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CHANGES OF SIGN OF SUMS OF RANDOM VARIABLES

P.ErDOs AND G. A. HUNT

1. Introduction. Let x{, x,, +++ be independent random variables all having
the same continuous symmetric distribution, and let

Sp =X, feeet %

Qur purpose is to prove statements concerning the changes of sign in the se-
quence of partial sums s,, s,, +++ which do not depend on the particular distri-

bution the x; may have.

The first theorem estimates the expectation of N,, the number of changes

of sign in the finite sequence s, +++, s;+;. Here and later we write ¢ (%) for

2(Lk/21+ 1) ( * ) ok = (2mk)1/2,

E+1 (k/2]
THEOREM 1.

n n

< EiNdc< b (k).
im 2(k+1) ;?ZE

0o |

It is known (see [1]) that, with probability one,

Nn
(1) lim sup =1
n—oo (n log logn)!/?

when the %, are the Rademacher functions. We conjecture, but have not been
able to prove, that (1) remains true, provided the equality sign be changed to
<, for all sequences of identically distributed independent symmetric random

variables. We have had more success with lower limits:

THEOREM 2. With probability one,
Received November 13, 1952. The preparation of this paper was sponsored (in part)
by the Office of Naval Research, USN.
Pacific J. Math. 3 (1953), 673 - 687
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674 P. ERDOS AND G. A. HUNT

Nn 1
lim inf > -
n-ooo logn — 2

By considering certain subsequences of the partial sums we obtain an exact
limit theorem which is still independent of the distribution of the x,: Let o be
a positive number and a the first integer such that (1 +a)?® > 2; let 15 2%, -~
be any sequence of natural numbers satisfying (£ +1)°> (1+a)k”% and let

rd

N, be the number of changes of sign in the sequence s/, <+, s/, ,

where s,:

stands for s, .
THEOREM 3. E{N’} > [n/al/8, and, with probability one,

Nn
i
noo E{N.}

For k’= 2%, it is easy to see that E{ N} } = n/4; so with probability one the
number of changes of sign in the first n terms of the sequence sj, sp, «++,

szk , »++ is asymptotic to n/4.

The basis of our proofs is the combinational LLemma 2 of the next section.
When translated into the language of probability, this gives an immediate proof
of Theorem 1. We prove Theorem 3 in $3 and then use it to prove Theorem 2.
A sequence of random variables for which N,/log n — 1/2 is exhibited in $ 4;
thus the statement of Theorem 2 is in a way the best possible. Finally we
sketch the proof of the following theorem, which was discovered by Paul Lévy

[2] when the x; are the Rademacher functions.

THEOREM 4. With probability one,

" sgns
> k. o(logn).
k=1 k

Our results are stated only for random variables with continuous distri-
butions. Lemma 3, slightly altered to take into account cases of equality, re-
mains true however for discontinuous distributions; the altered version is strong
enough to prove the last three theorems as they stand and the first theorem with
the extreme members slightly changed. The symmetry of the x, is of course

essential in all our arguments.

2. Combinatorial lemmas. Let ay,-++, a, be positive numbers which are

free in the sense that no two of the sums ta, +..+ ta, have the same value.
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These sums, arranged in decreasing order, we denote by Sy, -+, S ,; g, is the
excess of plus signs over minus signs in S;; and Q;=¢q, + -+ + q;. It is clear
that 02" = 0 and that Q, = an forl <i < 2™

=) ad

LEmMMA 1. Forl < i < 271,
n
. 1 — gn-1,
0<Q, ~i< ([n/21+1) ([nm) 9

The proof of the first inequality, which is evident for n = 1, goes by in-
duction. Suppose n > 1 and i < 2""!. Define S].' and Q].' for 1 < j < 2™! just
as S; and Q; were defined above, but using only aj, <+« , ap.;. Let £ and [ be
the greatest integers such S/ ~a, > S; and S +a, > S;. It may happen that
no such k exists; then i = [ and the proof is relatively easy. Ctherwise £ < I,
k<2™% andi=Fk+ 1 If L < 2"? then

Q;=0Qf —k+ Q[+ 1=(Q;-k)+(Q]~1)+21 > i.
If 272 <1 < 2™ then
Q= Qf=k+ Q[ +1=Qf=k+Qf\py + L

=(Q,:-k)+(QZn_l_l—2”"+l)+2”"-l+l > 2™t > g,

Finally, if [ = 2"! then, recalling Q;n_l =0, we get
0i=Qf=k+ Q) +2%" 22" > 0.

In order to prove the second inequality we note that for each i the maximum
of Q, is attained if the a; are given such values that S]. > S, implies q9; > 9
—this happens if the a; are nearly equal. Assume this situation. Then if n is
odd g, is positive for i < ig = 21 and Q; — i is maximum for i = io. We have
[n/2] n n
o X -2 ()= 2ie ety (0 ) -
O‘O 0 k};':') k [n/2]

A similar computation for n even gives

(2
n/2



676 P. ERDOS AND G. A. HUNT

for the index i, of the maximum and the same expression for Qio - i,. This

completes the proof.

If ¢y +e«, cn+; are real numbers let m(cy, +++ ,cp+,;) be the number of

indices j for which

lejl > 120 e
i#j

We now consider n + 1 positive numbers a,, «+- ,a,4+,; which are ‘free’ in the

sense explained above, and define
M=M(ay,oer, aner) = 2om(tay, eeey Tane,),
the summation being taken over all combinations of plus signs and minus signs.

LEmMmA 2.

ot o gy § )
< 54([n/2]+1)([n/2]

It is clear that M = 27*! if
An+1 > Ay + e +ay,

and we reduce the other cases to this one by computing the change in M as
@p+y is increased to a; + <+« + ap + 1. Using the notation of Lemma 1, we sup-
pose that S;4+; < an+; < S;, where i of course is not greater than 2"°!, and that
4
Cn+y
with M(ay ye+ ,apn, ag+y). The inequality a,+; < S; becomes aj+; > S; if

is a number slightly greater than S;. We now compare M(a, <« , ap, an+y)

an+, is replaced by a;+,, and we see that there is a contribution +4 to M coming
from the terms tay+; in the four sums +S; *aj+,. In like manner, each + a; oc-
curring in S; contributes — 4 to M, and each —a;j in S; contributes +4 if j is less

than n + 1. So

M(al9"', Qn, an+1)"M(al7 °c° 5 Any ar’z+1)=4(qi"1)’

where ¢, has the meaning explained at the beginning of this section. Thus in-

creasing ap+ytoay ++++ +a, + 1 decreases M by

4(Q;~1)=4 2° (g;- 1),
j<i
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and Lemma 2 follows from Lemma 1.

There is another more direct way of establishing the first inequality of
lLemma 2. Since the inequality is trivial for n =1, we proceed by induction.
Considering the numbers (a; +a3), az,-++, an+; we assume that there are

at least 2"°? inequalities of the form

(2) aj > U (j>2)
or

(3) (ay+ay) >V,

where the right members are positive, and U is a sum over (a; + a;), az, «++,
@j.1» @j+1s =** 5 G+ With appropriate signs, and V is a sum over az, +++, ap+y.
From (2) we obtain an inequality (2’) by dropping the parentheses from (a; +a;)
in U; from (3) we obtain an inequality (3’): @y > a; ~V or a; > V —a, ac-
cording as a, is greater or less than V (we assume without loss of generality
that a; > a,). We consider also the numbers (a, -a;), a3, -+, ap+; and

inequalities

(4) aj > U (j>2)

(5) (ay -—ay) > V,

of which we assume there are at least 2”72, From (4) we derive an inequality
(4”) by dropping the parentheses from (a, — a,) in U, and from (5) we derive
an inequality (5°): a; > a; + V. It is easy to see that no two of the primed
inequalities are the same. Hence there must be at least 2.2""%=2"1! in-

equalities
ai>2iaj (1<i<n+1)

in which the right member is positive. Taking into account the four possibilities
of attributing signs to the members of each inequality we get the first statement

of the lemma.
We now translate our result into terms of probability.

LEMMA 3.
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< Prilzpeg| > l2xp+ e+ 20|} < B(n).
n+1

Here of course the random variables satisfy the conditions imposed at the

beginning of $ 1, and ¢ (n) is the function defined there. Since the joint distri-

bution of the x; is unchanged by permuting the x; or by multiplying an x; by
~1, we have

n n+1
Prilxpei| > | 20 x|} = ! 2o Prilx| > | 2 %
1 n+ 1 =1 ]7“
1
= Efm(xy, coey 2n+1)}
n+1 .

1 1
- n+1l E{2n+1 Z m(t]xy], e ’iixnﬂl)]

= (__1—)2-71—**? E{M(!xl| AR !xn‘Fll)}:
n+

where m and M are the functions defined above. Since |x,

y ooy |xp4y| are
‘free’ with probability one (because the distribution of the x; is continuous),
Lemma 3 follows at once from Lemma 2.

Our later proofs could be made somewhat simpler than they stand if we could
use the inequality

n n+m
- < Ppn= Prl Z x| < Z x; lS(/ﬁ([n/m])
m+n 1 n+1

for m < n. This generalization of Lemma 3 we have been unable to prove; and
indeed a corresponding generalization of Lemma 2 is false. However, we shall

use

(6) Pp,n < 6¢(ln/m]) < 3[n/m1"'/2,
and establish it in the following manner:

Let a = [n/m], and write
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U=Xyteee+Xgm,
V=2Xgmer+oeee+ xp,
W=2Xp+y t**+Xn+m,
Z=yn+l+°“+yam+m’

where the y, have the same distribution as the x;, and the x; and y, taken
“together form an independent set of random variables. Let £ be the set on which

the four inequalities
lw| < |lutovtz]

hold; by Lemma 3 the probability of any one of these inequalities is at least
1~ ¢(a+1); hence E has probability at least 1 ~4¢(a + 1). Similarly the
probability of the set F' on which the two inequalities |v +z| < |u| hold in at
least 1 ~ 2¢(a). Now clearly |u+v| > |w| on E F and also

Pr{EF}>1-2¢(a)-4¢(a+1)>1-6¢(a).

3. Proofs of Theorems 1, 2, 3. It is easy to see that the probability of
s) and s, differing in sign is one-half the probability of s, ,, being larger in
absolute value than s;. Thus

n

1 n
E{N, 3= 3" Pris, s, <0} = 5 2 Prijx | > 1s, 1},
1

1

and Lemma 3 implies Theorem 1.

Let us turn to Theorem 3. Clearly the probability of s, and

differing in sign is 1/4. Also, s;, —s,, is independent of both s and s,, -,
for

(k+a)’ > (1+«)%’> 2k".

’ . .
Thus s/, ~s,,” has an even chance of taking on the same sign as s, +; so
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we must have
4 1 4
Pr{sk sk'+a <0} > Eprfsk Sy’ < 0} =1/8.

Now, if s/ s/, < O then must be at least one change of sign in the sequence
Sp» Spyys vt * s Sj4qe Hence, if p, is the probability of s; and s/, differing

in sign, we have

==X

Pt "+ Prigey 2

and consequently
i 1

(7) E{N} = Zpk?_g[n/a].
1

This proves the first half of the theorem.

As a preliminary to proving the second half of the theorem we show that the

variance of Nn' is O(n) by estimating the probabilities

d 4 4 ’
Pi. =Pr{si s{41 <0 & si s/ < 0}.

Suppose that i < j; set

=s/, v=s/  —-s/, w=s' ’ =s s’
=8 VTS84 TSy WES; =S4y 2584 TSj5

and define the events

A :uv <0,

B ful <ol
C:(u+v+w)z <0,
D:lu+v+w| <|z],

D’ |w]| <|z],

E:lz-w|>|u+v

Then
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p; = Pr{AB},pI. =Pr{CD}, and Pi,j = Pr{ABCD}.

One sees immediately that A, B, C, D’ are independent, and that £D = ED’,
Writing E for the complement of £, we have

ABCD = EABCD + EABCD*CE + ABCD’,

and

Hence
PriABCD} < PriE} + Pr{4BC}Pr{D’}
<Pr{E} +Pr{4ABC}(PriE} + PriD})

<PridB}PriCIPriD} + 2Pr{E} = p, p + 2PriZ}.

Note now that z —w is the sum of (j+ 1)’ = (i+ 1)” of the x’s, and u + v is

the sum of (i + 1)’ of the x’s, and that moreover
G+1D)= G+ 1> [ +a) =11 i+ 1)
We may thus apply the inequality (6) following Lemma 3 to obtain

Pr{g} <3[(1 +q)f‘i_2]-1/2

provided j—i > a. This yields an upper bound for p; ji @ similar argument
yields a corresponding lower bound. We have finally

Pi,j = PiPj + Ot|1+al|H/'/2}

for all i and j. This estimate shows that

n

(8) E{N’2)

2 Pij

1< 4,j<r

]

Zp; gy + 201w a) 2 S EINZ 4+ 0(n).

Let us denote E{NI:} by b,. It follows from (7), (8), and Tchebycheff’s
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inequality that

N’
9

by

C
> €< —
e?k

Pr

for an appropriate constant ¢ and for all positive €. Thus

bk2

Pr > €

is the kth term of a convergent series, so that according to the lemma of Borel
and Cantelli
/V]:2
—_ 1
42

with probability one. Note also that

b, ,
k -— 1.

b(k+1)2

Now for every natural number n we have

k2 _1:/.’2 (k+1)?
(k+1)? Tob T ka

with % so chosen that 2% < n < (k£ + 1)2 Since the extreme members tend to

one as n increases, the proof of the second half of Theorem 3 is complete.
Theorem 2 is obtained from Theorem 3 in the following way. Let r be a large
integer and let 1°,27,-- - be the sequence
r, (r+1),
rr(r+ 1), (r+1), (r+1)32,
rl, Pl 1), eee , (r e DY,
P (r 4 1), eee, (P 1T,

. . . . LI
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where m is defined by
LS (re DB S
Let us call j ‘favorable’ if (j+ 1) =(1+ 1/r)j% Then it is easy to see that:
a) (1+1/n)j"<(j+1) < (1+r)j forallj;
b) there are k + o (k) favorable j less than k (as k — o) ;

c) logk’=klog(1+1/r)+o(k).

Now, if j is favorable then
=rf(j+ 1) =%}

and we may apply Lemma 3 to sj' and s].'+l =S Thus

4 4 1 d ’ ’ 1
Pr{s}. Sl-+l < 0} =§Pr{ls].+l—sj l > lS] l} Z -2—(-i—+—r) .
Hence
k
E{N/ Y= Pl‘{sj's].',H <0}
j=1
> 2 Pris/ s/, <0}z +o(k).
j favorable 2(r+1)
Note that for every natural number n
Nn Ny
> s
logn ~ log (k+ 1)
where k is chosen so that £* < n < (k + 1)’ Consequently
2N, 2 N¢ 2N
lim inf > lim inf —————— = lim inf
noo logn = k—oo log(k+1) (E+1)log (1 +1/r)
N¢ 1
> lim inf

EtN 3 (r+ D log (1+1/r)  (r+1)log (1+1/r)°
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Letting r —» @ we have Theorem 2.

4. An example. Qur construction of a sequence x,;, x;, -+« for which
N,/log n — 1/2 with probability one depends on the following observations.
For given k define the random index i = i (k) by the condition

x| = max x5,
1<j<k+1

and let Aj be the event |x;| > 20 |x;|, where the summation is over j # i,
1 <j <k+1 Let f, be the characteristic function of the event ‘s, s, , <0,
and g, is the characteristic function of the event ‘i(k) =%+ 1 and further
(2 + oo+ xp)xp+y < 0 It is clear that g, g,, +++ are independent random

variables, that

1

2Prig, =11 = 7D

?

and that the strong law of large numbers applies to the sequence g, g,, *-*
also f; =g, on A,; if moreover ZPr{Aki < o (here A is the complement
of A) then, with probability one, f, = g, for all but a finite number of indices.

In this case we have, with probability one,

n n n 1
N = = 0o(1) = R — logn),

the last step being the strong law of large numbers applied to g,, g,5 *+--
Thus, in order to produce the example, we have only to choose the x; so that,

say,

Prid,} = 0(k2).

To do this we take x; = + exp (exp 1/u;), where uy, u,, -++ is a sequence
of independent random variables each of which is uniformly distributed on the
interval (0, 1) and the t stands for multiplication by the jth Rademacher func-
tion. For a given % let y and z be the least and the next to least of uy,+«+,u, .

The joint density function of y and z is

(k+1)k(1-2z)kt (0<y<z<1).

Consequently the event
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1 1 1
Dk P D> = —
y z k2
has probability
K2/ (k24 1)
k(k+1)/ ' dyf‘ , (-2)Fdz =140,
0 k2y/(k*=y)

and the event Ej : 1/z > 3 log k also has probability 1 + O(k"2). It is easy
to verify that the event A defined above contains Dy Ej; thus

Pridi} = 0(k?),
and our example is completed.

5. Proof of Theorem 4. We prove Theorem 4 in the form

logn + o(logn)
1<
sEp>0

by much the same method as we proved Theorem 2. First,

1 21 1
E{Tn}='2' lz-l:'='2-10gn+0(1)o

Next, the inequality following Lemma 3 yields

k 1/2
Pr”sl—sk|<|sk”_<_3[z——,; (I > 2k),

so that
k72
Pelfor-sil < Jsuld = 0(7)
for I > k. Consequently

1 k\'/?
Pr{sk>0&sl>0}=z+0(7) (I>k).
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This implies that

1
> — Pris, >0 & s; > 0}
1<k, I<n

E{T2}

1 1
2. —=Pris, >0l+2 2 — Pris, >0 & s,>0}
1<k<n k? 1< k< I<n

I
ot =
.-M;
=] -

+

N
il
e
> | -

+

S
—
Nl?r
N—

<
%)
[

1
= Z (log n)% + O(logn).

2
Thus the variance of T, is of the order of log n. Setting n (k) = ok , we have,
according to Tchebycheff’s inequality,

c
Pr > e <
€? k2

for an appropriate constant ¢ and all positive €. Since the right member is the

Tn(k) _
log n (k)

1

kth term of a convergent series, the lemma of Borel and Cantelli implies that

Tn(k) —
log n (k)

with probability one. Note also that

logn(k+1)
—_
log n (k)

Now, for any n,

Tn(k) < Tn < Tn(kﬂ)
logn(k+1) = logn — logn(k)’

where % is so chosen that n(%k) < n < n(k+ 1). Here the extreme members

almost certainly tend to one as n increases. This proves Theorem 4.
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ON LINEAR INDEPENDENCE OF SEQUENCES IN A BANACH SPACE

P. ERpOs AND E. G. STRAUS

1. A. Dvoretzky has raised the following problem:

Let xy, X3, *++, X5, »++ be an infinite sequence of unit vectors in a Banach
space which are linearly independent in the algebraic sense; that is,

k
Z Cixni=0 =>Ci=0 (i=1s°"’k)°

=1

Does there exist an infinite subsequence {x,;} which is linearly independent

in a stronger sense?
We may consider three types of linear independence of a sequence of unmit
vectors in a normed linear space:

I. Z cnxn=0 ©0n=0 (n=1,2’--.).
n=t

. 1 ¢(k) > 0 is any function defined for k=1, 2, -+, then
LB < (k) (nyk=1,2,+.+)

and

lim Z cr(lk) x, =0

k--)OO n=t

imply

lim c,(;k)=0 (n=1,2¢e0).

k— o0

Received October 29, 1952,
Pacific J. Math. 3 (1953), 689-694
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oQ

1. lim 2 C,Sk)xn =0 = lim c,(lk) =0 (n

k — oo k=1 k— oo

il

1,2, .04 ).

It is obvious that III implies both II and I; and if

lim inf ¢ (k) > 0

J - 00

then II implies I. It is easy to show that the converse implications do not hold.

In this note we give an affirmative answer to Dvoretzky’s question if in-
dependence is defined in the sense I or even II for arbitrary ¢ (4). However the

answer is in the negative if indepence is defined in the sense IIl.

2. The negative part is proved by the following example due to G. Szegd
[1; 1, p.861:

THEOREM. If {A,} is a sequence of positive number with A, — «, then

the functions { 1/(x + A,)} are complete in every finite positive interval.

Obviously every infinite subsequence of { 1/(x + A\, )} satisfies the condition

of the theorem and is therefore complete.
3. For the affirmative part of our result we prove the following:

THEOREM. Let {x,;} be an infinite sequence of algebraically linearly
independent unit vectors in a Banach space and let ¢ (k) > O be any function
defined for k=1, 2, +++ . Then there exists an infinite subsequence {x,,} such

that]cgm)[ < (i) (i,m=1,2,++) and

oo

lim D cl(.m)xn. =0

i
m— 00 .
=1

imply

lim cE””:O (i=1,2,002).

n — oo

It was pointed out to us by the referee that it suffices to prove the theorem
for a separable Hilbert space. The separability may be assumed since we may
restrict our attention to the subspace spanned by {x,}. Now every separable

Banach space can be imbedded isometrically in the space C (0, 1) of continuous
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functions over the interval (0, 1); and C(0, 1) C L, (0, 1), where linear in-
dependence, in any of the above defined senses, in L, implies the same in-
dependence in C. Let { z,} be the orthonormal sequence obtained from {x,} by

the Gram-Schmidt process; then

n
Xp = 2 , %nm Zm>
m=1

with |ap,| < 1 and a,, # O.

Since { @, } is bounded for fixed m, we can select a subsequence { x,,} such
that

lim ap;m = bp
I — 00

exists for every m.

If we prove the theorem for )(%k) > & (k), then it is proved a fortiori for
¢ (k). Hence we may set

Yn) = maxtl, ¢(1), -+, ¢(n)},

so that ¢y (n) > 1 and ¢ (n) is nondecreasing.

If the theorem we false then for every infinite subsequence {y, } of {x,,}

there would exist a sequence of sequences {c}(cm)} with
lef™ ] < (k) (kym=1,2¢.v)

and

while

lim sup ]cl(f'g)l # 0 for some fixed k.
m — oo

We can then select a subsequence of sequences { cl(tmi)} such that

(m;)

lim ¢

= C
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exists for every k, and c;/ # 0. For convenience of notation we assume

lim cl(‘m)

n— oo

¢\
Since cj, # 0, there would exist a least k; > ko such that
lep | < 2%y (k) e | forall k > k.
This implies
(1) lefm] < 2y (k) fefm)| forall & > ky3m > mo.

Case A: b"ij =0 for j=1,2,004.

In order to simplify notation we assume b,, =0 for all i =1, 2, -+ by omit-
ting all terms with n; # ng; from our subsequence. We select the subsequence

{yk } as follows:
Yi = %ngs Yeay = %ng gy
where

‘anj, njl

lanik+1,n,-|<m for j=1,2,¢0,i.

We write y, =Xy, .

If the theorem were false then there would exist a sequence of sequences

{c,(cm)} with the above properties such that

=€, —»0 as m —>w.

2 Cl(cm)yk
k=1

If we take the k, defined in (1), then

2) > qMay,,

k=k‘

< €

but for all m > my we have
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]Cl(cm)132k-kl l/j(k)\ckl] (b=Fky, kj+1,00),

and hence

S
m
Z k alk,lkl
k=k1+l

00 2k-k1 (/‘(k)lckll\alkl,lkll

-2k,

< D = 2 le, |la
k g ,1

k=ky+1 4k (k) 1 kysthy

We can now choose m so large that

(m) _ -4k - -4k,
lck1 ckll <2 ,ck1!|a1k1»1k1| and € _ <2 ]ckll lalkl,lkl .
Then for the left side of (2) we obtain
S (m) (m) o~ (m)
2 coMa > [ep")| |a -] 2 ¢Ma
PRI I L 1 k L1
k=k1 1 1 k1 kl k=kl+1 k kl

-4k‘ '2kl
Z'Cklualkl,lkll—z |Ck‘\|alkl,lhl"‘2 ‘ckl‘\alkl’lkl‘

L

-4kl
> 2 lckl\ ‘alklylkl

while for the right side of (2) we have

e <2

'4kl lC
m

kl‘ lalkl»lkll’

a contradiction.

Case B: by, # 0 except for a finite number of i.

Without loss of generality we may assume b, # 0 for all i by omitting a
finite number of elements from {x,, }. We select the subsequence ty, | as fol-

lows:

Yi=%nys Yg+r T Fnipy 0
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where

{bnik+1{
bn].l<————-—— for j=1,2,++,4, .

la
Ay (k4 1)

Pigp4yo M

For simplicity we again write y, = Xy

If the theorem were false then there would exist sequences {C}cm)} with the

foregoing properties such that

I Z My Il = €, —0 as m— .

m

If we let k&, be defined as in (1), then on the one hand we have

1 > 1 >
(m)
= 2« Gl T 2 T
b, e P bl 1 heboot kolky+1
( ) C(m)i (=3 QIcl(cm)‘
> ™| - ~ —_
k Akt e 459 (k)
o k-ky
1 2.2"" y (k) 1
S D S e A AL
' AU e e AR g (k)

for all m > mg; on the other hand, we have

1 > 1 >
(m) (m)
st 2 3 2
l’fx k=1 L+t k=1
1 1 c 1 l |
<f— +—) €, <= l¢,
blkl by, 4 t
for all sufficiently large m, a contradiction.
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ON SUMS OF SERIES OF COMPLEX NUMBERS

HAiM HANANI

1. Introduction. We recall certain facts about the convergence of series.

1.1. Let Z:‘;l a; be a series of real numbers, a; — 0. Then it is obvious
that a sequence of signs ¢, =+1 (i=1,2,.-+) may be chosen so that
DR a, is convergent. It is, furthermore, well known that all the possible
sums so obtained form a perfect set, and if Z?___l | a;| = « then any preassigned

sum may be obtained.

1.2. The first statement remains true also for complex numbers. Aryeh

Dvoretzky and the author [2] proved that if 272 ¢,

numbers with ¢, — 0, then a sequence of signs ¢; =11 (i=1,2,+++) may

be chosen so that Z:?__l

is a series of complex

€, ¢, converges and

5\/—§0max|ci| (n=1,2,+-).

n
2 &G
=1

1.3. The object of the present paper is to determine the sets of points which

may be sums of the series Z‘; €, ¢; when suitable sequences ¢, are chosen.

1

2. Notation and definitions. In this paper the following notations and defi-

nitions will be used.
2.1. NOTATION.

¢ =a + ib denotes a term of a (finite or infinite) series of complex num-

bers, a being its real and ib its imaginary part;
C =4 +iB also denotes a complex number;

y = ¢ + i3 denotes a direction in the plane of complex numbers, and also

a unit vector in the same direction;

(C, C’) is the scalar product of the vectors C and C’; that is (C, C*) =
AA’ + BB’;

Received September 5, 1952,
Pacific J. Math. 3 (1953), 695-709
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y denotes a direction perpendicular to y; that is, (y, y*) = 0;

denotes + 1;

m

> without summation limits denotes summation by the summation index

from 1 to @, In any other cases the summation limits will be indicated.

2.2. DEFINITION. C will be called an attainable point of the series Zci

if a sequence € (i=1,2, +++) exists, such that 2= € c; = C.

2.3. DEFINITION. Let zci be a series of complex numbers with ¢, — 0
and 2°| ¢; | = . We say that y is a direction of divergence of the series zci if

a subseries Zci* of zci exists such that

Zlci*l =

and

(crns y”)
-_— 0,
(Ci*a )’)

If y is a direction of divergence, then clearly also the inverse direction ~7y is
such. The directions y and —y form an axis of divergence. It can easily be seen

[3, p.931] that if Zlci | = w, then ZCi has at least one axis of divergence.

2.4. DEFINITION. Let Zci be a series of complex numbers with ¢, — 0
and 2| ¢;| = . We define the convergence strip of Zci as follows:

If Zci has at least two axes of divergence, the convergence strip is the

whole plane.

If Zci has exactly one axis of divergence, then the convergence strip is
composed of all the lines parallel to this axis which contain attainable points
of the series 2 [y’( ¢;»¥")], where y’ is a unit vector perpendicular to the

axis of divergence.

According to 1.1, the convergence strip is either i) a cartesian product of a
perfect set by a straight line or ii) the whole plane. It is obvious that every

attainable point of Z'Ci is a point of the convergence strip.

3. Theorem. We shall establish the following result.

3.1. THEOREM. Let Zci be a series of complex numbers which tend to
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zero, and let 2| ¢; | = o3 then the attainable points of Zci form a set which
is dense in the convergence strip of Zci, and within this strip is dense on

every straight line not parallel to the axis of divergence of 22 G-

Proof. We may, without restricting the generality of the theorem, suppose

the axis of divergence to be the real axis.

The following statement is clearly equivalent to our theorem: Let C = 4 + iB
be any point of the convergence strip, 6 any real number, and 7 any positive
number however small; then there exists an attainable point C’= 4’ + iB’
of Z¢; such that |C~C’| <7 and 4 ~4°=8(B - B’). This will now be
proved.

Put

1

n
44/1 + 82

Let N; be such that |¢;| < n” for every i > N;. According to 1.1, there exist

4

T’=

N; > N, and a sequence €;, (i'=1,2, .-, N, ) such that

<n’.

N,
|B-— 2 €. b,

i’=1

We put

N,
Ci= 2 € oo

i’=1
. . o0
It is evident [3] that the series Zi=N 1
2

Subsel‘ies Zci’:l and ZCiI:”’ SO that for Z ci 0 We have

c; can be separated into two

ZIail:'l = o and Z|bik~| <n’.

According to 1.2, there exists a sequence €;» (k=1,2,+++) such that the
k

series 2 €; ¢ C; 00+ cODVerges and
k k

|Z€ik"o cik'u ‘ < ﬁ 17’ .

Let us put C, = C, + Z:el.m c;sss« Now, according to 1.1 there exists a
k k
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sequence €;+» (k=1,2,--.) such that 2 €;¢(a; s+ — 8b;++ ) converges and
k ® % k

ZEJI (a.ll ——81).11):(/1—/12)—5(8—82).
‘e % Yk
Putting C’=C, + €+ ¢;or ,we get A — A”= 3(B ~ B”) and
k k

|B-B’| <|B=Bil+|B =By | +|By =B’ <n’+V3 7 +7"=7"(2+V3)
whence

|IC-C*| <n’V1+8*(2+V3) < 7.

. . . . N,
The series Zei c; is composed of a finite subseries Zi’=1 €;,¢;» and two
interwoven subseries Zei #s c; »+ and 2 €, +s+ c; »o» which are evidently con-

. . kE 'k .
vergent and in which the order of terms remains unchanged. Consequently

d
Zeici=C.

