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1. Introduction. The major purpose here is to reexamine, chiefly from the
standpoint of summation by Borel’s exponential means, a number of problems

concerning the existence and form of

lim (%),

n— oo

for x a real variable in an interval. Several articles have been contributed on
this topic [5, 6, 11, 16], all of which take the limit process involved to be
ordinary convergence. In one [5], however, Boas and Chandrasekharan point
to the desirability of interpreting the limit process in a more general sense
and state without proof that one of their results (the case & =1, A, =1 for
all n, of Theorem 4 below) can be established by their method for any (pre-

sumably linear ) summation method T having the property that, as n — o0,
(1) T-lim s, exists and equals s implies T-lim s,., exists and equals s.

Borel’s method of exponential means, like his integral method, possesses
property (1) although, curiously, not its converse, as Hardy [cf. 9, pp.183,
196 ] pointed out. Methods satisfying both (1) and its converse include ordinary
convergence and the summation methods of Abel, Cesharo, Euler, Holder, and,

when regular (see below ), Voronoi-Nérlund.

It is not clear from [5] just how their proof of the cited result (that
f(n)(x) — g(x) dominatedly in (a, b) implies g(x)=ke®) can really be
carried over to all linear summation methods of type (1). Since the transform
{Fn(x)}, m discrete or continuous, of the sequence {f(n)(xﬂ converges
dominatedly, it follows that

lim /x F,(t)dt =/xg(t)dt, uniformly for ¢, x in (a, b).
[+ C

m — oo
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But further argumentation is needed to justify interchanging (in the left mem-
ber) the integral and whatever limit process may be involved in defining Fr, (x)
in terms of {f'(x)}, which would seem to be the next step in the proof.
Where F,,(x) is a finite linear combination of f(x) <+, f(m)(x), as in the
Cesaro, Euler, Hélder, and Voronoi-Nérlund methods, this is trivial. In the
Abel and Borel methods, for example, however, the transforms involve infinite
series. The usual difficulties incident to an interchange of limits therefore
intrude themselves at this point of the argument. Perhaps this difficulty can

be overcome; but [51 does not suggest how.

In the case of Borel’s exponential means these difficulties can be avoided
and ‘more complete results obtained otherwise by rather simple arguments which
get to the heart of the problem more directly. Borel’s exponential means provide
a natural tool for working with the problems at hand; for, when applied to the
sequence { f ")(x)}, they give rise to the Taylor expansion of f(x). Repeated
use can then be made of the property that the value to which the Taylor series
of an analytic function converges is independent of the point around which
the expansion is taken, since the hypotheses of most of the theorems below

either assume or imply that f(x) is analytic.

A sequence {s, }, n=0,1,2, +++, is said to be By-summable to the value

s if
. oo Sn oa
) “lm et L T T
When (2) is satisfied, it is also written as
(3) B,- lim s, =s.

n—oo

This method is regular (sometimes called permanent) in the sense that any
sequence {s,} converging in the ordinary sense to a value s is also B,-sum-

mable and to the same value s.

If o = 1, the definition (2) describes summation by Borel’s exponential
means. B,-summation is denoted simply as B-summation, and, when « = 1,

(3) is written B-lim s, = s.

B,-summation possesses property (1) when & is a positive integer, since
B-summation does: Let B,-lim s, = s and define t; to be Os, when k= «n and
to be O otherwise. Then B-lim ¢; = s and, upon ¢ applications of (1), B-lim

ti-q=s. But this last is the same as asserting B,-lim s,.; =s, completing
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the proof.

2. Borel limits of the sequence of derivatives. We shall establish the
following result.

THEOREM 1. If f(x) is analytic in the real interval (a, b), and if

B-lim ™ (xq) = ke™

n— oo

for a single x4 in (a, b), then

B-lim ™ (x) = ke*

n—o0
for each x in (a, b). The convergence is uniform if the interval (a, b) is finite.

