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1. Introduction. The present paper and the five following it by S. Kakutani,

J. Wermer, W. G. Bade, and J. Schwartz are all related; in them we discuss

different aspects of the problem of the complete reduction of an operator. A

spectral operator is a linear operator on a complex Banach space which has a

resolution of the identity. * It is shown that a bounded operator T is spectral if

and only if it has a canonical decomposition of the form

where S is a scalar type operator and N is a generalized nilpotent commuting

with S. By a scalar type operator is meant a spectral operator S with resolution

of the identity E which satisfies the equation

S= / XE(dλ).
Jσ(s)

The scalar part S of T and the radical part N of T are uniquely determined by T.

For analytic functions / one has an operational calculus given by the formula

Some spectral operators are of type m; that is, the above formula reduces to

/ { n = £ Γ fM(λ)E(dλ),
n=0 n\ Ja(T)

and in Hubert space conditions on the resolvent are given which are equivalent

to the statement that the spectral operator T is of type m. Spectral operators T

1 Formal definitions will be given later.
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322 NELSON DUNFORD

have the property that for every x the analytic function ( λ / - T)"lx has only

single-valued analytic extensions and thus has a maximal extension defined on

an open set p{x). The spectrum σ(x) is defined as the complement of p{x). In

terms of these concepts it is shown that if E is a resolution of the identity for

Γ, then, for closed sets σ,

E(σ)l = [x I σ(x) C σ ] ,

This (Theorem 4) is a basic theorem; from it one deduces that the resolution

of the identity is unique, as well as the fact that every bounded operator com-

muting with T commutes with E (σ), a fact proved for normal operators on

Hilbert space by B. Fuglede [7 ] . 2 Let 21 ( T9 U$ , V) be the full β-algebra

generated by the operators T9U9 $ V; then we have the following decomposi-

tion theorems. If T is spectral and S its scalar part, then, as a vector direct

sum,

U(T9S) = 2I(S) © R9

where R is the radical in 21 ( Γ, S). Furthermore, 21 (S) is equivalent to that

subalgebra of C (σ(T)) consisting of uniform limits of rational functions. The

algebra 21, which is generated by a spectral operator T and the projections

E (σ) in its resolution of the identity, is equivalent to

C(3!) Θ R,

where 31! is the compact structure space of 21 and R is the radical in 21. Along

these lines we mention the decomposition of the full β-algebra 2I(τ) determined

by a family T of commuting spectral operators together with their resolutions

of the identity. If there is a bounded Boolean algebra of projections in X con-

taining all of the projections found among the resolutions of the identity of

operators in r, then

2I(r) = 21 © R,

where 21 is equivalent to the space C ( ϊ ί ) of continuous functions on the space

1 of maximal ideals in 21 ( r ) (or in 21) and R is the radical in 21 ( r ) . Further-

more, the adjoint of every operator in 21 ( T ) is a spectral operator. If X is re-

flexive, then every operator in 21 (r) is a spectral operator. Thus in a reflexive

space the sum and product of two commuting spectral operators is a spectral

2 That this conjecture of von Neumann, which was first proved by Fuglede, is a
corollary of Theorem 4 was pointed out to the author by J. Schwartz.
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operator provided that there is a bounded Boolean algebra containing both reso-

lutions of the identity. W. G. Bade [2] has generalized this by showing that the

weakly closed algebra generated by a bounded Boolean algebra of projections

in a reflexive space consists entirely of scalar type spectral operators. In this

paper Bade has also given sufficient conditions for the strong limit of scalar

type spectral operators to be of scalar type. If X is Hubert space J. Werner [16]

has shown that the sum and product of two commuting spectral operators is again

a spectra] operator. However, S. Kakutani [10] has constructed an example of

two commuting operators, each of scalar type, such that their sum is not a

spectral operator. W. G. Bade [ l ] has shown which portions of the theory are

valid for unbounded operators and has developed the operational calculus for

this case. J. Schwartz [12] has shown that, on a finite interval, the members

of a large class of boundary-value problems determine spectral operators. These

operators need not be purely differential operators but may also involve dif-

ference or integral operators.

2. Notation. By an admissible domain is meant an open set bounded by a

finite number of rectifiable Jordan curves. By an admissible contour is meant

the boundary of an admissible domain. The class of complex-valued functions

analytic and single-valued on some admissible domain containing the spectrum

σ{T) of the linear operator T is denoted by F(T) or F(σ(T)). For feF(T)

the operator f (T) is defined by

= — f
2πi JC

where C is the boundary of some admissible domain containing the spectrum of T

upon whose closure / i s single-valued and analytic and where T ( λ ) = ( λ / - T)~ι

is the resolvent of T. The mapping, given by the above formula, of the algebra

of analytic functions into an algebra of operators is a homomorphism (See, for

example, [ 3 ] or [14] . ) which ass igns the operators /, T to the functions 1, λ,

respectively. It has the property that σ(f{T)) = f(σ(T)). If / ( λ ) = 1 for λ i n

a component of i ts domain, and / ( λ ) = 0 for λ in the remaining components, then

f (T) is the projection

E(σ)= / T(λ)dλ,
2πi JG

w h e r e G i s t h e b o u n d a r y of t h a t c o m p o n e n t upon w h i c h / ( λ ) = 1 a n d w h e r e σ i s

t h a t p a r t of t h e s p e c t r u m σ(T) of T b o u n d e d by G. It i s c l e a r t h a t s u c h a
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projection is associa ted with every subset σ of σ(T) which is both open and

closed in σ(T). From the fact that the map / — » / ( Γ ) is a homomorphism it

follows that the map σ—> E ( σ ) is a homomorphism of the Boolean algebra

B o of open and closed s e t s in σ(T) into a Boolean algebra of projection opera-

tors . It has the property ( s e e [ 2 ] )

σ(T,E (σ)X) C σ, σ e B
o ,

where here we have used the notation σ(T, £ ( σ ) X ) for the spectrum of T when

considered as an operator in E(σ) X. Similarly p(T, £ ( σ ) X ) is the resolvent

set of T when considered as an operator in £ ( σ ) X and p(T) is p(T9 X), The

symbol B (X) will be used for the algebra of all bounded linear transformations

in the Z?-space X.

3. Spectral operators. Let B be a Boolean algebra of subsets of a set p. We

suppose that p and the void set 0 are both in B. A homomorphic map E of B

into a Boolean algebra of projection operators in the complex β-space X is

called a spectral measure in X provided that it is bounded and E{p)-L A

spectral measure has then, by definition, the properties

(α) σ), £ ( 0 ) = O,

| £ ( σ ) | <K, σ E B.

In the conditions (α) the union of two commuting projection operators is under-

stood to be defined by the equation

Au B=A +B-AB.

