fact d' is finite, so that we can then dispense with this extra

hypothesis. These matters lie to one side of the present discussion, since their

proof does not involve Theorem A, and we omit them.
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A second remark may be in order. It is well known that all the /4-points of a

canonical product have the same exponent of convergence, and in Theorem 9 one

can prove the stronger result that lim A(u)/u and lim K'{u)/u both exist and

are equal. Even this statement is less precise than the conclusion of the theo-

rem, however. It is easy to construct sets with equal density, such that one set

has infinite excess and the other has infinite deficiency on a given interval. We

conjecture, incidentally, that one can make d = 0, c?'= m, where m is any posi-

tive integer, so that the nebulous case d = 0 cannot be improved.

To establish Theorem 9, write

Γ F(x)-A\2x2d~2

which is finite if d < 0, by Theorem 8 and the Schwartz inequality applied to the

second integral. Hence, by Theorem 8 again,

(13) d'> d if d < 0 .

Writing

F ( z ) = [ F ( z ) - a ] + a ,

and turning the argument about, gives

(14) d > d' if d' < 0 .

Suppose now d > 0, so that, by Theorem 8,

1 dx < co.

This implies F{x)—*0, as is well known, so that F(x) - A is dominated by A.

Hence by Theorem 8 the zeros form an exact set:

(15) <Γ= 0 if d > 0.

Similarly,

(16) d = 0 if d'> 0.

Equations (13) and (16) show that d < 0 implies 0 > d'> d. But then (14) gives

d > d\ since d' < 0; and thus d < 0 implies d' = d.
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5. An inequality for entire functions. In a series of interesting papers [ 2 ] ,

[ 3 ] , [ 4 ] , Duffin and Schaeffer establish some inequalities for entire functions of

exponential type bounded on the.real axis. From these they obtain, sometimes in

sharpened form, the classical inequalities of Bernstein and others for bounded

polynomials. The main results are as follows:

THEOREM 10 (Duffin and Schaeffer). Let F{z) be an entire function, real

on the real axis, which satisfies

F(z) = 0{ea\z\)

in the whole plane and \ F (x) \ < 1 for -oo < x < oo. Then, with z = x + iy, we

have

\F(z)\ < coshay, | i ^ ( ^ ) ( 2 + \F'{z)\2/a2 < c o s h 2 α y .

If there is equality at any point except points on the real axis where F(x) = + 1 ,

then F ( x ) = cos ( bx + c).

Our Theorem 1 shows that the hypothesis O(aa\z\) can be replaced by ( 1 ) .

The procedure in [ 2 ] i s to deduce the result for y = 0 first, by means of Theorem

4. In this form the statement seems due chiefly to Boas [ 1 ]:

THEOREM 11 (Duffin, Schaeffer, and B o a s ) . Let F(z) be an entire function

satisfying ( 1 ) and real on the real axis. If \ F{x)\ < 1 for all real x then

\F(x)\2 + \F\x)\2/a2 < 1

for all real x.

A modification of Duffin and Schaeffer's argument1 enables us to deduce

Theorem 11 from Theorem A. Suppose the hypothesis fulfilled, but let the con-

clusion be violated at a particular point x - b. By considering ±F(±z/a)9 we may

assume

F{b) > 0, F\b) < 0, and a = 1,

besides

(17) \ F ( b ) \ 2 + \ F ' ( b ) \ 2 > 1 .

T h e equat ion F(b) - c o s z h a s a root z - r, 0 < r < 77/2, s i n c e 1 > F(a) > 0.

1The author regrets having presented this discussion to the American Mathematical
Society without knowing of Duffin and Schaeffer's work.
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Now, in fact r > 0 . For if r = 0 then F( b) = 1, and ( 2 ) yields F'(b)<0. Hence

F(x) is strictly decreasing at x - b9 so that F(x) > 1 for some x < b.