Proof. The function f(x) can be represented by its Taylor series in (a, 5),

being analytic in that interval. Thus

= [ (x0)
(4) f(t) = Z -——n—‘-i—

n=0

(t—2x)" for t, xo in (a, b).

The power series has an infinite radius of convergence in ¢ for x4 in (a, b),

since the existence of the Borel limit of f(")(xo) may be written (with r=¢-x,)

" 00 f(n)(xo)
(5) lim e(txo) Z —_—_— (t—xo)"=kex°.
t— 00 — n!
n=0
Thus f(t), ¢t in (a, b), possesses a unique analytic extension ¢(¢), and this

function is an entire function. Thus (5) can be written as

(6) lim e ¢(t) = k.

t o o0

Expanding ¢ (¢) about an arbitrary point x in (a, b), multiplying both sides of
(6) by €%, and placing r = ¢t ~ x completes the proof of the theorem, except for

the part dealing with uniform convergence.

To prove that the convergence is uniform when (a, b) is finite, let € > 0

be given and find £, (whose existence is assured by (6)) such that

|e't¢(t)—kl<€ fort > ty.
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Then
[e'(t'x)qs(t)—kexl <ee* < eel
for t > ¢y and all x in (a, &), and
> rln)(
I -(t-x) > f 'x) (t—x)" —ke*| < ce?

fort > ty and all x in (a, b).

Hence, putting r = ¢t — x, we get

e’

00 (n)
Z f——-(-f-—) - ke*| < ceb

!
=0 n!

forr > ty ~a and all x in (a, b). This completes the proof.

An examination of this proof makes it clear that the point x, and the in-
terval (a, b) do not have to be required to be real. What is essential is to
have the quantity ¢- x, become positively infinite through real values, to
conform to the definition of Borel summation. With this in mind, we can re-

phrase Theorem 1 in the following somewhat more general form:

Tueorem 17 If f(x +iy,), regarded as a function of the real variable
x, is analytic fora < x < b, y, fixed, and if

B—nlimm f(")(x0 + iyo) exists and equals ke™® Yo
for a single x4 in (a, b), then
Yo

. () : . x+i
1_'3’—11_1‘12<J f™(x +iy,) exists and equals ke
for each x in (a, b). The convergence is uniform if the interval (a, b) is

finite.

This theorem enables one to pass from a fixed point z, = xy + iyo in the
complex plane to any other point in a certain interval on the horizontal line
passing through z,. But what about points z not on this line? The proof of

Theorem 1 is not adequate to cover this situation, since it must be shown that
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the limit in (6) exists and has the value k£ as r=t- z becomes positively
infinite through real values. (Here the complex value z replaces the real
number x.) This is required by the very definition of Borel summation. In turn,
moreover, this necessitates establishing that the limit (6) exists and equals
k as t becomes infinite to the right, not only on the given horizontal line
¥ =¥, but also on other horizontal lines. This can be done in certain circum-
stances.

’

THEOREM 17 Let f(z) be analytic in S, a horizontal half-strip, quadrant,
or half-plane, opening to the right:

z=x+1y,x=a ¢c <y <d.

Let f(z) = 0(e?) as z becomes infinite in S. Suppose that

B-lim "™ (zg) = ke™®

n— oo
for a single zy in S. Then

B-lim ™ (z) exists and equals ke*

n-—oo

for all z in S. If ¢ and d are finite, then the convergence is uniform in ¢ + 6 <
y < d -8 for any positive 8. If S is a quadrant or half-plane, then the con-

vergence is uniform in any half-strip in its interior.

Proof. In the preliminary discussion, it has been noted that only one issue
needs be settled in order to extend the proof of Theorem 1 to this theorem as
well: That is the existence and value of the limit in (6) as ¢t -z, z an arbi-
trary point in S, becomes positively infinite through real values, where the
imaginary parts of z and z, may be unequal. This limit, for z arbitrary in S,
does exist and have the value % under the assumption made here that f(z) =
O(e?) as z—> o0 in S. This follows from Montel’s theorem [15, p.170],
after that theorem has been expressed in terms of the horizontal strips in-
volved here, rather than the vertical strips used in [15]. The conclusion con-
cerning uniformity is also a consequence of this formulation of Montel’s theo-

rem.

