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1. Introduction. This paper is concerned with extremal problems of the type

(1.1) ‘//I; | f7(2)1? dxdy = A = minimumn:,

fj;) o(z)|f(z)|? dedy =1, o(z)> 0,

where f(z) belongs to the class of analytic functions which are regular and
single-valued in a given domain D. A further slight restriction of this class is

necessary in order to exclude the trivial solution f (z) = constant.

While this problem has sufficient formal similarity to the classical eigen-
value problems of mathematical physics to make some of the classical results
applicable, it will be shown that it leads, on the other hand, to repreducing
kernels of a type analogous to those considered by Bergman [ 1]. With certain
peculiar restrictions it will be shown also that the solution of this problem is,

up to constants, the resolvent kernel K (z, w; A) of an integral equation

(1.2) f(w)=)\ff[\'(z,w,a)f(z)dxdy
D

whose solution is identical with that of (1.1). The kernel K (z, w, a) of (1.2),
and hence both K(z, w; A) and the solution of (1.1), are related to certain

canonical conformal mapping functions.

2. The eigenvalue problem. [et F(z) be analytic in a given finite, multiply
connected domain D. Among all analytic, single-valued functions, let f, (z) be

the function minimizing the area integral
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276 D. R. SCHOLZ

(2.1) In(f) = fj;\f’(z)ldedy

under the conditions

(2.2) Hp(f) = ‘U-D o(z) | f(2)]|?dxdy =1, o(z)=|F(z)]?,
and either
(2.3) fla)=0, a €D
(2.4) (2) f(z)dxdy=0,
f";a z) f(z)dxdy

and let A; be the minimum value of (2.1). Conditions of the type (2.3) or (2.4)
are necessary in order to exclude the trivial solution f (z) = o{ = const., & # O.

We denote by A, the successive minima of (2.1) under the additional conditions
(2.5) fj; o(z) f(z) f(z)dxdy =0 (k=1,2,-++,n~1),

where f,(z) denotes the kth eigenfunction.

The subsequent results will be stated principally for that class of functions,
denoted by L2 (a, D), for which (2.1) exists and (2.3) holds. In each situation,
however, one obtains a similar and generally somewhat simpler analysis and

result for the class of functions L? (D) satisfying (2.4).

Qur eigenvalue problem presents many formal analogies to the classical
eigenvalue problems of mathematical physics [4]. There is, however, an essen-
tial difference between the two types of problems. While in the classical case
the class of functions competing in the minimum problem is very general and
is only restricted by certain homogeneous boundary conditions, we restrict
our attention at the outset to the class of analytic functions which are regular
and single-valued in D and are, moreover, of class L?(a, D). By this procedure,
the existence problem can be disposed of by an appeal to a standard compact-
ness argument. The relation between these two types of eigenvalue problems
is quite similar to that between the method of the Dirichlet principle [3] and
the approach to the fundamental domain functions via the Bergman kernel func-
tion [11].
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TueorEM 1. The eigenvalues A, and eigenfunctions f (z) satisfy the
condition

(2.6) ./:/l; [U(z)f:(_;—)-h(Z)—)\;z1 f7(z) h*(2)]dx dy

= 4 (a) ffD o(2) f (z)dxdy,

where h(z) is any single-valued regular function in D.

Up to a multiplicative constant our problem is equivalent to that of minimiz-
ing the quotient Jp (f)/Hp(f). Hence with any function g(z) of the class
L*(a, D), and any ¢, f(z) =f,(z) + €eg(z) is a competing function for which

we have the condition

f-/;) [f/(2) + eg’(2)|2dudy > Ay _/:/; o(z) |f,(2) +eg(z)|*dxdy,

or, in view of the relation /p (f1 )= A Hp (f1 ),

2%[6/‘/; (]Tl'g'—’\lflg)dxd}’] Z|€|2[---],

the right side being nonpositive. This inequality evidently holds for every com-

plex value of € only if
f_/l; []?l'_(z—)g'(z)—)\la(z)K(T)g(z)]dxdy=0.
Similarly obtained are the conditions
(2.7) /Z) (f7(z2) g"(2) = Mo (2) [(z) g(2)Vdady =0 (n=2,3,...),

where g(z) is restricted by the hypothesis

‘/:/I; a(z)g(z)fk(z)dxdy=0 (k=1,2,+00,n=1).

