CONGRUENT IMBEDDING IN F-METRIC SPACES

ABRAHAM WALD
1. Introduction. An F-metric space arises by associating with each pair x, y of elements ("points") of an abstract set S an element xy^2 (the "squared-distance") of a field F. It is required of the association merely that $xy^2 = yx^2$, $xx^2 = 0$, and if $x \neq y$ then $xz^2 \neq yz^2$ for at least one point z of S. In this note we establish some fundamental distance-geometric properties of the two F-metric spaces $F_n, F_n(a_1, \cdots, a_n)$ obtained by attaching to each two elements

$$x = (x_1, x_2, \cdots, x_n), \quad y = (y_1, y_2, \cdots, y_n)$$

of the set of ordered n-tuples of F the elements

$$xy^2 = \sum_{i=1}^{n} (x_i - y_i)^2 \quad \text{and} \quad xy^2 = \sum_{i=1}^{n} a_i (x_i - y_i)^2$$

Received April 24, 1953. This paper was left by the late Professor Abraham Wald as a manuscript (in German). It was translated and edited by Professor Leonard M. Blumenthal of the University of Missouri, whose friendship with Professor Wald began at Vienna during the period when the latter was making distinguished contributions to Distance Geometry.

Translator’s note. This article was written while Professor Wald was at the University of Vienna, probably in 1934. He had previously proved similar metric characterization theorems for the space of all n-tuples of complex numbers with

$$xy^2 = \sum_{i=1}^{n} (x_i - y_i)^2$$

(Ergebnisse eines mathematischen Kolloquiums (Wien), Heft 5 (1933), pp. 32-42). It seems that the present paper was intended to follow one in that journal by Olga Taussky (Mrs. John Todd) in which the same problems were solved in the more abstract setting obtained upon replacing the complex number field by any field of characteristic zero in which every element is a square. (See footnote 1.) It was announced in Heft 6 of the Ergebnisse that Wald’s paper (which complements Mrs. Todd’s by treating the problems in formally real fields) would appear in Heft 7, but for some reason this intention was not carried out. Nor is it contained in Heft 8, the last number of the Vienna Ergebnisse that was published.

The remaining footnotes in this paper are comments by the translator.

Pacific J. Math. 4 (1954), 305-315
as squared-distances respectively, where, in the second instance, the coefficients \(a_1, a_2, \ldots, a_n \) belong to \(F \). (Translators note: In the manuscript "distance" rather than "squared-distance" is used; for example, \(\sum_{i=1}^{n} (x_i - y_i)^2 \) is spoken of as the distance of the points \(x = (x_1, x_2, \ldots, x_n), \ y = (y_1, y_2, \ldots, y_n) \). In order that the developments of the paper should more exactly generalize the euclidean case (in which \(F \) is the real field) it seemed desirable to call \(\sum_{i=1}^{n} (x_i - y_i)^2 \) the squared-distance of \(x, y \) and to make the necessary minor changes in the manuscript. There is, of course, no implication that "distance" is meaningful. The reader is asked to interpret all such terms as "congruent", "congruence order", "metric basis", etc. in the sense of squared-distance. For definitions of these and other Distance Geometry concepts used in this paper see L. M. Blumenthal, Theory and Applications of Distance Geometry, The Clarendon Press, Oxford 1953.) It is assumed throughout that \(F \) has characteristic 0, while in \(\mathcal{S} \) 3 it is further supposed that (1) each sum of squares of elements of \(F \) is a square of an element of \(F \) and (2) \(F \) does not contain \(\sqrt{-1} \).

2. Congruence order of \(F_n \). It is shown in this section that \(F_n \) has congruence order \(n + 3 \) with respect to the class of \(F \)-metric spaces; that is, any \(F \)-metric space can be mapped into \(F_n \) with preservation of squared-distances whenever that is true for each \((n + 3) \)-tuple of the space. We prove first some lemmas.

