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1. Introduction. Let x{, x,, +++ be independent random variables all having
the same continuous symmetric distribution, and let

Sp =X, feeet %

Qur purpose is to prove statements concerning the changes of sign in the se-
quence of partial sums s,, s,, +++ which do not depend on the particular distri-

bution the x; may have.

The first theorem estimates the expectation of N,, the number of changes

of sign in the finite sequence s, +++, s;+;. Here and later we write ¢ (%) for

2(Lk/21+ 1) ( * ) ok = (2mk)1/2,

E+1 (k/2]
THEOREM 1.

n n

< EiNdc< b (k).
im 2(k+1) ;?ZE

0o |

It is known (see [1]) that, with probability one,

Nn
(1) lim sup =1
n—oo (n log logn)!/?

when the %, are the Rademacher functions. We conjecture, but have not been
able to prove, that (1) remains true, provided the equality sign be changed to
<, for all sequences of identically distributed independent symmetric random

variables. We have had more success with lower limits:

THEOREM 2. With probability one,
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Nn 1
lim inf > -
n-ooo logn — 2

By considering certain subsequences of the partial sums we obtain an exact
limit theorem which is still independent of the distribution of the x,: Let o be
a positive number and a the first integer such that (1 +a)?® > 2; let 15 2%, -~
be any sequence of natural numbers satisfying (£ +1)°> (1+a)k”% and let

rd

N, be the number of changes of sign in the sequence s/, <+, s/, ,

where s,:

stands for s, .
THEOREM 3. E{N’} > [n/al/8, and, with probability one,

Nn
i
noo E{N.}

For k’= 2%, it is easy to see that E{ N} } = n/4; so with probability one the
number of changes of sign in the first n terms of the sequence sj, sp, «++,

szk , »++ is asymptotic to n/4.

The basis of our proofs is the combinational LLemma 2 of the next section.
When translated into the language of probability, this gives an immediate proof
of Theorem 1. We prove Theorem 3 in $3 and then use it to prove Theorem 2.
A sequence of random variables for which N,/log n — 1/2 is exhibited in $ 4;
thus the statement of Theorem 2 is in a way the best possible. Finally we
sketch the proof of the following theorem, which was discovered by Paul Lévy

[2] when the x; are the Rademacher functions.

THEOREM 4. With probability one,

" sgns
> k. o(logn).
k=1 k

Our results are stated only for random variables with continuous distri-
butions. Lemma 3, slightly altered to take into account cases of equality, re-
mains true however for discontinuous distributions; the altered version is strong
enough to prove the last three theorems as they stand and the first theorem with
the extreme members slightly changed. The symmetry of the x, is of course

essential in all our arguments.

2. Combinatorial lemmas. Let ay,-++, a, be positive numbers which are

free in the sense that no two of the sums ta, +..+ ta, have the same value.
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These sums, arranged in decreasing order, we denote by Sy, -+, S ,; g, is the
excess of plus signs over minus signs in S;; and Q;=¢q, + -+ + q;. It is clear
that 02" = 0 and that Q, = an forl <i < 2™

=) ad

LEmMMA 1. Forl < i < 271,
n
. 1 — gn-1,
0<Q, ~i< ([n/21+1) ([nm) 9

The proof of the first inequality, which is evident for n = 1, goes by in-
duction. Suppose n > 1 and i < 2""!. Define S].' and Q].' for 1 < j < 2™! just
as S; and Q; were defined above, but using only aj, <+« , ap.;. Let £ and [ be
the greatest integers such S/ ~a, > S; and S +a, > S;. It may happen that
no such k exists; then i = [ and the proof is relatively easy. Ctherwise £ < I,
k<2™% andi=Fk+ 1 If L < 2"? then

Q;=0Qf —k+ Q[+ 1=(Q;-k)+(Q]~1)+21 > i.
If 272 <1 < 2™ then
Q= Qf=k+ Q[ +1=Qf=k+Qf\py + L

=(Q,:-k)+(QZn_l_l—2”"+l)+2”"-l+l > 2™t > g,

Finally, if [ = 2"! then, recalling Q;n_l =0, we get
0i=Qf=k+ Q) +2%" 22" > 0.

In order to prove the second inequality we note that for each i the maximum
of Q, is attained if the a; are given such values that S]. > S, implies q9; > 9
—this happens if the a; are nearly equal. Assume this situation. Then if n is
odd g, is positive for i < ig = 21 and Q; — i is maximum for i = io. We have
[n/2] n n
o X -2 ()= 2ie ety (0 ) -
O‘O 0 k};':') k [n/2]

A similar computation for n even gives

(2
n/2
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for the index i, of the maximum and the same expression for Qio - i,. This

completes the proof.

