
Pacific
Journal of
Mathematics

IN THIS ISSUE—

Nelson Dunford, Spectral operators . . . . . . . . . . . . . . . . . 321
John Wermer, Commuting spectral measures on

Hilbert space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
Shizuo Kakutani, An example concerning uniform

boundedness of spectral measures . . . . . . . . . . . . . . 363
William George Bade, Unbounded spectral

operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
William George Bade, Weak and strong limits of

spectral operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
Jacob T. Schwartz, Perturbations of spectral

operators, and applications. I. Bounded
perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

Mischa Cotlar, On a theorem of Beurling and
Kaplansky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459

George E. Forsythe, Asymptotic lower bounds for the
frequencies of certain polygonal membranes . . . . 467

Vol. 4, No. 3 July, 1954



PACIFIC JOURNAL OF MATHEMATICS

EDITORS

M.M. SCHIFFER*

Stanford University
Stanford, California

E. HEWITT

University of Washington
Seattle 5, Washington

R.P. DILWORTH

California Institute of Technology
Pasadena 4, California

E.F. BECKENBACH**

University of California
Los Angeles 24, California

ASSOCIATE EDITORS

H. BUSEMANN

HERBERT FEDERER

MARSHALL HALL

P. R. HALMOS

HEINZ HOPF

R.D. JAMES

BORGE JESSEN

PAUL LEVY

GEORGE POLYA

J.J. STOKER

E.G. STRAUS

KOSAKU YOSIDA

SPONSORS

UNIVERSITY OF BRITISH COLUMBIA

CALIFORNIA INSTITUTE OF TECHNOLOGY

UNIVERSITY OF CALIFORNIA, BERKELEY

UNIVERSITY OF CALIFORNIA, DAVIS

UNIVERSITY OF CALIFORNIA, LOS ANGELES

UNIVERSITY OF CALIFORNIA, SANTA BARBARA

UNIVERSITY OF NEVADA

OREGON STATE COLLEGE

UNIVERSITY OF OREGON

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD RESEARCH INSTITUTE
STANFORD UNIVERSITY
WASHINGTON STATE COLLEGE
UNIVERSITY OF WASHINGTON

• * *

AMERICAN MATHEMATICAL SOCIETY

HUGHES AIRCRAFT COMPANY

Mathematical papers intended for publication in the Pacific Journal of Mathematics
should be typewritten (double spaced) , and the author should keep a complete copy.
Manuscripts may be sent to any of the editors. Manuscripts intended for the outgoing
editors should be sent to their successors . All other communications to the editors
should be addressed to the managing editor, E.G. Straus, at the University of California
Los Angeles 24, California.

50 reprints of each article are furnished free of charge; additional copies may be
obtained at cost in multiples of 50.

The Pacific Journal of Mathematics i s published quarterly, in March, June, September,
and December. The price per volume (4 numbers) is $12.00; single i s sues , $3 .50; back
numbers (Volumes 1 ,2 ,3 ) are available at $2 .50 per copy. Special price to individual
faculty members of supporting institutions and to individual members of the American
Mathematical Society: $4 .00 per volume; single i s sues , $ 1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to the
publishers, University of California Press, Berkeley 4, California.

Printed at Ann Arbor, Michigan. Entered as second class matter at the Post Office,
Berkeley, California.

*To be succeeded in 1955, by H.L. Royden, Stanford University, Stanford, California.

**To be succeeded in 1955, by E.G. Straus, University of California, Los Angeles 24, Calif.

UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LOS ANGELES

COPYRIGHT 1954 BY PACIFIC JOURNAL OF MATHEMATICS



SPECTRAL OPERATORS

NELSON DUNFORD

1. Introduction. The present paper and the five following it by S. Kakutani,

J. Wermer, W. G. Bade, and J. Schwartz are all related; in them we discuss

different aspects of the problem of the complete reduction of an operator. A

spectral operator is a linear operator on a complex Banach space which has a

resolution of the identity. * It is shown that a bounded operator T is spectral if

and only if it has a canonical decomposition of the form

where S is a scalar type operator and N is a generalized nilpotent commuting

with S. By a scalar type operator is meant a spectral operator S with resolution

of the identity E which satisfies the equation

S= / XE(dλ).
Jσ(s)

The scalar part S of T and the radical part N of T are uniquely determined by T.