It is easily demonstrated that this restriction is unnecessary, however, and

consequently (2.7) holds for any function g(z) of L?(a, D). Finally, (2.6) is
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obtained upon setting g(z) =h(z) - A (a).

The fact that the eigenfunctions of (2.1) are a complete set in L?(a, D)
follows as in the classical case. Although there are many such complete sets,

our eigenfunctions are distinguished by the following property:

THEOREM 2. The eigenfunctions f (z) constitute a complete orthonormal
set of functions whose first derivatives are also orthogonal over D and complete
in the space of functions with single-valued integrals and finite norm. If the
eigenvalues are not multiple, this system is unique up to a factor of unit ab-

solute value.

Replacing g (z) with f, (z) in (2.7) yields the identity

(2.8) /:/1; fnT'z)fk’(z)dxdy=Anffa(z)f;_(z—)fk(z)dxdy=o,

which, combined with the property of completeness, implies that the first deriva-
tives of the eigenfunctions constitute a complete orthogonal set. Essentially
there is but one such system with given normalization whose derivatives are
also orthogonal, provided the eigenvalues are not multiple. Indeed, let { F,(z)}

be another such system so ordered that p, < p, <..., where

B, = fj; |F’(2)|* dxdy,

and let {f (z)} be the foregoing eigenfunctions. Expanding f,(z) in a series
fl(z) = 2 ap Fp(z),
p=t
and noting that A, < p, < p, <-.-+, we have
I 2 o0 2 00
ffD lfl(z)l dxdy Zp=1|ap| ll.p I‘l’l Zp=1!ap|2

= > = py 2 Ap,
[, olf,(2)|? dudy =1 lapl? Zo=i lap|?

with equality holding only if a; =a3=-..=0 and a; = e!®, Proceeding by

induction, we assume that

f,.(2)=¢€F _(2)
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is orthogonal to £ (z) (k=1,...,n~ 1); consequently, since

fn(z) = Z am Fm(z)’

m=n

we obtain

”D1fn'(z)\2dxdy Zor:'—‘nlamlzum

= > A
o0 n n?
f{DU|fn(z)|2dxd}’ Zm=n|am|2
with equality holding only if
An+1 = Qpig =+++=0 and |a,| = 1.

In case multiple eigenvalues exist, however, the preceding proof is invalid and

there is no unique system.

3. Examples. Let G be a circle of radius r with center at the origin. If the

reference point a is also at the origin and 0 = 1, a closed orthonormal system

for L%(0, G) is

n

(3.1)

n+1q1% 2
=) (21,2 e,

e rn+1

The derivatives of this system are also orthogonal; consequently, in virtue of

Theorem 2, (3.1) is the set of eigenfunctions, the associated eigenvalues being

n(n+1)

r2

n =

An example of an orthonormal system in the class L?(D), that is, the func-

'/:/l‘) f,(z)dxdy =0,

tions such that

is the set
fﬂ(z)zzn[(n+ 1)/”(R2n+2"r2n+2)]l/2 (n="' 9"‘2’ 17 27 "‘)1

f_l(z)z 2 H1/27 log (R/r)]'/2
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on the annulus r < |z| < R. This system is known to be complete, and the
system {f/(z)} is orthogonal; thus, {f (z)} is the system of eigenfunctions

with the corresponding eigenvalues

A, =nln+1)[(R¥ - 20)/(R?MY2 - ,20%2)] (n #-1,0),
Ay =(R*-r*)/2R%r? log (R/r).

4. The integral equation. In this section we shall demonstrate that our
eigenvalue problem is equivalent to the solution of the homogeneous integral

equation
(4.1) f(w) =X, [jl; o(z) K(z, w, a) f (z) dxdy,

where the kernel K(z, w, a) is intimately related to the classical domain func-

tions and has been the subject of previous investigations [ 2; 6].

We assume henceforth that D is a finite domain whose boundary C consists
of n closed analytic curves Cy (k=1, «++, n). In the formulas to follow we set

o = 1 as no generalization accrues otherwise.