Lemma 2.1. Each \((k + 1)\)-tuple \(p_0, p_1, \ldots, p_k \) of \(F_n \) \((k = 1, 2, \ldots, n)\) for which the Cayley-Menger determinant

\[
D(p_0, p_1, \ldots, p_k) = \begin{vmatrix}
0 & 1 & 1 & \cdots & 1 \\
1 & 0 & p_0 p_1^2 & \cdots & p_0 p_k^2 \\
1 & p_1 p_0^2 & 0 & \cdots & p_1 p_k^2 \\
& \ddots & \ddots & \ddots & \ddots \\
& & 1 & \ddots & \ddots \\
& & & & 1 & p_k p_0^2 & p_k p_1^2 & \cdots & 0
\end{vmatrix}
\]

is not zero forms a metric basis for the \(k \)-dimensional subspace they determine.

Proof. Putting \(p_0 = (0, 0, \ldots, 0) \), we note that each point \(p \) of the subspace can be written

\[
p = \lambda_1 p_1 + \lambda_2 p_2 + \cdots + \lambda_k p_k.
\]

Then a necessary condition that such a point \(p \) have assigned squared-distances
from \(p_0, p_1, \ldots, p_k \) is that \(\lambda_1, \lambda_2, \ldots, \lambda_k \) satisfy the system of linear equations

\[
(p, p_i) = \frac{1}{2} (p_0 p^2 + p_0 p_i^2 - p p_i^2)
= \lambda_1 (p_1, p_i) + \lambda_2 (p_2, p_i) + \cdots + \lambda_k (p_k, p_i)
\]

\((i = 1, 2, \ldots, k)\), where \((\cdot, \cdot)\) denotes a scalar product. The coefficient determinant \(|(p_i, p_j)|\) \((i, j = 1, 2, \ldots, k)\) is the Gram determinant \(G(v_1, v_2, \ldots, v_k)\) of the vectors \(v_i = [p_0, p_i]\) \((i = 1, 2, \ldots, k)\), and from the relation

\[
G(v_1, v_2, \ldots, v_k) = [(-1)^{k+1}/2^k] \cdot D(p_0, p_1, \ldots, p_k)
\]

it does not vanish. Hence \(\lambda_1, \lambda_2, \ldots, \lambda_k \) are uniquely determined.

Lemma 2.2. Let \(k \) be any one of the first \(n \) integers, and let \(p_0, p_1, \ldots, p_k \) be a \((k + 1)\)-tuple of \(F_n \) with \(D(p_0, p_1, \ldots, p_k) \neq 0 \). If \(p_0', p_1', \ldots, p_k' \) is a \((k + 1)\)-tuple of \(F_n \) with \(p_i p_j' = p_i' p_j'^2 \) \((i, j = 0, 1, \ldots, k)\) (symbolized by writing \(p_0, p_1, \ldots, p_k = s p_0', p_1', \ldots, p_k' \)), then a nonsingular linear transformation that maps \(p_i \) on \(p_i' \) \((i = 0, 1, \ldots, k)\) also maps the \(k \)-dimensional subspace \(S_k \) determined by \(p_0, p_1, \ldots, p_k \) congruently (that is, with preservation of squared-distances) onto the \(k \)-dimensional subspace \(S_k' \) determined by \(p_0', p_1', \ldots, p_k' \).

Proof. Putting \(p_0 = p_0' = (0, 0, \ldots, 0) \), we note that any such transformation clearly maps \(S_k \) onto \(S_k' \) and associates with each point

\[
p = \lambda_1 p_1 + \lambda_2 p_2 + \cdots + \lambda_k p_k
\]
of \(S_k \) the point

\[
p' = \lambda_1 p_1' + \lambda_2 p_2' + \cdots + \lambda_k p_k'
\]
of \(S_k' \). If

\[
q = \mu_1 p_1 + \mu_2 p_2 + \cdots + \mu_k p_k
\]
and

\[
q' = \mu_1 p_1' + \mu_2 p_2' + \cdots + \mu_k p_k'
\]
are corresponding points of S_k and S'_k, respectively, then it is seen that

$$pq^2 = \sum_{i=1}^{k} \sum_{j=1}^{k} (\lambda_i - \mu_i) (\lambda_j - \mu_j) (p_i, p_j)$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{k} (\lambda_i - \mu_i) (\lambda_j - \mu_j) (p'_i, p'_j) = p'q'^2,$$

since

$$(p_i, p_j) = (1/2) (p_0 p_i^2 + p_0 p_j^2 - p_i p_j^2)$$

$$= (1/2) (p'_0 p'_i^2 + p'_0 p'_j^2 - p'_i p'_j^2) = (p'_i, p'_j) \quad (i, j = 1, 2, \cdots, k).$$