If we define

(13) G ( z ) = F ( z + ό - r ) - c o s z ,

then

( 1 9 ) G(r) = 0, G ( 0 ) < 0 , G(ττ) > 0 .

Moreover,

G\r) = F ' ( 6 ) + s i n r = F'{b) + [ 1 - F 2 ( 6 ) ] 1 / 2 < 0 ,

the last inequality being a consequence of F'(b) < 0 and ( 1 7 ) . Combined with

( 1 9 ) , the condition G ' ( r ) < 0 shows readily that G ( z ) = 0 has three roots r <

r < r i in the interval 0 < z < 77; and if r 0 = 0 or rι - π the corresponding root is

multiple, since | F ( % ) | < 1. Besides these roots, G(z) = 0 has roots rn in each

interval [nπ, (n + 1) 77], n = + 1, + 2 , . Thus, the function

(20) C U ) / U - r ) = Γ 1 e ι ' 2 ί h ( t ) d t 9 h ( t ) G L 2 ,

has roots at r 0 and rπ, n = + 1 , +2, , where the enumeration can be so man-

aged that

(21) \rn\ < \n\ π.

By Levinson's theorem cited above, the set \ e n \ is complete L2 on

[-1, 1], and therefore h(t) = 0 almost everywhere. If the inequality of Theorem

11 becomes an equality at a point where F(x) ^ ±19 then the corresponding root

of G(z) is easily seen to be triple, so that the same discussion holds

6. Differences and derivatives. We conclude with a theorem of different type,

concerning classes of functions:

THEOREM 12. Let C denote the class of entire functions which satisfy ( 1 )

and belong to L2 on the real axis. Let h be any complex or real nonzero number,

except that \ h\ < 2π/a if h is real. Then the class of functions F'(z), where F

ranges over C, is identical with the class of functions G(z + h) - G(z), where

G ranges over C. But if h is real and \ h \ > 2π/a9 the latter class is always a

proper subset of the former.
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Results of the same sort without L2 condition are well known; for example,

Carmichael has shown that the equation

F ( z + 1 ) - F ( z ) = G ( z )

has a unique solution of type a on the real axis and c on the imaginary axis, if

G ( z ) is of this same type, G ( 0 ) = 1, and c < π. To prove Theorem 12, let F(z)

be in C, so that by Theorem A we have

F ( z + h ) - F ( z ) = I " e i z t ( e i h t - l ) f ( t ) d t , f G L 2

J

e i z t [ ( e / Λ ί - l ) / i ί ] f(t)itdt

= fa e i z t it g{t)dt, g e L 2 .
J-a

Hence, every function of the form F{z + h) - F(z), with F G C, i s representable

as G ' ( ί ) with G £ C. Similarly, let G G C, so that

G'(z) = fα ίί eI2t g(t)dt,

= fa

 e

iz

e

i z t

eiht _ λ

J-a

Thus G'{z) is representable a s F ( z + h) - F ( z ) with F e C, provided ht^2nπ

for ~ # < £ < o The latter condition is fulfilled unless h i s real, and h = 0 or

I A I > 2 ττ/α.

Suppose now that h is real and>| Λ | > 2π/a. If

(22) [ a i t e i z t d t = fa e i z t ( e i h t ~ l ) f(t) dt

J-a J-a

for f(t) G L 2 , then uniqueness of Fourier transforms in L2 ensures that

f(t) = it/{eiht~l)

almost everywhere; but f(t) is not in L 2 with the assumed condition on h. Thus

the function on the left of ( 2 2 ) is representable as G ' ( z ) but not as F(z + h) —

F(z).
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ON THE COMPLEX ZEROS OF FUNCTIONS

OF STURM-LIOUVILLE TYPE

CHOY-TAK TAAM

1. Let Q(z) be an analytic function of the complex variable z in a region

D. In the present paper only those solutions of

d a ) tf" + Q(z)n = o

which are dist inct from the trivial solution ( Ξ O ) shall be considered.