For analytic functions / one has an operational calculus given by the formula

Some spectral operators are of type m; that is, the above formula reduces to

/ { n = £ Γ fM(λ)E(dλ),
n=0 n\ Ja(T)

and in Hubert space conditions on the resolvent are given which are equivalent

to the statement that the spectral operator T is of type m. Spectral operators T

1 Formal definitions will be given later.
Received March 4, 1953. The research contained in this paper was done under

Contract onr 609(04) with the Office of Naval Research.
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322 NELSON DUNFORD

have the property that for every x the analytic function ( λ / - T)"lx has only

single-valued analytic extensions and thus has a maximal extension defined on

an open set p{x). The spectrum σ(x) is defined as the complement of p{x). In

terms of these concepts it is shown that if E is a resolution of the identity for

Γ, then, for closed sets σ,

E(σ)l = [x I σ(x) C σ ] ,

This (Theorem 4) is a basic theorem; from it one deduces that the resolution

of the identity is unique, as well as the fact that every bounded operator com-

muting with T commutes with E (σ), a fact proved for normal operators on

Hilbert space by B. Fuglede [7 ] . 2 Let 21 ( T9 U$ , V) be the full β-algebra

generated by the operators T9U9 $ V; then we have the following decomposi-

tion theorems. If T is spectral and S its scalar part, then, as a vector direct

sum,

U(T9S) = 2I(S) © R9

where R is the radical in 21 ( Γ, S). Furthermore, 21 (S) is equivalent to that

subalgebra of C (σ(T)) consisting of uniform limits of rational functions. The

algebra 21, which is generated by a spectral operator T and the projections

E (σ) in its resolution of the identity, is equivalent to

C(3!) Θ R,

where 31! is the compact structure space of 21 and R is the radical in 21. Along

these lines we mention the decomposition of the full β-algebra 2I(τ) determined

by a family T of commuting spectral operators together with their resolutions

of the identity. If there is a bounded Boolean algebra of projections in X con-

taining all of the projections found among the resolutions of the identity of

operators in r, then

2I(r) = 21 © R,

where 21 is equivalent to the space C ( ϊ ί ) of continuous functions on the space

1 of maximal ideals in 21 ( r ) (or in 21) and R is the radical in 21 ( r ) . Further-

more, the adjoint of every operator in 21 ( T ) is a spectral operator. If X is re-

flexive, then every operator in 21 (r) is a spectral operator. Thus in a reflexive

space the sum and product of two commuting spectral operators is a spectral

2 That this conjecture of von Neumann, which was first proved by Fuglede, is a
corollary of Theorem 4 was pointed out to the author by J. Schwartz.
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operator provided that there is a bounded Boolean algebra containing both reso-

lutions of the identity. W. G. Bade [2] has generalized this by showing that the

weakly closed algebra generated by a bounded Boolean algebra of projections

in a reflexive space consists entirely of scalar type spectral operators. In this

paper Bade has also given sufficient conditions for the strong limit of scalar

type spectral operators to be of scalar type. If X is Hubert space J. Werner [16]

has shown that the sum and product of two commuting spectral operators is again

a spectra] operator. However, S. Kakutani [10] has constructed an example of

two commuting operators, each of scalar type, such that their sum is not a

spectral operator. W. G. Bade [ l ] has shown which portions of the theory are

valid for unbounded operators and has developed the operational calculus for

this case. J. Schwartz [12] has shown that, on a finite interval, the members

of a large class of boundary-value problems determine spectral operators. These

operators need not be purely differential operators but may also involve dif-

ference or integral operators.