The equivalence of the solutions of our eigenvalue problem to those of (4.,1)
is established by means of the fundamental condition (2.7) and an auxiliary

extremal problem. Consider therefore the minimum of the integral

(4.2) ffD |g”(2)|? dxdy

for those functions of L2?(a, D) for which g(w)=1. It is easily established

that the minimizing function K (z,w, a)/K (w, w, a) is Hermitian; that is,
K(z,w, a) = K(w, z, a),

and (for any function g(z) such that (4.2) is finite) has the reproducing proper-
ty

(4.3) gw)-gla)= f‘/l; K’(z, w, a) g’(z) dxdy,

K(z, w, a) is closely related to the Bergman kernel function K (z, w) with the

characteristic reproducing property [ 1]
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g (w) = ffD K(z, w) g”(z) dxdy.

Indeed, differentiating (4.3) with respect to w, we find

%K (z, w, a)

K(z, w) = ;
dz dw

that is,
w 2z

(4.4) K(z,w,a):/ f K(z, w) dz dio.
a a

It is well known [ 6] that

27K (z, w, a) = P(z, w, a) - Q(z, w, a),

where P (z,w,a) and Q(z,w,a) are, respectively, the logarithms of two uni-
valent functions the first of which maps D on the whole complex plane slit along
concentric circular arcs around the origin, whereas the second maps D on the
full plane furnished with rectilinear slits directed towards the origin. In each
case the point w € D is mapped onto the origin, while the point a of D, where

the residue of the simple pole is 1, corresponds to the point at infinity.

The desired integral equation now follows; for, since K(z,w,a) belongs to
the class L?(a, D), the reproducing property (4.3) in conjunction with (2.7)
yields

it

(4.5) f,(w) -/‘-/l.) K(z, w, a) f/(2) dxdy

A f_é K(z, w, a) f,(z) dxdy.

Thus the solutions of the extremal problem are among those of the integral
equation (4.5). That the converse is true can be seen as follows. First, the
fundamental identity (2.7) can be obtained by forming the scalar product of the

derivative of any function g(z) € L?(a, D) with the derivative

(4.6) fn'(w) = A, f‘/L; K (w, z, a) fn(z) dx dy
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of (4.5). Then in view of (4.3) we obtain

(4.7) '/:/1; ]};:(—u_)—)g'(w)dudv

=\, fj;)[fj; K'(wgz,a)fn(z)dxdy] g (w) dudv
= Ao ffD};—(z_) [ffn mg'(w)dudv] dx dy

= A ffD f(2)g(z)dxdy.

Now, if f (z) and f,,(z) are two solutions of the integral equation (4.1),
and A, and A, are the corresponding eigenvalues, it follows from the Hermitian

character of K(z,w,a) that

(4.8) (An_x_m)ffD f,(z) f,(z) dxdy=0.

Setting g(z) = f,(z) in (4.7), we obtain

ffD |f2(2) |2 dxdy = A, ffD |f ()] % dxdy,

which shows that all eigenvalues are positive. Hence (4.8) yields

4.9 =
(4.9) f'/l') f,(2)f (2)dxdy =0
if A, # A, In view of (4.7) this entails

4.10 ‘() FU2) _ 0.
( ) f/}; fi(z) f7(2) dxdy = 0

But, by Theorem 2, (4.9) and (4.10) characterize, up to multiplicative con-
stants, the solutions of the eigenvalue problem treated in § 2. Summing up, we
have:

THEOREM 3. The eigenvalues and eigenfunctions of the extremal problem
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(1 1£(2)|? dv dy

1, 1f(2)]? dxdy

= A = minimum, fla)=0,

are identical with those of the integral equation

(4.11) f(w):)\[/[; K(z,w,a) f(z) dxdy,

where the Hermitian hernel K(z,w,a) is constructed from the Bergman kernel

function by means of (4.4).