In this paper the following resul ts shal l be establ ished,

THEOREM 1. Suppose that the following conditions are satisfied:

(a) the circle \z\ <̂  R is contained in D9

( b ) W(z) is a solution of (1.1), W(0) £ 0 ,

( c ) n(r) is the number of zeros of W (z) in \ z \ < r$ r < R .

Then n(r) satisfies the inequality

(1.2) n(r) < ( l o g ( Λ r - ι ) ) " l [ l o g ( l + Λ | J r ( 0 ) | | I F ( 0 ) | - 1 )

+ ( 2 π ) ' 1 f2π fR ( R - t ) \ Q ( t e i Θ ) \ d t d θ ] .
Jo Jo

COROLLARY 1.1. Suppose that the following conditions are satisfied:

( a ) Q(z) is a polynomial of degree k,

(h) conditions (b) and (c) of Theorem 1 hold.

Then W ( z ) is an integral function of order at most k + 2. Furthermore, as

r —» oo,

(1.3) n(r) = O(rk+2).

Obviously the result of Theorem 1 is not good if r is close to R Also it
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does not apply to a solution which vanishes at the origin. The following theo-

rem is free of these restrictions.

THEOREM 2. Suppose that the following conditions are satisfied:

(a) S is a closed region contained in D,

(b) the boundary C of S is a closed contour,

( c ) the maximum value of \ Q ( z ) \ on C is M,

(d) S can be divided into n subregions such that each subregion has a

diameter not greater than πM~ι \ and for any two points Zγ and z2 of a sub-

region) the linear segment zιz2 lies in S {we agree that the common boundary

of two subregions belongs to both subregions)*

Ί hen

(e) if Q(z) is not a constant, the number of zeros of any solution W(z)

of ( 1 . 1 ) in S is not greater than n,

( f ) more accurately, if Q ( z ) is not a constant, each solution W ( z ) of

( 1 . 1 ) has a t most one zero in each subregion, and when it is known that W ( z )

has some zero z ι which belongs to n ι {nι > 1 ) different subregions, i = 1 , 2 ,

• , k, its total number of zeros in S is not greater than n + k — { n γ + 7 i 2 + β β +

rc/c),

( g ) if some solution of ( 1 . 1 ) has more than one zero in some subregion,

Q (z) must be a constant and \Q(z)\=M>0inD.

We may observe that if Q{z) is not a constant, M must be posit ive, ac-

cording to the principle of the maximum modulus. If Q{z) is a constant, the

problem is trivial as the distribution of the zeros is known.

2. To prove Theorem 1, we need the following known r e s u l t s .

LEMMA 1. Suppose that the following conditions are satisfied:

(a) f(x) and g(x) are real-valued functions, continuous and nonnegative

for x > 0,

(b) M is a positive constant,

( c ) f{χ) < M+ fX f{t)g(t)dt, x > 0 .

Then we have
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/Wj *>o.

This lemma is due to R. Bellman. For a proof of it see [1] or [5]

LEMMA 2. Suppose that the following conditions are satisfied:

(a) f{z) is analytic for \z\ < R , / ( 0 ) φ. 0 ,

( b ) the moduli of the zeros of f(z) in the circle \ z | < R are r l 5 r 2 , ,r/ ι

arranged as a nondecreasing sequence (α zero of order p is counted p times ) .

Then we have

log [Rk(rxr2 . . . r Λ ) - 1 ] = (2πYι P * log | f{R eiθ) \ dθ - log | f(0) \.
Jo

Lemma 2 is known as Jensen's theorem (see [ 4 ] ) .