This union is a projection whose range is the closed linear manifold determined

by the ranges of A and B,

An operator T Gβ(X) is said to be a spectral operator of class (B,Γ) in

case

(β) 13 is a Boolean algebra of sets in the complex plane p;

(y) Γ is a linear manifold in X* which is total; that is, Γx = 0 only when

x = 0;

(δ) there is a spectral measure E in X with domain B such that
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TE(σ) = E(σ)T9 σ(T,Eσl) C σ 5 σ e 13

and

( e) for every x G X, # * G Γ, the function x*E ( σ ) # is countably additive on 13.

The condition ( e ) means that if { σn \ is a sequence of disjoint se t s in 13

whose union σ is a l so in 13 then

2-* X*E {σn)x = %*£ ( σ ) ^ , Λ G I , % * G Γ .

n

In case 13 is a σ-field and Γ = X*, the Orlicz-Banach-Pettis theorem (see [11,

Theorem 2.32] or [5, p. 322]) shows that the operator-valued set function E (σ),

σ E 13, is countably additive on 13 in the strong operator topology.

An operator 7 E δ ( l ) is said to be a spectral operator of class ( Γ ) , or

simply an operator of class ( Γ ) , in case it is a spectral operator of class

( u , Γ ) , where \o is the set of all Borel sets in the plane. An operator is said

to be a spectral operator in case it is a spectral operator of class ( Γ ) for some

Γ satisfying (y) If T is a spectral operator of type (13,F), then any spectral

measure in X with domain 13 which satisfies (8) and (β) is called a resolution

of the identity for T.

THEOREM 1. Let E be a resolution of the identity for the spectral operator

T. Then

E(o(T)) = I.

Proof. Let σ be a closed subset of the resolvent se t p = p(T), Then, in

view of ( δ ) , we see that the spectrum of T a s an operator in Eσ X i s void and

hence ( s e e [ 1 5 ] ) Eσ = 0 . Since p is a denumerable union of closed s e t s we

have from ( e ) that

and from (y) that Ep - 0, and hence E (σ(T)) = /.

For λep(T) we write, as usual, Γ ( λ ) for ( λ / - Γ ) " 1 . In the next theorem

we shall show that, for spectral operators, every analytic extension of T(λ)x

is necessarily single-valued. That this is not the case for an arbitrary operator

T is elegantly shown by the following example due to S. Kakutani
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Consider the space X of functions / analytic in the unit circle | z | <_ 1 and

for which

/(z) = £ cnz\ £ | c | 2 =
71=0 72=0

In this space define T by

The spectrum of T is the se t of z with | z | <_ 19 and for λ £ p(T) the function

T(λ)(g, z) may be calculated by solving the equation

for / {z ). An elementary calculation gives

z g ( z ) - / ( 0 )
/ ( z ) = — I — 1 —

λz — 1

Since / ( z ) is analytic when z = λ" 1 we must have

so that

g,
λ C z - λ " 1 )

Thus the vector-valued analytic function T{λ)g9 λ G p ( ί ) , will have multiple-

valued extensions if the function g has a multiple-valued analytic continuation

outside the unit circle.

In order to describe the situation discussed in the next theorem certain con-

cepts are introduced. By an analytic extension of T(ζ)x will be meant a func-

tion / defined and analytic on an open set D (f) 3 p (T) and such that

for every ξ in D (f). It is clear that, for such an extension,
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for f i n p(T). The function T(ζ)x is said to have the single-valued extension

property provided that for every pair fcg of analytic extensions of T(ξ)x we

have f{ξ) = g(ξ) for every ξ in D(f)D(g). The union of the s e t s D(f) as /

varies over all analytic extensions of T(ζ)x is called the resolvent set of x

and is denoted by p(x). The spectrum σ(x) of x is defined to be the comple-

ment of p(x). It is clear that if T(ζ)x has the single-valued extension property

then there is a maximal extension %(•) whose domain is p(x). In this case

x (ξ ) is a single-valued analytic function with domain p{x) and with x ( ζ ) -

T(ξ)x,ξ£p(T).

THEOREM 2. // T is a spectral operator in X, then for every % G Ϊ the

function T{ξ)x has the single-valued extension property.

Proof. Let f9 g be two extensions of T(ξ)x and define

ξeD(f)Dig).

We suppose, in order to make an indirect proof, that for some ξQ £ D (f)D(g)

we have h ( ξ Q ) £ 0. Thus there is a neighborhood N(ξQ) of £ 0 with /V(<fQ)C

D ( / ) D ( g ) a n d

(i) h(ξ) £ o, (ξi-τ)h(ξ)=o, ξeN(ξ0).

The desired contradiction may be obtained from these equations and the

following lemma.

LEMMA 1. Let E be a resolution of the identity for the spectral operator T.

Let σ be a closed set of complex numbers with ζQ £. σ. If (fQ/— T)χ

0

 = 0 then

where { ξQ \ is the set consisting of the single point ξQ.

Proof. Let Tσ(ξ) be the resolvent of T as an operator in £(σ)X, so that

Tσ{ξQ){ξ0I-T)E{σ) = E(σ).

But s ince

we have E (σ)xQ = 0. Now let
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s o that E (σn)x0 = 0; by ( δ ) , ( e ) , there fore ,

x*(I-E(\ξo\))xo = lim x*E(σn)x0 = 0 , U*eΓ).

n

Condition (y) thus shows that E {\ ξQ \)xQ = * 0 , and the lemma is proved.

Returning now to the proof of Theorem 2, let

Then h(ξn) —> h{ξQ), and the lemma together with ( i ) gives

0 = E({ξo\)h(ξn)->E(\ξo\)h(ξo) = h{ξo),

which is a c o n t r a d i c t i o n to ( i ) and proves the t h e o r e m .

T H E O R E M 3 . // T is a spectral operator? the spectrum σ(x) is void if and

only if x = 0 .

Proof. Using Theorem 2, we see that if σ(x) is void then x (ξ) is every-

where definecj, single-valued, and hence entire. Since, as ζ—> oc, we have

x*x{ξ)=x*T{ξ)x—*0,

we see that x*x ( ξ) = 0 for all ξ. Hence

x*x = x*(ξl- T)x(ξ) = 0,

and x = 0.

THEOREM 4. Lei T be a spectral operator with resolution of the identity

E$ and let σ be a closed set of complex numbers. Then

E{σ)l = [x I σ{x) C σ].

Proof. Let E{σ)x = x, and let Tσ{ξ) be the resolvent of Ί as an operator

in £ ( σ ) X . Then ( δ ) shows that
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i s a n a n a l y t i c e x t e n s i o n of T(ξ)x t o σ ' , t h e c o m p l e m e n t of σ . T h u s p(x) D σ ' ,

a ( x ) C σ . C o n v e r s e l y , a s s u m e t h a t σ(x) Cσ a n d l e t σt b e a c l o s e d s u b s e t of

t h e c o m p l e m e n t σ ' of σ . T h e n Tσχ (ξ)E(σι )x i s a n e x t e n s i o n of T (ξ)E (σ{)x

t o σ ^ . A l s o E (σι)x(ξ) i s a n e x t e n s i o n of T (ξ)E (σi)x t o p ( % ) . T h u s , f r o m

T h e o r e m 2 , i t i s s e e n t h a t

E(σί)x(ξ)=Tσι{ξ)E{σi)x, ξ&p{x)σ{.