Lemma 2.3. Let $p_0, p_1, \cdots, p_k, p, q$ be $k + 3$ points of $F_n (0 < k \leq n)$ for which $D(p_0, p_1, \cdots, p_k, p, q)$ vanishes, along with each of its bordered principal minors of order $k + 3$. If $D(p_0, p_1, \cdots, p_k) \neq 0$ then the k-dimensional subspace $S_k(p_0, p_1, \cdots, p_k)$ determined by p_0, p_1, \cdots, p_k contains points \bar{p}, \bar{q} such that

$$p_0, p_1, \cdots, p_k, p, q = s \; p_0, p_1, \cdots, p_k, \bar{p}, \bar{q}.$$

Proof. Put $p_0 = (0, 0, \cdots, 0)$ and denote by F^* the closed algebraic extension of F. Now every element of F^* is a square, and according to a theorem of O. Taussky F^*_n contains a $(k + 3)$-tuple $p_0, p'_1, \cdots, p'_k, p^*, q^*$ with

$$p_0, p_1, \cdots, p_k, p, q = s \; p_0, p'_1, \cdots, p'_k, p^*, q^*,$$

and

$$p^*, q^* \in S^*_k(p_0, p'_1, p'_2, \cdots, p'_k).$$

Let T denote a linear transformation of F^*_n with $p_i = T(p_i^*) (i = 1, 2, \cdots, k)$, $p_0 = T(p_0)$, and let $\bar{p} = T(p^*), \bar{q} = T(q^*)$. By Lemma 2.2,

$$p_0, p'_1, \cdots, p'_k, p^*, q^* = s \; p_0, p_1, \cdots, p_k, \bar{p}, \bar{q},$$

1. O. Taussky (Mrs. John Todd), *Abstracte Körper und Metrik. Erste Mitteilung: Endliche Mengen und Körperpotenzen*, Ergebnisse eines mathematischen Kolloquiums (Wien) Heft 6 (1935), pp. 20-23. The reference is to Theorem II (p. 23) in which it is assumed that every element of the base field is a square.
Since \(T \) carries \(S_k^*(p_0, p_1, \ldots, p_k) \) into \(S_k^*(p_0, p_1, \ldots, p_k) \), the \(k \)-dimensional subspace of \(F_k^* \) determined by \(p_0, p_1, \ldots, p_k \), then

\[
\bar{p}, \bar{q} \in S_k^*(p_0, p_1, \ldots, p_k),
\]

and so

\[
\bar{p} = \lambda_1 p_1 + \lambda_2 p_2 + \cdots + \lambda_k p_k, \quad \bar{q} = \mu_1 p_1 + \mu_2 p_2 + \cdots + \mu_k p_k,
\]

where \(\lambda_i, \mu_i \in F^* \) (\(i = 1, 2, \ldots, k \)). To complete the proof, we show that \(\lambda_i, \mu_i \) are also elements of \(F \) (\(i = 1, 2, \ldots, k \)).

Now

\[
(\bar{p}, p_i) = \lambda_1 (p_1, p_i) + \lambda_2 (p_2, p_i) + \cdots + \lambda_k (p_k, p_i) \quad (i = 1, 2, \ldots, k),
\]

\[
(\bar{q}, p_i) = \mu_1 (p_1, p_i) + \mu_2 (p_2, p_i) + \cdots + \mu_k (p_k, p_i) \quad (i = 1, 2, \ldots, k),
\]

and since

\[
p_0, p_1, \ldots, p_k, p, q \in F_n
\]

it follows from (*) that all of the coefficients in these two systems of equations (as well as the left members) belong to \(F \). The relation between the determinant \(G(v_1, v_2, \ldots, v_k) \) and \(D(p_0, p_1, \ldots, p_k) \) exhibited in Lemma 2.1, together with the nonvanishing (by hypothesis) of the latter determinant, imply that \(\lambda_1, \lambda_2, \ldots, \lambda_k \) and \(\mu_1, \mu_2, \ldots, \mu_k \) are uniquely determined and belong to \(F \).