3. Now we shall prove Theorem 1. Along a fixed ray radiating out from the

origin, z - r exp (iθ)f equation (1.1) becomes

d2W
(3.1) + e2iθQ(reiθ)W = 0.

dr2

Integrating (3.1) twice from 0 to r, we obtain

(3.2) W (reiθ) = W ( 0 ) + W ' ( 0 ) eiθr - e2iθ Γ [* Q(teiθ)W (teiθ)dtdh,
Jo Jo

where ^ ' ( 0 ) exγ>(iθ) is the value of dW/dr at the origin. Integration by parts

of the integral in (3.2) gives

(3.3) W ( r e i θ ) = W ( 0 ) + W ' ( 0 ) e i θ r - e 2 i θ Γ ( r - t ) Q ( t e i θ ) W ( t e i θ ) d t .
Jo

For r < R, (3.3) yields

(3.4) \ W ( r e ί θ ) \ < \ W ( 0 ) | + | W'{0) \ R + Λ (R - t ) \ Q ( t e i θ ) W ( t e i θ ) | dt.
Jo

Applying Lemma 1 to (3.4), we have

• a fR (R-t)\Q(teiθ)\dt

(3.5) \ W ( R e ι θ ) \ < ( \ W ( 0 ) \ + \ W ' ( 0 ) \ R ) e J ° ' ' .
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Let the moduli of the zeros of W ( z ) in the circle \ z \ < r < R be rί9 r2,
 β ,

arranged as a nondecreasing sequence. Then an appeal to Lemma 2 gives

( 3 . 6 ) log[Rk{rιr2 -τk)-1] < (2πYι f ^ log \ W (Reίθ) \ dθ - l o g | W ( 0 )

Clearly

( 3 . 7 ) log [Rk{rt r2 -.*rkY
ι] > log [ Λ » ^ ) Γ - π ( r ) ]

= ^ ( r ) l o g ( ^ r - 1 ) , r < R,

w h e r e n(r) i s t h e n u m b e r of z e r o s of W ( z ) i n | z | < r . O n t h e o t h e r h a n d ,

( 3 . 5 ) g i v e s

( 3 . 8 ) f2π log \W{Reiθ)\dθ < 2π l o g [ | W ( 0 ) | + | V''(0) 1 R]
J

I (R-t) \Q{teιθ)\dtdθ
Jo

C o m b i n i n g ( 3 . 6 ) , ( 3 . 7 ) , and ( 3 . 8 ) , we h a v e

( 3 . 9 ) n(r) log {Rr~l) < log [ | IF ( 0 ) | + | W'{0) | R] - log | W ( 0 ) |

2π)'1 / / {R-t) \Q(teiθ)\dtdθ
Jo Jo

for r < R. But (3 .9) is equivalent to ( 1 . 2 ) , so that this completes the proof

of Theorem 1.

If Q(z) is a polynomial of degree k9 then W(z) is analytic except at in-

finity and, from ( 3 . 5 ) ,

\W(Reiθ)\ =θ(eA R k + 2 ) , R - » oo ,

where A is a constant. Hence W (z) is an integral function of order at most

k + 2. Final ly if we set R = 2r in ( 3 . 9 ) , it is clear that

Λ ( r ) = 0 ( r Λ + 2 ) .

This proves Corollary 1.1.
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4. To prove Theorem 2, we need the following known result. On the real

axis, equation (1.1) becomes

d2W
(4.1) + Q(x)W = 0 ,

dx2

w h e r e x i s t h e r e a l p a r t of t h e c o m p l e x v a r i a b l e z. D e n o t e b y q (x) t h e r e a l

p a r t of Q ( x ) .

LEMMA 3. Let W(x) be a solution o/(4 .1) , ff(0) = 0. Suppose that one

of the following conditions is satisfied.

( a ) m a x q (x) = m > 0 in [ 0 , a], 0<a<πm'ι/2

9 and Q{x) φ m in

[0, α] ,

(b) qχ(x) < 0 in [ 0, α] .

ThenW(x) £ 0 in (0, a].

This lemma was proved in [3; Theorems 5.1, 5.2]. Part (b) is also covered

by a theorem of Iiille [2, p. 512 ff. ]• Its proof remains valid even if Q(x) is

assumed only to be a continuous (complex-valued) function of a real variable

x; consequently the lemma remains true under such an assumption on Q (x)

We first prove (/) of Theorem 2.