2. Notation. By an admissible domain is meant an open set bounded by a

finite number of rectifiable Jordan curves. By an admissible contour is meant

the boundary of an admissible domain. The class of complex-valued functions

analytic and single-valued on some admissible domain containing the spectrum

σ{T) of the linear operator T is denoted by F(T) or F(σ(T)). For feF(T)

the operator f (T) is defined by

= — f
2πi JC

where C is the boundary of some admissible domain containing the spectrum of T

upon whose closure / i s single-valued and analytic and where T ( λ ) = ( λ / - T)~ι

is the resolvent of T. The mapping, given by the above formula, of the algebra

of analytic functions into an algebra of operators is a homomorphism (See, for

example, [ 3 ] or [14] . ) which ass igns the operators /, T to the functions 1, λ,

respectively. It has the property that σ(f{T)) = f(σ(T)). If / ( λ ) = 1 for λ i n

a component of i ts domain, and / ( λ ) = 0 for λ in the remaining components, then

f (T) is the projection

E(σ)= / T(λ)dλ,
2πi JG

w h e r e G i s t h e b o u n d a r y of t h a t c o m p o n e n t upon w h i c h / ( λ ) = 1 a n d w h e r e σ i s

t h a t p a r t of t h e s p e c t r u m σ(T) of T b o u n d e d by G. It i s c l e a r t h a t s u c h a
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projection is associa ted with every subset σ of σ(T) which is both open and

closed in σ(T). From the fact that the map / — » / ( Γ ) is a homomorphism it

follows that the map σ—> E ( σ ) is a homomorphism of the Boolean algebra

B o of open and closed s e t s in σ(T) into a Boolean algebra of projection opera-

tors . It has the property ( s e e [ 2 ] )

σ(T,E (σ)X) C σ, σ e B
o ,

where here we have used the notation σ(T, £ ( σ ) X ) for the spectrum of T when

considered as an operator in E(σ) X. Similarly p(T, £ ( σ ) X ) is the resolvent

set of T when considered as an operator in £ ( σ ) X and p(T) is p(T9 X), The

symbol B (X) will be used for the algebra of all bounded linear transformations

in the Z?-space X.

3. Spectral operators. Let B be a Boolean algebra of subsets of a set p. We

suppose that p and the void set 0 are both in B. A homomorphic map E of B

into a Boolean algebra of projection operators in the complex β-space X is

called a spectral measure in X provided that it is bounded and E{p)-L A

spectral measure has then, by definition, the properties

(α) σ), £ ( 0 ) = O,

| £ ( σ ) | <K, σ E B.

In the conditions (α) the union of two commuting projection operators is under-

stood to be defined by the equation

Au B=A +B-AB.

This union is a projection whose range is the closed linear manifold determined

by the ranges of A and B,

An operator T Gβ(X) is said to be a spectral operator of class (B,Γ) in

case

(β) 13 is a Boolean algebra of sets in the complex plane p;

(y) Γ is a linear manifold in X* which is total; that is, Γx = 0 only when

x = 0;

(δ) there is a spectral measure E in X with domain B such that
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TE(σ) = E(σ)T9 σ(T,Eσl) C σ 5 σ e 13

and

( e) for every x G X, # * G Γ, the function x*E ( σ ) # is countably additive on 13.

The condition ( e ) means that if { σn \ is a sequence of disjoint se t s in 13

whose union σ is a l so in 13 then

2-* X*E {σn)x = %*£ ( σ ) ^ , Λ G I , % * G Γ .

n

In case 13 is a σ-field and Γ = X*, the Orlicz-Banach-Pettis theorem (see [11,

Theorem 2.32] or [5, p. 322]) shows that the operator-valued set function E (σ),

σ E 13, is countably additive on 13 in the strong operator topology.