If ¢y +e«, cn+; are real numbers let m(cy, +++ ,cp+,;) be the number of

indices j for which

lejl > 120 e
i#j

We now consider n + 1 positive numbers a,, «+- ,a,4+,; which are ‘free’ in the

sense explained above, and define
M=M(ay,oer, aner) = 2om(tay, eeey Tane,),
the summation being taken over all combinations of plus signs and minus signs.

LEmMmA 2.

ot o gy § )
< 54([n/2]+1)([n/2]

It is clear that M = 27*! if
An+1 > Ay + e +ay,

and we reduce the other cases to this one by computing the change in M as
@p+y is increased to a; + <+« + ap + 1. Using the notation of Lemma 1, we sup-
pose that S;4+; < an+; < S;, where i of course is not greater than 2"°!, and that
4
Cn+y
with M(ay ye+ ,apn, ag+y). The inequality a,+; < S; becomes aj+; > S; if

is a number slightly greater than S;. We now compare M(a, <« , ap, an+y)

an+, is replaced by a;+,, and we see that there is a contribution +4 to M coming
from the terms tay+; in the four sums +S; *aj+,. In like manner, each + a; oc-
curring in S; contributes — 4 to M, and each —a;j in S; contributes +4 if j is less

than n + 1. So

M(al9"', Qn, an+1)"M(al7 °c° 5 Any ar’z+1)=4(qi"1)’

where ¢, has the meaning explained at the beginning of this section. Thus in-

creasing ap+ytoay ++++ +a, + 1 decreases M by

4(Q;~1)=4 2° (g;- 1),
j<i
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and Lemma 2 follows from Lemma 1.

There is another more direct way of establishing the first inequality of
lLemma 2. Since the inequality is trivial for n =1, we proceed by induction.
Considering the numbers (a; +a3), az,-++, an+; we assume that there are

at least 2"°? inequalities of the form

(2) aj > U (j>2)
or

(3) (ay+ay) >V,

where the right members are positive, and U is a sum over (a; + a;), az, «++,
@j.1» @j+1s =** 5 G+ With appropriate signs, and V is a sum over az, +++, ap+y.
From (2) we obtain an inequality (2’) by dropping the parentheses from (a; +a;)
in U; from (3) we obtain an inequality (3’): @y > a; ~V or a; > V —a, ac-
cording as a, is greater or less than V (we assume without loss of generality
that a; > a,). We consider also the numbers (a, -a;), a3, -+, ap+; and

inequalities

(4) aj > U (j>2)

(5) (ay -—ay) > V,

of which we assume there are at least 2”72, From (4) we derive an inequality
(4”) by dropping the parentheses from (a, — a,) in U, and from (5) we derive
an inequality (5°): a; > a; + V. It is easy to see that no two of the primed
inequalities are the same. Hence there must be at least 2.2""%=2"1! in-

equalities
ai>2iaj (1<i<n+1)

in which the right member is positive. Taking into account the four possibilities
of attributing signs to the members of each inequality we get the first statement

of the lemma.
We now translate our result into terms of probability.

LEMMA 3.
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< Prilzpeg| > l2xp+ e+ 20|} < B(n).
n+1

Here of course the random variables satisfy the conditions imposed at the

beginning of $ 1, and ¢ (n) is the function defined there. Since the joint distri-

bution of the x; is unchanged by permuting the x; or by multiplying an x; by
~1, we have

n n+1
Prilxpei| > | 20 x|} = ! 2o Prilx| > | 2 %
1 n+ 1 =1 ]7“
1
= Efm(xy, coey 2n+1)}
n+1 .

1 1
- n+1l E{2n+1 Z m(t]xy], e ’iixnﬂl)]

= (__1—)2-71—**? E{M(!xl| AR !xn‘Fll)}:
n+

where m and M are the functions defined above. Since |x,

y ooy |xp4y| are
‘free’ with probability one (because the distribution of the x; is continuous),
Lemma 3 follows at once from Lemma 2.

Our later proofs could be made somewhat simpler than they stand if we could
use the inequality

n n+m
- < Ppn= Prl Z x| < Z x; lS(/ﬁ([n/m])
m+n 1 n+1

for m < n. This generalization of Lemma 3 we have been unable to prove; and
indeed a corresponding generalization of Lemma 2 is false. However, we shall

use

(6) Pp,n < 6¢(ln/m]) < 3[n/m1"'/2,
and establish it in the following manner:

Let a = [n/m], and write
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U=Xyteee+Xgm,
V=2Xgmer+oeee+ xp,
W=2Xp+y t**+Xn+m,
Z=yn+l+°“+yam+m’

where the y, have the same distribution as the x;, and the x; and y, taken
“together form an independent set of random variables. Let £ be the set on which

the four inequalities
lw| < |lutovtz]

hold; by Lemma 3 the probability of any one of these inequalities is at least
1~ ¢(a+1); hence E has probability at least 1 ~4¢(a + 1). Similarly the
probability of the set F' on which the two inequalities |v +z| < |u| hold in at
least 1 ~ 2¢(a). Now clearly |u+v| > |w| on E F and also

Pr{EF}>1-2¢(a)-4¢(a+1)>1-6¢(a).