It is worth noting that

fj; ffD |K(z,w,a)|? dxdy dudv < o,

and therefore that K (z,w, a), unlike the Bergman kernel K(z,w), is a regular
kernel in the sense of the Hilbert theory of integral equations. We also point
out that if D is bounded by closed analytic curves, the eigenfunctions f, (z) are
regular in the closure of D. In this case K(z,w,a) is, as a function of w,
regular in a domain D’ which contains D and whose boundary has no points in
common with that of D, The right side of (4.119 represents the function f(w)
for w € D and another analytic function-say f, (w)-forw € D’~D. If w crosses
the boundary C of D and z € D, K(z,w,a) remains regular; if z is a point of
C, the singular behavior of K(z,w,a) on crossing C is essentially that of
log (w’—~7z), where w” ¢ D if w € D, and w’ and w become symmetric points
if a suitable section of C is conformally mapped onto a linear segment [ cf. 6].
From these properties of K(z,w,a) it is easily inferred that the right side of
(4.11) is a continuous function of w if w crosses C and if w varies along C.
Hence f(w) and f,(w) are analytic continuations of the same analytic function,

and f(w) is thus regular on C.

5. Examples. The Bergman kernel function for the annulus 0 < r < |z| <1
is
1 27 m(zw)™!

K(z,w) = — Z -,
w

m=—oo 1-—r2m

the prime indicating that m # O in the summation. The integral equation charac-

terizing the solutions of our problem is then
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(5.1)  f(w)=— ff ~czl)(w )a ) o dudy
m = ~o0 m

With the substitutions

wy=1im, wy=logr, and g =expliw,/w;)=r,

the kernel in (5.1) can be expressed in closed form with the help of the Weier-
strass {-function; namely,

K(z,w,a)=—[{(logaw) - {(log zw) + {(log za) — {(log aa)]
w
For the circle | z| < r the Bergman kernel is

2
K(z,w)= i

b4
7(r? - zw)?

consequently, by (4.4) we obtain

K(zw,a)= > 5 [(z/r)" = (a/r)" 1 (w/r)* = (a/r) ]7
n n=1 n
or, in closed form,
2L,V (P2 — e
K(z,w,a)=i log ( za)(r’~aw)
g

(r2~wz)(r*-aQa) :

If the origin of the circle is taken as the reference point, it is easily verified
that the characteristic functions and constants of the equation

(5.2) flw) =

ff m)f (z)dxdy

are, respectively,

f,(z) = z"[(n+1)/a]"/? (n=1,2,..+)

and
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Ap=n(n+1).

From the known transformation law for the Bergman kernel [1] it is easily
ascertained that K (z,w,a) is a conformal invariant; consequently, the integral
equation for the characteristic functions and constants of any simply connected

domain can be derived from (5.2).

6. Variation of the domain functions. l.et D*, a domain with the same de-
gree of connectivity as [J, be obtained from D by shifting each boundary point
z(s) along the exterior normal Ly an amount &n = nv(s), where v(s) is a

continuous function on C and 7 is sufficiently small.

The corresponding first-order variation of the Bergman kernel function was

found by Schiffer [10] to be

(6.1) 5K(z,w)=—‘/C'K(t,z)K(L,w)Bnds.

Combining (6.1) with (4.4) we obtain the formula
(6.2) 5K(z,w,a)=—f K’ (t,w,a) K’(t,z,a) dnds,
C

expressing the variation of the kernel of (4.11).

Using this variational formula we may obtain corresponding variation formulas
for the eigenfunctions and eigenvalues of (4.11). Since we are not going to
employ these formulas in the sequel, we shall content ourselves with a formal
derivation of the variation formula for the eigenvalues, omitting the rather

lengthy discussion required to make the proof entirely rigorous.

We first note that, since f (z) is regular on C, it follows from (6.2) that

(6.3) ./../; ‘/D 5K(z,w,a)fq(w)fm(z)dxdy du dv

= -/;[‘['[D K'(t,w,a)fq(W)dudv][f/; K’(t,z,a)fm(z)dxdylﬁna’s

~1 P
Y /qu(t)fm(t)ﬁnds.

We next assume that D* D D. If the quantities belonging to D* are denoted

by asterisks, we have then, in view of (4.11),
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(6.4) f,’f(w)—fn(w)=f'/l;[kzK*(Z,w,a)fn*(z)—)\nK(z,w,a)fn(z)]dxdy

+ Ap ff K*(z,w,a) f¥(z) dxdy.