An operator 7 E δ ( l ) is said to be a spectral operator of class ( Γ ) , or

simply an operator of class ( Γ ) , in case it is a spectral operator of class

( u , Γ ) , where \o is the set of all Borel sets in the plane. An operator is said

to be a spectral operator in case it is a spectral operator of class ( Γ ) for some

Γ satisfying (y) If T is a spectral operator of type (13,F), then any spectral

measure in X with domain 13 which satisfies (8) and (β) is called a resolution

of the identity for T.

THEOREM 1. Let E be a resolution of the identity for the spectral operator

T. Then

E(o(T)) = I.

Proof. Let σ be a closed subset of the resolvent se t p = p(T), Then, in

view of ( δ ) , we see that the spectrum of T a s an operator in Eσ X i s void and

hence ( s e e [ 1 5 ] ) Eσ = 0 . Since p is a denumerable union of closed s e t s we

have from ( e ) that

and from (y) that Ep - 0, and hence E (σ(T)) = /.

For λep(T) we write, as usual, Γ ( λ ) for ( λ / - Γ ) " 1 . In the next theorem

we shall show that, for spectral operators, every analytic extension of T(λ)x

is necessarily single-valued. That this is not the case for an arbitrary operator

T is elegantly shown by the following example due to S. Kakutani
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Consider the space X of functions / analytic in the unit circle | z | <_ 1 and

for which

/(z) = £ cnz\ £ | c | 2 =
71=0 72=0

In this space define T by

The spectrum of T is the se t of z with | z | <_ 19 and for λ £ p(T) the function

T(λ)(g, z) may be calculated by solving the equation

for / {z ). An elementary calculation gives

z g ( z ) - / ( 0 )
/ ( z ) = — I — 1 —

λz — 1

Since / ( z ) is analytic when z = λ" 1 we must have

so that

g,
λ C z - λ " 1 )

Thus the vector-valued analytic function T{λ)g9 λ G p ( ί ) , will have multiple-

valued extensions if the function g has a multiple-valued analytic continuation

outside the unit circle.

In order to describe the situation discussed in the next theorem certain con-

cepts are introduced. By an analytic extension of T(ζ)x will be meant a func-

tion / defined and analytic on an open set D (f) 3 p (T) and such that

for every ξ in D (f). It is clear that, for such an extension,
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for f i n p(T). The function T(ζ)x is said to have the single-valued extension

property provided that for every pair fcg of analytic extensions of T(ξ)x we

have f{ξ) = g(ξ) for every ξ in D(f)D(g). The union of the s e t s D(f) as /

varies over all analytic extensions of T(ζ)x is called the resolvent set of x

and is denoted by p(x). The spectrum σ(x) of x is defined to be the comple-

ment of p(x). It is clear that if T(ζ)x has the single-valued extension property

then there is a maximal extension %(•) whose domain is p(x). In this case

x (ξ ) is a single-valued analytic function with domain p{x) and with x ( ζ ) -

T(ξ)x,ξ£p(T).

THEOREM 2. // T is a spectral operator in X, then for every % G Ϊ the

function T{ξ)x has the single-valued extension property.

Proof. Let f9 g be two extensions of T(ξ)x and define

ξeD(f)Dig).

We suppose, in order to make an indirect proof, that for some ξQ £ D (f)D(g)

we have h ( ξ Q ) £ 0. Thus there is a neighborhood N(ξQ) of £ 0 with /V(<fQ)C

D ( / ) D ( g ) a n d

(i) h(ξ) £ o, (ξi-τ)h(ξ)=o, ξeN(ξ0).

The desired contradiction may be obtained from these equations and the

following lemma.

LEMMA 1. Let E be a resolution of the identity for the spectral operator T.

Let σ be a closed set of complex numbers with ζQ £. σ. If (fQ/— T)χ

0

 = 0 then

where { ξQ \ is the set consisting of the single point ξQ.

Proof. Let Tσ(ξ) be the resolvent of T as an operator in £(σ)X, so that

Tσ{ξQ){ξ0I-T)E{σ) = E(σ).