Theorem 2.1. The space \(F_n \) has congruence order \(n + 3 \) with respect to the class of \(F \)-metric spaces, where \(F \) is any field of characteristic zero.

Proof. Let \(S \) be any \(F \)-metric space with the property that each \((n + 3) \)-tuple of \(S \) may be mapped in a squared-distance preserving manner into \(F_n \). We show that \(S \) itself may be so mapped into \(F_n \).

Since the Cayley-Menger determinants of all \((n + 2) \)-tuples and \((n + 3) \)-tuples of \(F_n \) vanish, the same is true of such subsets of \(S \).\(^2\) Let \(k (k \leq n) \)

\(^2\) The vanishing of the Cayley-Menger determinant \(D \) of each \(m \)-tuple of \(F_n \) for \(m > n + 1 \) may be proved in the same way in which this result is established for euclidean \(n \)-space. See, for example, Theorem 40.1 (page 99) of the book referred to in \(\S \).
denote the largest natural number for which \(k + 1 \) points of \(S \) exist with non-vanishing determinant \(D \), and let \(p_0, p_1, \ldots, p_k \) be such a \((k + 1)\)-tuple. The \(F_n \) contains, by hypothesis, \(k + 1 \) points \(p_0^*, p_1^*, \ldots, p_k^* \) with

\[
p_0, p_1, \ldots, p_k = s p_0^*, p_1^*, \ldots, p_k^*.
\]

If \(p, q \in S (p \neq q) \), elements \(p_0'', p_1'', \ldots, p_k'' \) of \(F_n \) exist such that

\[
p_0, p_1, \ldots, p_k, p, q = s p_0'', p_1'', \ldots, p_k'', p'', q''
\]

and by Lemma 2.3 we may suppose that \(p'', q'' \) belong to \(S_k (p_0'', p_1'', \ldots, p_k'') \).

A linear transformation that carries \(p_0'', p_1'', \ldots, p_k'' \) into \(p_0^*, p_1^*, \ldots, p_k^* \), respectively, carries \(S_k (p_0'', p_1'', \ldots, p_k'') \) into \(S_k (p_0^*, p_1^*, \ldots, p_k^*) \) and consequently sends the points \(p'', q'' \) into points, say \(p', q' \), of the latter \(k \)-dimensional hyperplane. According to Lemma 2.2, this linear transformation preserves squared-distances, and so

\[
p_0, p_1, \ldots, p_k, p, q = s p_0^*, p_1^*, \ldots, p_k^*, p^*, q^\prime.
\]

Use of Lemma 2.1 shows that the point \(p' \) corresponding to \(p \) by the procedure described is unique, and so \(S \) is mapped in a squared-distance preserving manner into a \(k \)-dimensional subspace of \(F_n \).

Theorem 2.2. Let \(F_n (a_1, a_2, \ldots, a_n) \) denote the space obtained by associating with each two \(n \)-tuples

\[
x = (x_1, x_2, \ldots, x_n), \quad y = (y_1, y_2, \ldots, y_n)
\]

of a field \(F \), with characteristic zero, the element

\[
xy^2 = \sum_{i=1}^{n} a_i(x_i - y_i)^2
\]

as squared-distance, where \(a_1, a_2, \ldots, a_n \) are \(n \) selected elements of \(F \). The space \(F_n (a_1, a_2, \ldots, a_n) \) has congruence order \(n + 3 \) with respect to the class of all \(F \)-metric spaces.

Proof. The closed algebraic extension \(F^* \) of \(F \) contains elements \(\sqrt{a_i} \) \((i = 1, 2, \ldots, n) \). If to each point \((x_1, x_2, \ldots, x_n) \) of \(F_n (a_1, a_2, \ldots, a_n) \)
there is associated the point
\[(\sqrt{a_1} \cdot x_1, \sqrt{a_2} \cdot x_2, \ldots, \sqrt{a_n} \cdot x_n)\]
of F_n^* it is seen that $F_n(a_1, a_2, \ldots, a_n)$ is congruently contained in F_n^* which has, by Theorem 2.1, congruence order $n + 3$ with respect to F^*-metric spaces and hence also with respect to F-metric spaces. Thus, if S is any F-metric space with each $(n + 3)$-tuple imbeddable congruently in $F_n(a_1, a_2, \ldots, a_n)$ then S is congruent with a subset of F_n^*.

