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SPECTRAL OPERATORS

NELsoN DUNFORD

1. Introduction. The present paper and the five following it by S. Kakutani,
J. Wermer, W. G. Bade, and J. Schwartz are all related; in them we discuss
different aspects of the problem of the complete reduction of an operator. A
spectral operator is a linear operator on a complex Banach space which has a
resolution of the identity.” It is shown that a bounded operator T is spectral if

and only if it has a canonical decomposition of the form
T=S+N,

where S is a scalar type operator and N is a generalized nilpotent commuting
with S. By a scalar type operator is meant a spectral operator S with resolution
of the identity £ which satisfies the equation

S = AE (dA).
o(s)

The scalar part S of T and the radical part N of T are uniquely determined by T.

For analytic functions f one has an operational calculus given by the formula

) Nn -
_ o (n)
f(T)—g — /Umf (AE (dM).

Some spectral operators are of type m; that is, the above formula reduces to

m Nﬂ
f[(Ty=3 — W OE @V,
rg n! /;(T)

and in Hilbert space conditions on the resolvent are given which are equivalent

to the statement that the spectral operator T is of type m. Spectral operators T

1Formal definitions will be given later.
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322 NELSON DUNFORD

have the property that for every x the analytic function (A — T) 'x has only
single-valued analytic extensions and thus has a maximal extension defined on
an open set p{x). The spectrum o (x) is defined as the complement of p (x). In
terms of these concepts it is shown that if £ is a resolution of the identity for

T, then, for closed sets o,
E(o)X =[x |o(x) Col,

This (Theorem 4) is a basic theorem; from it one deduces that the resolution
of the identity is unique, as well as the fact that every bounded operator com-
muting with 7 commutes with E (o), a fact proved for normal operators on
Hilbert space by B. Fuglede [71.2 Let U(T,U,+-+,V) be the full B-algebra
generated by the operators T, U,..., V; then we have the following decomposi-
tion theorems. If T is spectral and S its scalar part, then, as a vector direct

sum,
A(T,S) = U(S) @ R,

where R is the radical in (7, S). Furthermore, U (S) is equivalent to that
subalgebra of C(0(7T)) consisting of uniform limits of rational functions. The
algebra 2, which is generated by a spectral operator T and the projections

E (o) in its resolution of the identity, is equivalent to
c(M) @ R,

where I is the compact structure space of ¥ and R is the radical in ¥ . Along
these lines we mention the decomposition of the full B-algebra U(7) determined
by a family 7 of commuting spectral operators together with their resolutions
of the identity. If there is a bounded Boolean algebra of projections in X con-
taining all of the projections found among the resolutions of the identity of

operators in 7, then
AU(7) = UL @ R,

where U is equivalent to the space C () of continuous functions on the space
T of maximal ideals in A(7) (or in ¥) and R is the radical in A (7). Further-
more, the adjoint of every operator in 2 (7) is a spectral operator. If X is re-
flexive, then every operator in U (7) is a spectral operator. Thus in a reflexive

space the sum and product of two commuting spectral operators is a spectral

2That this conjecture of von Neumann, which was first proved by Fuglede, is a
corollary of Theorem 4 was pointed out to the author by J. Schwartz.
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operator provided that there is a bounded Boolean algebra containing both reso-
lutions of the identity. W.G. Bade [ 2] has generalized this by showing that the
weakly closed algebra generated by a bounded Boolean algebra of projections
in a reflexive space consists entirely of scalar type spectral operators. In this
paper Bade has also given sufficient conditions for the strong limit of scalar
type spectral operators to be of scalar type. If X is Hilbert space J. Werner [16]
has shown that the sum and product of two commuting spectral operators is again
a spectral operator. However, S. Kakutani [16] has constructed an example of
two commuting operators, each of scalar type, such that their sum is not a
spectral operator. W.G. Bade [1] has shown which portions of the theory are
valid for unbounded operators and has developed the operational calculus for
this case. J. Schwartz [ 12] has shown that, on a finite interval, the members
of a large class of boundary-value problems determine spectral operators. These
operators need not be purely differential operators but may also involve dif-

ference or integral operators.

2. Notation. By an admissible domain is meant an open set bounded by a
finite number of rectifiable Jordan curves. By an admissible contour is meant
the boundary of an admissible domain. The class of complex-valued functions
analytic and single-valued on some admissible domain containing the spectrum
o(T) of the linear operator T is denoted by F(T) or F(o(T)). For fE€ F(T)
the operator f (T) is defined by

1
T)= —
[(1)= — /Cmmxm,

where C is the boundary of some admissible domain containing the spectrum of T
upon whose closure f is single-valued and analytic and where T (\)= (A~ T)!
is the resolvent of 7. The mapping, given by the above formula, of the algebra
of analytic functions into an algebra of operators is a homomorphism (See, for
example, [3] or [14].) which assigns the operators /, T to the functions 1, A,
respectively. It has the property that o (f(7)) = f(o(T)). If f (A)=1 for A in
a component of its domain, and f (A) = 0 for A in the remaining components, then
f(T) is the projection

1
E = — T
(o) 5 / (M)dA,

mt G

where G is the boundary of that component upon which f (A) = 1 and where o is
that part of the spectrum o(T) of T bounded by G. It is clear that such a
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projection is associated with every subset o of o{(T) which is both open and
closed in ¢(T). From the fact that the map f — f (T') is a homomorphism it
follows that the map 0 — E (¢) is a homomorphism of the Boolean algebra
By of open and closed sets in ¢ (T) into a Boolean algebra of projection opera-

tors. It has the property (see [2])

o(T,E(0)X) Co, o€ By,

where here we have used the notation o (T, E (o) X) for the spectrum of T when
considered as an operator in E (o) X. Similarly p(7, E(c)X) is the resolvent
set of T when considered as an operator in E{¢)X and p(T) is p(T, X). The
symbol B(X) will be used for the algebra of all bounded linear transformations
in the B-space X.

3. Spectral operators. Let 3 be a Boolean algebra of subsets of a set p. We
suppose that p and the void set & are both in B. A homomorphic map E of 13
into a Boolean algebra of projection operators in the complex B-space X is
called a spectral measure in X provided that it is bounded and E(p)=1 A

spectral measure has then, by definition, the properties
E(0)E(8)=E(08), E(0)uE(8)=E(cud), adch,

(W){E()=1-E(0), E(@)=0, E(p)=1, o€ B,

|E(c)| <K, o € B.

In the conditions () the union of two commuting projection operators is under-

stood to be defined by the equation

AuB=A+B-A4B.

This union is a projection whose range is the closed linear manifold determined

by the ranges of 4 and B.

An operator T € B(X) is said to be a spectral operator of class (B,T") in

case
(B) B is a Boolean algebra of sets in the complex plane p;

(y) T is a linear manifold in X* which is total; that is, ['x =0 only when

x = 0;

(8) there is a spectral measure E in X with domain B such that
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TE(6)=E(a)T, o(T,E,X) Co, o € B;
and
(€) for every x € X, x* €', the function x*E (0 )x is countably additive on 3.

The condition (€) means that if {0,} is a sequence of disjoint sets in 13

whose union ¢ is also in B then

Z x*E(op)x =x*E (0)x, x€X, x*€l .,

n

In case B is a o-field and I" = X*, the Orlicz-Banach-Pettis theorem (see [ 11,
Theorem 2.32] or [ 5, p.322]) shows that the operator-valued set function E (o),
o € B, is countably additive on B in the strong operator topology.

An operator T € B(X) is said to be a spectral operator of class (I'), or
simply an operator of class (I'), in case it is a spectral operator of class
(B,1"), where B is the set of all Borel sets in the plane. An operator is said
to be a spectral operator in case it is a spectral operator of class (I") for some
[ satisfying (y). If T is a spectral operator of type (3,I"), then any spectral
measure in X with domain B which satisfies (8) and (€) is called a resolution
of the identity for T.

THEOREM 1. Let E be a resolution of the identity for the spectral operator
T. Then

E(o(T))=1.

Proof. Let o be a closed subset of the resolvent set p=p(T). Then, in
view of (8), we see that the spectrum of T as an operator in E, X is void and
hence (see [15]) £, = 0. Since p is a denumerable union of closed sets we
have from (¢) that

x*¥Epx =0, x eX, x*el,

and from (y) that £, = 0, and hence E(o(T)) =1

For A € p(T) we write, as usual, T (X) for (A]- T)!. In the next theorem
we shall show that, for spectral operators, every analytic extension of T(A)x
is necessarily single-valued. That this is not the case for an arbitrary operator

T is elegantly shown by the following example due to S. Kakutani.



326 NELSON DUNFORD

Consider the space X of functions [ analytic in the unit circle |z| < 1 and

for which

f(z)=chz", 2 |Cn|2=‘flz-
n=0 n=0
In this space define T by
- f(0
U AR A

z

The spectrum of T is the set of z with |z| < 1, and for A € p(T) the function
T(A)(g,z) may be calculated by solving the equation

(M-T)f=¢g
for f (z). An elementary calculation gives

zg(z) = f(0)

flz)= Az -1

Since f (z) is analytic when z = A™! we must have
f0)=A"Tg(X™),

so that

zg(z)=X1tgxh)

T(M) (g, z)=
82 Mz -1

Thus the vector-valued analytic function 7 (X)g, A €p (T), will have multiple-
valued extensions if the function g has a multiple-valued analytic continuation

outside the unit circle.

In order to describe the situation discussed in the next theorem certain con-
cepts are introduced. By an analytic extension of T (&)x will be meant a func-

tion { defined and analytic on an open set U (f) D p(7) and such that

(EI-T) (&) =x
for every £in D(f). It is clear that, for such an extension,

f(O=T()x
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for £in p (7). The function 7 (&)x is said to have the single-valued extension
property provided that for every pair f, g of analytic extensions of T(&)x we
have (&) =g (&) for every £ in D(f)D(g). The union of the sets D(f) as f
varies over all analytic extensions of T (&)x is called the resolvent set of x
and is denoted by p(x). The spectrum o(x) of x is defined to be the comple-
ment of p (x). It is clear that if 7 (&)« has the single-valued extension property
then there is a maximal extension x(.) whose domain is p(x). In this case
x (&) is a single-valued analytic function with domain p(x) and with x (&) =

T(E)x, Ecp(T).

TueoREM 2. If T is a spectral operator in X, then for every x € X the

function T (&) x has the single-valued extension property.

Proof. Let f, g be two extensions of 7 (&)« and define
R(E) =f(&E)-g(&), EeD(f)D(g).

We suppose, in order to make an indirect proof, that for some £ €D (f)D(g)
we have 4 (-fo) # 0. Thus there is a neighborhood N(fo) of fo with N(.fo)C
D(f)D(g) and

(i) h(E) £ 0, (E1-TIR(E)=0, EEN(E,).

The desired contradiction may be obtained from these equations and the

following lemma.

I.LEMMA 1. Let £ be a resolution of the identity for the spectral operator T.
Let o be a closed set of complex numbers with & & o. If (§1-T)x, =0 then

E(o)x, =0, E({& )x, =x

0°?

where { £} is the set consisting of the single point & .

Proof. Let T, (&) be the resolvent of T as an operator in £ (o) X, so that
Ty (£ (&= TYE(0) = E(0).
But since
(EJJ=TYE(0)x, =E(a)(&1-T)x, =0,

we have E (o)x0 = 0. Now let
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o, =LE|1E- & > 1nl,

so that £ (o, )xo = 0; by (8), (€), therefore,

(I -EW{E))x, = lim x*E (0p)x, =0, (x*€T).

n

Condition (y) thus shows that £ ({ £ })x  =x, and the lemma is proved.

0?

Returning now to the proof of Theorem 2, let
£ LE, £ ENE), £ L,
Then A (&) — h (), and the lemma together with (i) gives

0=EW{EDRE) D EWAEDR(E) =R,

which is a contradiction to (i) and proves the theorem.

TuEOREM 3. If T is a spectral operator, the spectrum o(x) is void if and
only if x = 0.

Proof. Using Theorem 2, we see that if o(x) is void then x (&) is every-

where defined, single-valued, and hence entire. Since, as & — «c, we have

x*x (&) =x*T (§)x — 0,
we see that x*x (&) = 0 for all &. Hence
x¥x =x*(E1-=T)x (&) =0,
and x = 0.

TeEOREM 4. Let T be a spectral operator with resolution of the identity

E, and let 0 be a closed set of complex numbers. Then
E(o)X =[x l o(x) Cal.

Proof. Let E(o)x =x, and let T, (&) be the resolvent of T as an operator
in £ (o) X. Then (8) shows that

Tcr(f) Ecx = To(é_)@
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is an analytic extension of T (&)x to ¢, the complement of 0. Thus p(x)D 0",
o(x) Co. Conversely, assume that o(x) Co and let o, be a closed subset of
the complement ¢* of 0. Then T, (&)E (0 )x is an extension of T (&) E (0y)x
to o1. Also E(o,)x (&) is an extension of T(&)E (0,)x to p(x). Thus, from

Theorem 2, it is seen that

E(o)x (&) = Tgl(g)E(ol)x, £eplx)og.

Since 0,0, are disjoint compact sets, there is an admissible contour C; with
o, inside C; and o outside. Now let C be a large circle surrounding o(7) so

that, since x (£) is analytic and single-valued on and within C,, we have

1 1
E(op)x= — fc T(E o0 )wdg = = [ 1,()B (01)ndt

2mi 7

1 1
- [ (OB Gt - fclmol)x(f)d&o.

2ni

Let o, be an increasing sequence of closed sets whose union is ¢”. Then

x*E (0%)x = lim x*E (0, )x = 0, (x* € T),

n
and so (&), (y) show that E(0")x =0, £ (o) x = x.

THEOREM 5. Let T be a spectral operator and A a bounded linear trans-
formation which commutes with T. Then A commutes with every resolution of

the identity for T.

Proof. Let o,0, be disjoint closed sets of complex numbers and let £ be a

resolution of the identity for 7. Since
AT (E)x = T (&) Ax,
we see that
p(Ax) D p(x), o(Adx) Col(x).

Thus Theorem 4 shows that

E(o)AE (o) = AE (o), E(o)AE(o,)=E(a)E(o,)AE(o,)=0.
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Statements (y), (€) show then that £ (0)AE (¢”) = 0, and hence
E{o)A=E(0)ALE(0)+ E(a) ] =E(0)YAE (0) + E(0)AE (0?) = AE (o).

THEOREM 6. If T is a spectral operator, its resolution of the identity is

unique.

Proof. If E,A are both resolutions of the identity for 7, and o is a closed

set of complex numbers, then Theorem 4 gives
A()E(6)=E(a), E(c)A(0)=4 (o),
and (&) together with Theorem 5 gives

A(e)E(c)=E(a)A (o).

Thus for closed sets 0, 4 (6) = E(0), and (y), (€) show that this same equality

holds for every Dorel set 0.

THEOREM 7. Let E be a spectral measure whose domain consists of the
Borel sets in the plane and which vanishes on the complement of the compact
set a. Then, for every scalar function f continuous on o, the Riemann integral

Iy f (M) E(dA) exists in the uniform operator topology, and
| [TOE@N] < sup 700 (E),
o A

where v(E) is a constant depending only upon E. Furthermore, for any two

continuous functions [ and g we have

[/f(A)E(dA)][/g(A)E(dA)] =/f(A)g(A)E(dA).

Proof. 1et 8> 0 be such that |f(A)~f(A")]| < € if |A=A"| <25, and
and let 7= (0;, A,), 7"= (0}, A7) be two partitionings of o with norms at most
8. Then for x € X and x* € X*, and the operator

U(7T) = E f()\L)E(UL)’

we have the inequality

|a* (U () = U(a x| < 2 Zlf()xi)—f()\j’)\ |%*E (0,0} | <evar x*E (o)x.
i o
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But

var x*£ (0)x < 4 Lube [ 2% (o) x| <4K|x]| |x*],

a [oa

where K is an upper bound for | £ (o) |. Thus

[ U(7) - U(a")] :] l.au.b. |x*¥(U(a) = U(n"))x| < dek.

xl=|x¥ =1

The final assertion is seen by using (&) to obtain the equation
[ZrO0EE][Z roE@)] = ZrO0gIE 0.
I

LevmMa 2. Let U be a commutative subalgebra of B(X) which contains I

and the inverse of any of its elements provided that the inverse exists as an
element of B(X). Let T,E €, E? = E, and let Nl = (m) be the set of maximal
ideals in U. Then®

o (TLEX)=[A | A=T(m),meMN, E(m)=1].

Proof. The symbol B (X), as always, is used for the algebra of all bounded

linear operators in the space X. It is normed by the bound of the operator. For

an element Ty of an algebra Uy, with unit £y, we write o(Tq, Uy) for the spec-
trum of Ty as an element of Uy, This is the complement of the set of those
A for which AEy — T has an inverse in U . According to our hypothesis, then,

we have

(i) o(T, ) =0(T,X)=0(T).

Tet U = UL, and note that this is a subalgebra of % with unit £. Each V € Ug
maps X into itself and as an operator in £X has the spectrum o (V, £X). Just

as in (i) above we have
(ii) o(V,Ug)=0(V,EX).
To see this, let

Vo= -V)E €¥Up,

3The difference algebra U —m is the complex number system [8]. We write, using
Gelfand’s notation, U(m) for the complex number corresponding to an element U e
under the natural homomorphism of U onto U — m.
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and suppose that V, has an inverse as an operator in EX. Define
W=VE+E’,

so that W"' € B(X). Thus W' €, W"E € Up; and since VoW 'E = E it is seen
that Vy has an inverse as an element of Ug. This proves that p(V, EX)C
p(V,Ug). The converse inequality being obvious, we have proved (ii). Now
let &1 = (m) be the set of maximal ideals in 2, and Mg = (mg ) the set of maxi-

mal ideals in U . We shall next show that
(iii) P =lmE | mell, E(m)=11;

that is, the maximal ideals in U are precisely those of the form mp = mE,
where m is a maximal ideal in I for which £ (m)=1. Since E? = E, we have
E(m) always 0 or 1, and so the statement £ (m) = 1 is equivalent to the state-
ment £ & m. To prove (iii), let m be a maximal ideal in & with £ € m. The
set mp = mE is clearly a proper ideal in A . To see that mp is maximal, let
ng be a proper ideal in Ag which contains mg, and let n be the set of all ¥ €U
for which VE € ng. Then n is a proper ideal in ¥ which contains m. Since m
is maximal, we have m = n and hence mg = ng. Conversely, let mg be a maxi-
mal ideal in Ug; then m = mg + UE” is a proper ideal in U with mE = mg. To
see that m is maximal, suppose that n is a proper ideal in ¥ containing m
properly. Then we shall show that ng = nE is a proper ideal in Ap which con-
tains my properly. Let U€n, U & m. Then UE €ng. Since £’ € m, we have
UE’€m and hence UE ¢ m. Therefore, since mgp Cm, we have UE € mg, and
this proves (iii). Thus we may say that for any m € ¥ for which £ (m) =1 the
difference algebras U — m, UE ~ mE are both isometrically isomorphic to the

complex number system. There are, therefore, uniquely determined complex

numbers T (m), TE (mE) for which
T-T(m)l€my TE —(TEY(mE)E €mE.

From the first of these relations it follows that TE — T (m)E € mE, and from
the second, therefore, that T (m) = (TE)(mE). But as m varies over all points
in M for which £(m) =1, we see from (iii) that mE varies over all maximal
ideals in AE and hence (TE)(mE) = T (m) varies over the spectrum of TE as

an element of £E. Hence the desired conclusion follows from (ii).

DEFINITION 1. An operator S is said to be of scalar type in case it is a

spectral operator and satisfies the equation
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s-[aE @),

where E is the resolution of the identity for S. According to Theorem 1, S(e) =0
if e Cp(S) so that the integral over the compact set 0(S) exists in the uniform

topology of operators.

THEOREM 8. An operator T is a spectral operator of class (I') if and only
if it is the sum T =S + N of a scalar type operator S of class (I') and a gener-
alized nilpotent operator N commuting with S. Furthermore, this decomposition
is unique and T and S have the same spectrum and the same resolution of the

identity.

Proof. We shall first show that the sum 7 =5 + N of an arbitrary spectral
operator S of class (I") and a generalized nilpotent N commuting with S is itself
a spectral operator of class (I"). Let £ be the resolution of the identity for S,
and let o be a Borel set of complex numbers. Then, by Theorem 5, NE (o) =
E(o)N. Let U be the smallest commutative subalgebra of B (X) containing N,
S, E(0), I, and also containing the inverse of any of its elements provided that
the inverse exists as an element in B(X). Then, as established in equation

(ii) during the proof of Lemma 2, we have
dg(S+N,E(0)X)=0(S+N, UE (0)).

Thus if M (o) is the set of maximal ideals in AE (o), we have

(*) o (T, E(a)X)=[A| A=S(m)+ N(m), meN(o)]

[Al)\=5(m), me, ]

]

I

(S, Uk (o)) =0(S, E(c)X)Co.

Thus T is a spectral operator of class (I'), and its resolution of the identity
is also £. Conversely, let T be a spectral operator of class (I") with resolution
of the identity E. Using Theorem 7, define

S=/)\E(d)\), N=T-S.

Clearly S and N commute. It will first be shown that N is a generalized nil-
potent. Let U be the algebra generated by T, E (o) (o a Borel set), N, I, and
with the property that U"' € A if U € W and U"' € B(X). Let I = (m) be the set
of maximal ideals in &. Then £ (8)(m) is a zero-one valued additive set func-

tion, and hence determines uniquely a complex number A (m) with the property
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that £(8,,)(m) =1 provided that 5, is a neighborhood of A(m). Thus for
every neighborhood §,, of A (m) we have

S(m)=/AE(d/\)(m)= /; A (dA)Y(m) = A(m).

Since £ (6,)(m) =1 if §,, is a neighborhood of A(m), it follows from Lemma
2 that

T(m)€eo(T,E(8,)%)C8,,

and hence
T(m)=A(m)=S(m), N(m)=0.

Thus by a theorem of Gelfand?, N is a generalized nilpotent. It will next be
shown that S is a scalar type operator. For this it is sufficient to show that E

is the resolution of the identity for S. According to Lemma 2,
o(S,E() ) =[A|A=S(m),meD, E(8)(m)=1]
A A=T(m), meR, E(8)(m)=1]

=o(T, E(8)%)CS5,

and this shows that £ is the resolution of the identity for S. Finally it remains
to be shown that S and N are uniquely determined by 7. Let T =S; + N, where
Sy is of scalar type and ¥, is a generalized nilpotent commuting with S;. Let
E | be the resolution of the identity for S;. Then, by Theorem 5,

N1E1 (0)=E1(0)N1 ’

so that £,(0) commutes with 7. It was established in (*) above that o (7,
E(0)X) Co, and hence £, is a resolution of the identity. By Theorem 6, we
have £ (o) = E,(0), and hence S=S,, N=N,.

DEFINITION 2. The decomposition, given in Theorem 8, of a spectral
operator T =S + N into a sum of a scalar type operator S and a generalized

nilpotent N commuting with S is called the canonical decomposition of T. The

*1. Gelfand [8] has shown that N is a generalized nilpotent if and only if N belongs
to every maximal ideal.
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operator S is called the scalar part of T, and N is called the generalized nil-

potent part, or the radical part, of 1.

[L.EmMMA 3. Let I be the resolution of the identity for the spectral operator
1, and let N be its radical part. Then in the uniform topology of operators, and

uniformly with respect to & in any closed set p C p(T), we have

> E(dN)
T(&= 2 N

=0 (éy_/\)rﬁl *

Proof. By Theorem 7 the integral exists in the uniform operator topology,

E(dA)
f(g—m”“

where r=max | £~ A|™", the maximum being taken over A € g (T), £€ p. Since

and

r”“U(E),

N is a generalized nilpotent,

and hence the series

converges. Thus the series

U Z: / E(d))

n=0 (&=t

converges in the uniform operator topology, and uniformly with respect to & € p.

From Theorem 7 we have

E(dA E(dA E(dA
(f[—S)f ()1“ [[e-new]|f g(m")“] f(g(x))"’

and so, if S is the scalar part of T,

> E (d))
(EI-TYU=(&1-S=N) 2 N* | ——m—
o /'(é;__/\)nw‘l
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i g[,vn

E@N)  pne [_EG@N _
(E=N)" (&)t

This proves the lemma.

THEOREM 9. Let T be a spectral operator and N its radical part. Then for
every scalar function [ analytic and single-valued on the spectrum o(T) we

have, in the uniform topology of operators,
o0 N"
(=3 —'—ff(”)()\)E(d)\).
n=0 ™

Proof. Let C be an admissible rectifiable Jordan curve in p(7) containing
o(T) in its interior and such that f is analytic on and within C. Then, using

Lemma 3, we have

E(dX)

1 > n _—
f(’[):;; /;f(f)T(f)df = % N /;f(g)/gm (&-A)"*t

. f(&)dé¢
sl [ /[ __(S_W]m

]

=) Nn
— R)(\)E (d)).
z -/;(T)f (ME (@A)

!
n=0 "°

I

DEFINITION 3. An operator T is said to be of type m in case it is a spec-

tral operator with resolution of the identity £ and
m Nn
(=3 — [f™WMWE@N, feF(T).
n=0 n'
THEOREM 10. Let N be the radical part of the spectral operator T; then

T is of type m if and only if N™** = 0.

Proof. If N™*' =0 then clearly the formula of Theorem 9 reduces to that
of Definition 3. Conversely, if T is of type m we see, by placing

FOA) =A™/ (4 1)
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in these two formulas, that

0= N’””/E(d)\):N’"“.

COROLLARY. A spectral operator is of scalar type if and only if it is of
type O.

We shall next endeavor to characterize operators of finite type in terms of
the rate of growth of the resolvent. To this end we introduce the following

definition.

DEFINITION 4. Let E be the resolution of the identity for the spectral opera-
tor T. If £¢ o(T,E(0)X), and in particular if & £ T, the operator T, () is
defined on X as follows. For each x in X, T, (&)« is that uniquely determined
point y €EE (o)X for which ({I-T)y =E(o)x. Thus T5(£) is a bounded
linear operator in X formed by first projecting with E (o) and then operating
with the inverse of (1 - T) in E (o) X.

THEOREM 11. In Hilbert space a spectral operator T is of type m —1 if

and only if there is a constant K such that, for every Borel set o,

(*) ]dis(‘f’o)mTo'(é-)lSK, ffoy ‘§|.<_|T|+l'

Proof. In view of Theorem 10 it is sufficient to prove that the condition
(*) is equivalent to the condition N = 0. [f N = 0, and ¢ £ o, then

E (dX)

m=-1
TG(§)= N" —_— >
nz;‘; /; (A =&

from which the condition (*) follows.

The converse will require the following lemma.

LEMMA 4. Let T be a spectral operator in Hilbert space X and let E be its
resolution of the identity. Then there is a constant M such that for any finite
collection Aj (j=1,2,++,n) of bounded operators in X which commute with

T, and any collection oj (j=1,2,-++,n) of disjoint Borel sets, we have

<M suwp [45].
1<j<n

= 4 (o))
j=1
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Proof. Tt is known (see [16]) that there is a linear one-to-one map B with
BX = X, with B and B™! both continuous and such that for each Borel set o the

projection

P(o)=BE(o)B!

is self-adjoint. If B; = BA]-B'1 then
n n
B ZAjE(oj) B'1=Z B]‘P(Uj).
j=1 j=1

By Theorem 5, A; commutes with £ (o) and hence Bj commutes with P (o). Thus

2

Z P(oj)Bjx

j=t

n
j=t

2 n
= > |P(oj)B;x|?
j=t

<sup [Bi|? 20| P(oj)x|? <sup [B;]? |x|?,
j j=1 j

which proves the lemma.

Now let T =S + N be the canonical form of the spectral operator T which we

assume enjoys the property (*) of the theorem. Since

m

(T €N =(S+N-&D" = Z(m)w-fnm-w',
r=o r
and
/ (S=¢NDPEWE) =0 G ),
o (T)
we have

N =[(T)’(T—§1) E(dé).

Now let o{(T) be partitioned into the Borel sets aj (j=1,2,++,n(8)), each of
diameter at most 6 > 0, and let {j €0; (j=1,2, -+, n(8)). Let C; be the circle

with center &; and radius 25. Then since the distance from a point A on Cj to
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oj is at least & we have

[ (A= &M T (V] < 27K, X € G

Let
)\Ecj) = fj + 26 exp (2kmi/p),
so that
n(S) H(S) 1
> (T—ff].[)’"E(o]-)= > _—f (A—fj)”’To.j(A)dA
< — 2umi JC;
j=t 771
n(8)
1 P . . ) .
=lim 3 — 15 QY- QYA AU E (o).
p =i 2mi |z / !
j=1 k=1
But
p .
B SV ALY M PVATP VLB
sup - Z k j oi "k k k-1
j 2mi =

p . .
<omtKatsup 5o A=A | < 2t KS,
] k=1

and by Lemma 4 therefore
n(8)

2 (T-&D™E (o5)

j=1

< 2™ MKS,

which shows that
Nm=/(T-§l)mE(d§)=0.

TurorEM 12. In Hilbert space a spectral operator T whose spectrum is
nowhere dense is of type m — 1 if and only if its resolvent has at most mth

order rate of growth for & near the spectrum.