Since OjOx are disjoint compact s e t s , there is an admissible contour Cγ with

σι inside Cγ and σ outside. Now let C be a large circle surrounding σ{T) so

that, s ince x{ζ) is analytic and single-valued on and within Ci9 we have

W?= ί Tσ(ξ)E(σι)xdξ
2πi Jc 1

£ ( σ ι ) * / Πf)£(^iW? ί
2πi Jc 2πi Jc

= — ί TσAξ)E{σι)xdξ=— ί E{σι)x(ξ)dξ^0.
2πi Jcι

 ι 2πi Jcι

Let σn be an increasing sequence of closed sets whose union is σ' Then

x*E(σ')x = limx*E(σn)x = 0, (x* E Γ ) ,

n

and s o ( α ) , ( y ) show that £ (σ')x = 0, £ ( σ ) % = x.

THEOREM 5. Let T be a spectral operator and A a bounded linear trans-

formation which commutes with T. Then A commutes with every resolution of

the identity for Ί.

Proof. Let σ,σχ be disjoint closed sets of complex numbers and let E be a

resolution of the identity for T. Since

AT(ξ)x= T{ξ)Ax,

we see that

p(Ax) D p(x), σ(Ax) C σ(x).

Thus Theorem 4 shows that

E{σ)AE{σ) = AE(σ), E (σ)AE (σx ) = E (σ)E (σ, )AE (σί) = 0 .
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S t a t e m e n t s ( y ) , ( e ) s h o w t h e n t h a t E (σ)ΛE ( σ ' ) = 0, a n d h e n c e

E(σ)A = E (σ) Λ[E (σ) + E ( σ ' ) l = E (σ) ΛE (σ) + E (σ)AE ( σ ' ) = ΛE (σ).

THEOREM 6. If T is a spectral operator , its resolution of the identity is

unique.

Proof. If E, Λ are both resolutions of the identity for 7, and σ is a closed

set of complex numbers, then Theorem 4 gives

A ( σ ) E ( σ ) = E { σ ) , E ( σ ) A ( σ ) = Λ ( σ ) ,

and (δ) together with Theorem 5 gives

Λ { σ ) E ( σ ) = E ( σ ) Λ ( σ ) .

Thus for closed s e t s σ, A (σ) = E (σ), and ( y ) , ( e ) show that this same equality

holds for every Borel se t σ.

THEOREM 7 Let E be a spectral measure whose domain consists of the

Borel sets in the plane and which vanishes on the complement of the compact

set σ. Then, for every scalar function f continuous on σ9 the Riemann integral

/ / ( λ ) E (dλ) exists in the uniform operator topology9 and

ff(λ)E(dλ)\ < sup | / ( λ ) | t ; ( £ ) ,
λ

where v(E) is a constant depending only upon E. Furthermore, for any two

continuous functions f and g we have

[ff(λ)E{dλ)][Jg(λ)E(dλ)] =ff{λ)g(λ)E{dλ).

Proof. Let 8 > 0 be such that | / (λ) - / ( λ ' ) | < e if | λ - λ ' | < 2δ, and

and let π- (σ^ , λ^), π' = (σ?9 λ ' ) be two partitionings of σ with norms at most

δ. Then for% G X and x* G X*, and the operator

U(π) Ξ Σ / ( λ . ) £ ( σ f ) ,

we have the inequality

\x*(U(π)-U{π'))x\ < Σ Σ,\f(λi)-f(λp\\x*E(σiσpx\ < e var x*E(σ)x.
i j «
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B u t

v a r x * E ( σ ) x < 4 l . u . b . \ x * E ( σ ) x \ < 4 > K \ x \ \ x * \ ,
σ σ

where A' is an upper bound for | E (σ) | . Thus

| £ / ( τ τ ) - ί / U ' ) | = l.u.b. \x*(U{π)-U(π'))x\ < 4 e A \
| * | = | * * | = l

The final assertion is seen by using (ex) to obtain the equation

LEMMA 2. Let 21 be α commutative subalgebra of B ( X ) which contains I

and the inverse of any of its elements provided that the inverse exists as an

element of B ( X ) . Let T$E G 21, E2 - E9 and let ϊί = (m ) be the set of maximal

ideals in 21. Then 3

σ ( Γ s £ X ) = [λ I λ = T(m), m GV315 £ ( m ) = l ] .

Proof. The symbol θ ( X ) , as always, is used for the algebra of all bounded

linear operators in the space X. It is normed by the bound of the operator. For

an element TQ of an algebra 210 with unit Eθ9 we write σ( Tθ9 210) for the spec-

trum of TQ as an element of 2I0. This is the complement of the set of those

λ for which λ £ 0 ~ ̂ o has an inverse in 210 According to our hypothesis, then,

we have

( i ) σ(Γ,») = σ(7,X) = σ ( n .

Let 21 £ = 2I£, and note that this is a subalgebra of 21 with unit E. Each V G 21 £

maps £X into itself and as an operator in £X has the spectrum σ (V', EX), Just

as in ( i) above we have

(ii) σ(V)llE) = σ{V,EX).

To see this, let

3 The difference algebra 21 — m is the complex number system [ 8 ] , We write, using
Gelfand's notation, U (m) for the complex number corresponding to an element U G <1
under the natural homomorphism of 21 onto 21 — m.
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and suppose that Vo has an inverse as an operator in EX. Define

so that W1 G B (X). Thus W'1 en, ψ ιE G 21E and since V0W
 ιE = E it is seen

that Fo has an inverse as an element of 21 £ . This proves that p{V9 £X)C

p ( F , 21^). The converse inequality being obvious, we have proved ( i i ) . Now

let ϊ ! = (m) be the set of maximal ideals in 21, and ΈE = {mE ) the set of maxi-

mal ideals in UE. We shall next show that

(ii i) f £ = [ m £ | m G l , £ ( m ) = l ] ;

that is, the maximal ideals in 2I# are precisely those of the form τnE = mE,

where m is a maximal ideal in ϊ ! for which E (m) = 1. Since £ 2 = £ , we have

E(m) always 0 or 1, and so the statement E (m) = 1 is equivalent to the state-

ment E £ m. To prove ( i i i) , let m be a maximal ideal in 21 with E £ m. The

set τnE = mE is clearly a proper ideal in 21 £ . To see that τnE is maximal, let

nE be a proper ideal in UE which contains mE, and let n be the set of all V E 21

for which VE £nE. Then n is a proper ideal in 21 which contains m. Since m

is maximal, we have m - n and hence mE = nE. Conversely, let mE be a maxi-

mal ideal in 2I# then m - mE + UE ' is a proper ideal in 21 with mE = mE. To

see that m is maximal, suppose that n is a proper ideal in 21 containing m

properly. Then we shall show that nE = nE is a proper ideal in UE which con-

tains mE properly. Let U G n9 U £ m. Then HE G/Z£. Since £ / G m , we have

UE'£m and hence UE f. m. Therefore, since mE Cm, we have UE (. mE, and

this proves ( i i i ) . Thus we may say that for any m G S? for which E (m) - 1 the

difference algebras 21 — m9 2l£ — mE are both isometrically isomorphic to the

complex number system. There are, therefore, uniquely determined complex

numbers T(m), TE(mE) for which

T-T(m)l£m9 TE ~(TE)(mE)E emE.