Let Si be one of the subregions of S with a diameter not greater than

πM~ί/2. Suppose that B'•'{z) is a solution of (1.1) which vanishes at a point

2 0 , say, of Si Consider a fixed ray radiating out from zθ9 z — z0 — r exp(iθ).

Along this ray, equation (1.1) becomes

d2W
(4.2) + e2iθQ(zo+reίθ)W = 0 .

dr2

By virtue of the principle of the maximum modulus, we have

\e2iθQ{z)\ = \Q(z)\ <M

for any point z of 5 on this ray. Hence on a segment of this ray between z0 and

any other point of Sj (by assumption, this segment l ies in S) the maximum

value m, say, of the real part of exp (2iθ)Q(z) is not greater than M. If m is

posit ive, then πm'ι/2 > πM'i/2. Since Q(z) is not a constant, exp (2iθ) Q{z)φ

m on this segment. By virtue of the fact that the diameter of S t is not greater
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than πM"ι/2 and Lemma 3, it is c lear t h a t W(z) d o e s not v a n i s h aga in on t h a t

part of the ray in S;, r e g a r d l e s s of the s ign of m. R e p e a t i n g t h i s p r o c e s s for

each ray r a d i a t i n g out from z0, we s e e c lear ly t h a t W (z) cannot v a n i s h aga in

in S f . S ince S; is an arbitrary subreg ion, W(z) can vani sh a t most a t one point

of each s u b r e g i o n .

On the other hand, if W(z) h a s a zero 2; which be longs to Π( (π( > 1 )

different s u b r e g i o n s , then W(z) cannot v a n i s h aga in in any of t h e s e n( sub-

reg ions , a s the foregoing proof s h o w s . If it is known that there are k s u c h

z e r o s 2 j , each z; be longing to zij s u b r e g i o n s , i - 1, 2, , k, i t i s c l e a r t h a t

the tota l number of zeros of IF ( z ) in 5 is not greater than n + k — (nι + n2 + '

+ nu)-

To prove ( g ) , l e t W(z) be a so lu t ion of ( 1 . 1 ) hav ing two z e r o s , s a y z0 and

2 l f in some subregion S L e t the argument of zx — z0 be θ. T h e n a l o n g the

l inear s e g m e n t z o z l 9 equat ion ( l . l ) b e c o m e s ( 4 . 2 ) . According to Lemma 3,

the maximum va lue m of the real part of exp (2iθ) Q {z) on the l inear s e g m e n t

z Q z i must be p o s i t i v e . Fur ther , s i n c e

(4.3) l * ι - * o | < rτM'ι/2 <πm-ι/2,

z0 and z t can both be the zeros of If' {z ) only if

(4.4) e2iθQ(z) EE m

on the linear segment z0 z ί9 by Lemma 3 again. But if (4.4) is true, the general

solution of (4.2) is Λ sin (m l /^2 r + B), A and B being constants. If a solution

of (4.2) has two zeros, the distance between them must not be less than

77m"1/2. In other words, the equality signs in (4.3) must hold. That is, M = m.

From (4.4), we have exp (2iθ)Q (z ) = M on the linear segment zozί. Since

Q{z) is an analytic function and constant on the linear segment zozt, Q{z)

is a constant in D. Obviously | ( ? ( z ) | = A/; and since m is positive, so is M

This proves (g)

Clearly (e) follows from (/), and this completes the proof of Theorem 2.

5. Added in proof. The author is indebted to a referee for calling his

attention to the fact that, in connection with Corollary 1.1, an entire function

which satisfies a linear differential equation with coefficients which are

rational functions of 2 is always of finite rational order and of perfectly regular
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growth. (See G. Valiron, Lectures on the theory of integral functions, Toulouse,

1923, p. 106 ff.)
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