But s ince

we have E (σ)xQ = 0. Now let
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s o that E (σn)x0 = 0; by ( δ ) , ( e ) , there fore ,

x*(I-E(\ξo\))xo = lim x*E(σn)x0 = 0 , U*eΓ).

n

Condition (y) thus shows that E {\ ξQ \)xQ = * 0 , and the lemma is proved.

Returning now to the proof of Theorem 2, let

Then h(ξn) —> h{ξQ), and the lemma together with ( i ) gives

0 = E({ξo\)h(ξn)->E(\ξo\)h(ξo) = h{ξo),

which is a c o n t r a d i c t i o n to ( i ) and proves the t h e o r e m .

T H E O R E M 3 . // T is a spectral operator? the spectrum σ(x) is void if and

only if x = 0 .

Proof. Using Theorem 2, we see that if σ(x) is void then x (ξ) is every-

where definecj, single-valued, and hence entire. Since, as ζ—> oc, we have

x*x{ξ)=x*T{ξ)x—*0,

we see that x*x ( ξ) = 0 for all ξ. Hence

x*x = x*(ξl- T)x(ξ) = 0,

and x = 0.

THEOREM 4. Lei T be a spectral operator with resolution of the identity

E$ and let σ be a closed set of complex numbers. Then

E{σ)l = [x I σ{x) C σ].

Proof. Let E{σ)x = x, and let Tσ{ξ) be the resolvent of Ί as an operator

in £ ( σ ) X . Then ( δ ) shows that
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i s a n a n a l y t i c e x t e n s i o n of T(ξ)x t o σ ' , t h e c o m p l e m e n t of σ . T h u s p(x) D σ ' ,

a ( x ) C σ . C o n v e r s e l y , a s s u m e t h a t σ(x) Cσ a n d l e t σt b e a c l o s e d s u b s e t of

t h e c o m p l e m e n t σ ' of σ . T h e n Tσχ (ξ)E(σι )x i s a n e x t e n s i o n of T (ξ)E (σ{)x

t o σ ^ . A l s o E (σι)x(ξ) i s a n e x t e n s i o n of T (ξ)E (σi)x t o p ( % ) . T h u s , f r o m

T h e o r e m 2 , i t i s s e e n t h a t

E(σί)x(ξ)=Tσι{ξ)E{σi)x, ξ&p{x)σ{.

Since OjOx are disjoint compact s e t s , there is an admissible contour Cγ with

σι inside Cγ and σ outside. Now let C be a large circle surrounding σ{T) so

that, s ince x{ζ) is analytic and single-valued on and within Ci9 we have

W?= ί Tσ(ξ)E(σι)xdξ
2πi Jc 1

£ ( σ ι ) * / Πf)£(^iW? ί
2πi Jc 2πi Jc

= — ί TσAξ)E{σι)xdξ=— ί E{σι)x(ξ)dξ^0.
2πi Jcι

 ι 2πi Jcι

Let σn be an increasing sequence of closed sets whose union is σ' Then

x*E(σ')x = limx*E(σn)x = 0, (x* E Γ ) ,

n

and s o ( α ) , ( y ) show that £ (σ')x = 0, £ ( σ ) % = x.

THEOREM 5. Let T be a spectral operator and A a bounded linear trans-

formation which commutes with T. Then A commutes with every resolution of

the identity for Ί.

Proof. Let σ,σχ be disjoint closed sets of complex numbers and let E be a

resolution of the identity for T. Since

AT(ξ)x= T{ξ)Ax,

we see that

p(Ax) D p(x), σ(Ax) C σ(x).

Thus Theorem 4 shows that

E{σ)AE{σ) = AE(σ), E (σ)AE (σx ) = E (σ)E (σ, )AE (σί) = 0 .
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S t a t e m e n t s ( y ) , ( e ) s h o w t h e n t h a t E (σ)ΛE ( σ ' ) = 0, a n d h e n c e

E(σ)A = E (σ) Λ[E (σ) + E ( σ ' ) l = E (σ) ΛE (σ) + E (σ)AE ( σ ' ) = ΛE (σ).

