A NOTE ON THE HÖLDER MEAN

TYRE ALEXANDER NEWTON
A NOTE ON THE HÖLDER MEAN

TYRE A. NEWTON

1. Introduction. Of the two better-known generalizations of the simple arithmetic mean, the Hölder mean and the Cesàro mean, the latter has been the more extensively studied. This is primarily due to the equivalence of the two when used to define summability methods and to the following formulas. If we define C_n^k, the kth order Cesàro mean of the terms S_0, S_1, \cdots, S_n, by the relation

$$C_n^k = \left(\frac{n+k}{k} \right)^{-1} S_n^k,$$

where

$$S_n^0 = S_n \quad \text{and} \quad S_n^k = \sum_{v=0}^{n} S_v^{k-1} \quad \text{for} \quad n \geq 0, \quad k = 1, 2, \cdots,$$

then it follows [1, p. 96] that

$$S_n^{k+m} = \sum_{v=0}^{n} \left(\frac{n-v+m-1}{m-1} \right) S_v^k$$

(1.1)

and

$$S_n^k = \sum_{v=0}^{m} (-1)^v \binom{m}{v} S_n^{k+m} \quad (m = 1, 2, \cdots).$$

(1.2)

The only known analogues to these formulas for the Hölder mean that this writer has been able to find are as follows. Denoting the kth order Hölder mean of the terms S_0, S_1, \cdots, S_n by H_n^k, and recalling the definition that

$$H_n^0 = S_n \quad \text{and} \quad H_n^k = \frac{1}{n+1} \sum_{v=0}^{n} H_v^{k-1} \quad \text{for} \quad n \geq 0, \quad k = 1, 2, \cdots,$$

Received October 9, 1952, and in revised form June 9, 1953. This paper resulted from a part of a doctoral thesis submitted to the graduate Faculty of the University of Georgia.

Pacific J. Math. 3 (1953), 807-822

807
it can be proved [1, p. 250] that

\begin{equation}
H_{n-v}^{k+m} = \sum_{v=0}^{n} (-1)^v \binom{n}{v} [\Delta^v(n+1-v)^m] H_{n-v}^{k}
\end{equation}

and

\begin{equation}
H_{n}^{k} = \sum_{v=0}^{m} (-1)^v \binom{n}{v} [\Delta^v(n+1-v)^m] H_{n-v}^{k+m} \quad (m = 1, 2, \ldots),
\end{equation}

where \(\Delta u(n) = u(n+1) - u(n) \). These formulas follow from a more general expression for the coefficients in any Hausdorff transformation. It is easily seen that the coefficients involved in (1.3) and (1.4) in many respects are not as convenient to work with as those of (1.1) and (1.2).

In §2 below, the coefficients of (1.4) are obtained in different form, being expressed in terms of a particular set of polynomials. A few of the properties of these polynomials are considered in §3, while applications with respect to Hölder summability are dealt with in §4.

2. A set of polynomials. It follows from the definition of the Hölder mean that

\[(n + 1) H_n^{k+1} - n H_{n-1}^{k+1} = H_n^k\]

for integers \(k \geq 0 \) and \(n \geq 0 \). By iteration, it follows that there exist coefficients \(A_j^m(n) \) such that

\begin{equation}
H_n^k = \sum_{j=0}^{m} (-1)^j A_j^m(n) H_{n-j}^{k+m} \quad (m = 0, 1, 2, \ldots)
\end{equation}

if

\begin{equation}
A_j^{m+1}(n) = (n - j + 1) [A_j^m(n) + A_{j-1}^m(n)]
\end{equation}

for \(0 \leq j \leq m \), where

\begin{equation}
A_j^0(n) = 1 \quad \text{and} \quad A_j^m(n) = 0
\end{equation}

for \(j < 0 \) or \(j > m \). By virtue of the identity

\[\Delta^j(n+1-j)^{m+1} = (n+1-j) \Delta^j(n+1-j)^m + j \Delta^{j-1}(n+2-j)^m,\]
it follows that the coefficient of (1.4),

\[A_j^m(n) = \binom{n}{j} \Delta^j (n + 1 - j)^m, \]

is a solution of (2.2) satisfying the boundary condition (2.3).