From the first of these relations it follows that TE ~ T(m)E EmE, and from

the second, therefore, that T (m) = (TE)(mE). But as m varies over all points

in 5J! for which £ ( m ) = 1, we see from (iii) that mE varies over all maximal

ideals in AE and hence ( Γ £ ) ( m £ ) = T {m) varies over the spectrum of TE as

an element of 2l£. Hence the desired conclusion follows from ( i i ) .

DEFINITION 1. An operator S is said to be of scalar type in case it is a

spectral operator and satisfies the equation
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S=fλE(dλ),

where E is the resolution of the identity for S. According to Theorem 1, S ( e ) = 0

if e C p(S) so that the integral over the compact set σ(S) ex is t s in the uniform

topology of operators.

THEOREM 8. An operator T is a spectral operator of class ( Γ ) if and only

if it is the sum T = S + N of a scalar type operator S of class ( Γ ) and a gener-

alized nίlpotent operator N commuting with S. Furthermore, this decomposition

is unique and T and S have the same spectrum and the same resolution of the

identity.

Proof. We shall first show that the sum 7' = S' + N of an arbitrary spectral

operator S of class ( Γ ) and a generalized nilpotent N commuting with S is itself

a spectral operator of class ( Γ ) . Let E be the resolution of the identity for S,

and let σ be a Borel set of complex numbers. Then, by Theorem 5, NE (σ) =

E(σ)N. Let 21 be the smallest commutative subalgebra of β ( X ) containing N9

S, E (σ), /, and also containing the inverse of any of its elements provided that

the inverse exists as an element in β ( X ) . Then, as established in equation

(i i) during the proof of Lemma 2, we have

Thus if ϊ ί ί (σ) is the s e t of maximal ideals in AE (σ), we have

( * ) σ(T, £ ( σ ) X ) = [ λ | λ = S ( m ) + Λ/(m), w E l ( σ ) ]

= [ λ | λ = S(m), m G ϊ l σ ]

= σ ( 5 , ? ί £ ( σ ) ) = σ ( S , £ ( σ ) X ) C σ .

Thus T is a spectral operator of c las s ( Γ ) , and its resolution of the identity

is also E. Conversely, let T be a spectral operator of c la s s ( Γ ) with resolution

of the identity E. Using Theorem 7, define

S^JλE(dλ), N = T - S .

Clearly S and N commute. It will first be shown that N is a generalized nil-

potent. Let 21 be the algebra generated by T, E ( σ ) (σ a Borel s e t ) , /V, /, and

with the property that ίΓ 1 G 21 if U £ 21 and V 1 G β (X ). Let Έ = (m ) be the se t

of maximal ideals in 21. Then E(δ)(m) is a zero-one valued additive set func-

tion, and hence determines uniquely a complex number λ ( m ) with the property
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that E (8m)(m) = 1 provided that δm is a neighborhood of λ ( m ) . Thus for

every neighborhood δm of λ ( m ) we have

= J

Since E(8m)(m) = 1 if δm is a neighborhood of λ(m), it follows from Lemma

2 that

T(m)£σ(T,E(8m)X)Cδm,

and hence

Γ U ) = λ(m) = S U ) , Λ/(m)=0.

Thus by a theorem of Gelfand4, N is a generalized nilpotent. It will next be

shown that S is a scalar type operator. For this it is sufficient to show that E

is the resolution of the identity for S. According to Lemma 2,

σ ( S , £ ( δ ) X ) = [ λ | λ = S ( m ) , m € l , £ ( δ ) ( m ) = 1]

= [ λ | λ = Π m ) , m e ΐ l , £ ( S ) ( m ) = l ]

= σ ( Γ , £ ( δ ) X ) C δ ,

and this shows that E is the resolution of the identity for S. Finally it remains

to be shown that S and N are uniquely determined by T. L e t T = Si + Λ^, where

Si is of scalar type and Λ\ is a generalized nilpotent commuting with S l β Let

Eι be the resolution of the identity for Sj Then, by Theorem 5,

NίEι{σ)=Eι(σ)Nί,

so that Eι(σ) commutes with T. It was established in (*) above that σ(T9

£ i ( σ ) X ) Cσ, and hence Eγ is a resolution of the identity. By Theorem 6, we

have E (σ) = Eι(σ), and hence S = S l f /V = Ni

DEFINITION 2. The decomposition, given in Theorem 8, of a spectral

operator T = S + N into a sum of a scalar type operator 5 and a generalized

nilpotent Λ; commuting with S is called the canonical decomposition of T. The

I. Gelfand [8] has shown that N is a generalized nilpotent if and only if N belongs
to every maximal ideal.
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operator S is called the scalar part of Γ, and /V is called the generalized nil-

potent part9 or the radical party of 7.

LEMMA 3. Let E be the resolution of the identity for the spectral operator

Ί, and let N be its radical part. Then in the uniform topology of operators, and

uniformly with respect to ζ in any closed set p C p {T), we have

( £ \ \n+ 1

Proof. By Theorem 7 the integral exists in the uniform operator topology,

and

I r E{d\)

[ξ-λ)n+ι

where r = max | ζ — λ |" L

9 the maximum being taken over λ G σ ( Π , ζ G p. Since

N is a generalized nilpotent,

and hence the series

converges. Thus the series

E(dλ)

converges in the uniform operator topology, and uniformly with respect to ζ G p.

From Theorem 7 we have

and so, if 5 is the scalar part of T9
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(ξ-λ)n

E(dλ)
= /.

This proves the lemma.

T H E O R E M 9. Let T be a spectral operator and N its radical part. Then for

every scalar function f analytic and single-valued on the spectrum σ (T) we

have9 in the uniform topology of operators,

= Σ -Γ fM(λ)E(dλ).

Proof. L e t C be an a d m i s s i b l e r e c t i f i a b l e J o r d a n curve in p(T) c o n t a i n i n g

σ{T) in i t s inter ior and s u c h t h a t / i s a n a l y t i c on and within C. T h e n , u s i n g

Lemma 3, we h a v e

E(dλ)

( T )

= £ un f ί
^ Jrr(r \ Jr

<r(T) >c (ξ-λ)n + l
E(dλ)

DEFINITION 3. An operator T is said to be of type m in case it is a spec-

tral operator with resolution of the identity E and

71=0

j\in /•

f^ feF{T).