D*=-D

Assuming, without proof, that f:(z)* and A; differ from f (2) and A, respec-
tively, only by quantities of order 7, we find the last integral to be of the form

An ./C. K(t,w,a) f,(t) dnds + o(q),

whence (6.4) leads to

8f,(w) =2Ay ‘UI; 0K (z,w,a) f,(z) dxdy + Ay /./I;K(z,w,a)an(z)dxdy

+ O\, ff K(z,zu,a)fn(z)dxdy+)\n /K(t,w,a)fn(t)Snds,
D C

where terms of order o(7n) have been neglected. We now multiply this identity
by f,(w) and integrate over . Simplifying the result by means of (4.10) and
(6.3), we obtain

Il

-1 —_—
fn(w)8fn(w)dudv=—): L[fr:(t)|25nds+fj;fn(z)an(z)clxdy

)
+

(An)
™ f_]l; Ifn(w)|2dua'v + -/;]fn(t)lz onds.

Hence, if f (z) is normalized by the condition

ffD 1£,(2)|? dxdy,

we arrive at the following result:

THEOREM 4. If the domain D is made subject to a first-order normal varia-

tion &n, the corresponding variation of the eigenvalues Ay, is given by

(6.5) 5(Am) = '/;[Ifr;(t)Iz—)\mlfm(t)|2]8nds,



MINIMUM PROBLEMS IN FUNCTION THEORY 287

where f, (z) is the eigenfunction associated with Ap.

The extension of this result from the case D* D D to the general case is
easily carried out by means of the artifice employed by Hadamard for a similar

purpose in the derivation of his variation formula for the Green’s function [§].

Formula (6.5) shows that no general monotonicity property of the eigen-

values can be expected. For with the notation
A0 = [F001 = A 11,012,

we have

ff A(z)dxdy =0,
D

which shows that A(¢) takes both positive and negative values in D. If we
write (6.5) in the form

5(Ap) = fCA(t)ands,

it is thus clear that the assumption dn > O (or 6n < 0) for t € C cannot guar-

antee a definite sign for the corresponding variation of Ap,.

7. The resolvent kernel. Consider now the inhomogeneous equation
(7.1) f(w):h(w)+)\ff K(z,w,a) f(z) dxdy
D

and its associated resolvent kernel

> b4 w
(7.2) K(zyw;\) = 2 #n)\(—)
n=1 n
We shall show first that K(z,w;\) can be characterized by means of a
minimum problem and constructed directly from a complete system of complex
orthogonal functions. Thus, consider the following extremal problem: in the
class L?%(a,D) determine the function g(z), regular in D with g(w)=1 at a

fixed point w of D, which minimizes the integral

(7.3) I{(g) = f'[)[)g’(z)\z—)\\g(Z)\z]dxdy,
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A being less than the smallest eigenvalue of the extremal problem (1.1). For

this class of functions we have

I 1g"(2)1* dxdy
> AL > A

1 () 2dndy

hence,
g.l.b. f)\(g) =A4>0.

Finally, this class of functions is compact, and therefore a function g(z) exists

such that /,(g) = 4.

Now orthonormalize a closed system of functions {p (z)} so that the con-

ditions
/:/; [P,:(Z) P (z2)~Ap,(z) pm(z)] dxdy =5,

are satisfied. The associated kernel
K=2 p,(z)p, (w)
n=1

converges uniformly and abhsolutely in every closed subdomain of {) and pro-
vides the minimum of (7.3) when normalized. Moreover, it is easily verified

that K reproduces according to the formula

(7.4) h(w)=ﬂ;[?’h'(z)—/\'kh(z)]dxdy.

The uniqueness of a kernel K with the reproducing property (7.4) follows from
the definiteness of the expression (7.3) by a standard argument. Also it is
easy to see that K is identical with the resolvent kernel K(z,w;}) and that,

consequently, the solution of the inhomogeneous equation (7.1) is
flw)= /f K (z,w; M) h7(z) dxdy.
D

Indeed, the functions
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])n(Z)=[)\n"')\]-l/2fn(Z) (n=1, 2"")’

where [n(z) and A, are the nth eigenfunction and eigenvalue of our original

extremal problem, are normalized in the sense of the above metric; that is,
ff [P,:(Z) P,:Z(Z ) - )\pn(Z) pm(z )1 dx dy
D

=L =My =0)]2 ﬂ; (f7f7 =Nf f )dxdy =3, .