Another form of this solution is obtained when we consider the following set of polynomials. For arbitrary nonnegative integers \(m \) and \(j \), \(0 \leq j \leq m \), let

\[(2.4) \quad F_0^m(x) = x^{m+1}, \]

\[F_1^m(x) = \sum_{m+1} x^i (x-1)^j, \]

\[\ldots \quad \ldots \quad \ldots \]

\[F_j^m(x) = \sum_{m+1} x^p (x-1)^q \cdots (x-j)^s, \]

\[\ldots \quad \ldots \quad \ldots \]

\[F_m^m(x) = x(x-1) \cdots (x-m), \]

the symbol

\[\sum_{m+1} x^p (x-1)^q \cdots (x-j)^s \]

denoting the sum of all possible but different such products where \(p, q, \ldots, s \) are positive integers such that \(p + q + \cdots + s = m + 1 \). If we further let

\[(2.5) \quad F_j^m(x) = 0 \]

whenever \(j < 0 \) or \(j > m \), it follows that

\[(2.6) \quad F_{j+1}^m(x) = (x-j) [F_j^{m-1}(x) + F_j^m(x)] \]

for integers \(j \) and \(m \geq 0 \). To prove the latter relation, apply (2.4) to get

\[(2.7) \quad (x-j) [F_{j-1}^m(x) + F_j^m(x)] = \sum_{m+1} x^p (x-1)^q \cdots (x - j + 1)^r (x-j) \]

\[+ \sum_{m+1} x^p (x-1)^q \cdots (x - j + 1)^r (x-j)^{s+1} \]

for $0 < j \leq m$. In the first sum on the right, the exponents p, q, \ldots, r take on all possible positive integral values such that $(p + q + \cdots + r) + 1 = m + 2$. In the second sum, the integers p, q, \ldots, r, s take on all possible integral values such that $(p + q + \cdots + r) + (s + 1) = m + 2$. It follows that if we consider both sums on the right of (2.7) together, then their sum is $F_{j}^{m+1}(x)$, thus completing the proof of (2.6) when $0 < j \leq m$. Its truth for $j \leq 0$ or $j > m$ follows when we further consider (2.5) as well as (2.4).

Reconsidering equations (2.4), we note that each of the polynomials defined there has x as a factor. Consequently there exists a unique polynomial $G_{j}^{m}(x)$ such that

$$F_{j}^{m}(x) = xG_{j}^{m}(x)$$

for integral $m \geq 0$ and j. Substituting into (2.5) and (2.6), and noting that $G_{0}^{m}(x) = 1$ for all x, we see that $G_{j}^{m}(n+1)$ is a solution for (2.2) satisfying the boundary conditions (2.3). Consequently, we assert that

$$H_{k}^{m}(n) = \sum_{j=0}^{m} (-1)^{j} G_{j}^{m}(n+1) H_{n-j}^{k+m}$$

for integers $k \geq 0$ and $m \geq 0$.

3. Properties of the polynomials $G_{j}^{m}(x)$. In the work that follows, it will be more convenient to consider the polynomials $G_{j}^{m}(x)$ defined by (2.8). As might be expected, we find a considerable number of recurrence relations and other formulas involving these polynomials and their coefficients. Before proceeding to the particular applications in view, we shall list a few such relations. For integral $m \geq 0$ and j,

1 The author is indebted to the referee for suggesting the above derivation of (2.9) which is somewhat simpler than the proof originally presented. The referee also proposed the following alternative derivation. We write

$$H_{k}^{m}(x) = \sum_{n=0}^{\infty} H_{n}^{k} x^n,$$

and then with $D = d/dx$,

$$(1-x) D\{xH_{k+1}^{m}(x)\} = H_{k}^{m}(x),$$

and symbolically,

$$[(1-x) Dx]^{m} H_{k+m}^{m}(x) = H_{k}^{m}(x).$$

Interpretation of the operator leads to the same results. This derivation is worth noting, for it is analogous to the classical development of equations (1.1) and (1.2).
(3.1) \[G^{m+1}_j(x) = (x - j) [G^m_{j-1}(x) + G^m_j(x)]; \]
for integral \(m \geq 1 \) and \(j \),