Let k be the greatest natural number such that a $(k + 1)$-tuple p_0, p_1, \ldots, p_k of S exists with
\[D(p_0, p_1, \ldots, p_k) \neq 0.\]
Then $k \leq n$, and p_0, p_1, \ldots, p_k are congruent with a $(k + 1)$-tuple of $F_n(a_1, a_2, \ldots, a_n)$ which, in turn, is congruent with a $(k + 1)$-tuple $(p'_0, p'_1, \ldots, p'_k)$ of F_n^*. We have, putting $p'_0 = (0, 0, \ldots, 0)$,
\[p'_j = (\sqrt{a_1} \cdot x_{j1}, \sqrt{a_2} \cdot x_{j2}, \ldots, \sqrt{a_n} \cdot x_{jn}) \quad (j = 1, 2, \ldots, k),\]
where $x_{jm} \in F$ ($j = 1, 2, \ldots, k; m = 1, 2, \ldots, n$). We see that S is congruent with a subset S' of the k-dimensional hyperplane of F_n^* determined by p'_0, p'_1, \ldots, p'_k.

If $p' \in S'$ then $p' = \lambda_1 p'_1 + \lambda_2 p'_2 + \cdots + \lambda_k p'_k$ and $\lambda_1, \lambda_2, \ldots, \lambda_k$ satisfy the system of equations.
\[(p', p'_i) = \lambda_1 (p'_1, p'_i) + \lambda_2 (p'_2, p'_i) + \cdots + \lambda_k (p'_k, p'_i) \quad (i = 1, 2, \ldots, k),\]
with all coefficients in F and with nonvanishing determinant. Hence $\lambda_1, \lambda_2, \ldots, \lambda_k \in F$, and so each point p' of S' has coordinates
\[\sqrt{a_1} \cdot x_1, \sqrt{a_2} \cdot x_2, \ldots, \sqrt{a_n} \cdot x_n\] with $x_1, x_2, \ldots, x_n \in F$.
If, now, we make correspond to each such point p' of S' the point (x_1, x_2, \ldots, x_n) of $F_n(a_1, a_2, \ldots, a_n)$, the correspondence is clearly a congruence, and S' is mapped congruently onto a subset of $F_n(a_1, a_2, \ldots, a_n)$. It follows that S is congruent with a subset of $F_n(a_1, a_2, \ldots, a_n)$, and the theorem is proved.

3. F-metric spaces with F formally real. Let F be a field with characteristic
0 such that every sum of squares of elements of F is the square of an element of F. In case F contains $\sqrt{-1}$, Taussky has shown that every $(n + 1)$-tuple of an F-metric space is congruently imbeddable in F_n, and an $(n + 3)$-tuple $p_0, p_1, \ldots, p_{n+2}$ has this property if and only if $D(p_0, p_1, \ldots, p_{n+2})$ vanishes along with each of its bordered principal minors of order $n + 3$. In this section we suppose that $\sqrt{-1}$ is not an element of F; that is, F is a formally real field.

Let p_0, p_1, \ldots, p_k be an F-metric space of $k + 1$ elements. As in Lemma 2.1, we call the ordered pointpairs $[F_0, p_i]$ vectors v_i, and define the scalar product (v_i, v_j) of vectors v_i, v_j by

$$(v_i, v_j) = (1/2) (p_0 p_i^2 + p_0 p_j^2 - p_i p_j) \quad (i, j = 1, 2, \ldots, k).$$

The Gram determinant $|v_i, v_j| (i, j = 1, 2, \ldots, k)$ is denoted as before, by $G(v_1, v_2, \ldots, v_k)$.