3.2. In special cases every point of the convergence strip can be an attain-
able point of Zci, but generally this is not true. A few examples are given
showing the possibility that the attainable points do not cover the convergence

strip and even are not dense on every straight line parallel to the axis of di-

vergence:
a) For
1 1
c, =—+ — i,
n 3n

on every line parallel to the axis of divergence (real axis) there is at most

one attainable point.

b) When the convergence strip is connected, a similar example may serve,
namely:
1 1
e = —+ — i.
n n 2"
Here on every line parallel to the real axis there are at most two attainable

points.

c¢) The case when the convergence strip covers the whole plane is more

complicated. The following example may suit:
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—

1 1 n- .2 n .2
Ck = — + i, 1+ 101 S ks Z 101 , C‘=0-
j=0

moqon? j=o

No attainable point is, for example, on the line through (0, i/9) parallel to the
real axis. For let us suppose that C* = A* + i/9 is such a point; then

1 1
C* = Ztn(—+ i\), where |t,] < 102,
n 1072

On the other hand, there exists N* such that for

k> 310 (i=1,2)

we have lck - ¢, | < 1. Consequently, for n > N*, we have | ¢, | <n. It follows
2
that

1 t
= Z " ’

2 10"
where |t,| < n for n > N*, which clearly is impossible.

4. Plane of attainable points. We now turn to the special cases in which

every point of the complex plane is an attainable point.

L] . .
4.1. THEOREM. Let 2 c; be a series of complex numbers which tend to
zero, and let Zlcil =w. If zci has at least two axes of divergence, then

every complex number C is an attainable point of zci.

Proof. By an affine transformation the two axes of divergence may be identi-

fied with the real and imaginary axes respectively.

The definition of axes of divergence implies the existence of two disjoint

subseries Zci’ and Zci s of zci such that:
k k

b;»

k—-)O,ZIai'|=oo and a;» # 0 (k=1,2,+4+),
ai; k k

Qa.s

13

i _-ao,Zlbi’:'l =@ and b #0 (k=1,2+4).
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We shall now fix finite subseries

kpy Ky’
Z Cill(n) and ; cil”(n) (n = 1, 2, e )
=1 =1

of Zci' and Zci + , respectively, and N, (n =1, 2, ... ) as follows:
k k

a) for everyi > N,» lcii <

b) for every iy > N, ‘bi; /ai’: | < 27", and

for every 1" > N, !aik”/bil:'[ <2

c) i,;,("'l) <N, < il'(") and i]:',(,”'l) <N, < il”(");

n=-1 n-1

4 k" _
1<z lagrm | <142 and 1< T8 [bormy | <1427

From b) and d) we obtain

ky kn!
Z Ib ’(n) I < 277t and Z Ia ”(n) l < 2-n+l
l=1 l=1

We denote by Eci ++» what remains of the series Zci after the subseries
k

kg k!

2 Z il’(n) and Z: Z cil"(n)
n n =1

are removed.

According to 1.2, there exists a sequence €+, (k=1,2, ) such that
Yk
z €;¢¢s c; +oo converges. We put Zé #s¢ c;sss. We construct by induction
'k
a sequence of points C, (n=1, 2 oo ) Sjilppose that we have already fixed
C5CpyeessCs we proceed to construct €, . We fix signs €ilr(n) (1=1,2,- -kn )

so that, by addition of — eil, (n) @7 (n) to

l-1
A~ (A + Zéf(n)ao(n)) ’

q=1
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this expression either diminishes in absolute value or changes sign*. We put

then

kn

Cr: = Cn + ?:' Eil'(n) Cil’(n)'
=1

Similarly we put

Cosy = C, + €;2(n) €;%*(n) »
I=1 l l

where eil”(") (l1= 1,2, ..., kn") are fixed so that, by adding —€iln(n) bi[” (n) to

l-1
B—(B’: + Z €i‘;’(") biq"(")) R

q=1

this expression either diminishes in absolute value or changes sign*. The series

Zei ¢; is composed of three interwoven subseries

kn k"

Z: 2 €. l(n) C f(n)’ Z Z €. "(n) C. ”(n)’ and z E u; C ,0
n n

Yk

which evidently are convergent and in which the order of terms remains un-

changed. Consequently 2= €; ¢; converges; and, as C, — C, also Zei c,;=C.

4.2. THEOREM. Let Zci be a series of complex numbers which tend to
zero, having exactly one axis of divergence. If Zc can be separated into two
subseries Zc— and Zc—, such that the convergence strip of ZC" is the
whole plane, and the attaingble points of Zc— cover a segment notkparallel

to the axis of divergence, then every complex number C is an attainable point

of 2 ¢
This theorem is a direct outcome of Theorem 3.1.

4.3. THEOREM. Let 2 c; be a series of complex numbers which tend to
zero, having exactly one axis of divergence, and let y’ be a direction perpen-

dicular to this axis. If zci can be separated into two subseries 2 c;s and
k

* Whenever this expression equals zero we put the next € equal to + 1.



702 HAIM HANANI

> c; s+ such that the convergence strip of zci' is the whole plane, 2_| ¢; o
k k

k
converges, and

(1) 0< (e, ¥ < 22 [(e;rn v (h=1,2 "),
k I1=k+1 l

then every complex number C is an attainable point of zci.

Proof. As usual, we assume that the axis of divergence is the real axis.

Let ZC'{"(l) be a tail of the series 2= c; +» such that
k k
> 1
‘af’:' (1) i < "2' ’

and let n be any real number satisfying

(2) 0<gy< lb’i—'lu(l)l.

We form finite subseries

kn
2 i (n=1,2 )
l=1

of Zci,: so that the following conditions are satisfied:
2 {n-1) o :*(n),
Lké.l < L
for every term ¢, +() (1=1,2, ¢4,k 5 n=1,2,.+-), we have
1

(3) !ail'(n)l <23

and

bil’("’)
0<

<p.2™2
a','l’(n)
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kn

(4) 1< 2 lajemy | <1+ 2773,
=1 !

Consequently we have also
kn

(5) Z Ibil'(")l <1702-n-1.

i=1
We denote by 2° c; s+ what remains from the series zci after the series
k

kn

> Z ¢if(m) and ZC;‘,:'([)
n

are removed. In consideration of

’

1
S lbel=w and 30 3 |bem| < =1,
k n =1 ! 2

we get

Z‘bil”l

k

i
8

and consequently also

Z‘ai”fl = .

k

The convergence strip of 20;’ s+ is therefore the whole plane. By Theorem
k

3.1, there exists a sequence EiI:" (k=1,2,+++ ) such that 2 Eil:" e 2 = Cp

with

(6) A=A, |B-B,| <n.

I’

We denote by Zl 21 Cim) some head and by Zk Cprntn) the corresponding
tail of 2 e 777 (n)s and we construct by induction & sequence of points G,
a increasing sequence of integers nj, and a sequence of integers k;"(p=1,2, . -)

having the following properties:
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’r

kp-l
-np.g-1
(7) lA—Ap| < 12 l“.’l"(p-l)l+2np2 (n, =n,=0),
=1
l —
(8) lB—Bp‘<§ Z‘bik"(l-v)"
np.y 1 3
(9) n- 2 < —2- Zlbik"(l’) o

It can easily be verified with the use of (6), (2), and (1) that (7), (8),
and (9) hold forp = 1.

Let us now suppose that we have already

’
kq

nq and lZcilﬂ(q) (q-—-l, 2,-..,p—1) and Cq (q=1, 2:"',P),
=1

and we proceed to construct

,
kP

ns Z ¢;7(p) » and Cp+1‘
1= !

We fix eil'("p‘-l“‘ n (U=1,2,..., kr:p. +1— 1) so that by addition of

1

-1
_eil'(np"ﬂ) ail'(np_l+1) to [4 —(AP+ Z Eiq'(,.p_lﬂ) aiq'("p-l+l))]’
q=1

this expression either diminishes in absolute value or changes sign. Now

’ . -
Eio'("p-l+l) , where Q = k"p-l*‘l’ is fixed so that

a

B -—-(Bp + Z Eil’("p-l +1) bil’("p-1+l)) 74 0,

=1

We put then

a

CP' = CP + IZ €ill(np_l+l) Cil'("p-l+l)’
=1
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and fix n, > n,., SO that

1
. -np -— — 4
(10) n-2" << |B-B

-l+3’.”’

We proceed as before and fix Eilv(q) (1=1,2,., kq'; qg= np_l+2, n,

n, ) so that by addition of

kl

q-1 r
~-€ 4 -— ’ =
eiln(q) aiz (g) to [A (AP + €;

r=np.

-
+
N
©»
L]
—

Tip kq
\B - (B}: + Z Eilo(q) bil'(q)) > lB - Bp"’
g=np.1+2 l=1
we leave ei;(q)=gi;(q); otherwise we put Eil'(q)'_'—gil'(q)’ In either case,

we denote

Tp k;
e rd
Cp = Cp + z z Eil'(‘I) cil'(q)'

g=np.1t2  Il=1

By (8), (5), and (9), we have

|B-B82|< |B-B,|+|B,-B"|

1 — “Npa.1=~1 3 _
<52__‘,|b,-,:'<p)|+n-2 P <Zzlb"k"“”l'

On the other hand we have, by (10), | B - Bp"l >|B- Bp’l > 6n-2 P, Conse-
quently,

-n ’” 3 _
(11) 67]-2 p<lB—Bp I<ZZ|bikn(p)l.

We now fix €7 (p) SO that
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B~ (B + € b o) | < | B =B,

or

[B-(B)+ €7 (») bilwp))] (B~ B) <0,

and €i ’’(p) (l = 21 39 ey, kp") so that by addition of
1

l-1

- N4 {4 B_‘ B" .2 x4
€7 () by (p) to [ ( 2 G b,q'(p))],

q=1

this expression diminishes in absolute value without changing sign, b, 2P)

being the last term of Zb-u(p) for which such operation is poss1ble.

Such b, s+ (p) exists in view of (11) and (1).
ko
We put

’,
kp

Cp+1 C" + Z 6 u(p) C. u(P).
l=1

o

The construction of n_, 2721 ¢;##(p)s and C . is thus completed. It re-
. o A . . e
mains to show that conditions (7)-(9) are fulfilled for these indices.

We have

A=Ay | < 1A=A7] 4 |47 =A2] + |47 - 4

P'H p+ll;

but in view of (7), (4), and (3),

4’ 'np.1-3
lA AP l S l= 1, 2,‘rPnaxkn lail’("p.l+l)| < 2 ’
p-1 t
g 4 , ~Np.1-4
Ay = A7l < 1A-A7] + z=1.21?ﬁ’f.krfp ‘a"z (np) | < 3.2 ’

and

=
TN
~

IAPH— Ap+l l < 'ail"(p)I'

1

~
L]
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Consequently,
kp’
“np.-1
|A— p+lt<Zlailn(p)l+2npl 9
I=1
so that (7) holds for this index.
For (8), we note that clearly
B -

P+ll < 1b "(P+l)l

and therefore, in view of (1),

'B p+1 Z:l

Finally, if
[B - (BP” + ei;' (») bi{f(p))] « (B - Bp") >0,

then in view of (11) we have

,
kP

2lbrpenl= 2l beim | = 22 b eyl 2 2N b7y | = [B =B
k k o k
1 _ -
>Zzlbi’:'(l’)l>2n.2 .
If, on the other hand
(B~ (Bp" € bil"(p))] - (B- BY) <o,
then by (1) and (11) we have
2|5 en| 2 [B= B > 6927,

Thus (9) holds in either case.

In order to prove that 2 ¢; c; converges it is sufficient to point out that this

series is composed of three interwoven subseries
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kl

n
> €57 Ciret s > 2 €;7(m) G/ (n)» and Zéfk"m €

n =1

which are evidently convergent and in which the order of the terms remains

unchanged.
As, according to (7) and (8) above, we have Cp — C, it follows that
> €;¢; =C.

4.4. The following examples illustrate the way in which the above result

may be applied:

a) Let
1 1
2 + -
n \//-;l_ n
be the series in question.
If we put
1 1

+—il,

7 \VoF ok

that is, the subseries of those terms for which n is a power of 2, and 21 Cp s
the remaining subseries, then the assumptions of Theorem 4.3 are fulfilled,

and therefore every complex number C is an attainable point of our series.

b) The terms of the subseries Zlk c;s» may be composed of two or more

. . k
terms of the series ZCL., as the following example shows:

ch = Z(an +l L'),

- n
where

0<a,,, <a, (n=1,2,+++) 0, —0, and na, — o.

If we put

> 1 1
rr = (a —Qa )+(_ - )L],
;an k};; [ sk ™%kt Tgp T gy
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and 2-; cp” the remaining subseries, the assumptions of Theorem 4.3 are fulfil-

led, and in this case too every complex number C is an attainable point of  ¢;.
5. Further considerations. We make the following observations.

5.1. For an absolutely convergent series zci of complex numbers, the
attainable points form a perfect set. The proof does not vary from the proof of

a well-known similar theorem for series of real numbers (see 1.1).

5.2, Instead of €= t1, more general convergence- and sum-factors have
been introduced by E. Calabi and A. Dvoretzky [1]. They call a set Z of com-
plex numbers a sum-factor set if, given any series Zci (2| c; | = o, ¢; —0),
and any number C, there exists a sequence {, € Z (n=1, 2, -.) for which
Zn ¢, ¢, = C. It was shown by them that a bounded set Z is a sum-factor set

if and only if O is an interior point of its convex hull.

5.3. All the theorems proved in this paper may reasonably be extended to

results concerning vectors in n-dimensional Euclidean spaces.
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ON THE PRIME IDEALS OF THE RING OF ENTIRE FUNCTIONS

MELVIN HENRIKSEN

1. Introduction. Let R be the ring of entire functions, and let K be the com-

plex field. In an earlier paper [6], the author investigated the ideal structure of
R, particular attention being paid to the maximal ideals. In 1946, Schilling [ 9,

Lemma 5] stated that every prime ideal of R is maximal. Recently, I. Kaplansky
pointed out to the author (in conversation) that this statement is false, and con-
structed-a nonmaximal prime ideal of R (see Theorem 1(a), below). The purpose
of the present paper is to investigate these nonmaximal prime ideals and their
residue class fields. The author is indebted to Prof. Kaplansky for making this

investigation possible,

The nonmaximal prime ideals are characterized within the class of prime
ideals, and it is shown that each prime ideal is contained in a unique maximal
ideal. The intersection P* of all powers of a maximal free ideal M is the largest
nonmaximal prime ideal contained in M. The set Py of all prime ideals contained
in M is linearly ordered under set inclusion, and distinct elements P of Py cor-
respond in a natural way to distinct rates of growth of the multiplicities of the

zeros of functions f in P,

It is shown that the residue class ring R/P of a nonmaximal prime ideal P of
R is a valuation ring whose unique maximal ideal is principal; R/P is Noetherian
if and only if P = P*. The residue class ring R/P* is isomorphic to the ring
K{z} of all formal power series over K. The structure theory of Cohen [2] of

complete local rings is used.

2. Notation and preliminaries. A familiarity with the contents of [6] is as-
sumed, but some of it will be reproduced below for the sake of completeness.

DeEFiniTION 1. If f £ R, and ] is any nonvoid subset of R, let:

(a) A(f)=[z€K|f(z)=0] (Note that multiple zeros are repeated. Unions
and intersections are taken in the same sense. );

(b) A =[A(N)|fel)

Received December 5, 1952,
Pacific J. Math. 3 (1953), 711-1720

711



712 MELVIN HENRIKSEN

(c) A*(f) be the sequence of distinct zeros of f, arranged in order of in-

creasing modulus.
i

In 1940, Helmer showed [5, Theorem 9] that if A(f) n A(g) is empty, there
exist s, ¢ in R such that

(2.1) sf+tg=1.
More generally, if d is any element of R such that
A(d) = A(f) n A(g),

then d is a greatest common divisor of f and g, unique to within a unit factor, and
the ideal (f, g) generated by f and g is the principal ideal (d). It easily follows
that every finitely generated ideal of R is principal.

He proved this by showing that if {a,} is any sequence of complex numbers
such that

lim a, = ©,
n-— oo

and wp, 4 is any set of complex numbers, then there is an s in R such that
(2-2) S(k)(an)=wnk’ (n=1’2"";k=0""71n)°
The latter was shown independently by Germay [3 1.

REMARK. In[4], Germay extended (2.2) to the ring of functions analytic in

|z| <r, where lim a, lies on | z| =r. Hence (2.1) follows for this ring, as

n-—oo

will most of the results in [6] and the present paper, with minor modification.

It follows that if [ is an ideal of R, then A (I) has the finite intersection prop-
erty. So we make the following definition.

DerFmNiTION 2. If nfel A(f) is nonempty, then [ is called a fixed ideal.

Otherwise, [ is called a free ideal.

DEFINITION 3. (a) If A*(f) ={a,}, let 0,(f) be the multiplicity of a, as a
zero of f.

(b) If A is a nonvoid subset of A*(f), let 0,(f:4) be the function 0,(f)
with domain restricted to 4.

(c) Let m(f) = sup On(f),iff;QO.Letm(O)=oc.

n>1

3. Prime ideals of R. Kaplansky’s construction of nonmaximal, prime ideals
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of R is given in Theorem 1(a), below. The only fallacy in Schilling’s demon-
stration (referred to in the Introduction) is the false assumption that a prime
ideal necessarily contains an f such that m(f) = 1. Hence a characterization of

these nonmaximal prime ideals may be given.

THEOREM 1. (a) There exist nonmaximal prime ideals of R.

(b) A necessary and sufficient condition that a prime ideal P of R be non-
maximal is that m(f) =, forall f € P,

Proof. (a) Let
S=[feR|m(f) < e].

Clearly, S is closed under multiplication and does not contain 0. If g # 0is in
R - S, g is contained in a prime ideal P not intersecting S (see [8, p.105]).
Since, as noted in [ 6, p.183], any maximal ideal contains an f such that m(f) =
1, P cannot be maximal.

(b) The sufficiency is clear from the above. If f € P with m(f) < «, the
primality of P ensures that there is a g € P with m(g) = 1. Suppose the maximal
ideal M contains P, and let & € M. By (2.1), there is a d € M such that

A(d) = A(g) n A(h).

Now g = gld, where A(gl) n A(d) is empty, since m(g) = 1. Since P is prime,
it follows that either g € P or d € P. But M # R, so g, is not in P. It follows
that d, and hence 4, is in P, whence P = M,

COROLLARY. Any prime, fixed ideal of R is maximal.

THEOREM 2. Every prime ideal P of R is contained in a unique maximal
(free) ideal M.

Proof. By Theorem 1(b) and [6, Theorem 4], the ideal (P, f) is maximal if
m(f) =1 and 4 (f) intersects every element of A (P). Let f, f, be any two such
functions, so that M = (P, f ) and M, = (P, f,) are maximal ideals containing

P.1f
A(d) = A(f,)) n A(f,),
then M = (P, d) is a maximal ideal containing P, and Ml CcM, M2 C M, so that

M =M, =M.
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More concrete constructions of nonmaximal prime ideals are given below in
terms of maximal free ideals.

THEOREM 3. If M is a maximal free ideal of R, then

M

1

P* =
k

n D38

is a prime ideal, and is the largest nonmaximal prime ideal contained in M.

Proof. Since every finitely generated ideal of R is principal, P* is easily

seen to be the set of all f € R expressible in the form hkdllz’ withd, € M, k=1,

2,-++. Thus, if fE M, f€ P* if and only if m(f/e) =  whenever e divides f
and e € R — M, (whence f/e € M). Suppose f, f, are not in P*. Clearly, f, 1,
is not in P* except possibly when both f, and f, are in M. In this case, there
exist e; dividing f, with e; € R — M such that m(fi/ei) < w, (i=1, 2). Since
M is prime, e, e, € R — M and m(flfz/ele2) < m(fl/el) + m(fz/ez) < w. So
f,f, is not in P*, whence P* is a prime ideal.

The second part of the Theorem is a direct consequence of Theorem 1 (b).

We proceed now to identify the remainder of the class P, of prime ideals con-
tained in M. This is done by considering the rates of growth of the functions
0, (f) on the filter A(M). Results of Bourbaki [1] are used without further ac-
knowledgement.

DEFINITION 4. If f, g € M, and there is an e € M such that
A*(e) C A*(f) n A% (g)
with
0n(f:4%(e)) 2 0,(g:4%(e)),
then f> g (g < /).
It is easily seen that the relation >”’ is reflexive and transitive. Moreover:
LEMMA L. If f, g € M, eitherf > g or g > f.

Proof. Let
A(d) = A(f) n A(g),

and let
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A =[z € 4%(d)|0,(f:1z}) > 0,(g:121)],
A,=1z¢€ A*(d)|0,(f:tz}) < 0,(g:tz})].

Since 4, n4, is empty, 4, u 4, = A*(d); and since M is prime, one and only
one of 4,, A, € M. Hence f > g or g > f.

DEFINITION 5. Suppose f, g € M.

(a) If there exist positive integers N;, N, such that le > g and gN2 > f,
then f ~ g.

(b) If f > gV for all positive integers N or if f=0, then f >> g (g << f).

LEMMA 2. (a) The relation ¢ ~’ is an equivalence relation.
(b) The relation ¢ >> ' is transitive.

(c) Iff, g € M, one and only one of f ~ g, f >> g, [ << g holds.
Proof. The relations (a) and (b) follow easily from the observations that
0,(f¥) = N.0,(f), and if f > g then f¥ > gV.

It is clear that at most one of the relations (c) can hold. By Lemma 1, f > g
or g > f. Suppose f > g and not f ~ g; then f > gV for all N, whence f>> g.
Similarly, if g > f.

LEMMA 3. Let f be an element of a prime ideal P of Py. If g > f, or g ~ f,
then g € P.

Proof. Suppose first that g > f. Then, as is evident from the construction in

Lemma 1, we can write
f=fid,8=872,
where
A*(dl) = A*(dz)y On(dz) 2 On(dl)’

and f , g, are not in M. Hence d, € P; and, since d, is a multiple of d,, d, and
g € P.If g ~ f, then g¥ > f, for some N. By the above, g" € P. But P is a prime
ideal, so g € P.

THEOREM 4. (a) Let Q be any subset of M, and let

Py =[feM|f>> g, forall ge Q].
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Then P o is a prime ideal.
(b) IfP is a prime ideal, then P = PQ, where Q = M - P.

Proof. (a) Note first that if 8,78, € M and 8,8, #0
A = A*(gl) n A'*(gz).
then
0,(g, — 8,:4) = min{0,(g,:4), 0,(g,:4)}.
If g €M, 8,€R, 8, 8, # 0, then
0n(g,8,:4%(8)) = 0a(g,:4%(g,)) + 0,(5,:4%(g,)).

It now follows from the lemmas above that P is an ideal. The primality of P fol-

lows from the observation that
Pe=[feM| f>g]
is a prime ideal, and that P is an intersection of a descending chain (under set
inclusion) of ideals of this form.
(b) If P is a prime ideal, the relations f € P, g € M — P, imply that f >> g,
by Lemma 3.

CoROLLARY. The ideals of Py are linearly ordered under set inclusion.

By the Theorem above, every element of Py is the upper class of a Dedekind
cut (under << ). If P contains a least element f, then

P=P;=[g€M|g>>for g ~ fl.

If M — P has a greatest element g, then P = P, as defined in the proof of the
theorem. It is clear that Py contains the greatest lower bound and least upper

bound of any set of elements.
Note, moreover that Pfl = sz (Pft = Pf);) if and only if f ~ f,.
LEMMA 4. The set P* — {0} has no countable cofinal or coinitial subset.

Moreover, if {fl b {fz .} are two sequences of nonzero elements of P*, such
’ ’

that

funss > fin 2> Lym > Ly for all n, m,

then there is an f € P* such that
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fx,n >> f >> fz,m’ for all n, m.

Proof. See[1, p.123, exercise 8.

The author is indebted to Dr. P.- Erdés and Dr, L. Gillman for the following

Theorem,
THEOREM 5. The set P, has power at least it

Proof. It is implicit in arguments of Hausdorff and Sierpinski [ 10, p.62] that
every set satisfying Lemma 4 contains a subset similar to the lexicographically
ordered set S of w,-sequences of 0’s and 1’s, each having at most countably
many 1’s By [11], S is dense in the set of all dyadic w,-sequences, which has
power 2®1, Since the set P, is complete, card (P, ) > ot

Since card (PM) < 2¢, where c¢ is the cardinal number of the continuum, we

have:
COROLLARY. If 2Rl = 2%, in particular if N, = ¢, then clard (Py) = 2°.

4. Residue class rings of prime ideals. We adopt the following definition of
Krull [ 7, p.110]:

DEFINITION 6. An integral domain D such that if f, g € D, then f divides g
or g divides f, is called a valuation ring.

It is easily seen that a valuation ring possesses a unique maximal ideal, con-

sisting of all its nonunits.

THEOREM 6. The residue class ring R/P of a prime ideal P of R is a valua-

ring whose unique maximal ideal is principal.
First, we prove a lemma.
LemMA 5. IfP € P, then f is singular modulo P if and only if f € M.

Proof. Consider the equation
fX=1 (mod P).

If f € M, the equation clearly has no solution since A (f) n A(p) is nonempty for
all p € P (see [ 6, Theorem 4]).

On the other hand, if f is not in M, there is a p € P such that A(f)N A(p)
is empty. Let A*(p) = {a,}, with 0,(p) = I,, in which case f(a,) # 0. The
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equation in question has a solution if and only if there exists a g € R such that

(i) glap) = {f(ag)}™,

and
(i) (f)%) (ay) = 0, k=1, ,1,.

Since

k
(f) ) = g% + 30 () (O gk, where (¥) =

i=1
(ii) is satisfied if
k . .
(iii) g% (an) = - {fla)1™t 32 (5) f9) (ay) g7 (ap).
i=1

Such a g can be constructed by (2.2), whence

fe=1 (modP).

Proof of Theorem 6. By Lemma 5, every element of R ~ M is a unit, so we
may assume that f, g € M, Let

A(d) = A(f) n A(g),

so that 4(f/d) n A(g/d) is empty. Clearly, at least one of f/d, g/d € R - M,

and hence is a unit modulo P. So R/P is a valuation ring.

If, in particular, f is chosen to be in M — M2, f/d cannot be in M, so gis a
multiple (modulo P) of f. Therefore the unique maximal ideal M/P of R/P is gen-
erated by f, and hence is principal.

If P £ P*, R/P possesses the nonmaximal prime ideals P,/P, where P,is a
nonmaximal prime ideal of R properly containing P. Moreover:

THEOREM 7. The residue class ring R/P of a nonmaximal prime ideal P is
Noetherian if and only if P = P*,

Proof. Every nonzero element of M — P*is in M*E — ME-1 for some unique
positive integer k. Hence every nonzero ideal of R/P* is of the form (fk), where
feMm- M.

If fe P ~ P* construct f; such that
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A*(f,) = A*(f)

and

0 (fy) = max 10, (f) - &, 1}.
Then f,, , is a proper divisor (modulo P) of f,. Hence the ideal generated by all
the f, does not have finite basis.

The residue class ring R/P* is concretely identified below by the use of the

structure theory of complete local rings [2] of Cohen. First we make a definition.

DEFINITION 7. (a) If the nonunits of a Noetherian ring D with unit form a
maximal ideal M such that

D is called a local ring.

(b) If fx’ N fn is a minimal basis for M such that fl, ooy f; generate a
prime ideal (i =1, ..., n), S is called a regular local ring.

(¢) Using the powers of M as a system of neighborhoods of 0, (thereby to-
pologizing D), we call D complete if every Cauchy sequence in D has a (unique)
limit.

THEOREM 8. The residue class ring R/P* is isomorphic with the ring K{z}
of all formal power series over K.

Proof. By Theorems 3, 4, 6, R/P* is a local ring and is trivially regular
since M/P* is principal. Cohen [2, Theorem 15] has shown that every regular,
complete, local ring, whose unique maximal ideal is principal, and such that D/M
is isomorphic to K, is isomorphic to K{ z}. By [6, Theorem 6],

(R/P*)/(M/P*) = R/M = K.
The proof is completed by the following Lemma.

LEMMA 6. The residue class ring R/P* is complete.

Proof. Let {f, } be any Cauchy sequence in R/P*. We may assume without
loss of generality that f, . - f, € M* since a Cauchy sequence has at most
one limit. Let
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A =lap e, -V e A,
with all a, distinct. Let

By = Ay n Alfyy) = i)

Clearly, B, € A(M), and ﬂ;°=l B, is empty. Hence, we may construct by (2.2)
an f € R such that

f(z) = f,(2) for z € B,
and
[ (2) = £ (2) for z € B, .
Then
fp = f (mod M),
whence
Ly, f=f.
REFERENCES

1. N. Bourbaki, E’tude locale des fonctions, Actualités Sci. Ind., No. 1132, Hermann
et Cie., Paris, 1951.

2. L. S. Cohen, On the structure and ideal theory of complete local rings, Trans, Amer.
Math, Soc. 59 (1946), 54-106.

3. R. H. J. Germay, Sur une application des théorémes de Weierstrass et de Mittags
Leffler de la théorie générale des fonctions, Ann. Soc. Sci. Bruxelles, Ser. I, 60 (1946),
190-195.

4. ————, Extension d’un théoréme de E. Picard relatif aux produits indéfinis de
facteurs primaires, Bull. Roy. Sci. Liége 17 (1948), 138-143.

5. O. Helmer, Divisibility properties of integral functions, Duke Math. J. 6 (1940),
345-356.

6. M. Henriksen, On the ideal structure of the ring of entire functions, Pacific J. Math.
2(1952), 179-184.

7. W.Krull, Idealtheorie, Ergebnisse der Mathematik, Julius Springer, Berlin, 1935.
8. N. McCoy, Rings and ideals, Mathematical Association of America, Buffalo, 1950.

9, O. F. G. Schilling, Ideal theory on open Riemann surfaces, Bull. Amer. Math. Soc.
52 (1946), 945-963.

10. W. Sierpifiski, Sur une propriété des ensembles ordonnés, Fund. Math, 36 (1949),
56-67.

11, ———, Sur un proble‘me concernant les sous-ensembles croissants du continu,
Fund. Math. 3(1922), 109-112.

Purpue UNIVERSITY



COMPLETELY CONTINUOUS NORMAL OPERATORS
WITH PROPERTY L

IRVING KAPLANSKY

1. Introduction. Two matrices 4 and B are said to have property L if it is

possible to arrange their characteristic roots

A: AI,AZ’ cee, An

B: pyspas eees pn

in such a way that for every «, the characteristic roots of a4 + B are given
by ®A;+ pj. In [1] this property is investigated, and among other things a con-
jecture of Kac is confirmed by showing that if A and B are hermitian, then they
commute. In [2] this is generalized by replacing ‘‘hermitian’’ by ‘‘normal’’.

In this note we launch the project of generalizing such results to (complex)
Hilbert space. However, since it is not clear how to formulate the problem for
general operators (especially in the presence of a continuous spectrum), we
shall content ourselves with the completely continuous case. For self-adjoint
operators we obtain a fully satisfactory generalization (Theorem 1). For the
more general case of normal operators we find ourselves obliged to make an
extra assumption roughly to the effect that nonzero characteristic roots are
paired only to nonzero roots. In the finite-dimensional case such an assumption
would be harmless; indeed, by adding suitable constants to A and B, we could
even arrange to have all the characteristic roots of 4 and B nonzero. It would
nevertheless be of interest to determine whether this blemish can be removed
from Theorem 2.