(3.2) \[G^{m+1}_j(x) = (x - 1) G^m_{j-1}(x - 1) + x G^m_j(x); \]
and for integral \(m \geq 0 \) and \(j \),

(3.3) \[(j/2 + x) G^m_j(j/2 + x) = (-1)^{m+1} (j/2 - x) G^m_j(j/2 - x). \]

Equation (3.1) is obtained by substituting from (2.8) into (2.6). The proof of (3.2) is carried out by first deriving the relation

\[F^{m+1}_j(x) = x[F^m_{j-1}(x - 1) + F^m_j(x)] \]
in the same manner as we derived (2.6), then substituting from (2.8). Equation (3.3) follows from the defining equation of \(F^m_j(x) \) when \((-1)^m\) is factored from each of the factors of the defining sum giving

\[F^m_j(x) = (-1)^{m+1} F^m_j(j - x) \]
for \(0 \leq j \leq m \). Replacing \(x \) by \((j/2) + x\) and substituting from (2.8) yields the desired result. This relation displays the symmetric nature of the polynomials \(F^m_j(x) = xG^m_j(x) \) in that they are symmetric with respect to the line \(x = j/2 \) when \(m \) is odd, and symmetric with respect to the point \((j/2, 0)\) when \(m \) is even.

Determine coefficients \(j^A_{m,i} \) such that

(3.4) \[G^m_j(x) = j^A_{m,0} x^m + j^A_{m,1} x^{m-1} + \cdots + j^A_{m,m-1} x + j^A_{m,m} \]
for \(m > 0 \). It follows from the definition that

(3.5) \[j^A_{m,i} = 0 \]
for either \(i < 0, i > m \), or \(j < 0, j > m \), and in particular \(o^A_{m,0} = 1 \) while \(o^A_{m,i} = 0 \) for \(i > 0 \). The following is a table of the polynomials \(G^m_j(x) \) when \(m = 1, 2, 3, \) and \(4: \)

<table>
<thead>
<tr>
<th>(k = 1)</th>
<th>(k = 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G^1_0(x) = x)</td>
<td>(G^2_0(x) = x^2)</td>
</tr>
<tr>
<td>(G^1_1(x) = x - 1)</td>
<td>(G^2_1(x) = 2x^2 - 3x + 1)</td>
</tr>
<tr>
<td>(G^2_0(x) = x^2)</td>
<td>(G^2_2(x) = x^2 - 3x + 2)</td>
</tr>
</tbody>
</table>
Substituting from (3.4) into (3.1), collecting like terms with respect to x, replacing m by $m-1$, and equating coefficients, yields the recurrence relation

$$j^A_{m,i} = (j^A_{m-1,i} + j^{-1}A_{m-1,i}) - j(j^A_{m-1,i-1} + j^{-1}A_{m-1,i-1})$$

for integral $m \geq 1$ and j. Summing the latter expression with respect to j results in the relation

$$
\sum_{v=0}^{j} (-1)^v v^A_{m,i} = (-1)^j j^A_{m-1,i} - j(-1)^j j^{-1}A_{m-1,i-1} \\
+ \sum_{v=0}^{j-1} (-1)^v vA_{m-1,i-1}
$$

for $0 \leq i \leq m$. An interesting particular case of the latter formula is obtained by letting $j = m$ and considering (3.5). It follows that

$$
\sum_{v=0}^{m} (-1)^v v^A_{m,i} = \sum_{v=0}^{m-1} (-1)^v vA_{m-1,i-1}.
$$

From repeated substitution, we conclude that

$$
\sum_{v=0}^{m} (-1)^v v^A_{m,i} = 0^A_{0,i-1-m},
$$

whence

$$
\sum_{v=0}^{m} (-1)^v v^A_{m,i} = \begin{cases} 0 & \text{for } i < m \\ 1 & \text{for } i = m \end{cases}
$$

when $m \geq 1$.