3. Proofs of Theorems 1, 2, 3. It is easy to see that the probability of
s) and s, differing in sign is one-half the probability of s, ,, being larger in
absolute value than s;. Thus

n

1 n
E{N, 3= 3" Pris, s, <0} = 5 2 Prijx | > 1s, 1},
1

1

and Lemma 3 implies Theorem 1.

Let us turn to Theorem 3. Clearly the probability of s, and

differing in sign is 1/4. Also, s;, —s,, is independent of both s and s,, -,
for

(k+a)’ > (1+«)%’> 2k".

’ . .
Thus s/, ~s,,” has an even chance of taking on the same sign as s, +; so
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we must have
4 1 4
Pr{sk sk'+a <0} > Eprfsk Sy’ < 0} =1/8.

Now, if s/ s/, < O then must be at least one change of sign in the sequence
Sp» Spyys vt * s Sj4qe Hence, if p, is the probability of s; and s/, differing

in sign, we have

==X

Pt "+ Prigey 2

and consequently
i 1

(7) E{N} = Zpk?_g[n/a].
1

This proves the first half of the theorem.

As a preliminary to proving the second half of the theorem we show that the

variance of Nn' is O(n) by estimating the probabilities

d 4 4 ’
Pi. =Pr{si s{41 <0 & si s/ < 0}.

Suppose that i < j; set

=s/, v=s/  —-s/, w=s' ’ =s s’
=8 VTS84 TSy WES; =S4y 2584 TSj5

and define the events

A :uv <0,

B ful <ol
C:(u+v+w)z <0,
D:lu+v+w| <|z],

D’ |w]| <|z],

E:lz-w|>|u+v

Then
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p; = Pr{AB},pI. =Pr{CD}, and Pi,j = Pr{ABCD}.

One sees immediately that A, B, C, D’ are independent, and that £D = ED’,
Writing E for the complement of £, we have

ABCD = EABCD + EABCD*CE + ABCD’,

and

Hence
PriABCD} < PriE} + Pr{4BC}Pr{D’}
<Pr{E} +Pr{4ABC}(PriE} + PriD})

<PridB}PriCIPriD} + 2Pr{E} = p, p + 2PriZ}.

Note now that z —w is the sum of (j+ 1)’ = (i+ 1)” of the x’s, and u + v is

the sum of (i + 1)’ of the x’s, and that moreover
G+1D)= G+ 1> [ +a) =11 i+ 1)
We may thus apply the inequality (6) following Lemma 3 to obtain

Pr{g} <3[(1 +q)f‘i_2]-1/2

provided j—i > a. This yields an upper bound for p; ji @ similar argument
yields a corresponding lower bound. We have finally

Pi,j = PiPj + Ot|1+al|H/'/2}

for all i and j. This estimate shows that

n

(8) E{N’2)

2 Pij

1< 4,j<r

]

Zp; gy + 201w a) 2 S EINZ 4+ 0(n).

Let us denote E{NI:} by b,. It follows from (7), (8), and Tchebycheff’s
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inequality that

N’
9

by

C
> €< —
e?k

Pr

for an appropriate constant ¢ and for all positive €. Thus

bk2

Pr > €

is the kth term of a convergent series, so that according to the lemma of Borel
and Cantelli
/V]:2
—_ 1
42

with probability one. Note also that

b, ,
k -— 1.

b(k+1)2

Now for every natural number n we have

k2 _1:/.’2 (k+1)?
(k+1)? Tob T ka

with % so chosen that 2% < n < (k£ + 1)2 Since the extreme members tend to

one as n increases, the proof of the second half of Theorem 3 is complete.
Theorem 2 is obtained from Theorem 3 in the following way. Let r be a large
integer and let 1°,27,-- - be the sequence
r, (r+1),
rr(r+ 1), (r+1), (r+1)32,
rl, Pl 1), eee , (r e DY,
P (r 4 1), eee, (P 1T,

. . . . LI
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where m is defined by
LS (re DB S
Let us call j ‘favorable’ if (j+ 1) =(1+ 1/r)j% Then it is easy to see that:
a) (1+1/n)j"<(j+1) < (1+r)j forallj;
b) there are k + o (k) favorable j less than k (as k — o) ;

c) logk’=klog(1+1/r)+o(k).