2. Remarks. Before we state the results, some remarks are in order. The
number A is a characteristic root of 4 if 4 — A has a nonzero null space. If
A is a completely continuous normal operator, its characteristic roots are either
finite in number or form a sequence approaching zero. We have an orthogonal
decomposition of the Hilbert sﬁace:

Received August 23, 1952. The preparation of this paper was sponsored (in part) by
the Office of Naval Research.
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H=H(0) @ HA) @ HA)® «-- s

where A acts on H()\;) as a multiplication by A;. The dimension of H(A;) is
called the multiplicity of the characteristic root A;; it is finite except possibly

for the characteristic root O.

Now even though A and B are both to be normal, &4 + B = C need not (a
priori) be normal. We must accordingly give further attention to the meaning of
the multiplicity of a characteristic root v of C. For our purposes virtually any
reasonable definition would do; we select the following one. We note that the
null spaces of the operators C —vI, (C —vI)? «.. form an ascending chain,
and we form their union; the dimension of this union is the multiplicity of ».

Note that this agrees with customary usage in the finite-dimensional case.

We shall need the (easily proved) additivity of the multiplicity. In detail:
suppose H is an orthogonal direct sum of two closed subspaces both invariant
under C; then the multiplicity of v in the whole space is the sum of its multi-

plicities in the two subspaces.

3. Results. We are now ready to define property L. We do this in a way
that is adequate for the proof, although it does not treat A and B symmetrically.

Let A and B be completely continuous normal operators. Let there be given
two sequences A;, pu; of complex numbers. We say that A and B have property L

(relative to the two sequences) provided:

(1) The A’s constitute precisely the nonzero characteristic roots of 4,

each counted as often as its multiplicity.

(2) If, for a certain & and v, there are k values of i such that v= aX; + p;,
then 4 A + B has v as a characteristic root at least of multiplicity k.

THEOREM 1. Let A and B be completely continuous self-adjoint operators
with property L. Then A and B commute.

THEOREM 2. Let A and B be completely continuous normal operators with
property L, relative to the sequences A; and p;. Suppose further that the p’s

are all nonzero. Then A and B commute.

4. Proof. The two theorems can conveniently be proved simultaneously.
We can suppose that A, is a characteristic root of maximum absolute value, that
is, [Aq] = (141

definition of property L, with & =0, we see that y is a characteristic root of

. For brevity write A=X;, pu=p,;. By an application of the

B. We are going to prove that there exists a nonzero vector x with
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Ax = \x, Bx = px.

If o # 0, we are ready to proceed. If = 0, then by hypothesis both 4 and B
are self-adjoint. We replace B by 4 + B which is again self-adjoint; this re-

places u by
A+ p=2A#0.

So in any event we are entitled to assume that u is nonzero.

Let H(p) be the (finite-dimensional) characteristic subspace of B for the
characteristic root 1, and K the orthogonal complement; let E and F be the
projections on H(u) and K. We note that B — u/ is nonsingular on K; let S be
defined as its inverse on K and as 0 on H(p). Thus we have

(1) SF(B-pul)=F.

Next we consider £(A4 -~ Al )L as an operator on H(u), and we are going to
prove that it is singular. Suppose the contrary and define R to be its inverse
on H(p), 0 on K. Then R will satisfy

(2) R(B-pul)=0, R(A-AE=E, RF=0.
Choose & # 0 so that
(3) HaSF(A ~XI)(F~-RAF)|| < 1.

By hypothesis, the operator «4 + B has &A + p as a characteristic root, say

with characteristic vector y # 0. We have
(4) WA -ADy+(B-pl)y=0.

Write y = Ey + Fy in (4), apply R, and then use (2); we find that Ey = — RAFYy,

and so
(5) y=Ey+ Fy=(F~RAF)y.
Next apply SF to (4), and use (1) and (5):

(6) Fy=—aSF(A -\I)(F = RAF)y.

On contemplating (6) in conjunction with (3) we see that Fy must be 0. But
then y = 0 by (5). This contradiction shows that we were in error in supposing

E(A-MA)E to be nonsingular on H(p). Consequently we can find in H(u)
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a nonzero vector x annihilated by £(4 — AI)E. Then since Ex = x, we have

EAx = Ax. Form the orthogonal decomposition
(7) Ax = EAx + FAx = \x + FAx.
But

HAx|] < IA]{lx]],

since the norm of 4 is |A|. Hence in (7) we must actually have Ax = Ax. Also

Bx = px since x is in H (p), and we have fulfilled our initial objective.

Let M be the orthogonal complement of x. It follows from the additivity of
multiplicity (see above) that when the operator &4 + B is confined to M, the
multiplicity of its characteristic root & A + p is diminished by precisely 1, while
all other characteristic roots have unchanged multiplicity. Thus 4 and B, con-
fined to M, satisfy property L relative to the sequences A; and y; for i > 2.
The procedure may now be repeated to get within M another joint characteristic
vector for A and B. In this way we proceed down the nonzero characteristic
roots of A. Finally we are left with the null space of 4, which of course com-

mutes with whatever is left of B. Hence 4 and B commute.

5. Remark. As soon as we know that 4 and B commute (and hence can be
simultaneously put in diagonal form), we can assert that they satisfy property
L symmetrically, and indeed various stronger statements are obvious conse-

quences of simultaneous diagonal form.
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SOME RANDOM WALKS ARISING IN LEARNING MODELS 1

SAMUEL KARLIN

Introduction The present paper presents an analysis of certain transition
operators arising in some learning models introduced by Bush and Mosteller
[2]. They suppose that the organism makes a sequence of responses among a
fixed finite set of alternatives and there is a probability p' at moment n that
response s will occur. They suppose further that the probabilities ps("ﬂ) are
determined by the p, the response s, made after moment n, and the outcome or
event rp, that follows response s,. We shall examine in detail the one-dimensional
models which occur in their theory. These models can be described in simplest
form as follows: There exist two alternatives A; and A,, and two possible out-
comes r, and r;, for each experiment. There exists a set of Markoff matrices
F;j which will apply where choice i was made and outcome rj occurs. Let p
represent the initial probability of choosing alternative A;, and 1 — p the prob-
ability of choosing 4. Depending on the choice and outcome, the vector (p,
1 -p) is transformed by the appropriate F;; into a new probability vector which
represents the new probabilities of preference of 4, and 4,, respectively, by
the organism. The psychologist is interested in knowing the limiting form of the
probability choice vector (p, 1 —p).

The mathematical description of the simplest process of this type can be
formulated as follows: A particle on the unit interval executes a random walk
subject to two impulses. If it is located at the point x, then x — Fix = ox
with probability 1~ ¢(x), and x — Fyx = 1 — & + 0x with probability ¢ (x).
The actual limiting behavior of x depends on the nature of ¢ (x ). The transition
operator representing the change of the distribution describing the position of
the particle is given by

(TF) (x) = '[0”/"[1-<1> (t)1dF + /;‘"'”“Va ®(t)dF.

We introduce an additional operator, acting on continuous functions, and

given by
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Un(t) = (1 = ¢(2)) n(ot) + ¢(t) m(l =+ at).

It turns out that T is conjugate to U; hence knowing the behavior of U one ob-
tains much information about T. This interplay shall be exploited considerably.
The operator T is not weakly completely continuous, nor does it possess any
kind of compactness property; thus none of the classical ergodic theorems apply
to this type [3]. The limiting behavior of T"F depends very sensitively on the

assumptions made about the operators F; and the probabilities ¢ (x ).

Section 1 treats the case where ¢(x)=x. This causes the boundaries 0
and 1 to be absorbing states, and thus the limiting distribution concentrates
only at these points. However, the concentration depends on the initial distri-
bution. By examining the corresponding U in detail, we have been able to obtain
much additional knowledge. For example, we have shown that if 7 is m times

77)(r)

continuously differentiable then (U" converges uniformly for each 0 < r <
m — 1. It is worth emphasizing that the knowledge of the convergence of the
distributions does not imply the uniform convergence of U"7 for any continuous
function 7. Additional arguments are needed for this conclusion. In this con-
nection, we finally remark that R. Bellman, T. Harris, and H. N. Shapiro [1]
have analyzed only this case independently. They did not point out the con-
nection between the operators T and U. The methods they used to establish the
convergence of T"F are probabilistic. Qur paper in § 1 overlaps with theirs in
some of the theorems, notably 6, 8, 9, 12, and 15; our results subsume theirs,
and their proofs are entirely different from ours. Section 2 considers the case

where ¢ (x) is monotone increasing and
lp(x)-d(y)| < u< 1.

This leads to the ergodic phenomonon, or steady-state situation, where the
limiting distributions are independent of the starting distributions.

In §3, we examine the situation ¢(x)=1-x. This corresponds to com-
pletely reflecting boundaries, and of course the ergodic phenomenon holds.
Other interesting properties of the operators are also developed. We consider
in $4 the case where ¢ (x) is linear and monotonic decreasing. Section 5 intro-
duces a further possibility where we allow the particle to stand still with cer-
tain probability. This type has been statistically examined by M. M. Flood [5].
In §$6 we investigate the general ergodic type where ¢ (x) is not necessarily
linear. The arguments here combine both abstract analysis and probabilistic
reasoning involving recurrent event theory. Furthermore, it is worth emphasizing,
the proofs given in $ 6 apply without any modifications to the case where we

allow any finite number of impulses acting on the particle. In a future paper we
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shall present the extension of this model to the circumstance where changes
in time occur continuously and the possible motion of the particle has a con-

tinuous or infinite discrete range of values.

The last section studies some of the properties of the limiting distribution
in the ergodic types. It is shown in all circumstances that the limiting distribu-
tion is either singular or absolutely continuous, and the actual form depends

on the value of & + o.

Most of the analysis carries over to higher dimensional models where more
alternatives are allowed. In a subsequent paper we shall present this theory
with other generalizations. We finally note that this paper represents a combina-
tion of abstract analysis and probability; it is hoped that the methods used
will be useful for future investigations of this type.

It has been brought to my attention by the referee that the material of [6],
[7], (8], and [ 9] relate closely to the content of this paper. This techniques

seem to be different.

1. A particle undergoes a random walk on the unit interval subject to the
following law: If the particle is at x, then after unit time x — & + (1 - &)«
with probability x, and x — ox with probability 1 — x, where 0 < &, o < 1. If
F (x) represents the cumulative distribution describing the location of x at the
beginning of the time interval, with the understanding that F(x)=1 for x > 1
and F(x)=0 for x < 0, then the new distribution locating the position of the
particle at the end of the time interval is given by

x/0O (x-a) ( 'a)
(1) G(x) = TF=j;/ (l—t)dF(t)+j; /=) R ).

Indeed, the probability dG (x) that after unit time the particle is located at
x can materialize in two ways; namely, the particle was at x/0 and moved with
probability 1-=x/0 to x, or it jumped with probability (x —o)/(1-a) from
(x ~)/(1 =) to x during the unit time interval. This yields

dc(x)=(1_.".) dF(f-) Paduki dp(x"“),
o o 1-« 1-a

which easily implies the conclusion of equation (1).

Equation (1) represents the transition law for the particular Markoff process
on hand.

The transformation T is easily seen to furnish a linear bounded mapping
of the space of functions of bounded variation (V) on the unit interval into
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itself. Furthermore, T takes distributions into distributions and is of norm 1.
This section investigates the behavior of T" for large n with the aim of deter-

mining limiting properties of T".

We consider the following additional mapping U applied to the space of

of continuous functions defined on the unit interval C[0, 1]:

(2) (Un)(t) = (L=t)m(ot) + tnlc+ (L =0)t).

The operator Uhas a probabilistic interpretation which we shall speak about
later; but its direct relevance to T is given in Theorem 1. The inner-product

notation

(my F) = fo‘ #(2) dF (2)

will be extensively used.
THEOREM 1. The conjugate map U* to U is T.

Proof. It is necessary to verify that (Um, F) = (m, TF) for any continuous
function 7(¢) and any distribution F(¢) with F(¢)=1for¢ > 1 and F(t)=0
for t < 0~. Indeed,

(Um, F) =f(1-—t)1r(at)dF(t) +jt1r(0(+(1——<2()t)dF(t).

By a change of variable, we get

t t t—-U t -0
(Unm, F) =f(l—;) ﬂ(t)dF(:;)-*- fﬂ(t) = dF(l-—OL)

-_-/n(t)d(;(t) where G(t)=TF.

The value of Theorem 1 is that, by studying the iterates of U", we deduce
corresponding results about the conjugate operators T". We proceed now to
study this operator U. To be complete, we should denote the operator by U, 4,
but where no ambiguity arises we shall drop the subscripts. Let W denote the
isometry

Wa(t) = (1l -1t).
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Clearly W=! = W. We now observe the identity
(3) Ul-a, legc = WUo-,aW.

The mapping (o,6) — (1 =&, 1 —0) of the parameter space into itself has
the effect of mapping the triangle of the unit square bounded above by 1-t—-0=0
into the other triangle located in the unit square. This isomorphism property
(3) enables us to restrict our attention to the case where 1 -« — o > 0. Cor-
responding theorems valid for the other circumstances, where 1-d -0 < 0,
are deduced easily by virtue of (3) and will be summarized at the end of this
section. From now on in §2, unless explicitly stated otherwise, we shall as-
sume that 1 -0t — o > 0.

The next two theorems, which we state for completeness, are immediate

from (2).
THEOREM 2. The operator U preserves the values at 0 and 1.

THEOREM 3. The operator U is positive; that is, it transforms positive
continuous functions into positive continuous functions.

In particular, if 7,(¢) > #,(t), for all ¢, then Umy > Un,.
THEOREM 4. If m % «ee, ™ > 0, then Um, (Un)’ -~ , (Un)™ > 0.
Proof. A simple calculation yields
(4) (UmW=(1-t)o" 7™ (ot) +t(1-a)" 2™ (a+ (1 -act)t)
+n (=)™ 7D (g 4 (1=x)t) = no ™' 2\ (0e).

Since
ot <t<a+(l-a)e,
we conclude since "1 (¢) is monotonic increasing that
7™ (o 4 (1=a)t) > 7V (at) > 0.
The assumption that 1~ > o implies that (1 - )* ! > o™!, As 7" () > 0,

it follows that (Um)® > 0. The same conclusion and argument apply to
(Um) @ for 0 <i<n-L
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In particular, U transforms positive monotonic convex functions into func-
tions of the same kind. Although in the proof of Theorem 4 we assumed the
existence of derivatives, the argument can be carried through routinely at the
expense of elegance, by use of the general definitions of convexity and mono-

tonicity.

THEOREM 5. If ¢ > 7@ (2) >0 for 0 < i < n, then (U)®) (1) < K; for
0 <i <n and hence (U’n)(i)(t) < K.

Proof. The proof is by induction. By Theorem 2, the theorem is trivially
true for i = 0. Suppose we have established the result for the ith derivative
with 0 < i < n - 1, Equation (4) yields

(5) (U)W (1) = 2™ (1) = ¢ () 7D (1) = ¢5(0) 2 5)

+[(1-a)" =11 (1),

where c¢{(&) and c,(0) are constants depending only on ¢t and o respectively,

and on n. If
2" (1) > M(a, 0, ¢),
where M is a constant sufficiently large, then (5) yields
(Um) ™) (1) < 2@ (1).
Since ¢{(®) and c,(0) do not depend on %, and by the induction hypotheses
|(Ukm)™ 1 (x)| < M

uniformly in % and x, we find in general that when (Ukn')(")(l) becomes larger
than M (&, o, ¢), then

(UF* 7)™ (1) < (UFn) ™ (1).
Consequently, the iterates (U¥7)) (1) for & > ko are bounded by
M, 0, c) + cy (WIM +c(0)M.
This trivially implies the conclusion of Theorem 5.

The proof of the next theorem is due originally to R. Bellman. We present
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it for completeness.

THEOREM 6. There exists at most one continuous solution of Un=n for
which 7(0)=0and n(1) =1.

Proof. (By contradiction.) Let 7, and =, denote two solutions with the
prescribed boundary conditions. Put 7y = 7 — 7,; then 7o(0) = 7o(1) = 0. Let

to be a point where 7y achieves its maximum, Since
77(30)= (1 - to)ﬂ(ato) + toﬂ(a +(1 —a)to),

we deduce that oty is also a maximum point. Iterating, we find by continuity
that 7(0) =0 is the maximum value of #(t). A similar argument shows that

0 = min #(¢), which implies that 7, = 7,.

THEOREM 7. For any function n(t) =t with @ > r > 1, U"(t") converges
uniformly as n=—w.

Proof. Clearly ¢t >¢" > p(t), where

0 for 0 <t <ty

p(t) =
t—tg

fOl' tostsl;
1-1¢g

and ¢y is close to 1 with r fixed. Since Ut is convex by Theorem 4, and the
values at 0 and 1 are fixed, we find that ¢ > Ut. Hence

U™ > U >0,

and lim U™t = 6(t) for every t. Since O(¢) is convex, and by Theorem 5 the
derivatives of U™t at 1 are uniformly bounded, we conclude that 6(¢) is con-
tinuous. By Dini’s theorem the convergence of U"t to 6(¢) is uniform. Obviously,
UG = 6. On the other hand, if ¢4 is close to 1 then (Up)* (1) < p“(1) (see the
proof of Theorem 5). Since Theorem 4 guarantees the convexity of Up, and the
slope at 0 is 0, it follows that Up < p, and hence U"p < U™ p; therefore
lim U = ¢(¢t). Again, ¢(t) is a continuous fixed point, and therefore by
Theorem 6 we infer that ¢(t)=0(t). On account of U™ > U™’ > U"p, we
deduce that lim U"t" = ¢ (¢) with the convergence being uniform.

We denote this unique fixed point of U by ¢ ,q(¢), or by ¢ (¢) whenever no
ambiguity arises.
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THEOREM 8. The iterates U" converge strongly (that is, Un converges
uniformly for any continuous function n).

Proof. The constant functions are fixed points of U". Consequently by
Theorem 7, U"q converges uniformly for any function ¢ (¢) in the linear space L
spanned by the functions (1, t"). The set L is dense in the space of continuous
functions. Moreover, as {|U"|| =1, by a well-known theorem of Banach, U"g

converges strongly when applied to any continuous function ¢q(t).
The actual limit is easily seen to be given by

(6) lim U%(2)=q(1) ¢y,0(2) + q(0)[1 = ¢o,a(e)].

n— oo

This is an immediate consequence of the fact that the fixed points of U consist
of the two-dimensional space spanned by the function 1 and ¢,,,. Equation (6)
shows that two functions ¢, and ¢, which agree at 0 and 1 have the same limit.

This enables us to show:

THEOREM 9. If ¢(t) is any bounded function continuous at 0 and 1, then
U™q converges strongly.

Proof. Let q(t), in addition to being continuous at 0 and 1, possess finite
derivatives at 0 and 1. Then clearly there exist two continuous functions 4,(¢)

and £,(t) with
hi(e) > q(t) > ho(t),

where £,(0) = £,(0) and 2,(1) = 2,(1). We conclude the result from this using
the argument of Theorem 7 and equation (6). If now g (¢) is only continuous at
0 and 1, then we can find for any € a g_(¢) satisfying the properties assumed
about ¢ (#) in the first part of the proof with |g(£)—q_(£)] < €. As |[[U"]| =1,
the conclusion of the theorem now follows by a standard argument.

THEOREM 10. If |rr(")(t)l <e¢; for 0 <i <m, then |U"n(i)(t)\ < ¢; for
0<i<m.

Proof. The proof is by induction, For r=0, the result is trivial since U
preserves positivity, and the constant functions are fixed points of U. Suppose
we have established the result for r = m — 1. We note that

Unm) = (l—t)omn(m)(ot) + t(l-cc)(”‘)n(”‘)(ou (1-a)t)

+m(1=o)™ ™D (64 (1=)t) = mo™ 1 am(os).
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This easily yields that

maxIUﬂ('")(t)i < A max |1r(m)(t)| + C max lrr(m'l)(t)|,
t
where

A=max [(1~t)o™ + ¢t (1-c)™] < 1.
¢

Therefore,

m?xl(Ukw)(’")(t)l < A max | (U%12)™) (¢) | + C max | (UF-1m)™1(2)]
t

< A max | (U*D7) ()| 4+ K
by our induction hypothesis, Iterating this last inequality gives that

k-1
max | (Ukm)™(¢)| < 3 MK + A max | 2™ (2)| < M.
t t

i=0
This establishes the theorem.

THEOREM 11. If q(t) belongs to C" (n continuous derivatives), then

lim [U™ ()17

m-— o0

converges uniformly for 0 <r <mn-1,

Proof. We prove the theorem only for r = 1, for the other cases are similar,
On account of Theorem 10, the uniform boundedness of (U'"q)(z) implies the
equi-continuity of Umq(l). Thus we can select a subsequence converging uni-
formly since Umq(l) are also uniformly bounded. Let

¥(s) = lim U™qW),

1 —00

Since lim U™q converges uniformly to a unique limit 6(¢), we obtain that
0’(t)=Y(t). As 6°(t) is independent of the subsequence chosen, the con-
clusion of the theorem easily follows.

THEOREM 12. The fixed point ¢4 is analytic for 0 < ¢t < 1 with ¢((,r,)a > 0.
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Proof. Let p(t) denote a function infinitely differentiable with p(')(t)z 0
and p(0) =0, p(1) = 1. By virtue of Theorem 11 and Theorem 4 we deduce that

lim (U%)) = ¢ > 0.

n-—oo gya —

Therefore ¢,,, is absolutely monotonic and hence, by a well-known theorem,
is analytic.

At this point it seems desirable to summarize the analogous results of
Theorems 2 through Theorem 12 for the case where & + o < 1. We enumerate

the corresponding theorems.

THEOREM 4% If (-=1)%? 7 (¢) >0 fori=0,1,2,+++,n, and n(z) > 0,
then (=1)1(Un)(¢) > 0.

In particular, positive increasing concave functions are transformed into

functions of the same kind.

THEOREM 5% If C > #(t) > O and C > (~1)t ﬂ(i)(t) >0forl<i<n,
then 0 < (—1)i'1(U'ﬂ)(i)(0)§Ki, and hence | U™ A(t)| <K; for 1 <i < n.

Theorem 6 remains unchanged and is valid independent of the conditions on
o and o, provided only they lie in the open unit interval.

Theorem 7 holds with a modification of the proof where p(t) is replaced by

the concave function

1 for 1>¢>¢

p(t) = ,
—tfor 0 <t <t
to - -

and the functions ¢” are replaced by 1 - (1 ~t)". These also constitute, with
the constant function, a family of functions whose linear span is dense in
Cl0, 1]. This enables us to infer the validity of Theorem 8. Theorems 9, 10,
and 11, with suitable changes in their statements which we leave for the reader,
are established by simple appropriate modifications similar to that indicated
above for Theorem 7. The unique solution ¢, for this situation, where d+0 <1,
is completely monotonic and hence analytic. In the remainder of this section the
theorems are established without any specification as to the value of & + o.

THEOREM 13. The functions
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dm(t) = 2 UMe(1-1))

n=m
converge geometrically to 0.

Proof. It is immediate from (6) that
Uh(e(1-1¢)) =¥, (¢)

tends uniformly to zero. Since the derivative at 0 and 1 of t(1-¢) is 1 and —1,
we conclude by Theorem 11 that for n sufficiently large there exists an ng(A)
such that

U™(6(1=1¢)) < At(l~1¢)
with A < 1. Let kn, denote the last integer &k for which kng < m. We obtain

k no-t
0.< ¢m(e) < By () < =5 2 Uie(1-)) < CNF < Cp™ ¥ < cpm,

i=0
where

_ Al/(noﬂ) <

1.

THEOREM 14. If q(t) is continuous, |q°(1)| < ® and |¢’(0)] < 0,
then lim U"[q (t)] converges geometrically.

Proof. We first establish the result for special functions ¢" with 1< r< .
A simple calculation shows that

~Ct(1-¢t) <U@E") - ¢" < Ct(1~1¢).

For n < m, we obtain upon continued application of U and summation that

—-C 3 Ut =) < UMM ~U™) < C T UHe(1-10)).

t=m i=m

The conclusion now follows from Theorem 13. The general function ¢(t), satis-
fying the hypothesis of Theorem 14, can be bounded from above and below by
two polynomials P(¢) and P, (¢) which agree at 0 and 1. The result now follows
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directly from this fact and the first part of this proof.
We observe easily the identity

Ut-t=((@ +0-1)t(1-1¢).

Applying successively U and adding, we obtain

(7) bo,a = nl_i‘mc,o U =t + (d+0-1) 2 U:,a.t(l-t)'
n=1

This is useful for purposes of calculation.

Some remarks describing the dependence of ¢, , on o and & are in order.

We consider the following identity:

n-1
(8) Uc’rz,a_ U;’,a' = Z U;',a( Uo-,a“ U‘T’va’) Uc’;;,l;.l"
=0

If f(¢) is any function with bounded derivatives, then we obtain by the mean-

value theorem that

| (Ugya— Ut D f| < 1 (1= 0)[f(ot)=f(aD) 1+ e[ f(ax+(1~a)t)~f(a"+(1-")£)]]

<C(lo=o"| + |la=a|)e(1=12).

Applying equation 8 to f(¢)= ¢, 4", and remembering that inequalities are
g €q , g q

preserved by Theorem 2, we obtain

n-1
|02 $or = Borar| < Cllo—0"| + o= o) T Ve (1-0)).

i=0

Allowing n to go to o, we have easily that
|foya~ %’ | < K(lo=0’| + |a=0a’]),

where K (7) is finite, provided that 0 < n < &, ®"0, 0" < 1 =7 < 1.

It is worthwhile to discuss the nature of ¢, for (0,&) lying on the boundary
of the unit square. First, we observe by direct verification that when o + 0 =1,
then ¢, 4(x) = x. Next let & = 0 and o < 1; then
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Up=(1-2)¢(ox) + x¢(x).

Therefore, if ¢ is a fixed point with ¢(0) =0 and ¢ (1) =1, then for x # 1 we
have that ¢(x) = ¢(ox), and hence ¢(x)=¢(0)=0 (0 < x < 1) provided
that ¢ is continuous at 0. Similarly, when o =1 and ¢t <1 then the only fixed
point ¢ continuous at 1 and satisfying ¢(0)=0, ¢(1)=1, is ¢(x)=1 for
0 < x < 1. On the other two boundaries of the unit square the solutions are
easily calculated and turn out as follows: If 0 < ¢ < 1 is arbitrary and « < 1,
then

o =1-]]1(1-0"x),

r=o

while when 0= 0, 0 < ¢ < 1, then

o0
r
¢o—,a= n L X,
r=0

where L° =1 and the operation L applied to x gives &« + (1 —)x. Finally for
o =0, 0 =1 the operator U reduces to the identity mapping. We now investigate
the dependence of ¢ 4 on o and (as we allow o and « to tend to the boundary.
We limit our attention for definiteness to studying the case where (o, a)—(gp, 0)
with 0y < 1, and we show that ¢, , converges pointwise to 0 for 0 < x < 1,
and ¢o,q (1) = 1 otherwise. Moreover, the convergence is uniform in any interval
0<x < 1-86<1. Let (o, ty) = (g9, 0); then without loss of generality
we may assume that 1 - o, — &y > 0. Therefore the ¢, ,, are convex, mono-
tonic increasing and positive, with ¢, o (0) =0. Also, for any interior in-
terval 0 < x < 1-o0 < 1, the first derivatives ¢% o are uniformly bounded.

Since this implies the ¢, o are equi-continuous over the subinterval, and as

[1e3/)
0 < ¢5,,a, < 1, we can select a subsequence which may be denoted as ¢, 4,

converging to ¥ (¢) uniformly, for any interval of the form 0 < x < 1-6 < 1. As
¢U,.,a,,(1) =1,

we get ¥(1)=1 and similarly ¥(0)=0. The uniform convergence of ¢, o,
guarantees the continuity of ¥ at zero.,

Put

Ur = UU,,a,, UO =U

0,0 and ¢, = ¢O‘r,ar°
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We consider the following identity:
V-U¥=(¥~-¢ )+ (o, ~U¥)+(UY¥Y-UW)=1 +1,+1,.

We take a fixed x < 1; then trivially |/ [=[¥ - ¢ | < € when r is suf-
ficiently large. Also

1Ll =1¢,-U¥|=1U¢ -0% =(1-2)¢ (0x)~¥(ox)]

+xlep (o, + (1—o)x) = Plo + (Lo )x)]].

But for x =x¢ < 1 fixed, we observe that 0, + (1 - ;)x, varies in an
interval < 1~ 6 as &, — 0, and the same applies to o;x. The uniform conver-
gence of ¢ — Y inside 0 <x < 1-8 yields |/,| < €. By construction,
|1} < € for r large. Thus we infer the equality ¥ = Uo¥ for 0 < x < 1, and
by direct verification for x = 1. However, the fixed point to the equation UV = ¥
with ¥(0)=0, ¥(1)=1 and ¥ continuous at 0 is ¥(x)=1 for 0 < x < 1
and W(1) = 1. Thus the limit function ¥ is the same for every subsequence of
$0, ,a,s and hence we deduce that ¢, ,q, converges pointwise. We furthermore
note that ¥ is independent of oy < 1. A similar analysis applies to the case
where (o, &) — (1, &) (ot > 0). The continuity properties of the solution for
the other two boundaries yield to simpler analysis. Summarizing, we have es-

tablished the following theorem:

THEOREM 15. The fixed points ¢o o satisfy the following continuity
properties: If 0 <y <, ¢’ < land 0 < 0,0’ < 1 -7, then

1.

| 0,0~ o’ 0’| < K@) [lo=0| + |a-0o

If (o0,a)— (09, 0) with o9 < 1, then ¢o,q(x) —> O pointwise for 0 < x < 1
and ¢o,0(1)=1. If (0, ) — (1, &g) with &y > 0, then ¢g,q(x) —> 1 point-
wise for 0 < x < 1,

Finally, a word concerning convergence of U"x for 7 continuous when the
parameter values lie on the boundary. When & = 0, 0 < 1, then U"# converges
pointwise. The same conclusion holds when & > 0 and o = 1. On the other two

boundaries the convergence is uniform for U"z. We omit the proofs.
We now return to the study of the operator T.

THEOREM 16. For any distribution the iterates T"F converge in the sense
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of distributions to the distribution

Glx) = I,(x)/qﬁg'a dF + Io(x)/(l—qﬁa'a)dF,

where lo(x) and 1,(x) are the distributions concentrating fully at 0 and 1 re-
spectively.

Proof. From the convergence of U"z for any continuous function 7 and
Theorem 1 follows the weak*convergence of T"F. This is equivalent to the

convergence of T"F in the sense of distributions. The actual form of

lim T"F = G

n— oo

as given in the theorem follows directly from (6).