Recalling the factorial notation $x^{(m+1)} = x(x-1) \cdots (x-m)$, $m \geq 0$, we obtain
\[x C_m^m(x) = x^{(m+1)}. \]

But by definition, the numbers \(s_{m,v} \) such that

\[x^{(m)} = s_{m,m} x^m + s_{m,m-1} x^{m-1} + \cdots + s_{m,1} x \]

are the Stirling numbers of the first kind \([2, p. 143]\).\(^2\) It now follows, since

\[G_m^m(x) = s_{m+1,m+1} x^m + s_{m+1,m} x^{m-1} + \cdots + s_{m+1,1}, \]

that

\[m A_{m,i} = s_{m+1,m-i+1}. \]

In turn, letting \(i = 0 \) in (3.6), we find that

\[j A_{m,0} = j A_{m-1,0} + j A_{m-1,0}. \]

As a consequence of the initial conditions that \(A_{m,0} = 1 \) and \(j A_{m,0} = 0 \) for \(j > 0 \), it follows \([2, p. 615]\) that the solution of this partial difference equation is

\[j A_{m,0} = \binom{m}{j}. \]

When considering the polynomials \(G_j^m(x) \) as displayed in the table, we see that, for any \(m \), the coefficients considered by rows in light of (3.9) and (3.6) give a possible extension of the Stirling numbers. On the other hand, when the coefficients are considered by columns in light of (3.10), they present a possible extension of the binomial coefficients. This latter property is better displayed when we consider the known formula \([2, p. 169]\)

\[\sum_{v=1}^{m} (-1)^v \binom{m}{v} v^j = (-1)^m m! S_{j,m} \quad (j \geq 1), \]

where \(S_{j,m} \) is the Stirling number of the second kind and thus \(S_{j,m} = 0 \) for \(0 < j < m \). Make the definitions

\[P_m^m(i, j) = \sum_{v=1}^{m} (-1)^v A_{m,i} v^j \quad \text{and} \quad Q_m^m(i, j) = \sum_{v=0}^{m} (-1)^v v A_{m,i} (v+1)^j, \]

where \(m \geq 1 \). It follows from a straightforward induction proof that

\[P_m^m(0, 0) = -1 \quad \text{and} \quad P_m^m(i, j) = 0. \]

\(^2\)The notation used here for the Stirling numbers of the first and second kind is not the same as that used by Jordan in \([2]\).
whenever $0 \leq i < m$, $0 \leq j < m - i$, and $i + j \neq 0$. The induction can be carried out by using the identity

$$P^{m+1}(i, j) = [P^m(i, j) - Q^m(i, j)] - [P^m(i - 1, j + 1) - Q^m(i - 1, j + 1)]$$

and the fact that the truth of (3.11) implies that both

$$(3.12) \quad Q^m(i, j) = 0$$

for $0 \leq i < m$, $0 \leq j < m - i$, and

$$(3.13) \quad Q^m(i, m - i) = P^m(i, m - i)$$

for $0 \leq i \leq m$.

It is of interest that

$$\sum_{i=0}^{m} (-1)^i G_i^m(x + in) = \sum_{i=0}^{m-1} n^{m-i} P^m(i, m - i) + 1$$

for $m \geq 1$, $n = 0, \pm 1, \pm 2, \ldots$, and all x. That is, the sum

$$\sum_{i=0}^{m} (-1)^i G_i^m(x + in)$$

is a function of n and m alone, independent of x. This follows from (3.8), (3.11), (3.12), and the identity

$$\sum_{i=0}^{m} (-1)^i G_i^m(x + in) = \left\{ \sum_{i=0}^{m-1} n^{m-i} P^m(i, m - i) + 1 \right\} x^m$$