Proof. This theorem is an immediate corollary of Theorem 11.
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4. Algebras of spectral operators. In this section we shall characterize
commutative algebras of spectral operators. To this end we shall need the

following preliminary lemmas.

LEMMA 5. If T is of class (') with resolution of the identity E(T), and
fEF(T), then f(T) is of class (I') and its resolution of the identity is given
by the formula

E(f(T),0)=E(T, [T (o).

Proof. The foregoing formula clearly yields a spectral measure commuting
with f(T). Also x*E(f(T),0)x is countably additive if x* € I'. Now if
Ag & o then the function

1

h(X) = ————
Ao = f(A)

is analytic on the closure of ! (o) and hence if C is an admissible contour

surrounding the closure of f~! (o) we have

1 -1 -1
(ﬁ _/(;h()\)Tf_l(U)()\)dA)(AOI—f(T))E(T,f (6)) = E(T, {1 (o)),

which shows that
a(f(T), E(f(T),0)X) Co,
and this completes the proof of the lemma.

At this point we introduce the notion of an integral which will be needed
later. For the purposes of the following theorem the Riemann integral will
suffice, but for subsequent work the next lemma will be needed for a more
general integral. Accordingly let M be a set, B a field of its subsets with
1 €B, and let B(M) be the normed linear space of all complex bounded func-
tions on ¥ which are measurable B. The norm in B(M) is given by |f]| =

. Let E be an additive operator-valued function on B with

sup, | f(m)
|E(e)| <M, ecB.
For a finitely valued function

f=2" o, € B

=1
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we define the integral

n
~/}l,;]((m)l‘i(alm) = zaiE(ei)
=1
and note that this definition is independent of the representation of f. Also

= sup | 22 oy x*E (o) x|

x|=|x*|=1

‘/f(m)E(dm)
M

< sup |G| var x*E (e)x < sup |¢;| 4 sup |x*E(e)x| <4 Msup |f(m)].
i ec? i e€B m

Thus if f€B(M) is the limit in B(M) of two sequences {fn} and {gn} of
finitely valued functions in 3 () then

lim _/;an(m)E(dm)=lim _/g['ﬂgn(m)E(dm),
n n
and this limit is taken as the definition of the integral

/_;ﬂf(m)E(dm).

It is clear that in case M is a compact set in the plane and f is continuous the
integral as defined coincides with the Riemann integral. In case E is a spectral
measure on 13 for which x*E (e)x is countably additive on 1 for each x € X
and each x* in a total linear manifold I" C X*, we say that E is a spectral

measure of class (B, T').

LEMMA 6. Let 1B be a o-field of subsets of a set M with 1! €B. Let E be a
spectral measure of class (B, '), and for f € B(M) let

S(f)E_/;ﬂf(m)E(dm).
Then there is a constant v (E) such that

IS <v(BE)f,  feBA.

Also for every f€ B(M) the operator S(f) is a scalar type operator of class
(') whose resolution of the identity E (S) is given by the equation
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E(S,e)=E(f'(e)).

Proof. The first conclusion follows from the foregoing definition of the
integral. Now if E is a spectral measure the map f— S(f) of B(¥) into
B(X) is a homomorphism; that is, it preserves multiplication as well as ad-
dition. Thus, if Ay € o, the operator

= -— m -1 m
U“/gr..ﬁ()\o f(m)) ¢f-1(g)(m)E(d)

satisfies the equation
XMl =S(NU=E(f'(a)),

which shows that
o(S(f), E(f'(e))X)Ca.
Thus S is a spectral operator whose resolution of the identity is given by
E(S,o)=E(f (o).

To see that S is a scalar type operator we decompose the closure of f (1)
into a finite number of disjoint parts o;, each of diameter at most €. Let A; €0;.

Then

| E Mo, (f(m)=f(m)| <€, meq,
and so

S(f)= lim ZNE(f1(0;)) = lim fz/\inpgi()\)E(S,d)\)=fAE(S,dA),
E—0 i

€-0

which proves that S is of scalar type.

DerinNiTION 5. If T,U, «++,V are in B(X), the symbol U(7, U, +++,V)
will stand for the smallest subalgebra of B(X) which is closed in the norm
topology of B(X), which contains 7, U, -++,V, and I, and which contains the
inverse W=! of any of its elements provided that the inverse exists as an ele-
ment of B(X). The algebra A (U, T, ++., V) will sometimes be called the full

algebra generated by U, T, «+-+,V. If 0 is a compact set in the complex plane,
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the symbol CR (o) will stand for the algebra of all complex functions f (),
A €0 which may be approximated uniformly on o by rational functions. The

norm in CR (o) is

Ifl= max [f(M)],
A€o

so that CR (o) is a subalgebra of C(o). Two B-algebras are said to be equi-

valent in case they are topologically and algebraically isomorphic.

THEOREM 13. Let T be a spectral operator and S its scalar part. Then, as

a vector direct sum,

AT, S)=U(S) DR,

where N is the radical in U(T, S). Furthermore, U(S) is equivalent to
CR (0 (T)), and every operator in U (T, S) is a spectral operator.

Proof. If f is rational and analytic on 0 (7T) = o (S), then f(0(S)) =0 (f(S))
and thus

max [f(A)] <|f(S)] < max |f(A)|v(E).
AEo(S) AEa (S)

Thus U(S) is equivalent to CR (o (S)). Since U (S) has no radical it is seen
that A(S) @ R is a direct vector sum contained in Y (T, S). Now let N be the
radical part of T. It follows from Theorems 8 and 9 and Lemma 6 that the ca-
nonical decomposition of f (T) for f€ F(T) is

F(T)=[(S)+ N,
Hence in particular if 7! exists its canonical decomposition is
(1) T-'=S"14N,.
Also
T =S"+ Ny, T"S™=S"*"4N,,

and thus for a polynomial P in T and S we have

P(T,S)=0Q(S)+Ns,
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where Q is a polynomial and N5 a generalized nilpotent. Since for m in the space

1 of maximal ideals of U(T,S) we have
P(S(m),S(m))=P(T(m),S(m))=0Q(S(m)),
it is seen that Q(S) =P (S, S) and thus
(ii) P(T,S)="P(S,S)+Ns.
If P, is also a polynomial in two variables, the operator
R(T,S)=P(T,S)P,(T,S)"

will be defined as an element of Y (T, S) if and only if Py (A,A) # 0 for A € o(T).

In this case we see from (i) and (ii) that
(ii1) R(T,SY=R(S,S)+ Ng.

Since R(S,S) is of type 0, this is the canonical form for R(7,S). An arbitrary
UeU(T,S) is a limit, U = lim R, of rational functions R, in T and S. Since

o(T)=0(S)=S(M)=T(M),
and T(m)=S(m), we have

sup | Rp(A,A) = Rp(A, A)| = sup |{Rn(T,S)-—RP(T,S)} (m)]
AEG(S) m

< |Ru(T,8) =R, (T,8)|— 0.

Hence Rp(A,A) converges uniformly on o(S) to a function f € CR(o(S)).
Thus RA(S,5)—f(S) in A(S), and U U(S) @ %. It follows from Lemma
6 that every operator in U (S) is a scalar type operator and thus it is seen, by
Theorem 8, that every operator in U (7,S) is a spectral operator.

THEOREM 14. Let E be the resolution of the identity of the spectral opera-
tor T. Let M be the space of maximal ideals is the algebra

U = U(E(o), o a Borel set).
Let Ry be the radical in the algebra

Uy, =U(T,E(0), o a Borel set).
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Then U is equivalent to C(2), and
U =UDR,.
Furthermore, every operator in U | is a spectral operator.
Proof. Elements of the form

(1) U=ZO(iE(0i),E(Oi);40, U,‘Uj:Q,i;éj, L.’0i=0(T)

=1

are dense in U since if such an element has an inverse the inverse is again of
the same form. Furthermore, if £(o;) ¢ m € ® then U(m) = &;. Thus, using

I.emma 6, we have

sup [U0m)| = sup o] < [U] < sup |6 v (E) = sup [U(m)|w(E),

m 12
and therefore

sup |U(m)| < U] <sup |U(m)|v(E), Ucel,

m m

which shows that ¥ is equivalent to a subalgebra of C (). Since the projec-
tions E (o) generate ¥, they distinguish between points in il. Also it is clear
that the element

V=2 &E (0;)
is related to the operator U given in (i) by

Ulm)=V(m), me M.

Thus, by the Stone-Weierstrass theorem, U is equivalent to C ({1). Hence U ® R
is a vector direct sum and a subalgebra of & ;. It is also closed in %, since if

m, is a maximal ideal in U, we have, for an arbitrary operator U =S + N with

SedU, N ehR,

[S1w(EY! < sup [S(my)| =sup [U(my)| <|U} <|S|+[N].

my m

Also since U ~ C(T) it is seen that & @ R, is a full algebra of operators;



346 NELSON DUNFORD

that is, it contains the inverse W™' of any of its elements provided that !
exists as an element of B(X). Thus U, c A @ R, C U,. Finally, to see that
every operator in U is a spectral operator it will, in view of Theorem 8, suffice
to show that every U € ¥ is a scalar type operator. Consider a finitely valued

measurable function

fN)= 20, (N), 1€ o(S).

We may suppose that 0,07 =@ (i # /), and U, ,=0(S), so that the values of

f are the numbers ¢;. The operator

f(S):AS)f(A)E(dAh Z uE(0;),

as was shown above, has the property that except for A in a set ¢ with £ (o) =0

we have |f(A)| < f(S). Thus if we define the norm

|f|p = E-ess.sup |f(A)] = inf sup |f(A)],
E(c)=1 A€o

the operator f (S) satisfies the inequality

lg < 1] <If 1, v(E).

The general operator U in ¥ is the limit of a sequence f (S), where f () is a

finitely valued measurable function. Thus
f(A) =lim f, ()

exists uniformly except on a set 0 C o (S), where £ (o) = 0, and
v- [ TOE@N.
o (S)

Hence, by Lemma 6, U is a scalar type operator.

DEFINITION 6. If T =S + N is the canonical decomposition of the spectral
operator T, and E is its resolution of the identity, by £B (o (T)) will be meant
the space of all E-essentially bounded Borel measurable functions defined on

0(T)=0(S). The norm is
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[fl=E-ess. sup |f(A)] = inf sup |f(A)].
AES(S) E(c)=1 A€o

According to what has just been shown we may state:

THEOREM 15. In the notation of Theorem 14 we have U equivalent to
EB(a(T)).

THEOREM 16. If S is a scalar type operator with resolution of the identity
E, and f is an E-essentially bounded Borel function on o(S), then

s(f(SN= 0 f(@).

E(o) =1
Proof. Ay £ f (o), where E (o) =1, then
Moo=, Aeo,

R(A) =
0 » AE o,

is a bounded Borel measurable function and

R(SY(Aol =f(S)) =1,

so that Ao € p (£(S)). Thus f (o) D a(f(S))if E(o) =1, and

N fla)da(f(S)).

E()=1I

Conversely, if Ay € p(f(S)) we see from Theorem 15 that (Ao~ f (X)) s
E-essentially bounded on o (7). Hence there is a Borel set ¢ with E(o) =1

and
Ao=f )|t <M, Arco.

Hence Ay £ f (o). This shows that

o(f(SNHDf(a)Dd 0O f(o),

E(c)=1

and completes the proof.
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THEOREM 17. Let U(T) be the full algebra generated by a family T of
commuting spectral operators together with their resolutions of the identity. If
the Boolean algebra determined by the resolutions of the identity of the operators

in Tis bounded, then, as a vector direct sum,
() =AU, D,

where N is the radical in W(7) and U, is equivalent to the algebra of continuous

functions on the space of maximal ideals in U (7).

Proof. Note first that if 7, U € 7 have resolutions of the identity £(T,-),
E(U,+), respectively, then for every pair o, p of Borel sets in the plane the
projections £(7T,0), £ (U, n) commute. This follows from a double application
of Theorem 5. Thus the various projections £ (T, o) determined by Borel sets
o and operators T € T determine a Boolean algebra %, and by assumption there
is a constant ¥ with |E| < M for £ € ¥ ;. We shall first show that there is a

constant K such that

(i) le*Eixnglex*l, x€X, x*eX*,

=1

provided that E; €Uq and E;E; =0 for i # j. To see this, let (x*£x)_ be the
real part of x*Ex. Then, if £;E; =0 (i #j), we have

2| (2*E; %), | = Z,(x*Eix)r - z”(x*Eix)r

=(x*(Z’Ei)x)r—(x*(Z”E,-)x)r <2M x| |x*],

where 27 (Z") represents the sum over those i for which (x*E;x), > 0 (< 0).
Similarly for the imaginary part of x*Ex. Thus

EIa*Eix| <AM |x||x*],
which proves (i).
Now consider elements U € U (7) of the form
(ii) U=S+N,

where
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n
(ii1) S=Z o E;
=1

with
0#£ E; €Uy, EiEj=0, i #j, Ex+evtby=1,

and where N €, the radical of U (7). If m € M, the space of maximal ideals in
8(7), then in view of (iii) there is an i with Ej(m) =1, Ej(m)=0 (j # i)
Thus ;= U(m) =S(m) and

(iv) stjai[:suplU(m))glUlS,SIHNI.

l m

From (i) and (iii) it is seen that

1S| = sup ‘Zaix*Eixl < sup |¢;|K

ol =] = ;
and hence, by (iv),
(v) K-'S| <|U|l <|S|+|N]|.

The inequality (v) shows that if U, =S, + N, is a convergent sequence of
operators, each of the form (ii) with S, of the form (iii) and N, € X, then
{S,} and {N,} are also convergent sequences. Let U, be the algebra of all
limits So = lim,, Sy, where S, has the form (iii). Since for the operator (iii) we

have, as shown above,

sup [S(m)| <|S] < sup [S(m)] - K,

m m

it is seen that 2, is equivalent to a subalgebra C of C (), and the Weierstrass
theorem ® shows that C = C(M). Clearly therefore, U, ® R is a direct sum, is
contained in ¥ (1), contains every E(T,o) with T € 7 and ¢ a Borel set in the
plane, and contains every T € 7. This last statement, namely that 7C U, @ n,
follows since the canonical reduction T = S + N has the property that N € R and
S eW,. To complete the proof it will suffice to show that U, @ R is a full
algebra; that is, it will suffice to show that if T €%, @ R, and T"' € B(X),

5As proved by M.H. Stone [13] for real algebras C () and by L Gelfand and G.
Silov [9] for complex algebras C ().
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then T-'€U, @ R. Let T =S+ N be the canonical form of T; then since
T(m)=S(m)#0, m €, we see that S~! exists and is in U, because S (.)€
C(M). Thus

TS '+M)=1,

where M =—T-'NS-'€R. Thus U; @ R is a full algebra containing 7 and
every projection £ (T,0) (T € 7), and hence U (1) =U,; ® K.

THEOREM 18. Let B be the Borel sets in the compact Hausdorff space %,
and let U be an algebra of operators on the complex B-space X which is equi-
valent to the algebra C(Tt) of continuous functions on I. Then there is a func-
tion A on B to B(X*) with the properties:

(i) A is a spectral measure in X* of class (B, X);

(ii) if S(f) is the element in U corresponding to the element f in C ()

under some homeomorphic isomorphism then, for every x € X and x* € X*,

x*S(f)x=/§H;f(m)xA(dm)x*, fec();

(iii) the adjoint S* of every S in U is a scalar type operator of class X ;

(iv) if X is reflexive, every S in U is a scalar type operator of class X*.
Proof. Let S(f) be the operator in 2 corresponding to the function f € C (1)

under some homeomorphic isomorphism of U onto C (). Then for x in X and

x* in X* we have x*S (f )« a linear functional on C ({!) and hence, by the Riesz

representation theorem, there is a uniquely determined regular measure p(-,

x, x*) such that

x*S(f)x:_/})'nf(m)p(dm,x,x*), fecm), xe¥%, x*ecX*.

Since p(e,x,x*) is uniquely determined by e,x,x* it is, for each e €3, bi-

linear in x and x*. Since

i ey, %] < var |ple, )| = sup [2%5(f)x] < K|x||2*],
‘ 1=

it is seen that p(e,x,x*) is continuous in x and x*. Hence for fixed e and x*
there is a point 4 (e )x* € X* such that

pnle,x,x*) =x4 (e)x*.
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It follows from the bilinearity and boundedness of p that 4 (e) € B (X*). Thus
(ii) is proved and a part of (i) is proved. To complete the proof of (i) we have,

for every pair f, g € C (1),

0 f(m)/ff_.v g(p)xA (dpn dm)x* =_/;R f(m) '{m g(p)xd (dp)x*

:./Y;]?f(m)g(m)xfi(dm)x* =x*S(fg)x

=x*S(f)S5(g)x =/m f(m)S (g)xA (dm)x*

='/§;Rf(m)./;ﬁg(;L)xA(dﬂ)A(dm)x*.
Thus, since a functional on C (1) determines the regular measure uniquely, we
have
A(on 8)=A(a)4(8), 0,6€83,
and this completes the proof of (i).

The integral instead of being thought of as a L.ebesgue integral in the weak
operator topology may be thought of as an integral in the uniform topology as
defined immediately preceding I.emma 6. Thus, by Lemma 6, each of the opera-

tors

S*(f)=‘/\;ﬁf(m)/1(dm)

is a scalar type operator in X* of class X, which proves (iii). In case X is

reflexive, £ (o) =A*(o) is a spectral measure in X and hence, by L.emma 6,
S(f)= /q;}f(m)E(dm), fec(hty,
is a scalar type operator of class X*, which proves (iv) and completes the proof

of the theorem.

THEOREM 19. The adjoint T* of every operator T in the algebra U(T) as
defined in Theorem 17 is a spectral operator of class X. If X is reflexive, every

T € U(7) is a spectral operator of class X*.
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Proof. This follows immediately from Theorems 8, 17, and 18.

Theorem 19 shows that the sum and product of two spectral operators in a
reflexive space X will again be spectral operators provided that the Boolean
algebra determined by all the projections in both resolutions of the identity is
bounded. If X is Hilbert space, J. Wermer [16] has shown that such is the case.
In general, however, the Boolean algebra determined by two bounded Boolean
algebras of projections, all of which commute, is not bounded. Also it is not
always true that the sum of two spectral operators is a spectral operator. Ex-

amples proving both of these statements have been constructed by S. Kakutani
(10].

Examples of spectral operators other than normal operators on Hilbert space
are easy to construct, and some interesting classes have been discussed by
J. Schwartz [12]. 8

Besides Theorems 8, 13, 14, 19, which are useful in the construction of
spectral operators, we shall mention one more which will be needed in the

perturbation theory of J. Schwartz.

THEOREM 20. If T is a compact operator in a reflexive space X, then T

is a spectral operator if and only if the integrals

(i) L[ rondn
2 C

mi

are bounded as C varies over all admissible contours in the resolvent set. In
this case the resolution of the identity is countably additive in the strong opera-
tor topology, and the integral (i) is the value of the resolution of the identity
on the domain bounded by C.

Proof. Let Ag=0, A\,#0 (n=1,2,...) be the points in the spectrum of
T. Let

1
E(Ay)=— T A =1,2, ),
(An) P /C'n (A)d (n )

where C,, is a circle containing A, but no other spectral point. Since the Boolean

8Qther spectral operators occurring in analysis will be found in the forthcoming
book Spectral Theory by N. Dunford and J. Schwartz. Conditions on the rate of growth
of the resolvent which are sufficient to ensure that T be spectral will be found in

[4].
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algebra determined by the £ (A,) is bounded, it may be embedded in a complete”’

Boolean algebra. We may therefore define

E(Ng)=1- U E(),)

n=1
and

E(a)= U E(A,),
A€o

o arbitrary. If B is the Boolean algebra of all subsets of the plane, it is clear
that the map ¢ — F (0 ) is a homomorphism of B onto a Boolean algebra of

projections in X. From our hypothesis it follows that
(ii) |E(o)]| <K, o€B.

Now let 0, Cop+y C--- and 0= Ug, . Then

(iii) E(o)= U EM\)=U U £, =U £(a,),
A€o n Ay €op, n

and since E(op)x=x (n>m) if x €E (0,,) %, we see from (ii) and (iii)
that £ (0, )x — x if x € E (¢) X. Also since

E(c X =N(E(a})X)

we have E(o,)x=0 if x €L (s X, Thus E(0,)x — E(0)x for every x in
X, and E (o) is countably additive on B in the strong operator topology. To
complete the proof that T is spectral, it will suffice to show that

(iv) o(T,E{c)X)CT, o€,

If Ao £ 0, then E (o) has the form (i), from which (iv) follows. If Ay € 0, then
any spectral point A, £ o is in p(T,E({A,}")X) and hence in p(T,E (o) X),
which proves (iv).

Finally let o be an open and closed subset of 0(7T), and let 4 (o) be the

projection defined by (i), where o is the intersection of ¢(7) and the domain

bounded by C. Then, since

7Complete relative to the order A C B(AB = A). See, for example [6].
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o(T,A(c)X) Co, o(T,A(6")X)Co’,
Theorems 3 and 4 show that

E(c)A(o)=A4(0o), E(0)A(a’)=0,
and hence that

E(0)=E(a)(A(c)+A4(sN))=A4(0).
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COMMUTING SPECTRAL MEASURES ON HILBERT SPACE

Joun WERMER

1. Introduction. By a ‘‘spectral measure’’ on Hilbert space H we mean a
family of bounded operators £ (o) on H defined for all Borel sets o in the plane.

We suppose:
(i) If oy denotes the empty set and o, the whole plane, then
E(og)=0, E(oy)=1,

where [ is the identity.

(ii) For all oy, oy,
E(oynoy)=E(o,)E(a,);
and for disjoint oy, 0y,
Efoyvoy)=E(o;)+E(0,).

(iii) There exists a constant ¥ with {|£(o)!|| < M, all 0. Tt follows that
E(0)?=E (o) for each 0, and £ (0, )E (0, ) = 0 if 04, 0, are disjoint.

Mackey has shown in [3], as part of the proof of Theorem 55 of [3], that if
E (o) is a spectral measure with the properties just stated, then there exists a
bicontinuous operator A such that A"'E (0)A is self-adjoint for every o. In a

special case this result was proved by Lorch in [ 2]. We shall prove:

THEOREM 1. Let E (o) and F (y) be two commuting spectral measures on
H; that is,

E(a)F(n)=F(9)E (o)

for every o, 1. Then there exists a bicontinuous operator A such that A" E (o)A

and A" F (n)A are self-adjoint for every a, 7.

As a corollary of Theorem 1, we shall obtain:

Received March 4, 1953.
Pacific J. Math. 4 (1954), 355-361
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Turorewm 2. If Ty, T, are speciral operators on H, in the sense of Dunford
(1), and T, T, =T, Ty, then Ty + Ty and T, T, are again spectral operators.

2. Lemmas. We shall use two lemmas in proving Theorem 1.

LeEvwma L. Let Py, Py, -+, P, be operators on Hilbert space with

12

n
P; Pi=0 (i #7), P2 =P, D Pi=1.
=1

Suppose that, for every set &1 ,8,,+++,8, of zeros and ones,

<M.

n
> 6P
i=1

Then for every x we have

1
aM?

W ll? < 20 [1Pix]1? < 44* || =]]?

=1

This Lemma is proved in [ 3, p.147]; we include the proof for completeness.

Proof. We note that

NPl = = ElleiPixs oo s enuxl i,

where the sum is taken over all possible sets (€, €5,+++, €,), where €; = £1.
Hence

ax= el P+ v el P x|l <3 |[Pxl)?

i=1
<|ley Pra+ oo+ €y Prx||? = by

for some choice of the ei' and €;. Now

2
by =

’

n n
Z 5i+ Pix— Z 3;. Pix
i=1 i=1
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where the 3i+ and the 51.' are 1 or O.

Hence

=

1 Px]]? < a2 L |x])2,
(=1

Let now PY=2P, summed over those ;i with €/=1; and let P" = 2P,

summed over those i with €”=— 1. Then
(Dot and [P = P x| = ag.
lience
Ha 2= 1r =Py |2 < NPT =P |12 ]| PP x = x| |2
Now 12 < Mand [ 77]] < 1 and so
n
xl]? < (20 ay < (202 57 || Pix]|?
=1

LEMMA 2. Let E(o) and F(n) be commuting spectral measures on Hilbert
space. Then there is a fixed K such that for any set 0y, 04,+++, 0y of disjoint

Borel sets, and set 1, 1,5 +++, 1, of arbitrary Borel sets,

n

> (o) F(n,)

=1

< K.

Proof. Fix x. By (iii) there exist constants L and M, with ||£(o)]|] < M,
WE ()| < L for any 0, n. Leta, ., be the complement of

n
.U 0;
i=1
Then
n 2 n+i n 2
I S E)F(p)x || <am® 3 IE(UV)(ZZL'(Ui)F(ni)x) =C
=1 v=1 =1

by Lemma 1;
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n
C = 4M? ZHE(GV)F(nV)xﬂz,
v=1
since E(UV)E(oi)zE(avnoi);
n
C=4M* 3 ||F(n )E(a,)x]|?,
v=1
by commutativity of the £ (o) and F (7n);
n
C<ant Lt ¥ NIE(e)xl),
v=1
since || F(n,)|| < L;
C < (aM*)?. L2||x||?,

by Lemma 1. Hence

S E()F(n)|| <4aM?L.

=1

In the proof of Theorem 1 we shall use the method of Mackey in [ 3], together

with Lemmas 1 and 2.

3. Proof of Theorem 1. By a ‘“‘partition”

7 of the plane we mean a finite
family of Borel sets oy, 03,+++,0,, mutually disjoint and with union equal to

the whole plane. If (x, y) denotes the given scalar product in H, and

771 = (oi );L=l Ty = (n] );'n=l

are two partitions, set

(x,y)wllﬂ2= Z Z (E(OL)F(T]])X, E(OL)F(T)]))’)-
=1 j=1

It is easily verified that the quantity (x,v) is a scalar product in A.

T1sM2
Further, it follows by I.emma 2 that the operators
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Pi]'=E(0L.)F(77].) (i=1,2,000,n; j=1,2,004,m,)

satisfy the hypotheses of Lemma 1.

Hence Lemma 1 yields

n

— lllF £ X 3 £ Fn)x | < 4K7]|x |12,
4K 1 j=1

where K depends only on sup_ || £ (o)]| and sup,, HF(n)l|. But
S Bt = Goxly =12,

=1 j=1

Finally, each E(o;) and F(n].) (i =1,2,++en; j=1,2,+00,m) 1is self-

adjoint in the scalar product (x, y)ﬂl mp 88 is readily verified.

For each pair of vectors x,y € H, now, let S,y be the disk in the complex

plane consisting of all z with
|z <4K? [[x|] - [Iyll-

If S denotes the cartesian product of the disks Sy, over all pairs x,y, then S
is a compact topological space, by Tychonoff’s theorem. Further, as we saw

above,

<AK?|[x %,

xll2, <

Hence by Schwarz’s inequality, applied to the scalar product (x,v) we

Ty’
see that the number (x,y)771 - lies in the disk Sy, for every pair x,y. Hence

there is a point Py, my i1 S whose x, y-coordinate is (x’y)ﬂpﬂz'
Let us now partially order the set of points Py, in S by saying that
P, m 18 “‘greater than’’

finement of the partion 7y, and 73 is a refinement of the partition 7,. This

Py, (in symbols Prf,mg p”p"z) if 7{ is a re-

ordering makes the set of points Py ,my in S into a directed system. Since S is
a compact space, this directed system has a point of accumulation p. Let (x,y),

denote the (x,y) coordinate of p.

Then given a finite set of vector pairs (xi,yi), i=1,2,++,n, and € > 0,

and a pair 77? R 77;J of partitions, we have
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|(xi,}/l. ﬁ(xi’yi)mmzl < € (i=1,2,--+,n)

)P
for some

> .
Pry,m pw?,wg

Since (x,y)w1 - is a scalar product for all 7, 7, it thus follows that (x,y)p

is a scalar product, and since the norm || x || is equivalent to the original

M, T
norm with constants of equivalence independent of 74, 75, it follows that

1211, = V%x),

is also equivalent to the original norm.

Finally, fix a Borel set o and vectors x,y. Let 77? be the partition defined

by o and its complement, and 772 be arbitrary. Then, if

>
pwl'ﬂz pr(l),'ng ’

we have

(E (o)x,y)m'772 = (x,E(c)y)

Ty, ?

since 7, is a refinement of 77?, and so ¢ is a finite union of sets involved in

the partition ;. Thus

(E(o)x,y)p = (x,E(a)y)p,

and so the E (o) are self-adjoint with respect to the scalar product (xiy)p,
and similarly the F(7n) are self-adjoint with respect to this scalar product.

Since ||x Hp is equivalent to the given norm, it now follows that there exists
a bi-continuous operator A with (x,y)p = (Ax, Ay), and hence AE (¢)A™" and
AF (9)A™! are all self-adjoint.

4. Proof of Theorem 2. By Theorem 8 of [ 1], an operator T is spectral if
and only if there exist two commuting operators S and N such that N is quasi-

nilpotent and S admits a representation:

S=/)\E(d>\),

where £ (d)\) denotes integration with respect to a certain spectral measure.
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Such an S is called in [1] a ““scalar type operator.”