THEOREM 10. Let N be the radical part of the spectral operator T; then

T is of type m if and only ifNm+ί = 0.

Proof. If Λ'm + ι = 0 then clearly the formula of Theorem 9 reduces to that

of Definition 3. Conversely, if T is of type m we see, by placing
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in these two formulas, that

COROLLARY. A spectral operator is of scalar type if and only if it is of

type 0.

We shall next endeavor to characterize operators of finite type in terms of

the rate of growth of the resolvent. To this end we introduce the following

definition,

DEFINITION 4. Let E be the resolution of the identity for the spectral opera-

tor T. If ξ <£ σ( T, E (σ)X), and in particular if ξ fc. σ, the operator Tσ(ξ) is

defined on X as follows. For each % in X, Tσ(ξ)x is that uniquely determined

point y £ £ ( σ ) X for which (ξl - T)γ = E (σ)x. Thus Tσ(ξ) is a bounded

linear operator in X formed by first projecting with E{σ) and then operating

with the inverse of ( ξl - T) in E (σ) X.

THEOREM 11. In Hilbert space a spectral operator T is of type m - 1 if

and only if there is a constant K such that, for every Borel set σ,

(*) \dis(ξ,σ)mTσ(ξ)\ <K, ξf. o, | £ | < m + l .

Proof. In view of Theorem 10 i t i s sufficient to prove that the condition

( * ) is equivalent to the condition Nm = 0. If Nm = 0, and ξ.£ σ, then

r l E(dλ)

(λ-ξ)n+ι

from which the condition ( * ) follows.

The converse will require the following lemma.

LEMMA 4. Let T be a spectral operator in Hilbert space X and let E be its

resolution of the identity. Then there is a constant M such that for any finite

collection A; (j = 1,2 , , n) of bounded operators in X which commute with

T, and any collection σ/ (/ = 1, 2, , n) of disjoint Borel sets9 we have

<_ M sup
1 < / < n
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Proof. It is known (see [16]) that there is a linear one-to-one map B with

βX = X, with β and β" both continuous and such that for each Borel set σ the

projection

P ( σ ) = β £ ( σ ) β - 1

is self-adjoint. If βy = β^yβ" ι then

β

By Theorem 5, Aj commutes with E (σ) and hence βy commutes with P (σ). Thus

7=1

< sup I β y

/

) Λ : I 2 < S U P

which proves the lemma.

Now let T = S + N be the canonical form of the spectral operator T which we

assume enjoys the property (*) of the theorem. Since

and

we have

Γ = 0

(T)
(S-ξI)PE(dξ) =

/ {T-ξl)mE(dξ).
Jcτ(T)

(p > 1),

Now let σ(T) be partitioned into the Borel sets σy (/ = 1, 2 , , n ( 8)), each of

diameter at most 8 > 0, and let ξj G σy (/ = 1, 2, , n (δ)). Let Cj be the circle

with center ξj and radius 2δ. Then since the distance from a point λ on Cj to
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σj is at least δ we have

Let

< 2mK, λ 6 Cj.

2δexp(2Wp),

so that

« ( S )

{T-ξl)mE{σj)=
9 77/ Jr., 1

)mTσ.(λ)dλ

n(&)

P 7 = 1
2πί

But

sup
2πi

and by Lemma 4 therefore

which shows that

THEOREM 12. In Hubert space a spectral operator T whose spectrum is

nowhere dense is of type m — 1 if and only if its resolvent has at most mth

order rate of growth for ζ near the spectrum.

Proof. This theorem is an immediate corollary of Theorem 11.
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4. Algebras of spectral operators. In this section we shall characterize

commutative algebras of spectral operators. To this end we shall need the

following preliminary lemmas.

LEMMA 5 . // T is of class ( Γ ) with resolution of the identity E ( T ) 9 and

/ E F(T)9 then f ( T ) is of class ( Γ ) and its resolution of the identity is given

by the formula

Proof. The foregoing formula clearly yields a spectral measure commuting

with f(T). Also x*E (/ ( T ) , σ)x is countably additive if x* G Γ. Now if

λ 0 i. σ then the function

λo-/U)

i s a n a l y t i c on t h e c l o s u r e of f " ι ( σ ) a n d h e n c e if C i s a n a d m i s s i b l e c o n t o u r

s u r r o u n d i n g t h e c l o s u r e of f"1 (σ) w e h a v e

( — ί h(λ)Tί( (λ)dλ)(λ0I-f(T))E(TJ'ι(σ)) = E(T,f-ι(σ)),
\2πi JC f yσ) I

which shows that

σ ( f ( T ) , E ( f ( T ) , σ ) l ) Cσ,

and this completes the proof of the lemma.

At this point we introduce the notion of an integral which will be needed

later. For the purposes of the following theorem the Riemann integral will

suffice, but for subsequent work the next lemma will be needed for a more

general integral. Accordingly let 1 be a set, B a field of its subsets with

3R E B , and let B(ϊϊl) be the normed linear space of all complex bounded func-

tions on 3K which are measurable B. The norm in B ( Έ) is given by | / | =

sup m | / ( m ) | . Let £ be an additive operator-valued function on B with

| £ ( e ) | < M, e G B .

For a finitely valued function
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we define the integral

and note that this definition is independent of the representation of /. Also

f (m)E (dm) = s u p | Σ QLiX*E (σ()x \
M \ γ\ • I v * I I

< s u p \θίi\ v a r x*E (e)x < s u p | CCΛ-1 4 s u p \x*E(e)x | <_ 4 Λί s u p \f(m)\.

T h u s if / G l 3 ( l ) i s the l imit in 13(3!) of two s e q u e n c e s {fj a n d { g n } of

f i n i t e l y v a l u e d f u n c t i o n s in 13 (35!) t h e n

lim / fn(m)E (dm) = lira J gn(m)E(dm),
n ]]i n J j ί

and this limit is taken as the definition of the integral

JMf{m)E{dm).

It is clear that in case SO! is a compact set in the plane and / is continuous the

integral as defined coincides with the Riemann integral. In case £ is a spectral

measure on 13 for which x*E(e)x is countably additive on 13 for each x £ X

and each Λ:* in a total linear manifold Γ C X*, we say that £ is a spectral

measure of class (13, Γ ) .

LEMMA 6. Let 13 be a σ-field of subsets of a set 35! with 35! G13. Let E be a

spectral measure of class (13, Γ ) , and for f E 13 (S!) let

J<mf(m)E{dm).

Then there is a constant v(E) such that

\S{f)\ <v(E)\f\, /

Also for every / E 13(31!) the operator S(f) is a scalar type operator of class

( Γ ) whose resolution of the identity E ( S ) is given by the equation
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Proof. The first conclusion follows from the foregoing definition of the

integral. Now if E is a spectral measure the map / — > S ( f ) of 13(5?) into

B ( X ) is a homomorphism; that is, it preserves multiplication as well as ad-

dition. Thus, if λ 0 jέ σ, the operator

= J (λo-f(m))-ιψ i(σ){m)E(dm)

sat is f ies the equation

(λ0I-S(f))U=E(fι(σ)),

which shows that

σ(S(f), E(fι{σ))l)Cσ.

