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1. Background. Let the bounded, simply connected, open region R of the
(x,y) plane have the boundary curve C. If a uniform elastic membrane of unit
density is uniformly stretched upon C with unit tension across each unit length,
the square A=A(R) of the fundamental frequency satisfies the conditions

(subscripts denote differentiation )

Mu=uyy +uyy==Au inR,
(la)

A = minimum,
with the boundary condition

(1b) u{x,y)=0 on C.

The solution u of problem (1) is unique up to a constant factor. It is known
(13, p. 24] that A is the minimum over all piecewise smooth functions u satisfy-

ing (1b) of the Rayleigh quotient

(2) p(u)=/fR 1vu|2dxdy/f/Ru2dxdy,

where | Vu |2 =u’?+u2. In many practical methods for approximating A one
essentially determines p(u) for functions u satisfying (1b) which are close to
a solution of the boundary value problem (1). See [9, p.112; 6, p. 276; 11, and
12]. By (2) these approximations are known to be upper bounds for A; they
can be made arbitrarily good with sufficient labor, It is obviously of equal

importance to obtain close lower bounds for A; cf. [ 14].

The lower bounds for A given by Pdlya and Szego [13] are ordinarily far
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from close. Those obtainable from p(u), [f, u?dxdy, and [fg 1Au|?dxdy by
methods due to Temple [ 15], D. H. Weinstein [ 17], Wielandt [ 181, and Kato [ 8]
(for expositions see [3] and [16]) are arbitrarily good, but presuppose know-
ledge of a lower bound for the second eigenvalue A, of the problem (1). The
same is true of Davis’s proposals in [4]. It is possible, following Aronszajn
and Zeichner [ 1], to get close lower bounds for A by minimizing p(u) over a
class of functions u permitted some discontinuity in R (method of A. Weinstein);

the author has no knowledge of the practicability of the method.

A common method of approximating A is to replace the boundary value prob-
lem (1) by a similar problem in finite differences. Divide the plane into squares
of side & by the network of lines x = ph, y =vh (g, v=10, £1, £2,...). The
points (ph, vh) are the nodes of the net. A half-square is an isosceles right

triangle whose vertices are three nodes of one square of the net. Assume that
(3) R is the union of a finite number of squares and half-squares.

Then every interior node of R has four neighboring nodes in R u C.

Define Ay, a finite-difference approximation to A, by the relation
REARv (x,y)=v(x + hyy) +v(x = hyy) +v(x,y +h) +v(x,y —h) - dv(x,y).

Let Ay be the least number satisfying the following difference equation for

a net function v defined on the nodes (x,y) of the net:

(4a) Apv = — Apv  at the nodes in R,

with the boundary condition
(4b) v =0 at the nodes on C.

One can interpret Ap as the square of the fundamental frequency of a network
of massless strings with uniform tension 4, fastened to C, and supporting a
particle of mass h? at each node. That is, a certain lumping of the distributed

masses and tensions of problem (1) yields problem (4).

It is easily verified for a rectangular region of commensurable sides 7/p,

7/q, and for h such that (3) holds, that one has u = v = sin px sin ¢y, and that

)\ .2 .2 4 4 2
(5) b _sintph/2)wsin(gh/2) b @ B gy (0.

A (ph/2)% + (qh/2)? p? +q?

Hence A < A for all h, and one can use A\, as a lower bound for A. However,
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since A is known exactly for rectangular regions, relation (5) contributes
nothing to its computation. For general regions R, it was stated (3, p.405]
in 1949 that nothing could be said about the relation of Ay, to A.

2. A new result. An asymptotic relation resembling (5) will now be es-
tablished for any convex polygonal region R satisfying (3). Such regions are
polygons of at most eight sides, having interior vertex angles of 45°, 90°, or
135° The following theorem® will be proved in § 3 by use of the lemmas of $ 4:

THEOREM. Let R be a convex region which is a finite union of squares
and half-squares for all h under consideration. Let u solve problem (1) for R,
and let

1 (u;x+u2 ) dxdy
d=a(R)= — e

I (u; + uyz)dxdy

Then, as h — 0, one has

Ah a
(6) — < 1-— k% + 0(h?) (h —0).
A 12
It is a consequence of the theorem that, for all sufficiently small A, say
for h < hgy, Ay is a lower bound for A. The ordinary finite-difference method
thus complements any method based on Rayleigh quotients; and, since Aj — A
as h— 0, together two such methods can confine A to an arbitrarily short
interval. In particular, Pdlya [11 and 12] devises modified finite-difference
approximations to problem (1) which furnish upper bounds to A for all 4. Hence
arbitrarily good two-sided bounds to A can be found by finite-difference methods

alone.