THEOREM 2. If f(x) belongs to a Denjoy-Carleman quasi-analytic class
in the (open) interval (a, b) and if
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B-lim (%)= ke™

n— oo

for a single xo in the open interval (a, b), then f(x) is analytic in (a, b)

(and
B-lim f(")(x) = ke*

n - o

forall x, a < x < b).

Proof. It is sufficient to prove the first half of the conclusion, the ana-

lyticity of f(x); the other half is then a consequence of Theorem 1.

As in the previous proof, the Borel summability of the sequence {f(")(xo )}
implies that the right hand member of (4) has an infinite radius of convergence,
and so defines an entire function ¢(¢). Expanding ¢(¢) in a Taylor series

about the point x4 in (a, b) shows that

™ (x0) = ™) (x4) (n=0,1,2,--+) .

The analyticity of f(x) in (a, b) is a consequence of the following result of
Bang [1, p.84], as quoted in [6]: ““... If f(x) belongs to a quasianalytic
class on @ < x < b and g(x) is analytic, then f(")(x0)=g(")(xo) for all
nanda < xy < bimplies f(x) = g(x)+--.” This completes the proof.

The next theorem provides a simple set of necessary and sufficient con-

ditions on the structure of f(x) as well as on that of g(x). That these con-
ditions are not sufficient if convergence is used instead of Borel summation

is shown by the example

f(x) = ke®™ + sin x.

The Borel limit of the sequence of derivatives exists and equals ke” for all
x, whereas the (convergence) limit of this sequence does not even exist.
Analyticity is not assumed in the necessity part of the theorem, but is in-
ferred as in Theorem 1 of [5].

THEOREM 3. A set of necessary and sufficient conditions that

B-lim "W (x) = g(x)

n—oo

for each x in (a, b), where g(x) is finite, is (i) that f(x) coincide in (a, b)
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with an entire function ¢ (x), having the property that
¢ (%) = ke* + o(e”),
as x becomes infinite, and (ii) that
g(x) = ke*, x in (a, b).
Proof of sufficiency. Here
¢ (2) = ket + o(e’);  ¢(¢) = f(2), fortin (a, b),
and ¢ (¢) is an entire function. Then

f(")(x)

e-(z-x)¢(t) -(z x) Z

(t-x)" x in (a, b).

By hypothesis,

lim e (t=%) ¢ (¢) = ke*,

t— 00

whence, with r = ¢ - x,

00 (n)
lim erzf (%) r* = ke*,

r— o0
n=0

completing the proof of sufficiency.

Necessity. Putting r=¢ - x, we can write the assumption of Borel sum-

sumability as follows:

(n)
f ( )(t—x)"-g(x) for each x in (q, b).

lim e (¢-%) Z

t— o0

This implies that the radius of convergence of the power series above is in-
finite for each x in (a, b). Hence f(¢) is analytic in (@, b), as a consequence
of a theorem of Pringsheim [13] for which a complete proof was supplied
first by Boas [4] and again later by Zahorski [17]. In fact, f(¢) has as ana-
lytic continuation an entire function, ¢ (¢). Then
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lim e’(t'x)qS(t) = g(x) for each x in (a, b),
t— o0

whence
lim e ¢(t) = e g(x) for each x in (a, b).
Looc

The left side is independent of x since ¢ (¢) is, and this is the case because
the values of an analytic function do not depend on the point in the region of
analyticity around which the function is expanded. Hence the right side must

be a constant k. This completes the proof.

3. subsequences of { (" (x)}. For the proof of the theorem below, the

following lemma is needed. The proof given first is due to Julian H. Blau.