THEOREM 6. If T is a spectral operator , its resolution of the identity is

unique.

Proof. If E, Λ are both resolutions of the identity for 7, and σ is a closed

set of complex numbers, then Theorem 4 gives

A ( σ ) E ( σ ) = E { σ ) , E ( σ ) A ( σ ) = Λ ( σ ) ,

and (δ) together with Theorem 5 gives

Λ { σ ) E ( σ ) = E ( σ ) Λ ( σ ) .

Thus for closed s e t s σ, A (σ) = E (σ), and ( y ) , ( e ) show that this same equality

holds for every Borel se t σ.

THEOREM 7 Let E be a spectral measure whose domain consists of the

Borel sets in the plane and which vanishes on the complement of the compact

set σ. Then, for every scalar function f continuous on σ9 the Riemann integral

/ / ( λ ) E (dλ) exists in the uniform operator topology9 and

ff(λ)E(dλ)\ < sup | / ( λ ) | t ; ( £ ) ,
λ

where v(E) is a constant depending only upon E. Furthermore, for any two

continuous functions f and g we have

[ff(λ)E{dλ)][Jg(λ)E(dλ)] =ff{λ)g(λ)E{dλ).

Proof. Let 8 > 0 be such that | / (λ) - / ( λ ' ) | < e if | λ - λ ' | < 2δ, and

and let π- (σ^ , λ^), π' = (σ?9 λ ' ) be two partitionings of σ with norms at most

δ. Then for% G X and x* G X*, and the operator

U(π) Ξ Σ / ( λ . ) £ ( σ f ) ,

we have the inequality

\x*(U(π)-U{π'))x\ < Σ Σ,\f(λi)-f(λp\\x*E(σiσpx\ < e var x*E(σ)x.
i j «
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B u t

v a r x * E ( σ ) x < 4 l . u . b . \ x * E ( σ ) x \ < 4 > K \ x \ \ x * \ ,
σ σ

where A' is an upper bound for | E (σ) | . Thus

| £ / ( τ τ ) - ί / U ' ) | = l.u.b. \x*(U{π)-U(π'))x\ < 4 e A \
| * | = | * * | = l

The final assertion is seen by using (ex) to obtain the equation

LEMMA 2. Let 21 be α commutative subalgebra of B ( X ) which contains I

and the inverse of any of its elements provided that the inverse exists as an

element of B ( X ) . Let T$E G 21, E2 - E9 and let ϊί = (m ) be the set of maximal

ideals in 21. Then 3

σ ( Γ s £ X ) = [λ I λ = T(m), m GV315 £ ( m ) = l ] .

Proof. The symbol θ ( X ) , as always, is used for the algebra of all bounded

linear operators in the space X. It is normed by the bound of the operator. For

an element TQ of an algebra 210 with unit Eθ9 we write σ( Tθ9 210) for the spec-

trum of TQ as an element of 2I0. This is the complement of the set of those

λ for which λ £ 0 ~ ̂ o has an inverse in 210 According to our hypothesis, then,

we have

( i ) σ(Γ,») = σ(7,X) = σ ( n .

Let 21 £ = 2I£, and note that this is a subalgebra of 21 with unit E. Each V G 21 £

maps £X into itself and as an operator in £X has the spectrum σ (V', EX), Just

as in ( i) above we have

(ii) σ(V)llE) = σ{V,EX).