Thus S is a spectral operator whose resolution of the identity is given by

To see that 5 is a scalar type operator we decompose the closure of /(SK)

into a finite number of disjoint parts σ;, each of diameter at most 6. Let λ; G σ{.

Then

\Σ,λiψσί(f(m))-f(m)\ < 6, m e ϊ ! ,

and so

S ( / ) = lim Σ λ ί £ ( Γ 1 ( σ ι ) ) = lim / £ λiφσ. (λ)E (S,dλ) = fλE (S, d λ ) ,

which proves that S is of scalar type.

D E F I N I T I O N S . If T, U, . . . , V are in S ( X ) , the symbol « ( Γ , ί/, . . . , V)

will stand for the smallest subalgebra of β ( X ) which is closed in the norm

topology of Z?(X), which contains Ί% U? m ,V9 and /, and which contains the

inverse W~ι of any of its elements provided that the inverse ex i s t s as an ele-

ment of B (3£). The algebra U(U,T9 •• , F ) will sometimes be called the full

algebra generated by U9T9 •••? V. If σ is a compact set in the complex plane,
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the symbol CR(σ) will stand for the algebra of all complex functions / ( λ ) ,

λ G σ which may be approximated uniformly on σ by rational functions. The

norm in CR (σ) is

| / | = max | / ( λ ) | ,

λeσ

so that CR(σ) is a subalgebra of C{σ), Two B-algebras are said to be equi-

valent in case they are topologically and algebraically isomorphic.

THEOREM 13. Let T be a spectral operator and S its scalar part. Then, as

a vector direct sum,

where 3i is the radical in 2I(Γ, S). Furthermore, 21 (S) is equivalent to

CR (σ (T)), and every operator in 21 (T9 S) is a spectral operator.

Proof. If / i s rational and analytic on σ( T) = σ(S), then f(σ(S)) = σ(f(S))

and thus

max | / ( λ ) | < | / ( S ) | < max | / ( λ ) | t ; ( £ ) .

λβσiS) λeσ(S)

Thus 21 (S) is equivalent to CR{σ{S)). Since 21 (S) has no radical it is seen

that 21 (S) © K is a direct vector sum contained in 2I(7\S). Now let N be the

radical part of T. It follows from Theorems 8 and 9 and Lemma 6 that the ca-

nonical decomposition of / ( T) for / G F ( Γ) is

Hence in particular if T'1 exists its canonical decomposition is

( i ) T ι = S ι + N2.

Also

and thus for a polynomial P in T and S we have
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where Q is a polynomial and /V5 a generalized nilpotent. Since for m in the space

B! of maximal ideals of 21 ( T, S) we have

it is seen that <?(5) = P(S,S) and thus

(ii) P(7,S)

If P t is also a polynomial in two variables, the operator

will be defined as an element of 21(7, S ) if and only if Px (λ, λ ) 5̂  0 for λ <E σ ( 7 ) .

In this case we see from ( i ) and ( i i ) that

( i i i ) R(T9S) = R{S9S) + N6.

Since R{S9S) is of type 0, this is the canonical form for R{T,S). An arbitrary

ί/ E 21 ( 7, S) is a limit, U = lim Rn, of rational functions /?„ in 7 and S. Since

and 7 (m ) = S (m ), we have

sup |Λ n (λ,λ)-/ip(λ,λ) | =sup |{ΛI1(71,S)-
λGσ(S) w

Hence Rn(λ,λ) converges uniformly on σ(S) to a function / E CR (σ (S)).

Thus Λ Λ ( S , S ) — » / ( S ) in 21 ( S ) , and ί / E 2 I ( S ) © K. It follows from Lemma

6 that every operator in 21 ( S ) is a sca lar type operator and thus it i s s e e n , by

Theorem 8, that every operator in 2 1 ( 7 , S ) is a spectra l operator.

THEOREM 14. Let E be the resolution of the identity of the spectral opera-

tor T. Let SR be the space of maximal ideals is the algebra

21 = 2I(£(σ), σ aBorelset).

Let Rγ be the radical in the algebra

2I1 = 2I(7,E(σ), σ aBorelset).
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Then 21 is equivalent to C ( ϊ ), and

Furthermore^ every operator in ^X γ is a spectral operator.

Proof. Elements of the form

n

(i) ί/= £ Cί;£(σ;), £ ( σ ί ) ^ 0 , σ σy = 0 , ί ^ /, U σ; = σ ( 7)
ι = i i

a r e d e n s e in 21 s i n c e if s u c h a n e l e m e n t h a s a n i n v e r s e t h e i n v e r s e i s a g a i n of

t h e s a m e form. F u r t h e r m o r e , if E (σι) £ m (Ξ ~8 t h e n U(m)= Cί;. T h u s , u s i n g

L e m m a 6, we h a v e

s u p I U(m) I = s u p | θ t j | < I V I 1 s u p |(Xj| v ( £ ) = s u p | ί/ (m) \ v (E ) ,
TO i i m

and therefore

s u p \ U ( m ) \ < \U\ < s u p \ U ( m ) \ v ( E ) , U G U ,

which shows that 21 is equivalent to a subalgebra of C ( ϊ ί ) . Since the projec-

tions E (σ) generate 21, they distinguish between points in ϊl. Also it is clear

that the element

is related to the operator U given in ( i) by

ί/(m)= V{m), in e 1 .

Thus, by the Stone-Weierstrass theorem, 21 is equivalent to C ( l ) . Hence 21 © K

is a vector direct sum and a subalgebra of 21 1 . It is also closed in 21 j since if

mλ is a maximal ideal in 211 we have, for an arbitrary operator U = S + N with

S e 2 1 , / V e K ,

I S I w ί f i Γ 1 < s u p | S ( m ι ) | = s u p | £ / ( m ι ) | < | ί / | < | S | + | / V | .
mi m

Also since 21 ^ C(ϊϋ) it is seen that 21 © ϊf ί is a full algebra of operators;
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that is, it contains the inverse IF"1 of any of its elements provided that ft"1

exists as an element of β ( X ) . Thus 21 t C 21 © ϊt{ C2ΐ t. Finally, to see that

every operator in 21 ι is a spectral operator it will, in view of Theorem 8, suffice

to show that every U G 21 is a scalar type operator. Consider a finitely valued

measurable function

/ ( λ ) = Σ,CLiψσ.{λ)9 λ G σ(S).

We may suppose that σj σy = 0 ( i ^ y ) , and U ^ = σ ( S ) , so that the values of

/ are the numbers C(;. The operator

/(S)= f f(λ)E(dλ)= £ ai

as was shown above, has the property that except for λ in a set σ with E (σ) = 0

we have | / ( λ ) | <_ f (S). Thus if we define the norm

I / \E = E-ess. sup | / ( λ ) | = inf sup | / ( λ ) | ,
E{σ) = / λGcr

the operator f (S) satisfies the inequality

\f\E < l / ^ ) | < | f | E t ; ( £ ) .