LEMMA 1. If a sequence of polynomials, { P,{x)}, defined in the closed
interval [c, d], each of which is of degree at most B, has a limit h(x) in

e, d), then this limit is likewise a polynomial of degree at most 3.

Proof of lemma (by induction). Let each P, (x) be written as a polynomial

inx — c.
(i) The lemma is obvious for 8= 0.

(ii) Assume that the result is valid for all integers y, 0 < y < . Let
{Pr(x)} be a convergent sequence of polynomials of degree at most y + 1.

Then

Pu(x) ~ Py(c) —h(x) ~ h(c).

The left side is divisible by x — ¢, giving a sequence {0, (x)} of polynomials

of degree at most y, and

Pn( )'_Pn( ) h -
Qn(x) = i ° — (2)—k(e) (x #¢c).

X —C x—c

From the induction hypothesis, the right member is a polynomial of degree at
most y. Hence A(x) is a polynomial of degree at most y + 1. This completes

the induction.

The referee suggests the following alternative proof of the lemma: If

P, (x) converges pointwise, so does AP*Y P, (x); but these differences are
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all zero, and so AP p(x) =0 (for all spans ). It is well known that the
polynomials of degree < 3 are characterized among measurable functions by
the property of having vanishing (S + 1)th differences; and h(x) is even of
the first Baire class.

He also comments that the lemma is well known, but that, like the author,

he can think of no specific reference.

The case a =1, A; =1 (all n) of Theorem 4 below is proved in the opening
remarks of [5]. Theorem 3 of [5] is also included in Theorem 4 below, which
gives somewhat more precise information than is formulated in the statement
of Theorem 3 of {51, even for the case ol = 1, which is the case analyzed in
Theorem 3 of [5]. The proof below is fashioned after that of the latter theorem.

THEOREM 4. Let {A,} be a given sequence of constants; let & be a
fixed positive integer; and let

f(an)(x)
(7) lim — " g(x) dominatedly ina < x < b.
n—oo n

Then the following statements are true for a < x < b,
(i) If

An-t
lim =0,

n-—o0o n

then g(x) = 0 almost everywhere. If (7) holds uniformly, then g(x) = 0.

(i) If
-
im —— =L #0,
n—0c0 n

L finite, then Lg(a)(x) =g(x).

(ii1) If the sequence {An.1/An} has an infinite limit-point, then g(x)=

P,.1(x), where P,.1(x) is a polynomial whose degree does not exceed ¢ — 1.

(iv) If the sequence {Xp.1/An} has at least two limit-points, of which
at least one is finite, then g(x) = 0.

Proof. The common hypothesis gives the following extension of (3) of
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[5] in all four cases, since the sequence obtained by integrating a dominatedly
convergent sequence converges uniformly [10, p.290, p.304], whence suc-

cessive termwise integrations are valid for x, c in [a, b1:

[ An-1
lim
n— oo An

ARG

f(an-a.+ l)(c)
— — _— —_— a-l—OCO—_ —
(8) YTEAY (x=¢) . (x-¢)

x f*a x2
=f f .../ g(xl)dxl...dxa.
c Je c

f(an-a)(x) f(a”'a)(c)
)‘n-l - )\n-l

Moreover,
f(an-a)(x) f(an-a)(c)
_— o g(x)y, ———— — g(e),
An-y An-1

since s, — s implies sp.; —s.

To prove (i), note that the first term of the left member of (8) approaches
zero. Then, from Lemma 1, the combined remaining terms have as their col-
lective limit a polynomial P,., (x) whose degree does not exceed o — 1. Dif-
ferentiating both sides of (8) & — 1 times, under these circumstances, shows
that [* g(t)dt is constant for all x in [a, b], whence g(x) = 0 almost every-
where, as asserted in the first part of (i). If (7) holds uniformly, then g(x)
is continuous and hence identically zero.

To prove (ii), note that (8) becomes, as above,

L{g(x)—g<c)}-Pa_1<x)=fc"f"“.../"2 g(x))diy +ee dig.

Differentiating both sides « times with respect to x completes the proof of

(ii).