To see this, let

3 The difference algebra 21 — m is the complex number system [ 8 ] , We write, using
Gelfand's notation, U (m) for the complex number corresponding to an element U G <1
under the natural homomorphism of 21 onto 21 — m.
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and suppose that Vo has an inverse as an operator in EX. Define

so that W1 G B (X). Thus W'1 en, ψ ιE G 21E and since V0W
 ιE = E it is seen

that Fo has an inverse as an element of 21 £ . This proves that p{V9 £X)C

p ( F , 21^). The converse inequality being obvious, we have proved ( i i ) . Now

let ϊ ! = (m) be the set of maximal ideals in 21, and ΈE = {mE ) the set of maxi-

mal ideals in UE. We shall next show that

(ii i) f £ = [ m £ | m G l , £ ( m ) = l ] ;

that is, the maximal ideals in 2I# are precisely those of the form τnE = mE,

where m is a maximal ideal in ϊ ! for which E (m) = 1. Since £ 2 = £ , we have

E(m) always 0 or 1, and so the statement E (m) = 1 is equivalent to the state-

ment E £ m. To prove ( i i i) , let m be a maximal ideal in 21 with E £ m. The

set τnE = mE is clearly a proper ideal in 21 £ . To see that τnE is maximal, let

nE be a proper ideal in UE which contains mE, and let n be the set of all V E 21

for which VE £nE. Then n is a proper ideal in 21 which contains m. Since m

is maximal, we have m - n and hence mE = nE. Conversely, let mE be a maxi-

mal ideal in 2I# then m - mE + UE ' is a proper ideal in 21 with mE = mE. To

see that m is maximal, suppose that n is a proper ideal in 21 containing m

properly. Then we shall show that nE = nE is a proper ideal in UE which con-

tains mE properly. Let U G n9 U £ m. Then HE G/Z£. Since £ / G m , we have

UE'£m and hence UE f. m. Therefore, since mE Cm, we have UE (. mE, and

this proves ( i i i ) . Thus we may say that for any m G S? for which E (m) - 1 the

difference algebras 21 — m9 2l£ — mE are both isometrically isomorphic to the

complex number system. There are, therefore, uniquely determined complex

numbers T(m), TE(mE) for which

T-T(m)l£m9 TE ~(TE)(mE)E emE.

From the first of these relations it follows that TE ~ T(m)E EmE, and from

the second, therefore, that T (m) = (TE)(mE). But as m varies over all points

in 5J! for which £ ( m ) = 1, we see from (iii) that mE varies over all maximal

ideals in AE and hence ( Γ £ ) ( m £ ) = T {m) varies over the spectrum of TE as

an element of 2l£. Hence the desired conclusion follows from ( i i ) .

DEFINITION 1. An operator S is said to be of scalar type in case it is a

spectral operator and satisfies the equation
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S=fλE(dλ),

where E is the resolution of the identity for S. According to Theorem 1, S ( e ) = 0

if e C p(S) so that the integral over the compact set σ(S) ex is t s in the uniform

topology of operators.

THEOREM 8. An operator T is a spectral operator of class ( Γ ) if and only

if it is the sum T = S + N of a scalar type operator S of class ( Γ ) and a gener-

alized nίlpotent operator N commuting with S. Furthermore, this decomposition

is unique and T and S have the same spectrum and the same resolution of the

identity.

Proof. We shall first show that the sum 7' = S' + N of an arbitrary spectral

operator S of class ( Γ ) and a generalized nilpotent N commuting with S is itself

a spectral operator of class ( Γ ) . Let E be the resolution of the identity for S,

and let σ be a Borel set of complex numbers. Then, by Theorem 5, NE (σ) =

E(σ)N. Let 21 be the smallest commutative subalgebra of β ( X ) containing N9

S, E (σ), /, and also containing the inverse of any of its elements provided that

the inverse exists as an element in β ( X ) . Then, as established in equation

(i i) during the proof of Lemma 2, we have

Thus if ϊ ί ί (σ) is the s e t of maximal ideals in AE (σ), we have

( * ) σ(T, £ ( σ ) X ) = [ λ | λ = S ( m ) + Λ/(m), w E l ( σ ) ]

= [ λ | λ = S(m), m G ϊ l σ ]

= σ ( 5 , ? ί £ ( σ ) ) = σ ( S , £ ( σ ) X ) C σ .