By choosing the distribution F = I, , we obtain from Theorem 6 that
®o,a(x0) represents the probability with which the limiting distribution con-
centrates at 1, or in other words-as can be easily shown-the probability with
which the particle beginning at x, will converge to 1. This furnishes a prob-
ability interpretation to the fixed point of the operator U which is different

from a constant.

In connection with Theorem 8, we remark that U"7 cannot converge for an
arbitrary lLebesgue measureable bounded function. In fact, if we assume that
Un converges for every bounded measureable function 7(t), then T"F would
converge weakly if F were absolutely continuous. Since the space of all in-
tegrable functions L[0, 1] is weakly complete, and T maps distributions into
distribution, we could find a fixed point TF = F with F absolutely continuous
and total variation 1. However, in view of (16) the only fixed distributions
which exist concentrate only at 0 and 1, and hence cannot be absolutely con-

tinuous.

Finally, we present a slight application of Theorem 14. We show that the
expected position of the particle converges geometrically for any starting dis-
tribution, although the iterated distributions converge slowly to the limiting
distribution. The expected position of the particle is given by

flxdF(x)=(x,F),
0

where F is the cumulative distribution describing the position. The expected
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position at the nth step is given by

(x, T"F) = (U™, F).

On account of Theorem 14, U"x converges geometrically, which establishes the
assertion. The same conclusion applies to all the moments. This observation

is very useful for computational and estimation purposes.

Finally, we note that the spectrum of the operator T cannot consist of the
isolated point 1. Otherwise, by standard techniques one can show that U"#

converges for any measurable bounded function 7.

2. In this second model the random walk is described as follows: If the
particle is at x, then x — & + (1 — &)x with probability ¢(x) and x — ox
with probability 1 — ¢ (x ), where

[¢(x) = (y)]| <p<1.

The analogous transition operator to (1) becomes
/ (x-a)/(1-a)
0 6@ =1F = [T a-ge@ren s [T gwar,
0 0

with the same understanding concerning F applying as before. Let
(10) Un=[1-¢(t)]lalot) + ¢(e)m(o+(1~c)e).

In this section, we take 0 < &, o < 1; the case where boundary values for O
and ¢ are considered is easy to handle but not of great interest. The spaces
on which they operate are the same as in $1. Again, in a similar manner to

Theorem 1, we obtain:
THEOREM 17. The operator T is conjugate to the operator U.

We now further assume that ¢ (¢) is monotonic increasing. This model in-
cludes the important case where ¢(t) =\ + put, where A + p < 1; and whenever
A+ p=1then A > 0.

THEOREM 18. The operator U preserves positivity and positive monotonic

increasing functions.

Proof. Direct verification.
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Since the hypothesis on ¢ (¢) implies either ¢(1) < 1 or ¢(0) > 0, we
analyze the case where ¢ (1) < 1. The other circumstance can be treated in
an analogous manner. Furthermore, we now assume that if ¢ (0) = 0, then ¢(0)

exists and is finite.

THEOREM 19. If n(t) is monotonic increasing bounded and positive, then
U™r converges uniformly to a constant.

The proof can be carried out easily using the techniques employed above.

The hypothesis on ¢ (¢) easily yields the fact that the only continuous
fixed points of U = = are constant functions. The proof is similar to the proof
used in Theorem 6. This fact directly connects with the result of Theorem 21
below. First, we complete the proof of convergence of U"# for any continuous

function #(¢).

THEOREM 20. The operators U"mn converge uniformly for any continuous

function.

Proof. Since || U™|| = 1, and the space of all monotonic positive continuous
functions spans a dense subset of the set of all continuous functions, the
theorem follows by a well-known theorem of Banach.

THEOREM 21. For any distribution F, the distribution T"F converge as

distributions to a unique distribution G for which TG = G which is independent

of F.

Proof. The weak*convergence of T"F follows directly from Theorem 20 and

Theorem 16. To complete the proof we must establish that if lim T"F = G and
lim T"H = K, then G = K. Indeed, let ¥ denote any continuous function. We
have that

(11) (¥, G-K)= lim (¥, T™F-H))= lim (U"W,F—H)=a(/dF—/dH)50,

n— oo n—oo

as F and H are distributions. Hence
f\l‘(t)dF(t) = f‘P(t)dK(t)

for any continuous function ¥, and therefore G = K.

It seems extremely difficult to determine the complete nature of this unique
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fixed distribution. We shall say more about it in a future section. We denote it

by Fo, o

THEOREM 22. The distributions F o is a continuous function of g, &;
that is, if (op, Up) —> (0, &) with 0 < 0, & < 1, then Fy_ o —> F, o at every

point of continuity of Fy 4.

Proof. Let (oy, &) — (0, ®); by Helly’s theorem we can choose a sub-
sequence F; = FUn, an, converging to the distribution F at every continuity
point. Write T, for Ty, o, and T for Ty ,q. Let 7(¢) denote any fixed continuous

T T

function. We consider the quantity
(my F=TF)=(n, F=F.)+ (m, F; )~ (n, TF;) + (m, TF, = TF).

Since F, — F as distributions, we find for r sufficiently large that | (7, F —
F;)| < €. Now we note that

I(TT, Fr)—(ﬂ, TFr)| = |(77, Tr Fr)'—(”, TFr)l = \(Ur”"Uﬂs Fr)

Since U= Ugnr a,, Converges strongly to U= Uy,,, as is trivial to verify, it
follows that U, converges uniformly to Um. Whence, as F, are distributions, we
infer that

(Upm~ Uny F)| < max |Upn = Un| < €
t

when r is chosen large enough. Evidently, with r large we get as before that
| (my T(F,=F))| =|(Unm, .= F)| < €.

Therefore we obtain for r large that | (7, F = TF)| < 3¢, and hence (m, F) =
(m, TF). Since 7 is any continuous function, we infer F = TF and therefore

F = F, o by Theorem 21. Consequently, as any limit distribution of F, must

n %n

be F, , the conclusion of Theorem 22 is now immediate.

3. The model considered in this section is with ¢(x) =1 - x. In this case

¢ is monotonic decreasing. The operator U becomes
(12) Un(t) = tn(ot) + (1—t) a(l -0+ at).

Note that we have replaced ¢ by 1 —c. This is only for convenience in Theo-
rem 28, and does not restrict any generality. In this model the closer the par-

ticle moves to the ends 0 and 1 the greater probability there is of moving back
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into the interior. The situation described here is of completely reflecting
boundaries. Again it is easy to show that the only continuous fixed points
Ur = are the constant function. Therefore, we shall find as in $2 that the
distributions describing the position of the particle converge to a limit distribu-
tion independent of the initial distribution. We first proceed to analyze conver-
gence properties of U"m. In this case it is no longer true that U preserves the
class of positive monotonic functions. Only positivity is conserved by the
mapping U. However, a new quality as described in Theorem 23 serves here
well.

Throughout this section in order to avoid trivial changes of proof and dif-

ferent results at times, we suppose that 0 < &, 0 < L.
THEOREM 23. [f n(t) has a continuous derivative, then

mcax | (Um)’ (t)] < mtax |=’(e)],

with equality holding if and only if w(t) is linear.
Proof. By direct computation, we obtain
Un’(t)=ton”(ot)+ (L=t)aa’ (L=t + «t)+m(ot)—m(l -+ at).

Hence, with the aid of the mean-value theorem we get

(13) max |Un’(¢)| < max [ton’(ot)+(1=¢)anm’(1—a+ at)|
t t

n(ot)—n(l—c+ at)

+ (ot=(1=0at)-ct) S TR

<max[to+(1-t)a+1l-a-(o-a)tl max lﬂ'(t)‘=m;ax | 7%(¢)
t

If equality holds, then let ¢y denote a point where

max |7°(e)| = |7’(29)

It follows easily from (13) that

7(0ty) —a(1l—-a+ Geg)
G'to —(1—0()'—0(t0

(14) max | #°(¢)| = |7*(0te)| = | #*(1 = + Gto )| =
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This yields that #(t) is linear for 0ty < t < 1~ o + Gty, or otherwise some-
where between oty and 1 -0 + Oty the slope has greater magnitude than the
slope of the chord subtended by #(t) at these points. Equation (14) yields also
that oty and (1 —Cl + &ty ) are maximum points of #”(t). Repeating this argu-

ment successively then shows that equality in (13) requires #(t) to be linear.

THEOREM 24. If n(t) belongs to C™ (w(t) possesses m continuous de-
rivatives ), then maxtl(U"n)(r)(t)l is uniformly bounded in n for each r (0 <

r<m
Proof. The proof is similar to that of Theorem 10.

THEOREM 25. If n(t) possesses two continuous derivatives, and o # O,

then U"m converges uniformly to a constant.

Remark. The reason why the two cases o =& and o # & are distinguished,

and necessarily so, will be explained later.

Proof. In view of Theorem 23 and Theorem 24, the first and second deriva-
tives of U"r are uniformly bounded. Thus U"7 and (U"#)’ constitute equi-
continuous families of functions. We can thus select a subsequence n; such
that U™z converges uniformly to ¢(t), and (U"'n)’ converges uniformly to
¢“(t). It follows trivially that U™ 7 tends uniformly to U¢ and

U e — U2,
Moreover, by virtue of Theorem 23,
(15) max | (U™ )| > max I(Uniﬂn)'l > max Lo ™).
Hence
Jim e 1(070)7 = fim mgx | (000" | = i | (U0

Therefore, by the uniform convergence of the derivatives, we secure

max | ¢’(¢)] = max [(Ug) (8)] = max [(U%g)" (e)].
t

Invoking Theorem 23 yields that ¢ (¢) and U¢ (¢) are linear. However, if d # o
and ¢(t) contains a term with ¢, then U¢ is quadratic. This impossibility
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forces ¢(t) to be identically a constant. Let i be chosen sufficiently large
so that

|07 ~ ¢| < €.

Then

U™ - o] < | U o) —c| + (1= 0) | U™ m(l—a+at)—c| < €.

Repeating this argument shows that

0" Pr — c| <€
for any p. This establishes that U™r converges uniformly to c.

THEOREM 26. If n(t) is continuous and o # A, then U"n converges uni-
formly.

Proof. The space of all functions with two continuous derivatives spans
linearly a dense subset of the space of all continuous functions. Since ||U"|| =1,
we obtain the result using Theorem 25 and a well-known theorem of Banach.

In the next two theorems we establish the uniform convergence of U"7 for

the case where 1 > 0 = & > 0. We note in this case the interesting fact that
U applied to a polynomial does not increase its degree. Particularly,

Ux® = [o® = nat™ (1 -a)]x™ + P -1(x),

where P;,.{(x) denotes a polynomial of degree n — 1.

THEOREM 27. If P(t) is any polynomial, then vkp converges uniformly

to a constant and the convergence is geometric.

Proof. The proof is by induction on the degree of the polynomial. Clearly
if P is a constant = ¢ then U*P = c. Suppose we have shown for any polynomial
P,., of degree < n—1 that the iterates vkP, ., converge uniformly. To com-
plete the proof, it is enough to verify that Ukx™ converges uniformly. Let

A= - na™(1-a);

then |A]| < 1 since 1 > o0 > 0. We obtain
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Ux™ = Ax™ + Ppoy(x).

Repeating, we get, for & > 1,

k-1
Ukx™ = A 4 3 UKL P,
r=o
This last sum is of the form
k
¢k = 2 g bk-r’
r=o

with 2 |a;| < o, and lim,__ b, (x) exists. It is a well-known theorem that

lim ¢, (x) exists uniformly whenever

k-1
b(x)=U""P |
converges uniformly. Thus, Uk converges uniformly to a fixed point which
must be a constant function. Finally we note that in this case where o = & (the
rate of learning, so to speak, is the same regardless of the outcome of the ex-
periment ), then U"P for any polynomial converges geometrically. The proof

can be carried through easily by induction.

This yields the fact that the expected position converges geometrically to

a limiting expected position with similar statements applying to higher moments.

THEOREM 28. If n(t) is continuous and o= 0> 0, then U"n converges

uniformly.
Proof. Similar to Theorem 26, since the set of all polynomials is dense.

We now note the important example that when o =0 = 0 it is no longer true
that U"7 converges. It is easily verified that in this case U?"# and U?"*'x
converge separately but that a periodic phenomenon occurs otherwise. The
argument of Theorem 27 breaks down in this case as the quantity A is —1. We
only mention that other difficult convergence behavior occurs when «, o traverse
the boundary of the unit square for this model. In particular, when o =1 and
o < 1 it is not hard to show that U;,arr does not necessarily converge for every
continuous function 7, and even for the circumstance where 7 is a polynomial.
The case where o= & =1 produces for U the identity operator for which the

convergence of U" is trivial. For @ < 1 and 6 =1 we can conclude again a lack
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of convergence. However, when &« =0 and 1 >0 >0, or 6=0and 1 >« > 0,

then U} 7 converges for every continuous function .
’
We return now to the hypothesis 0 < &, o < 1.

THEORKM 29. If 7(t) belongs to C™, then (Ukn)\")(¢) converges uniformly
for0 <r<m

Proof. This follows easily from Theorems 24, 26, and 28, Let
Let

/o (x+a-1)
Tp=f" tdF(t)+f ey aF (o).
0 0

This represents the transition law for the distribution describing the position of
of the particle for this model. By arguments analogous to those employed in the
preceding sections, we can establish the following theorems, using the con-

jugate relationship between T and U.

THEOREM 30. For any distribution F the distributions T"F converge as
distributions to a unique distribution F, , for which TF, ,=F, o which is

independent of F.

THEOREM 31. The distributions F, , constitute a continuous family of

distributions in the sense of Theorem 22.

Again it seems very difficult to determine any more explicit information

about Fg ;.

4. The model examined here is such that 1 ~ ¢ (x)=Ax + g, with A+ p <1
and at least 1 > X or 0 < p. The operator U has the form

(16) Un=(Ax+p)a(ox)+ (1=Ax~p) (1l -+ Gx).

Of course, as before, 0 < &, o < 1. Convergence questions for U"7 turn out to
be very elementary in this case in view of the following theorem which is easily

proven,
THEOREM 32. If n(x) has a bounded derivative, then

max | (Ur)’(x)| < amax |7"(x)]|

with a < 1.
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An immediate consequence of Theorem 32 is that (U*7)’ converges geo-
metrically to 0. Let T denote the transition operator of distributions for this

model. In the standard way, we obtain:

THEOREM 33. For any distribution F the distributions T"F converge to
the distribution F, , which is a continuous function of (o, &), and TF, o= F; ,.

Moreover, F, , is independent of F.

5. This section is devoted to some variations of the preceding models.
A new feature added first is that we allow in addition to the two impulses of

motions towards the two fixed points 0 and 1 by the transformations

Fix = ox and Fox =1 -0+ Ux

the possibility of a third motion where the particle stands still with certain
probability. These models are particularly important in learning problems, and
much statistical investigation on this type has been done by M. M. Flood [5].
They are referred to as the pure models. The mathematical description of the
first model of this type is as follows: A particle x on the unit interval is sub-
ject to three random impulses: (1) x — ox with probability =, (1 -x); (2)
x — 1 -0+ 0x with probability = x; and (3) x —» x with probability
(1-7)(1=%x)+(1~m,)x, where 0 < my, 7, < 1. This is similar to model I
where absorption takes place at the boundaries 0 and 1. The operator analogous
to (2) becomes

(17 Ur=my(1=x)a(ox)+[(L=a)(1 =2)+ (1 = m)x] a(x)
+mrxa(l-0+ax).

Again, let T denote the transition operator which maps the distribution locating
the particle into the corresponding distribution at the end of the experiment.
Theorem 1 is valid for this setup, and T is consequently conjugate to U. It is
easy to verify that U fulfills the conditions of Theorems 2 and 3 and also pre-

serves the property of monotone increasing functions. Furthermore, we obtain:
THEOREM 34. If m, n’ and n*° > 0, then (Un)*" > 0 if and only if
(1-0)m + my(aa-1)>0,

and otherwise Un preserves with mw and #” > 0 the property of concavity.

Proof. The proof can be carried through by direct computation.
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We remark that the remainder of the analogue to Theorem 4 does not carry
over under the condition stated in Theorem 34. Moreover, noting that we have
here changed « into 1 -« as compared to $2, we obtain for 7, = m, = 1 the

condition of § 1 for preservation of convexity, and so on.

The analogues of Theorems 5, 6, 7, and 8 easily extend to this model by the

same methods, and we obtain that "7 converges uniformly to a limit given by

(18) [1- (x)17(0) + ¢, (x) (1),

¢V’ar"l L) 9y Ty, Ty

where ¢

o,a.,'n’l,7r2
and ¢ (1) = 1. The entire theory of geometric convergence, continuity of ¢ as a

is the unique continuous fixed point of Ug = ¢ with ¢(0) =0

function of o, ®, m;, and m,, and the form of the limiting distribution of the
particle established for the model of $ 1 remains valid with slight changes in
the proofs. The general conclusion is that introducing a probability of standing
still has no effect on the convergence of the distributions or its limiting form
provided only the essential feature of absorbing boundaries still persists.
Finally, in this connection we remark that for special boundary values of the
parameters m; and m; the motion may become a drift to one or other of the end

points; for example, 7y = 0, 7, > O.

6. We treat in this section, the following general nonlinear one-dimensional
learning model. The particle moves with probability ¢(x) from x to 1 ~ & + ax
and with probability 1~ ¢(x) from x to ox. The function is only continuous
with the additional important requirement for this case that ¢(x) > & > 0 and
1-¢(x) >8>0 for all x in the unit interval. This excludes the types of
models discussed in $§1 and 3, but includes some subcases of the examples
investigated in §$ 2 and 4. However, in those cases we obtained much stronger
results about the rate of convergence of derivatives, and so on. The transition

operators become
) 1F = [T g@laro s [ g,
0 0

and T is adjoint to
(21) (Un)(t)=(1=(2)) m(ot) + p() m(1l -k + xt).

We shall show that U"r converges uniformly for any continuous function = (¢).
The proof of this fact shall be based on the following highly intuitive propo-

sition. Let an experiment be repeated with only two possible outcomes, success
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or failure at each trial. Suppose further.that the probability of success p, at
the nth trial depends on the outcome of the previous trial, but that these con-
ditional probabilities satisfy p, > 5 > 0; that is, regardless of the previous
number of failures the conditional probability of success is always at least
n > 0. Then the recurrent event of a success run of length r with r fixed is a
certain event; that is, with probability 1 it will occur in finite time, This result

can be deduced in a standard way using the theory of recurrent events [4].

We turn back now to the examination of U™r. Let

Fix =ox and Fpx =1 -0 + 0x

and by Fx denote the operation that either F; or F, is applied. We note the

important obvious fact that
(22) | Flx = Fly| <A %~ y],

with 0 < A < 1, where F’ denotes r applications of F; and F, in some order
acting on x and y in the same way.

Next, we need the important lemma:

Lemma. If | ¢ (e)| <K for m=0,1,+, and |#™ ()| < K,, then
| o™ n(m)(t)[ < K, uniformly in n and ¢.

Proof. The proof is similar to that of Theorem 24.

Now let #(t) denote a continuously differentiable function. Consider the

following identity:
(23) Utnr(x)-Utn(y)=(1-¢(x))(1=d N0 'n(Fix) - U™ 'a(Fiy)]

+ ¢ (x) d(Y) U a(Fox) - U 2n( Fpy)]

+ (1= (y)) (U™ 7(Fx) - UV ' n(Fiy)]

+ o (y) (1= (x))[U a(Fix) - U™ a(Fy)].
We continue to apply this identity to the factors U™ !#z(.) - U"'#n(.); and
when any term of the form U™n(F'w) — U™z (F'z) is achieved, then that factor

is allowed to stand without any further reduction. All other terms are reduced

to expressions involving as factors 7(.) — 7(.). Thus we obtain
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Uln(x) = Utn(y) =17 + I},

when /; consists of terms of the form
2 LU™ a(Fw, ) = U™a (F 2,)],

and 22p, <1 while I, consists of the remaining terms. We now conceive of
the following probability model. Let two particles undergo the random walk
described by this model starting from x and y, respectively. We say a success
occurs if the same impulse activates both particles, and otherwise failure

occurs. The probability of success is given initially by

b(x) d(y) + [1=-p(x)I[1-¢(y)] >28%> 0,

and it is easily seen that each p,, where p, is the conditional probability of

success occurring on the kth trial, satisfies
pp > 28% > 0.

Consequently, a success run of length r is certain to happen in finite time. In
particular as n — o, 12"—) 0, since 1;' is bounded by twice the probability of
no success run in n trials times K. On the other hand, in view of the lemma and
equation (22) we secure that /7 < C)'. Therefore,

lim |Ut(x) - Ua(y)| < CX,

n— 0o

which can be made arbitrarily small as r — . Hence, if

lim Uz (y) = a
exists for a single y, then

lim U"n(x) = a

n-— oo
for every x. Since a subsequence can be found so that

lim Utin(x) = a

1 — 00

for one x and hence for all x, an argument used in the close of the proof of
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Theorem 25 shows that

lim Uz (x) = a.
n— o0

The lemma easily implies that the convergence is uniform. Using the fact that

[|]U™|| =1, we can sum up the conclusions for this nonlinear model as follows:

THEOREM 35. If n(t) is continuous, then lim,_ . U"n exists uniformly

converging to a constant limit.

THEOREM 36. If ¢(t) belongs to C™, and n(t) is in C™, then

lim (U"7)™)(¢) = 0

n— oo
with convergence uniform in t.

THEOREM 37. For any distributions F, T"F converges to a distribution
Fy,q independent of F with TFy o =Fq 4 and Fy o continuous with respect to

g, .

This last theorem follows on account of the conjugate relationship of T and

v.

Finally, we note that the method used in this section can be employed to

analyze the random walks with any number of impulses
Fix = (1-0;)m; +0;x.

7. In the present section we investigate the nature of the limiting distri-
bution obtained in the various models. In the case where the boundaries were
absorbing states as in §$1 and 5, we find that the limiting distribution is dis-
crete and concentrates at the two ends 0 and 1. The weight at 1 depends on the

starting distribution F and is given by

fo‘ do.a(x) dF (x),

where ¢, o is the unique continuous fixed point of U¢ = ¢ with ¢(0) =0 and
¢ (1) = 1. Many properties of ¢, , are developed in those sections. In all the
other types the ergodic property was seen to hold and the limiting distribution
was independent of the initial distribution. Let us deal with the following
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general type. The random walk is given by x — F;x = ox with probability
1-¢(x), and x — Fx =1 -a +ax with probability ¢(x), where 1-8>
¢(x) > & > 0. The relevant operators are given by equations (20) and (21).
Let the limiting distribution be denoted by Fy 4.

We now distinguish two cases: (a) 0 > 1 -« and (b) 0 < 1-c. Let us
examine case (b) first. We note that the union of the image sets F,[0, 1]+
F,[0, 1] of F; and F, applied to the unit interval does not overlap with the
open subinterval (o, 1 ~&). Any two applications of F, and F, leaves empty
the two additional open intervals (0%, (1-x)o) and (o(1-a), (1-0)?).
Proceeding in this way, we find that the limit of the total set covered by n
applications of F;(i =1, 2) in any arrangement is a Cantor set C. It is easily
seen that F, , must concentrate its full probability on this set C.

Now let

1 if x=t0

mo(x) = .

We show that U"m (x) converges uniformly to zero. Note that Um (¢) is zero

. -1 -1 :
for every t except at most one value of #; namely, F['t  or F; 't . Of course, if
0 < ty < 1-~0a, then neither inverse exists for that t,; and otherwise only one

exists and

|Umy | < max [¢(x), 1-¢(x)] < 1-8.

Similarly, U"m, < (1~ 8)", from which the assertion follows. We now observe
that

~

(715 Foya) = (g5 T"Foa) = (Umy , Fo) — 0.

Consequently, the probability of F, , at ¢, is zero for any ¢, with 0 < ¢y < 1.

Summing up, we have established:

THEOREM 38. Ifo < 1-«, then the limiting distribution Fo , is a singular
distribution (probability zero at every point) spread on a Cantor-like set.

We turn now to examine case (a) where 0 > 1 ~o. We note first that at
least one of the two mappings Fj !or Fz'l is defined for every x in the unit
interval. Let #(t) denote any continuous positive function defined on the unit
interval so that 7(¢) > 7 > O for some subinterval t, ~h <t < t, +h (A > 0)
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Since at least Fl'l or F;l exists at t (say Fl'l), we obtain Fl'lt =t,. We con-

0
struct ¢ from ¢, in the same way and continue this for n steps, obtaining
tn = F™"to, where F™" denotes a specific order of application of F{' or F;' a
total of n times. Let F" denote the reverse order of the operators obtained by

passing from ¢, to ¢,. We note that
|F' = Fy | <A |x-y| <A%,
where A < 1. Choose n so large that A" < h; then for every x we get that
| F'x = F™p| = | F"x —to| < h.
Consequently, as
1>1-86>¢(x)>86>0,

U™z is positive for all x since F™"[¢y — &, to + ] covers the entire unit in-
terval and #(z) > n > O on this initial interval which is spread out by the
term in U" involving F™. We have thus shown:

THEOREM 39. If 0 > 1 —«, the operator U is strictly positive; that is, for
each positive continuous function w(t) there exists an n depending upon m so

that U™r is strictly positive.

Now let mo(t) be defined as before. Again we establish that U"mo con-
verges uniformly to zero. To this end we observe that Um;, has at most two
possible values at F;'t, and F;'t; given by 1-¢(F;'t;) and ¢(F2'lto ),
respectively, while Umy = 0 elsewhere. Also, Uzmo has at most four possible

values and the maximum value that could be achieved for Uzmo is

max { [1 - ¢ (F;'e )1~ @(F2e )], ¢(F;'ey) $(F;2e,),
(1= (F e )1 S(F P e ) + p(Frleg) (1= @ (F7Frte )1

To secure a bound for the maximum of U"nto, let us consider the same repeated-
experiment model set up in the previous section. The conditional probabilities
of success p, at the nth trial satisfy the uniform inequalities 1>1~%>p, > >0,
where success in this case is taken to be an application of the impulse F; to
the particle. It is readily seen by standard inequalities that the probability of
securing £ (k < n) successes converges uniformly to zero as n — . More-
over, it follows directly that'max, (probability of £ successes) is a bound for
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Utmty, and hence U"m;; —» 0. We deduce as before that F,, has probability
zero for every ¢ Thus the cumulative distribution of F is continuous. Let
F = F, + F,, where F; is absolutely continuous and F, is singular. Observing
that the transition operator transforms absolutely continuous measures into
absolutely continuous measures and singular measures into singular measures,
we find that TF, = F; and TF, = F,. However, as the fixed distribution is u-
nique, we deduce that either F| or F, vanishes.

THEOREM 40. If 0 > 1~o, then the unique distribution F, , is either
absolutely continuous or singular. Furthermore, Fo o has positive measure in

every open interval.

Proof. We have demonstrated all the conclusions of the theorem but the
last. Let #(t) denote a continuous positive function bounded by 1, and zero
outside an open interval /, and 1 on a closed subinterval /” of /. By virtue of
Theorem 39 there exists an n such that U7 > 8 > 0 for all t. We note that

(m, Fg,0 )= (m, T"Fy,4, ) = (U, Fy0) > 8 > 0.

But
/I'ng,a > (m Foa) >8>0,

and the proof of the theorem is complete.

We close with the conjecture that when o > 1-«, then Fy,, is always
absolutely continuous. An example where this is the case is furnished by

¢(x)=1/2,0=1/2=1-0, where Fa’a(x)=x.
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ON UNIFORM DISTRIBUTION MODULO A SUBDIVISION
W. J. LEVEQUE

1. Let A be a subdivision of the interval (0, @): A =(zy, z,, -+ ), where

0=12y<2zy<+++ and lim z; = 0.

n —oo
For z,_, < x < z,, put
x—-[x]A
[x]A =2zp-y, 8(%) = 2zp— 25—y, (x)A = 'T(;T"’ ¢(x) = n+(x)A,

so that 0 <(x), <1. Let {x, | be an increasing sequence of positive numbers. If
the sequence {(x,),} is uniformly distributed over [0, 11, in the sense that the
proportion of the numbers (x‘)A, ceey (xk) A which lie in [0, &) approaches a as
k— o, for each € [0, 1), then we shall say that the sequence {x, } is uni-
formly distributed modulo A. If A is the subdivision A, for which z, = n, this
reduces to the ordinary concept of uniform distribution (mod 1), since then [x]A =
[x], (x) =1 for all x, and (x)A = x — [x] is the fractional part of x. Even in
other cases, the generalization is more apparent than real, since the uniform dis-
tribution of one sequence (mod A) is equivalent to the uniform distribution of
another sequence (mod 1). But most of the known theorems concerning uniform
distribution (mod 1) are not applicable to the sequences {(xk)A }, if A is not A,
for in such theorems %) is ordinarily taken to be the value f(%) of a function
whose derivative exists and is monotonic for positive x. Here, on the other hand,
<xk)A = ¢(xk) (mod 1), and ¢, although a continuous polygonal function, is
not necessarily everywhere differentiable; and unless §(x) is assumed mono-
tonic, ¢’ is not monotonic even over the set on which it exists. This lack of
monotonicity introduces serious difficulties; it is the object of the present work
to show how they can be dealt with in certain cases.

For brevity, ‘“‘uniformly distributed’” will be abbreviated to ‘“u.d.”’. The sym-
bols ““4??, “7??, ¢“|”’ and ‘“\’’ indicate monotonic approach: increasing, non-

decreasing, decreasing, and non-increasing, respectively.
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2. Put

N(a,z) = 2 1, N(x)=N(1,x);
xk.Sx

(xk)A<ot

then {xkl is u.d. (mod A) if and only if, for each «. < [0, 1),

. N(a, x)
llm —
x—00  N(x)

THEOREM 1. A necessary condition that {xk} be u.d. (mod A) is that

N(z )NN(zn)

nt+1
as n — .

For suppose that { xk} is u.d. (mod A). Then since

1 2tz Zn + 2,
Mze ) N2,z = NEE) - N,

2
we have
1 N(1/2, (25 + 254,)/2) N(1/2, zp) N((zp + 2741)/2) = N(zp)
2 N((Zn+zn+1)/2) - N((zp + 2p41)/2) * N((zp + zp+1)/2)
N(1/2’ zn) N(zn) N(Zn)
TN Nt me2) T Nt mme)/2)
N(zn) N(1/29 zn) 1 1 N(zn)
= N Gt e )/2) N(zp) T2 N((2g + 2741)/2)

as n — o, and so
Zp t+ Zp4
lV(z,,)"'N—----—-2 .

In the same way it can be shown that

(Zn + zn+1

9 )”N(znn)’

and consequently N(z,) ~ N(z,4,).
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3. The following theorem, due in a slightly different form to Fejer (see [1,
p.88-89]), expresses the fact that if f is sufficiently smooth and [f(x)] is
constant over increasingly long intervals as x increases, such that the length of
the n-th interval is of smaller order of magnitude than the total length of all
preceding intervals, then f (%) is u.d. (mod 1):

Suppose that f(x) has the following properties:

(1) fis continuously differentiable for x > x,

(ii) f(x) * © as x * o,

(iii) f(%) N0 as x * o,

(iv) x2f’(x) D ©was x— .