To prove (iii), rewrite (8) by using A,.,/A, as a factor of all the terms
within the brackets and not just of the terms in the braces. Then the (new)
expression inside the brackets must approach zero (since the right member of
(8) is finite) as n becomes infinite through a subsequence for which the cor-

responding An-; /A, becomes infinite. Using Lemma 1 again shows that
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g(x) — g(c) = Pay(x) = 0;

and, of course, g(c) can be absorbed in P,.,(x), completing the proof of
(iii ).

To prove (iv), consider first the case in which there are exactly two limit-
points, one of which is zero. The presence of the zero limit-point implies (by
use of an appropriate subsequence of {A,.;/Ap} in the proof of (i)) that
g(x) =0 almost everywhere. The other limit-point may be finite or infinite.
If finite, the same modification is introduced into the proof of (ii), showing
g(x) to be continuous. If infinite, (iii) applies directly, again showing g(x)
to be continuous. Hence, in this case, g(x) = 0.

In the remaining (‘“‘general’’) case of (iv), there is a finite nonzero limit-
point L, whence, modifying (ii) as above, we obtain

(9) Lg' (%) = g(x)
and either another finite nonzero limit-point M, implying
Mg(d)(x) = g(x)

with L # M, or an infinite limit-point, in which eventuality g(x) is a poly-
nomial whose degree does not exceed & — 1, from (iii). Comparing either of
these alternatives for g (x) with (9) shows that g(x) = 0.

This completes the proof of (iv) and of the theorem.
Theorem 4 (iv) does not exclude the possibility that

An-1

lim inf

n

may be zero. For the case & =1, therefore, it overlaps—and partially gener-
alizes — Theorem 3(i) of [5] in which it is assumed, instead of (7), that

f(")(x)
An

— g(x)

uniformly in [a, b1, as in Theorem 4 (i) here, in order to infer that g(x) = 0.

This casts further light on the significance of counter-examples connected
with Theorem 3 (i) of [5] (which is the case & =1 of Theorem 4(i) above).
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One is due to Boas and Chandrasekharan [5], another to Bang [1], described
also in the final paragraph of [6]. Each exhibits a sequence L) (2) /A0
converging dominatedly to g(x) in [a, 5] with lim (A,.;/A;) = 0 and g(x) not
identically zero there, although, of course, it is zero almost everywhere. In

their examples, in fact, g{(x) is zero except for a single point.

In addition to the examples due to these authors, Philip Davis has called
attention to earlier constructions [ 2a; 3; 7, pp.38-42; 8; 12, p.244; 14] of
functions differentiable infinitely often on an interval and analytic on that
interval except for one or more interior points at which the successive deriva-
tives increase arbitrarily rapidly. Taking A, to be the nth derivative at a
singular point converts these constructions into examples of the phenomenon

described above.

R. P. Boas, who transmitted Davis’s information to the author, added a

reference to another exposition [ 2b] of S. Bernstein’s examples.

Theorem 4 (iv) shows, i.a., that it is impossible to construct similar

counter-examples in which the condition on the A,’s is weakened to

An-1

lim inf

n

with lim (A,.;/A,) nonexistent.

This last remark can be inferred also from a consideration of formula (3)
of [5], which is valid for dominatedly convergent sequences and which reads

as follows:

Aney [ f0-D(x)  foD(e)
lim -

n—o  Ap An-y " Apey

=/'x g(t)dt,a < c <b.
[+

Choose ¢ to be a point such that g(c) # 0, x a point at which g(x) = 0.

The right member is zero, since g{(x) = 0 almost everywhere. Thus

An-t
lim glc) =0, gle) #0,
n—oo An
whence
)\n-l
lim = 0.

nowo  Ap
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When A, =1 for all n, Theorem 4 (of which only part (ii) is now relevant)
can be extended readily to certain summation methods. Consider the trans-

formation

o0

(10) T:t:(x) = 3 cpl(r)sy(x),

n=o0
where r is continuous or discrete.