The general operator U in 21 is the limit of a sequence fn(S)9 where fn(λ) is a

finitely, valued measurable function. Thus

f iλ) = lim fn{λ)

exists uniformly except on a set σ C σ(S), where E (σ) = 0, and

ί/= / f(λ)E(dλ).

Jσ(S)

Hence, by Lemma 6, U is a scalar type operator.

DEFINITION 6. If T = S + /V is the canonical decomposition of the spectral

operator Γ, and E is its resolution of the identity, by EB{σ(T)) will be meant

the space of all £-essentially bounded Borel measurable functions defined on

σ(T) = cr(S). The norm is
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| / | = £ - e s s . sup | / ( λ ) | = inf sup | / ( λ ) | .

λGσ-(s) E(σ) =/ λGσ

According to what has just been shown we may s ta te :

THEOREM 15. In the notation of Theorem 14 we have 21 equivalent to

EB(σ(T)\

THEOREM 16. If S is a scalar type operator with resolution of the identity

Es and f is an E-essentially bounded Borel function on σ(S), then

σ ( / ( S ) ) = Π f ( σ ) .
E(σ)=I

Proof. If λ 0 f. f ( σ ) , where E (σ) = 1, then

1 , λ 6 σ,

0 , λ jί σ,

is a bounded Borel measurable function and

λ ( S ) ( λ o / - / ( S ) ) = /,

so that λ 0 G p ( / ( S ) ) . T h u s / ( α ) D α ( / ( S ) ) if E(σ) = I, and

Π

Conversely, if λ 0 G p ( / ( S ) ) we see from Theorem 15 that ( λ o - / ( λ ) ) " 1 is

^-essent ia l ly bounded on σ{T). Hence there is a Borel se t σ with E(σ) = I

and

| λ o - / ( λ ) | - 1 <M, λ G σ .

Hence λ 0 ί / ( σ ) . This shows that

σ { f { S ) ) D f ( σ ) D Π f ( σ ) ,

and completes the proof.
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THEOREM 17. Let ^l(τ) be the full algebra generated by a family T of

commuting spectral operators together with their resolutions of the identity. If

the Boolean algebra determined by the resolutions of the identity of the operators

in T is bounded^ then$ as a vector direct sum9

where 31 is the radical in 21 (r) and 214 is equivalent to the algebra of continuous

functions on the space of maximal ideals in 21 ( r ) .

Proof. Note first that if T9 U G T have resolutions of the identity E(T9 )9

E (U9 )? respectively, then for every pair σ9 μ of Borel sets in the plane the

projections E(T9σ)9 E (U\ μ) commute. This follows from a double application

of Theorem 5. Thus the various projections E(T9σ) determined by Borel sets

σ and operators T G r determine a Boolean algebra 210, and by assumption there

is a constant M with | £ | <_ M for E G 2I0. We shall first show that there is a

constant K such that

( i ) ^ \ x * E i X \ <K\x\\x*\9 χ e l 9 i * e ϊ * ,

i = l

provided that E( G2I0 and E(Ej = 0 for i φ. j. To see this, let (x*Ex)r be the

real part of x*Ex. Then, if E(Ej = 0 (i φ j)9 we have

Σ,\(x*EiX)r\= Σ'(x*Eix)r- Σ {χ*EiX)Γ

= (x* ( Σ Έi )χ )Γ - {x* ( Σ " Ei )x )r < 2M I x I I x* I ,

where Σ ( Σ ) represents the sum over those i for which (x*Eix)Γ >_ 0 (< 0).

Similarly for the imaginary part of x*Ex. Thus

which proves ( i ) .

Now consider elements U G 21 (r) of the form

(ii) ί/ = S + /V,

where
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(iii)

with

0 i G ,•£/ = 0, ^ /, Ex + . . . + £ „ =

and where Λ G 5ΐ, the radical of 21 (τ) If m E 3Jί, the space of maximal ideals in

21 ( r ) , then in view of ( i i i) there is an i with Eiim) = 1, Ej{m) = 0 (/ ^ i ) .

Thus αj = ί/(wi) = S(m) and

ί iv) sup
i

= sup
m

F r o m ( i ) a n d ( i i i ) i t i s s e e n t h a t

ISI = sup I Σ, Ui i x I £ s u p I Cvj I A'

* = * * = i

and hence, by (iv) 9

( v ) K - ι \ S \ <\U\ < \ S \

The inequality ( v ) shows that if Un = Sn + Nn is a convergent sequence of

operators, each of the form ( i i ) with Sn of the form ( i i i ) and Nn G 3ΐ, then

ί S j } and ί WΛ } are also convergent sequences . Let 211 be the algebra of all

limits S o = ϋmrc Sn, where Sn has the form ( i i i ) . Since for the operator ( i i i ) we

have, as shown above,

s u p \ S ( m ) \ < \ S \ < s u p \ S ( m ) \ . K,

it is seen that 211 is equivalent to a subalgebra C of C(Sϊί), and the Weierstrass

theorem5 shows that C= C ( l ) . Clearly therefore, 211 © 5R is a direct sum, is

contained in 21 ( r) , contains every E (T,σ) with T E r and σ a Borel set in the

plane, and contains every T G τ This last statement, namely that r C 211 w SR,

follows since the canonical reduction T - S + iV has the property that /V G 3S and

S G 2 I 1 # TO complete the proof it will suffice to show that 211 w K is a full

algebra; that is, it will suffice to show that if T G 21 ί © 3ΐ, and T " 1 G β ( X ) ,

5As proved by M. H. Stone [13] for real algebras C(3J1) and by 1. Gelfand and G.
Silov [9] for complex algebras C (Ίίl).
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t h e n 7 1 " 1 G ? I 1 ® ft. L e t T-S + N b e t h e c a n o n i c a l form of T; t h e n s i n c e

T ( m ) = S {m) Φ- 0 , m E 5F, w e s e e t h a t S"ι e x i s t s a n d i s in 21 ι b e c a u s e S~ι ( ) E

C ( S » ) . T h u s

where A/ = - T'ιNS"1 EΪi. Thus 2It © 3ί is a full algebra containing r and

every projection E{T9σ) (T Gr), and hence 21 (r) = ?It © 51.

THEOREM 18. Le£ 13 be the Borel sets in the compact Hausdorff space 3!,

and let 21 be an algebra of operators on the complex B-space X which is equi-

valent to the algebra C (Έ.) of continuous functions on ϊί. Then there is a func-

tion A on β to B (X ) with the properties :

( i ) A is a spectral measure in X of class (B, X);

( i i ) if S {f) is the element in 21 corresponding to the element f in C(S5ί)

under some homeomorphic isomorphism then9 for every x G X and x* E X ,

x*S{f)x = J f{m)xΛ(dm)x*,

(i i i) the adjoint S* of every S in 21 is a scalar type operator of class X

(iv) if X is reflexive^ every S in 21 is a scalar type operator of class X .