The constant a of the theorem is the best possible for a rectangle R of
sides n/p, w/q. For this region, we have a = (p*+¢*). (p2+4¢*)", and (6)
is seen by (5) to be actually an equality up to terms o (h?).

Using heuristic reasoning, Milne [9, p.238, (97.5)] finds an approximate

formula which, specialized to the fundamental eigenvalue and set in our notation,

says
Ah AR2

(7) — 2 le— + 0(h?%) (h —0).
A 24

1The author gratefully acknowledges many helpful conversations with his colleague
Dr. Wolfgang Wasow on the subject of this paper.
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For a rectangle of sides n/p, /g, the coefficient of —2?/12 in (7) is (p2+¢?2)/2.
Since

p? g2 . (p% ~q?)? p* 4 q*
2

p? 4 g2 p?+ g2
the coefficient of A% in (7) is low for all rectangles with p # ¢, and exact for

squares. Hence (7) cannot ordinarily be expected to be exact in its A? term.

The use of the theorem to bound A is limited by our lack of knowledge of
ho. However, it is the author’s conjecture that, for the regions R of the theorem,

A < A for all 4.

The convexity of R is vital to the statement and proof of the theorem; in
fact, by the remark after Lemma 4, a = 0 for nonconvex polygons. A heuristic
argument, supported by the numerical example of § 5, has in fact convinced the

author that, for nonconvex polygons, Ay > A for all sufficiently small 4.

The restriction of R and % to satisfy (3) is less essential, but is used in
two ways: (i) to be sure that no interior node has a neighboring node outside
R; (ii) to prove that I' = 0 in Lemma 7. With an appropriate alteration of Ap
near C, and with a modification of LLemma 7, one can extend the present method
to obtain formulas of type (6) without assuming (3)—and even for convex
regions R bounded by piecewise analytic curves C. See [5]. Analogous results

can be expected in n dimensions.

3. Proof of the theorem. Let K be the class of functions u which vanish
on C, such that (uuy )y and (uuy ), are continuous in R u C. Applying Gauss’s
divergence formula (27) with p = uuy, q = uuy, one finds that, for all u in K,

Green’s formula is valid in the form

//]VulZdey=—/f ulAudxdy.
R R

Hence, for all u €K, p(u) in (2) can be rewritten with - [ uAu dxdy in the

numerator.

Since, by Lemma 1, the function u which minimizes (2) and solves (1)
belongs to K, and since any function in K is piecewise smooth, one may alter-

natively define A as the minimum, over all functions in K, of the quotient

p(u)=-—//R uAudxdy/‘/‘Z; u? dudy .
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Analogously, without having to worry about function classes, one can show

that Ap is the minimum, over all net functions v satisfying (4b), of the quotient
(8) palv) == h? 2220 vAw/h2 222 v?,
Np Np

where the sums are extended over all nodes N, of the net inside R.

The key to proving the theorem is to set the solution u of problem (1) into
the Rayleigh quotient (8) of problem (4). It will be shown that

pp(u)

9
(9) -

1
=1—-1—2-ah2+0(h2) (h —0).

Since Ay _<_ph(u), the theorem follows from (9). Henceforth u will always
denote a solution of problem (1).

The denominator of ph(u) is a Riemann sum for ffp u?dxdy. Since u? is

continuous and hence Riemann integrable over R,
(10) h222u2=ffR u?dxdy + 0 (1) (h—0).
Np

(It can be shown that one can replace o (1) by o{k?) in (10), but we shall
not need to do this.)