Then f(k) is u.d. (mod 1).
The following theorem uses the same general idea:

THEOREM 2. Suppose that, for a given subdivision A and a sequence {x },
N(zp) -=N(zp-y) — © as n — ®. Then {x; } is u.d. (mod A) if the following
conditions are satisfied:

(i) N(zp-y) ~ N(z,)as n— m,

(ii) except possibly on a sequence of intervals [ zp,-y, zp,) such that

(1) 3 (N(zn,) = N(zpmy)) = 0(N(2s)),

t=1

the relation

max (%, — %, _ ) ~ min (%, —x,_ )

holds as n — ®, the maximum and minimum being taken independently, for given
n#nyg, ny e+, overall k for which at least one oka_l and x is in [ zp-1s 25 ].

Give the name §, to the interval [ z,_,, z,], and put
N(a, Sn) = N(Zn_l + a(zn_zn—l)) - N(zn-l)’
N(5,;) = N(1, op) = N(z,) - N(Zn—l)'

It will be shown that

. N(a, 8z)
lim _— = 0
n —oo N(Sn)

nfng,ny, e
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in other words, that in the limit the x,’s which lie in 5, # §,, are u.d. there. This

implies the theorem, for using it, (1), and (i) we have, for x € §,,

N(a, x) I .
N(x)x = NCo) ExN(a, 8,)+ N(min (x, z,-, + on(z,,—z,,_l)))-N(zn-l)
1 (o]
-5 2 N(a,5,) +o(1)

2 (a+o(1)) N(5,)
= + o(1)

S N +o(Z N(5,))+ N(x) = N(zpoy)

o
= —————— t+ 0o(1) = a+0(1),
1+0(1)
where zodenotes summation fromv=1tov=n—1,v#ny, ny -+

To prove (2), suppose that n# n,, ny, +--, that z,., € (xkn, xk"“], and that

min (xk—xk__l):X

kn<k<knt "

Then for ky, <k <kp+y, we have x; —x, = (1+€,,) X,, where €, is a posi-
tive quantity tending to zero as n — 0. Put

€p = ax €kn?

m
kn_.kskn+l

and put Axk =%, =% _ . Now if

Fhp4t S2py * alz, ~ zn-l) < Tk tt+1?
then
kp+t
a(z, =z, )= (xk,,+1"zn—1)+ 2 Az +(z_ +0&(zp = 2p-1) =% 4,)
k=kp+2

t
’
Z Axkn+s + & Xn’

s=1

where 6’:=0(1) as n — . But
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t
tXy < 2O Az o S tXn+ 6 Xy < Xy + u€n Xy,
s=1

where u = N(z,) - N(z,-,). Hence

%pn = 2p-1 , < Zn = 2p-1 ,
A ———— — € —u€p <t < O — €’
Xn n Xn n
Similarly,
Zp = 2Zp- 2p = 2p- ,
- € —ue;, <uL - en,
Xn Xn
so that

(zp = 2p-1)/Xp —€; — ugy (zp = 25-1)/Xp — €,

t
’ S—S ’ M
(2p ~ 2p-1)/Xn ~ €, u (Zn—zn—l)/Xn"‘en"uen

Since N(z,) ~N(zy-,) —> as n—» @, also (z, - Zp-1)/Xp— @, and so

at+o0(l)~ueXy/(zp = zpy) ¢ a+o(l)
<=< = .
1+0(1) TuT 1+0(1l)-ue Xy /(2 ~ 25_y)
But since
kn+1
uX, < z Axk,_gz,,-zn_l,
k=k,+1
uX, =0(zp — zp-,); thus
a+o(l) ¢t a+o0(1)
— =L,
1+0(1) " u~ 1%0(1)
and therefore
N(a, 8,) ¢
NG %

This completes the proof.

In case A = A, and %, = f(k), it is easily seen that the hypotheses of
Fejér's theorem imply two of the hypotheses of Theorem 2, namely that N(z,) -
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N(zp.,) * 0and N(z,-,) ~ N(z,) as n—>» a. But I do not know whether Theo-
rem 2 includes Fej€ér’s theorem; the most that I can show is that the exceptional
sequence { z,,} = { n;} mentioned in (ii) of Theorem 2 is in this case of density
zero, which does not imply (1) for all functions f satisfying the hypotheses of
Fejer’s theorem. Certainly, however, Theorem 2 deals with cases not covered by
the following direct extension of Fejér’s theorem, since it does not require the

monotonicity of either z, — z,-; or A x,.

THEOREM 3. The sequence {xk} is u.d, (mod A) if the following conditions
are satisfied:

(1) Zpn — 2Zp-y Z.;zn—l — Z2p.2 forn =2,3y 0,

(ii) Axk $0as ko,

(iii) N(zz-y) ~ N(zp) as n —> .

We sketch the proof. Let iy be the continuous polygonal function such that

U(x,) =k then 0 < ¢y(x) = N(x) <1. Let { ek} be such that €, =o0(Ax,) and
0<¢€, <Ax;/2fork=1,2,---. Define ¢y as follows:

1 xte, 1 1
(ﬁl(x):;é-;L-ek Y(t)de for x€ x-——2-Axk,xk+-§-Aka
(k=2’3,°")'

Then Y, is continuously differentiable, and is identical with ¢/ except at the cor

ners of i, where it is smooth. For0<a <1,n=1,2,3, --+, put

p(n+a) = ‘ﬁl(zn"l +a.(z,,—zn_l));

p is continuously differentiable except at x =1, 2, - +-. A function p, can now be
defined in terms of p, just as iy, was determined from ¢, so that p  is everywhere
continuously differentiable, and p differs from p only on an interval about x =
n(n =1, 2, --+) whose length 6': is of lower order of magnitude than Axk,, if

z, €[x, _,x, ).lfx=n+a is such that
kn=1 "k,

Pl(x) = p(x), ¢1(zn-1 +a(z,—2zp-4)) = l/’(zn..l"'a(zn"zn—l)),

and

Zp-y t o((zn"'zn—l) € (xk_19 xk)’

then
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, 2n = 2Zp-,
pllx) = =2

.
9

Axk
it follows that p:(x) 7' ©. Moreover, since

p,(n+1) ¥ (z,) N N(z,)
p,(n) Y(zp—y)  N(zg-1)

-1,

it follows that p:(:‘c)/,p1 (%) — 0 as x — . But if f is the function inverse to
p,» these facts imply that f(x) * o0, f*(%) N\ 0, and xf (x) —> @ as x * 0. Since
f(k)— x, as the arbitrary numbers €, and € approach zero, the conclusion fol-
lows from Fejér’s theorem.

A trivial variation of Theorem 3 has, instead of (i) and (ii), the hypotheses
(i) zp = 25—y t o,
(ii”) Axk_l 2 Az, for £=2,3, ..

For then it will still be true that p:(x) 7 oasx te.

4. It follows from Theorem 2 (and also from the variation of Theorem 3 just
mentioned ) that if z, — z,-, 7 ®@in such a way that zp -, ~ zp, the sequence { k6}
is u.d. (mod A) for each 6> 0. In this section we examine the distribution of
{k0} (mod A) when 8(x) \ 0. This is a problem of a very different kind from the
earlier one; the result is expressed in the following metric theorem:

THEOREM 4. If §(x) N\ 0 and 8§(x) =0(x"!) then {k0} is u.d. (mod A) for
almost all > 0.

The proof depends on a principle used in an earlier paper [2]:

If C and € are positive constants and { f, } is a sequence of real-valued func-

tions such that

C
max(1, |j-%|€)

(3) I/b ei(ff(x)-fk(x)) dx < N (]s k= 1, 2, "‘)v
a

then { f, (%)} is u.d. (mod 1) for almost all x € (a, b).

This will be applied with f; (x) = ¢ (%x), where ¢ is the function defined in
§1; it was noted there that the u.d. (mod A) of {xk} is equivalent to the u.d.
(mod 1) of {d)(xk) }. Let a and b be arbitrary positive numbers with a < b, and
put
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L - f b A =) gy,
a

since J; : and J;, are complex conjugates, it suffices to consider the case j> k.
For fixed j and %, denote by fo, -+« & all the numbers of the form z_ /j or z_ /k
in the interval (a, ), so named that fo <eeo < fr. Then the function

j k [jxly kel
. —_ = - - - = xA B
i) = fi (=) (a(jx) 8(kx))x (a(jx) 5 (kx) () + B(x)

is linear in each interval [fl_l, rfl), A(x) and B(x) being certain constants A,

and Bl there. Hence

r ro A RB) 48 +B)

]jk - Z fl ei(Alx+Bl) dx = Z
l=1 fl—x =1

id,

Since f is continuous,
Ap &+ By =4y & + By
andsofor1 << r,
t . . . .

z [ez(Al§l+Bl) _ ez(/llfl_l+Bl):I - el(Al §t+Bt) _ et(Al §O+Bl)

l=1
Thus, using the relation
n

n-1 [ m
a,b = 2 (Z ap‘) (b, ~8,,,)+ b, 2 s
m=1

p=1 p=1

Ma

[

m=1

we have

r

A, Ay

; =_1_ -1 (ei(At§t+Bt) 3 ei(Alfo+Bl))( 1 1 )
jk i
t=1
+ (ei(Ar§r+Br) _ ei(Al §0+Bl)) _1 ,
iay

and so
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r—-1

(4) Tal<2 2

t=1

1 2

4 —

| 4r]

t At+l

By the facts that £, >a>0, §(x) \ 0as x —, and
j k

At = N ! - ’

5i&.)  B(kE_)

it is clear that
At > C(j-k)>0

for t=1, 2, +++, r, so that (3) will follow from (4) if it can be shown that for
some ¢, €> 0, the inequality

: 1 1 c
2 |—- <
e=1 |4 Ain (j—k)€
holds. Moreover, writing
1 1
Ct = e— —
4, At+x
and
r—=1 r ’ ,
1 1
2 ‘Ctl=z Ct-—-ZZ C=—=-—-2 2 C,»
t=1 t=1 4, 4

4
where 2= is the sum over those ¢ for which C, <0, we see that it suffices to
show that

.l <
(j-k)€
We consider three cases. Suppose first that ¢ is such that £, = z /j for
some m, but that for no lis &, = z;/k. Then
i k i k

- - , A, = - ,
T 3 imen) | 8(kE) T T 5(zm) | B(KE,)

so that A;4; > A;, and the term C, does not occur in & . If
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$oar = 201 = 2/ks
then z_ > z; and
m

1 1
ET 3/6(ame1) —k/8(z,_ ) (/8(zm) - k/3(z))

€

~k(1/8(2)) = 1/8(z,_ )
> .
= /8 amer) = k/8(2,_ ) (j/8(2m) = k/3(2)))

Finally, if &, =z,/k for some [, but §,,  # z /j for every m, then

c —k(1/8(z)) = 1/8(z;_,))
Ej/8GE,, ) ~k/6(2,_)) (/8 &, ) ~k/8(z))

Thus, writing 5(x%) and 8(x7) for limf_’x+8( £) and limg_‘x_‘é( &), we have

‘ g 1/6 -1/6
Z lCtl Sk Z: . . = / (ZI) / FZZ—.l).;-
(/8 € —k/8(2,_ ) G/3GEL ) —k/5(z)
% 1/8(z,) - 1/8(z;_,)

(i/8(jzy/k) — k/8(z,_ ) (j/8(jz}/k) - k/3(2)))
where £ " denotes summation with respect to I with z,/k € (g, b). But
8(jz;/k) < 8(z,_,)
and
8(jz; /k) < 8(z)),

and so

1/8(z)) ~1/8(z;_,)
(j-k)?/8(z;.,)8(z))

k ” 2k 5(ka)
_(j—k)Z Z {5(21_1)—3(21)}5W.

e ler X

If now §(x) =0(1/x), then

Z'1ctl=o(

)
(i-©)?2/
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and the proof is complete,

5. The preceding result can be generalized considerably by using the fol-

lowing transfer theorem:

THEOREM 5. Suppose that { %, } is u.d. (mod A), where A ={z, }, and that
fis a function which is differentiable except possibly at the points zy, z5 +-+,
such that f(x) Y ® as x % © and '

(5) inf fr(x) ~ sup f(x).

x€(zn—1’zn) xe(zn—[: 2,
Then the sequence { xz b= {f( x,) }is u.d. (mod A¥), where A* ={f(z,)}.

Put

N(ay ) = & 1, N(1, %) = N(x), N (&, z) = & 1, N*(1, %) = N*(x),

. . *
where 2 denotes summation with x, <x and (x; )5 <« and 2 denotes

summation with xZ <% <x:)A* < 0. Since fis an increasing function,
N(f(x))= 22 1= 2 1=N(x).
flxg)<f(x) xf <%

By assumption, the relation

. N(O(, x)
llm ————
x=00  N(x)

holds for a € [0, 1]. So we need only show that N*(«, f(x)) ~ N(«, x) as
x—m, and by Theorem 1 it suffices to prove this as x runs through the sequence
{z,}. But

N(oy z3) = X {N(zZmoy + &(2p = 2-1)) = N(zm-1)},
m=1

and so

N (o flzn)) = 3 IV (o, + il = 25 0) = N¥ ()

m=1

= N(oy za) + 3 EN (2, + &zl =~ 25 ) =Nz, + K2y = 2, )
m=1



768 W. J. LeVEQUE

Thus the problem reduces to showing that
n
>IN (2 + alzt =zt ) =Nz, +a(z, ~z _)) = o(N(a, z,)),

m=1

or what is the same thing, that

(6) - AN(f™H (2% _ +alzt ~zx_ 1)) =Nz, _ +a(z_ -z _))}=0(N(z,)).

m-1
m=1
Put
=1( % * _ % =
f (zm__l+01(zm zm_l)) um(CX,),
zm_1+a(zm-zm_1)=vm(o().

If it can be shown that

(7) lu, () —v ()| <€ (z -z _),

m=1

where €,~—>0asm— o, then for every € > 0,

> IN(u, () = N(o, (o))}

m =1

=0| > {N(v, (&) + €(z, ~z

m=1i

)) = N(v, ()]}

m-1

=0(N(¢, z,)) =0(eN(z,)),
which implies (6).
Now

w (0) = v, (0), (1) = 5 (1),
and

u, () = v () = {71 (f(z,_ )+ a(f(z,) = f(z,_)))

+OL(zm—z ));

—(Z m-1 ’

m-1

hence
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f(zm,)"'f(zm—l)
FAf N (fCzmm) + & (f(zm) = f(zm-D))}

ur;(a)—v,;(oc) =

(z,,,-zm_l).

To maximize u, (&) - v, (), we must have
f(zm)"f(zm—l) —(zp "Zm—l) f’{f_l(f(zm-l) +C4.(f(zm) _f(zm—l)))}'_‘o'
There is a Z, € (2,41, 2;5) such that

f(zm)“f(zm—l)

Zm = Zm-1

= [(Zo),

and a corresponding 0, € (0, 1) such that
flzmay) + ao(f(zm) = f(zm-1)) = f(Zy),
(so that u,:l( (Xo) - v’;(ao) =) for which
lu, () =v (a)] < |um(a0)—vm(ao)l =|Z -v,(a)]
for all € (0, 1). But
f(Zy) = f(zp-y)
+ (zpp —
f(zm)"f(zm—l)

f(Zo) = f(zm-1)
f(Zy)

V(o) = Zp—y Zp-1)

Zm-1 + ’

so that

f(Zo) = f(zm-y1)
f(Zoy)

Zo=vp(Qg) = Zo—zm-y —

and

f(Z) = f(zmy) ,)

- Z - - -
l"’m(a) vm(a)i < Zsélgm (‘ Zm ll Il (Z—Zm-l)f’(z)

whence
um(a)"‘vm(a) f'(W)
—— | < swp |l ~-——of,
Zm = Zm-y zes, f(z)

WESy,
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and this last upper bound is 0(1) as m — . Thus (7) holds, and the proof is

complete.

If the f of Theorem 5 is taken to be an arbitrary increasing polygonal function,
with vertices on the abscissas x = z,, z,, - -+, then the condition (5) on the de-
rivative is trivially satisfied. Such a transformation merely represents a change
of scale inside each interval §,, and the distribution modulo A of any sequence
{xk} is identical with the distribution of { f( xk) } modulo A*.

In case f’is monotone, (5) can be replaced by the simpler condition
(5% f(zpey) ~ f'(2p) as n — .
Combining this version of Theorem 5 with Theorem 4, we have:

THEOREM 6. The sequence { f(kf)} is u.d. (mod A) for almost all 6> 0 if

f(x) Y, f’is monotonic, and

f—l(zn) - f-l(zn—l)\o’

f-l(zn) - f—l(zn-l) =0(-__-1'_) ’
' (zp)

fUfzn)) ~ 7 (2p-0)),s
where {~' is the function inverse to f.

CoROLLARY. The sequence (o} is ud. (mod A) for almost all a> 1 if
z, = g(n), where g is an increasing function with monotonic logarithmic deriva-

tive such that

(8) g’ (x) _O(x12y,
g(x)
For writing ¥ as e log & \ve see that we can take the f of Theorem 6 to be

the exponential function, and the conditions displayed there become

log 2z, — log z,_, \ O,

1
log z, — log z,—; = O( ),

log z,
Zpn ~ Zp-q-

Of these, the third is implied by the first. Since
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d
o log g(%) \ O,

it is clear that log g(n) —log g(n = 1) \0. From the extended law of the mean,

G(x)-G(x-1) G'(X)

= — , X€(x-1,x),
H(x)-H(x-1) H(X)

it follows that if G (x) =0(H (x)), then

G(x) - G(x—-1) =0(H(x) - H(x-1)).
Taking

G(x) = log g(x), H(x) = log e’™* = V7,
we have by (8) that

log g(n) - log g(n~1) =0(n""/2).

But it also follows from the relation G’(x) =0(H (x)) that G(x) =0(H(x));
hence

log g(x) = 0(x/2), n72 = 0((log g(n)™'),
and the proof is complete.

For sufficiently smooth g, (8) can be replaced by the condition g(x) =

O(exp Vx).
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DERIVATIVES OF INFINITE ORDER

LEE LOrcH

1. Introduction. The major purpose here is to reexamine, chiefly from the
standpoint of summation by Borel’s exponential means, a number of problems

concerning the existence and form of

lim (%),

n— oo

for x a real variable in an interval. Several articles have been contributed on
this topic [5, 6, 11, 16], all of which take the limit process involved to be
ordinary convergence. In one [5], however, Boas and Chandrasekharan point
to the desirability of interpreting the limit process in a more general sense
and state without proof that one of their results (the case & =1, A, =1 for
all n, of Theorem 4 below) can be established by their method for any (pre-

sumably linear ) summation method T having the property that, as n — o0,
(1) T-lim s, exists and equals s implies T-lim s,., exists and equals s.

Borel’s method of exponential means, like his integral method, possesses
property (1) although, curiously, not its converse, as Hardy [cf. 9, pp.183,
196 ] pointed out. Methods satisfying both (1) and its converse include ordinary
convergence and the summation methods of Abel, Cesharo, Euler, Holder, and,

when regular (see below ), Voronoi-Nérlund.

It is not clear from [5] just how their proof of the cited result (that
f(n)(x) — g(x) dominatedly in (a, b) implies g(x)=ke®) can really be
carried over to all linear summation methods of type (1). Since the transform
{Fn(x)}, m discrete or continuous, of the sequence {f(n)(xﬂ converges
dominatedly, it follows that

lim /x F,(t)dt =/xg(t)dt, uniformly for ¢, x in (a, b).
[+ C

m — oo

Received September 22, 1952. Presented in part to the American Mathematical
Society, April 27, 1951. Completed with the assistance of a grant-in-aid from the
Carnegie Program for the Promotion of Research and Creative Activity, Fisk University.

Pacific J. Math. 3 (1953), 773-788
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But further argumentation is needed to justify interchanging (in the left mem-
ber) the integral and whatever limit process may be involved in defining Fr, (x)
in terms of {f'(x)}, which would seem to be the next step in the proof.
Where F,,(x) is a finite linear combination of f(x) <+, f(m)(x), as in the
Cesaro, Euler, Hélder, and Voronoi-Nérlund methods, this is trivial. In the
Abel and Borel methods, for example, however, the transforms involve infinite
series. The usual difficulties incident to an interchange of limits therefore
intrude themselves at this point of the argument. Perhaps this difficulty can

be overcome; but [51 does not suggest how.

In the case of Borel’s exponential means these difficulties can be avoided
and ‘more complete results obtained otherwise by rather simple arguments which
get to the heart of the problem more directly. Borel’s exponential means provide
a natural tool for working with the problems at hand; for, when applied to the
sequence { f ")(x)}, they give rise to the Taylor expansion of f(x). Repeated
use can then be made of the property that the value to which the Taylor series
of an analytic function converges is independent of the point around which
the expansion is taken, since the hypotheses of most of the theorems below

either assume or imply that f(x) is analytic.

A sequence {s, }, n=0,1,2, +++, is said to be By-summable to the value

s if
. oo Sn oa
) “lm et L T T
When (2) is satisfied, it is also written as
(3) B,- lim s, =s.

n—oo

This method is regular (sometimes called permanent) in the sense that any
sequence {s,} converging in the ordinary sense to a value s is also B,-sum-

mable and to the same value s.

If o = 1, the definition (2) describes summation by Borel’s exponential
means. B,-summation is denoted simply as B-summation, and, when « = 1,

(3) is written B-lim s, = s.

B,-summation possesses property (1) when & is a positive integer, since
B-summation does: Let B,-lim s, = s and define t; to be Os, when k= «n and
to be O otherwise. Then B-lim ¢; = s and, upon ¢ applications of (1), B-lim

ti-q=s. But this last is the same as asserting B,-lim s,.; =s, completing
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the proof.

2. Borel limits of the sequence of derivatives. We shall establish the
following result.

THEOREM 1. If f(x) is analytic in the real interval (a, b), and if

B-lim ™ (xq) = ke™

n— oo

for a single x4 in (a, b), then

B-lim ™ (x) = ke*

n—o0
for each x in (a, b). The convergence is uniform if the interval (a, b) is finite.

Proof. The function f(x) can be represented by its Taylor series in (a, 5),

being analytic in that interval. Thus

= [ (x0)
(4) f(t) = Z -——n—‘-i—

n=0

(t—2x)" for t, xo in (a, b).

The power series has an infinite radius of convergence in ¢ for x4 in (a, b),

since the existence of the Borel limit of f(")(xo) may be written (with r=¢-x,)

" 00 f(n)(xo)
(5) lim e(txo) Z —_—_— (t—xo)"=kex°.
t— 00 — n!
n=0
Thus f(t), ¢t in (a, b), possesses a unique analytic extension ¢(¢), and this

function is an entire function. Thus (5) can be written as

(6) lim e ¢(t) = k.

t o o0

Expanding ¢ (¢) about an arbitrary point x in (a, b), multiplying both sides of
(6) by €%, and placing r = ¢t ~ x completes the proof of the theorem, except for

the part dealing with uniform convergence.

To prove that the convergence is uniform when (a, b) is finite, let € > 0

be given and find £, (whose existence is assured by (6)) such that

|e't¢(t)—kl<€ fort > ty.
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Then
[e'(t'x)qs(t)—kexl <ee* < eel
for t > ¢y and all x in (a, &), and
> rln)(
I -(t-x) > f 'x) (t—x)" —ke*| < ce?

fort > ty and all x in (a, b).

Hence, putting r = ¢t — x, we get

e’

00 (n)
Z f——-(-f-—) - ke*| < ceb

!
=0 n!

forr > ty ~a and all x in (a, b). This completes the proof.

An examination of this proof makes it clear that the point x, and the in-
terval (a, b) do not have to be required to be real. What is essential is to
have the quantity ¢- x, become positively infinite through real values, to
conform to the definition of Borel summation. With this in mind, we can re-

phrase Theorem 1 in the following somewhat more general form:

Tueorem 17 If f(x +iy,), regarded as a function of the real variable
x, is analytic fora < x < b, y, fixed, and if

B—nlimm f(")(x0 + iyo) exists and equals ke™® Yo
for a single x4 in (a, b), then
Yo

. () : . x+i
1_'3’—11_1‘12<J f™(x +iy,) exists and equals ke
for each x in (a, b). The convergence is uniform if the interval (a, b) is

finite.

This theorem enables one to pass from a fixed point z, = xy + iyo in the
complex plane to any other point in a certain interval on the horizontal line
passing through z,. But what about points z not on this line? The proof of

Theorem 1 is not adequate to cover this situation, since it must be shown that
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the limit in (6) exists and has the value k£ as r=t- z becomes positively
infinite through real values. (Here the complex value z replaces the real
number x.) This is required by the very definition of Borel summation. In turn,
moreover, this necessitates establishing that the limit (6) exists and equals
k as t becomes infinite to the right, not only on the given horizontal line
¥ =¥, but also on other horizontal lines. This can be done in certain circum-
stances.

’

THEOREM 17 Let f(z) be analytic in S, a horizontal half-strip, quadrant,
or half-plane, opening to the right:

z=x+1y,x=a ¢c <y <d.

Let f(z) = 0(e?) as z becomes infinite in S. Suppose that

B-lim "™ (zg) = ke™®

n— oo
for a single zy in S. Then

B-lim ™ (z) exists and equals ke*

n-—oo

for all z in S. If ¢ and d are finite, then the convergence is uniform in ¢ + 6 <
y < d -8 for any positive 8. If S is a quadrant or half-plane, then the con-

vergence is uniform in any half-strip in its interior.

Proof. In the preliminary discussion, it has been noted that only one issue
needs be settled in order to extend the proof of Theorem 1 to this theorem as
well: That is the existence and value of the limit in (6) as ¢t -z, z an arbi-
trary point in S, becomes positively infinite through real values, where the
imaginary parts of z and z, may be unequal. This limit, for z arbitrary in S,
does exist and have the value % under the assumption made here that f(z) =
O(e?) as z—> o0 in S. This follows from Montel’s theorem [15, p.170],
after that theorem has been expressed in terms of the horizontal strips in-
volved here, rather than the vertical strips used in [15]. The conclusion con-
cerning uniformity is also a consequence of this formulation of Montel’s theo-

rem.

THEOREM 2. If f(x) belongs to a Denjoy-Carleman quasi-analytic class
in the (open) interval (a, b) and if
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B-lim (%)= ke™

n— oo

for a single xo in the open interval (a, b), then f(x) is analytic in (a, b)

(and
B-lim f(")(x) = ke*

n - o

forall x, a < x < b).

Proof. It is sufficient to prove the first half of the conclusion, the ana-

lyticity of f(x); the other half is then a consequence of Theorem 1.

As in the previous proof, the Borel summability of the sequence {f(")(xo )}
implies that the right hand member of (4) has an infinite radius of convergence,
and so defines an entire function ¢(¢). Expanding ¢(¢) in a Taylor series

about the point x4 in (a, b) shows that

™ (x0) = ™) (x4) (n=0,1,2,--+) .

The analyticity of f(x) in (a, b) is a consequence of the following result of
Bang [1, p.84], as quoted in [6]: ““... If f(x) belongs to a quasianalytic
class on @ < x < b and g(x) is analytic, then f(")(x0)=g(")(xo) for all
nanda < xy < bimplies f(x) = g(x)+--.” This completes the proof.

The next theorem provides a simple set of necessary and sufficient con-

ditions on the structure of f(x) as well as on that of g(x). That these con-
ditions are not sufficient if convergence is used instead of Borel summation

is shown by the example

f(x) = ke®™ + sin x.

The Borel limit of the sequence of derivatives exists and equals ke” for all
x, whereas the (convergence) limit of this sequence does not even exist.
Analyticity is not assumed in the necessity part of the theorem, but is in-
ferred as in Theorem 1 of [5].

THEOREM 3. A set of necessary and sufficient conditions that

B-lim "W (x) = g(x)

n—oo

for each x in (a, b), where g(x) is finite, is (i) that f(x) coincide in (a, b)
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with an entire function ¢ (x), having the property that
¢ (%) = ke* + o(e”),
as x becomes infinite, and (ii) that
g(x) = ke*, x in (a, b).
Proof of sufficiency. Here
¢ (2) = ket + o(e’);  ¢(¢) = f(2), fortin (a, b),
and ¢ (¢) is an entire function. Then

f(")(x)

e-(z-x)¢(t) -(z x) Z

(t-x)" x in (a, b).

By hypothesis,

lim e (t=%) ¢ (¢) = ke*,

t— 00

whence, with r = ¢ - x,

00 (n)
lim erzf (%) r* = ke*,

r— o0
n=0

completing the proof of sufficiency.

Necessity. Putting r=¢ - x, we can write the assumption of Borel sum-

sumability as follows:

(n)
f ( )(t—x)"-g(x) for each x in (q, b).

lim e (¢-%) Z

t— o0

This implies that the radius of convergence of the power series above is in-
finite for each x in (a, b). Hence f(¢) is analytic in (@, b), as a consequence
of a theorem of Pringsheim [13] for which a complete proof was supplied
first by Boas [4] and again later by Zahorski [17]. In fact, f(¢) has as ana-
lytic continuation an entire function, ¢ (¢). Then
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lim e’(t'x)qS(t) = g(x) for each x in (a, b),
t— o0

whence
lim e ¢(t) = e g(x) for each x in (a, b).
Looc

The left side is independent of x since ¢ (¢) is, and this is the case because
the values of an analytic function do not depend on the point in the region of
analyticity around which the function is expanded. Hence the right side must

be a constant k. This completes the proof.

3. subsequences of { (" (x)}. For the proof of the theorem below, the

following lemma is needed. The proof given first is due to Julian H. Blau.

LEMMA 1. If a sequence of polynomials, { P,{x)}, defined in the closed
interval [c, d], each of which is of degree at most B, has a limit h(x) in

e, d), then this limit is likewise a polynomial of degree at most 3.

Proof of lemma (by induction). Let each P, (x) be written as a polynomial

inx — c.
(i) The lemma is obvious for 8= 0.

(ii) Assume that the result is valid for all integers y, 0 < y < . Let
{Pr(x)} be a convergent sequence of polynomials of degree at most y + 1.

Then

Pu(x) ~ Py(c) —h(x) ~ h(c).

The left side is divisible by x — ¢, giving a sequence {0, (x)} of polynomials

of degree at most y, and

Pn( )'_Pn( ) h -
Qn(x) = i ° — (2)—k(e) (x #¢c).

X —C x—c

From the induction hypothesis, the right member is a polynomial of degree at
most y. Hence A(x) is a polynomial of degree at most y + 1. This completes

the induction.

The referee suggests the following alternative proof of the lemma: If

P, (x) converges pointwise, so does AP*Y P, (x); but these differences are
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all zero, and so AP p(x) =0 (for all spans ). It is well known that the
polynomials of degree < 3 are characterized among measurable functions by
the property of having vanishing (S + 1)th differences; and h(x) is even of
the first Baire class.