Therefore, the kernel is

o - o0 fn(z)fn(w)
K=K(z,w; 1) = Z pn(z)pn(w)= Z_A_t;\—-’

n=1 n=1

which is identical with (7.2).

In view of their reproducing properties, as well as in other aspects, it ap-
pears that the resolvent kernel is closely allied to the eigenfunctions of (1.1).

More precisely, we have:

THEOREM 5. Let {f (2)} and A, be the system of eigenfunctions and

eigenvalues associated with the class L*(D); that is,

/_‘/L;fn(z)dxdy=0.

If F,(z) and p,, respectively, represent the nth eigenfunction and eigenvalue
associated with a point w € D and such that ffD F,(z)dxdy # 0, then

Fn(z)//é Fo(z)dxdy = c —p, K(z,w;p, ),

where

ct = ff dx dy,
D

K(z,w; p, ) is the resolvent kernel
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ot (z) f (w)
K(z,w;,un)= Z ﬁi_f_fp__w_
p=1 /\P—un

’

and p is determined as the nth root (in order of magnitude) of
(7.5) p, K(w,wsp, )= c.

Proof. Let g(z) be any regular function and set
h(z)=g(z)-Mc,

where

M = ‘Ul.) g(z)dxdy.

Accordingly, k(z) is a function of the class L?(D) reproduced by the resolvent
kernel K(z,w;p), &t # A,; namely,

h(w)= ffD [K*h*(z) - pKh(z)]dxdy.

Now with

(7.6) Hp(z)=c - p, K(z,w;p,)

we obtain the identity

(7.7) f";[m)g(z)—’u;llW)g'(z)]dxa’y
=fj;){[c—,unk-][h(z)qtMc]—y;ll[—uni\n]h'(z)idxdy
= Mc? f/l; dxdy —p Mc fj;RdxdyH '/:/I;h(z)dxdy

+ [/;[K_'h'(z)—unih(z)] dx dy

=Mc + h(w)=g(w).
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Setting, in particular, g(z) = F;, (z), we obtain

(7.8) /_/I;(EFm-—;,L;ZlF{Fé)dxdy:Fm(w)=0.
On the other hand, it follows from (2.6), (7.5), and (7.6) that

(7.9) /:/; ([—f_nFm—~y;n1—H?F,;,)dxdy=Hn(w) ff Fp dxdy = 0.
D

Combining this with (7.8), we obtain

1 1 —
(7.10) (- - -—) ff Bl Ff dvdy =0;
By Myl 70D

that is, either “, coincides with one of the eigenvalues fiys ftys=®e 50T else

ffﬁ;’F,,; dxdy = 0 (m=1,2,--.).
D

In view of (7.8), the latter alternative would mean

/jl;ﬁn_Fm dxdy = 0 (m=1,2,+);

but this is impossible since the functions F;(z), Fy{z), ... form a complete
orthonormal set in L?(w,D), and H,(z) # 0. This proves that all solutions

of (7.5) coincide with eigenvalues p_.

To prove that, conversely, all eigenvalues are solutions of (7.5), we re-
mark that the reproducing property (7.7) remains valid even though p is not a

solution of (7.5). If we write
H(z)=c~pK(z,w;p),

we have H(w) # 0, and the right side of (7.9) will not vanish since we have

assumed

‘/.‘/1‘) Fn(z)dxdy # 0.

Formula (7.10) will therefore be replaced by
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(i———)f H Fjdxdy £ 0,

By,

which shows that p cannot coincide with any value . We have thus proved
that, except for the case in which

f F,, dxdy =
D

the set of eigenvalues coincides with the set of solutions of (7.5).

That the functions H,(z) are, except for constant factors, identical with
the eigenfunctions F, (z) follows now from the completeness of the eigenfunc-
tions and the observation that, by (7.8) and (7.10), H, (z) is orthogonal to
all F,(z), n # m.