Theorem 3.1. A necessary and sufficient condition that an F-metric $(k + 1)$-tuple p_0, p_1, \ldots, p_k be congruently imbeddable in the F_n is that for $j > n$ every j of the vectors v_1, v_2, \ldots, v_k have a vanishing Gram determinant, while for $j \leq n$, the Gram determinant $G(v_1, v_2, \ldots, v_j)$ of each j of the vectors v_i, v_2, \ldots, v_k be the square of an element of F.

Proof. Let p_0', p_1', \ldots, p_k' be a $(k + 1)$-tuple of F_n.

Then $D(p_0', p_1', p_2', \ldots, p_k')$ vanishes for every j of the $k + 1$ points when $j > n$, and consequently (by the relation in Lemma 2.1) $G(v_1', v_2', \ldots, v_j') = 0$ for every j of the vectors v_1', v_2', \ldots, v_k' when $j > n$. Since, moreover, $G(v_1', v_2', \ldots, v_j')$ is easily shown to be the square of the determinant (the "volume-determinant") formed by annexing a column of 1's to the $j \times (j + 1)$ rectangular array of the j coordinates ($j \leq m$) of the points $p_0', p_1', p_2', \ldots, p_j'$ with respect to a j-dimensional subspace F_j of F_n containing them (we put $p_0' = (0, 0, \ldots, 0)$), the necessity is established.

To prove the sufficiency, let p_0, p_1, \ldots, p_k form an F-metric space satisfying the conditions of the theorem, and suppose v_1, v_2, \ldots, v_j are j of the vectors with nonvanishing Gram determinant. We show that the corresponding $(j + 1)$-tuple p_0, p_1, \ldots, p_j is imbeddable in F_j. Assume this the case for all positive integers less than j—an assumption that is obviously valid for $j = 1$.

There exists a regular arrangement, say $v_{r_1}, v_{r_2}, \ldots, v_{r_j}$, of the vectors $v_{i_1}, v_{i_2}, \ldots, v_{i_j}$ such that in the sequence

\(^3\text{See footnote 1.}\)
\[G(v_{r_1}), G(v_{r_1}, v_{r_2}), \ldots, G(v_{r_1}, v_{r_2}, \ldots, v_{r_j}) \]

no two neighboring elements are zero. We consider two cases.

Case I. \(G(v_{r_1}, v_{r_2}, \ldots, v_{r_{j-1}}) \neq 0 \). According to the inductive hypothesis, \(p_0, p_{r_1}, p_{r_2}, \ldots, p_{r_{j-1}} \) are imbeddable in \(F_{j-1} \). If \(p_0', p_{r_1}', \ldots, p_{r_{j-1}}' \) are the image points in \(F_{j-1} \), we put

\[p_0' = (0, 0, \ldots, 0), p_{r_i}' = (\alpha_{i1}, \alpha_{i2}, \ldots, \alpha_{i,j-1}) \quad (i = 1, 2, \ldots, j - 1), \]

where the coordinates are all elements of \(F \). Now by Taussky's theorem the points \(p_0, p_{r_1}, p_{r_2}, \ldots, p_{r_j} \) are imbeddable in \(F^*_j \), where \(F^* \) is the closed algebraic extension of \(F \) and, indeed, in such a manner that the images of \(p_0, p_{r_1}, \ldots, p_{r_{j-1}} \) are \(p_0', p_{r_1}', \ldots, p_{r_{j-1}}' \), respectively. Let

\[p_{r_j}' = (\alpha_1, \alpha_2, \ldots, \alpha_j) \]

be the image of \(p_{r_j} \), where \(\alpha_1, \alpha_2, \ldots, \alpha_j \) belong to \(F^* \). We have

\[(v_{r_i}, v_{r_j}) = \alpha_{i1} \alpha_{i1} + \alpha_{i2} \alpha_{i2} + \cdots + \alpha_{i,j-1} \alpha_{i,j-1} \quad (i = 1, \ldots, j - 1), \]

which uniquely determine the elements \(\alpha_1, \alpha_2, \ldots, \alpha_{j-2} \), since the square of the determinant \(|\alpha_{im}| \) \((i, m = 1, 2, \ldots, j - 1)\) of the coefficients is

\[G(v_{r_1}', v_{r_2}', \ldots, v_{r_{j-1}}') \neq 0. \]

It follows that \(\alpha_1, \alpha_2, \ldots, \alpha_{j-1} \in F \).