Now, by hypothesis, T; and T, are commuting spectral operators. e write
Ty=Si+ N, T,=5+N,,

in accordance with the preceding. Then by Theorem 5 of [1] the operators

S1,S2, Ny, N, all commute with one another. We thus have
T1+ T2=51 +S2 +0 and Tl T2=5152 +Q’,

where () and ()° are quasi-nilpotent, () commutes with S; + S5, and )” commutes

with S{S,. By Theorem 8, quoted above, it is thus sufficient to show that

S, +95, and S, S, are spectral operators of type 0; that is, of scalar type.

Let EY(0) and £%(0) be the spectral measures for S; and S,, respectively.
By Theorem 5 of [1] it follows, from the fact that S, S, =S,S;, that £'(¢)
and £*(0) commute with one another for all o. I}y our Theorem 1, then, there
exists an operator A such that the operators AL (0)A™! and AE?(0)A™! are

all self-adjoint. Hence
J[ = ASIA-l and ./2 = AS2/1‘1

are normal operators. Alsc [, /[, =/, /, since 515, =5,5,. It follows that
Jy +J, and J, J, are again normal operators, for they commute with their ad-
joints as we verify by direct computation, using the fact that /, and /J commute
and /, and /§ commute, since [, and /, commute.

Thus 4 (S; + S,)A™ ! and A(S; S,)A™! are normal operators and so of scalar
type. But if / is a scalar type operator and 4 bi-continuous, then, as is easily
seen, A”' /4 is again a scalar type operator. Hence S; + S, and S, S, are scalar

type operators, and all is proved.
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AN EXAMPLE CONCERNING UNIFORM BOUNDEDNESS
OF SPECTRAL MEASURES

Suizvo Kakuran:

1. Introduction. et X ={x} be a Banach space with a norm ||x||. A bound-
ed linear operator £ which maps X into itself is called a projection if E2 = E.

We do not require that || £ || < 1, where

eIl = sup |[|bx

Hrll<

.

let B={o} be a Boolean algebra with a unit element 1. We denote the zero
element of B by 0, and two fundamental operations in B by 0, uo, and oy n a,.
A family {£ (o) | 0 € B} of projections E (o) of X into itself is called an X-
spectral measure on B if the following conditions are satisfied: (i) E(0)=
0(=zero operator ), (ii) £ (1) =1 (= unit operator ), (iii) £ (oyn 0,) = E(0,)E(0,)
for any o, 0, €8, (iv) oy n o, =0 implies E(o; voy)=E(0,)+E(0;). An
X-spectral measure {E (o) | o€ B} is said to be uniformly bounded if there
exists a constant K < o such that || £(0)]| < K for all o € B.

Let B={o}, B"={0’} be two Boolean algebras with a unit element, and let
B* = B® 1B’ be the Kronecker product of B and B”. Now B* may be considered
as the Boolean algebra of all open-closed subsets o* of S*, where S* =S x S5* is
the topological Cartesian product of two Stone representation spaces S, S* of

1B, B’ respectively. Every element o* € B* is expressible in the form:

n
(1.1) oc¥= U oixoi',

i=1

where o, € B, af eB” (i=1,---,n).
Let {£(0) | o€B} and {E’(0”) | 0" € B} be two X-spectral measures on
B, 87, respectively, which are commutative with each other; that is,

E(a)E (¢")=E (e E(0)

Received March 4, 1953.
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€ <. Let us put

(1.2) F(o*)= 3 E(o,) E'(a?)

=1

if o* € B* is of the form (1.1) and if a;x0f (i=1,... ,n) are disjoint. Then
it is easy to see that F(o*) is uniquely determined (although the expression
(1.1) with disjoint 0, x o/ is not necessarily unique), and { < (¢¥) | o* € B¥}
is an X-spectral measure on B*; { F(o*) | o* € B*} is called the direct product

X-spectral measure of {E (0) | 0 € Bland {E*(c%) |o’e 1.

It was asked by N. Dunford [ 2] whether the uniform boundedness of { £ (o) |
o€ B} and {E(0") | o’€ B} implies that of { F (o*) | o* € B* 4. This question
was answered in the affirmative by J. Wermer [5] in case X is a i‘ilbert space.
The main purpose of this note is to show that the answer is negative if X is a

general Banach space; that is, we want to prove the following proposition:

ProprosITION. There exists a Banach space X and a commutative pair of
uniformly bounded X-spectral measures for which the direct product %-spectral

measure is not uniformly bounded.

Such an example will be given in §3. In our example, the Banach space X
is given as a cross product space C(S)® C(S’) of two Banach spaces of
continuous functions which will be defined in §2. This Banach space is not
reflexive and hence it remains open to decide whether the answer to the question

is positive or negative in case X is a reflexive Banach space.

2. The Banach space C(S)® C(S*). Let S={s}, S"={s’} be two compact
Hausdorff spaces. Let C(S), C(S’) be the Banach spaces of all complex-valued

continuous functions y (s ), z(s”) defined on S, $* with the norms

Hylle = max |y(s)|, |lzll,= max [|z(s")].
s s’€S”’

Let

S* = Sx8" = {s* = (s5,5)|s €S, s7€S"}

be the topological Cartesian product of S and S’, and let C(S™) be the Banach

space of all complex-valued continuous functions

x(s*) =x(s,s")
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defined on S* with the norm

|2 ]| = max |x(s*)].
s* € S*

Now C(S), C(S%) may be considered as closed linear subspaces of C(S*) by
identifying y(s) €C(S), z(s") = C(S") with x(s,s’) €C(S*) defined by

x(s,s) =y(s), x(s,87) = z(s"),

respectively.

Consider C(S*) as a normed ring with the norm ||x||e. Then C(S) and
C(S") are closed subrings of C(S*). Let C(S)®C(S") be the subring of
C(S*) algebraically generated by C(S) and € (S”); that is, the set of all func-
tions x (s, s”) € C(S*) of the form:

(2.1) x(s,s'):Zyi(s)zi(s'),

i=1
where y.(s) €C(S), 2, (s)€C(S Y (i=1,--+,n). From the Stone-Weier-
strass theorem it follows that C(S)®C(S") is dense in C(S*).

Let us now introduce a new norm on € (S)®C(S") defined by

(2.2) il = inf 3 11l Nzt s

where inf is taken for all possible representations of x(s,s”) € C(S)®C(S")

in the form (2.1).

It is easy to see that |||x ||| is a norm on C(S)® C(S”) and satisfies

2 1o < Il

for all x(s,s)€C(SYR®C(ST). Let C(S)® C(S") be the completion of
C(SY®C(S”) with respect to the norm |||x |||. The completion C(S)® C(S")
is obtained from C(S)®C (S") by means of Cauchy sequences in C(S)XC(S")
with respect to the norm |||x |||. Since a Cauchy sequence with respect to |||x |||

is a Cauchy sequence with respect to ||x ||, we may consider C(S5)® C(S"
as a subset of C (S5*):

Lemma 1. Let C(S) @C(S’) ke the set of all functions xy(s*) € C(S*)

for which there exists a sequence {x,(s*)|n=1,2,.--1} of functions from
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C(SYRC(S”) with the following properties:

(i) lim |Jxp = %0 ||, =0, thatis lim x,(s*) = x¥ (s ) uniformly on S*;

n-— oo n-— oo

(ii) lim Hxm = 2|l =0, thatis, {xp|ln =1,2, -}

m,n— oo

is a Cauchy sequence with respect to the norn. ||| x |||.

If we put

Hxo Il = lim  [[]2alll,

then C(S) ® C(S") is a Banach space with respect to the norm |||x ||| and con-
tains C(SYX®C(S)) as a dense subset.

The proof is easy and so it is omitted. It is interesting to observe that
C(S)® C(S") is a normed ring with respect to the norm ||| |||.

C(S)® C(S") is called the minimal cross product Banach space of C(S)
and C(S"). It is easy to see that the minimal cross product Banach space
Y@ 5 of any two Banach spaces ¥ and % can be defined in a similar way.
I ® 7 is one of the cross product Banach spaces defined and discussed by
R. Schatten and J. von Neumann [3; 4].

3. Construction of an example. Let us now consider the case when both S

and S~ are Cantor sets. Let S =S be the set of all real numbers s of the form

€1(s) €y (s) enls)
+ + o0+
3 32 3"

(3.1) s

where €,(s)=0o0r 1(n=1,2, +---). L et B ={0} be the Boolean algebra of all

open-closed subsets o of S.

Let S* =S x S be the Cartesian product of S with itself, and let B* = { o* } be
the Boolean algebra of all open-closed subsets o* of S*. It is clear that B* =
B®B; that is, B consists of all subsets o* of S* which are expressible in the
form (1.1), where 05,6/ € B (i =1, --+,n).

For each ¢ € B, let ¢,(s) be the characteristic function of o, and put

E(o)x(s,s7) = ¢ _(s)x(s,s7), E(o)x(s,s”) = ¢ (") x(s,s).
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It is clear that £ (o), £'(o) are projections of X = C(S)® C(S”) into itself,
and that {£(o)|o€ B}, {£'(0)]|o < B} are X-spectral measures on 3. Both of
these spectral measures are uniformly bounded since £ (o), E (o) have norm 1

for any o € B with o # 0. Since

E(E (07 = E(6VE (o)

for any ¢,0” € B, we can consider the direct product X-spectral measure
{F(o*)|o* € 13*1, defined on B* = B®B. We shall show that { F (o*) |o* € 18*

is not uniformly bounded.

Let us define a sequence of functions {p (s*)|{n =0,1,2, -} defined on
S* =98 xS as follows: po(s* )= 1o0nS* and

n ’
(3.2) pn(s*)zpn(sssl):(_l)zkzl Ek(s)e‘k(s ),

where €, (s) is the kth coefficient in the expansion (3.1) of s. It is easy to see
that p_(s*) takes only the values 1 and belongs to C(S5) ®C(S) forn=0,1,
2, ++-. Let us put

o:={8*tpn(8*)=1} (n=0,1,2-..).
Then o € B* forn=0,1,2, -+, and it is easy to see that

p, = (2F (%) = 1) p, (n=01,2---).

Thus, in order to prove the proposition of §1, it suffices to prove the following

lemma:

Lemma 2. Let S be the Cantor set. Let {pn(s*)l n=1,2,.-.1 be a se-
quence of functions defined on ST =S xS by (3.2). Then

lim [l{p, |ll = w,

n— oo
where the norm ||| p, ||| of p, is defined by (2.2).
In order to prove this lemma, let us put

61(8) 62(8) En(S)
(3.3) T(S)= + G oeee +
2 22 om
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Then ¢ = 7(s) is a mapping of S onto the closed unit interval
[=1{t|0< <1}
which is one-to-one except for a countable set. Let

plo) =m(7(0))

be a measure defined on 3 = {0} which corresponds to the [.ebesgue measure m
on . Let us consider the L2-space L?(S; ) on S with respect to the measure ,

where the norm is given by

(3.4) Il ={ [}
S

Let ol-(") be the open-closed subset of S consisting of all s €S such that

e (s) €n(s) -1
4 oeee 4 " =L (izl,...’Qﬂ).
2 an 2"

(3.5)

We observe that

plol™y = o (i=1,---,2"

and that p, (s,s”) is constant ( = 65?) =1 1) on each Ui(n) x 0](.n) (i,j=1,---,
2"). Further, if we put

) _ ’,
(3.6) M (s) = p, (5,57
for s €S and s’ € a(n) (j=1, ,2"), that is, p(")(s) = 6(]") if s € o(") then
the functions p(")(s) (j=1, ---,2™) form an ortho—normal set in L?(S;p).

Consequently, by Bessel’s 1nequahty,

(3.7) ./;I/;pn(sjs’)y(s)y(ds) 2

2”

1
== 2 |AP;H)(S)Y(S)#(JS)2

2" 5

(L(a’S')

IN

1 2
on Hylls
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for any y (s) € L*(S; u). From this it follows that

(3.8) |'/;./;Pn(S,s')y(S)Z(S’),u.(ds),u(ds’) 2

(L] L outssnmoruas)
/Sl ./;pn(sss’)y(s)y(ds)

— Ayl 12115

A

.\z(s')lu(ds')]z

2 2
’, . ’ d’
wu(ds”) ./;|z(s)[ plds”)

A

N

I

— Iy 112 ll=112
2

for any y (s), z(s) € C(S). From (3.8) it follows further that

< \/I Sl
2

p,(s,s") € C(SY®C(S") and (p, (s,s"))* =1

(3.9) | /; /; pn(s,s')x(s,s')y(ds)y(ds')

for any x (s, s”) € C(S)® C(S”). Since

on S x S’, we obtain, by setting x (s,s”) = p, (s,s”) in (3.9), that

(3.10) eIl > Vor (n =12 ),

and hence lim , L o ||| p, ||| = .

4. Remarks. Let us consider the bounded linear operators T, T  defined on

C(S)® C(S) by
(4.1) Tx(s,s") = f(s)x(s,s),
(4.2) T'x(s,s”) = f(s)x(s,s’),

where f (s) is a continuous function defined on S by

+ + e +

[ €,.(s) €,(s) €n(s) ]
et
42 4"

(4.3) f(s)=3
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It is easy to see that 7, T  are spectral operators of scalar type and are given

by

(4.4) T=/S.f(s)E(ds),

(4.5) T’ =fsf(s')E’(ds'),

where {£(0)|o€ B} and {£(5)|o €B} are a commutative pair of uniformly
bounded spectral measures defined in § 3.

It is possible to show that T + T is not a spectral operator of scalar type.
In order to show this we first observe that the range S™* of f(s)+f(s”) on
S* =S xS" is a totally disconnected set. et B: be the Boolean algebra of all

open-closed subsets o* of S* os the form:
o* = {s* = (5,s)|f(s) + f(s") € 0**},
where o** is an open-closed subset of S**, It suffices to show that the family of

projections { F (o* )| o* € B: } is not uniformly bounded.

For each n, let {775”) |i = 1,2, --- } be a sequence of period 27; thus
n}ﬁ;n =7]l§n) (i =1,2--).

Further, let the sequence consist only of +1 and —1 such that (ngn), cee,
n}'izl_ ,) runs through all 2" different sequences of length n consisting of +1 and
—1 as { runs through 1, -+, 2". The existence of such a sequence was proved

by N.G. de Bruijn [1]. Let us put

(4.6) ma(s*) = mals,s7) = 1),

if sEoEn), s’€ 0}") (i,j=1,+++,2"). Then {7p(s*)|n=1,2,---1 is a
sequence of functions from C(S)®C(S”) taking only the values +1 and — 1
such that the set

on = {s*|mp(s*) = + 1} € B} for n = 1,2, .-

Thus, by the same reason as in $3, it suffices to show that

lim |||7n|]] = .
n— oo
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et us put

nM(s) = 7, (s,87)

371

if s”7¢ (}](-"). Then {n}")(s)lj =1,---,2"} is a set of functions from L%(S;y)

such that

(W (s), oo, mm) (s

s i 4pm

is an orthonormal system for { =1, ---,2"7 —n + 1. This follows from the fact

that

j+l<k<i+n~-1
implies
(4.7) fS 7 (s) m (s)pu(ds)

1 2" (

=5 X %k, . =0
i=1
(The last equality holds because
(n) (n)

Mi4j-1 " Mith=r = 7F 1
happens 2""! times and

(n) (n)  _
Mitjet * Mitker =7 1

happens 2! times as i runs through 1, -+-,2%.)

Thus, for any y € L2(S; ), Bessel’s inequality

i+n-

1 2
(4.8) > | LA eue| <y
j=i

holds fori =1, ---,2" ~n + 1, and hence
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(4.9) fs | fs mn(s,s7)y () p(ds) | plds”)
1 2"
_ (n)
= 5 | [ sintas
J=1
1 2"
s=([Z] «1)
2 n
1 1 2
(=0 )i s 2.

From this follows, exactly as in $ 3, that

(s10) | [ fsnn(s,S')x(SsS')u(dS)u(dS')lé\/g 11

for any % (s,s”) € C(S)® C(S”), and hence

(a.11) [ENTPNL

forn=1,2,---.

\EFERENCES

1. N.G. de Bruijn, A combinatorial problem, Nederl. Akad. Wetensch., Proc. 49,
(1946), 758-764, Indagationes Math. 8 (1946 ), 461-467.

2. N. Dunford, Spectral operators, Pacific J. Math. 4 (1954 ), 321-354.

3. R. Schatten and R. Schatten-]J. von Neumann, The cross space of linear transforma-

tions 1, 1l, 1II, Annals of Math. 47 (1946), 73- 84, 608-630; 49 (1948), 557-582.

4. R. Schatten, 4 Theory of cross spaces, Annals of Math. Studies, No. 26, Princeton,
1950.

5. J. Wermer, Commuting spectral measures in a Hilbert space, Pacific J. Math. 4
(1954 ), 355-361.

YALE UNIVERSITY



UNBOUNDED SPECTRAL OPERATORS

Wirriam G. BADE

1. Introduction. Our purpose in the present paper is to study the structure
and operational calculus of unbounded spectral operators. Bounded spectral
operators have been introduced and studied by N. Dunford in [2] and [3], and
the present paper is an investigation in the unbounded case of certain of the
results of [3]. Interest in the abstract theory of unbounded spectral operators
arises from important results of J. Schwartz [7], who has shown that the
members of a large class of differential operators on a finite interval determine

unbounded spectral operators in Hilbert space.

Let 1B denote the Borel subsets of the complex plane, and let X be a com-
plex Banach space. We shall call a mapping £ from ® to projection operators in

X aresolution of the identity if it is a homomorphism. That is,
E(e)E(f)=E(ef), E(e)uE(f)=E(euf), e, f€B
E(e’)=1-E(e), E(¢$)=0, E(p)=1, e € B;

E (e) is bounded,

[E(e)| < M, e c B,

and ! the vector-valued set function £ (e)x is countably additive. Here ¢ is the

void set, p the plane, and e’ the complement of e in p.

A closed operator T will be called a spectral operator if there is a resolution

of the identity £ such that:

(1) The domain D(T) of T contains the dense subspace Xo={x |x= £ (0)x,
o € B, o bounded}.

(2) It ¢ €B, E(0)D(T)CD(T) and E(o)Tx=TE(o)x, x € D(T).

1 The last condition is somewhat more restrictive than in [ 3].

Received March 4, 1953. This paper was prepared under Office of Naval Research
contract number onr 609(04). The author is grateful to Professor Dunford for suggesting
this investigation.

Pacific J. Math. 4 (1954), 373-392
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(3) o(T,E(0)X) Co where o(T,E (o) X) is the spectrum of T in the sub-
space £ (o)X,

If o is a bounded set, then T is a bounded spectral operator in the subspace
E(o)X, and in this subspace its structure and operational calculus are known
from [3]. The idea of the present paper is to determine the properties of T in
X from those of the sequence of approximating bounded spectral operators

TE (op, ), where { 0, } is an increasing sequence of bournded sets for whick

E( u on) =1,
n=t

We outline briefly the main results:

The simplest type of spectral operator S is that of scalar type:

Sx = lim f AE (dM)x,
€n

7 — o0
where this limit exists and

en =tAl [A] < ni.

With each spectral operator T we can construct an associated scalar type oper-
ator S from its resolution of the identity. (One of the principal results of the
bounded case is the characterization theorem [ 3, Theorem 8] that 7 is a bound-
ed spectral operator if and only if 7 =S + N, where S is a bounded scalar type
operator and /N is a generalized nilpotent operator commuting with S. In the
unbounded case the relation of T to S is not so simple, as we shall show by
examples, The operator N = T — S (with suitably defined domain) may be bound-
ed but not a generalized nilpotent or even unbounded with spectrum covering
the plane. We give a sufficient condition (Theorem 4.1) that 7 =S + N shall

be a spectral operator.

If S is a spectral operator of scalar type, it has an operational calculus
exactly analogous to that of an unbounded normal operator in Hilbert space
(which is an example of a spectral operator). To each Borel measurable function
f on 0(S) we can assign a densely defined closed operator f (5) which is also
a spectral operator of scalar type, the operators corresponding to f and |f |
having the same domain. In case 7 =5+ N is a general spectral operator we

can, by the formula
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N
/ (M E () x,
nl Je,

f(T)x = lim Z

P n=0

assign a densely defined operator f (7T) to each function analytic and single-
valued in the complement of a set 6 for which £(6)=0. (Here {e,} is an in-
creasing sequence of compact sets on each of which [ is analytic and with
E(Uy=, e,) = L.) However, as we shall show Ly an example, this operator need
not be a spectral operator without other restrictions. If f is a rational function,
f(T) is always a spectral operator. Conditions are given to ensure that f (7)
is bounded. A result of the calculus is the theorem that a closed operator T
with nonempty resolvent set is a spectral operator if and only if (M - T) ! is
a bounded spectral operator for some A € o(T). In case T is of the form T=S+N,
where N is a generalized nilpotent, we obtain quite an extensive operational
calculus of spectral operators. In order that f (T) shall be a spectral operator
it is sufficient that the singularities of f ()\) in the finite plane (with the pos-

sible exception of a finite set of poles on o (7)) shall not get arbitrarily close

to o(T).

2. Closed extensions. In this first section we establish the existence of
a closed extension of certain densely defined operators. This result will be
the main tool of the paper and it will be convenient to formulate it under rather
general conditions. We shall suppose throughout this section the existence of

a resolution of the identity E.

DeFINITION 2.1. Let Q be an operator defined on a dense subspace Dy (Q)
of X. Let there be associated with Q) a class U of Borel sets satisfying:

(a) ¥ is closed under finite unions and contains any Borel subset of one

of its members;
(b) Ife €, then £(e)¥ C Do(Q) and Q is bounded in £ (e)X;
(c) E(e)QE(e)=QE (e), e €U
(d) ¥ contains an increasing sequence {e,} such that £ (Up=; e,) =1

Under these conditions we say Q satisfies condition () and write

Xﬂ={x1x=E(e)x for some e €U §.

An important case occurs when 2 consists of all bounded Borel sets. We
shall be interested in finding a particular closed extension of Q. The con-

struction will be based on two lemmas.
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Lemma 2.1. Let {d,} and {e,} be two increasing sequences of sets from

W(Q) for which
E( U d,,,) - E( U e,,)=1.

n=1 n=1
If x € X, and limy, _, o DL (dy ) x exists, then

lim O£ (ey)x = lim QFE(d,)x.

n — 00 n-— oo

Proof. Given € > 0, let my be chosen so that if m > m, then

| O (dyy — d x| < — .

1

Now, as E(UZ:O en) =1 and ¢ is bounded in £ (dmo)x, we can find an ngy such
that, if n > ng,

|QF (dpyy — en)x| < -35

For any such fixed n > ny we can, for the same reasons, find an m; > mg so
that

€
]QE(en—dm1 )x | <§-.

Now, since
E(en)-—E(dmo)=E(en—dml)+E(en)E(dm1 ~dmy) = E (dp, —en),
it follows that

|QE (en)x — QL (dpy )x| < €.

DEFINITION 2.2. Let {e,} be any increasing sequence of sets from U (Q)
for which E (U, =; e, ) = I. We define

D(Q)=1{x| lim QFE(e,)x exists},

n— oo

and set Qx = lim, _, 00 QF (e,)x for x €D (Q).
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LEwmA 2.2, The operator %) with domain D((Q) is closed and is the minimal
closed extension of Q on Xor. Further, if x€D((), and e€ B, then E (e)x € (Q)
and £ (e)Qx=QFE (e)x. Also, Q, with domain E(e)YD (Q), is the minimal closed
extension in £ (e) X of Q) on :‘:\3{1, Uy ={es|oc UL

Proof. Clearly, first, if e €U (Q) and x € D (), then QF (e)x = £ (e)Qx
since we can suppose e a member of the sequence {e,}. Now let x, € D(Q)

(n=1,2,+++) and

xo = lim xp, y,= lim Qx,.

n — oo n-— oo

For any m,

Ja ((?,,,))’0 = lim £ (ep)Qxp,

n-— oo
and

Ol (emlxo = lim QFE(ep)x,

n— o0
as ( is bounded in £ (e, ) X. But since

O (e )ay =E (e )O0xy ,
we have

lim QF (ep)xo = lim E(en)y, =y, -

n— oo n-— oo

Thus %o €D (Q) and Qxy =y, . Clearly the extension is minimal. Finally let
x €D(0), e € B. Then

E(e)x = lim E(eep)x

o 00
and
OF (eep) = E(e)QE (ey)x
converges to £ (e )()x. The last statement follows easily.
We will also need:

Levma 2.3. Let {en} be an increasing sequence of sets from U for which
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o0

E( U e,,) =1.
n=1i

If, for each ny, A€ p(Q,E (e, )X) and

lim ()\[—Q)-lE(en)x

n— oo
exists for each x € X, then A €p ().
Proof. Clearly AI — Q is a closed one-to-one mapping of
DA -Q)=D(Q)
into X. We must show it is onto. Let x € X and
Y, = (M =-QY E(ey)x.
Then lim, _, o y, =y exists by hypothesis, and

lim (A -Q)y, = lim E(ey)x=x.

n—oo n— oo

Hence y € D(Q) and (Al -Q)y = x.

We note that if T is a spectral operator and T is the closed operator ob-

tained by taking for ¥ the class of bounded Borel sets and defining Qx = Tx,

x € Xgp, then T = To. Thus a spectral operator has no proper closed extension

which is a spectral operator.

3. Scalar type spectral operators. We begin by studying the simplest type

of spectral operators, those which can be constructed from a resolution of the

identity £ by integrating scalar functions. The integral we use for bounded

functions over bounded sets is that introduced by Dunford [3, Lemma 6]. We

particularly recall the relations

(3.1)
vl A€e

and

inf |[f(M)] < l/f()\)E(d)\)l <v(E) sup |f(M)]
€ A€e

(3.2) /f()\)g()\)E(d)\)=/.f()\)E(d)\)/g(y)E(du),
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where e is a bounded Dorel set, v(£)=4M, and f and g are bounded Borel
measurable functions.! We denote by [l the set of {lorel measurable functions
f each of which is finite-valued in the complement of a set ¢f for which

k(o) =0.

If fell, we let 2 be the class of bounded i3orel sets on which |f()\)] is
bounded and take

en:‘{’\\l)\\inillf(’\)lﬁn; (n=1921"')'

We define

F(SYx = lim / FONE (dX)x

n— ov

on the set U(f(S)) of x for which this limit exists. Lemma 2.2 shows that
f(S) is a closed operator, and l.emma 2.1 that we would have obtained the same

result by using any other increasing sequence { o, § from ¥ for which

/5( U on)z l.

n=1

e shall denote by S the operator obtained by taking f(A) = A and call it the
scalar operator associated with E (or if I\ is the resolution of the identity of
a spectral operator T, we call S the scalar operator associated with T). Now
S is a generalization of an unbounded normal operator in lilbert space.?® The
method we have used to construct the operators f (S) is an extension of the

method of forming direct sums of iiilbert spaces (see [ 6, p. 43 }).

TuroreM 3.1. Concerning the operator  (S) we have:
(1) iffel, then U(f(S))=D(f](S))
(2) iffgcMand | f(AN)] < K|lg(N)|, then U(g(S))CL(f(S));

(2) 2(S) is bounded if and only if g is essentially bounded with respect
totk(e)};

(4) iffe I and g () is bounded, then g(5S)D (f(SY)YCD(f(S).
Proof. We mnote that (3) follows from formula (3.1). To prove (1), let

YThe first half of (3.1) does not appear explicitly in [3] but follows from the
second half and (3.2).

2¢“\laximal normal operator’’ in the terminology of Stone [ 8].
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€ > 0 be given, and let

p=tA] [ f(AN)] < €l

We define s(A) to be |f(A) | [f(A)]! for A¢ p, and zero for A € p. Then if
x €D(f(S)), for any n we have

/ If()\)lE(d)\)xzs(S)/ f()\)E(d)\)x+/ FOOE (dM) .
en en=p en i

n n

But |s(S)| < v(#&), and the last term is in norm not greater than € v(£). It

[/ lf()\)lE(dA)x]

follows that the sequence

is a Cauchy sequence if

{/Bnmw(dmx]

also is one. Thus D (f(S)) CD(|f|(S)). The converse inclusion and (2) are
proved similarly. Finally (4) follows from (3.2), since

fef(A)E(dmg(S)x=/ f()\)g()\)E(dA)x=g(S)f £ OVE (dN)x.

THEOREM 3.2. Let f and g €.

(1) If x€D(f(S))aD(g(S)), then x€D((f+g)(S)) and [f(S)+
g(S)]x=(f+g)(S)x.

(2) If xED(g(S)) and g(S)x €ED(f(S)), then x€D((fg)(S)) and
F(S)g(S)x=(fg)(S)x.

Proof. (1) is clear. For (2), let ¥ consist of the bounded Borel sets on
which both f (A) and g (A) are bounded, and let

en={A]|fM)], 1g(A)] and |A| < ni.

Then, for any n,
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/f()\)E(d)\)g(S)x= lim /f(/\)E(d)\)/ g(p)E (dp)

m —» 00

- [ 1 eE@D,

since fen f(ME(dN) is a bounded operator. Thus f(S)g(S)x =(fg)(S)x.