Now, if j is favorable then
=rf(j+ 1) =%}

and we may apply Lemma 3 to sj' and s].'+l =S Thus

4 4 1 d ’ ’ 1
Pr{s}. Sl-+l < 0} =§Pr{ls].+l—sj l > lS] l} Z -2—(-i—+—r) .
Hence
k
E{N/ Y= Pl‘{sj's].',H <0}
j=1
> 2 Pris/ s/, <0}z +o(k).
j favorable 2(r+1)
Note that for every natural number n
Nn Ny
> s
logn ~ log (k+ 1)
where k is chosen so that £* < n < (k + 1)’ Consequently
2N, 2 N¢ 2N
lim inf > lim inf —————— = lim inf
noo logn = k—oo log(k+1) (E+1)log (1 +1/r)
N¢ 1
> lim inf

EtN 3 (r+ D log (1+1/r)  (r+1)log (1+1/r)°
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Letting r —» @ we have Theorem 2.

4. An example. Qur construction of a sequence x,;, x;, -+« for which
N,/log n — 1/2 with probability one depends on the following observations.
For given k define the random index i = i (k) by the condition

x| = max x5,
1<j<k+1

and let Aj be the event |x;| > 20 |x;|, where the summation is over j # i,
1 <j <k+1 Let f, be the characteristic function of the event ‘s, s, , <0,
and g, is the characteristic function of the event ‘i(k) =%+ 1 and further
(2 + oo+ xp)xp+y < 0 It is clear that g, g,, +++ are independent random

variables, that

1

2Prig, =11 = 7D

?

and that the strong law of large numbers applies to the sequence g, g,, *-*
also f; =g, on A,; if moreover ZPr{Aki < o (here A is the complement
of A) then, with probability one, f, = g, for all but a finite number of indices.

In this case we have, with probability one,

n n n 1
N = = 0o(1) = R — logn),

the last step being the strong law of large numbers applied to g,, g,5 *+--
Thus, in order to produce the example, we have only to choose the x; so that,

say,

Prid,} = 0(k2).

To do this we take x; = + exp (exp 1/u;), where uy, u,, -++ is a sequence
of independent random variables each of which is uniformly distributed on the
interval (0, 1) and the t stands for multiplication by the jth Rademacher func-
tion. For a given % let y and z be the least and the next to least of uy,+«+,u, .

The joint density function of y and z is

(k+1)k(1-2z)kt (0<y<z<1).

Consequently the event
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1 1 1
Dk P D> = —
y z k2
has probability
K2/ (k24 1)
k(k+1)/ ' dyf‘ , (-2)Fdz =140,
0 k2y/(k*=y)

and the event Ej : 1/z > 3 log k also has probability 1 + O(k"2). It is easy
to verify that the event A defined above contains Dy Ej; thus

Pridi} = 0(k?),
and our example is completed.

5. Proof of Theorem 4. We prove Theorem 4 in the form

logn + o(logn)
1<
sEp>0

by much the same method as we proved Theorem 2. First,

1 21 1
E{Tn}='2' lz-l:'='2-10gn+0(1)o

Next, the inequality following Lemma 3 yields

k 1/2
Pr”sl—sk|<|sk”_<_3[z——,; (I > 2k),

so that
k72
Pelfor-sil < Jsuld = 0(7)
for I > k. Consequently

1 k\'/?
Pr{sk>0&sl>0}=z+0(7) (I>k).
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This implies that

1
> — Pris, >0 & s; > 0}
1<k, I<n

E{T2}

1 1
2. —=Pris, >0l+2 2 — Pris, >0 & s,>0}
1<k<n k? 1< k< I<n

I
ot =
.-M;
=] -

+

N
il
e
> | -

+

S
—
Nl?r
N—

<
%)
[

1
= Z (log n)% + O(logn).

2
Thus the variance of T, is of the order of log n. Setting n (k) = ok , we have,
according to Tchebycheff’s inequality,

c
Pr > e <
€? k2

for an appropriate constant ¢ and all positive €. Since the right member is the

Tn(k) _
log n (k)

1

kth term of a convergent series, the lemma of Borel and Cantelli implies that

Tn(k) —
log n (k)

with probability one. Note also that

logn(k+1)
—_
log n (k)

Now, for any n,

Tn(k) < Tn < Tn(kﬂ)
logn(k+1) = logn — logn(k)’

where % is so chosen that n(%k) < n < n(k+ 1). Here the extreme members

almost certainly tend to one as n increases. This proves Theorem 4.
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