In \(F^*_j \) we have

\[G(v_{r_1}, v_{r_2}, \ldots, v_{r_{j-1}}) = |\alpha_{im}|^2 \quad (i, m = 1, 2, \ldots, j - 1), \]

\[G(v_{r_1}, v_{r_2}, \ldots, v_{r_{j-1}}, v_{r_j}) = |\beta_{im}|^2 \quad (i, m = 1, 2, \ldots, j), \]

with

\[\beta_{im} = \alpha_{im} \quad (i, m = 1, 2, \ldots, j - 1) \]

\[\beta_{ij} = 0 \quad (i = 1, 2, \ldots, j - 1), \]

\[\beta_{jm} = \alpha_m \quad (m = 1, 2, \ldots, j), \]
and hence

\[G(v_{r_1}, v_{r_2}, \ldots, v_{r_j}) = \alpha_j^2 G(v_{r_1}, v_{r_2}, \ldots, v_{r_{j-1}}). \]

But the two Gram determinants in this relation are different from zero, and are squares of elements of \(F \). Consequently \(\alpha_j \in F \) and the theorem is proved in this case.

Case II. \(G(v_{r_1}, v_{r_2}, \ldots, v_{r_{j-1}}) = 0 \). Then \(G(v_{r_1}, v_{r_2}, \ldots, v_{r_{j-2}}) \neq 0 \), and, as in Case I, the points \(p_0, p_{r_1}, \ldots, p_{r_j} \) are imbeddable in \(F^* \) with the respective image points

\[
p_0' = (0, 0, \ldots, 0),
\]

\[
p_{r_i}' = (\alpha_{i_1}, \ldots, \alpha_{i_{j-2}}, 0, 0) \quad (i = 1, 2, \ldots, j - 2),
\]

\[
p_{r_{j-1}}' = (\alpha_1, \ldots, \alpha_{j-2}, \alpha_{j-1}, \alpha_j),
\]

\[
p_{r_j}' = (\beta_1, \ldots, \beta_j),
\]

where \(\alpha_{im} \in F \) \((i, m = 1, 2, \ldots, j - 2)\), and \(\alpha_1, \ldots, \alpha_j, \beta_1, \ldots, \beta_j \) are elements of \(F^* \). The argument used in Case I may be applied here to show that \(\alpha_1, \ldots, \alpha_{j-2} \) and \(\beta_1, \ldots, \beta_{j-2} \) are elements of \(F \). Hence \((\alpha_1, \alpha_2, \ldots, \alpha_{j-2}) \in F_{j-2} \) along with \(p_0' \) and \(p_{r_i}' \) \((i = 1, 2, \ldots, j - 2)\), and it is easy to show that

\[
\alpha_{j-1}^2 + \alpha_j^2 = 0
\]

follows from the vanishing of \(G(v_{r_1}, v_{r_2}, \ldots, v_{r_{j-1}}) \). We may suppose that

\[
G(v_{r_1}, v_{r_2}, \ldots, v_{r_{j-2}}, v_{r_j}) = 0,
\]

for in the contrary case the argument of Case I may be applied with \(v_{r_j} \) taking the place of \(v_{r_{j-1}} \). Hence we have

\[
\beta_{j-1}^2 + \beta_j^2 = 0.
\]

Putting \(\alpha_{j-1} = \lambda \), we take \(\alpha_j = \lambda \sqrt{-1} \). Then from \(\beta_{j-1} = \mu \) it follows that \(\beta_j = -\mu \sqrt{-1} \), since \(G(v_{r_1}, v_{r_2}, \ldots, v_{r_j}) \) vanishes (contrary to hypothesis) if \(\beta_j = \mu \sqrt{-1} \).