The nodes Nj, inside R are divided into two classes:
N'

P those at a distance 4 from some 135° vertex of C;

N;?: the other nodes of Nj.
Split the numerator of ph(u) accordingly:

(11) _hz}:z uAhu=—-hzzZuAhu—hZZZ uAhu=Sl;(u)+S,:'(u).
N NZ?

h h Nh’ ’

To estimate S}:(u) note that, since there are at most eight 135° vertices,

the number of nodes in N}: is at most 8, for any k. At any node in N/,

u - u;

h

-0\ ¢
R ulpu | _{hz(uT) > < 4h? mwax |Vu|?,
=1
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where the maximum of | Vu |? is taken for all points (x,y ) within a distance 24

of some 135° vertex. lience, by Lemma 2, as h — 0 through values such that

(3) holds,
(12) |S};(u)| < 32h% max |Vu|? = 0 (A?) (h—0).
Now, using the notation and assertion of Lemma 5, one obtains

h4
(13) Sy/(u)=~h? 22" ubu - I 22 ugxnn + tyyyy ).
N" NI’
3 B

Since u satisfies (la),

(14)  —h2 2220 whu=M2 222 w2 =222 ul+o0(h?) (h—0);

Nh Nh Nh

the last step is correct because u(x,y) — 0 as (x,y) — C.

Combining (13) and (14), one finds that, as h — 0,

h4
Situ) = M2 2220 u¥ = = 222w + uffyy ) + 0 (h)
Np

Nh
(15)
/’L2
= M? ZZ u? - — /_/u(uxxxx+uyyyy)dxdy+o(h2),
Ny 12 “*Rr

by Lemma 6. The integrals used in this proof exist, by Lemma 3. Using (11),
(12), (15), and Lemma 7, one finds that

(16) —h2 2_2_ ubpu
Np

/)

- 2 2 _ 2 2 2 .

= M ZNZ vt = ) (ul, v ul dxdy 40 (k) (h—0)
h

Dividing (16) by the denominator of p,(u), one gets
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2 2
52 Mg Cug, + ul ) dxdy
pplu) = A - = — =2 s o (k).
12 B2 TS 42
Np

Hence, by (10),

12 Mg (uﬁx + u.;jy ) dxdy
(17) ph(u)=)\—1— +o0(h?) (h—>0).
2 I u? dxdy

If one divides (17) by A, and notes from (2) that A [f,u?dxdy = [ | Vu | *dxdy,

it is seen that

p; (1) L2 If (u;x+u2 ) dxdy
AR R L o(h?) (h—0).
A 20 | Vu|? dady

By the definition of @ we have proved (9) and hence the theorem.

4. Some lemmas. l.emma 1, suggested to the author by Professor Max
Shiffman, is used to establish Lemmas 2 to 7, which were applied to prove the
theorem. In all the lemmas R is the convex union of squares and half-squares

of the network, while u = u (x,y ) is a function solving problem (1) in K.

I.LEmMA 1. The function u is an analytic function of x and y in Ru C,
except at the 135° vertices of C. Let r, 8 be local polar coordinates centered

at a 135° vertex Pj, with 0 < < 3n/4 in R. Then
(18) u=ykr4/3 sin (460/3) + r7/3 Ey(r, 0),

where y, is a constant, and where Ey(r,0), together with all its derivatives,

is bounded in a neighborhood of Py,.

Proof. By reflection one can continue u antisymmetrically across each
straight segment of C, and (la) is satisfied by the extended u at all points
of R u C except the 135° vertices. The first sentence of the lemma then follows
from [ 2, p. 179].

For (&n) € R, write t = &+ in. For each ¢, let w =f(z,¢) be an analytic
function of the complex variable z = x + iy which maps R into the unit circle

lw| < 1, with f(¢t,¢) = 0. To study f near a vertex zj; of C, one may assume
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that f (z4,¢) = 1. Let the interior vertex angle of C at zj, be n/&y (0t} = 4,2, or
4/3). It is a property of the Schwarz-Christoffel transformation [ 10, p. 1897 that

(19) f(z,t):l+(z—-zk)akgk(z,t),

where g, is an analytic function of z regular at zj.

Let G(z,t) = G(x,y; & n) be Green’s function for Au in R. Now G(z,t) = —
(27)°! log |f(z,¢)|; see [10, p.181]. It then follows from (19) that, in the
notation of the lemma, when oy, = 4/3,

(20) G(z,t) =y, (£)r*/3 sin (46/3) + 173 Ey(r, 6,¢).

Moreover, y,(¢) and E,(r,6,¢) are integrable over R, since the only discon-

tinuity of G (z,t) is a logarithmic one at ¢ = z.

The function u is representable by the integral [ 2, pp. 182-3]

(21) u(x,y)=)\f./1;G(x,y;«f,n)u(ff,n)d.’fdn.

Substituting (20) into (21) proves (18) and the lemma.
LEMMA 2. |Vu(x,y)] — 0as (x,y) —> any 135° vertex of C.
Proof. By (18), |Vu|=0(r'"?), as (x,y) —> any 135° vertex of C.