For the next theorem we will need a lemma which it will be convenient later

to have formulated for a general spectral operator.

Lemma 3.1. If T is a spectral operator E(o(T)) =1, and ifte,} is an in-

creasing sequence of bounded Borel sets for which

E( U en) =1,
n=1

then

o(T)= U ol(T,E(e,)X).

n=1

Proof. The argument follows that of | 3, Theorem 1]. Tet

p= U o(T,E(e,)X).

n=1

Clearly uC o(T). If o is a closed subset of 1%, then, for each n, o (T, £ (0e,) X)
is a subset of both o and o (T, E (e,) X). Thus

E(oep)=0, E(o)=0, and E(u)=0.
Hence E(p)=1 and p=o(T).

THEOREM 3.3. If f€, then f(S) is a spectral operator whose resolution
of the identity is given by

Ef(e)=E(f'(e)),

and spectrum by
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a(f(S)= N [(e).

Ee)=1
Proof. Let o be a fixed Borel set. If Ay # o then

g(A) =X~ f (M)} "”f“(g)

is bounded, and the equations
g(SY Al = f(S))x=x, x<l(a)D(f(S)),
Mol =f(S)Ng(S)x=% xckE(a)¥,

show Ao/ —f(S) is a closed one-to-one map of E(o)D(f(S)) onto £ (o)X,
Thus o (f(S), E_/((J)X) Co.

Now let
en=tA Al <y [fOO)] <Rl

By | 3, Theorem 16 |,

(r(f(S),E(en)X)= N f(e)‘—‘lln'
E(e)=E(e,)

Now, by I.emma 3.1,

a(f(S)=U p,.

n=i
Iet
p= N fle)
E(e)=1
Clearly p, C p for each n. If
AE U p,,
n=1

we can pick a & > 0 and for each n a {Jorel set 0, C e, such that

£ o,) = E(e,) and dist. (X, (o)) > 5.
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Now if

)
Op = U (64790
n=1

then £(oo) = land A £ f (0p), and thus A £ ;. Hence

ncC 8

w =o(f(S)).

1

‘u‘ =
n
4. The relation of T to its scalar operator. One of Dunford’s principal re-

sults for bounded spectral operators is the characterization theorem [ 3, Theorem

8] that T is a bounded spectral operator if and only if 7T =S + N, where
S =/)\E (dA)

is the associated scalar type operator and N is a generalized nilpotent operator
commuting with 7. The absence of such a theorem in the unbounded case greatly
complicates the theory. While in each subspace £ (0) X, o bounded, N =T - S
will be a generalized nilpotent, the natural closed extension provided by Lemma
2.2 of N on Xy, (U the class of bounded Borel sets) may be bounded but not a
generalized nilpotent, or even unbounded. We now construct two examples which

exhibit these possibilities.

ExampLE 1. For each n, let §, be n-dimensional unitary space and let

$ be the space of sequences { x, }, where
Xn = (gln’ 5271"..’ énn) S g?_‘n ’

o0

\\(2 lrfi,,lz)%, 1x|=(z ‘xnv)%

n=1

Then $ is a Hilbert space. We denote by £ (n) the orthogonal projection mapping
$ onto § . The Boolean algebra £ of projections

E(o)= 2 E(n),

nCo

where o is any subset of the positive integers, is a resolution of the identity
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of the self-adjoint operator S which we define in § by
St = (né, yeresnf, )

and extend by Lemma 2.2 to
D(S):[x| S 1S |2 < oo].
n=1

The operator N we define in &, by
Nxp = (o, nflna né‘:z"’ trey nén-l n)'

The extension to § yields an operator of norm one which is nilpotent of order

n on &, . We shall show that the operator
T=S+N, (D(T)=D(S))

is a spectral operator. Let ¢ be any subset of the positive integers and & £ o.

If n € 0, the operator

n-1 NLE
Ra(T’ggn)= Z __i’i

izo (0 —n)*t

is the resolvent operator of 7 in the subspace §, . Decause of the quadratic
nature of the norm in Hilbert space, ¢ will be in the resolvent set of T in
E(0)$ if and only if |R (7,9, )| is uniformly bounded for all n in o. But this
is satisfied; in fact,

lim |R (T, $,)|=0,

n-— oo

where n is not restricted to 0. For, given 1 > ¢ > 0, we can pick an ny so

large that
€
& -n|"t< = forn > ng.
2
Then, if n > ng,
n-1 1
RAT, §)1 € X ——— <.

i=o |« —n‘iﬂ
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Thus o(T,E(0)9) Co, and T is a spectral operator. To show that N is not a

generalized nilpotent, let x = { x;}, where
x;= (22 ,0,0,...,0).

Then | x| = 1, but

1N”x\1/”:—1 .

V2

The transformation N is of a type studied by H. Hamburger [ 4 ].

ExAMPLE 2. In this case let , be two-dimensional unitary space for
each n, and form § as the Hilbert space of sequences { x,} with x,= (£, &, )€

9, as before. In §  we define
Sxn = (&}, > n&,,),
anz (09 nfln)’

and T =S + N. Then

D(T)={xl S T |2 <oo],

n=1

with similar expressions for D(S) and D(N). As D(S) c D(N), we have
D(T)=D(S). Now N has the entire plane as its spectrum since, clearly,
0 €0(N), and, if B # 0, the formula

R (N \‘é ) ( ér1n né_ln 6271)
s /X0 = —— + —
’ g 8 B

shows that lRﬁ(N, @n)l is unbounded with n. However, T is a spectral operator.

If o is a set of integers and & ¢ o then, for n €0,

é:171 ﬂfln é:271 \)

& —n' (g ~n)? TS

Ra( T, @n Yap = (

Thus [Ro(T,9,)| is bounded, n € o.
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The last example shows the degree of pathology that may arise. It is in-
teresting that we do have the following result which covers the case of Example

1.

THEOREM 4.1. Let S be an unbounded scalar type operator, and let N be a
bounded operator which commutes with the resolution of the identity for S and
is a generalized nilpotent on each of the subspaces E (o)X, o bounded. Then

T =S + N is a spectral operator with the same resolution of the identity.

Proof. The relation o(T,E (0)X) C o is clearly satisfied for all bounded

Borel sets. Let ¢ be an unbounded Borel set and let
en={A|[A] <nl.

By [3, Lemma 31, the resolvent of 7 in E (ce,) X is given by

E (dy)
en ()\_#)iﬂ.

M =TY'= 3 Ni/U
=0

We conclude the proof by showing that

lim (M=TY'E(oe,)x

n— oo

exists for each x € £ (o) X and applying Lemma 2.3 in that subspace. We show
in fact that the series

E(dp)

£ L
im0 Yo (A-p)™
converges. For given 0 < € < 1, we may pick ny so large that
2|N| < e dist (A, e7, ), 20(E) < dist (A, eny ),
and pick an n; > no such that for any m and n withm > n > ny,

E(dp)

m
s =
i=n Teng (A=p)* '

€
< =
2

Then, using (3.1), we get
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/' E (dp)
oeng (A= p)t!

v (E) mogl

E (dp)

€ " :
< —+ D IN|
2 i=n

€
<ot m————— ) — <&
2 dist (A,en,) ;o 2F

5. Operational calculus for a general spectral operator. YWhen T is a bounded
operator and f is a function analytic on ¢ (7), it is well known [1;9] that a

comprehensive operational calculus is obtained by defining
1
(5.1) f(T) = — /f(?\) (M =T) A,
27i YC

where C is a bounded positively oriented contour containing ¢ (1) and excluding

the singularities of f. Also,
(5.2) a(f(T))=f(a(T)).

Moreover, in the case that T(=S + N) is a bounded spectral operator, Dunford
has shown [ 3, Theorem 9] that the operator f (7) may be expressed in terms of

the values of f and its derivatives on o (1) by the formula

ooNn,
5.3 Ty=S — (Y (\VE (d
(5.3) f()gn!/m)f (ME (dA),

the series converging absolutely in the uniform operator topology. We shall

make formula (5.3) the basis of an operational calculus in the unbounded case.

Given an unbounded spectral operator T, we denote by R the class of func-
tions f each analytic and single-valued in the complement of a closed set Gf for

which £ (6},) =0, If for f€ R we take

1
en=[)\| [A] < n, dist (A, Gf) > —],

n

then { e, } is an increasing sequence of closed sets for which
o0

A9 )=

n=1
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and on each of which f is analytic. Moreover, T =S + N is a bounded spectral

operator in E (e, ) X. Defining

f(Mx= lim 3 ‘-T/ YUY AE (dX)x

n—o0 ;=g

on the set D(f(T)) of x for which this limit exists, we obtain via I.emma 2.2
a closed densely defined operator. The class R is closed under sums and prod-

ucts, and by an argument exactly analogous to that of Theorem 3.2 we obtain:
THEOREM 5.1. Let f and g € R.

(1) If x€D(f(I))aD(g(T)), then xeD((f+g)(T)) and (f(T)+
g(TNx=(f+g)(T)x.

(2) If x€D(g(T)) and g(T)x €D(f(T)), then x €D ((fg)(T)) and
f(T)g(T)x=(fg)(T)x.

As we show now by an example, the operator f (T ) need not be a spectral
operator. Let T be the operator of Example 2 whose spectrum is the set of

positive integers. Taking
1
f(A)=+/2 cosec 77()\+ Z)’

we see that the spectrum of f(7T) in E (o) for ¢ any finite subset of o (T)
is the range of f (A) on o, that is, lies in the pair of points *1. By Lemma 3.1,
this must be true also of the closed operator f (T) on D(f(T)) if it is a spec-
tral operator. However, 0 € o(f (T)) since, for x, € $,,

-
(T, = (_2— Eponméiy + 65,

showing that the norm of [f (7)]™! in §  is unbounded with n. In fact, o (f (T))

is the whole plane.

In connection with Example 1, it is worth noting that there are bounded
operators which are spectral operators on each of an increasing sequence

E (en) X of subspaces for which
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without being spectral operators on X. Such an operator in the case of Example

1 is given by S™! + N, where
en=1tp|1<p<ni.
We now give conditions under which f (7)) is a spectral operator.

TEEGREM 5.2. Let T be a spectral operator, and let  be analytic on o (T)
with the exception of a finite set 0= (p, p,, -+, p,) of poles for which
E(9)=0, and let f be either analytic at infinity or have a pole there. Then

f(T) is a spectral operator with resolution of the identity
(5.3) Ef(e)=E(f'1(e))
and spectrum
(5.4) a(f (1)) =f(a(T)).
For the proof we shall need the following lemma:

Lemma 5.1. Let  and T satisfy the conditions of Theorem 5.2. Then
o(f(THCf(a(TH).

Proof. Clearly we can suppose that f (¢ (7)) is not the entire plane. Let
Xo £ f(o(T)), and define the function g(A) to be [Ag—f (A)]"! where f is
analytic and zero at the poles of f. Then g is analytic on ¢(7) and at infinity.
To show that g(7T) is a bounded operator, we can suppose that o(T) is not
the whole plane, since otherwise g is constant. Now A.E. Taylor [10] has
shown that if T is a closed operator whose spectrum does not cover the plane,
and g is a function analytic on o(7T) and at infinity, then there is an unbounded
Cauchy domain D such that o(T)CD, D is contained in the domain of g, and

an operational calculus is established by defining
glT]=g(x)+ ég()\)()\l ~TY N,

where K is the positively oriented bounded contour forming the boundary of D.
The operator g{ 7] is bounded, and, in the case T is bounded, g[7]=g(T),
the operator of (5.1). Now, recalling the equivalence of (5.1) and (5.3) when
T is a bounded spectral operator, we let

1
en=a(T)n[)\l [A] < n, dist (A,8) > -},

n
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and note that
0o Ni )
glT]= 27/ g D(N)E (d))
im0 i} Yen

in £ (e, ) X. Thus, in X,

o0

N :
gLT1=lim 3 = [ O E @A) = g(1).
o il Je,

n—oo ;=

Moreover, g(T)=[Ao/—f (T)]"! in E (e,) X. Thus, by Lemma 2.3, Ay £ o(f(T)).

Proof of Theorem 5.2. Let o be a fixed Borel set. Then

o(T,E(f " (e X)Cf (o).

We now apply either (5.2) or the preceding lemma in the subspace E (f!(¢)) X,
depending on whether or not f~! (o) is a bounded set, to conclude that

o(f(T)E(f"(aeNX)Cf(f (o)) Ca.
That o (f (T)) = f (o(T)) follows from (5.2) and Lemma 3.1.

COROLLARY. Any polynomial in a spectral operator is a spectral operator.
A closed operator T is a spectral operator if and only if, for some Ao £a(T),

(Aol = T) ! is a bounded spectral operator.

Proof. The first statement is clear, as is the necessity of the second. For

the sufficiency we note that
1
T=f((XI=T)"), where f()\):)\(y-x.

If we restrict N to be a generalized nilpotent we obtain a broad operational
calculus of spectral operators. All we need require of an analytic function f is
that its singularities in the finite plane (with the exception of a finite set of

poles as before ) shall not be arbitrarily close to o (7).

THEOREM 5.3. Let T be a spectral operator and T =S + N, where N is a
generalized nilpotent. Let f be a function for which there exists a constant

r > 0 such that f is analytic (with the possible exception of a finite set
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6=(p1,---,pk) of poles for which E(6) = 0) in the open set
/Lf={)\1 dist (A, o(T)) < r}.

Then f(T) is a spectral operator whose resolution of the identity and spectrum
are given by (5.3) and (5.4). The class of such functions is closed under sums
and products. If f if bounded on K then f (T) is bounded.

The proof proceeds exactly as before once we have:
LEmMMA 5.2. [If f satisfies the conditions of Theorem 5.3, then
a(f(T))Cf(a(T)).

Proof. Let { and r be given and Ay & f (6(T)). Again we define g(X) to be
(Ag—f(A)) ! where [ is analytic and zero at the poles of f. Then as Ay £ f(a (7))

there is a constant s > 0 such that g is analytic and bounded in
yg:{/\ | dist (A, 0(T)) < 2s}.

The formula

n! (u)
(n) _ ¢
(A) 5o '[C(_——H—A)”“ dp, NE€a(T),

where C is a circle of radius s, shows that if | g(A)| < K on [ then

(n) A
§ f N < g, AEo(T).
n!
Since
lim Ianl/n 0
n— 00
the series

oo n
(D=2 f g (NE (@)
- n!
converges in the uniform operator topology. Moreover, if

1
e,,:a(T)n[M |A] < n, dist (A,0) > —],

n
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g(T) is the resolvent of f(T) on E (e, ) X. Application of Lemma 2.3 shows
that Ay & o(f(T)).
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WEAK AND STRONG LIMITS OF SPECTRAL OPERATORS

WiLrLiaM G. BADE

The present paper is a contribution to the theory of spectral operators in
Banach spaces developed by N. Dunford in [ 8] and [9]. A bounded operator S

is a spectral operator of scalar type if, roughly speaking, it has a representation

S =/ AE (d))
o (S)

where £ (. ) is a resolution of the identity similar to that possessed by a normal
operator in Hilbert space. The initial problem we are concerned with is to find
conditions under which a weak or strong limit of scalar type spectral operators
is again in this class. The results are then applied to the study of certain weak-

ly closed algebras of spectral operators.

Section 1 contains a brief summary of definitions and results from [ 8] and
[9]. In $2 conditions are found under which a strong limit of scalar type spectral
operators is a scalar type spectral operator, the principal restriction imposed in
the limiting operators being on the nature of their spectra. The operators need

not commute.

Suppose that the underlying space X is reflexive. If 2 is an algebra generated
by a bounded Boolean algebra B of projections, then by a theorem of Dunford
[9], each operator in ¥ is a scalar type spectral operator. We show (Theorem
4.1) that every operator in the weak closure & of U is a scalar type operator,
and characterize & as the algebra generated (in the uniform topology) by the
strong closure of B. The principal tool used is the equivalence (due to Dunford
[7]) of strong closure and lattice completeness for bounded Boolean algebras

of projections. We give a new proof of this theorem.

The paper concludes with a characterization of the weakly closed algebra
generated by a single scalar type spectral operator with real spectrum. Our proof
of this theorem gives a more direct proof of the corresponding result of Segal
[22] for Hilbert space.

Received February 8, 1954. The research contained in this paper was done under
contract onr 609(04) with the Office of Naval Research.
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393
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1. Preliminaries. In this section we collect certain definitions and results,

principally taken from [9].

Two projections in a Banach space X are said to be ordered in their natural
order, E, < E, ifE\E, = E,E, = E,. This is equivalent to the conditions

E, X CE,X and (I-E )X D> (I-E})X.

The natural order partially orders the set of all projections in X, and any pair

of commuting projections £, and £, has a least upper bound
E, v E;=E +FE,~EE,
and greatest lower bound
E, A E,=EE,.

If {£,} is an arbitrary set of projections and X admits the direct sum de-

composition X = n@AN where

M=8p iU E %Y, N=n,(I-E,) X,

then the projection with range I defined by this decomposition is denoted by
V, E4 and is the least upper bound of the set { £, }. Correspondingly the greatest
lower bound A, E, with range N, is defined by the decomposition X =M, @ 1,

where
m1= na.Eax’ YLI =.S-p{Ua(I—Ea)X}’

if it exists.

Throughout much of this paper we will be concerned with Boolean algebras
of projections; that is, sets of commuting projections containing O and the
identity / which are Boolean algebras under the operations £, v £, and E; A £,.
A Boolean algebra B of projections is bounded if there is a constant M such
that | E| < M for £ € B. B is complete if it contains V4 E, and A E  for every
subset { E;} C B. We remark that B may be complete as a lattice but not com-

plete as a Boolean algebra of projections in X in the present sense.

Let & be a o-field of subsets of a set Q. A homomorphic map £ (- ) of  onto

a bounded Boolean algebra of projections in X will be called a spectral measure.

Thus
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E(cud)=E(c)vE(S), E(6n8)=E(a)aE(5),
(1.1) g, 8€E.
EQ)=1, E(c")=1-E(0), |E(c)| < M

The set function x*E( . )x, x € X, x* € X¥, satisfies (see proof of [9, Theorem

171)
(1.2) var x*FE (« )x < 4M|x]||x*].

The spectral measure E(.) is countably additive if x*E (. )x is countably
additive for each x € X, x* € X*. Countable additivity of £ (- ) implies that the
vector valued set functions £ (- )x are countably additive for x € X [8, page

579 1.

If F(.) is a spectral measure in the conjugate space X* of X we say F ()
is (X )-countably additive if F (. )x*x is countably additive for all x* € X* and
x € X.

We will need a notion of integration of scalar functions with respect to a
spectral measure [ 9, Lemma 6]. Let E(.) on (Q, ) be either a countably
additive spectral measure in X or an (X)-countably additive spectral measure

in X*, Then for f an essentially bounded measurable function on {, the integral

fQ f(w)E (dw) is defined as the limit

(1.3) /f(a))E(d(u)= lim /f(co)E(dw)
Q nooo YQ T
in the uniform operator topology, where the functions

fn(w)= Zainkoin(ﬂ))y n=12,..,

form a sequence of finite linear combinations of characteristic functions of dis-

joint sets o;, €& converging uniformly to f on Q and
./(.2 [(0)E(dw) = 2 din E(oin).
This integral satisfies
1 .
(1.4) i ess inf |f(w)] < | A f(@)E(do)| < 4M ess sup [ f ()],

A countably additive spectral measure on the Borel sets of the complex plane
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is called a resolution of the identity. A bounded operator T in X is called a
spectral operator of scalar type if there is a resolution of the identity £ (- )
such that

E(u)T=TE (n)
¢ € Borel sets
o(T E(u)X)C

and
T:/ AE(dN).
o (T)

Here ¢ (T; £ () X) is the spectrum of the restriction of T to the range of £ (p).
In exactly the same way we have the notions of an (X)-countably additive
resolution of the identity and a scalar type spectral operator of class (X) in
X*. In either case E (. ) is unique and £ (o (7)) =1 Moreover if F(.) is a
countably additive ((X)-countably additive) spectral measure on (£, ), the

operator

S(f)=_/;2f(w)F(dw)

defined by (1.3) is a spectral operator of scalar type (scalar type and class
(X)) whose resolution of the identity £ (. ; S(f)) is given by

E(o; S(f))=F(f'(a)), o< Borel sets.

Finally we will need the following specialization of a theorem of Dunford

[9, Theorem 17].

1.1 THEOREM. Let B be a bounded Boolean algebra of projections in a
reflexive space and let U be the algebra generated by B in the uniform operator
topology. If W denotes the compact Hausdorff space of maximal ideals in ¥,
then U is equivalent to C(M) under a topological and algebraic isomorphism S.
There is a spectral measure E (+) defined on the Baire sets of W such that if

feC(M), then

S(f)='/;nf(m)E(dm).

1.2 REMARKS. By the discussion above each operator in ¥ is a scalar type
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spectral operator. It is easily seen that I may be identified with the Stone
representation space of the Boolean algebra B. Since I is totally disconnected,
the class {§ of Baire sets of M is generated by the open and closed sets. Thus
{E(0)| o€} is an extension of B and lies in the strong closure of B by the
strong countable additivity of £ (.« )x, x € X,

2. Strong limits of operators with restricted spectra. In this section we
determine conditions under which a Jimit in the strong operator topology of
scalar type spectral operators is again in this class. The principal restriction
imposed on the limiting operators is on the distribution of their spectra. For
application in later sections our principal result (Theorem 2.3) is stated in
terms of Moore-Smith convergence, or convergence of nets in the terminology of
Kelley [15]. We recall that the strong operator topology for B (X) is generated
by neighborhoods of the form

N(Tys xysevnstn, €)=f{T | |(T=To)x;| < e,i=1--+,n},
the weak operator topology by neighborhoods of the form
N(Tgsyseee siny x¥5eesxt, €) =T [xH(T - To)x;| <e,i=1-ee,n}.
Anet§T,}, « €A, converges strongly to T € B (X) if

lim T, x = Tx, x €X.

It converges weakly to T if

lim x*T, x = x*Tx, x € X, x* € X*.
a

If V is an unbounded closed subset of the complex plane we denote by
Coo (V) the B-space of complex valued continuous functions on V which vanish
at infinity (A function { vanishes at infinity on V if given € > 0 there is a
number K with {f(A)| < eif A€V, |A| > K.) If V is bounded we let Coo (V) =
C(V).

2.1. DEFINITION. A closed nowhere dense set V in the complex plane

will be called an R-set if the set of functions

[flf(/\)=u—i—-)—\, Mw]
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is a fundamental in Cy (V).

It is easily shown that V is an R-set if and only if rational functions are
dense in C (V). To approximate a rational function g in Co (V) by linear
combinations of functions of the prescribed type when V is unbounded, one

approximates by Riemann sums the integral in the representation

1 )
g (1) = fﬁ“— du, XEV.
2ai JC p-A

Here C is a clockwise contour consisting of small circles exterior to ¥ which
contain the poles of q. We leave to the reader the fact that the approximation
may be made uniform on V. The case where V is bounded is treated by a similar

argument.

The characterization of R-sets is apparently an unsolved problem of approxi-
mation theory. It is known that not every closed nowhere dense set is an R-set.
The most important example of an R-set is, of course, the real line, That R-sets

form an extensive class of sets is shown by the following lemma.

2.2. LEMMA. In order for a closed nowhere dense set V to be an R-set it
is sufficient either that V has plane measure zero or that V does not separate

the plane.

The case that V' is bounded follows from important theorems of approximation
theory. By a theorem of Lavrentieff [ 16] (see also Mergelyan [ 18]) polynomials
are dense in C(V) if V does not separate the plane. Hartogs and Rosenthal
[12] have shown that rational functions are dense in C(V) if V' has plane
measure zero. If V is unbounded let ¥, = ¥ u { w} have the usual topology as a
subset of the complex sphere. If 8 ¢ V the mapping @ defined by ®()) =
(B =A)"! maps V, homeomorphically onto a closed and bounded nowhere dense
set W containing zero. If € Coo (V) then $(z)=f(®'(z)) is in C(W) and
vanishes at zero. Moreover ¢ is rational if and only if f is rational, and ¥ does
not separate the plane or has measure zero if and only if V has the same proper-
ty.

We now suppose that { T}, & €4, is a net of bounded scalar type spectral
operators with lim, Tox= Tx, x €%, T € B(X). The operators T, need not
commute or be uniformly bounded in norm. We examine the spectral properties of

T under two assumptions.

(A). If E,(.) denotes the resolution of the identity for T,, then there is
a constant M such that |E (0)| < M, a €4, o € Borel sets.
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(B). There is a fixed closed (possibly unbounded) R-set V with ¢(T,) C
V, o €A.

2.3. THEOREM. If T € B(X) is the strong limit of a net { T,} of scalar
type spectral operators satisfying conditions (A) and (B), then T* is a scalar
type spectral operator in X* of class (X). If X is reflexive, T is a scalar type

spectral operator in X.

It should be remarked that for applications in later sections we will need
only the case that V is the real line. The method of proof is a straightforward
extension of that used by Stone in [23] to prove the spectral theorem in Hilbert

space. The proof will require two lemmas.

2.4. LEMMA. IfAZ V thenr€p(T),

|R(X; T)| < 4Md (A, V)!
(where d (N, V) = dist. (A, V), and

lim R(A; To)x=R(A;T)x, x €X.

Proof. Since

R()\,Ta)=/( = E ()

a

we have from (1.4)

lx|d (A V)
](AI—Ta)leT, weAd, xeX,
from which it follows that
[x|d (A V)
M-T > —— x € X.
(= Thel >

The last conclusion follows from the identity

R T)x =R T)x =R T (T =T)RN; T)x.

2.5. LEMMA. Given x € X, x* € X*, there is a unique measure p(esx*x),

bilinear in x and x*, which satisfies
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1
x*R()\;T)x=f _— p(dp;x*,x), AETV.
VA-p
Moreover

var (p(+;ax*x)) < 4M| x| |x*].

Proof. By (1.2)
var x*Eg (+ )x < 4M x| |x*] .

Thus the set of measures {x*E, (- )x}, & € 4, is a net in the closed sphere
S about the origin of radius 4M |x | | x*| in the space R (V) of regular measures
on the Borel sets of V. Since R(V) is the conjugate space of Co (V), the set
S is compact in the w*-topology [1]; that is, the topology generated by neigh-

borhoods of the form

N(Go;fl, ...,fn’ €)=

{01 0eRrR V), |/;/fi(>\)9(d)\)-—/;/fi()\)eo(d)\ﬂ <eyi=leee,nd,

where fioeoesf, ECo(V). It follows [15] that the net {x*E, (. )x } has a cluster
point p (. ; x* x); that is, given 0y € 4, every neighborhood of p contains a

measure x*F, (+ )x for some ot > g In particular if A € V, € > 0, and ¢, €4,

/ 1
V A-

then

1
) d)—/-— dy; %%,
i aldp)x v p(dp; x*, x)

1
= | x*R(N\; Ta)x—/ — pdp; x*,x)| < €
V A-p
for some « > oy. By Lemma 2.4,
Yima*RAA; Tdax=a*R{x; Tx.
Thus

1
x*R(/\;T)x=/—-- p(du; x*, x), NEV, x*e X* xeX.
VA-p

The uniqueness of p( -« ; x* x) and its bilinearity in x and x* follow from the

fact V is an R-set.
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To continue the proof of the theorem, we now extend the measure p (- ; x*, x)
on V to all Borel sets of the plane in the obvious way. Since for any Borel set

€,
Pples a¥,2)| < 4M |x*| ],
there is a unique operator A (e) in X* satisfying |4 (e)| < 4M and
ples x*, x) =4 (e)x*x, x* € X*, x € X.

It will now be shown that the family {4 (. )} is a resolution of the identity for
T*. Letv ¢ V. Then

(2.1) R{v; T%) A (eq )x*x=/ A (dp)x*x
eg v—
for each Borel set eq ; for the equation
R(v; T* 0(du)
f_”—_) A(dp)a*c = R (w3 TIR (A3 T*) x%x = / £,
A—p V A-yu

VVheIe

is valid for every A £ V, A # v. Since the corresponding functions (A — p)™!
are fundamental in Co (V), formula (2.1) follows from equating the measures

in (2.2). However,

A(dp)A (e ) x*x,

R(v; T*)A(eo)x*X=/V "

and the same uniqueness argument for the measure yields

A(eo)A(81)=A(eon€l)

for arbitrary Borel sets e, and e,. Hence A(e) is a projection. In view of the
countable additivity of 4 (. )x*x, it remains to show that ¢ (T*) = I and
o T*, A(e)X) C & for arbitrary e. The second statement follows from formula
(2.1) since R(v; T*)A (e )x*x has a unique analytic continuation to all of

e’, because o(T™)n € is nowhere dense. To prove the first statement let e, be
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any compact subset of V — ¢ (T*). Since
R(X; T*)A (eg) =A(eg)R(N; T*) for A € p(T%),
A(ey) commutes with T*. Thus

o (T*, A(eg)X*) C o (T*).