DEFINITION. The transformation T of (10) will be said to be of dominated
type in the interval (a, b) with respect to a sequence of Lebesgue integrable
functions {s,(x)}, defined in (a, b), if the infinite series (10) taking the
sequence {s,(x)} into £;(x) converges dominatedly (in the sense that all its
partial sums are uniformly less, in absolute value, than a fixed Lebesgue
integrable function) in (a, b) for each sufficiently large r.

Any row-finite or row-bounded matrix transformation is of dominated type
with respect to all sequences of Lebesgue integrable functions, This includes
all Hausdorff and Voronoi-Nérlund methods, in particular Cesdro’s and Euler’s.
All regular (or even merely convergence-preserving) transformations given
by (10) are of dominated type with respect to any (sequence of Lebesgue in-
tegrable functions dominated as a whole by a single Lebesgue integrable
function.

LEMMA 2. Let T be a summation method of dominated type with respect
to the sequence of Lebesgue integrable functions {sp(x)} in (a, b). Suppose
that {sp(x)} is dominatedly T-summable in (a, b) to s(x). Then

(1) T-lim /‘x sp(t)de =/'x s(t)de,

uniformly for ¢, x in (a, b).

Proof. The transformation T being of dominated type, it follows [10,
PP- 290, 304] as in the justification of (8), that

cp (1) xsn(t)dt= * en (r)s, (t)de,
Z oo [awe- [ 2

uniformly for ¢, x in (a, ), for each sufficiently large r. In turn, the right
member approaches the right member of (11) uniformly for ¢, x in (a, b) as
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r—m, since the integrand approaches s (t) dominatedly. The left member is
the T-transform of the integral of s,(¢). Hence the lemma is established.

THEOREM 5. Let T be a summation method satisfying (1) and of dom-
inated type with respect to the sequence {f(an)(x)}, x in (a, b), where O is

a fixed positive integer. If
T-lim @™ (x) = g(x),

dominatedly in (a, b), as n — w, then g(x) satisfies the differential equation
g(a)(x) =g(x)in (a, b).

Proof. By « applications of Lemma 2 we obtain

o0

lim 2 C,,(r) [f(an-a)(x) — f(a.n-a.)(c)]

T - 00 n=0

- lim i cp(r) f(an-a+l)(c) x—c +..-+f(°'"'l)(c) (x—c)* !
"7 n=o " 1! (=1

x [*a x2
=/ / "'/ g(xl)dxl oo dxa
c [+ c

uniformly for ¢, x in (a, b). Lemma 2 actually gives the existence and value
of the limit of the difference of the two sums, rather than the difference of
the limits of the individual sums, as written above. However, once the exis-

tence of the first limit above is established, that of the second is immediate.

Writing on — & as &(n ~ 1), we see from (1) that the first limit exists and
is g(x) - g(c). Lemma 1, with 8= o — 1, shows that the second limit, whose
existence is now assured, is a polynomial in x ~ ¢ of degree at most & - 1,

say P,y (x — ¢), vanishing for x = c. Then

gl(x) — g(c) —Pa_l(x—c)=/;x/;xa /;xz glxy)dxy <o dxg.

Continuity and then O-fold differentiability follow from this equation. Dif-
ferentiating & times completes the proof.

Some open questions. If lim @) (%), n — @, « a fixed positive integer,

exists, and is finite for each x in (a, b), then must the convergence necessarily
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be dominated or perhaps even bounded or uniform? If this is not the case for
general indefinitely differentiable functions, would it be true for f(x) in a
quasi-analytic class? If not then, what if f(x) is analytic? If o =1, then the
answer to the first (and hence to all) of these questions is affirmative. If the
answer to any of these questions is affirmative for other &, it would then fol-
low, from Theorem 4 (ii), that the limit, g(x), satisfies the differential equa-
tion g(a)(x)=g(x). Similar questions can be framed for more general se-
quences of A;’s.
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