. 2
LemMA 3. The functions uix, Ullxxxs Ulgxxzs Uyys Uylyyys and uuyyyy are

Lebesgue-integrable in R.

Proof. By Lemma 1 these functions are continuous in R u C, except at the

135° vertices Pj. At these vertices (18) implies that they are O(r™*/?) and are

hence integrable.
LEMMA 4. The Lebesgue integrals [, uyuyydx and [ uyuxxdy exist.
Proof. Analogous to that of Lemma 3.

REMARK. Lemmas 2, 3, and 4 are false for polygonal regions R which are
not convex, since in general the exponent in (18) is o, where n/dy is the

interior angle at the vertex Py.

LEMMA 5. At each node (x,y ) in R of the network of section 1, one has
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1
(22) Ahu,—Au+ Jo h2(uxxxx }’;’}’}’)’
where
u;xxx xxxx(x+0h’)’) "‘1<6’<1;
(23)

uyyyy:uyyyy(x,y+8 h), —1<67”<1.

Proof. By Lemma 1, uxyy, is continuous in the open line segment from
(x ~h,y) to (x +h,y) (though infinite at any 135° vertex). Since u is con-
tinuous in R u C, it follows from Taylor’s formula [7, p.357] that, if we fix y
and set ¢ (x) = u(x,y),

d(x+h)+dp(x~h)=24(x)
1
=}L2¢”(x)+ EZ h4[¢""(x+ elh)+ Ollll(x —'62h)],

where 0 < 6; < 1 (i=1,2). By the continuity of ¢’*”/, the last bracket equals
26(x + 0’k ), where -1 < 6” < 1.

A similar formula for ¥)(y)=u(x,y), when added to the above and divided
by k2, yields (22) and (23).

LEMMA 6. Define N/ as in $ 3. For each node (x,y) in N/, use the nota-
tion of (23). Then, as h"—> 0 over values such that (3) holds, one has

(24) K? Zzu(u;xxx yyyy) /]u(uxxxx+uyyyy)dxdy+o(l) (h—0).
NI'
h

Proof. For all (x,y) in the entire plane £, define
u(Ugxxx + uyyyy)y if (x,y) ER;

0, elsewhere .

f(x,}’)=,

By the proof of Lemma 3 one sees that f (x,v) is O(+"*/?) in the neighborhood
of each 135° vertex Py, of C, and continuous elsewhere. Divide the nodes (x,y) =
(phy vh) of N/CR into four classes K% (;=1,2,3,4) according to the parity
of (u,v). le any class K9, For each vertex (%,y) in K let S(x,y) be the

union of the four closed network squares of E, which contain (x,y). The area
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of each S(x,y) is 4h?% ordinarily certain of the S(x,y) contain points not in

R. Define

ulx,y) (u’ ), for (&,7) €S(x,y);

@) xXxX% }’}’}’}’
(&)=
0, for (&,n) & US(x,9).

Then fh(i)(f,n) —f(&n), as b — 0, for almost all (&) in the plane, Using

,r

the fact that no node of Nh is adjacent to a 135° vertex of C, one can show that
for all i, uniformly in 4, [féi)(f,n” < F(&n), where F is an integrable func-
tion in £,.

Each term of the sum (24) for which (x,y) €K () s equal to

1./ )
- ¢ " n)dEdn.
4 '/;(x,y)fh (&) dedn

Hence, applying Lebesgue’s convergence theorem, one sees that, as A —0,

for each i,

22 ulul, + yyyy)——ﬂ R0 (&n)dédn

Nyn K@
(25)

1
— Z/fE f(&n)dédn (h —0).
2

Summing (25) over i = 1,2, 3, 4 proves (24) and the lemma.

LEMMA 7. One has

(26) f./l;u(uxxxx+uyyyy)dxdy= '/R (u;‘x+u;y)dxdy.

Proof. The following applications of Gauss’s divergence theorem in the

form

(27) /R (px+qy)dxdy='/(;(pdy—qu)

can be justified by integrating over the region R* interior to a smooth convex

curve C* inside R, and then letting C* — C appropriately. The continuity of
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the integrals in the limit follows from [.emmas 1, 3, and 4.

In the divergence theorem for p = uttyyy, g =ullyyy, the line integral vanishes,

and one finds

(28) ‘/.'/I; u(Ugxxx + Uyyyy ) dxdy = —/:L: (uglixxx + Uyliyyy )dxdy.