But again R (A; 7%)4 (eg)x*x has a unique analytic continuation to ed, from
which it follows that 4 (e,) = 0, and hence A(V —o(T*))=0as V - o(T*)is
the union of an ascending sequence of compact sets. Finally if C is any contour

enclosing the bounded set o ( ™),

1 1
x*x=/ — dA A(du)x*x=A(o(T*))x*x,
o (T*)| 27i YC A—p

showing A (¢ (T*)) =1 If X is reflexive the projections E (e¢) = A*(e) form a
resolution of the identity for T in X. This completes the proof.

2.6. THEOREM. Let a net { T,}, o € A, of bounded scalar type spectral
operators satisfying conditions (A) and (B) converge strongly to a bounded
scalar type spectral operator T. Let h be a bounded Borel function on V with
set K of discontinuities. If E(K)=0 where £(+) is the resolution of the
identity for T, then h(T, ) converges strongly to h(T).

Proof. We consider first the case that h € Coo (V). By Lemma 2.4, R(A;T),
A £ V, is the strong limit of R(A;T,), and hence lim, g(1I,) = g(T) strongly
for g in a dense subset of Co (V). If |~ g| < ¢, then

[R(T)x —h(T)x| < ]/I;(h()\))~g(/\)Ea(d/\)x|

+ l'/;/ (R(A)=g(A)) E(dA)x| + 1 g(Ty)x - g(T)x|

<8M € |x|+|g(THx-g(T)x|, =x€X,

from which the conclusion follows for 4 € Co (V). In the case A is a bounded
Bore!l function whose set K of discontinuities satisfies E(E):O, choose
g € Coo (V) such that g(A)=0, A € K, and g(A) > 0 for A € V ~K. The
function g h is in Cx (V). Moreover, the range of g (7)) is dense in X; for given

x € X and € > 0 there is a closed subset ¢ of V disjoint from K such that
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|x —E(o)x| < €. Then

E(d
E(o)x=g(T)y where yzf —_((-%)f-
g 8

Now if x ¢ X,

R (Te)g(T)x = h(T)g(T)x]
SA(TR) g (T)x ~h(To) g (To)x | + | (hg) (Ty)x — (hg) (T)x|

< 4M eis s;p [h (M) - | g(T)x - g(Ty)x| + | (hg)(T,) - (hg)(T)x|.
S

By the previous case g(T,) and (hg) (T,) converge strongly to g(T) and
(hg) (T). Thus limg A(T,)y =h(T)y for y in a dense set. Since the A (T,) are
uniformly bounded, 4 (7,) converges strongly to A (T).

Theorem 2.6 generalizes a theorem of Kaplansky [ 14] for the case that the
T, are self adjoint operators on Hilbert space and Kan o(T)=0. The present
theorem contains a result of Rellich [21] that if {7, } is a sequence of self
adjoint operators converging strongly to T, then

lim E,((—w, A\Dx=E((~w, A])x, x € X%

n— o™

for each A not in the point spectrum of T.

3. Bounded Boolean algebras of projections. It is natural to ask when a
Boolean algebra B of projections may be embedded in a complete Boolean
algebra of projections. Under the assumptions that X is reflexive and B is
bounded, Dunford in [ 7] constructs the projection V, £, corresponding to any
subset {£,} C B, and states the theorem that the least complete Boolean
algebra of projections containing B is the closure of B in the strong operator
topology. In this section we will give a proof of Dunford’s theorem by showing
first that the strong closure of B (denoted by BS) is complete. It will then be
required to show that a complete bounded Boolean algebra of projections is
strongly closed. Actually we will show it contains every projection in the
weakly (equivalently, strongly) closed algebra which it generates. This stronger
result will be needed in § 4.

The proofs will require the following lemma on monotone nets of projections.

3.1. LEMMA. Let {E_}, ¢ € A, be a net of projections in a reflexive space
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X satisfying |E,| <M, o € A. If E, < Eg whenever o < B, then lim, E,
exists in the strong operator topology and limg E, =V Eg. Correspondingly
if Eg < Eq whenever o < B, then limy, E, = A, E, in the strong operator
topology.

This result is due to Lorch [ 17] for the case of monotone sequences. A proof

of the general case has been given by J. Y. Barry [ 3].

3.2. THEOREM. If B is a bounded Boolean algebra of projections in a
reflexive space, then B° is a complete bounded Boolean algebra of projections

containing B.

Proof. Clearly |E| <M if E € BS, If E, E,, F and F, are in B, | (E ~
E\)x| < ¢ and | (F - F,)x| < ¢, then

\(EF—E, F)x| <|(EF—EF,)x|+|(EF, —E, F)x| < 2Me.

Thus the mapping [E,F] —FE F is a continuous map of Bx B —B(X) in
the strong operator topology. Thus B is a bounded Boolean algebra of projec-
tions. If By is any subset of B%, let = be the family of all finite subsets of
By, directed by inclusion. f 0 ={E,,++, E,} C Bylet E,=E; vE, veee v Ey,.

The net {E,}, 0 € X, is monotone in the natural order of projections. By

Lemma 3.1, we have

lim E, =V, E, € B,

o

The next lemma is an extension of a result of Dixmier [ 5] for Hilbert space

(see also Michael [19]). The proof is similar, but we give it for completeness.

3.3. LEMMA. If X is B-space, a convex subset of B(X) has the same clo-

sure in the weak operator topology as it does in the strong operator topology.

Proof. Under either the weak or the strong operator topology B(X) is
a locally convex linear topological space. In view of the separation theorem for
convex sets [4] it is enough to show that these two spaces have the same con-
tinuous linear functionals; or, since the strong topology is stronger than the
weak, that a functional continuous in the strong topology is continuous in the
weak topology. If 6 is continuous in the strong topology, there is a finite subset
{x,s5¢es%,} of X and an € > 0, such that | Tx;| < ¢ i=1,---,n, T € B(X),
implies | 0(T)| < 1. Let 3 be the Banach space of n-tuples {=[z;,+-+52,],
z; € X with morm || =max; < i<, |z;|. If ® is the mapping of B(X) into
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3 defined by ®(T)=[Tx,,--+,Tx,], it is easily seen that the functional
f, on ®(B(X)) defined by fo(§)= 6(T) is well defined and continuous. If f

is a continuous extension of f, to all of 73, then f has the form
n
flzgseeeszn )= 2tz
=1
where xf € X*, Consequently 0(7T) = f (D(T)) has the form

()(T):Z x;“Txi .

=1
It follows that 0 is continuous in the weak operator topology.

3.4. THEOREM.' A complete bounded Boolean algebra of projections in a
reflexive space contains every projection in the weakly closed algebra it gener-

ates.

Proof. l.et ¥ be the algebra generated by B in the uniform operator topology,
and let A% be the closure of U in the weak operator topology. Since A% is an
algebra, it is the weakly closed algebra generated by B. Moreover, A% = U by
Lemma 3.3. Let F2= F, F € US, The proof that F € B will be made by showing
that to each pair (y,z) where y el =F X and z €\ = (I = F)X there can be
associated a projection £y, € B such that £y, y=y=Fy, and Ey, z=0= Fz.

For if this is granted, the projection
(3.1) E:/\zenVyem Eyz
is in B since B is complete. If x, € X, X0 =Y+ Z0s ¥y € M, zo € N, then

Vme Ey.y, =y, for each z €M, and Vy cm £
Ezqg=0 and £ = F,

yzg20 = 0. Thus Ey =y,

We now construct the projections £ .. It should be remarked that the con-
struction uses only the fact that B is g-complete. Let y and z be fixed elements
of M and 1| respectively. Then since F € U°, elements A, €U may be selected
such that

(3.2) ly — Any| < 1/2%, |Anz| < 1/27, n=1,2,...,

1 This theorem does not answer the question: if a sequence {En} C B converges
weakly to a projection F, does }{ E, } converge strongly to F?
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and each 4, is a finite linear combination of disjoint projections { £y ,+++, Es }
in B. It is now convenient to use the fact (Theorem 1.1) that U is equivalent
to C () where M is the space of maximal ideals in A. Thus 4, =S(f, ) where
f, is a finite linear combination of characteristic functions of disjoint open and
closed sets, and 4, = fw f,(m) E(dm), where the integral is that of $1. Let

€ be an arbitrary positive number and

o =im| [f,(m)] > el

If £(o,.) is the projection corresponding to 0,., the remainder of the proof

consists of showing we may take

Eyz =Ves o Aoy Vicn Eloie).
Let

Ene=V.2

i=n

E(oie), Eqe= Ao;=l Epe.

Since the sequence { £, } is monotone decreasing,

lim Epey=Eoey

n—o

by Lemma 3.1. Defining

A,,E:/ £ (m)E (dm)

ne
we have

\Ens?"‘Y‘ < lEne(}"‘An}’H“L‘Ane}"‘An}’t +lAn)""Y‘

M+1) (M+1)
< +1 [, f(m)E(dm)y| < + 4Mely].
n One an
Thus
(3.3) |Eoey —y| < 4Mely].

Now
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Epez=lim V.E E(o;e)z

p—®

by Lemma 3.1. But

VR E(o;)z] = [tE (0pe) + E(0(,4).) (I =E (o))

P
et Elope) (1= E(UP oy Mhz| < 30 |E(0i0) 2.

n
1=n

Since by (1.4)

€|E(0ie)zl
|Ajez| =|A;E(0;e)z| > ———

4aM
we have
2
|E(o;e)z| < —, i>n
€2
Thus
am3
iEnezl <
E2}7,-1
and
(3.4) Egez=0

by Lemma 3.1. If 0 < 6 < ethen £y < Egg5; s0if €, =1/n and

Ey =V Eoen = lim Eoen ’

n=1
n— 00

we have Egy =y and £,z =0 by (3.3), (3.4) and Lemma 3.1. Thus we may

take £y, = Eo . This completes the proof.

3.5. COROLLARY. A4 bounded Boolean algebra of projections in a reflexive

space is complete if and only if it is strongly closed.

4. Weakly closed algebras. The theorems of ¢ €2 and 3 enable us to prove

the following result.
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4.1. THEOREM. Let B be a bounded Boolean algebra of projections in a
reflexive space, and let T be the weakly closed algebra generated by B. Then
B s generated in the uniform topology by BS. Each operator in B is a scalar

type spectral operator whose resolution of the identity has its range in B,

Proof. Let A be an element of T. Then since & =A% = US there is a net
{A,} € U such that Ax = limg A, x, x € X. Let Aq=S(f,)y f, € C(T). Now
f, = 8a +ihg where g, and h, are real, and Ay =B, +iCq, By =5(g,), C,=
S(h,). Moreover,

Bax — Bﬁx =/S;Rra/6(m)E(dm) (Agx - Aﬁx)

where

galm) ~gglm)

’ (m m
raﬁ(m): fa(m)—f,(g(m) fa )f'é f,B( )
05 flm) = fy(m).
Since lraﬁ(m)l <1,
,/‘;ﬁraﬁ(m)E(dm) < 4M

Thus { B, x} is a Cauchy net for each x € X. The operator B defined by

Bx =lim Byx, x € X

a
is in ¥ since the inequality

| Bx| < 4M Tim |Agx| = 4M | Ax|
a

shows B is bounded. Similarly the net { C,} converges strongly to a bounded
operator C € T}, and 4 = B + iC.

By Theorem 2.3 B and C are scalar type spectral operators. To show that 4
is a scalar type spectral operator it is sufficient to prove that the resolutions
of the identity of B and C generate a bounded Boolean algebra.® It will be

2Cf. [ 9, Theorem 19]. It is not known whether in a reflexive space the sum of two

commuting scalar type spectral operators is a scalar type spectral operator. An example
to the contrary has been given by Kakutani [13] in a non reflexive space.
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shown that £(. ; B) and £ (. ; C) have their range in B3, Let o be any bounded
closed subset of the real line and let {qSH} be a monotone decreasing sequence

of continuous functions with

lim & (M) =ky(A), 0 <A<,

n-— 00
by Theorem 2.6 ¢ (B) € B for each n. But ¢ (B) converges weakly to £ (03 B),
and thus £(o;B) <. But then £(o;B) Bs by Theorem 3.4. The assertion
that the range of £ (- ;5) is in B® now follows from the countable additivity

of £E(.;B)x, x €X. The operator C is treated in the same way. Theorem 1.1
may be applied to the bounded Boolean algebra 5° to complete the proof.

4.2. COROLLARY. In a reflexive B-space the uniformly closed algebra
generated by a complete bounded Boolean algebra of projections is weakly

closed.

4.3. REMARK. The use of Theorem 3.4 in the proof of Theorem 4.1 to show
E(.;B)c B can/be -aveided if X is separable. In this case o(B) contains

at most denumerably many eigenvalues, and Theorem 2.6 shows

m
Pan

lim E((—w,A]; Bg)x=E((=a,A]; B)x, x

for a dense set of numbers .

4.4. DEFINITION. A scalar type spectral operator will be said to be real
if 0(4) is real.

Our next objective is to characterize the weakly closed algebra generated
) ¥ 8 g8
by a single real scalar type operator and the identity. We will require certain

preliminary material.

4.5. DEFINITION. A compact liausdorff space ) is exiremely disconnected
if the closure of every open set is open. A positive regular Borel measure y on
Q is normal if it vanishes on sets of the first category. An extremely discon-
nected compact Hausdorff space Q is hyperstonian if it has sufficiently many

normal measures that the union of their supports is dense in (1.

Stone has shown [26] that the representation space of a complete Boolean
algebra is characterized by the property of being extremely disconnected. It can
be shown [10] that corresponding to each Dorel set ¢ of an extremely discon-
nected space there is a unique open and closed set o such that the symmetric

difference (e — o) u (0 — e ) is of the first category. The notion of a hyperstonian
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space is due to Dixmier [6] who has proved that a compact Hausdor{f space

is the space of maximal ideals for a commutative W*-algebra on Hilbert space
if and only if it is hyperstonian. A hyperstonian space Q is of countable type
if e€ach mutually disjoint family of open and closed subsets of @ is at most
countable. By a theorem of Dixmier [6] each hyperstonian space contains a
family Q;, i € of mutually disjoint open and closed subsets whose union is

dense, with the property that each Q; is of countable type.

Now let B be a complete bounded Boolean algebra of projections in a re-
flexive space with representation space M. If x € X, x* € X*, the measure
x*E (+ )x on It vanishes on sets of the first category. Thus the positive mea-

sure v{+ ; x*, x) defined by

v(o; x* x) = tot. var. x*E (0)x
o

is normal. Clearly the union of the carriers of such measures is dense in T,

Following Segal [22] we call a projection £ € B countably decomposable if
each mutually disjoint family of projections in B bounded by E is at most

countable. Thus we have proved:

4.6. THEOREM. A complete bounded Boolean algebra of projections in a
reflexive space contains a family of mutually disjoint countably decomposable

projections whose least upper bound is the identity.

4.7. DEFINITION. Let 4 be a real scalar type operator. We denote by
B(A) the weakly closed algebra generated by 4 and I. An operator B is an
extended bounded Baire function of A if for every countably decomposable pro-
jection E in B(A4), B commutes with £ and the contraction Bg of B to E X is

a bounded Baire function (in the usual sense) of the contraction Ag of A.

The concept of an extended bounded Baire function is due to Segal [22].
One verifies easily that the contraction of A4 to EX is a real scalar type spectral

operator.

4.8. THEOREM. The algebra B (A ) generated in the weak operator topology
by a real scalar type operator A and [ consists of all extended bounded Baire

functions of A.

Note that since A4 is real (4 ) is also the weakly closed algebra generated
by the resolution of the identity £ (. ;4) of A. (Cf. the discussion in the proof
of Theorem 4.1.) Let B be the Boolean algebra of projections in (A4 ). Then
E(.;A) is strongly dense in B by Theorem 4.1. Clearly each extended bounded
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Baire function of 4 lies in %(A4 ) since it lies in the uniformly closed span of
B by (1.3). Conversely, let B B(4) and let £ € £(A4) be countably decom-
posable. Since Bp is in ©(Ag) it is sufficient for the rest of the proof to
suppose the identity [ is countably decomposable. We next show that the al-
gebra U generated in the uniform operator topology by £ (+;4) consists of all
bounded Baire functions of A. If

where the sets y, are disjoint Baire sets, then

F(A)= 3 oy k().

=1
IfE (uj)x =%, |x]| =1, then | f(A4A)x]| = |c;j1. Thus the inequality

E(.,A)—esssup |[f(N)|=|f(4)] < 4M(E(., A)~esssup |[f(A)])

is established for finitely valued functions. From this follows a result of
Dunford [9; Theorem 15] that ¥ is equivalent to the algebra of all £(.,A4)-
essentially bounded Baire functions on o(4 ). But each bounded Baire function
is a uniform limit of finitely valued functions. It remains to show U is weakly
closed. However, this follows from Corollary 4.2 and the next lemma (which is

valid for arbitrary Boolean algebras).

4.9. LLEMMA. A o-complete bounded Boolean algebra of projections in a
reflexive space with the property that each mutually disjoint subset is countable

is complete.

If B is not complete it contains a monotone net whose least upper bound
does not belong to B. By transfinite induction one may construct from the net a

family of mutually disjoint projections of cardinality > N .

Theorem 4.8 is due to von Neumann [27] for the case of a self adjoint
operator on a separable Hilbert space. The generalization to the case of an
arbitrary Hilbert space is proved by Segal [22] as a corollary of his treatment of
multiplicity theory. Our proof of Theorem 4.8, via Corollary 4.2, yields a more

direct proof of Segal’s theorem.

It is important to know when an algebra & is %(4) for some 4 € I. An

answer is given by the following theorem.
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4.10. THEOREM. For a bounded Boolean algebra B of projections in a re-

flexive space the following conditions are equivalent.

(a). B is separable in the strong operator topology.
(b). % is separable in the weak operator topology.

(c). R is generated in the weak operator topology by an element A € B and
the identity.

Clearly (c) implies (b). Let { 4, } be weakly dense in B. Since each 4, may
be approximated in the uniform topology by a linear combination of projections,
there is a sequence { £, } C B which generates ¥ in the weak topology. By
Theorems 4.1 and 3.4 the countable Boolean algebra B, generated by { £} is
strongly dense in B, proving (a).

The proof that (a) implies (c) follows a well known argument. Let ¥, be the
algebra generated by B, in the uniform operator topology and let I, be its space
of maximal ideals. By a theorem of Gelfand [11] Il is separable metric. Since
M, is totally disconnected, it is homeomorphic to a subset of the Cantor dis-
continuum [2; p.121], and thus C(%;) contains a real function A which dis-
tinguishes points in M,. By the Stone-Weierstrass theorem [25] and Theorem

1.1, A =S(k) and I generate ¥,. But U, is weakly dense in .

When X is separable every subset of B(X) is separable in the strong operator
topology. This fact for Hilbert space is due to von Neumann [27]. However, the

proof in [ 20, p. 12] extends in a natural way to any Banach space.
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PERTURBATIONS OF SPECTRAL OPERATORS,
AND APPLICATIONS

I. BOUNDED PERTURBATIONS

J. ScawarTzZ

1. Introduction. A principal theorem on self-adjoint boundary-value problems
is the existence of a complete orthonormal set of eigenfunctions. This corre-
sponds to the diagonal reduction of a hermitian matrix, and to the spectral
theorem for self-adjoint operators in Hilbert space. How much remains true if we
drop the fundamental condition of self-adjointness? Infinite dimensional ex-
amples show that, in general, we cannot expect even the existence of a single

eigenvector.

Nevertheless, there does exist a class of operators which behave in a “‘reg-
ular”” fashion from this spectral theoretic point of view, namely, the spectral
operators introduced in [4, p. 560]. The paper [4], while extensively devel-
oping the theory of these operators, still leaves open a very significant question.
Are many (or any) of the nonsymmetric integral, differential, and so on, oper-

(X3

ators arising in the more ‘“classical’” branches of analysis spectral? The main

result of the present paper is a positive answer to the foregoing question.

The principal indication that a positive answer is to be expected comes from
a classical series of papers [1;2;3; 11;13; |,in which it is demonstrated that for
certain general types of boundary-value problems involving nonsymmetric linear
differential operators, expansions in eigenfunctions exist and converge in much
the same way as ordinary Fourier series. The method in all of these papers is
“‘analytic;”’ that is, it operates with asymptotic estimates of the solutions of
the various differential equations and of the partial sums of the various series
arising, The method in the present paper is abstract, and is phrased in terms of
Banach spaces, linear operators, and so on. This has the advantage of greater
simplicity in proof, and greater generality in applications. For instance, we shall
be able to prove results on certain types of partial differential operators which

appear difficult to prove by an analytic method.

The general idea of our abstract method is the following. l.et 7 be a spectral

Received March 4, 1953, The research contained in this paper was done under contract
onr 609 (04) with the Office of Naval Research.

Pacific J. Math. 4 (1954), 415-458
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operator. L.et B be an operator which is, in some sense, small relative to T.
Then T + B will be a spectral operator. A less stringent restriction on B will
vield a weaker conclusion on the spectral nature of T + B. In particular, there
are many cases in which it can be asserted that the set of generalized eigen-

vectors of T + B spans our Banach space, but not that 7 + B is spectral.

2. Preliminaries. Let X be a (complex) reflexive Banach space. A bounded
operator in X is an everywhere-defined continuous linear mapping of X into it-
self. An unbounded operator is a linear mapping of a dense linear subspace of X
into X. The set on which the operator T is defined is its domain, denoted by

D(7). The open set of ) in the complex plane, for which
(T =A™ = (T =A)"

is everywhere defined and bounded, is the resolvent of 7. Its closed comple-

ment, which is bounded for bounded operators, is the spectrum o(7) of T.

DEFINITION 1. An operator T is regular if its spectrum o(T) is not the

entire complex plane, and if (7 — A)™! is compact for some A €0 (7).

REMARK. Except in the trivial case where X is finite dimensional, a reg-
ular T cannot be bounded. For, if 7 is bounded,

I=(T-M(T ="
is compact; and this implies immediately that X is finite dimensional.

Levva 1. If T is regular, then:
(a) Its spectrum is a denumerable set of points with no finite limit point.
(b) (T =)\)"'is compact for every A& o (T).

(c) Every Ay €0(T) is a pole of finite order v(\,) of the resolvent R) =
(T-XA)"'.Ifavector { satisfies

(T -x)ff=0,
then [ satisfies

V(/\-())

(T =) " f=0.

The set of all such vectors f makes up a finite dimensional linear space, called
the space of generalized eigenvectors of T corresponding to the eigenvalue A, .

If E()\y) is the idempotent function of T corresponding to the analytic function
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which is one on Ay and zero elsewhere on the spectrum of T, then E (\y)pro-

jects X onto the space of generalized eigenvectors corresponding to Ag.

Proof. We can suppose, without loss of generality, that 0 £¢{(T), and that

T"'is compact. If we then make use of the identity
ATV APt = (Xt =T,

parts (a), (b), and the first statement in (c), of our result follow readily from
the corresponding statements in the ordinary Fredholm theory of compact oper-
ators. (For this theory, see, for instance, [ 7, Chap. VIL ].) We have

(T = A)ef =0
if and only if
(X} = T"Hkr=o,
so that the second and third parts of the lemma also follow by a simple applica-

tion of the corresponding result for compact operators.

To prove the last part of the lemma, we may argue as follows: If C is a small
closed curve surrounding the point Ay and traversed once in the positive sense,
then by definition

) 1
E(Xy) = — / (A= TY'dA
C

2mi

1

= — /T"(T“~A)"X'd>\
2mi c

=L / #-IT-I(#_T-I)-IQI“
2mi c’ ’

’ . . - . . .
where C is a small curve surrounding )\Ol, and traversed in the positive sense.

This last integral can easily be evaluated in terms of the functional calculus
for bounded operators (cf [4]), and turns out to be the idempotent analytic
function E()C;)l) of T°! corresponding to the analytic function which is one on
)\'01 and zero elsewhere on o(7" '), and now the desired result for T follows
readily from the corresponding result for 771

REMARK. It is to be noted that we have actually proved a little more than is
stated in Lemma 1. We have, in fact, proved that the points of 6(7) and the non-

zero points of o (T~ 1) are in one-to-one correspondence through the map
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A e XL

and, that if we call E()\o)(E_()\o )) the spectral measure of the point )\, corre-
sponding to the operator T (the operator 7" '), then

E(X) = E(X)).

This result is, of course, merely a particular case of the ‘““unbounded’’ analogue
of the general ““Spectral Mapping Theorem’’ of Dunford [4].

Now, by [6, Theorem 201, it follows that if S is a compact spectral operator,
and E(e) is its spectral resolution, then E(),) is the projection associated
above, with the point Ay (for Aj €5 (S); for Ay £0(S), E(Ay) =0). Conversely
if S is a compact operator, and £(\,) is the spectral' measure of the point A,
then S is spectral if and only if there is a uniform bound for all sums 25;=, E (A;)
taken over finite subsets A, A; ¢ ¢+, A; of o(S); that is, if and only if the
various projections E(Ay), Ay €o(T), generate a uniformly bounded Boolean
algebra of projections. We can carry this result over to unbounded operators in a

trivial way, making use of the following:

LEMMA 2. Let T be a regular unbounded operator.

(a) If (A = T)"' is spectral for some Ay 20 (T), then (A= T)™! is spectral
for all A\ o(T). In this case we say that T is an unbounded spectral operator.

(b) The regular operator T is spectral if and only if the spectral measures
E(Ay) of the various points Ay €o(T) generate a uniformly bounded Boolean
algebra.

Proof. Suppose that T~ ! is spectral. Then the spectral measures E( Ao ) of

the points A, €o(T™!) generate a uniformly bounded Boolean algebra. Since
E()\-(-)l) = E()\o),

the projections E(),) generate a uniformly bounded Boolean algebra. The con-
verse argument to this argument evidently goes through. Moreover, since the
spectral measure El()\o) corresponding to the operator 7 + ¢ is evidently
E(Ay — ), it is evident that T has the property of part (b) if and only if T + ¢
does. But this immediately implies part (a).

3. Bounded perturbations. We now come to the main point of the paper.

THEOREM 1. Let T be a regular spectral operator, and suppose that A, is an

enumeration of its spectrum. Let d, denote the distance from )\, to the rest of



PERTURBATIONS OF SPECTRAL OPERATORS, AND APPLICATIONS 419

the spectrum. Suppose that for all but a finite number of n, E (\,) projects onto

a one dimensional subspace; suppose that

i E(X\;) =11

=1
Let B be a bounded operator.
(a) If Zp=, d>' < o, then T + B is spectral.
(b) If X is Hilbert space and T is normal, and Z‘::ld,—lz <o, then T + B

is spectral.?
Proof. Mat Ry =(X~- TYYfor A& o(T). Then we have
(1) (A=T =B)"' =(I —=R)B)'R),

whenever (/ —R) B)! exists. Now, by Lemma 3 below, there exists a constant
K > 0 such that

[Rx| < K[dist (A, 0(T)T.

Hence no A at a greater distance than KB from the spectrum of T is in the spec-

trum of T + B, since, for such A, [12)B | <1. It follows also that 7 + B is regular.

From (1) it follows that
Ry=(A=T =BY*'={I + R\B(I = RA\BY "{R),

=R+ RAB(I = RABY 'R\
That is,
Ry — Ry = RA\B(I = R\BY'Rj.

Let C, be a circle about A, of radius d,/, .Then, for A € C,, we have |R)| <

2Kd;1, and thus when n is large enough to ensure 2Kd;ll <1, we have
(1 = RABY' < (1 = 2Kd ')t

Since d, —» oc, we may replace this estimate, at least for all but a finite number

! The series Z?;l E ()\;) converges in the strong operator topology.

2 0f course, T +B is also regular. This is proved in the course of the following
argument; but c.f. also Lemma 17 below.
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of Cp, by
(I - R)\B)'| < 2.
It then follows that
|Ry ~ R)|l < 8K?|B|d72.

If we integrate this inequality around C, in the positive sense, we obtain the

inequality
[E(A) - EL < 8[(2|Blal;l s

where E(A,) is the spectral measure of A, corresponding to the operator 7, and

where E, is the sum of the spectral measures £ (A) corresponding to T + B of
the points A of the ¢( T + B) lying within C,, .

Lemma 4 below then implies that for n sufficiently large, £, has a one-dimen-
sional range. It follows immediately that there must be exactly one point A, of

o(T + B) in C,, and that E, = E"(A},). That is,

|E(Aa) = E°(Ap)| < 8K2|B|d:t

for all but a finite number of n. From the above, case (a) of our theorem follows

immediately.

To prove case (b), we have only to refine our estimates slightly. We have,

from (1),

Ry = {1+ R)\B + (R\B)2(I - R)\B)1{R).
We then obtain the expression
Ry — Ry = RABR) = (R\B)2(I = R\BY'R).
so that for A £ C,, and n sufficiently large,
IRy — Rx - RA\BR)| < 16K3| B|2d7°.

The question now is, what is the integrated form of this inequality? The only
problem is to find

1
Fp,=— / R)\BR)dA,
2wl YC,
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and this is easily done.

Indeed, R) has the Laurent expansion

Ry = (A= M) PE(A) + RO(A) + (A = Ap) + oo

3

around A,. In_this expression R°(),) is a “‘partial resolvent” of T; that is, we

have

RO(Ag) = lim (I = E(\,))Ry .
A= An

Thus, R°(),) is that analytic function of T which corresponds to the analytic
function f(z) which is equal to (z—\,)"' everywhere on o(7) but in the im-
mediate neighborhood of A,, where we put f(z) =0. In terms of this Laurent

expansion, we readily find that
Fy = E(Ap) BRO (M) + RO(Ag) BE(AR).