He also comments that the lemma is well known, but that, like the author,

he can think of no specific reference.

The case a =1, A; =1 (all n) of Theorem 4 below is proved in the opening
remarks of [5]. Theorem 3 of [5] is also included in Theorem 4 below, which
gives somewhat more precise information than is formulated in the statement
of Theorem 3 of {51, even for the case ol = 1, which is the case analyzed in
Theorem 3 of [5]. The proof below is fashioned after that of the latter theorem.

THEOREM 4. Let {A,} be a given sequence of constants; let & be a
fixed positive integer; and let

f(an)(x)
(7) lim — " g(x) dominatedly ina < x < b.
n—oo n

Then the following statements are true for a < x < b,
(i) If

An-t
lim =0,

n-—o0o n

then g(x) = 0 almost everywhere. If (7) holds uniformly, then g(x) = 0.

(i) If
-
im —— =L #0,
n—0c0 n

L finite, then Lg(a)(x) =g(x).

(ii1) If the sequence {An.1/An} has an infinite limit-point, then g(x)=

P,.1(x), where P,.1(x) is a polynomial whose degree does not exceed ¢ — 1.

(iv) If the sequence {Xp.1/An} has at least two limit-points, of which
at least one is finite, then g(x) = 0.

Proof. The common hypothesis gives the following extension of (3) of
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[5] in all four cases, since the sequence obtained by integrating a dominatedly
convergent sequence converges uniformly [10, p.290, p.304], whence suc-

cessive termwise integrations are valid for x, c in [a, b1:

[ An-1
lim
n— oo An

ARG

f(an-a.+ l)(c)
— — _— —_— a-l—OCO—_ —
(8) YTEAY (x=¢) . (x-¢)

x f*a x2
=f f .../ g(xl)dxl...dxa.
c Je c

f(an-a)(x) f(a”'a)(c)
)‘n-l - )\n-l

Moreover,
f(an-a)(x) f(an-a)(c)
_— o g(x)y, ———— — g(e),
An-y An-1

since s, — s implies sp.; —s.

To prove (i), note that the first term of the left member of (8) approaches
zero. Then, from Lemma 1, the combined remaining terms have as their col-
lective limit a polynomial P,., (x) whose degree does not exceed o — 1. Dif-
ferentiating both sides of (8) & — 1 times, under these circumstances, shows
that [* g(t)dt is constant for all x in [a, b], whence g(x) = 0 almost every-
where, as asserted in the first part of (i). If (7) holds uniformly, then g(x)
is continuous and hence identically zero.

To prove (ii), note that (8) becomes, as above,

L{g(x)—g<c)}-Pa_1<x)=fc"f"“.../"2 g(x))diy +ee dig.

Differentiating both sides « times with respect to x completes the proof of

(ii).

To prove (iii), rewrite (8) by using A,.,/A, as a factor of all the terms
within the brackets and not just of the terms in the braces. Then the (new)
expression inside the brackets must approach zero (since the right member of
(8) is finite) as n becomes infinite through a subsequence for which the cor-

responding An-; /A, becomes infinite. Using Lemma 1 again shows that
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g(x) — g(c) = Pay(x) = 0;

and, of course, g(c) can be absorbed in P,.,(x), completing the proof of
(iii ).

To prove (iv), consider first the case in which there are exactly two limit-
points, one of which is zero. The presence of the zero limit-point implies (by
use of an appropriate subsequence of {A,.;/Ap} in the proof of (i)) that
g(x) =0 almost everywhere. The other limit-point may be finite or infinite.
If finite, the same modification is introduced into the proof of (ii), showing
g(x) to be continuous. If infinite, (iii) applies directly, again showing g(x)
to be continuous. Hence, in this case, g(x) = 0.

In the remaining (‘“‘general’’) case of (iv), there is a finite nonzero limit-
point L, whence, modifying (ii) as above, we obtain

(9) Lg' (%) = g(x)
and either another finite nonzero limit-point M, implying
Mg(d)(x) = g(x)

with L # M, or an infinite limit-point, in which eventuality g(x) is a poly-
nomial whose degree does not exceed & — 1, from (iii). Comparing either of
these alternatives for g (x) with (9) shows that g(x) = 0.

This completes the proof of (iv) and of the theorem.
Theorem 4 (iv) does not exclude the possibility that

An-1

lim inf

n

may be zero. For the case & =1, therefore, it overlaps—and partially gener-
alizes — Theorem 3(i) of [5] in which it is assumed, instead of (7), that

f(")(x)
An

— g(x)

uniformly in [a, b1, as in Theorem 4 (i) here, in order to infer that g(x) = 0.

This casts further light on the significance of counter-examples connected
with Theorem 3 (i) of [5] (which is the case & =1 of Theorem 4(i) above).



784 LEE LORCH

One is due to Boas and Chandrasekharan [5], another to Bang [1], described
also in the final paragraph of [6]. Each exhibits a sequence L) (2) /A0
converging dominatedly to g(x) in [a, 5] with lim (A,.;/A;) = 0 and g(x) not
identically zero there, although, of course, it is zero almost everywhere. In

their examples, in fact, g{(x) is zero except for a single point.

In addition to the examples due to these authors, Philip Davis has called
attention to earlier constructions [ 2a; 3; 7, pp.38-42; 8; 12, p.244; 14] of
functions differentiable infinitely often on an interval and analytic on that
interval except for one or more interior points at which the successive deriva-
tives increase arbitrarily rapidly. Taking A, to be the nth derivative at a
singular point converts these constructions into examples of the phenomenon

described above.

R. P. Boas, who transmitted Davis’s information to the author, added a

reference to another exposition [ 2b] of S. Bernstein’s examples.

Theorem 4 (iv) shows, i.a., that it is impossible to construct similar

counter-examples in which the condition on the A,’s is weakened to

An-1

lim inf

n

with lim (A,.;/A,) nonexistent.

This last remark can be inferred also from a consideration of formula (3)
of [5], which is valid for dominatedly convergent sequences and which reads

as follows:

Aney [ f0-D(x)  foD(e)
lim -

n—o  Ap An-y " Apey

=/'x g(t)dt,a < c <b.
[+

Choose ¢ to be a point such that g(c) # 0, x a point at which g(x) = 0.

The right member is zero, since g{(x) = 0 almost everywhere. Thus

An-t
lim glc) =0, gle) #0,
n—oo An
whence
)\n-l
lim = 0.

nowo  Ap
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When A, =1 for all n, Theorem 4 (of which only part (ii) is now relevant)
can be extended readily to certain summation methods. Consider the trans-

formation

o0

(10) T:t:(x) = 3 cpl(r)sy(x),

n=o0
where r is continuous or discrete.

DEFINITION. The transformation T of (10) will be said to be of dominated
type in the interval (a, b) with respect to a sequence of Lebesgue integrable
functions {s,(x)}, defined in (a, b), if the infinite series (10) taking the
sequence {s,(x)} into £;(x) converges dominatedly (in the sense that all its
partial sums are uniformly less, in absolute value, than a fixed Lebesgue
integrable function) in (a, b) for each sufficiently large r.

Any row-finite or row-bounded matrix transformation is of dominated type
with respect to all sequences of Lebesgue integrable functions, This includes
all Hausdorff and Voronoi-Nérlund methods, in particular Cesdro’s and Euler’s.
All regular (or even merely convergence-preserving) transformations given
by (10) are of dominated type with respect to any (sequence of Lebesgue in-
tegrable functions dominated as a whole by a single Lebesgue integrable
function.

LEMMA 2. Let T be a summation method of dominated type with respect
to the sequence of Lebesgue integrable functions {sp(x)} in (a, b). Suppose
that {sp(x)} is dominatedly T-summable in (a, b) to s(x). Then

(1) T-lim /‘x sp(t)de =/'x s(t)de,

uniformly for ¢, x in (a, b).

Proof. The transformation T being of dominated type, it follows [10,
PP- 290, 304] as in the justification of (8), that

cp (1) xsn(t)dt= * en (r)s, (t)de,
Z oo [awe- [ 2

uniformly for ¢, x in (a, ), for each sufficiently large r. In turn, the right
member approaches the right member of (11) uniformly for ¢, x in (a, b) as
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r—m, since the integrand approaches s (t) dominatedly. The left member is
the T-transform of the integral of s,(¢). Hence the lemma is established.

THEOREM 5. Let T be a summation method satisfying (1) and of dom-
inated type with respect to the sequence {f(an)(x)}, x in (a, b), where O is

a fixed positive integer. If
T-lim @™ (x) = g(x),

dominatedly in (a, b), as n — w, then g(x) satisfies the differential equation
g(a)(x) =g(x)in (a, b).

Proof. By « applications of Lemma 2 we obtain

o0

lim 2 C,,(r) [f(an-a)(x) — f(a.n-a.)(c)]

T - 00 n=0

- lim i cp(r) f(an-a+l)(c) x—c +..-+f(°'"'l)(c) (x—c)* !
"7 n=o " 1! (=1

x [*a x2
=/ / "'/ g(xl)dxl oo dxa
c [+ c

uniformly for ¢, x in (a, b). Lemma 2 actually gives the existence and value
of the limit of the difference of the two sums, rather than the difference of
the limits of the individual sums, as written above. However, once the exis-

tence of the first limit above is established, that of the second is immediate.

Writing on — & as &(n ~ 1), we see from (1) that the first limit exists and
is g(x) - g(c). Lemma 1, with 8= o — 1, shows that the second limit, whose
existence is now assured, is a polynomial in x ~ ¢ of degree at most & - 1,

say P,y (x — ¢), vanishing for x = c. Then

gl(x) — g(c) —Pa_l(x—c)=/;x/;xa /;xz glxy)dxy <o dxg.

Continuity and then O-fold differentiability follow from this equation. Dif-
ferentiating & times completes the proof.

Some open questions. If lim @) (%), n — @, « a fixed positive integer,

exists, and is finite for each x in (a, b), then must the convergence necessarily
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be dominated or perhaps even bounded or uniform? If this is not the case for
general indefinitely differentiable functions, would it be true for f(x) in a
quasi-analytic class? If not then, what if f(x) is analytic? If o =1, then the
answer to the first (and hence to all) of these questions is affirmative. If the
answer to any of these questions is affirmative for other &, it would then fol-
low, from Theorem 4 (ii), that the limit, g(x), satisfies the differential equa-
tion g(a)(x)=g(x). Similar questions can be framed for more general se-
quences of A;’s.
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SOME EXTENSION THEOREMS FOR CONTINUOUS FUNCTIQONS

ERNEST MICHAEL

1. Introduction. In a recent paper, J. Dugundji proved [ 11, Th. 4.1] that
every convex subset ¥ of a locally convex topological linear space has the

following property:

(1) If X is a metric space, 4 a closed subset of X, and f a continuous

function from 4 into Y, then f can be extended to a continuous function from

X into Y.

Let us call a topological space Y which has property (1) an absolute ex-
tensor for metric spaces, and let absolute extensor for normal (or paracompact,
etc.) spaces be defined analogously. According to Dugundji’s theorem above,
the supply of spaces which are absolute extensors for metric spaces is quite

substantial, and it becomes reasonable to ask the following question:

(2) Suppose that Y is an absolute extensor for metric spaces. Under what
conditions is it also an absolute extensor for normal (or paracompact, etc.)

spaces?

Most of this paper (§ $2-6) will be devoted to answering this question and
related questions, The related questions arise in connection with the concepts
of absolute retract, absolute neighborhood retract, and absolute neighborhood
extensor (in $ 2 these are all defined and their interrelations and significance
explained), and it is both convenient and natural to answer all the questions
simultaneously. Assuming that the space Y of (2) is metrizable, we are able to
answer these questions completely (thereby solving some heretofore unsolved
problems of Arens [2, p.19] and Hu [18]) in Theorems 3.1 and 3.2 of §3;
$$4 and 5 are devoted to proving these theorems. In § 6 we show by an example
that things can go completely awry if Y is not assumed to be metrizable,

Our final section ($7), which is also based on Dugundji’s [11, Th. 4.1],
deals with simultaneous extensions of continuous functions. It is entirely in-
dependent of §§2-6, and is the only part of this paper which might interest

those readers who are interested only in metric spaces.
We conclude this introduction with a summary of some of the less familiar

Received September 3, 1952. This paper was written while the author was an Atomic
Energy Commission Fellow.
Pacific J. Math. 3 (1953), 789- 806
789
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or possibly ambiguous terms used in this paper. All our normal spaces are
assumed to be Hausdorff. A perfectly normal space is a normal space in which
every closed subset is a Gg (i.e., the intersection of countably many open
sets). A covering U of a topological space X is called locally finite [10,
p.66] if every x in X has a neighborhood which intersects only finitely many
V € U. A topological space X is paracompact [10, p.66] if it is Hausdorff,
and if to every open covering U of X there corresponds a locally finite open
covering U of X such that every V € U is a subset of some U € U. (Every
paracompact space is normal [10, Th. 1], every metric space is paracompact
[22, Cor. 1], and a Hausdorff space is paracompact if and only if it is fully
normal [22, Th. 1 and Th. 2].) A metrizable space is topologically complete
if it can be given a complete metric which agrees with the topology. A topo-
logical space is o-compact if it is the union of countably many compact sub-

sets.

2. Definitions and interrelations. Let us begin this section by formally
defining the concepts which were mentioned in the introduction, and which will
be the objects of investigation of most of this paper. For convenience, we will

use the following abbreviations:

AE = absolute extensor

ANE = absolute neighborhood extensor
AR = absolute retract

ANR = absolute neighborhood retract

DEFINITION 2.1. A topological space Y is called an AE (resp. ANE) for
metric spaces if, whenever X is a metric space and 4 is a closed subset of X,
then any continuous function from A into Y can be extended to a continuous
function from X (resp. some neighborhood of 4 in X) into Y. Similarly if “‘met-

ric”’ is replaced by the name of some other kind of space in the above.

DEFINITION 2.2. A topological space Y is called an AR (resp. ANR) for
metric spaces if, whenever Y is a closed subset of a metric space X, there
exists a continuous function from X (resp. some neighborhood of Y in X) onto
Y which keeps Y pointwise fixed. Similarly if ““metric’’ is replaced by the name

of some other kind of space in the above.

REMARK. Observe that if Y is an AE (resp. ANE) for a certain class of
spaces, then Y is a fortiori an AR (resp. ANR) for this class of spaces.
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The concepts defined in Definition 2.2 are essentially due to Borsuk [4 and
5], who proved [ 5, p.227] that every finite simplicial complex is an ANR for
compact metric spaces; this was, in fact, Borsuk’s motive for introducing
ANR’s. More recently, Hanner [17] generalized that result by showing that every
locally finite simplicial complex is an ANR for separable metric spaces. Finally
this result was generalized still further by Dugundji [ 12, Th. 5.2], who proved
that every simplicial complex with J.H.C. Whitehead’s CW topology is an ANE

for metric spaces.

The following propositions summarize the known relations between the
various concepts defined above. Propositions 1 and 3 are due to Hu [18], and

parts of Proposition 2 are essentially due to Dugundji [11] and Hanner [16].

ProrosiTION 2.3 (Hu). Let Y be a separable metric space. Then Y is
an AR (resp. ANR) for metric spaces if and only if Y is an AR (resp. ANR)

for separable metric spaces.

Proof. This follows at once from [18, Th. 3.11.

PROPOSITION 2.4. Let Y be a metric space. Then Y is an AR (resp. ARN)
for metric spaces if and only if Y is an AE (resp. ANE) for metric spaces. This
assertion remains true if “‘metric’’ is everywhere replaced by ‘‘paracompact”,

or “‘normal’’, or ¢

‘perfectly normal”’.

Proof. The ““if’’ assertions are clear (see the Remark after Definition 2.2),
so let us turn to the ‘“‘only if’’ assertions. Here the metric case was proved by
Dugundji [ 11, Th. 7.1]; to prove the results in the other cases, we shall use the
method employed by Hanner in his proof of the normal case [16, Th. 3.1 and
Th. 3.21.

Let X and Y be topological spaces, 4 a closed subset of X, and f:4 —Y
a continuous function. Let XuY denote the disjoint union of X and Y, and let
Z be the identification space which we get from XuY by identifying x € 4
with f(x) € Y. To prove our results, it is sufficient, as in Hanner’s proof of
the normal case, to show that if X and Y are both paracompact (resp. normal,
perfectly normal), then so is Z. For normal spaces this was proved by Hanner
[16, Lem. 3.3], and for perfectly normal spaces the proof is almost the same as
that for normal spaces; this leaves paracompact spaces, where our proof depends
on the following two facts. The first of these is a characterization of para-
compact spaces which the author will prove in another paper, and the second is

an immediate consequence of the first.
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(1) If Z is a T\-space, then Z is paracompact if and only if it has the
following property: If E is a Banach space, and if u'is a l.s.c.* function from
Z to the space C(E) of nonempty, closed, convex subsets of E, then there

exists a continuous u:Z —> E such that u(z) € u(z) for every z in Z.

(2) Let X be a paracompact space, E a Banach space, w:X —C(E)
a l.s.c. function, and A a closed subset of X. Then any continuous v:4A —E
such that v(x) € w(x) for every x in A can be extended to a continuous
w:X —> K such that w(x) € w(x) for every x in X.

We shall also need the following elementary facts about Z. Let g be the
natural mapping from XuY onto Z, and denote g|X by & and g|Y by &; also
denote k£(Y) by Y’ As observed by Hanner, k is a homeomorphism onto Y,
and h|X — A4 is a homeomorphism onto Z — Y, It follows that a function u with

domain Z is continuous if and only if u | Y’ and uh are both continuous.

Suppose now that X and Y are paracompact, and let us prove that Z is also
paracompact. Since Z is certainly T, we need only show that Z has the property
in (1). Suppose, therefore, that £ is a Banach space, and %:Z —C(E) a
l.s.c. function; we must find a continuous u:Z — E such that u(z) € w(z)
for every z in Z. Now Y’ is paracompact, and u| Y’ is L.s.c.; hence, by (1),
there exists a continuous r:Y’— E such that r(z) € % (z) for every z in Y*
Let w =uh, let h*=h|A, and let v =rh*% then X, A, w, and v satisfy the as-
sumptions of (2), and hence, by (2), v can be extended to a continuous
w:X — E such that w(x) € w(x) for every x in X. Now define u:Z —E by
“u(z)=r(z)ifze Y, and u(z)=wh (z)ifz€Z - Y”’. Clearly u(z) €u(z)
for every z in Z, and u is continuous, since u|Y’=r and uh = w are both con-

tinuous. This completes the proof.
Finally, let us mention the following result of Hu [18, Th. 3.21.

ProprosITION 2.5. (Hu) If Y is a completely regular space which is an AR
(resp. ANR) for completely regular spaces, then Y is an AE (resp. ANE) for

normal spaces.

Having just covered the similarities between extensors and retracts, let us
end this section with some comments about their differences. T}lese differences

occur in two ways:

1A function u from a topological space Z to the space of nonempty subsets of a
topological space E is called l.s.c. (= lower semi-continuous) if, whenever U is an
open subset of £, theni{z € Z|u(z)nU# ¢} is open in Z.
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(a) If Y is not a metric (resp. paracompact, etc.) space, then Y is (vac-
uously!) always an AR and an ANR for metric (resp. paracompact, etc.) spaces.
But Y need by no means always be an AE or an ANE for metric (resp. para-
compact, etc.) spaces, and when it is, this is a fact which cannot be restated
in terms of retracts. As examples, we mention the theorems of Dugundji [11,

Th. 4.1] and [12, p. 9] which we have encountered earlier in this paper.

(b) If Y is completely regular and has more than one point, then it is easy
to see that Y cannot be an AE or ANE for any class of spaces which contains
a nonnormal space. But such a ¥ may very well be an AR or ANR for completely
regular spaces (see Theorem 3.1 (e) and Theorem 3.2 (e)).

3. The theorems. We will now state the theorems answering question (2)

of the introduction.

THEOREM 3.1. Let Y be a metrizable space which is an AE (resp. ANE)
for metric spaces. Then:
(a) Y is an AE (resp. ANE) for spaces which are paracompact and per-

fectly normal.

(b) Y is an AE (resp. ANE) for paracompact spaces if and only if Y is
topologically complete.

(¢) Y is an AE (resp. ANE) for perfectly normal spaces if and only if Y
is separable.
(d) Y is an AE (resp. ANE) for normal spaces if and only if Y is sepa-

rable and topologically complete.

(e) Y is an AE (resp. ANE) for completely regular spaces if and only if

Y has at most one point.

THEOREM 3.2. Let Y be a metrizable space which is an AR (resp. ANR)

for metric spaces. Then:

(a) Y is an AR (resp. ANR) for paracompact spaces containing Y as a
Gs.

(b) Y is an AR (resp. ANR) for paracompact spaces if and only if Y is
topologically complete.

(c) Y is an AR (resp. ANR) for perfectly normal spaces if and only if Y

is separable.

(d) Y is an AR (resp. ANR) for normal spaces if and only if Y is separable
and topologically complete.
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(e) Y is an AR (resp. ANR) for completely regular spaces if and only if

Y is compact (resp. locally compact and separable ).

The foregoing theorems make a rather formidable array of statements, but
because of their interdependence we will not have to prove all of them sepa-
rately. In fact, we will prove only the following assertions (whose labeling is

self-explanatory ):

(*) 1(a), 2(a), 1(b) “if”’, 2(b) ““only if”’, 1(c), 1(d) ““if’, 2(e).

Let us show that these assertions imply all the others. To begin with, the as-
sumptions on Y made at the beginning of Theorems 3.1 and 3.2 are equivalent,

by Proposition 2.2. We therefore have the following implications:

1(b) “if’=> 2(b) ““if”’: by Remark after Definition 2.

2(b) “‘only if’’=> 1(b) ““only if’’: by Remark after Definition 2.
1(c) => 2(c¢): by Proposition 2.

1(b) “only if”” and 1(c) “only if”” => 1(d) “only if’’: obvious.
1(d) => 2(d): by Proposition 2.

=> 1(e): this follows from the definitions.

These implications, together with the assertions (*) which we are going to

prove, cover all the assertions of both theorems.

Before concluding this section, let us comment on the novelty and signifi-
cance of the results (*). First of all, 1(d) “if”” has been proved by Hanner
[16, Th. 4.1 and Th. 4.2], and 2(e) ““if’’ (AR ) has been observed by Hu [18];
our proofs of these results are short, and we include them for the sake of unity
of approach. Result 1(b) ““if”’ follows easily from Arens’ [2, Th. 4.1] by means
of a technique due to Dugundji [11]. Results 1(a), 2(a), 2(b) “‘only if”,
and 1(c) “if’’ are proved by minor variations of techniques due to Hanner [16].
This leaves 1(c) “‘only if”’, 2(e) ““only if’’, and 2(e) ““if”” (ANR) as the only
results with some claim to originality; among these, 1(c) “‘only if’’ solves a
problem of Arens [2, p.19], and the others solve some problems of Hu [18].

In the next section we will prove 1(a), 2(a), and the *‘if’’ parts of the
other (*) assertions; in the section after that we will prove the ‘“‘only if”
parts. The lemmas and propositions in these sections have some independent
interest, and are sometimes stated with greater generality than is needed in

their application.
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4. Proofs of sufficiency. Assertions 1(a), 2(a), 1(b) *‘if*’, 1(c) ““if”,
and 1(d) “‘if”” will be proved after Lemma 4.3. Assertion 2(e) “‘if”’ will be
proved after Lemma 4.6.

In the following lemmas, R¥ will denote a countably infinite cartesian

product of real lines.

LEMMA 4.1. Every (complete) metric space can be embedded homeomorphi-
cally as a (closed) subset in a Banach space. Every (complete) separable

metric space can be embedded homeomorphically as a (closed) subset in R®°.

Proof. It is well known (see, for instance [20]) that every metric space
can be embedded isometrically in a Banach space, and the first sentence fol-
lows from this fact. It is also well known [19, p.104] that every separable
metric space X can be embedded in R®°, which proves the second sentence with
parenthetical words omitted. If X is moreover complete, then it is a Gs in
R® [19, p.215]. By [19, p.151], X is therefore homeomorphic to a closed
subset of R®® x R® and the latter space is homeomorphic to R®°., This com-

pletes the proof.

The proof of the following lemma uses an idea which the author found in

Hanner [16 ] who in turn ascribes it to Fox [13].

LEMMA 4.2, Let X be a normal space, A a closed Gs in X, and g a contin-
uous function from A into a metric space E. Then there exists a metric space F
containing g(A) as a closed subset, and a continuous function h from X into

F which agrees with g on A.

Proof. Let G=E x [, where [ is the closed unit interval, and identify £ with
Ex{0} CG. Let F=G-(£~-g(A)). Since 4 is a closed G5 in the normal
space X, there exists a continuous function ¢ from X into the nonnegative
real numbers, which is zero exactly on A. Finally we define A:X —F by
h(x)=(g(x), ¢(x)), and we see that F and & satisfy all our requirements.

LEMMA 4.3. Let X be a topological space, A a closed subset of X, M a
metric space, and f a continuous function from A into M. Suppose either that
M is a complete metric space, or that A is a G5 in X. Suppose also either that
X is paracompact, or that X is normal and M separable. Then there exists a
metric space F containing M as a closed subset, and a continuous function from
X into F which agrees with f on A.

Proof. 1f X is paracompact, embed M in a DBanach space E according to
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I.emma 4.1. By {2, Th. 4.1] we may extend f to a continuous function g from
X into E. If M is complete, then we may suppose that ¥ is closed in E, and we
are through. If A is a G5 in X, we need only apply Lemma 4.2,

If X is normal and M separable, embed M in R® according to Lemma 4.1.
The proof now proceeds exactly as above, except that we use the Urysohn-

Tietze extension theorem instead of [ 2, Th. 4.11. This completes the proof.

Proof of 1(a), 1(b) “4f”’, 1(c) “4f’, and 1(d) ““%if”’. These all follow

almost immediately from Lemma 4.3.

Our next two lemmas deal with locally compact spaces, and are stated
without proof. The crux of Lemma 4.4 is essentially stated as an exercise

in [ 6] and proved in [8}; the first proof which the author saw was due to J. Tits.

LEMMA 4.4, The following properties of a Hausdorff space X are equivalent:
a) X is locally compact.

b) [If X is a dense subset of a Hausdorff space Y, then X is open in Y.

c) If X is a subset of a Hausdorff space Y, then X = UnC, where U is

open in Y, and C is closed in Y.

LEmMA 4.5. Let X be a locally compact space, and A a o-compact subset

of X. Then there exists an open, o-compact subset Z of X which contains A.

One part of the following lemma is trivial, while the other part is not; we

state them together to emphasize the parallelism.

LEMMA 4.6. Let X be a completely regular space, and A a compact (resp.
locally compact and o-compact) subset of X. Then X (resp. some neighborhood
V of A in X) can be embedded in a compact (resp. locally compact and o-com-
pact) Hausdorff space Z such that A is closed in Z.

Proof. The assertion where A4 is compact is trivial. To prove the other as-
sertion, let Y be any compact Hausdorff space containing X. By Lemma 4.4,
there exists an open subset U of Y such that 4 is a subset of U which is closed
relative to U. Since U is open in Y, it is locally compact. Hence, by Lemma
4.5, there exists an open, o-compact subset Z of U which contains 4. Since
Z is open in U, Z is locally compact. Letting V' =ZnX, we see that Z and V

satisfy our requirements. This completes the proof.

Proof of 2(e) “if’. This follows easily from Lemma 4.6 as follows: (We
will prove the part about ANR; the part about AR is even easier). Let ¥ be a
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locally compact, separable metric space which is an ANR for metric spaces,
and let Y be a closed subset of the completely regular space X. We must find
a neighborhood U of Y in X, and a continuous function g from U to Y which is
the identity on Y.

Since Y is a locally compact, separable metric space, it is o-compact.
Hence, by Lemma 4.6, some neighborhood V of Y in X can be embedded in a
locally compact and o-compact Hausdorff space Z such that 4 is closed in Z.
By [10, Th. 3], Z is paracompact. Since Y is a locally compact metric space,
it is topologically complete (for instance by [19, p.200] and Lemma 4.4).
Hence, by Theorem 3.2(b), there exists a continuous function g from some
neighborhood W of Y in Z to Y such that g is the identity on Y. Letting U=WnV,
and f=g| U, we see that all our requirements are satisfied. This completes the

proof.

5. Proofs of necessity. We start this section with the proof of 2(b) “‘only
if’, We will prove 1(c) ‘““only if’’ after Proposition 5.1, and 2(e) “‘only if”’
after Proposition 5.3.

Proof of 2(b) “only if”’. If ‘“‘paracompact’’ were replaced by “‘normal’’ in
this assertion, and ‘‘metric’’ by ‘‘separable metric’’, then the assertion would
be contained in [ 16, Th. 4.1 and Th. 4.2]. To prove our assertion as it stands,
we need only modify the proof of [16,Th. 4,2]. We therefore invite the reader
to look at Hanner’s proof of [ 16, Th. 4.2], and we will now point out the neces-

sary modification.

Instead of embedding X (this is the space in [16] which corresponds to our
Y) in the Hilbert cube /,, (which can only be done if X is separable ), we embed
X in an arbitrary complete metric space M, and this space M will take the place
of I, throughout the proof. With that in mind, we now define Z just as Hanner
does, and the crux of the matter is that we must show Z to be paracompact
(Hanner only shows that Z is normal ). Once this is accomplished, the remainder
of Hanner’s proof goes through unchanged (except that [, is replaced by M)
to show that X is a G5 in M. But this implies [19, p. 2001 that X is topological-
ly complete, and our proof will therefore be complete.

We will use the notation of Hanner’s proof (except that M replaces I,).
Let { Uy} be a covering of Z by open sets. Then, for each «, there exists an
open set O, in M, and a subset 4, of Z — X’, such that

U, = k°(0,) v 4,.

Let O=U,0O,. Since O is a metric space (and therefore paracompact [22,
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Cor.-1]), and since {O,} is a covering of O by open sets, { O,} has a locally
finite refinement { Vg, Since each Vg is open in O, and since O is open in M,
it follows that each Vg is open in M. Now let I be the covering of Z whose
elements are the sets h™'(Vg) and the one-point sets corresponding to the
points of Z —Ah"'(0). Let us show that Il is a locally finite refinement of
{ Uy}: It is clear that ) is a covering of Z by open sets, and that ! is a refine-
ment of { Uy, so we need only show that I is locally finite. If x € Z - £~*(0),
then {x} is certainly a neighborhood of x which intersects only finitely many
elements of W. If x € A1(0), then there exists an open subset S, of O such
that h(x) € Sy, and such that Sy intersects only finitely many elements of
{ Vg}. But then A™'(Sy) is an open subset of Z which contains x, and which
intersects only finitely many elements of W. This completes the proof.

The following proposition is more general than 1(c) “‘only if .