where $m \geq 1$. Since the sum on the left of (3.13) is independent of x, we can write

$$\sum_{i=0}^{m} (-1)^i G_i^m(x + in) = \sum_{i=0}^{m} (-1)^i G_i^m(in)$$
for \(m \geq 1, \ n = 0, \pm 1, \pm 2, \cdots, \) and all \(x \). Letting \(n = 1 \), recalling that \(\mathcal{G}_i^m(x) \) has \((x - i) \) as a factor for \(i > 0 \) and that \(\mathcal{G}_0^m(x) = x^m \), we see that
\[
\sum_{i=0}^{m} (-1)^i \mathcal{G}_i^m(x + i) = 0
\]
for \(m \geq 1 \) and all \(x \). If we let \(n = 0 \) in (3.13), then
\[
(3.14) \quad \sum_{i=0}^{m} (-1)^i \mathcal{G}_i^m(x) = 1
\]
for \(m \geq 1 \) and all \(x \). It turns out that \(n = 0, 1 \) are the only two cases where the sum
\[
\sum_{i=0}^{m} (-1)^i \mathcal{G}_i^m(x + in)
\]
is independent of \(m \) as well as \(x \).

Consideration of (1.4) with (2.9) yields
\[
(3.15) \quad \mathcal{G}_j^m(n) = \binom{n-1}{j} \Delta^j (n-j)^m.
\]

As might be expected, more is found concerning the nature of the coefficients of the polynomial \(\mathcal{G}_j^m(x) \) by studying the expression on the right of (3.15). Substituting into (3.15) from the identity
\[
x(v)_m = \sum_{v=1}^{m+1} v(v)_j S_{m,v} x^{(v-j)},
\]
where \(S_{m,v} \) denotes the Stirling number of the second kind \([2, \text{p.} 181]\), and simplifying, we obtain the relation
\[
\mathcal{G}_j^m(n) = \frac{(n-j)}{n} \sum_{v=j}^{m} \binom{v}{j} S_{m,v} n^{(v)}.
\]

Substituting from the defining relation for the Stirling numbers of the first kind,
\[
x^{(v)} = \sum_{i=1}^{v} s_{v,i} x^i,
\]
collecting like terms with respect to n^ν, $\nu = 0, 1, \ldots, m$, and equating coefficients, yields the relation

$$j^A_{m,i} = \sum_{\nu=0}^{m-j} (j^+\nu) S_{m,j+\nu} (s_{j+\nu,m-i} - j s_{j+\nu,m-i+1})$$

for integral $m \geq 0$, i, and j.

4. Application to Hölder summability. For the remainder of this paper $\{S_n\}$ denotes the sequence of partial sums of the arbitrary infinite series $\sum a_n$, and H_n^k denotes the k^{th} order Hölder mean of the terms S_0, S_1, \ldots, S_n. If

$$\lim_{n \to \infty} H_n^k = S,$$

then $\sum a_n$ is said to be summable Hölder of order k to S, and this fact is denoted by

$$\sum a_n = S(H, k).$$

In the same manner, the sequence $\{C_n^k\}$ defines Cesàro summability of order k. Likewise, Cesàro summability of order k is denoted by

$$\sum a_n = S(C, k).$$

The Hölder and Cesàro summability methods are equivalent in that

$$\sum a_n = S(H, k)$$

if and only if

$$\sum a_n = S(C, k).$$

At times it will be convenient to use the operator form of denoting the Hölder mean. That is, the k^{th} order Hölder mean of the terms p_0, p_1, \ldots, p_n is denoted by $H_n^k(p_n)$. If $p_n = S_{n-k}$, $k > 0$, and $S_m = 0$ for $m < 0$, then we have

$$H^1(S_{n-k}) = \frac{1}{n+1} \sum_{v=0}^{n-k} S_v, \quad H^k(S_{n-k}) = H^1(H^{k-1}(S_{n-k}))$$

for $k > 1$, and
It follows that

\[(4.1)\quad H^m(H^k(p_n)) = H^{m+k}(p_n)\]

and

\[(4.2)\quad H^m(p_n + q_n) = H^m(p_n) + H^m(q_n),\]

where \(m\) and \(k\) are nonnegative integers.