Having majorized
LE (A) = E(Ay) = Fpl

by the terms 16K3| B|?d % of an absolutely convergent series, we have only to
prove that a uniform bound exists for finite sums Zl_lf of the terms F,

Since a term of the form E(),) BR° (\,) can be treated as an adjoint of a term
of the form R°(\,)BE(A,), we have only to show that a uniform bound exists

for finite sums

R
S R®(An) BE (An;)

i=1

’ ’ .
of these latter terms. It follows from Lemma 3 below that a constant K exists
such that

[R°(\)| < KL,

Thus

! l
ST ORO(Ag ) BE(OA, ) f| < |BIK™ 3 dHE(An) f |
=1

=1
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—

%

t=1

<181k’ | s z&f]% [iZ::lE(Ani)flzl sIB$K'[§ i fin,

since the normality of T implies that the projections £ (A;) are orthogonal per-
pendicular projections in the Hilbert space X. Thus both parts of our theorem are

proved.

Before continuing with the main line of our discussion, we shall state and

prove the lemmas referred to in the foregoing proof.

Lemma 3, below, depends on the functional calculus for our unbounded oper-
ators; before proceeding to the proof of this lemma, we must discuss the func-
tional calculus. We consider a regular unbounded operator S with a denumerable
spectrum { A, §. We shall allow a finite set A, Ay, +++ , A of the eigenvalues to
be multiple poles of the resolvent, but shall require that all the remaining eigen-

values are simple poles of the resolvent. [n addition, we require that

i E(X\) = 1.
=1

In this situation, we can set up the functional calculus for T by setting

Nooovy) U0 . o0
(M= 5 —2 (T-WEQ+ X fO)EM)
i=1  j=o j! j=N+1

for every function { which is uniformly bounded on the spectrum ¢ (S) and which
belongs to the class C*(A) pear the spectral point A;(1< i< N). It may be
remarked that, here and in all that follows, the finite number of multiple poles
ApsAgy o+, Ay of the resolvent function (A — S)7! contribute only a finite number
of terms, whose influence on any of our arguments it will be trivial to determine
by inspection. Thus, to avoid notational complications, we shall assume, without
loss of generality, that all the ); are simple poles of the resolvent; that is, that

N =0. In this case, our proposed expression for the functional calculus is

f(TYy = 22 FEN),

=1

where f(\) is any function uniformly bounded on the spectrum.

Functional calculi of this sort are discussed in [6], in a much more general
situation. In particular, it follows from [6, Lemma 6] that the series defining

f(T) converges in the strong topology, and that there exists an absolute con-
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stant K = K(T) such that we have

IF(T)] < K- max |f(\)].
AES(T)

From this fact, we have:

LemMA 3. If S is a regular spectral operator all but a finite set of whose

eigenvalues A, are simple poles of the resolvent, and S also satisfies

Z E(/\L) :19
=1

then there exists an absolute constant K such that
[(A =Syt < Kdist (), o(S))!
for all X not within a fixed radius € of any multiple pole of the resolvent.

Lemma 3 involves the operator R°(\,) defined as the constant term in the

Laurent expansion

()\—S)-iz E()\n)
A

—— £ RO(Ag) e

n

of the resolvent function around A,. Since

E()\)
(A=S)y! = + Z()\“)\i)-IE()\i)s
A= Ap i#n
it is evident that
(2) RO(A) = & (A — AV 'E(N).
i;én

We obtain, as an immediate consequence of this formula:

Lemma 3" If S is a regular spectral operator having the properties described

in Lemma 3, then there exists an absolute constant K such that if \,€0(S) and

dp = min dist (A, A;),
i;én

then for the operator R®(\,) defined by formula (2) we have

|[R°(A)] < K4t
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LEMMA 4.3 Let I be a projection of X onto an n-dimensional space. L’ is a

projection in X satisfying
S
IE—EI=5U3| by

then £’ also projects X onto an n-dimensional space.

Proof. We have

1
'E——EE'|<:iE| Fl't <1
and
] . | .
[E) < |E] +=|E]TY < 2] E],
2
so that

1
| BB = B < 2|B] - S| Bl =1

If we then consider K£” as a mapping of £ (X) into itself, it follows that EE”
has an inverse. Thus £” maps X onto a space of dimension n at least. Applying
the same argument to E'E, we see that £ maps X onto a space of dimension n at

most. It follows that the dimension of £°( X) is exactly n.

Part (b) of Theorem 1 is capable of some improvement. Inspection of the
proof of this result reveals that the only thing essential is that the spectral

measures £ (A;) should be orthogonal projections. But, by a theorem of Lorch and
Mackey (proved in [17]), any uniformly bounded Boolean algebrat £} of projec-
tions in lilbert space can be reduced to a Boolean algebra of orthogonal pro-

jections by an inner automorphism
E—D'ED,

where U is a bounded operator in Hilbert space with a bounded inverse. Since
such an inner automorphism evidently preserves all operator theoretic properties

of the sort involved in our proof, we may state:
Corollary 1b°.* If T is a regular spectral operator in Hilbert space, if all but

3 A similar lemma is found in [ 18, remark after Corollary 2.5].

4 This improvement of Theorem 1b was pointed out to the author in conversation with
N. Dunford,
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a finite number of its eigenvalues M\, are simple poles of the resolvent and corre-

spond to one-dimensional eigenspaces, if

o0

Z E()\i):[’

=1

and if, putting

d, = min dist (A, A;),
i#n

we have Zdrzz <o, then T + B is a spectral operator for any bounded B.

4. Two counterexamples. [t would be useful to be able to prove Theorem 1
without the restriction to simple eigenvalues. Unfortunately, the appropriate
generalization is not true, even if the eigenvalues are restricted to be simple
poles of the resolvent, and even if the eigenvalues go to infinity very rapidly

The following example shows this to be the case:

ExavpLE 1. We take two infinite sequences q’)n+ and d;; of vectors to be,
together, an orthonormal basis for Ililbert space X. We let T be the self-adjoint
unbounded operator defined by

+

Tén = n‘.d); > Td);l = n'd); .

Then A, =n! is a simple pole of the resolvent, but a double eigenvalue. We then

let B be the compact operator defined by

B, = (V' &), Be,=1(n -1

n

It may be noted that if we realize X as a space of L, functions, taking

+ - _ .
(,Jon = cos 2w nx, (j)n = sin 27 nx,

say, then Bis an operator defined as an integral transform with an analytic
kernel. At any rate, this peturbation breaks up the double eigenvalue n!into twe
single eigenvalues n! and n!+(n!)7!, with the corresponding eigenfunctions

nqSI:— ¢, and ¢n+. A brief calculation shows that the corresponding projections

E(n!) are defined by
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1")(71!)(,")].i =0 for n #j,

E(n!)([); =0,
E(r) ¢, = ¢ = ngy.

Thus, the spectral measures of the points in the spectrum of T + B are not

uniformly bounded, so that 1 + B is surely not spectral.

This example also indicates that the spectral property of 7 + B fails because
we do not group the two projections arising out of the double eigenvalues of T
together in forming our spectral sums. We shall see later that this is very typical

behavior.

In view of the importance for our pmof of the property described in Lemma 3,
we shall give an example which shows it to fail if we allow regular operators

with an infinity of double poles of the resolvent. This is:

ExavwrprLe 2. We introduce an orthonormal basis for Hilbert space X con-
sisting of two infinite sequences of vectors gbr:', ¢, » as in Example 1. We let T

be the smallest closed operator satisfying

Ty = n2g) + ny, T = n?p-.
Then o(7T) is the set of points n?, and (A~ T)"! is defined by

(A= 1)te

n

(r? = Mg = n(n? = N7 g)

It

(A=T)'¢ = (n? = X)1e, .

n
Hence T is regular. If we put k, =n? — n%, then
y
d(kp,o(T)) = n?
for all large n, while
- —l/ -
(ko = T 'y = 725" — ¢
has norm at least 1.
5. Basic properties of ordinary differential operators. We wish ultimately

to apply our abstract theory to the study of linear differential operators. We shall

take our formal differential operators to have the form
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n d i
(3) T=i=zoai(x)(€7;) ,

where
ap(x) =1, a,.,(x) =0,

and where the coefficient function a;(x) belongs to the class C* [0,1]. The
restriction on the coefficients a, and a,.; is not as severe as might at first
appear, since any operator 7 of the form (3) in which a,(x) # 0 and a,(x) is
real can be reduced to one of the restricted form we have chosen by an elementa-

ry transformation.

In connection with the study of the n-th order differential operator 7, it is
convenient to introduce the Banach space A" = A"[0, 1] consisting of those
functions fin C™ ! such that f(n'l) (x) is absolutely continuous and such that

f(") €L,[0,1]. We introduce the norm in A" by the definition

I A N T I

0<x<1 0<i<n-1

A fundamental formula in the study of 7 is then the Green’s formula, which we

can obtain readily by partial integration:

(4) ‘/.I 7’f(x)g_(;:—)dx—-/1 f(x)T*g(x)dx=F1(f,g)——Fo(f,g).
o 0

Ilere, f{ and g are arbitrary elements of A”[0, 1], 7 is the formal differential
operator
n .
d 13
=X at(z)
dx

1=0

and 7* is the formal differential operator
n d i
gl
l;o i dx

where

n /] d j-i
b= o1 (5] G
x

j=i '
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The operator 7* is called the formal, or I.agrange, adjoint of 7. The bilinear

forms | ({, g) and F, (f, g) are given by the formulas

n=1
Fothe)= S o fOme(1),

i,j =0

n-1
Fofhig)= 3 FiufP05 0y,
i,j =0
where the coefficients «;; and f;; are calculated readily from the functions

a;(x). We can see, in particular, that
Bijzo(i]'=0f0ri+jzn—1,

ﬁn-l-li,k = — etk b = ("1)k-

Thus, the matrices f3;; and o;; are nonsingular subdiagonal matrices, and hence
define nonsingular bilinear forms.
If a formal differential operator 7 is given, we set up a corresponding un-

bounded operator T, in the Hilbert space L, [0, 1] as follows:

(a) O(Ty) is the set of all C" functions [ defined in [0,1] and vanishing

outside some compact subset of the interior of [0,1].

(b) If feD(Ty), Tof is defined simply as 7f.

Our principal analytic problem at this point is to determine the adjoint of 7.

The solution is contained in the following:

LeEmMA 5. The adjoint T: of the operator To is the operator T\ defined as
follows:
(a) Its domain is A™.

(b) Iff € A1), T¥f = 7%f.

Proof. It follows immediately from Green’s formula that T, C T:. To prove
the opposite inclusion, we proceed by stages.
(a) Consider first an element z € L, such that T:z =0. That is, (2, T y)

=0 for every T,y in the range of T,. We shall show that z € C". Let X be the
n-dimensional space of solutions of 7*0 =0. We shall show that if f€L,is

orthogonal to X, then (f,z) = 0. Since X is finite dimensional and hence closed,
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we shall be able to conclude that z € =, which will give us the desired result

z €C".° We begin by proving the somewhat weaker statement contained in:
SUBLEMMA 5. [If
(a) f is orthogonal to %,
(b) fecCn,

(¢) f(x) =0 outside some compact subset of (0,1),

then [ is orthogonal to z.

Proof. We know by the standard theory of ordinary differential equations that
the equation Tf f has a unique solution fC C" which satisfies the boundary

conditions

~1(0) _f0) =---=f("")(0).

If we can only verlfy that f (x) = 0 outside some closed subinterval of (0, l) we
will know that fE 0(Ty), so that f=T f and therefore (f,z) = 0. Now f
in some interval {0, €}, the unique solution of the equation ’rf 0 satisfying the

boundary conditions

~7(0) ={7(0) cee= [ (0) = 0

Ilence f(x) = 0 in [0,€]. We could apply the same argument to an interval

[1-¢1]1, if only we knew that

S (1) = [(1) = e = [,

and it is this which we propose to verify. This we can do as follows: let o € X.

Then we have, from Green’s formmla,

0=:j[1 7;(x)o(x)dx"_.él f ()T o(x)dx
0

S P (fo) - Folfoo) = Fy (f,0).

That is, F| (f,0) =0 for every o € 2. Since there exists a o € 2 with any pre-
assigned values

o(1), 07(1), -+, 6™ (1),

—

a may be noted that the method of proof of this lemma is actually that adapted to
proving the following result:

THEOREM. Let a distribution 8 satisfy an ordinary linear differential equation with
C™ coefficients, Then 8 s itself a C™ junction.

In connection with ths proot, sec {9, Theorem 1.1], where the same result is proved
by a different method.
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it follows that
f(1) = (1) =oee= f=)(1) =,

by the nonsingularity of the form F; (f, o). This concludes the proof of the sub-

lemma.

Now we must sliow that hypotheses (b) and (c) of the sublemma can be
dropped witkout invalidating the conclusion. Indeed, let f{ be a function which
is orthogonal to 2. l.et 0y,02, -+ ,0, be an orthonormal basis for 2. Then, by
approximating o; sufficiently closely by a C" function ¢; whick vanishes out-
side a compact subinterval of (0,1), we can ensure that the matrix (¢;, 0j) = m;;
is nonsingular. Now, let f be approximated by a sequence fp of C" functions
which vanish outside a closed subinterval of (0,1). Then, if r?zil. is the inverse

matrix of m;j,
A n i A
fk'—‘fk“ 2 Z (fksa')m'l¢l
j=1 1= I

is a sequence of C" functions orthogonal to X which vanish outside a compact
subinterval of (0,1), and such that limy_ _ f, =f Since, by the sublemma,
(fs 2) = 0, we are able to conclude that (f,z) = 0.

To complete the proof of Lemma 5 it still remains to consider the case
To*z =g, where g #0 and g € L, and to show that z € 4™. We know by the stand-
ard theory of ordinary differential equations that there exists a solution z; € 4"
of the equation 7*z, = g. Now, as remarked at the beginning of the proof of
Lemma 5, z; € §( T:). Hence

T:(z —-2z;) =0,

By what we have already proved, z — z, € C" and

T*(z — 2z;) = 0.
Hence it follows that z € A™ and that
Tz = 7%z, = g = Tz

Thus the proof of I.emma 5 is complete.

Lemma 5 has as a consequence an interesting topological property of our

formal differential operators, expressed in:
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LEMMA 6. Suppose that f,_is a sequence of elements of A", and that f, and
Tf converge (weakly) in the topology of L, (0,11, Then f, converges (weakly)
in the topology of A™"[0,1] (and conversely).

Proof. let us introduce a norm in D T;k) in two ways:

{f; wx)\zdx}l/’ N {/0‘ L () 2|

[fl, + max max lf(i)(x)[.
0<x<1 0<i<n-1

1)

\)

|fl,

)

Then, since T: is closed, .19(7:) is complete in the first norm. Cn the other
hand, it follows from this that JQ(T:) is complete in the second norm. Since
[fl, < |fl,, it follows from a well-known principle in the theory of Banach
spaces [ 7, Theorem 11.7] that |f|, and |f|, are equivalent. On the other hand,
it is evident on inspection that ||, and the norm introduced for A™ determine the
same topology. Hence it follows that |f|, determines the same topology in A™ as

the norm of A", and this proves our lemma.

On the basis of these two lemmas we can proceed systematically to set up

the exact operator theory of differential operators. We first make:

DE riniTiON 2. Let 7 be a formal differential operator of order n, and let
n-1 @ n-1 A o
i — .o
i=o0 i=o

be a set k linear boundary conditions. Then we define an operator T in L, [0,1]

by putting:
n-1 . n-1 A .

(a)®(7)={f€ A”|z; Apf Q0+ AP <o, j=1,---,lc}.
1=0 1=0

(b) I feb(T), Tf = 7f.

Then T is said to be the differential operator determined by the formal operator 7
and the boundary conditions [31. Any such operator is called a differential

operator.

LeEMMA 7. Any differential operator T is a closed operator in Hilbert space

with a dense domain. Moreover, the range of T is closed.
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Proof. let f, —f, Tf, — g. Then, by Lemma 6, we have f€ A", f, —f
in the topology of A" It is then evident that f satisfies the boundary conditions
which define 7, so that f € D(7). Moreover, if T is defined by the formal
operator 7, we have 7f, — 7f in the topology of L,, so that Tf = 7f = g;

thus 7T is closed.

Let T, be the differential operator defined by the formal operator 7 and the

boundary conditions
F0) = F(0) =«ve= fD(0) =7 (1) = f7(1) =wee = f=1)(1) = 0.

Then T is an extension of T;. Now, it is clear that the differential operator T
defined by the boundary conditions 4;(f) =0 will remain the same if we drop
from our list of conditions all A; which are linear combinations of 4 with & <.

Hence, without loss of generality, we can suppose that the vectors
A A
[Ajo ce Aj(n-l )Ajo T Aj(n-l ),1

form a linearly independent set. Thus, we can find a finite set of functions

Prahys ey O € B(T) such that
A4j(¢;) = Sji -
It follows that
iQ(T) = ‘L()(Tl) + S,

where S is the finite dimensional space generated by the vectors ¢; (i =1,2,

<+« , k). Nence, if R (T) denotes the range of T, we have

R(T) = R(T,) + 5,

where g is a finite dimensional space. {lence, we have only to show that K (7, )
is closed. Now, suppose that R (7, ) is not closed. Then there exists an element
g and a sequence f, € D(T,) such that Tyf,—> g, but g & R (7T, ). It then
follows from the closure of the operator Ty that f does not converge. Hence

there exists € > 0 and a sequence m;, n; of indices approaching infinity such that
‘fmi - fni| > €.
Putting

fmi - fni = &is
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we have |g;| > ¢, Ty g; — 0. Il we then put
A A
g = gi/lgil,

we have l§L| =1, Tygi — 0. A subsequence of g; converges weakly: we can
suppose without loss of generality that this subsequence is the sequence ;2,‘
itself. Tt then follows by Lemma 6 that gAi converges weakly in the topology of
A", and hence in the tepology of €° Therefore z;(x) is a uniformly bounded
sequence which converges at each x (0 < x < 1); this implies that g; converges

in the topology of L,[0,1]. From the closure of T, we find, putting

A . A
g = lim Bis
[ —00
that lé‘ =1, Tlg =0. But then ;g\ is a nonzero function in C" which satisfies the

equation 7g = 0 and the boundary conditions

§(0) = 87(0) =-+- = g™ (g) = 0

this contradiction proves L.emma 7.

If we examine the part of the foregoing proof which concerns the operator 7,

we see that we have actually shown:

CorROLLARY. Let T be a differential operator with an inverse T™. Then
T"'is a continuous mapping from the range R(T) of T to L,.

We strengthen this conclusion in:

LEmMA 8. Let T be a differential operator with an inverse T~'. Then T™*

is a continuous mapping from the range R (T) of T into A", and a compact map-

ping from R( T) into L,[0,1].

Proof. We know that if 7f, converges, f, converges. It follows by Lemma 6
that f, converges in the topology of A", proving the first part of the lemma. Now
suppose that Tf, converges weakly: since T™! is continuous, f, converges weak-
ly. It follows by Lemma 6 that f, converges weakly in the topology of A", and
hence in the topology of C% so f,(x) is a uniformly bounded sequence of func-
tions converging at each x € [0,1]. Then it follows that f, converges in the
topology of L,. Since T~! thus transforms weakly convergent sequences into

strongly convergent sequences, T'is compact,

Lemma 9. Let T be the differential operator defined by the formal operator
T of order n and by the boundary conditions (5). Then T* is the differential
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operator T, defined by the formal operator T* and by a set of boundary conditions

n-1 n-1 A )
Bi(f) =2 BiifD0)+ X Bf'1)=0 (i=1,2-,k)

j=o j=o

obtained from the conditions (5) as follows:

Let S; {0 --- 2" '] (i=1---k") be a basis for the set of solutions of
the equations

n-1 . n-1 A .
Ai(o) = 20 Aol + 30 Aijo”” (i=1--+k)
j=0 j=o0
derived from equations (5), and let
n-1 . _— ‘ :
Fi(f,9 ~ Fy(fig) = 2 HafO)g0 1) - g, fD0) g (0)}
i,j=0

be the bilinear functional arising in Green’s formula (4 ). Then:

n-1 N
B - = o ~ —p+l
B.. = Z ay; 0; and Bij = - Bljai .

I=0 =0

3
—

o~

Proof. Tt follows immediately from Green’s formula that T, C T*. To prove

the converse, let ¢; be a C" function such that
$,00) = ol, ¢, (1) =gt

Then Ay, (¢i) =0 (m=1--+%k), so that ¢; € O(T). 1If fElQ(T*), it follows
that

0 = (Toif) = (i T°f) = Fy( i f) = Fy (s f)
n-1 ‘ n-t L 0
= X B+ X B,
j=o j=o
so that f € 0( T,). From this it follows immediately that T, = T,

LEMMA 10. Let T be a differential operator, and suppose that for some
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complex X both T =\ and T* — X have an inverse. Then T(T*) isa regular
operator, T and T* have spectra related by ¢ (T) =( T*), and determine spec-

tral measures E, and E, related by E, (\) = E} (_)-\).
In this case, we call T a regular differential operator.

Proof. By Lemma 7 and its corollary, the range of T — \is closed and
(T - A)!is continuous. To show that (7 —A)"! is everywhere defined, that is,
that

R(T—)\):H’

we have then only to show that no nonzero z € H is orthogonal to (T - MO
However, any such z would satisfy (T* —X) z =0, and we have ruled out this
possibility in our hypothesis. This, together with LLemma 8, proves the first part
of our lemma. The remaining parts follow, via the remark after Lemma 1, from
the corresponding results for bounded operators, all of which are well known

(CL. [7, Lemma V.41].)

For application to the spectral theory of differential operators we shall need

the criterion contained in:

LeEvwvA 11. Let T be a regular operator in a Banach space X and let
No €0(T). Let ], f5 =+, fx be a basis for the solutions of ('™ = \y) f=0,°
and let X be the space of solutions of (T~ My)o=0.Then A\, is a multiple
pole of the resolvent (T — A)™' if and. only if some nonzero o €X satisfies
[Fla)=0(i=12,-+c,n)

Proof. We can readily see, by Lemma 1 (c), that A; is a multiple pole of the
resolvent if and only if there exists a solution g of the equation (7 —A,)2g=0
which is not a solution of (7 — Ay) g=0; that is, if and only if some nonzero

o <% isin the range of (T ~ A, ). Now, ifo = (7 ~ A, ) g, then

fflo) = ffU(T = XD g) = (T* = X)) fif(g) = 0.

Conversely, if {*(o) = 0, then it follows that ¢ is in the closure of the range of

T — Xy, and our lemma will be proved once we show that T — A, has a closed

6 The general theory of adjoint unbounded operators in a Banach space is discussed
more fully in Lemmas 18 and 19 below. It is well to remark, however, that we are faced
with the usual confusion as to adjoints in Hilbert space, where, contrary to our practice
in other Banach spaces, we make use of the Fermitian, rather than the pure Banach-
space, adjoint. This has the effect of introducing complex conjugates in many of the
Hilbert-space formulas where the corresponding Banach-space formulas do not have
complex conjugates. This should not cause any essential difficulty to the reader.
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range. This, however, is easy to show since
(T = 20T = (T = A ENDD(T) + (T = 1) (I = E(X))(T)

=(T =X)EMN)O(T) + (I -~ E(Xx )X,

The first space on the right is finite dimensional and the second is closed, so

that (T~ X, ) 0(T) is closed.

LEmMMA 12. Let E be a projection of a B-space X onto a finite dimensional
range, and let £*: X* — X* be its adjoint. Then, if ¢qy gy« o+ 5y is a basis
for EX we can find a unique basis i, y%s, +++,yn of EX* such that ¥( é;j)
= Sij; and then

n

Ef= 3 ¢upf(f) forany fe X.

=1

Proof. Any element £f can be written uniquely as

Ef = > iou(fy,
1=1

where the «; (f) are linear functionals. If f — fand &;(f ) —u;, it is clear
that o; = &; (f). Hence, by the closed graph theorem of 3anach spaces [7, Theo-

rem 11.8] the uniquely determined linear functionals &; are continuous. lience
% (f) = () for some f € X*.

From

Ef = 27 ¢ahi(f)
i=1

it follows readily that

B

E*YY = i (i)

P =1

~

so that y*,y%, -++ .5 span E*X*. To see that Y. hs voe L,y are linearly
independent, let Zf:l a;it = 0; then

‘O*j:(z O\i‘l’i*) ¢] =0,
=1

so that Lemma 12 is completely proved.
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As the final lemma of this section, we state a useful elementary principle in

the theory of spectral differential operators.

LEmMA 13. Let T be a spectral differential operator, and let A; be an

2

enumeration of the points in o(T). Then, if {f € §(T), the ““expansion’

00

> EWN)

i=1
converges unconditionally in the topology of A".

Proof. The series & ;=; (X;)f certainly converges unconditionally in the

topology of I ,. On the other hand, so does the series

oC

T(i E(Ai)f) - S EOW(T.
=1

=1

Hence, by l.emma 6, the original series converges unconditionally in the top-

ology of A™

6. Application. The second order differential operator. In this section we
wish to apply the theory developed up to now to various second order differential

operators arising out of the formal differential operator

~ d\2
T = —(E) +g(x).

Our peturbation theorem, Theorem 1, reduces the study of this operator to the
much simpler operator — (d/dx y2, What we need about the latter is summarized,

however, in:

IL.EmMMa 14. The unbounded operator T defined by the formal differential
operator T =—(d/dx)?* and the boundary conditions

(6)  f(0) =kof(0) =0, f(1)=Fkif(1)=0, ko, ky arbitrary,
is a spectral operator satisfying all the hypotheses of case (b) of Theorem 1.

REMARK. We can also admit the boundary conditions determined by £q = o
and/or &k, = cc; that is, the conditions f’(0) = 0 and f 7(1) = 0, respectively.

Proof. Since it is easy to treat all special cases in which %y or £, is zero

or infinity by a separate argument much like the argument given below, we shall
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assume for simplicity that we have none of these special cases to deal with. If

we put A =s2, the general solution of the equation
~f7(x) = M (x) =0

is sin s (x + &), where O is an arbitrary constant. This satisfies the boundary
condition at zero if

tan s& = kys,
and satisfies the boundary conditions at one if
tans (1l + &) = k;s.

Thus, T — X can only fail to have an inverse if A =s2, where s is a root of the

equation

(ky = ky)s cs
(7) tan s = = - R d#0.
1+ kok,s? 1+ ds

It is readily seen by making use of Lemma 9 that T is the differential operator

defined by 7* and by the adjoint boundary conditions
£(0) = kf7(0) =05 f(1) =k f(1) = 0.

Thus the adjoint operator T* — X can only fail to have an inverse if T — X fails
to have an inverse; that is, if and only if s satisfies (7). Since not every s

satisfies (7), it follows immediately from Lemma 10 that T is regular.

Our next task is to locate the zeros of (7) more exactly. Since tan s is
periodic of period 7 and has only the zero s =0 in its period-strip, it follows
readily that (7) has a countable sequence z,,z,,,, - of zeros which can be

numbered in such a way that
z, = nm + O(1).
From this preliminary estimate we readily obtain the estimate

cnm
tan z, ¥~ ——————— ~ ¢(dnn)"!

1+ d(nm)?
Hence it follows that

zp, = nm + c(dnm )™ + O(n°?).



PERTURBATIONS OF SPECTRAL OPERATQRS, AND APPLICATIONS 439
We thus obtain an enumeration A, (n =k, k +1, +++ )7 of the eigenvalues of T
such that

A = (na)? + 2ed™! +0(n" 1),

Hence, if d,, is the distance from A, to the remainder of the spectrum,
d, ~ 7*(2n + 1),

so that

[>%]

Z dr'l2<oo.

n=k

It is evident from the form of the boundary conditions defining our operator
that each A, can correspond to at most one function ¢y, (up to a scalar multiple)
which satisfies

(T - An)d)n = 0.

Thus, if £ (X, ) is to be anything but a projection onto a one-dimensional range,
A, must be a multiple pole of the resolvent. By Lemma 11, the condition for this

is (ép, Yn) = 0, where ¢, is the (unique ) solution of
(T* - —Xn)lﬁn =0.

Since, however, T* is defined by the complex-conjugate boundary conditions of

those that define T, it is clear that

Y (%) = & (%)

Hence, A, can only be a multiple pole of the resolvent of T if

1
fo (¢, (x))%dx = 0.

Now, we have
¢, (x) = sin z,(x + &) = sin (zpx + Bn),
where 3, must be determined so as to satisfy
k;lz'nl sin B, = cos f,.

It follows readily that

7 Note: k need not be equal to one.
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B, = 7/2 — (nanke )™t + O(n™2),

so that

Pn(x) = cos (z,x + §,), 8, = (nake)' + O(n?).