ProposiTiON 5.1. If Y is a topological space which is an ANE for normal

spaces, then -every disjoint collection of open subsets of Y is countable.

Proof. Suppose that there exists a disjoint collection U of nonempty open
subsets of ¥ which is uncountable. Then there exists a subset B of Y which
contains exactly one point from every element of U; clearly B is a discrete
space in the relative topology. Now by [3, Ex. H] there exists a perfectly
normal space X, and a discrete, closed subset A of X which is homeomorphic
to B, such that no collection of open subsets of X separates® A. Let f be the
homeomorphism from 4 onto B. By assumption, f can be extended to a con-
tinuous function g from some open neighborhood ¥ of A in X into Y. But now
the collection of all ¥'ng ! (U), with U € U, is a collection of open subsets
of X which separates A. This is a contradiction, and thus the proof is complete.

Proof of 1(c) ““only if”’. This now follows immediately from Proposition
5.1, since for metric spaces the property of Y in Proposition 5.1 is equivalent
to separability [ 21, p. 1301.

LEMMA 5.2. Let & be an uncountable ordinal, and let Q) be the space of
ordinals < &, in the order topology. For each o in Q, let

Qa= {q € Qiq > ol,
with the relative topology induced by Q. Also let X be a subset of the cartesian
1Y is a topological space, and B a subset of Y, then a collection U of open sub-

sets of Y separates B if U is a disjoint collection, and if each U C Ul contains ex-
actly one element of B.
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product of N copies of the real line, where N is a cardinal which is less than

the cardinality of £. Then:

a) If a <&, and f is a continuous function from Q. into X, then there
exists a 3 in Q such that o < B < &, and such that f(q) = f(&) forall ¢ > B.

b) If U is a neighborhood of { £} x X in Q x X, then there exists an ordinal
o < & such that @, x X C U.

Proof. a) If N =1, then this is proved exactly like the assertion in the
middle of page 836 of [9]. In the general case, let X C Il ¢1 R,, where I is
an index set of cardinality ¥ and R, is the real line for every ¢ € I, and for

every ¢ € I let 7, be the projection from X into R,. Letting f, = fom, for every
¢ € I, we have, by the first sentence of this proof, an indexed family { B,}, ¢ of
ordinals in Q such that f,(q) = f, (£) whenever ¢ > B,. Letting 8 be the smal-
lest ordinal which is larger than all the 8,, we see that 3 satisfies all our

requirements,

b) The assumptions on X imply that X has a basis of cardinality < N,
and hence every covering of X by open sets has a subcovering of cardinality
< N, Now for each x in X, we can find an ¢, in Q and an open neighborhood
Vi of x in X such that Q, x Vy CU. Thus { ¥, }x ¢ x is a covering of X by open
sets, and hence there exists a subcovering { Vy }x ¢ x*, where X’ has cardinality
< N. If now ¢« is the smallest ordinal which is larger than all the «, with

x € X’, then « satisfies all our requirements. This completes the proof.

PropPosITION 5.3. If Y is a completely regular space which is an AR
(resp. ANR) for completely regular spaces, then Y is compact (resp. locally
compact ).

Proof. Since Y is completely regular, it may be embedded in a cartesian
product of real lines. Let N be the-cardinality of this product, and let £ be an
ordinal whose cardinality is greater than N and greater than the cardinality of
Y. Now let Q be the space of ordinals < & in the order topology, let X be a

compact Hausdorff space containing X, and let
Z=(QxX)- (1} (X=X)).

Since Q and X are completely regular, so is Z. Now { £} x X is closed in Z, and
{ £} x X is homeomorphic to X, and therefore there exists a retraction f from Z
onto { £} x X, For each x in X, let

f, = FlQx1tx).
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By Lemma 5.2, there exists for each x in X a 3, in Q) such that

fo (g ) = (£ %))

for all ¢ > Bx. Now let 8 be the smallest ordinal larger than all the S,; then

B < &, and
f((Bs %)) = (& %)
for all x in X. Hence
fUBYx X) = {1 x X,

and therefore X is compact.

Let us now consider the ANR case. Suppose, therefore, that X is an ANR
for completely regular spaces. Let /zY_, Q, and Z be as in the last paragraph.
Then, by assumption, there exists a retraction f from a neighborhood U of
{&1x X in Z onto { £} x X. Now by Lemma 5.2, there exists an ordinal o < &
such that ¢, x X C U, where Q, ={q € ¢ | ¢ > a}. Proceeding just as in the
last paragraph (with Q replaced by (J,), we obtain a 8 in (J, such that

fUB, x)) = (& x)
for all x in X. If we now define the continuous function

heiEIx X—{BIx X

h((fy x))=(B9 x)’

then the restriction of 2 ° fto ({ B} x X)n U is a retraction of (§ Bix X)nU onto
{B}xX. Hence {B}x X is closed in ({B}xX)nU; but ({B}x X)nU is an
open subset of the compact set { 8} x X, and therefore both ({ 8} x X)nU and
{Blx X are locally compact. Hence X is locally compact, which is what we

had to show.

Proof of 2(e) “‘only if”’. This now follows immediately from Proposition
5.3 and Theorem 3.2(d).

6. An example. In [2], Arens showed indirectly that there exists a compact,
convex subset of a locally convex topological linear space which, while certain-
ly an AE for metric spaces by [11, Th. 4.1], is not an AE for compact Hausdorff
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spaces. In this section we will prove this result (and a little more) by means
of a direct example, which should also indicate why we assumed the space Y

in Theorems 3.1 and 3.2 to be metrizable.

The pfoof of Proposition 6.1 is due jointly to V.L. Klee and the author,
and uses a suggestion by I. E. Segal.

ProPOSITION 6.1. Let X be the cartesian product of continuum many
closed unit intervals. Then there exists a closed, convex subset of X which is

not the image under a continuous function of any open subset of X.

Proof. Let us call a topological space separable if it has a countable dense
subset. Since the cartesian product of at most continuum many separable spaces
is separable [21, p.139], it follows that X is separable. Hence any continuous
image of any open subset of X is also separable. To prove the proposition, it
therefore suffices to produce a closed, convex subset of X which is not sepa-

rable. This we will now proceed to do.

Let H be a Hilbert space whose orthonormal dimension is the continuum.
Then H has continuum many elements, and is not separable. Let us show (using

a proof due to I.E. Segal) that H is not even separable in the weak topology.

In fact, if # were separable in the weak topology, there would exist a count-
ably dimensional subspace K of H which is weakly dense in H. Since H is
countably dimensional, it is separable in the strong topology. Now by the Hahn-
Banach theorem, the strong closure of K is weakly closed and hence coincides
with H. But this implies that H is separable in the strong topology, contrary to

our assumption.

Now let S be the unit sphere of / in the weak topology. Then S is compact,
since H is reflexive. Also S is not separable since, as we have just shown, #
is not separable in the weak topology. To complete the proof, we must show

that S is homeomorphic to a convex subset of X. Now by definition,

X = I--‘IfeF If’
where F is an index set whose cardinality is the continuum, and /f is homeo-
morphic to the unit interval for every f in F. Now H*, the dual space of H, is
isomorphic to H [15, p.31, Th. 3], and hence we may take F to be the unit
sphere of H*.
Define ¢ :S —X by ‘“(¢(x))f=f(x)"; then ¢ is a homeomorphism from S
onto ¢ (S) by definition of the weak topology, and ¢ (S) is clearly convex in X.
This completes the proof.
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COROLLARY 6.2. There exists a compact Hausdorff space which is a
convex subset of a locally convex topological linear space (and hence [11,
Th. 4.1] an AE for metric space) which is not even an ANR for compact
Hausdorff spaces.

7. Simultaneous extensions. The purpose of this section is to prove the

following theorem:

THEOREM 7.1. Let X be a metric space, A a closed subset of X, and £ a
locally convex topological linear space. Let C(X, E) denote the linear space
of continuous functions from X into E, and similarly for C(A, E). Then there

exists a mapping

¢:C(4, E)—>C(X, E)

satisfying the following conditions:
(a) & (f) is an extension of f for every f € C(4, £).

(b) The range of ¢(f) is contained in the convex hull of the range of f
for every f € C(4, E).

(c) ¢ is an isomorphism (i.e. a one-to-one, bi-continuous linear trans-
formation) from C(A, E) into C(X, E), provided C(4, E) and C(X, E) both

carry the same one of the following three topologies:

(1) Topology of simple convergence [ 1, p.41.
(2) Topology of compact convergence [ 7, p.51%
(3) Topology of uniform convergence [ 7, p.51.

Proof. We will show below that, in his proof of [ 11, Th. 4.11, Dugundji
has already constructed a mapping ¢ satisfying all our requirements. In fact,
Dugundji [ 11, Th. 5.1] and Arens [ 2, Th. 2.6] have already observed that this
trivially satisfies some of our requirements; the only property of ¢ which will

need a nontrivial proof below is that ¢ is continuous for the topology (2).

We need the following fact, which is due to Dugundji [11] and was more

concisely stated and proved by Arens [ 2, Lem. 2.11:

(*) There exists a locally finite covering U of X — 4 by open sets, and as-
sociated with each ¥V € U an ay € 4 and a continuous real-valued function

g, on X which vanishes outside V, such that:
(i) 0<gy(x) < land 2y gy(x)=1forallx € X - 4.

3This topology is the same as the compact-open topology [1, Th. 9].
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(ii) If a € 4, and x € V, then p(a, ay) < 3p(a, x), where p is the
metric in X.

(iii) If f € C(4, £), then the function {: X — E, defined by “f(x)==x
forx € A, and?(x) = ZV gv(x) flay )’ forx € X — 4, is continuous.

The mapping ¢» may now be defined by ¢ (f) = 7, where fis as in (iii) above.
It is immediately evident that ¢ is a one-to-one linear transformation which
satisfies conditions (a) and (b) of our theorem. The continuity of ¢! for any
of the three topologies follows from (a) and the definition of these topologies.
The continuity of ¢ for topology (3) follows from (b). The continuity of ¢ for
the topologies (1) and (2), finally, will be an immediate consequence of the

following lemma:

LEMMA 7.2. If C is a finite (resp. compact) subset of X, then there exists
a finite (resp. compact) subset C of A such that 7(C) is contained in the con-

vex hull of f(C).

Proof of lemma. Let us define function u from X to the finite subsets of A.
If x € A4, then we let

u(x)={x}.

If x € X~ A, then clearly x is in the closure of only finitely many ¥V € U,

say Vi, «++, V,, and we set

ul(x) = {ley Tee s Xp, 1.

Having thus defined u, we set
C=Ugeculx)

for every C C X. It is clear that 7(C) is contained in the convex hull of f(E)

If C is finite, then C is clearly also finite. It therefore remains to prove that

~

C is compact if C is compact. To do this, it is sufficient to show that u is
upper semi-continuous %, because then the compactness of C for compact C will

be an immediate consequence of [ 14, p. 151, 21.3.4 1.

%A function h from a topological space Y to the space of nonempty subsets of a
topological space Z is called upper semi-continuous [ 14, p.149)] at a point y € Y if,
for every open subset U of Z which contains h(y), there exists a neighborhood W of
y in Y such that h(y’) C U for every y"€ W; h is called upper semi-continuous if it
is upper semi-continuous at every y € Y,



304 SOME EXTENSION THEOREMS FOR CONTINUOUS FUNCTIONS

Let us first show that u is upper semi-continuous at points of X — 4. Since
V is locally finite, the closures (in X — 4) of any subcollection of U have a
closed (in X — A) union. Hence if x € X — 4, then

B=U{V|Vel,x ¢V}

is closed in X — A, where ¥ denotes (and will always denote below ) the closure

of Vin X — A. Let
U=(X‘—/1)‘—B.

Then U is a neighborhood of x in X, and u(x”) C u(x) whenever x* € U; this

shows that u is continuous at x.

Defore proving the upper semi-continuity of u on A4, we need the following

“consequence of (ii):
(ii*) Ifa € 4, andx € 7, then p(a, ay) < 4p(a, x).
To see this, pick a y € V such that

p(x,y) <1/3 p(a, x),

and then observe that
pla,ay) <3pla,y) <3(pla, x)+p(x,y)) < 4p(a, x).

Let us now prove that u is upper semi-continuous on A. Let a € 4, and

let U be an open subset of X containing u(a)=1{a}. Pick € > 0 such that
{y € X|pla,y) < e} CU.

Now let
W={xeX|p(a x) < €/4}.

Then W is a neighborhood of a in X. If x € WnA, then u(x)={x}, and thus
u(x) CU. If x € Wn(X~4), then p(a, ay) < € whenever x € V by (ii*),

and thus again u (x) C U. Hence u is upper semi-continuous on A4.
This proves the lemma, and hence also the theorem.

REMARK. It is an easy consequence of Proposition 4.3 that Theorem 7.1
remains true if the requirement that X is metric is replaced by the following

weaker requirement: 4 is metric, and one of the following three conditions
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holds: (a) X is paracompact, (b) X is normal and A4 is separable, (c) X is
completely regular and 4 is compact.

8. ADDED IN PROOF. Many of our results have been obtained independently
by Olof Hanner [24], who was kind enough to send the author a pre-publication
reprint of his paper.
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A NOTE ON THE HOLDER MEAN

TYRE A. NEWTON

1. Introduction. Of the two better-known generalizations of the simple arith-
metic mean, the Hslder mean and the Cesdro mean, the latter has been the more
extensively studied. This is primarily due to the equivalence of the two when
used to define summability methods and to the following formulas. If we define

Cﬁ, the ™" order Cesdro mean of the terms Sos Sy +++ 4 Sps by the relation
k _ (n+k\—1 ok
Ch = (ntkyt gk,

where

n
=S and ¥ = 5 SEl g nyo0, k=12...,

v=EQ
then it follows [ 1, p.96] that
n
(L.1) AR D LA A
v=EQ
and
m
(1.2) Sk = 37 (~1)? (™) Sktm (m=1,2--).
v=0

The only known analogues to these formulas for the Hélder mean that this writer
has been able to find are as follows. Denoting the kt? order Hslder mean of the

terms Sy, Sy, +++, S, by Hﬁ, and recalling the definition that

n
Zﬂﬁ"l forn >0, k=1,2,::+,

v=0

H® =S and HF =
n n n n+1

Received October 9, 1952, and in revised form June 9, 1953, This paper resulted from
a part of a doctoral thesis submitted to the graduate Faculty of the University of Georgia.
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807
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it can be proved [ 1, p. 250] that

(1.3) HEfm =SS (-1 (") [AY (et 1= o) ™) Bk
v =0
and
(1.4) HE = 5 (=1)Y (M) [A(n+1=0)"] ™ (m=1,2,.-.),
v=0

where Au(n)=u(n + 1) —u(n). These formulas follow from a more general ex-
pression for the coefficients in any Hausdorff transformation. It is easily seen
that the coefficients involved in (1.3) and (1.4) in many respects are not as

convenient to work with as those of (1.1) and (1.2).

In $2 below, the coefficients of (1.4) are obtained in different form, being
expressed in terms of a particular set of polynomials. A few of the properties of
these polynomials are considered in §3, while applications with respect to

Hélder summability are dealt with in $ 4.

2. A set of polynomials. It follows from the definition of the Hélder mean
that

(n+1) HEU  ppktt - gk

for integers £ >0 and n > 0. By iteration, it follows that there exist coefficients
A]'." (n) such that

(2.1) HE = 20 (=1Y A7 (n) HE (m=0,1,2,---)
j=o

if

(2.2) AP*1(n) = (n=j+1) LAT(n) + A7 ()]

for 0 < j < m, where

(2.3) A3(n) =1 and Aj’."(n):O

for j <0 or j > m. By virtue of the identity

N+1-7)™=(n+1=j) MN(n+1=j)™ + jN Y (n+2-/)",
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it follows that the coefficient of (1.4),
AT(n) = (1) M (n+1=)",

is a solution of (2.2) satisfying the boundary condition (2.3).

Another form of this solution is obtained when we consider the following set

of polynomials. For arbitrary nonnegative integers m and j, 0 < j< m, let

(2.4) F(x) = 2™*1,

F(x) = 3 «'(x-1),

m+1

Fri(z) = & wP(x-1) oo (2= ))°,
m+1
FZ(x) =x(x=1) «++ (x=m),
the symbol
2 Fx-1)7 - (x-j)°
m+1

denoting the sum of all possible but different such products where p, g, +++, s
are positive integers such that p+ g + «++ + s = m + 1. If we further let

(2.5) F;"(x) =0

whenever j <0 or j > m, it follows that

(2.6) FI'."“(x) = (x-7) [F}n_l(x) +Fl’."(x)]

for integers j and m > 0. To prove the latter relation, apply (2.4) to get

(2.7) (2= PDIFL (D +F(0)] = 3 #P(x-DT o0 (x=j+1) (x-])

m+1

+ z WP (x-1)9 cor (x=j+1) (x—=j)SH

m+1
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for 0 < j <m. In the first sum on the right, the exponents p, q, - - , r take on all
possible positive integral values such that (p+q++--+7)+1=m+ 2. In the
second sum, the integers p, ¢, - -+, 7, s take on all possible integral values such
that (p+q+++++7)+(s+1)=m+ 2. It follows that if we consider both sums
on the right of (2.7) together, then their sum is F;"ﬂ(x), thus completing the
proof of (2.6) when 0 < j < m. Its truth for j <0 or j > m follows when we further
consider (2.5) as well as (2.4).

Reconsidering equations (2.4), we note that each of the polynomials defined
there has x as a factor. Consequently there exists a unique polynomial G}’."(x)
such that

(2.8) F;n(x)=xG;-"(x)

for integral m > 0 and j. Substituting into (2.5) and (2.6), and noting that
Gg(x) =1 for all x, we see that G"' (n + 1) is a solution for (2.2) satisfying the

boundary conditions (2.3). Consequently, we assert that

(2.9) HE = 35 (-1Y GM(n+1) HER

j=o
for integers £ > 0 and m > 0.1

3. Properties of the polynomials G}"(x). In the work that follows, it will be
more convenient to consider the polynomials G™ (x) defined by (2.8). As might
be expected, we find a considerable number of recurrence relations and other
formulas involving these polynomials and their coefficients. Before proceeding
to the particular applications in view, we shall list a few such relations. For

integral m > 0 and j,

1The author is indebted to the referee for suggesting the above derivation of (2.9)
which is somewhat simpler than the proof originally presented. The referee also proposed
the following alternative derivation. We vrite

HE(x) = ¥ HEA",
n=0
and then with D =d/dx,
(1 -x) D{xH** Y )} = 0¥ (x),

and symbolically,
[(1-2) Dx]™ H¥*™ (x) = ¥ (2).

Interpretation of the operator leads to the same results. This derivation is worth noting,
for it is analogous to the classical development of equations (1.1) and (1.2).
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(3.1) GI (%) = (2 =) [GT (%) + G (x)];
for integral m > 1 and j,
(3.2) G;."+1(x)=(x—1)G;.'f_l(x—l)+xG;."(x);

and for integral m > 0 and j,
(3.3) (j/2 + x) G]'."(j/2+x) = (-1)™*! (j/2 -x) G]’."(j/z-—x).

Equation (3.1) is obtained by substituting from (2.8) into (2.6). The proof
of (3.2) is carried out by first deriving the relation

FPtH(x) = «[F1L (x~1) + F'(2)]

in the same manner as we derived (2.6), then substituting from (2.8). Equation
(3.3) follows from the defining equation of F;”(x) when (1) is factored from

each of the factors of the defining sum giving
F]'."(x) = (-1)™*" F]r_n(]-__x)

for 0 <j < m. Replacing x by (j/2) + x and substituting from (2.8) yields the
desired result. This relation displays the symmetric nature of the polynomials
F;"(x) = xG;."(x) in that they are symmetric with respect to the line x = j/2

when m is odd, and symmetric with respect to the point (j/2, 0) when m is even.

Determine coefficients j4,, ; such that

(3.4) G}"(x) = iAn e A ™o+ A + A

,0 jm,1 i m,m—lx jom,m

for m > 0. It follows from the definition that

(3.5) A . =0

jm,i

for either i <0, i>m >0, j<0, or j>m> 0, and in particular 44, o =1 while
odm,i = 0 for i >0. The following is a table of the polynomials Gj’.”(x) when
m=1, 2,3, and 4:

G;(x‘) =x Gg(x) = x2
Cll(x)=x—1 Gf(x)=2x2—3x+l
G;(x) =x2 -3x+2
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k=3 k=4
Gg(x)=x3 Gg(x) = x4
Gi(x) =323 —6x2 +4x -1 G‘:(x) = 4x* —10x3 + 1022 —=5x + 1
G3(x) = 3x° —12x% + 155 - 6 G3(x) = 6x* - 30x® + 5547 — 45x + 14
G3(x) = x*—6x% +11x - 6 G3(x) = 4x* - 30x° + 80x% ~ 90x + 36
Gi(x) = x* — 10x° + 35x2 — 50x + 24

Substituting from (3.4) into (3.1), collecting like terms with respect to x, re-

placing m by m — 1, and equating coefficients, yields the recurrence relation

(3.6) A =04 + j-xAm—x,i) - j(jAm—x,i—l + )'—lAm-'l,i—l)

jom,i jTm=-1,1

for integral m > 1 and j. Summing the latter expression with respect to j results

in the relation

J . .
(3.7) 2 (=Y A = (-1) Amey,i —1(=1Y Ameri-1
v=0
j-1
+ Z (-1)* uAm-l,i—l
v=0

for 0 <i < m. An interesting particular case of the latter formula is obtained by

letting j = m and considering (3.5). It follows that
m m-~1
Z (-1 vAm,i = Z (-1)* vAm-l,i—l'
v=0 v=o0

From repeated substitution, we conclude that

m
Z (-1)* vAm,i = vo,i—m’
v=0

whence

Ofori<m

(3.8) 2o (1Y A, =[
v=0

1 fori=m

when m > 1.

Recalling the factorial notation x(mH1) x(x=1) e (x—-m), m> 0, we ob-

tain
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xGZ(x) = xlm+1)

But by definition, the numbers s such that
’

(m) m
x = s X" + s x
m,m m,m~1 m, 1

are the Stirling numbers of the first kind [ 2, p. 143 1.2 It now follows, since

Grlx) =s ™+ s x Foeee + s

m+i,m+1 m+i,m m+1,1?

that

(3.9) A . =5

m'm,i m+i,m=i+t "

In turn, letting { = 0 in (3.6), we find that

jAm,o = jAm-1,0 + j—lAm—l.O'

As a consequence of the initial conditions that 44, o =1 and j4p, o =0 for j> 0,
it follows [ 2, p.615] that the solution of this partial difference equation is

(3.10) A= (’;‘).

When considering the polynomials G;.n(x) as displayed in the table, we see
that, for any m, the coefficients considered by rows in light of (3.9) and (3.6)
give a possible extension of the Stirling numbers. On the other hand, when the
coefficients are considered by columns in light of (3.10), they present a possi-
ble extension of the binomial coefficients, This latter property is better dis-

played when we consider the known formula [ 2, p. 169]

m
z (_1)1) (Ln) J o= (_l)m mISj,m (] > 1),
v=1
where S; r, is the Stirling number of the second kind and thus §; , =0 for0<j<

m. Make the definitions

Pm(i, j) = 22 (-1 A, ;v and Q"(ij) = 22 (-1)¥ 4, (v+ 1),

=1 v=0
where m > 1. It follows from a straightforward induction proof that

(3.11) P™(0,0) = -1 and P™(i, j) =0
Connrm————————

2The notation used here for the Stirling numbers of the first and second kind is not
the same as that used by Jordan in [2].
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whenever 0 <i<m, 0 <j<m~i, and i + j #0. The induction can be carried out

by using the identity
PG )y = [P™(i, /) - Q™(i, 1 - [P™(i-1,j+1) - Q"(i-1,j+1)]
and the fact that the truth of (3.11) implies that both
(3.12) Q"(i, j) =0
for0<i<m, 0<j<m-i, and
Q" (i, m—1i) = P (i, m~i)

for0 <i<m.
It is of interest that
m -1

(3.13) 3 (1Y CM(x+in) = 20 A™TEPM(i,m-i) +1

i=o0 i=0
form>1,n=0, 1, +2, .-+, and all x. That is, the sum
m .
2 (=1) GM'(x+in)
i=o0

is a function of n and m alone, independent of x. This follows from(3.8), (3.11),
(3.12), and the identity

> (=1) G(x+in)

{oAm,o + P™(0,0)} 2™

i=0
m-1 j ] .
+ 2 Z (";:Z) nd7V P™ (v, j—-v)| 2™
j=1 v=0 .
m=-1 .
+ Z 7t P (i, m~i) + P™"(m, 0),
i=0

where m > 1. Since the sum on the left of (3.13) is independent of x, we can

write

2 (-1) 6P (x+in) = 20 (=1) G™(in)

i=0 i=0



A NOTE ON THE HOLDER MEAN 815

form>1,n=0, £1, £2, .., and all x. Letting n = 1, recalling that GT(x) has
(x — i) as a factor for { > 0 and that GZ' (x) = x™, we see that

m .
2 (-1} Gl (x+i) =0
i=0
for m > 1 and all x. If we let » =0 in (3.13), then
m .
(3.14) 2 (1) G (x) =1
i=0

for m>1 and all x. It turns out that n =0, 1 are the only two cases where the

sum

m .
Z (-1) G:."(x +in)
i=0
is independent of m as well as x.

Consideration of (1.4) with (2.9) yields
(3.15) Gl (n) = ("7 1) & (n=j)".

As might be expected, more is found concerning the nature of the coefficients of
the polynomial G;."(x) by studying the expression on the right of (3.15). Sub-
stituting into (3.15) from the identity

m+ 1
Nam e S oD s )
m,v ’

v=1

where Sy, , denotes the Stirling number of the second kind [ 2, p.181], and sim-

plifying, we obtain the relation

(n—-7)

n

m
Gl (n) = Z () Sy, M.
v=j

Substituting from the defining relation for the Stirling numbers of the first kind,

v
(v) Z’ i
%7 = Spi X

i=1
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collecting like terms with respect to n¥, v =0, 1, -+, m, and equating coeffi-

cients, yields the relation

m-j
_ j+v ~ o
jAm,i" Z ( i )bm,j+v(sj+v,m—i ]Sj+v,m—i+l)
v=o0

for integral m > 0, ¢, and j.

4. Application to Holder summability. For the remainder of this paper {S,}
denotes the sequence of partial sums of the arbitrary infinite series 2_a,, and
Hﬁ denotes the &'" order Holder mean of the terms Sg, Sy, -+« 5 S,. If

lim H* = S,
n

n —oo

then 2_a, is said to be summable Holder of order & to S, and this fact is denoted
by

2a, = S(H, k).

In the same manner, the sequence {Cﬁ} defines Cesdro summability of order %.

Likewise, Cesdro summability of order k is denoted by
2 an = S(C, k).

The Hslder and Cesaro summability methods are equivalent in that
2-a, = S(H, k)
if and only if

2oa, = S(C, k).

At times it will be convenient to use the operator form of denoting the Hélder

mean. That is, the AL

order Hélder mean of the terms Pyt Pys "** s Py is denoted
by H*(p,). lfp, =S

_ k>0, and S =0 for m <0, then we have

1

n+1

n-k
HY(S,_,) = 2 S, HE(S, ) = HY(H*"' (S _,))
v=0

for £ > 1, and
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HO(Sn—k) = Sn-k'

It follows that

(4.1) H™(H* (p.)) = H™*k (p,)
and
(4.2) H™(p, +9q,) = H"(p,) + H"(q,),

where m and k are nonnegative integers.

Letting £ =—m in (2.9), m > 0, we have the following definition for Hélder

means of negative integral order.

DEFINITION 1. For m) 0,

(4.3) H™ = 3 (-1) 6™(n+1) S .
i=0

Referring to the defining equation for the Cesaro mean,
m _ (n+my-1
cm = (nrm)=t gm,

n

we see that the first factor on the right is undefined for negative m when n is
sufficiently large.

From Definition 1, it follows that (2.9) can be extended to all integral values
of k. The Hélder method of summation is said to be regular since

Dap=3S
implies
Z a, = S(H, m)

for m > 0. With respect to negative order summation, the following extended sense

of regularity is immediate.

(i) If X a, is divergent, then it is not summable (H, —m) for any m > 0.
(ii) If

Zan = S(H, -m)
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for m > 0, then
2 a, = S(H,p)

for all p> —m.

Also, the right side of (4.3) can be used to define the operator H~™. From this

definition, it follows that properties (4.1) and (4.2) are true for all integral m
and £,

Applying summation by parts to (4.3), considering (3.14), and using the op-

erator notation, we find that
m-1 i )

(4.4) H™(S) = 2 | 2 (1Y 67 (n+1)) ani + Spem
i=0 j=o0

for m > 0. Applying the operator H1*™, we see that

i=0 =0

m-1 i
(4.5) HI(S,) = HI*™™ | >~ (Z (-1) G}"(n+1)) an-;] + HIY™(S, )
for integers m > 0 and g. Since
lim HY(S,) =S
i~ 00
implies
lim HI*™(S,_p) = S
n—o0

for m > 0, we have the following theorem as a formal statement of our results.

TuEorEM 1. If
Zan =S(H, q+m), m>0,

then

m=1 i
X (X -1V GMn+1)| ap-i = 0(H, g+ m)

i=0 \j=0

is a necessary and sufficient condition that
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Zan = S(H9 q)'

Letting ¢ = 0 in Theorem 1 yields a Tauberian theorem, that is, a theorem in
which ordinary convergence is deduced from the fact that the series is summable
and satisfies some further condition ( which will vary with the method of summa-

tion).

Letting ¢ = —m in Theorem 1, we have the following corollary with respect to

negative order summation.

CoroLLARY 1. If

then
m-1 i )
lim 3~ | 3 (-1)Y G;"(n+1) a,i =0
= i=9 \j=o0
is a necessary and sufficient condition that
Za,, =S(H,-m), m>0.

Noting that
i .
-1V g™
jf__i( 1Y 6 (n+1)

is a polynomial at least of degree m, it follows that
lim n™a_ =0
n— oo n

implies

i
lim | 22 (-1 G'(n+1)| a,_; =0,

n— oo i=0

and consequently we assert:
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CoRroOLLARY 2. If

then

lim n™ a, =0,m>0,
n-+00

is sufficient for
2 a, =S(H,-m).

Letting m =1 in (4.5) we have

Hg(Sn)=Hq+1((n+1)a,,)+Hq“(S ),

n-1
or, applying the distributive property of this operator,
(4.6) Hq(Sn) =Hq“(nan) +Hq“(5n).

This relation is equivalent to a well-known analogue to Kronecker’s theorem [3,
p.485] which states that if 3 a, is summable (C, g), then

H'(na,) = 0(C, q).

Conversely, it follows from (4.6) that if 2_a, is summable (H, g +1), then a
necessary and sufficient condition that it be summable (H, ¢) is that

na =0(H, qg+1).