Letting \(k = -m\) in (2.9), \(m \geq 0\), we have the following definition for Hölder means of negative integral order.

Definition 1. For \(m \geq 0\),

\[(4.3)\quad H_n^{-m} = \sum_{i=0}^{m} (-1)^i \binom{n}{i} C_i^m (n+1) S_{n-i}.\]

Referring to the defining equation for the Cesàro mean,

\[C_n^m = \binom{n+m}{m}^{-1} S_n^m,\]

we see that the first factor on the right is undefined for negative \(m\) when \(n\) is sufficiently large.

From Definition 1, it follows that (2.9) can be extended to all integral values of \(k\). The Hölder method of summation is said to be *regular* since

\[\sum a_n = S\]

implies

\[\sum a_n = S(H, m)\]

for \(m > 0\). With respect to negative order summation, the following extended sense of regularity is immediate.

(i) If \(\sum a_n\) is divergent, then it is not summable \((H, -m)\) for any \(m \geq 0\).

(ii) If

\[\sum a_n = S(H, -m)\]
for $m \geq 0$, then

$$\sum a_n = S(H, p)$$

for all $p \geq -m$.

Also, the right side of (4.3) can be used to define the operator H^{-m}. From this definition, it follows that properties (4.1) and (4.2) are true for all integral m and k.

Applying summation by parts to (4.3), considering (3.14), and using the operator notation, we find that

$$H^{-m}(S_n) = \sum_{i=0}^{m-1} \left(\sum_{j=0}^{i} (-1)^j G_j^m(n + 1) \right) a_{n_i} + S_{n-m}$$

for $m \geq 0$. Applying the operator H^{q+m}, we see that

$$H^q(S_n) = H^{q+m} \left(\sum_{i=0}^{m-1} \left(\sum_{j=0}^{i} (-1)^j G_j^m(n + 1) \right) a_{n_i} \right) + H^{q+m}(S_{n-m})$$

for integers $m \geq 0$ and q. Since

$$\lim_{n \to \infty} H^q(S_n) = S$$

implies

$$\lim_{n \to \infty} H^{q+m}(S_{n-m}) = S$$

for $m \geq 0$, we have the following theorem as a formal statement of our results.

Theorem 1. If

$$\sum a_n = S(H, q + m), \ m \geq 0,$$

then

$$\sum_{i=0}^{m-1} \left(\sum_{j=0}^{i} (-1)^j G_j^m(n + 1) \right) a_{n-i} = 0(H, q + m)$$

is a necessary and sufficient condition that
\[\sum a_n = S(H, q). \]

Letting \(q = 0 \) in Theorem 1 yields a Tauberian theorem, that is, a theorem in which ordinary convergence is deduced from the fact that the series is summable and satisfies some further condition (which will vary with the method of summation).

Letting \(q = -m \) in Theorem 1, we have the following corollary with respect to negative order summation.

Corollary 1. If

\[\sum a_n = S, \]

then

\[\lim_{n \to \infty} \sum_{i=0}^{m-1} \left(\sum_{j=0}^{i} (-1)^j G_j^m(n+1) \right) a_{n-i} = 0 \]

is a necessary and sufficient condition that

\[\sum a_n = S(H, -m), \quad m \geq 0. \]