It follows that

N | =

1 2 g~ ! 2
./0. (pp(x))*dx /(; cos? nmx dx

so that only a finite set of A, can be multiple poles of the resolvent of 7. For
those A, which are simple poles of the resolvent of T, the projection E(A;) is,

by Lemma 12, the operator determined by the integral kernel

%n(x)(:’gn(y) = En(x9),

A
where ¢, is a scalar multiple of ¢,, the scalar being chosen so as to make

1 A
/ (gﬁn(x))zdx:l.

0
" A .
Ve have ¢, = c¢,é,, and a simple computation reveals that
Cp = 2% O(n"2);

hence it follows that

1 (cd'lx+k0)
E,(x,y) = — cos nux cos nry — —————— sin AAX COS Ny
2 ﬁnn
(Cd-ly + ko)

sin nzy cos nwx + O(n"2),

VT o
which gives a decomposition of E,, into four terms
A
(8) Ep=E, + A, + By + A,

It is now trivial to find a uniforin bound for

| 2= Eal,

n€lJ

J an arbitrary finite set of integers, by making use of the decomposition (8).
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We have

| 22 Eal <,

nc]

A
since the [, are a family of orthogonal projections. We have

|22 Anl<h,

nelJ

since

[AL] =0(rn"?) and don? <.
n=1

The operators .1, and 5, have the form
A A A A
Ap = Epd, and 3, = B,L,,
where

\Inl =0(n!) and l[gﬂ =0(n’1),

a situation studied above in the proof of part (b) of Theorem 1, where the argu-
ment given proves not only the uniform boundedness of Zn€] A,, but also,

with suitable slight modifications, the law

lim = 0.

n-— o0

>

m=n

All that remains to complete the proof of our lemma is a proof that

ST E(A) =1
i=k

By Lemma 15 below,

Boo=1- ZE(/\i)
i=k

either projects onto an infinite dimensional space or is zero. But,

00 A

lim [(I= 5 EO)) == 3 E)|=0.

m— oo n=m n=m
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Hence, by Lemma 4,

[o0]

I- 3 E()

n=m
has a finite dimensional range for all sufficiently large m, and hence, a fortiori,

E has a finite dimensional range.

THEOREM 2. Let T be the unbounded differential operator defined by the
formal differential operator 7=~ (d/dx)? and the boundary conditions

(9) fQ0) = kof7(0) =0 f(1) - Kk, f°(1) =0,

where ky and k, are arbitrary, possibly infinite, complex numbers. Then if B is

an arbitrary bounded operator, T + B is a spectral operator.
Proof. This follows from [.emma 14 and Theorem 1.

CoroLLARY 1. Let T be the unbounded differential operator defined by the

formal differential operator

- (z)
= \Z + q(x)

and by the boundary conditions (9), where q(x) € C®.® Then T is a spectral

operator.

This corollary is the ‘‘convergence in mean’’ form of the theorem of Birkhoff-

Hilb. As far as pointwise convergence is concerned, we can state:

COROLLARY 2. Let T be as in Corollary 1, and let f € D(T). Then if A;

is an enumeration of o(T), the series

S OEMS
i=1

converges unconditionally in the topology of A2.°

Proof. This follows immediately from Corollary 1 and LLemma 13.

8 This much is what we have proved explicitly. But, with a little more ‘‘analytic
care,’’ we would see that it is sufficient that g (x ) be measurable and bounded.

® We shall see (Corollary 2 of Theorem 3) that this series converges to f.
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It may be noted, moreover, that Theorem 1 and Lemma 14 yield a much wider
class of spectral operators than the analytic method of Birkhoff-Hilb. For in-

stance, the differential-difference operator
d \2
Tf(%) = = f(x) + g{x)f(=x + &)

(in which x + & is understood to be taken modulo 1, and ¢q(x) is bounded and
measurable ), with appropriate boundary conditions, is immediately seen to be

spectral, as is the integro-differential operator

d
Tf(x)=(a)2 fx) + fo‘ K(xy)f(y)dy,

provided only that the integral kernel K defines a bounded operator.

7. Theorems on the spectral measure of infinity. Suppose that 7 is an un-
bounded regular spectral operator in a Banach space X, and that {A;} is its

spectrum. Let £ (A;) be the associated spectral measure. Then we put
E(w) =1~ 3 E(N).
i=1
It is clear that £ () f=f if and only if
E(N)f=0, for 1 < i < cc.

This leads us to the following more general:

DEFINITION 3. If T is an unbounded regular operator in the Banach space

X, with spectrum { \; } and spectral measure £ ( A;), we put
S AT) ={f|EMX)f =0, 1< i<cl.
LEMMA 15. The space Seo(T) either is infinite dimensional or consists only

of zero.

Proof. We can suppose without loss of generality that 0 £ o(T), and put
U= T'. It then follows by the remark following L.emma 1 that

o(U) = {X;'} v {0l
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A

and that the spectral measure £ of U is defined by
E(X;l) = E(A).
Hence, if f € So =So (T), we have
A A
E(XHUf = CE(X)f =0,

so that USe C Seo. Moreover, by [15, Theorem 8.2¢1, (U~ A)"'f is regular at
every point \;!if f € Sec; thus if f € So, (U - A)"! has no singularity other than
the origin. Hence U, regarded as an operator in S, is quasi-nilpotent. If S,
were finite dimensional, it would follow that for some finite %, U*Ss = 0. Since

U has the inverse T, this would imply that S, contained no nonzero vector.

LLEMMA 16. The space Seo (T) is the set of all f€ X for which (T —A)"'f

is an entire function of A

Proof. 1f (T =AY 'f is entire, then if we let C be a small circle around X;
we find that
1
0= — -/C. (T =AY Hfdh = = E(M\)f

2mi

Conversely, if £();)f=0, it follows from [ 15, Theorem 8.2c] that (T —A)'f
is regular at A;. Since this holds for every A; € o(T), it follows that (T — A)"'f

is entire,

LemmaA 17. Let T be a regular spectral operator in a Eanach space X.
Suppose that all but a finite number of the poles . of the resolvent function
(T —A)"! are simple, and that Soc(T) = 0. Let

d; = dist (p, 0(T)),

and let B be bounded.
(a) If dj—cc, T + B is regular.

(b) Ifli_mi_‘m d; > 0, there exists an € > 0 such that T + B is regular when-
ever |B|<e

(¢) If lim; o d; > 0and B is compact, T + B is regular.

Proof. This lemma is needed to make the statement of Theorem 3 below

plausible and possible. The proof results incidentally from the proof of Theorem
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3, so that it is not necessary to give the details here.

TreoREM 3. Let T be a regular spectral operator in the Banach space
Suppose that all but a finite number of the points in o (T) are simple poles of
the resolvent function (T —)\)™' and that So (1) = 0. Let U; be a sequence of
bounded domains with U7
et

o

, Ui the entire plane, and put V; = boundary (U;);

Vino(l) = ¢ and d; = dist (V,;,0(T));

and let B be a bounded operator.
{a) Ifd; > @, S (T +B)=0

(b) If lim ; Lo d; > O, there exists an € > 0 such that Sec (T +B) =0
whenever |B|< €.

(c) Iflim ;L0 d;>0, and B is compact, Se(T +B) =0."°

Proof. We first show that if i, pp, »+-, py is a finite set of points in the
plane, we can find a domain U containing all of them such that V = boundary (U)
has a minimum distance from ¢(7) greater than d =1/2 lim d; (or, in case (a),
greater than an arbitrarily prescribed ) and such that the minimum distance from
V to u; is greater than a constant ) which may be as large as we please. This
is done as follows: we take j so large that

1
d; > E llm dy, if 02> jys

—

and let X be a prescribed very large closed circular domain. IMut

fo
K'=Ku U U,

=1
and let U, U,, +++, U, be a covering of A’ Then we have only to take
M

U= U 0.

=1

' 14 would be interesting to know that in case (b) of Theorem 3 we can dispense
with the restriction || < €, but I do not know whetlier or not this is possible.
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Now, let f € S (T + B), and let
fON) =(T + B = A,

We shall show that the entire function f(A) is uniformly bounded, so that f(A)
is constant, f(A)=g, and hence f=(T+ B ~A)g for all A\. From this it is
evident that g =0, so that {=0. To demonstrate the uniform boundedness we
proceed as follows: Let Ay, Ay, +++ , A, be the set of all multiple poles of the
resolvent, and let A be an arbitrary point in the complex plane. Take, in the
first part of this proof,

”‘l’u2’.."l‘l’N = A’Al’ -..’}\n_

Then, by Lemma 3, there exists an absolute constant ¢ such that |Ry| < cd™!

for A € 7, where R) = (T — )L, If we put
Ry =(T + B -,
we have (cf. formula (1) in the proof of Theorem 1)
Ry = (I + RyBY'R,.
Hence, if
|B| < ¢td(1 - 5)
with 5> 0, Ry exists for A € V, and
|Ry| < 87 1ed™t.
But then
| Rl < 87 ed | f]
for A € V, so that, by the maximum modulus principle,
IR\ 1 < 87 ed | f]
everywhere in U. Hence we have
[FOA) ] = [RAfL < 87 ed M [ 15

that is, f (A) is uniformly bounded. This proves Theorem 3 in cases (a) and (b).

To handle case (c), we observe that since ZZLI E();) converges strongly
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N .
to 1, Zizl E(A;)f converges to f uniformly as f ranges over any compact
subset of X. Since we now assume that B is compact, it follows that Zi[\il
E(A;) B converges to B in the uniform topology of operators. We choose Ny so

large that
NO
b - Z E\)YBL < ¢7Hd(1 - 8).
i=1
Then, if we put
No
C=8B- Z E(A)B,
i=1

we have

— No -1
Bo= (14 B+ X mEGOE) R,

=1

However, if d; is the minimum distance from X\ to any of the points A;, it follows
by the discussion of the functional calculus of 7 preceding Liemma 3 that there

exists an absolute constant ¢, such that
IRyE) | < eydy

for 1 < i < Ny and for d, sufficiently large. We now determine the domain U of

the first paragraph of this proof by putting
Hasfhos =t sy = Ajhyg, oee ’)\NI s

where Ny > N is so large that the set Ay, Ay, <o+, Ay, includes all the multiple

poles of the resolvent, and where
D= 2|B|Nye, 57t

It then follows, as in the proof of parts (a) and (b) of Theorem 3, that E)\ exists
for A € V, and that

]E)\] <z8led ™ty

from this point on we can argue just as in cases (a) and (b).

Thus all cases of Theorem 3 are proved.
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COROLLARY 1. Under the hypotheses of Theorem 1, T + B is a spectral
operator such that 5 (1 + B) = 0.

Proof. We choose the domains U; of Theorem 3 as follows: If i is even,

i =2n, we take U; to be the interior of a circle of radius d; about the point A;,

where d; is the distance from ); to the rest of ¢ (T). If { is odd, i =2n + 1, we

take U; to be the set of all points z with |z| <n but |z~ ;| > d;/4 for all i.

COROLLARY 2. If T is the differential operator of Theorem 2, and i is
bourded, then every function f = L,[0,1] can be expanded in a series of eigen-
functions (including, vossibly, a finite number of solutions of equations of the
type

(T +8-0Fr=0)
of T + B which converges unconditionally in the topology of L,. Any function of

class 1? which satisfies the appropriate boundary conditions can be expanded

in a series of eigenfunctions converging unconditionally in the topology of AZ%.

Theorem 3 also applies to a class of operators which are not necessarily
spectral. To discuss this class of operators, we shall first extend the elementary
theory of the adjoint from closed operators in Hilbert space to closed operators
in an arbitrary reflexive Lanach space. If X is a reflexive Banach space, so is

the direct sum X @ X (in any suitable norm), and we have evidently
(X @) =%X* @ X*.
The space £ @ X admits the evident automorphisms
Ay = (xy) —(y,%),
Ay (xy) — (= y,%).
We have
A2 = = A2 =1, dydy = - Ay,

If I is a closed manifold in a 3anach space Y, its annihilator M~ is the closed

subspace of Y*defined by

Y=y 2 YR yx(M) =0},

If ¥ is reflexive, we have evidently V"= M. If 7 is a linear transformation in
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X (Note: we continue to suppose that 0(7) is dense in X.), its graph 1 (T) is
the subset of X @ X defined by

I(T) ={(x, Tx)|x = D(T)}.

Clearly, I'( 1) is closed if and only if T is closed. We have evidently

D(T°Y) = 4,0(7),

whenever 77! is defined (or, equivalently, whenever A,1'(T) is the graph of a
single-valued operator). We define the closed linear operator 7% in X* by putting
(7% =4, 0 ()]

The operator 7% is single valued, since (0, y*) < U(7T*) is equivalent to
y¥(x) =0 for all x = L(7T); and since J(T) is dense in X, this gives y = 0.

It may also be remarked that if 7 is bounded, this definition of T* agrees with

the usual one.

LEMMA 18. (a) U(T*) is dense.
(b) 7T** = T,

(¢) T and T* have both bounded inverses if either does, and (T°* y*
=(T*)y!,
(d) If B is a bounded operator, (T + BY =T* + B*.

Proof. The proofs are exactly like those in the Hilbert-space case. If D(T™)

is not dense, we can find an x € X such that
xD(T*) =0,
while x # 0. Then
Ay (0,2) = (=%,0) =1 (T%) = 4,1°(7),
so that
(0,x) € A2I' (1) =T"(T),

and hence x = T(0) = 0, a contradiction. This proves (a ).

To prove (b), we observe that

INTAES (Azl‘(T*))* = A, (T(T*) " = A, (4, T(T)) == T(1).
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To prove (c), we observe that

DUT*YY) = 4, T(T*) = 4, (4, T(T))" = (4,(A4,T(T))" =T ((T~1)*).

Thus (T%)™! = (T"!)* even if either or both of the transformations are unbound-
ed, multi-valued, or not everywhere defined, so that (c) follows as a special

case.

To prove (d) we note that it is evident that
I'(T* + B*) ¢ T'((T + B)*).
On the other hand, if x* € D((T + B)*), so that
«*((T + B)y) = (T + B)*x*(y)
for every y € D(T), we have clearly
x*(Ty) = {(T + B)*x* - B¥*x*}(y)
for y € D(T); thus x* € D( T*), and
T*x* + B*x* = (T + B)* «*.

LEMMA 19. (a) Ifone of T and T* is regular, both are.
(b) We have o(T)=0(T*).

(¢) If Tand T* are regular, their spectral measures E and E are related by

E(N) = E*(\).

(d) If T and T* are regular and one is spectral, so is the other.
Proof. ByLemma 18 (c) and (d), we have
(T =A)YH* = (T =)y = (T* =)

with both sides of this equation existing as bounded operators for exactly the
same \. This proves (b) and (a), since for bounded operators U and U* are
either both compact or both not compact.

To prove (c), we note that £(A) may be characterized as

1
(M) = = — T — A 'dA,
E()\) o .4( A)tda

where C is a sufficiently small circle about A. But then
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1 A
E*()\) = - T /C(T* AN = £(N)

wl

is evident. However, since (d) follows immediately from (c), Lemma 19 is

entirely proved.

Suppose that T is a regular operator in X. Then by sp(T), the spectral span
of T, we denote the smallest closed manifold containing all the manifolds
E(X)X. Thus, x€ sp(7) if and only if x can be approximated by linear com-
binations of solutions f of equations

(T -0*f=o,
that is, by generalized eigenvectors of 7. Thus, if T is known to be a regular
spectral operator,

o

sp(T) =(Z E(m)x.

=1
For nonspectral regular operators in a reflexive space, however, we may state:

LEMMA 20. If T is a regular operator in the (reflexive) Banach space X,
then sp(T) = Sw (T*)™

REMARK. For spectral operators, the conditions
sp(T) = X and Sec(T) =0
are clearly equivalent; but for nonspectral operators the condition for sp(7T) = X
given by the lemma is S (7T%) =0 and not Se(7T) = 0. Indeed, H. Hamburger
[10, pp. 74-79] has constructed an example of a compact operator U in Hilbert
space X whose generalized eigenvectors span X, and which is such that an
infinite dimensional closed subspace X, of X exists such that UX, C X,, and

U is quasi-nilpotent in X,. If we put T =(U*)!, we have sp(T) # X, while
Sec(T)=0.

Proof of Lemma 20. It is clear that if A € o( T) and we have
E(M)f = f, while E(p)*g* = 0 for every p€o(T) = a(T"),
then

g (f) = g*(E(Mf)=EA)*g*(f)=0.
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£

Thus, it is clear that sp(7) C S (T*)™. Conversely, if ¢ sp(T), there exists

a functional g* € X™ such that
g*(f) =1, g¥(sp(T)) = 0.
Since g*(E(A)f") =0 for any f’c X and any A€ o(T), it follows that
E(M)*g* = 0 forevery A € o(T) = o(T¥).
Thus g* € S, ( T*); and since g*(f) = 1, it follows that f # S, ( T*) .

Lemma 20 and Theorem 3 together give us a fairly general insight into the

range of situations in which a ¢

spectral density’” property sp(7T) =X is to be
expected of an operator 7. However, in applying these results it is convenient to
be able to deal, wherever possible, with solutions of the equation (7 —\){ =0,
rather than with solutions of the equation (7 - )\)kf= 0. The next lemma

describes a simple case in which this is possible.

LLemMA 21. Let T be a regular spectral operator in the Banach space X%.
Suppose that all but a finite number of the countable set { Ay} of points in o (T)
are simple poles of the resolvent function and correspond to one-dimensional
eigenspaces. Let d,, be the minimum distance from A, to the other points in
o(T). Then all but a finite number of points in o(T + B) are simple poles

corresponding to one-dimensional eigenspaces if
(a) d; approaches infinity, and B is bounded; or
(b) lim; d;>0, and | B| is less than some positive constant €(T); or

(¢) lim,  _ d;>0, and B is compact.

Proof. The proof in each of these three cases is very much like the proof in
the corresponding case of Theorem 3. We shall show that there exists an N such
that p€o(7T + B) and |p| > N imply that u is a simple pole of the resolvent
f_{)\ of T + B and corresponds to a one-dimensional eigenspace. Indeed, if
A€o (T + B), there exists an f€ X such that | f| =1 and such that

(T + B =A)f =0, sothat (T — \)f = —Bf.

From this last equation it is evident that if (7 —A)"! = R) exists, it must have

a norm which is at least | B|™'. By L.emma 3, there exists an absolute constant

¢ =c(T) such that

(T =AY < ed
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if A is not within a distance d of any point in ¢(7), and if N is so great that
every multiple pole Ay of /i) satisfies | Ay | < N. It follows that every point y of
(T + B) with | p| < N is within a distance ¢"!|B| of a point A, £ (T). More-
over, if we suppose that ¢™! | B| < d,/2 (which covers cases a and b), then we

see as in the proof of Theorems 1 and 3 that the resolvent
Ry=(T +B =)t

exists everywhere on the circle C, with center A, and radius d,/2, at least if
N is chosen to be sufficiently large (or, in case b, for | B| sufficiently small).

We have, as usual,
Ry = (I + R\BY'Ry;

and, for N sufficiently large (or | B| sufficiently small), this leads, as in the

proof of Theorems 1 and 3, to an estimate
. -1
IE()\n)"En|<'f'z' lE(/\n)| .

In this formula, E, is the sum of all the projections E(u) for y interior to C,,
where £ is the spectral measure corresponding to T + B. If follows by Lemma 4
that £, is a projection onto a one-dimensional subspace, so that there is exactly
one point u, € o(T) interior to C,, and E(up) is a one-dimensional projection.
Since we have already shown that every u < o(7) with | u| < N must belong to

the interior of some C,, our LLemma is proved in cases (a) and (b).

It is not hard to see that the same argument will work in case ( c) as soon as
we are able to show that [R)”B[— 0 if A’ is a sequence with |A, | — ®, and
n
with

dist (A;,U(T)) >e > 0.

However, since it is evident from the functional calculus that R}\,; converges
strongly to zero as n —» ¢, and since B is compact, it follows that | Ry’ B|{—0
as n —» cc. In this way we are able to dispose successfully of case (c), so that

Lemma 21 is proved in entirety.

REVMARK. Itis not hard to see that a proof like that of LLemma 21 will estab-
lish the existence of certain cases in which the hypothesis that the resolvent R)
of T has only simple poles corresponding to one-dimensional eigenspaces will
yield the corresponding property for 7 + B, so that we can be sure that not even

one pole of the resolvent E)\ of T + B is multiple. In general, the situation is
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this: Multiple poles of ]?)\ can only arise out of multiple poles of R), or out of
simple poles of R) which are multiple eigenvalues, or, finally, out of the
“fusion” of several poles of T under the influence of the perturbation B. If we
rule out the first two causes, and demand that B be too small to move any pole
of R), far enough to cause two poles of R) to meet, we can be sure that R) has
only simple poles. On the other hand, it is clear that if R), has multiple poles or
multiple eigenvalues, no demand that B be small can be strong enough to ensure

that R) has no multiple poles.!!

8. Applications to differential equations. Theorem 1 is usually inapplicable
in the theory of partial and singular ordinary differential operators because the
very simple behavior of the eigenvalues required in the hypotheses of Theorem 1
ordinarily fails. However, even in these cases, Theorem 3 can often be applied
to yield interesting results. Let us begin by considering the ordinary singular

differential operator

X

d\2
== (Z) veww

on the half-open interval /=[0,c), and make the assumption that ¢”(x) >0,
g(x) — . Then, as is well known (cf. [16, p. 19]), any boundary condition

f(0) + kf"(0) =0 (0< k< )

determines a self-adjoint operator T as follows:

(a) D(T) is the set of all functions f which belong to A%2[0,N] for every
N >0, such that 7f € L ,, and such that {(0) + kf(0) =0.

(b) Tf=7f forfe D(T).

Moreover ( cf. [16, p. 113 and p. 134]), the operator T is without continuous
spectrum, and has only a finite number N(A) of eigenvalues (counted with
appropriate multiplicities) below any fixed A. This number is given asymp-

totically as A — + « by the formula

A 1
N(\) = /”( ) (A - gq(x))4,
0

where y(A) is the uniquely determined solution of ¢(u(A)) =A. This formula
makes it easy for us to evaluate

' For a detailed discussion of this type of question, c.f. [ 18].
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c=c(7) = lim X!'N(A),

— O

and by use of Theorem 3 we are able to state:

THEOREM 4. (a) If the singular differential operator T is such that c(T)
=+, and T is the self-adjoint operator in Hilbert space X associated above
with 7 , then sp(T + B) =X for every bounded operator B.

(b) If instead of ¢(7) =+« we have c(T) >0, then sp(T +B) =X for all
bounded operators B with |B| < e= €(T), and for every compact operator B.

REMARK. It is easy to see that €(7) =1/2¢(7) is an acceptable deter-
mination.

Proof. The proof results immediately from Lemma 20 and Theorem 3, the
only point in question being the method by which we are to choose the domains
U; of Theorem 3. However, it is clearly possible to choose arbitrarily large real
A; such that the distance from A; to ¢ (T) is not less than c¢(7)/2. If we put

U; = tx + iy|x < A,
we complete our proof.

The same argument evidently applies to any self-adjoint operator 7 which is

is without continuous spectrum, and for which we have

c(7) = lim X'N(A) >0,
)\—»00

where N()X) is the number of eigenvalues u ( counted with multiplicities and
supposed finite) such that—A < pu < A. This observation applies to an extensive
class of elliptic partial differential operators. Thus, for instance, Hilbert-Cour-
ant [ 12, Chap. 6, Theorem 17] gives the value

e(T) = (4m)7! {f p 1(x,y)dxdy

for the partial differential operator T defined in terms of the formal operator

) J
e —p(x,y)— —— p(x,y) — + q(x,y)
T ax;o(xy)ax aypxy 5 q(x,y
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and in terms of any one of a wide family of boundary conditions. Here, G is a
bounded domain whose boundary is of measure zero, and T is an unbounded
self-adjoint operator in the Hilbert space X = L ,(G). The functions p(x,y) and
q(x,y) are required to be real and infinitely differentiable in a neighborhood of
the closure of G, while we assume that p(x,y) >0 everywhere on the closure of
G. This means, however, that the corresponding partial differential operator

T + B, defined in tems of the formal operator!?

: i (x,7) i i (x,9) i (x,5) (%, 9)
[ — . — e ——]) N — ia’ N
E® pix;y . Jy pPAXs Yy Iy +al\x,y)+q (%),

has the property sp(7 + B) =X, provided only that [¢“(x,7)| < € for some
sufficiently small €> 0.

Many other instances are known in which a self-adjoint formal elliptic oper
ator 7 has nonzero constant ¢( 7). For instance, G&rding [ 8] shows that if the
domain G C £" is bounded, and 7 is real, formally self-adjoint, or order m, and

has constant coefficients, then we have an asymptotic expression of the form

N XY™~ (7).

This allows us to apply Theorem 3, case (a) whenever n < m, and cases (b) and

(c) of Theorem 3 whenever n = .

To apply Theorem 3 when n > m, we must proceed in a slightly different way.
Let us suppose that T is an unbounded self-adjoint operator without continuous

spectrum such that N()\) is finite and

lim N(AA € >0,
A oo

where € > 0. Then the operator TF satisfies

lim A"Vl(/\))\-1 =
A— 00

for some sufficiently large & (N, (A) is the number of eigenvalues y, of T* such

12 Ty define exactly the functional domains and boundary conditions involved in the
theory of partial differential equations would involve us in a very extensive analytic
discussion, which has, after all, nothing to do with our problem, since we can take the
same domain for T + B as was required to make T self-adjoint (or, more generally, spec-
tral). This difficulty leads to a slight vagueness in the formulations of the rest of this
section, but not to any real lack of rigor in the results.
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that —A < p, < A; that is, the number of eigenvalues y of T such that —Al/k <

< Ak ). Now, if B is a bounded operator such that every product
Yll B]l TLZ - B]ll

with at least one j nonzero, is a bounded operator, it follows readily that

(T + B)k satisfies all the hypotheses of Theorem 3. It then follows that
sp((T + BY%) = %.
ilowever, from [ 15, Theorem 9.4 ] it follows readily that

sp(S) = £ and sp(Sk) =X

are equivalent restrictions on a regular operator S. That is, we can conclude that

sp(1 +B)=X%.

To give a concrete example of a case in which this argument applies, we
have only to use the result of Gérding, and consider the formal operator 7+ K,
in which 7 is self-adjoint elliptic partial differential operator with constant co-

efficients in a bounded domain G, and K is an integral operator

Kf (x) = /GK(x,y)f(y)dy

in which the kernel is a C* function of both its arguments, defined when each
argument is in a neighborhood of the closure of G. We are able to conclude that
the appropriate unbounded operators 7 defined in terms of such formal operators

(X3

also have the “‘spectral spanning’” property sp(7) = X.
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ON A THECREM OF BEURLING AND KAPLANSKY

M. CoTLAR

1. Introduction. The object of this paper is to remark that a natural and
simple proof of the theorem of Beurling and Kaplansky ( Theorem 1 below) can
be obtained by adapting to general groups a classical proof already given in the
books of Wiener { 8] and Zygmund [ 9]. In fact, Theorem 1 is an immediate con-
sequence of a lemma (Lemma 1 below) which was proved by these authors in
the case when the group is the integers or the real numbers. An easy generaliza-
tion of Lemma 1 (Lemma 2 below) yields immediately the generalization of the
Beurling and Kaplansky theorem stated as Theorem 2 below. For the history
of the development of this theorem, see [3, p.149] and [5]; the book [3] did
not appear until the present paper had been submitted, but it seemed wise to

add the reference.

2. Statement of results. et A=1{a, b,-++} be a locally compact abelian
group and X ={x,y, --- } the dual group (the group operations will be written
multiplicatively ). Let

LI(A)={f,g,h,P,"'}

denote the set of all integrable functions with respect to the Haar measure of 4,

IFRIERIF AN

A

the L '-norm of f, f(x) the Fourier transform of f(a),
fi*hy
the product of convolution (that is, the product in the group algebra),

fi f, =f(a) f,(a)

the ordinary product of functions, and
(x,aY=x(a)=alx)

Received January 12, 1953. The author is a fellow of the John Simon Guggenheim
Memorial Foundation.
Pacific J. Math. 4 (1954), 459-465
459
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the value of the character x € X at the point a € 4. Subsets of A4 will be denoted
by C, D, .+, subsets of X by P,(),S,--+, and subsets of L'(A) by I, /, +--.

The spectrum S(f) of a function f€ L'(A4) is the set of the points x € X
such that f(x) =0, an(} the spectrum S (/) of a set I CL'(A4) is the set of the
points x € X such that [ (x) = 0{or all f€/.

We suppose known the following Tauberian theorem of Segal and Godement
(see[1]or [4]).

THeorEM A, If I is a closed ideal of LY(A), and f€ LYA) is such that
S(1I) is interior to S(f), then f €.

Theorem A is a consequence of the regularity (in the sense of Silov) of the
algebra L.'(4), and the following I.emma A (see [7], [1], or [4]).

LEMMA A. Given f€L'(A) and € > 0, there is a function g € L '(A) with

the following properties:

(i) f(x) =0 implies g (x) = 0; that is, S(f) C S(g).

(ii) If h = f— g, then h(x) vanishes in a neighborhood of the point co (that
is outside of a compact set P CX).

(iii) |l gl] < e.