The scalar product \((v_{r_{j-1}}, v_{r_j}) \in F \); that is,
\[\alpha_1 \beta_1 + \alpha_2 \beta_2 + \cdots + \alpha_{j-2} \beta_{j-2} + \lambda \mu + \lambda \mu \in F, \]

and so \(\lambda \mu \in F \) since \(\alpha_1, \cdots, \alpha_{j-2} \) and \(\beta_1, \cdots, \beta_{j-2} \) belong to \(F \). Further

\[G(v_{r_1}, v_{r_2}, \cdots, v_{r_j}) = -4 \lambda^2 \mu^2 \cdot G(v_{r_1}, v_{r_2}, \cdots, v_{r_{j-2}}), \]

and since these nonvanishing Gramians are squares of elements of \(F \) then
\(-\lambda^2 \mu^2\) is the square of an element of \(F \). It follows that \(\sqrt{-1} \) is the square of an element of \(F \), contrary to the assumed character of the field \(F \). This contradiction shows that Case II is impossible.

Now let \(j \) be an integer such that \(G(v_1, v_2, \cdots, v_j) \neq 0 \) (with appropriate labelling of the vectors), while the Gram determinant of every \(j + 1 \) of the vectors vanishes. Let

\[p_0 = (0, 0, \cdots, 0), \quad p_i^* = (\alpha_{i1}, \alpha_{i2}, \cdots, \alpha_{ij}) \quad (i = 1, 2, \cdots, k) \]

be points of \(F_j^* \) congruent (in the "squared-distance" sense) to \(p_0, p_1, \cdots, p_k \), with \(p_i \) and \(p_i^* \) corresponding \((i = 0, 1, \cdots, k) \). By the previous part of the proof, \(p_0, p_1, \cdots, p_j \) are imbeddable in \(F_j \), and the imbedding in \(F_j^* \) can be done so that \(\alpha_{im} \) \((i, m = 1, 2, \cdots, j) \) are elements of \(F \). The proof is completed by showing that also for \(t > j \), \(\alpha_{t1}, \alpha_{t2}, \cdots, \alpha_{tj} \in F \). The system of linear equations

\[\alpha_{i1} \alpha_{t1} + \alpha_{i2} \alpha_{t2} + \cdots + \alpha_{ij} \alpha_{tj} = (v_i, v_t) \quad (i = 1, 2, \cdots, j) \]

has nonvanishing determinant \(|\alpha_{im}| \) \((i, m = 1, 2, \cdots, j) \) (the square of this determinant is \(G(v_1, v_2, \cdots, v_j) \)) and all coefficients, together with \((v_i, v_t) \) \((i = 1, 2, \cdots, j) \) are in \(F \). It follows that \(\alpha_{t1}, \alpha_{t2}, \cdots, \alpha_{tj} \in F \), and the theorem is proved.
Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any of the editors. Manuscripts intended for the outgoing editors should be sent to their successors. All other communications to the editors should be addressed to the managing editor, E.G. Straus, at the University of California, Los Angeles 24, California.

50 reprints of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is $12.00; single issues, $3.50; back numbers (Volumes 1, 2, 3) are available at $2.50 per copy. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues, $1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to the publishers, University of California Press, Berkeley 4, California.

Printed at Ann Arbor, Michigan. Entered as second class matter at the Post Office, Berkeley, California.

*To be succeeded in 1955, by H.L. Royden, Stanford University, Stanford, California.

**To be succeeded in 1955, by E.G. Straus, University of California, Los Angeles 24, Calif.
Henry Ludwig Alder, *Generalizations of the Rogers-Ramanujan identities* .. 161
E. M. Beelsey, *Concerning total differentiability of functions of class P* 169
L. Carlitz, *The number of solutions of some special equations in a finite field* .. 207
Marshall Hall, *On a theorem of Jordan* .. 219
J. D. Hill, *Remarks on the Borel property* .. 227
Joseph Lehner, *Note on the Schwarz triangle functions* 243
Arthur Eugene Livingston, *A generalization of an inequality due to Beurling* .. 251
Edgar Reich, *An inequality for subordinate analytic functions* 259
Dan Robert Scholz, *Some minimum problems in the theory of functions* 275
J. C. Shepherdson, *On two problems of Kurepa* .. 301
Abraham Wald, *Congruent imbedding in F-metric spaces* 305
Gordon L. Walker, *Fermat’s theorem for algebras* .. 317