Noting that

\[\sum_{j=0}^{i} (-1)^j G_j^m(n+1) \]

is a polynomial of degree \(m \), it follows that

\[\lim_{n \to \infty} n^m a_n = 0 \]

implies

\[\lim_{n \to \infty} \left[\sum_{j=0}^{i} (-1)^j G_j^m(n+1) \right] a_{n-i} = 0, \]

and consequently we assert:
Corollary 2. If

$$\sum a_n = S,$$

then

$$\lim_{n \to \infty} n^m a_n = 0, m > 0,$$

is sufficient for

$$\sum a_n = S(H, -m).$$

Letting $m = 1$ in (4.5) we have

$$H^q(S_n) = H^{q+1}((n + 1) a_n) + H^{q+1}(S_{n-1}),$$

or, applying the distributive property of this operator,

$$H^q(S_n) = H^{q+1}(n a_n) + H^{q+1}(S_n).$$

This relation is equivalent to a well-known analogue to Kronecker's theorem [3, p.485] which states that if $\sum a_n$ is summable (C, q), then

$$H^1(na_n) = 0 (C, q).$$

Conversely, it follows from (4.6) that if $\sum a_n$ is summable ($H, q + 1$), then a necessary and sufficient condition that it be summable (H, q) is that

$$na = 0 (H, q + 1).$$

For integral $q \geq 0$ this is analogous to Theorem 65 of [1]. However, in the foregoing case, the statement is true for all integral q. As a further extension of the analogue to Kronecker's theorem, we have the following.

Corollary 3. If

$$\sum a_n = S(H, q),$$

then

$$\sum_{i=0}^{m-1} \left(\sum_{j=0}^i (-1)^j G_j^m(n+1) \right) a_{n-i} = 0 (H, q + m).$$
for integral \(m > 0 \).

For a special case where the condition of Corollary 2 is necessary as well as sufficient, we shall prove the following.

Theorem 2. If \(\sum a_n \) is a convergent alternating series, then

\[
\lim_{n \to \infty} n^m a_n = 0, \quad m \geq 0,
\]

is a necessary and sufficient condition for \(\sum a_n \) to be summable \((H, -m)\).

Proof. Letting \(i = 0 \) in (3.7), we conclude that there exist constants \(a_{m,j} \), \(j = 1, 2, \ldots, m \), such that

\[
(4.7) \quad \sum_{j=0}^{k} (-1)^j G_j^m(n) = (-1)^k A_{m-1,0} n^m + k a_{m,1} n^{m-1} + k a_{m,2} n^{m-2} + \cdots + k a_{m,m}
\]

for \(0 \leq k < m \). We recall from the definition of \(G_k^m(x) \) that \(k A_{m-1,0} > 0 \) for \(0 \leq k < m \). Consequently, for a given \(m \), it follows that there exists an \(n_0 \) such that for all even \(k \),

\[
\sum_{i=0}^{k} (-1)^i G_i^m(n) > 0;
\]

and for all odd \(k \),

\[
\sum_{i=0}^{k} (-1)^i G_i^m(n) < 0
\]

whenever \(n \geq n_0 \). But by hypothesis, \(a_{-m} \) is alternating in sign with respect to \(m \), whence

\[
(4.8) \quad \left| \sum_{i=0}^{m-1} \left(\sum_{j=0}^{i} (-1)^j G_j^m(n) \right) a_{n-i-1} \right| = \sum_{i=0}^{m-1} \left| \sum_{j=0}^{i} (-1)^j G_j^m(n) \right| |a_{n-i-1}|
\]

for \(n \geq n_0 \). Also, it follows from (4.7) that

\[
\lim_{n \to \infty} n^{-m} \left| \sum_{j=0}^{i} (-1)^j G_j^m(n) \right| = i A_{m-1,0},
\]
consequently there exist positive constants \(n_1 > n_0, M(m), \) and \(N(m) \) such that

\[
n^m M(m) \leq \left| \sum_{j=0}^{i} (-1)^j G_j^m(n) \right| \leq n^m N(m)
\]

for \(0 \leq i < m \) and \(n \geq n_1 \). Considering this with (4.8) yields

\[
M(m) \sum_{i=0}^{m-1} \left(\frac{n}{n-i-1} \right)^m (n-i-1)^m |a_{n-i-1}| \leq \left| \sum_{i=0}^{m-1} \left(\sum_{j=0}^{i} (-1)^j G_j^m(n) \right) a_{n-i-1} \right|
\]

\[
\leq N(m) \sum_{i=1}^{m-1} \left(\frac{n}{n-i-1} \right)^m (n-i-1)^m |a_{n-i-1}|
\]

for \(n \geq n_1 \). We conclude that

\[
\lim_{n \to \infty} \sum_{i=0}^{m-1} \left(\sum_{j=0}^{i} (-1)^j G_j^m(n) \right) a_{n-i-1} = 0
\]

if and only if

\[
\lim_{n \to \infty} n^m a_n = 0.
\]

The theorem now follows from Corollary 1.