It is known [6] that Theorem A is not true if S(f) is merely contained in
but not interior to S(f); however, if S(/) consists of a single point, the fol-

lowing theorem is true:

TueorReEM 1 (Beurling and Kaplansky). If [ is a closed ideal such that
S(I) consists of a single point xq, then S(f) D> S(I) implies f € 1.

This is a special case of the following:

THEOREM 2. Let I be a closed ideal such that the boundary P of S(I) is
a reducible set (or that the intersection of P with the boundary of S(f) is a
reducible set). Then S(f) D S(I) implies f €L

A set is said to be reducible if it contains no nonvoid perfect subsets.

Theorem 1 was proved by Beurling in the case when A consists of the real
numbers, using complex-variable methods. Kaplansky proved the theorem in the
general case using the structure theory of groups. A direct and simple proof of
Theorem 1 is given in a recent paper of Helson [2], and in the same paper is

given a complete proof of Theorem 2.
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We want to show that a still more natural and simple proof of Theorems 1 and

2 can be obtained as follows.

2. Proofs. We first reduce Theorem 1 to the following Lemma 1 (observe

that L.emma A is obtained from LLemma 1 by replacing the point x4 by o).

LemmA 1. Given a point xo €S(f), f€L(A), and ¢ > 0, there is a func-
tion g € LY(A) with the following properties:

(i) S(NHCS(g)
(ii) if h=f— g, then h (x) vanishes in a neighborhood U(xy) of the point

X053
(iii) |lgl] < e.
It is easy to see that Theorem 1 is an immediate consequence of I.emma 1
and Theorem A. In fact, if S(/) consists of a single point x, € S(f), then by
Lemma 1 there is a function & such that ||~ 4| < ¢ and x, is interior to

S(h}; hence, by Theorem A, 4 €[ Since ¢ is arbitrary and ||f-4]|]| < ¢, it
follows that f € /, and this proves Theorem 1.

Similarly it is easy to see that Theorem 2 is an immediate consequence of

Theorem A, L.emma A, and the following Lemma 2.

LEMMA 2. Given a compact reducible set Q CS(f), f€ LYA), and € > 0,
there is a function g € LY(A) with the following properties:

(i) S(f)cS(g);
(ii) if h=f~g, then ;L(x) vanishes in a neighborhood U(Q) of the set Q;
(iii) llgll < e

Hence Theorems 1 and 2 will be proved if we prove Lemmas 1 and 2.

3. Proof of Lemma 1. Without loss of generality we may suppose xy=1=unit
of X. Then by hypothesis

7 xp) = lf(a)da:O.

Given € > 0, there is a compact set € C A such that

(1) _[le(a)lda<e/4,
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hence also

(2) |/;f(a)dal = | _l;_cf(a)dal < €/4.

If p(a) is any function from L'(4), and g = p * f, we have

gla)= £f(b)p(ab'l)db=é+ 'Zx‘-cf(b)p(ab-[)db’
(3) el g_él‘éf(b)p(ab'l)dblda

+ L |_/.A_Cf(b)p(ab'l)dblda=M+N.

Using (1) and (2), and denoting the characteristic function of the set
C’=A4~C by ¢.,, we have

(3a) N= jA. 1 Lf(b)qﬁc,(b)p(ab' ) db| da
=l (fpe.) =pll < Hfde. 1l - Ilpll

“lpll [ 17 @) da < e lipll,

(3b) MS.Z;|/(;f(b)[p(ab'1)—p(a)]dblda

+ /Alfcf(b)dbup(a)lda

<tsw [t =pl@dablIf 1l + /2 llpll.
T bec 4

Let us denote p (ab™') by p®(a); then

(4) el < e2llpll + 1If1l sup [Ip°=pll.
bEC

Since
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F(x)=f(x)p(x),

]/;(X)=0 implies 2(x) =0, and inequality (4) shows that Lemma 1 will be

proved if we prove the following proposition.

ProprosiTioN A. Given € > 0 and a compact set C C A, there is a function
p(a) such that:

a) peLNA) and ||p|| < 2;

b) there is a neighborhood U(1) of the point 1 € X such that p(x)=1 for
x €U(1);

e) Hpb-pH < € for b in the compact set C.

Proof of Proposition A. Take two compact neighborhoods V and V'’ of the

1€ X, of measures 7 and n’, and such that

(5) VCV’; p< 4y,
and define
(6) )= Unldy * gyt =1n(dx 671,

where $=$V (g?)':%w) is the characteristic tunction of the set V (V).
Since qAS, @’e L?(X), by Plancherel’s theorem p(x) is the Fourier transform
of a function p(a) € L'(4). Since ¥ CV’, there is a neighborhood U = U(1)
such that ¥/ . U CV’, and from (6) it is clear that p(x) =1 for x € U. Using
the Plancherel theorem it is easy to see that p (@) satisfies also the conditions
a) and c), provided V'’ is taken small enough (cfr. [5]). For instance, let us
prove condition c¢). Since the Fourier transform of b~ ¢ is ¢ (x) [(x,6)~1],
and since %(x) =0 outside of V’- V", it follows that if b € C, and V"’ is small

enough, then

b=l = 111(x,5) =111, < €, 111, =¢,n%,
for every b € C, where €, > 0 is arbitrarily small. Since

pla)=¢(a) d’(a)/n,

by Plancherel’s theorem,

HpP=pll, = 1 llpd = a2 o2l < /nlll " (=2 + 1162 (p =" 2]
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<ULl N, e all, + 1 ll, e 1o l,] < 26, ()0 < dey,
and this proves condition c).

REMARK. As we already mentioned, the foregoing proof of Lemma 1 is an
adaptation of a proof given in Zygmund’s book. Zygmund considers the particu-
lar case V\f/hen A consists of the integers and X is the unit circle, so that the
functions f (x) are periodic functions with absolutely convergent Fourier series,

and he takes for p (x) the function
p(x)=1if |x| <7,
p(x)=0 if |x]| > 2,
p(x) linear if n < |x| < 27.

Then he proves that the total variation of the derivative of the function is
bounded by a fixed number, and from this he deduces properties a), b), c) of
the function p(a). This is the only point in Zygmund’s proof which does not
apply to general groups; however, it is easy to see that the function ;A) used by
Zygmund is exactly what formula (6) reduces to when V is taken to be an in-

terval, and thus the proof can be adapted to the general case.

4. Proof of Lemma 2. ILet 0 CS(f) be a compact reducible set, and let
Q(l): ()’ be the set of the points x such that any neighborhood of x contains

an infinite subset of Q. Define

Q(2)= (Q(l)),,
and form in the usual way the sequence of derivative sets:
0> Q(l)DQ(Z)D vee D Q(a)D e
Let w be such that

Q(W) - Q(w +1) :

then Q(W) is a perfect set; and since Q is reducible, Q(w)z 0. If w =1, then
Q is a finite set and n successive applications of Lemma 1 yields Lemma 2 in

this case, We will now prove Lemma 2 by induction on w.

Suppose that Lemma 2 is true if Q(w)= 0 for w < wy; we shall prove that
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it is also true if Q(w) = 0 for w = wg. Consider first the case when wo =w”+ 1.

Then Q") is a finite set, and hence there is a function h € L'(4) such that
Wf=hIl < €2, S(FYCS(R),
and 2(96) vanishes on an open set UD 0", Since O — U has the property
(G- <o,
and w” < wg, by the inductive assumption there is a function 4’ such that
S(fYCSRYCS(RT), ||h-R7]|| < €/2,

and 4 ’(x ) vanishes on an open set U’D () — U. Hence 4 “(x) vanishes on U u U’D
), and

F=h? 1 < f =kl + A= h7]] < 2e/2= €.
If wg is not of the form w”+ 1, then by definition

Q(wo) - N Q(w) :

w<wy

hence for some w’ < wy, we must have Q(w')= 0, and by the inductive assump-

tion Lemma 2 is true in this case.

This proves Lemma 2.
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ASYMPTOTIC LOWER BOUNDS FOR THE
FREQUENCIES OF CERTAIN POLYGONAL MEMBRANES

GeorGE E. FORSYTHE

1. Background. Let the bounded, simply connected, open region R of the
(%, y) plane have the boundary curve C. If a uniform elastic membrane of unit
density is uniformly stretched upon C with unit tension across each unit length,
the square A= A(R) of the fundamental frequency satisfies the conditions

(subscripts denote differentiation)

Ausuxx+uyy=—-)\u inR,
(la)

A = minimum,
with the boundary condition

(1b) u{x,y)=0 on C.

The solution u of problem (1) is unique up to a constant factor. It is known
[13, p. 24] that A is the minimum over all piecewise smooth functions u satisfy-

ing (1b) of the Rayleigh quotient

(2) p(u)=/_./R. lvulzdxdy//l;u2dxdy,

2, In many practical methods for approximating A one

where *Vu12=u; +u
essentially determines p(u) for functions u satisfying (1b) which are close to
a solution of the boundary value problem (1). See [9, p.112; 6, p. 276; 11, and
12]. By (2) these approximations are known to be upper bounds for \; they
can be made arbitrarily good with sufficient labor. It is obviously of equal

importance to obtain close lower bounds for A; cf. [14].

The lower bounds for A given by Pdlya and Szego [13] are ordinarily far

Presented to the American Mathematical Society May 2, 1953, under a slightly dif-
ferent title; received by the editors May 15, 1953. The work on this report was sponsored
in part by the Office of Naval Research, USN.

Pacific J. Math. 4 (1954), 467~ 480
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from close. Those obtainable from p(u), [, u®dxdy, and [fg |Au|?dxdy by
methods due to Temple [15], D. H. Weinstein [ 17], Wielandt [ 18], and Kato [ 8]
(for expositions see [3] and [16]) are arbitrarily good, but presuppose know-
ledge of a lower bound for the second eigenvalue A, of the problem (1). The
same is true of Davis’s proposals in [4]. It is possible, following Aronszajn
and Zeichner [ 1], to get close lower bounds for A by minimizing p(u) over a
class of functions u permitted some discontinuity in R (method of A. Weinstein);

the author has no knowledge of the practicability of the method.

A common method of approximating A is to replace the boundary value prob-
lem (1) by a similar problem in finite differences. Divide the plane into squares
of side & by the network of lines x = ph, y =vh (u, v=0, £1, £2,...). The
points (ph, vh) are the nodes of the net. A half-square is an isosceles right

triangle whose vertices are three nodes of one square of the net, Assume that
(3) R is the union of a finite number of squares and half-squares.

Then every interior node of R has four neighboring nodes in R v C.

Define Aj, a finite-difference approximation to A, by the relation
BAALv (x,y)=v(x + hyy) +v(x = hyy) +v(x,y +h) +vix,y —h) —dv(x,y).

Let Ap be the least number satisfying the following difference equation for

a net function v defined on the nodes (x,y) of the net:

(4a) Apv = — Mgy at the nodes in R,

with the boundary condition
(4b) v =0 at the nodes on C.

One can interpret Aj as the square of the fundamental frequency of a network
of massless strings with uniform tension /%, fastened to (, and supporting a
particle of mass h? at each node. That is, a certain lumping of the distributed

masses and tensions of problem (1) yields problem (4).

It is easily verified for a rectangular region of commensurable sides #n/p,

7/q, and for h such that (3) holds, that one has u = v = sin px sin gy, and that

A ) -2 4 4 2
(5) _h _ sin (ph/2) + sin* (gh/2) 1. p*+q -h—-+o(/12) (h—0).

A (ph/2)% + (gh/2)? p’+q°

Hence Ay < A for all &, and one can use Ay as a lower bound for A. However,
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since A is known exactly for rectangular regions, relation (5) contributes
nothing to its computation. For general regions R, it was stated [3, p.405]
in 1949 that nothing could be said about the relation of Aj, to X.

2. A new result. An asymptotic relation resembling (5) will now be es-
tablished for any convex polygonal region R satisfying (3). Such regions are
polygons of at most eight sides, having interior vertex angles of 45° 90°, or
135° The following theorem® will be proved in € 3 by use of the lemmas of $ 4:

THEOREM. Let R be a convex region which is a finite union of squares
and half-squares for all h under consideration. Let u solve problem (1) for R,
and let

ﬂR (u;x + uyzy)dxa’y

a=a(R)=
I (uf +u,;)a’xdy

Then, as h — 0, one has

Ah a
(6) — < 1-—=h%*+0(h?) (h —0).
A 12

It is a consequence of the theorem that, for all sufficiently small A, say
for h < hgy, Ay is a lower bound for A. The ordinary finite-difference method
thus complements any method based on Rayleigh quotients; and, since Aj — A
as h—> 0, together two such methods can confine A to an arbitrarily short
interval. In particular, Pdlya [11 and 12] devises modified finite-difference
approximations to problem (1) which furnish upper bounds to A for all 4. Hence
arbitrarily good two-sided bounds to A can be found by finite-difference methods
alone.

The constant a of the theorem is the best possible for a rectangle R of
sides /p, m/q. For this region, we have a = (p* +¢*). (p? +q%)!, and (6)
is seen by (5) to be actually an equality up to terms o (h2).

Using heuristic reasoning, Milne [9, p. 238, (97.5)] finds an approximate

formula which, specialized to the fundamental eigenvalue and set in our notation,

says
Ah AR2

(7) — 2 1-— 4+ 0(h?) (h —0).
A 24

L1The author gratefully acknowledges many helpful conversations with his colleague
Dr. Wolfgang Wasow on the subject of this paper.
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For a rectangle of sides #/p, n/q, the coefficient of —~£?/12 in (7) is (p2+q?)/2.
Since

p?+q? . (p* ~q?)? p* +q*
2

p? 4 g2 p?+q?
the coefficient of A% in (7) is low for all rectangles with p # ¢, and exact for

squares. Hence (7) cannot ordinarily be expected to be exact in its A? term.

The use of the theorem to bound X is limited by our lack of knowledge of
ho. However, it is the author’s conjecture that, for the regions R of the theorem,

Ah < /\ for all h.

The convexity of R is vital to the statement and proof of the theorem; in
fact, by the remark after Lemma 4, @ = o for nonconvex polygons. A heuristic
argument, supported by the numerical example of § 5, has in fact convinced the

author that, for nonconvex polygons, Ay > A for all sufficiently small 4.

The restriction of R and % to satisfy (3) is less essential, but is used in
two ways: (i) to be sure that no interior node has a neighboring node outside
R; (ii) to prove that I' = 0 in Lemma 7. With an appropriate alteration of Ay
near C, and with a modification of Lemma 7, one can extend the present method
to obtain formulas of type (6) without assuming (3)—and even for convex
regions R bounded by piecewise analytic curves C. See [5]. Analogous results

can be expected in n dimensions.

3. Proof of the theorem. Let K be the class of functions u which vanish
on C, such that (uuy )y and (uuy ), are continuous in R u C. Applying Gauss’s
divergence formula (27) with p = uuy, q = uuy, one finds that, for all » in K,

Green’s formula is valid in the form

/_/Ivu|2dxdy=—// uAudxdy.
R R

Hence, for all u €K, p(u) in (2) can be rewritten with — [ uAu dxdy in the

numerator.

Since, by Lemma 1, the function u which minimizes (2) and solves (1)
belongs to K, and since any function in K is piecewise smooth, one may alter-

natively define A as the minimum, over all functions in K, of the quotient

p(u)=—//R uAudxdy///R u? dxdy.
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Analogously, without having to worry about function classes, one can show

that Ap is the minimum, over all net functions v satisfying (4b), of the quotient
(8) py(v)=—h? 22 vAp hzzzvza
Np Np

where the sums are extended over all nodes N of the net inside R.

The key to proving the theorem is to set the solution u of problem (1) into
the Rayleigh quotient (8) of problem (4). It will be shown that

pp(u)

9
(9) A

1
=1-—ah® + o(h?) (h—0).
12

Since Ap gph(u), the theorem follows from (9). Henceforth u will always
denote a solution of problem (1).

The denominator of ph(u) is a Riemann sum for ff. u? dxdy. Since u? is

continuous and hence Riemann integrable over R,
(10) h2ZZu2=f/ u?dxdy + o (1) (h—0).
R
Np

(It can be shown that one can replace o(1) by o (k%) in (10), but we shall
not need to do this.)

The nodes Nj, inside R are divided into two classes:
Nh' : those at a distance % from some 135° vertex of C;

N;?: the other nodes of Nj.

Split the numerator of p, (u) accordingly:

(11) A2 uhpu=—h2 222 ulpu — h? 220 whpu =57 (u) + S5 (u).
Np NS/

h Nhl ’

To estimate S,:(u) note that, since there are at most eight 135° vertices,

the number of nodes in N}: is at most 8, for any k. At any node in N}: ,

u—u;

) < 4h?% max |Vu|2?,

-0\ 2
P ludl < w7 (22)
i=1
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where the maximum of | Vi |? is taken for all points (x,y ) within a distance 2k

of some 135° vertex. lience, by Lemma 2, as h — 0 through values such that

(3) holds,
(12) ‘S}:(u)] < 32h% max |Vu|? =0 (A?) (h—0).
Now, using the notation and assertion of Lemma 5, one obtains

k4
(18)  $7w) ==k L2 whu = — T2 wuuns + 155y )-
N N/’
h h

Since u satisfies (la),

(14) k2 2220 whu=M2 222 u =222 u+0(h?) (h—0);

Nh Nh Nh

the last step is correct because u(x,y) — 0 as (x,y) — C.

Combining (13) and (14), one finds that, as A — 0,

h4
Sitw) = M2 2220 wP = = 2220 uufaan + uffyy ) + 0 (A)

44

Ny Nh
(15)
h2
M2 22w — ./:/‘ uugxxx + Uyyyy ) dxdy +o0(h?),
Ny 12 “*RrR

by Lemma 6. The integrals used in this proof exist, by Lemma 3. Using (11),
(12), (15), and Lemma 7, one finds that

(16) —h22_2_ ubpu
Np

-y

=42 2 _ 2 2 2 .

=M\ ZNZU n R(uxx+uyy)dxdy+o(h) (h— 0)
Rk

Dividing (16) by the denominator of p,(u), one gets



FREQUENCIES OF CERTAIN POLYGONAL MEMBRANES 473

2
. e f{[\,(xtxx+uy2y)dxdy
a0 A =55
R 2220 u?

Np

1+ o(h?).

Hence, by (10),

12 Mg (u’fx + "';y ) dxdy
(17) pplu)=A—-— +o(h?) (h—0).
12 [1x u? dxdy

If one divides (17) by A, and notes from (2) that A [f, u’dxdy = [[ | Vu | *dxdy,

it is seen that

0, (1) p2 Mg (w2, +ul Vdxdy
h 1o R Yy +O(h2) (h —0).
A 20 | Va2 dedy

By the definition of @ we have proved (9) and hence the theorem.

4. Some lemmas. [.emma 1, suggested to the author by Professor Max
Shiffman, is used to establish Lemmas 2 to 7, which were applied to prove the
theorem. In all the lemmas R is the convex union of squares and half-squares

of the network, while u = u (x,y) is a function solving problem (1) in R.

I.EMMA 1. The function u is an analytic function of x and y in Ru C,
except at the 135° vertices of C. Let r, 0 be local polar coordinates centered
at a 135° vertex Pj, with 0 < § < 3a/4 in R. Then

(18) u=ykr4/3 sin (460/3) + r7/3 Ey(r,0),

where 'y, is a constant, and where E,(r,0), together with all its derivatives,

is bounded in a neighborhood of Py.

Proof. By reflection one can continue u antisymmetrically across each
straight segment of C, and (la) is satisfied by the extended u at all points
of R u C except the 135° vertices. The first sentence of the lemma then follows
from [2, p. 179].

For (&) € R, write t = £+ in. For each ¢, let w =f(z,t) be an analytic
function of the complex variable z = x + iy which maps R into the unit circle

|w| < 1, with f(¢,¢) = 0. To study f near a vertex zj of C, one may assume
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that f (z4,¢) = 1. Let the interior vertex angle of C at zj; be n/ay (0t} = 4,2, or
4/3). It is a property of the Schwarz-Christoffel transformation [ 10, p. 1897 that

(19) f(z,t):1+(z—-zk)akgk(z,t),

where g, is an analytic function of z regular at z.

Let G(z,t) = G(x,y; & n) be Green’s function for Au in R. Now G(z,t) = —
(27)°! log |f(z,t)]; see [10, p.181]. It then follows from (19) that, in the
notation of the lemma, when oy, = 4/3,

(20) G(z,t) =y, (£)r*/3 sin (46/3)+ 173 EL(r,6,¢).

Moreover, y,(¢) and E,(r,6,¢) are integrable over R, since the only discon-

tinuity of G(z,t) is a logarithmic one at ¢ = z.

The function u is representable by the integral [ 2, pp. 182-3]

(21) u(x,y)=)\_/-_/’;G(x,y;.f,n)u(‘f,ﬂ)dfdn.

Substituting (20) into (21) proves (18) and the lemma.
LeEmMMA 2. |Vu(x,y)| — 0as (x,y) — any 135° vertex of C.
Proof. By (18), |Vu| = 0(r173), as (x,y) —> any 135° vertex of C.

. 2
LemMmaA 3. The functions uix, Ullxxxs Ulgxxzs Uyys Uylyyys and uuyyyy are

Lebesgue-integrable in R.

Proof. By Lemma 1 these functions are continuous in R u C, except at the

135° vertices Pj. At these vertices (18) implies that they are O(r*/3) and are

hence integrable.
LEMMA 4. The Lebesgue integrals [ uyuyydx and [ uyuxxdy exist.
Proof. Analogous to that of Lemma 3.

REMARK. Lemmas 2, 3, and 4 are false for polygonal regions R which are
not convex, since in general the exponent in (18) is oy, where n/y is the

interior angle at the vertex Py.

LEMMA 5. At each node (x,y ) in R of the network of section 1, one has
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1
(22) Apu=Au + — h2(uxxxx y'yyy)’
where
u;xxx xxxx(x+eha)’) "1<9'<1;
(23)

uyyyyzuyyyy(x’y+6 h), —1<67”<1.

Proof. By Lemma 1, uxyy, is continuous in the open line segment from
(x ~h,y) to (x +h,y) (though infinite at any 135° vertex). Since u is con-
tinuous in R v C, it follows from Taylor’s formula [ 7, p.357] that, if we fix y
and set ¢ (%) = u(x,y),

¢(x+h)+¢(x—k)~2¢>(x)
1
=h2¢”(x)+ 52 h4[¢””(x+ 61/1)+<9""(x—62h)],

where 0 < 6; < 1 (i=1,2). By the continuity of ¢’*”%, the last bracket equals
2¢°*(x + 0°h ), where -1 < 0” < 1.

A similar formula for ¥y (y)=u(x,y), when added to the above and divided
by k2, yields (22) and (23).

LEMMA 6. Define N/ as in $ 3. For each node (x,v) in Ny, use the nota-
tion of (23). Then, as h"—> 0 over values such that (3) holds, one has

(24) A2 Zzu(u;xxx yyyy _[/u(uxxxx+uyyyy)dxdy+o(l) (h—0).
h

Proof. For all (x,y) in the entire plane E, define

u(ugxxx + Uyyyy ), if (x,5) ER;

f(x’y)={

0, elsewhere .

By the proof of Lemma 3 one sees that f (x,y) is O(+"*/*) in the neighborhood
of each 135° vertex P}, of C, and continuous elsewhere. Divide the nodes (x,y) =
(phy vh) of N/CR into four classes K@ (;=1,2,3,4) according to the parity
of (yyv). Fxx any class K9, For each vertex (x,9) in K% let S(x,y) be the

union of the four closed network squares of E, which contain (x,y). The area
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of each S(x,y) is 4h?%; ordinarily certain of the S(x,y) contain points not in

R. Define

ulx,y) (u) )y for (&,m) €S (x,y);

(&)=
0, for (&,n) & US(xy).

Then fh(i)(f, n) —f(&n), as b — 0, for almost all (& ) in the plane. Using
the fact that no node of N;” is adjacent to a 135° vertex of C, one can show that
for all i, uniformly in A, iféi)(f,nﬂ < F(&n), where F is an integrable func-
tion in £,.

Fach term of the sum (24) for which (x,y) € K () s equal to

1./ )
- L L n)dEdn.
4 '/;(x,y)fh (&n)didn

Hence, applying lebesgue’s convergence theorem, one sees that, as A —0,

for each i,

N;Z wlul . + ym>—-ff RO (&q)dédn

n K@
(25)

1
— Z/fE f(&n)dédn (h—0).
2

Summing (25) over i = 1,2, 3,4 proves (24) and the lemma.

LEMMA 7. One has

(26) ./:L: u(uxxxx+uyyyy)dxdy= ‘/'./R (u;x +u;y)dxdy.

Proof. The following applications of Gauss’s divergence theorem in the
form
(27) _/:/1; (px+qy)dxdy=_/(;(pdy—qu)

can be justified by integrating over the region R* interior to a smooth convex

curve C* inside R, and then letting C* — C appropriately. The continuity of
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the integrals in the limit follows from [.emmas 1, 3, and 4.

In the divergence theorem for p = unyyy; ¢ =ullyyy, the line integral vanishes,

and one finds

(28) ‘/:/1.2 U Uyxnn + Uyyyy Ydxdy = _'/:/R. (Uxligxy + Uylyyy Ydxdy .

A second application of the divergence theorem with p = u,u,,, ¢ = Uyllyy, COM=
bined with (28), shows that

(29) /:/’; u(uxxxx+uyyyy)dxdy:'/:/[; (u;x+u;y)a’xdy+r,

where 1" = [ (uyuyydx — usuyndy ).

By (1a), uyy=-— uyy on C, whence I'= [, u.y},(uy(]x + uydy). On the seg-
ments of C parallel to the axes, u,, = uyy = 0, so that there the contribution

to " is zero.

Now the vector Vu = (uy,uy) is perpendicular to C. On the segments of C
making a 45° or 135° angle with the x-axis, (u,, uy) is parallel to (uy, uy )y
whence (uy,u,) is perpendicular to C. Thus uydx + u,dy = 0 when (dx, dy) is
tangent to , so that the contribution to [" from these 45° and 135° segments of

C is also zero.

Hence I" = 0, and the lemma follows from (29).

5. Numerical example. [.et R, be the six-sided, nonconvex, L-shaped region

whose closure is the union of the three unit squares

-1<x<0, 0<y<1;
0<x<l, 0<y<l;
0<x<1, —1<y <0.

The fundamental frequencies Ap = A3 (R;) and corresponding net functions v
were computed by B.F. Handy on the SWAC (National Bureau of Standards
Western Automatic Computer) for 1/h = 3,4,.--,8. The computation used a
power method; for some initial net function vy, (A*Ay +51)™v, was determined
for large positive integers m, where [ is the identity operator. On the basis of
Collatz’s inclusion theorem [3, p.289], the values in the accompanying table
are believed to have errors less than 5x 107°. Observe that Aj(R;) is less for

h=1/8 than for h = 1/7.
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TABLE
h AM(Ry) A (Ry)
1/2 9.07180 12.00000
1/3 9.52514 13.73700
1/4 0.64143 14.37340
1/5 9.67860 14.67081
1/6 9.69083 14.83259
1/7 9.69384 14.93003
1/8 9.69316 14.99315

Since R, is not convex, the theorem of § 2 does not apply, but a heuristic
argument suggests that Ap (R;) — A(R,) = O(h*/3). A least-squares fit to the
values of Ap (R;) for 1/8 < h < 1/4 of a function of type

M(R) 2y +BA*Y3 4y k=6 (R)
yielded the values

(30) oy =9.63632, B, =2.40286,  y, = - 5.97212.

The maximum of | Ap(R,) — q{)l(h)! for the five values of A is .00013. Hence «,

is a working estimate of A (R, ).

The fact that 8, > 0 in (30) supports the author’s conjecture that, for
nonconvex polygonal domains satisfying (3), Ay > A for all sufficiently small
h.

The table also gives Handy’s values for the second eigenvalues of R, which
are the fundamental eigenvalues Ap(R,) of the trapezoidal halfdomain R, of
Ry for which x > y. Since the theorem does apply to R,, a least-squares fit to
the values of A\ (R, ) for 1/8 < & < 1/4 of a function of type

M(Ry) = oy + Bh% = ¢, (k)
seemed appropriate, and yielded the values
0, = 15.19980, B, = - 13.22219.

The maximum of | A (R,) — ¢, (h)] for the five values of h was .00010. Hence

¢, is a working estimate of A (R;).

The value of (3, is negative, in agreement with (6), but the quantity
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- 128, /0y = 10.4387 is something like one-fifth larger than an estimate of the
corresponding quantity a (R;) of the theorem. One therefore suspects that a is

not the best possible constant in (6) for the region R, .

In the table, note the relative closeness of the values of Aj (R, ) to the work-
ing estimate, G, of A(R,), even for a coarse net. Thus the value 12 for Ay(R,),
which is obtained by pencil and paper from a simple quadratic equation, is
comparable to the lower bounds 12.1 and 57%/4 obtained respectively by com-
parison with A for the circular membrane of equal area [13, p. 8] and with A for
the rectangular region 0 < x < 1; =1 <y < 1. The value A, ,3(R;)=13.737
requires getting the least eigenvalue of a 7th-order matrix, a relatively easy

procedure with a desk machine.

The monotonicity of Aj (R,) supports the author’s conjecture? that, for the
R of the theorem, Aj < X for all A,

%See page 470.
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