A second application of the divergence theorem with p = u,u,,; g = Uyllyy, COM=
bined with (28), shows that

(29) f/}; u(uxxxx+uyyyy)dxdy:'/:/1;(u§x+u;y)dxa’y+l“,

where 1" = [ (uyuyydx — usuyndy).

By (la), uyy=— uyy on C, whence "= [ uyy(uydx + uydy). On the seg-
ments of C parallel to the axes, Uxx = Uyy = 0, so that there the contribution

to I is zero.

Now the vector Vu = (uy, uy ) is perpendicular to C. On the segments of C
making a 45° or 135° angle with the x-axis, (u,, uy) is parallel to (uy, Uy )
whence (uy, uy ) is perpendicular to C. Thus uydx + uxdy = 0 when (dx, dy) is
tangent to C, so that the contribution to [ from these 45° and 135° segments of

C is also zero.

Hence I" = 0, and the lemma follows from (29).

5. Numerical example. [.et R, be the six-sided, nonconvex, L-shaped region

whose closure is the union of the three unit squares

-1<x<0, 0<y<1;
0<x<1, 0Ly<1;
0<x<1, -1<y <0,

The fundamental frequencies Ap = Ap(R,) and corresponding net functions v
were computed by B.F. Handy on the SWAC (National Bureau of Standards
Western Automatic Computer) for 1/h=3,4,-.-,8. The computation used a
power method; for some initial net function vy, (h2A, +51)"v, was determined
for large positive integers m, where [ is the identity operator. On the basis of
Collatz’s inclusion theorem [3, p.289], the values in the accompanying table
are believed to have errors less than 5x 10°%. Observe that A, (R;) is less for

h=1/8 than for h = 1/7.
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TABLE
h )‘h(Rx ) )\h (Rz )
1/2 9.07180 12.00000
1/3 9.52514 13.73700
1/4 9.64143 14.37340
1/5 9.67860 14.67081
1/6 9.69083 14.83259
1/7 9.69384 14.93003
1/8 9.69316 14.99315

Since R, is not convex, the theorem of § 2 does not apply, but a heuristic
argument suggests that A\p(R,;) — A(R,) = O(h*/3). A least-squares fit to the
values of Ay (R;) for 1/8 < A < 1/4 of a function of type

MR 2 oy +BA*Y 3 vy k=6 (R)
yielded the values

(30) o, =9.63632, B, = 2.40286,  y, = - 5.97212.

The maximum of | Az (R,) ~ ¢, (h)] for the five values of  is .00013. Hence o,

is a working estimate of A (R, ).

The fact that 8, > 0 in (30) supports the author’s conjecture that, for
nonconvex polygonal domains satisfying (3), Ay > A for all sufficiently small

h.

The table also gives Handy’s values for the second eigenvalues of R, which
are the fundamental eigenvalues Ap(R,) of the trapezoidal halfdomain R, of
R, for which x > y. Since the theorem does apply to R,, a least-squares fit to
the values of Ay (R, ) for 1/8 < h < 1/4 of a function of type

Ah(Rz) = 0(2‘(“32}1/2:(]52(}7/)
seemed appropriate, and yielded the values
®4 = 15.19980, B, =-13.22219.

The maximum of | A (Ry) — ¢, (h)] for the five values of & was .00010. Hence

G, is a working estimate of A(R;).

The value of B, is negative, in agreement with (6), but the quantity
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- 128, /G, = 10.4387 is something like one-fifth larger than an estimate of the
corresponding quantity a (R,) of the theorem. One therefore suspects that a is

not the best possible constant in (6) for the region R, .

In the table, note the relative closeness of the values of Ay (R,) to the work-
ing estimate, G4, of A(R,), even for a coarse net. Thus the value 12 for Ay(R,),
which is obtained by pencil and paper from a simple quadratic equation, is
comparable to the lower bounds 12.1 and 57%/4 obtained respectively by com-
parison with A for the circular membrane of equal area [ 13, p. 8] and with A for
the rectangular region 0 < x < 1; =1 <y < 1. The value A, ,3(R,)=13.737
requires getting the least eigenvalue of a 7th-order matrix, a relatively easy

procedure with a desk machine.

The monotonicity of Aj(R,) supports the author’s conjecture? that, for the
R of the theorem, Aj < X for all A,

%See page 470.
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