Letting \(q = -1 \) in (4.6), we see that any convergent series for which

\[
\lim_{n \to \infty} n a_n \neq 0
\]

is not summable Hölder for any negative order. On the other hand, \(\sum 1/(n + 1)^2 \) is convergent and

\[
\lim_{n \to \infty} n^2 a_n \neq 0,
\]

yet it follows from direct application of Corollary 1 that this series is summable \((H, -2)\).

References

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

R. M. ROBINSON
University of California
Berkeley 4, California

R. P. DILWORTH
California Institute of Technology
Pasadena 4, California

E. HEWITT
University of Washington
Seattle 5, Washington

E. F. BECKENBACH
University of California
Los Angeles 24, California

ASSOCIATE EDITORS

H. BUSEMANN
P. R. HALMOS
BØRGE JESSEN
J. J. STOKER

HERBERT FEDERER
HEINZ HOPF
PAUL LÉVY
E. G. STRAUS

MARSHALL HALL
R. D. JAMES
GEORGE PÓLYA
KÔSAKU YOSIDA

SPONSORS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY.
UNIVERSITY OF CALIFORNIA, BERKELEY
UNIVERSITY OF CALIFORNIA, DAVIS
UNIVERSITY OF CALIFORNIA, LOS ANGELES
UNIVERSITY OF CALIFORNIA, SANTA BARBARA
UNIVERSITY OF NEVADA
OREGON STATE COLLEGE
UNIVERSITY OF OREGON
UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD RESEARCH INSTITUTE
STANFORD UNIVERSITY
WASHINGTON STATE COLLEGE
UNIVERSITY OF WASHINGTON
AMERICAN MATHEMATICAL SOCIETY
NATIONAL BUREAU OF STANDARDS,
INSTITUTE FOR NUMERICAL ANALYSIS

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any of the editors except Robinson, whose term expires with the completion of the present volume; they might also be sent to M.M. Schiffer, Stanford University, Stanford, California, who is succeeding Robinson. All other communications to the editors should be addressed to the managing editor, E. F. Beckenbach, at the address given above.

Authors are entitled to receive 100 free reprints of their published papers and may obtain additional copies at cost.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is $8.00; single issues, $2.50. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues, $1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to the publishers, University of California Press, Berkeley 4, California.

Printed at Ann Arbor, Michigan. Entered as second class matter at the Post Office, Berkeley, California.

UNIVERSITY OF CALIFORNIA PRESS - BERKELEY AND LOS ANGELES

COPYRIGHT 1953 BY PACIFIC JOURNAL OF MATHEMATICS
Paul Erdős and Gilbert Agnew Hunt, Jr., *Changes of sign of sums of random variables* 673
Paul Erdős and Ernst Gabor Straus, *On linear independence of sequences in a Banach space* 689
Haim Hanani, *On sums of series of complex numbers* 695
Melvin Henriksen, *On the prime ideals of the ring of entire functions* 711
Irving Kaplansky, *Completely continuous normal operators with property L* ... 721
Samuel Karlin, *Some random walks arising in learning models. I* 725
William Judson LeVeque, *On uniform distribution modulo a subdivision* .. 757
Lee Lorch, *Derivatives of infinite order* ... 773
Ernest A. Michael, *Some extension theorems for continuous functions* 789
Tyre Alexander Newton, *A note on the Hölder mean* 807
Raymond Moos Redheffer, *On a theorem of Plancherel and Pólya* 823
Choy-Tak Taam, *On the complex zeros of functions of Sturm-Liouville type* .. 837