The spectrum of eigenvalues consists of the roots of the transcendental

equation

lf(w)l2

Glpy=c-p D —— A—

p=1

For 0 < p < Ay, the function G(p) varies from ¢ to —w; similarly in any in-
terval A,.; < p < Ap, G () varies monotonically from + o to ~. Thus, if the

problem does not entail multiple eigenvalues, we have proved:

THEOREM 6. Let {A,} be the set of eigenvalues of (1.1) for the class
L%(D), while {A,(w)} are those associated with the class L*(w, D). Then

setting Ao =0, we have
At < Ap(w) < g
for all w € D and for every n, n > 1.

8. A boundary relation. The Bergman kernel function and several of its
analogues give rise to certain boundary relations existing between pairs of
analytic functions [ 7). Likewise somewhat similar developments are possible

in the case of the kernels which appeared in the preceding sections.

Our point of departure in the derivation of these boundary relations is the
reproducing properties (2.6) and (7.4). However, since the procedure involves
integration, and since, in the case of multiply connected domains, the eigen-

functions of (1.1) do not in general lie in the class of derivatives of single-
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valued functions, we reformulate our extremal problem for functions of this
class, taking 0 = 1. Thus let f7(z) and A, denote the nth eigenfunction and the

min max, respectively, of the quotient

I1, 1772 |2 du dy

(8.1)
1117212 dedy

with the conditions

fj;f’(z)vj'(z)dxdy=0 (]':1,2,-..,,1_1)’

and either
f(a) =0, acD,

or

f_/l; f(z)dxdy =0,

If D is simply connected, (8.1) is, of course, identical with (1.1). Using the

= '/'/l; fr(z) dxdy,

we see that the immediate analogue of (2.6) is

abbreviation

(8.2) Ay h7(a) = fD (7R = N[ h**) dxdy.

Now it was shown above that f(z) is regular in the closure of D. Hence, if
we restrict our attention to functions A(z) such that A?(z) is continuous in

D + C, we may apply Green’s formula to (8.2). This yields
— 1
Ap h’(a) = 5 /(f B’ = AR f k) dz
i

=2-—1'- heLf, + A0z :f"]dz, z’=dz/|dz]|.
i
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It follows that

(8.4) fh'(z)B(s)dz:O,
C
where
——— o An
(8.5) B(s)=7r[fn+)\;llz'2fn"]— )
z—a
and s is the length parameter on C.
Integrating (8.4) by parts, we obtain
dB
/h(z) — ds =0,
C ds
or
(8.6) fh(z)[7aB/as]dz=o.
C

This identity holds for any single-valued and regular function A (z) in D for
which the integral exists; it is evident that the restriction that 2°°(z) be con-
tinuous in D+ C can now easily be removed by means of an approximation

argument.

It follows [ 7] from (8.6) that z’0B/ds coincides with the boundary values

of an analytic function G (z) which is regular and single-valued in D; that is,
2’dB/ds = G(z), z € C.

Hence, if z, and z, are two points on the same boundary components Cj of C,

and s, s, are the corresponding values of s, then
22
B(Sz)—B(sl)=f G(z)dz.
1

Since B is single-valued on Cj, we have

/ G(z)dz =0
Cr

for every Cj, which shows that G(z) is the derivative of a single-valued
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function, say g(z). Thus
B(s,)=B(sy)=glzy)—glzy), zy, 23 € G,

or, what amounts to the same thing,

B(s)=g(z2)+c,, z € Cp,

where ¢, is a constant. Using the definition (8.5) of B(s), we arrive at the

following result.

THEOREM 7. Let the boundary C of D consist of m analytic components
Cp. For f/{z) and An, the nth eigenfunction and eigenvalue, respectively, of

(8.1), the boundary relation

(8.3) 77[fn(z:)+)\;l1 z7? frr(z)] = Az —a)+ g(z) + cp

holds, where cp, is constant on Cp,, g(z) is regular in D, and

A, = f'lf) fi(z)dxdy.

Differentiating the boundary relation (8.3) with respect to s, we obtain

(8.4) (7 (2 + 05t 22 777 (2) + A5t 272 f27(2) 1 dz

7,
:[—— + glz)|dz.

m(z—a)?