For integral ¢ > 0 this is analogous to Theorem 65 of [ 1]. However, in the fore-
going case, the statement is true for all integral q. As a further extension of the

analogue to Kronecker’s theorem, we have the following.
CoroLLARY 3. If

Zan = S(H, q)»

then

m-1 i
E X -1V 6Hr+1)] a, = 0(H, g+m)
j=o

i=0
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forintegral m > 0.

For a special case where the condition of Corollary 2 is necessary as well

as sufficient, we shall prove the following.
THEOREM 2. If Zay, is a convergent alternating series, then

lim »™ a, =0, m > 0,
n— oo

is a necessary and sufficient condition for ¥ a, to be summable (H, —m).

Proof. Letting i=0 in (3.7), we conclude that there exist constants k%m,j?
»
j=1,2, «++, m, such that

k
(4.7) X2 (=1) GM'(n) = (-1)F 4

j=o

m m-—1
n
m-1,0 " +kam,1

m-=2
R I ceet @

m,2 m,m

for 0 < k < m. We recall from the definition of Gy (x) that $Amey,o >0 for0< k<
m. Consequently, for a given m, it follows that there exists an n, such that for
all even £,

k
2 (1) G (n) > 0;

i=0

and for all odd %,
k .
2 (-1)' 6 (n) <0
i=o0

whenever n > n,. But by hypothesis, @ _, is alternating in sign with respect to
m, whence

(4.8) > (1) Gl (n)

m-1 i . m-1
> (2(—1)1 G;."(n)) an_i_ll =3

. . . . |an—i-l
i=o \j=o i=o |{j=o
for n > n,. Also, it follows from (4.7) that
i .
”limm n " 2 (-1Y G;"(n) = iAm—l.o’
1=0
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consequently there exist positive constants n, > ny, M(m), and N(m) such that

™ M(m) < | 35 (-1) CT(n)| < n™ N(m)

j=o

for 0 < i <m and n > n,. Considering this with (4.8) yields

m-1 m m=-1[ i )
M(m) 3 (———"—1-) (n=i~D"a,_,_ | <| 2 (Z(—U’G}"(") T imy

i=o0 \PTVT i=o\j=o0
m-1 n m
<N(m) 3 (____) (n=i=1)"|a,_;_||
i=1 n—-it—1

forn>n, . We conclude that

m=-1 i ]
lim 3 (2 (-1 c;."<n)) a, ;=0

= jzo \j=o
if and only if
lim »™a =0.
n— 0o n

The theorem now follows from Corollary 1.

Letting ¢ = —1 in (4.6), we see that any convergent series for which

lim na, # 0

n— o0

is not summable Hélder for any negative order. On the other hand, 2>1/(n + 1)2

is convergent and

lim n%a, #£0,

n— oo

yet it follows from direct application of Corollary 1 that this series is summable
(H, -2).
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ON A THEOREM OF PLANCHEREL AND POLYA

R. M. REDHEFFER

1. Introduction. Paley and Wiener [ 6] have shown that the following classes

of entire functions are equivalent:

(A) those which are o(ealzl) in the whole plane and belong to L? on the
real axis;

(B) those which can be represented in the form
a .
F(z) = f ezt f(¢) dt,
-a

with f(¢) € L? on [-q, a].

A simple proof was given later by Plancherel and Pdlya [7], and they showed
how the condition o(ealz!) could be weakened in the passage from (A) to (B).
Their result leads at once to the following, which is the form to be used in the

present discussion:

THEOREM A (Plancherel and Pélya). Let F(z) be an entire function of
order 1, type a. If F(x) € L? on (~, ) then F(z) can be represented in the
form

F(z) = f el [(t) dt,

with f(t) € L? on[-a, a].
The hypothesis concerning order and type means
(1) lim sﬁp log |F(2)|/|z]| < a, |z|— .
Theorem A implies a nontrivial result about entire functions; namely, if F(z)

satisfies (1) and is in L? on the real axis, then [ 7]
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(2) F(z) = o(elsinély — , _ ; ¢if,

We shall show here how Theorem A can be used to give very simple proofs of
other results, some of which seem accessible only with more difficulty to purely

complex-variable methods.

2. The growth of F (z). The Plancherel-Pdlya result determines the growth
of F(z) in the whole plane from the growth on the real axis:

THEOREM 1. Let F(z) be an entire function satisfying (1), such that
F(x) = O(|=|")
for some positive or negative integer n, as x —»  on the real axis. Then
F(reif) = 0( eorlsin ]y
uniformly in 6, as r — .
THEOREM 2. Let F(z) be an entire function satisfying (1), such that
|F(x)| <4
for all real x. Then

| F(x+iy)| Sz‘lealyl
in the whole plane. If A = p + iq is a zero of F(z), then
[F()| < ae®bl iz —y1/1q].

These results (which are probably well known) can be obtained at once by
[8]; for example, applying [8] to F(iz) e™®*/(Az" + B) gives Theorem 1 when
n > 0. Since our primary purpose here is to illustrate a method, however, we de-
duce them from Theorem A. Assume that F(z) in Theorem 2 has a complex zero
A=p +iq, ¢ # 0. (In the contrary case consider F(z)(z — A ~ig)/(z — X), where
A is areal zero, and let g— 0.) We have

1
Vin

where m is an integer. (A similar use of the mth power of a function is made in

(1) G(z) = [F(z)1"z=2) = f: f(e) &7t de, f(2) € L2,

[5] and [7].) By a short calculation, we get
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(2) [M iz a= [T 1612 dx < 4™ /1),

so that, by the Schwartz inequality in (1),

1 ma
(3) 'G(Z)lzﬁ\/.i— (f_ ezly}tdt) (4*™n/|ql), z==x+iy.

m ma
Hence

|F(8)|™ < |z - A|2 C 42" e2maly])

where C is constant. Taking the m*h root and letting m —> completes the proof.
The proof of Theorem 1 is similar, if we define

G(z) = (z-N"[F(2)/p(2)]",

where p(z) is a polynomial of degree n formed from the zeros, other than A, of

F(z).

The second part of Theorem 2 results when we apply the first part to F(z)/
(z —A); it could be sharpened by including more zeros. As it stands, however,

this second part already gives the following:
CoROLLARY. Let F(z) satisfy the hkypothesis of Theorem 2, and suppose
F(retf) ~ 4 eorlsin 6]

for a particular 0, as r — . Then at most a finite number of zeros \ satisfy
m+ 6 —-8>2arg A> 6 + 8 forany positive b.

3. Complex roots. A consequence of Theorem 1 is:

THEOREM 3. Let F(z) satisfy the hypothesis of Theorem 1, and let n(x)
denote the number of real roots of the equation F(z) =0 which lie in the circle

|z] < = If

(4) lim sup /r n(x) dx/x — 2ar/m+ b log r > ~w,
1

r — oo
then the equation F(z) =0 has at most b + n complex roots in the whole plane.

The proof is practically contained in a discussion of Levinson [5]. If N(x)
denotes the number of roots of F(z) =0 in the circle | z| < x, Jensen’s theorem
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combines with the conclusion of Theorem 1 to give

1 .
— [*7 log | F(re'®)|dg
27 Jo

(5) fer(x) d/x — A

1 27
— (n logr+ar|sin@|)dé + B
27 Jo

IN

It

n log r+2ar/a+ B,
where A and B are constants. Hence the number of complex zeros,
c(x) = N(x) - n(x),

satisfies
,

(6) f c(x) dx/x < (n+b)logr+ C
1

for some arbitrarily large r’s, where C is constant. It follows that c(x) < n + b,

as was to be shown.

By means of the following result, Duffin and Schaeffer have given simple
proofs, and improvements, of some theorems due to Szegs, Bernstein and Boas

(see below):

THEOREM 4 (Duffin and Schaeffer). Let F(z) be an entire function such
that

F(z) = 0(e®l7l).
If F(x) is real for all real x and satisfies | F(x)| < A, then the equation
F(z) = A cos (az + B)
has no complex roots.

Theorem 3 contains Theorem 4, and in fact gives a slight generalization of it:

THEOREM 5. Let F(z) be an entire function satisfying (1). If F(x) is real
for real x and satisfies

|F(x)]| < |P(x)],
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where P(x) is a real polynomial of degree n, then the equation
F(z) = P(z) cos(az + B)
has at most n + 1 complex roots.

A linear change of variable enables us to assume a =, B =0. Since F(z) -
P (z) cos nz is nonpositive when cos 7z = 1, and nonnegative when cos 7z = —1,

the equation
F(z) = P(z) cos nz

has a root in every interval m <z <m + 1, where m is an integer (cf. [3]). Any
root occurring at the ends of these intervals is multiple. Hence if n(x) is the
number of real zeros A satisfying |A| <x, then n(x) is at least equal to the
function n (x), defined as 0 for0 <x <1, as 2 for 1 <n < 2, and so on. A short

calculation gives

n+ n+
f n(x)dx/x > f n,(x)dx/x = 2 log(n™/n!) ~ 2n - logn,
1 1

so that Theorem 5 follows from Theorem 3 with b = 1. Since complex zeros occur

in pairs, Theorem 5 contains Theorem 4.

According to Paley and Wiener [ 6], a set of functions fe' )\,‘x} has deficiency
d on a given closed interval if it becomes complete in L? when d but not fewer
functions { e*M*} are adjoined to the set. Similarly, the set has excess e if it re-
mains complete when e terms, but not more, are removed. Here we adopt the con-
vention that a negative deficiency d means an excess —d. That the deficiency d
is well defined follows from a theorem of Levinson [5]:

THEOREM 6 (Levinson). If the set {e!™*} is complete LP on a finite in-
terval, it remains complete when any XA, is changed to another number.

The result remains true even when several A’s are equal, if we agree to re-

quire a zero of the corresponding multiplicity in the entire function

F(z) = f it f(e)dr, feLP,

which vanishes at the A,’s. In this setting, the previous theorems concerning

zeros appear as special cases of the following:

THEOREM 7. Let F(z) be an entire function satisfying (1), and suppose
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F(x) = 0(|x|™)

on the real axis. If F(z) =0 at a set { A\, } such that {e”\”xi has deficiency d
on an interval of length 2na, then F(z) has at most d + n zeros other than the

b
An’s.

The truth of the assertion is evident from
0(z) F(2)/P(z) = f” f(2) 2t de, f(e) e L2,
—-a

where (J(z) is any polynomial of degree d, and P (x) is a polynomial of degree
d+ n+1 formed from the (supposed) extra zeros of F'(z). That the result con-
tains Theorem 5 and hence Theorem 6 follows from a theorem of Levinson [5]
to the effect that { e!*n* } has deficiency at most d on [0, 27 ] if

A, | <ln| +d/2+1/4, ~0<n <o
(cf. also [6]).

4. Completeness. Pursuing the subject of completeness in more detail, we

find that some of Paley and Wiener’s work can be simplified and generalized by

use of Theorem A ( cf. Theorems XXIX and XXX of [6]).

£
THEOREM 8. Let{r,}be a set of complex numbers such that the set {e Fin¥y

has finite (positive, zero or negative) deficiency on some finite interval. Then

the deficiency is d if and only if
(7) f‘” 2972 | F(%)]? dx < o, f°° 24 | F(2)|? dx = o,
1 1
where
F(z) =Tl - 22/22).

We confine our attention to the case d = 1, since the general case is reduced
to that by considering P(z) F(z) or F(z)/P(z) as heretofore. Suppose, then,
that the set has deficiency d = 1 on an interval of length 2a. Since the set is not

complete, there is a function G( z),

(8) G(z) = f_“ f(e) €7t de,  f(¢) € L2,

such that G(\,) = 0. By the Hadamard factorization theorem (cf. also [5]) we
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have
(9) G(z) = F(z) ¥ P(2),

where P(z) is a polynomial. Now actually P(z) is constant, since otherwise
G(z) would have an extra zero, and the deficiency of the original set would be
greater than 1, Hence (9) gives

(10) F(z)=eb G(2)C,
where C is constant. If b has positive real part, then (10) shows that F(x) de-
creases exponentially as x — co. Since F is even, the same is true as x — — o,

and hence F(z)= 0 by a well-known result of Carlson. Similarly if b has nega-

tive real part. It follows that b is pure imaginary, so that
a .
(11) F(x) =f f(e) ellxtelt dt, ¢ real,
-a

and hence F(x) € L? by the Plancherel theorem.

On the other hand, if x F(x) € L? then Theorem A yields the representation
a .
zF(z) = f f(e) e**t dt,
~-a

since (11) ensures (1); and hence the deficiency exceeds 1.

Suppose next that the deficiency is an unknown but finite number, and that
(12) f'” |F(2)|? dx < o, f 2 |F(x)|? dx = .
1 ' 1

With 2a as the interval of completeness, there is a function G(z),

G(z) = /_: £(t) et ds,  f(2) € L2,

such that G(z) = 0 at all but a finite number, say n, of the A’s, and has no other
zeros. (Otherwise the set would have infinite negative deficiency). The Hada-

mard theorem gives

F(z) = %% P(z2) G(z2),

where P(z) is a polynomial. If the imaginary part of b = p + ig is positive, then
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lim sup log | F(iy)/y| <a—-gq as y — «,

and hence the same is true as y — —cc. Similarly if the imaginary part is nega-
tive. In either case, then, F(z) satisfies (1). Equation (12) now combines with
Theorem A to show that

F(z) = f g(e) e?tdr, g(2)el?,

a

so that the set { eﬁ\"x } is not complete. Thus the deficiency is at least 1.

On the other hand, if the deficiency is n > 1 then the Hadamard theorem, as

before, gives

P(z) F(z) eb? = /

® f(e) €7t di,  f(2) € L?

where P (z) is a polynomial of degree n — 1. As before, the presence of b causes
no difficulty, so that P(x) F(x) € L2, This contradicts (12).

Theorem 8 contains Theorem 6 for the case L2, although Levinson’s general

case LP seems somewhat deeper. We give an application:

THEOREM 9. Let
F(z) =110 -2212%),

where the A, are complex numbers, and let the equation F(x) = A have roots /\,',,'
where A is a complex nonzero constant. If { e} has finite deficiency d and
{el)\"x} has finite deficiency d*, then d < O implies d’ = d, and d > O implies
d’=0.1If d = 0thend” > 0.

It should be observed that d” is restricted to be finite in the hypothesis of
the theorem, and only then can we evaluate d” more exactly. With regard to this
assumption, the following may be said. First, the set exp (iA;x) cannot have in-
finite excess; that is, d” # —. In the other direction, the set is complete on
every interval of length less than the interval for {\,} (which does not mean,
however, that d”is finite). For the case of real A,, an elementary but long argu-
ment shows that in fact d” is finite, so that we can then dispense with this extra
hypothesis. These matters lie to one side of the present discussion, since their

proof does not involve Theorem A, and we omit them.
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A second remark may be in order. It is well known that all the A-points of a
canonical product have the same exponent of convergence, and in Theorem 9 one
can prove the stronger result that lim A(u)/u and lim A“(u)/u both exist and
are equal. Even this statement is less precise than the conclusion of the theo-
rem, however. [t is easy to construct sets with equal density, such that one set
has infinite excess and the other has infinite deficiency on a given interval. We
conjecture, incidentally, that one can make d =0, d”= m, where m is any posi-

tive integer, so that the nebulous case d = 0 cannot be improved.

To establish Theorem 9, write
fw\F(x)—Asz“ sfIFlzxzd‘2+z|A1f|F|x2d~2+1Apfx2d-2,
1

which is finite if d < 0, by Theorem 8 and the Schwartz inequality applied to the
second integral. Hence, by Theorem 8 again,

(13) d’>d if d <0.
Writing

F(z)=[F(z) -a] + a,

and turning the argument about, gives

(14) d>d’if d"<0.

Suppose now d > 0, so that, by Theorem 8,
fm |F(x)|? dx < w.
1

This implies F(x)-— 0, as is well known, so that F(x) — 4 is dominated by 4.
Hence by Theorem 8 the zeros form an exact set:

(15) d’=0 if d>0.
Similarly,
(16) d=0 if d’> 0.

Equations (13) and (16) show that d <0 implies 0 > d“> d. But then (14) gives
d > d’, since d’ < 0; and thus d < 0 implies d* = d.
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5. An inequality for entire functions. In a series of interesting papers [2],
(3], [4], Duffin and Schaeffer establish some inequalities for entire functions of
exponential type bounded on the real axis. From these they obtain, sometimes in
sharpened form, the classical inequalities of Bernstein and others for bounded

polynomials. The main results are as follows:

THEOREM 10 (Duffin and Schaeffer). Let F(z) be an entire function, real

on the real axis, which satisfies
F(z) = O(ealzl)

in the whole plane and | F(x)| <1 for —0 < x < 0. Then, with z = x + iy, we

have
|F(z)| < coshay, |F(z)|? + [F’(z)|%/a? < cosh 2ay.

If there is equality at any point except points on the real axis where F(x)=+1,
then F(x) = cos (bx + c).

Our Theorem 1 shows that the hypothesis O(aalz‘) can be replaced by (1).
The procedure in [2] is to deduce the result for y = 0 first, by means of Theorem

4. In this form the statement seems due chiefly to Boas [1 ]:

THEOREM 11 (Duffin, Schaeffer, and Boas). Let F(z) be an entire function
satisfying (1) and real on the real axis. If | F(x)| < 1 for all real x then

LF(x)]?2 + |F(x)|%/a%? <1
for all real x.

A modification of Duffin and Schaeffer’s argument' enables us to deduce
Theorem 11 from Theorem A. Suppose the hypothesis fulfilled, but let the con-

clusion be violated at a particular point x = b. By considering +F (+z/a), we may

assume

F(b)>0, F’(b) <0, and a =1,
besides
(17) |F(b)|?2 + |F’(b)|? > 1.

The equation F(b)=cos z hasaroot z=71, 0 < r < /2, since 1 > F(a) > 0.

1 The author regrets having presented this discussion to the American Mathematical
Society without knowing of Duffin and Schaeffer’s work.
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Now, in fact r> 0. For if r = 0 then F(b) =1, and (2) yields F’(b) < 0. Hence
F(x) is strictly decreasing at x = b, so that F (x) > 1 for some x < b.

If we define

(18) G(z)=F(z+b-r) - cos z,
then

(19) G(r) =0, G(0) <0, G(n) > 0.
Moreover,

G’(r) = F’(b) + sinr = F/(b) + [1 - F2(b)]1'2 <0,

the last inequality being a consequence of F’(b) <0 and (17). Combined with
(19), the condition G“(r) <0 shows readily that G(z) =0 has three roots r, <
r<r_ in the interval 0 <z <m; and if ro =0 or r; = 7 the corresponding root is
multiple, since | F(x)| < 1. Besides these roots, G(z) = 0 has roots r,, in each

interval [nm, (n+1) 7], n=+1, +2, + +-. Thus, the function

(20) H(z) = G(z)/(z~7) = f‘ ezt h(e)de, k()€ L2,

-1

has roots at ry and r,, n=+1, +2, .-+, where the enumeration can be so man-
aged that

(21) lrnl < Infa.

By Levinson’s theorem cited above, the set { &Y s complete L2 on
[-1, 1], and therefore h(¢) = 0 almost everywhere. If the inequality of Theorem
11 becomes an equality at a point where F'(x) £ +1, then the corresponding root

of G(z) is easily seen to be triple, so that the same discussion holds

6. Differences and derivatives. We conclude with a theorem of different type,

concerning classes of functions:

THEOREM 12. Let C denote the class of entire functions which satisfy (1)
and belong to L? on the real axis. Let h be any complex or real nonzero number,
except that | h| <2n/a if h is real. Then the class of functions F’(z), where F
ranges over C, is identical with the class of functions G(z + h) - G(z), where
G ranges over C. But if h is real and |h|> 2u/a, the latter class is always a

proper subset of the former.
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Results of the same sort without L? condition are well known; for example,

Carmichael has shown that the equation
F(z+1) - F(z) =G(z)

has a unique solution of type a on the real axis and ¢ on the imaginary axis, if
G(z) is of this same type, G(0) =1, and ¢ <. To prove Theorem 12, let ¥'(z)
be in C, so that by Theorem A we have

F(z+h) - F(z2) fa e'?t (etht _1) f(t) dt, fe L2

fa el%t [(ePht —1)/it] f(¢) it dt
= fa etz gt g(t)dt, ge L2

Hence, every function of the form F(z + h) — F(z), with F € C, is representable
as G’(t) with G € C. Similarly, let G € C, so that

G (z) = /'a it e'%t g(t)dt, ge L?
-a

= fa et?t ——L-t—— (eiht—l) g(t)dt (ht# 2nm)
-a iht
e -1
- [“ ei?t (&Mt _1) f(¢)de, f(¢) € L2.

Thus G“(z) is representable as F(z + k) — F (z) with F € C, provided ht #2nm
for ~a < t < a. The latter condition is fulfilled unless & is real, and A = 0 or
[&] > 2n/a.

Suppose now that £ is real and-| 2| > 2#/a. If
(22) fa ite'?t dt = fa et (etht 1) f(2) dt
-a -a
for f(¢t) € L2, then uniqueness of Fourier transforms in L? ensures that

f(2) = it/(eht —1)

almost everywhere; but f(¢) is not in L? with the assumed condition on k. Thus
the function on the left of (22) is representable as G’(z) but not as F(z+ h) -
F(z).
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ON THE COMPLEX ZERGS OF FUNCTIONS
OF STURM-LIOUVILLE TYPE

CHOY-TAK TAaAwm

1. Let Q(z) be an analytic function of the complex variable z in a region

D. In the present paper only those solutions of
(1.1) F+Q(z)F =0

which are distinct from the trivial solution (= 0) shall be considered.

In this paper the following results shall be established.
TueoRrREM 1. Suppose that the following conditions are satisfied:

(a) the circle |z| < R is contained in D,
(b) W(z) is a solution of (1.1), W (0) # 0,

(¢) n(r)is the number of zeros of W(z)in |z| <r,r <R.
Then n (r) satisfies the inequality

(1.2) n(r) < (log (RF")) log (1 +R|W7(0)| |W(0)|™)

+(27)! /;M/R (R-1)|0(t e dedo].
0

CoroLLARY 1.1. Suppose that the following conditions are satisfied:

(a) Q(z)is apolynomial of degree k,
(b) conditions (b) and (¢) of Theorem 1 kold.

Then W(z) is an integral function of order at most k + 2. Furthermore, as

r— w,
(1.3) n(r)=0(rk+2).

Obviously the result of Theorem 1 is not good if r is close to R. Also it
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does not apply to a solution which vanishes at the origin. The following theo-

rem is free of these restrictions.
TuEOREM 2. Suppose that the following conditions are satisfied:

(a) S is a closed region contained in D,
(b) the boundary C of S is a closed contour,
(c¢) the maximum value of |(}(z)| on C is M,

(d) S can be divided into n subregions such that each subregion has a
diameter not greater than w)M~'/?; and for any two points z; and z, of a sub-
region, the linear segment z,z, lies in S (we agree that the common boundary
of two subregions belongs to both subregions).

Then

(e) if O(z) is not a constant, the number of zeros of any solution W(z)

of (L.1) in S is not greater than n,

(f) more accurately, if Q(z) is not a constant, each solution W(z) of
(1.1) has at most one zero in each subregion, and when it is known that W(z)
has some zero z; which belongs to n; (n; > 1) different subregions, i =1, 2,

eeo,k, its total number of zeros in S is not greater than n + k —(n + ny++s-+
nk ),

(g) if some solution of (1.1) has more than one zero in some subregion,
() (z) must be a constant and | Q(z)| =M > 0in D.

%e may observe that if (J(z) is not a constant, M must be positive, ac-
cording to the principle of the maximum modulus. If ¢ (z) is a constant, the

problem is trivial as the distribution of the zeros is known.

2. To prove Theorem 1, we need the following known results.
LEMMA 1. Suppose that the following conditions are satisfied:

(a) f(x) and g(x) are real-valued functions, continuous and nonnegative
for x > 0,

(b) M is a positive constant,

(¢) f(x) < M+/x f()g(e)de, x> 0.
0

Then we have
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fx) < oo £

This lemma is due to R. Bellman. For a proof of it see [1] or [5].

LEMMA 2. Suppose that the following conditions are satisfied:

(a) f(z) is analytic for |z| < R, f(0) £ 0,

(b) the moduli of the zeros of f(z) in the circle |z| < R are ry, ryy++ey7%

arranged as a nondecreasing sequence (a zero of order p is counted p times ).

Then we have

log[Rk(rlr2 cee k)] = (2#)'1[)2w log | f{R eie)‘da—log [f(0)].

Lemma 2 is known as Jensen’s theorem (see [4]).

3. Now we shall prove Theorem 1. Along a fixed ray radiating out from the

origin, z = r exp (i), equation (1.1) becomes

d2W . .
(3.1) — + 290 (re!W = 0.
dr?

Integrating (3.1) twice from 0 to r, we obtain
. . . h , .
(3.2) W(re‘9)=W(0)+W'(O)e’er—e“e/r/ 0 (te'?)W (e ) dedh,
o Jo

where W’(0) exp(i6) is the value of dWW/dr at the origin. Integration by parts
of the integral in (3.2) gives

(3.3) W(reie).-:W(O)+W'(O)eigr—eziefr(r-—t)Q(teiQ)W(teie)a’t.
0

For r < R, (3.3) yields

(3.4)  |W(re!9)| < |W(0)] +|W’(O)}R+/r(R——t)lQ(teie)W(teie)]dt.
0

Applying Lemma 1 to (3.4), we have

R(p. el
(3.5) ]W(Reie)l S(IW(O)i+}W'(0)lR)ef° (R-t)| 0t )‘dt.
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Let the moduli of the zeros of W (z) in the circle |z| < r < Rber,, ryyeee, i,

arranged as a nondecreasing sequence. Then an appeal to Lemma 2 gives
(3.6) log [R¥(ryryeeeri)t] 5(27)-1/”105’ | W (Ref)|d6 - log | W (0)].
0

Clearly
(3.7) log [R¥(ry ry «ev rg) 1] > log [RPT), 2]
= n(r) log (Rr''), r <R,

where n(r) is the number of zeros of W' (z) in |z| < r. On the other hand,
(3.5) gives

(3.8) /Mlog |W (Re®)|d6 < 2m log [|W(0)] + |W*(0)|R]
0

2T R 0
+/0 fo (R =)0 (tei®)|dedo.

Combining (3.6), (3.7), and (3.8), we have

(3.9) n(r) log (Rt < log [1W(0)]| + | W*(0)| R ~log | W(0)]

+ (27)7! fozﬂfoR (R=1t)|0(te'®) | dt dp

for r < R. But (3.9) is equivalent to (1.2), so that this completes the proof
of Theorem 1.

If Q(z) is a polynomial of degree %, then W (z) is analytic except at in-
finity and, from (3.5),

\W’(Rei9)1=0(eA°Rk+2>, R—>w,

where A is a constant. Hence W (z) is an integral function of order at most

k + 2. Finally if we set R = 2r in (3.9), it is clear that
n(r) = 0(r5%2),

This proves Corollary 1.1.
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4. To prove Theorem 2, we need the following known result. On the real

axis, equation (1.1) becomes

d*W
(4.1) — + Q=)W =0,

dx

where x is the real part of the complex variable z. Denote by ql(x) the real

part of Q (x).

LEMMA 3. Let W(x) be a solution of (4.1), W (0) = 0. Suppose that one

of the following conditions is satisfied.

(a) max q‘(x)=m >0 in [0,a], 0<a Snm'l”, and Q(x) £ m in
[o, a,

(b) q,(x) <0inl0,al
ThenW(x) # 0 in (0, al.

This lemma was proved in [ 3; Theorems 5.1, 5.2]. Part (b) is also covered
by a theorem of llille [2, p.512 ff.]. Its proof remains valid even if Q(x) is
assumed only to be a continuous (complex-valued) function of a real variable

x; consequently the lemma remains true under such an assumption on Q(x).

We first prove (f) of Theorem 2.

Let S; be one of the subregions of S with a diameter not greater than
7M™ '/2, Suppose that If (z) is a solution of (1.1) which vanishes at a point
zy, say, of S;. Consider a fixed ray radiating out from zqo, z — z¢ =7 exp(if).

Along this ray, equation (1.1) becomes

W 22 0
(4.2) —_—t e Q(zg +re')W = 0.
dr?

By virtue of the principle of the maximum modulus, we have

1e219Q(2)] = |Q(z)| < M

for any point z of S on this ray. l{ence on a segment of this ray between z, and
any other point of S; (by assumption, this segment lies in S) the maximum
value m, say, of the real part of exp (2i0)Q (z) is not greater than M. If mis
positive, then 7m™1/% > aM™1/2. Since ) (z) is not a constant, exp (2i6) Q(z)#

m on this segment. Dy virtue of the fact that the diameter of S; is not greater
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than #M"!'/? and Lemma 3, it is clear that W (z) does not vanish again on that
part of the ray in S;, regardless of the sign of m. Repeating this process for
each ray radiating out from z,, we see clearly that W (z) cannot vanish again
in S;. Since S; is an arbitrary subregion, W (z) can vanish at most at one point

of each subregion.

On the other hand, if W(z) has a zero z; which belongs to n; (n; > 1)
different subregions, then W (z) cannot vanish again in any of these n; sub-
regions, as the foregoing proof shows. If it is known that there are £ such
zeros z;, each z; belonging to n; subregions, i=1, 2, -+, k, it is clear that
the total number of zeros of W (z) in S is not greater than n + k — (ny + ny+---
g

To prove (g), let W (z) be a solution of (1.1) having two zeros, say z, and
zy, in some subregion S;. Let the argument of z; —~ z; be 6. Then along the
linear segment z,2z,, equation (1.1) becomes (4.2). According to Lemma 3,
the maximum value m of the real part of exp (2i0)(Q(z) on the linear segment

2y z{ must be positive. Further, since
(4.3) lzy — zo| <aM V2 < gm /2,
zo and z; can both be the zeros of W (z) only if

(4.4) €290 (z) = m

on the linear segment z, z,, by Lemma 3 again. But if (4.4) is true, the general
solution of (4.2) is A4 sin(m'/?r + B), A and B being constants. If a solution
of (4.2) has two zeros, the distance between them must not be less than
am~'/2, In other words, the equality signs in (4.3) must hold. That is, ¥ = m.
From (4.4), we have exp(2i0)(Q(z)= M on the linear segment z,z,. Since
(J(z) is an analytic function and constant on the linear segment zo2z, Q(z)
is a constant in D. Obviously |Q(z)| = M; and since m is positive, so is M.

This proves (g).
Clearly (e) follows from (f), and this completes the proof of Theorem 2.

5. Added in proof. The author is indebted to a referee for calling his
attention to the fact that, in connection with Corollary 1.1, an entire function
which satisfies a linear differential equation with coefficients which are

rational functions of z is always of finite rational order and of perfectly regular
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growth. (See G. Valiron, Lectures on the theory of integral functions, Toulouse,

1923, p. 106 ff.)
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