Proof. Let S{f) be the operator in 21 corresponding to the function / E C ( ϊ l )

under some homeomorphic isomorphism of 21 onto C(3K). Then for % in ϊ and

x* in X* we have # * S ( / ) Λ ; a linear functional on C(SOf) and hence, by the Riesz

representation theorem, there is a uniquely determined regular measure μ( ,

x,x*) such that

x*S(f)x =Jm f (m)μ(dm,x,x*), f<=C(Έ), x£l, x*eΓ.

S i n c e μ ( e $ x 9 x * ) i s u n i q u e l y d e t e r m i n e d by e9x9 Λ;* i t i s , for e a c h e E D , b i -

l i n e a r in x a n d %*. S i n c e

1/1=1

it is seen that μ(e9x9x*) is continuous in x and #*. Hence for fixed e and

there is a point A (e )#* E X* such that

μ(e,%,Λ:*) = %^ ( e ) x * .
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I t f o l l o w s f r o m t h e b i l i n e a r i t y a n d b o u n d e d n e s s o f μ t h a t A (e) E B (X ) . T h u s

( i i ) i s p r o v e d a n d a p a r t o f ( i ) i s p r o v e d . T o c o m p l e t e t h e p r o o f o f ( i ) w e h a v e ,

f o r e v e r y p a i r /, g G C ( ϊ l ) ,

Lf(m)f g(μ)xA{dμ*dm)x*=f f(m) f g{μ)xA{dμ)x*
iί IK JΛ dm

f(m)g(m)xA(dm)x*=x*S(fg)x

= x*S(f)S(g)x=j^ f(m)S(g)xA(dm)x*

= JΈf(m)jψg(μ)xA(dμ)A(dm)x*.

Thus, s ince a functional on C ( ϊ ί ) determines the regular measure uniquely, we

have

A(σn δ)=A(σ)A(δ), σ, δ G B ,

and this completes the proof of ( i ) .

The integral instead of being thought of as a Lebesgue integral in the weak

operator topology may be thought of as an integral in the uniform topology as

defined immediately preceding Lemma 6. Thus, by Lemma 6, each of the opera-

tors

is a scalar type operator in X of class X, which proves ( i i i ) . In case X is

reflexive, E (σ) = A* (σ) is a spectral measure in X and hence, by Lemma 6,

S ( / ) =

is a scalar type operator of class X , which proves (iv) and completes the proof

of the theorem.

THEOREM 19. The adjoint Γ* of every operator T in the algebra sΆ(τ) as

defined in Theorem 17 is a spectral operator of class X. // X is reflexive, every

T G ?I ( T ) is a spectral operator of class X .
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Proof. This follows immediately from Theorems 8, 17, and 18.

Theorem 19 shows that the sum and product of two spectral operators in a

reflexive space X will again be spectral operators provided that the Boolean

algebra determined by all the projections in both resolutions of the identity is

bounded. If X is Hubert space, J. Wermer [16] has shown that such is the case.

In general, however, the Boolean algebra determined by two bounded Boolean

algebras of projections, all of which commute, is not bounded. Also it is not

always true that the sum of two spectral operators is a spectral operator. Ex-

amples proving both of these statements have been constructed by S. Kakutani

[ 10].

Examples of spectral operators other than normal operators on Hubert space

are easy to construct, and some interesting classes have been discussed by

J. Schwartz [ 1 2 ] . 6

Besides Theorems 8, 13, 14, 19, which are useful in the construction of

spectral operators, we shall mention one more which will be needed in the

perturbation theory of J. Schwartz.

THEOREM 20. // T is a compact operator in a reflexive space X, then T

is a spectral operator if and only if the integrals

( i ) — ί T(λ)dλ
2πi Jc

are bounded as C varies over all admissible contours in the resolvent set. In

this case the resolution of the identity is countably additive in the strong opera-

tor topologyj and the integral ( i ) is the value of the resolution of the identity

on the domain bounded by C.

Proof. Let λ 0 = 0, λn £ 0 (n = 1, 2, ) be the points in the spectrum of

T. Let

E(λn) = / T{λ)dλ U = l , 2 , . . ),
2πi JCn

where Cn is a circle containing λn but no other spectral point. Since the Boolean

6Other spectral operators occurring in analysis will be found in the forthcoming
book Spectral Theory by N. Dunford and J. Schwartz. Conditions on the rate of growth
of the resolvent which are sufficient to ensure that T be spectral will be found in
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algebra determined by the E (λn) is bounded, it may be embedded in a complete7

Boolean algebra. We may therefore define

oo

£(λ o ) = / - U £(λ π )

and

£(σ)= U £ ( λ j ,

σ arbitrary. If β is the Boolean algebra of all subsets of the plane, it is clear

that the map σ—>E(σ) is a homomorphism of 13 onto a Boolean algebra of

projections in X. From our hypothesis it follows that

( i i ) \E(σ)\ <K, σ e B .

Now let σn C σn +ι C and σ - U σ n . Then

( i i i ) E(σ)= U £ ( λ π ) = U U £ ( λ m ) = U E(σn),

λn G σ n λnλm

and s i n c e E(σn)x = x ( τ z > m ) if x£E(σm)'£f we s e e from ( i i ) a n d ( i i i )

t h a t E {σn )x — > x if x G E (σ) X. A l s o s i n c e

we have E (σn) x = 0 if x G E (σ ') X. Thus E (σn)x —> £ (σ)% for every x in

X, and E (σ) is countably additive on lϋ in the strong operator topology. To

complete the proof that T is spectral, it will suffice to show that

(iv) σ(T,E{σ)X)Cσ, σ G β .

If λ 0 ii σ, t h e n E (σ) h a s t h e form ( i ) , from w h i c h ( i v ) f o l l o w s . If λ 0 G σ, t h e n

a n y s p e c t r a l p o i n t λn ί σ i s in p ( T$ E ( ί λn \ κ ) X ) and h e n c e in p ( 7 , £ ( σ ) X ) ,

w h i c h p r o v e s ( i v ) .

F i n a l l y l e t σ be an o p e n and c l o s e d s u b s e t of σ(T), and l e t A (σ) be t h e

p r o j e c t i o n d e f i n e d by ( i ) , w h e r e σ i s t h e i n t e r s e c t i o n of σ(T) a n d t h e d o m a i n

b o u n d e d by C. T h e n , s i n c e

7Complete relative to the order A C B (ΛB = A ). See, for example [ β ] .



354 NELSON DUNFORD

σ{T,A(σ)%) C σ, σ( T,A (σ') X ) C σ',

Theorems 3 and 4 show that

E(σ)A(σ) = A(σ), E{σ)A(σ') = 0,

and hence that
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