This identity can be used, in some cases, for the effective computation of the
functions f, (z). It is well known that the Bergman kernel function K(z,a) of
D can be uniquely characterized by the existence of a boundary relation of the

form

. -1
K(z,a)dz = | ——— + p’(2)] dz,

7(z—-a)?

where p(z) is regular and single-valued in D [1]. Comparing this with (8.4),
we find that in those cases in which both z°% and z** coincide with the bound-

ary values of regular and single-valued analytic functions, the function
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wn(z) = [*(2)/4,

will be a solution of the differential equation

(8.5) z'zw,:'(z) +227w! (2) + Ay wy(2) =2, K(z,0a),

if z’2 and z** are replaced by the analytic functions in question.

If D is the unit circle, we have

2’2 =—z? and z” =-z z€C.

The Bergman kernel is in this case of the form
K(z,a) = n(1l —az)2.
Hence (8.5) yields the differential equation

2 An _)\n
(8.6) wy' + —wp - — wy = —_—
z z?2 7z%(1 ~az)?

The solution of the corresponding homogeneous equation is ¢; z% + ¢, z*, where

1 1 1 1
(8.7) Uh=— =+~ + Ay, B=s ===+ M.
2 4 2 4

If «, B are not integers, a solution of (8.6) is

(p+1)(za)P

.8 A(z) = .
(8.8) wnlz) plp+1)=2,l

- i
g [
If o, B are integers-that is, in view of (8.7), if Ay = n(n + 1), where n is an

integer - this solution will contain a logarithmic term unless a = 0. Since w,(z)

must be regular in | z| < 1, we must have for a # 0,
A #nln+1).

In this case both z* and z” are not regular at z = 0, and the eigenfunctions are
therefore given by (8.8), while the eigenvalues are determined by the condition
wp(a) = 0; that is,
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(p+1)|al? _ 0

p=o Lp(p+1)-Az]
If =0, the general solution of (8.6) is ¢; 2% + ¢ 2 + 7°, and we shall thus
have a regular solution only if A, =n(n+1) and ¢y = 0(ct > B). Thus, the

eigenvalues are in this case the numbers n(n + 1) in agreement with the re-

sults of < 3.

Similarly, if K(z,a) is the Bergman kernel function of any domain D bounded
by slits which are parts of the same circle about the origin, the differential

equation, like (8.6), is

A -
w”(z)+ —w(z) - — w(z) =— K(z,a).
z z? z

On the annulus r < ]z| < R the solution for an arbitrary point a of U is
most easily obtained by a direct application of Theorem 5. The eigenvalues and

eigenfunctions, respectively, associated with the space L*(1)) are

(n+1) 1/2

[i(z)=2" (n£0,1),

77([\;2n+2 _ r2n+2)

1
 z[2n log (R/r)11/2

f,(2)

and

N n(n+ 1)(R?™ - r2M)
n= R2n+2 _ r2n+2 ’

R?-r2

Ay = .
2R%r? log (R/r)

Hence the resolvent kernel is

K(zyw;p)=R?r?/mzw[R? = r? 2uR*r? log (R/r)]

(p #-1,0).

+l i (p+1)(zw)P
T

p==oo R¥*P(p?+p=puR?) =r*P(p?+p—pr?)
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Thus, for the nth eigenfunction F,,(z) we have

Fn(z)//:/l; Fp(z)dedy =c —p, K(z,wsp )
=—#nR2r2/an)[R2—r2 - 2an2r2 log (R/r)]

- (p+ 1) (zi0)?
-— 2 e e (p #£-1),

T p=oo RP(p*+p—p R*)=r?P(p*sp—p r?)

with the condition F,(a) = 0 determining the eigenvalues.

Another case to which (8.5) can be applied is that of a domain bounded by
parallel rectilinear slits. Taking, for simplicity, these slits to be horizontal,

we have
z’2=1 and z” =0,
both analytic functions of z regular in D. Hence (8.5) takes the form
w”(z) + Aw(z) =AK(z,a).

For the half plane d{z} > 0, the Bergman kernel is —=1/7(z — @)?; consequently,

the eigenfunctions are of the form

w(z)=n'vVA cos v z/z(z—a)'zsin Az dz
a
RV sin\/Az/z(z—E)'zcos Azdz.
a
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