Thus T is a spectral operator of c las s ( Γ ) , and its resolution of the identity

is also E. Conversely, let T be a spectral operator of c la s s ( Γ ) with resolution

of the identity E. Using Theorem 7, define

S^JλE(dλ), N = T - S .

Clearly S and N commute. It will first be shown that N is a generalized nil-

potent. Let 21 be the algebra generated by T, E ( σ ) (σ a Borel s e t ) , /V, /, and

with the property that ίΓ 1 G 21 if U £ 21 and V 1 G β (X ). Let Έ = (m ) be the se t

of maximal ideals in 21. Then E(δ)(m) is a zero-one valued additive set func-

tion, and hence determines uniquely a complex number λ ( m ) with the property
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that E (8m)(m) = 1 provided that δm is a neighborhood of λ ( m ) . Thus for

every neighborhood δm of λ ( m ) we have

= J

Since E(8m)(m) = 1 if δm is a neighborhood of λ(m), it follows from Lemma

2 that

T(m)£σ(T,E(8m)X)Cδm,

and hence

Γ U ) = λ(m) = S U ) , Λ/(m)=0.

Thus by a theorem of Gelfand4, N is a generalized nilpotent. It will next be

shown that S is a scalar type operator. For this it is sufficient to show that E

is the resolution of the identity for S. According to Lemma 2,

σ ( S , £ ( δ ) X ) = [ λ | λ = S ( m ) , m € l , £ ( δ ) ( m ) = 1]

= [ λ | λ = Π m ) , m e ΐ l , £ ( S ) ( m ) = l ]

= σ ( Γ , £ ( δ ) X ) C δ ,

and this shows that E is the resolution of the identity for S. Finally it remains

to be shown that S and N are uniquely determined by T. L e t T = Si + Λ^, where

Si is of scalar type and Λ\ is a generalized nilpotent commuting with S l β Let

Eι be the resolution of the identity for Sj Then, by Theorem 5,

NίEι{σ)=Eι(σ)Nί,

so that Eι(σ) commutes with T. It was established in (*) above that σ(T9

£ i ( σ ) X ) Cσ, and hence Eγ is a resolution of the identity. By Theorem 6, we

have E (σ) = Eι(σ), and hence S = S l f /V = Ni

DEFINITION 2. The decomposition, given in Theorem 8, of a spectral

operator T = S + N into a sum of a scalar type operator 5 and a generalized

nilpotent Λ; commuting with S is called the canonical decomposition of T. The

I. Gelfand [8] has shown that N is a generalized nilpotent if and only if N belongs
to every maximal ideal.
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operator S is called the scalar part of Γ, and /V is called the generalized nil-

potent part9 or the radical party of 7.

LEMMA 3. Let E be the resolution of the identity for the spectral operator

Ί, and let N be its radical part. Then in the uniform topology of operators, and

uniformly with respect to ζ in any closed set p C p {T), we have

( £ \ \n+ 1

Proof. By Theorem 7 the integral exists in the uniform operator topology,

and

I r E{d\)

[ξ-λ)n+ι

where r = max | ζ — λ |" L

9 the maximum being taken over λ G σ ( Π , ζ G p. Since

N is a generalized nilpotent,

and hence the series

converges. Thus the series

E(dλ)

converges in the uniform operator topology, and uniformly with respect to ζ G p.

From Theorem 7 we have

and so, if 5 is the scalar part of T9
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(ξ-λ)n

E(dλ)
= /.

This proves the lemma.

T H E O R E M 9. Let T be a spectral operator and N its radical part. Then for

every scalar function f analytic and single-valued on the spectrum σ (T) we

have9 in the uniform topology of operators,

= Σ -Γ fM(λ)E(dλ).

Proof. L e t C be an a d m i s s i b l e r e c t i f i a b l e J o r d a n curve in p(T) c o n t a i n i n g

σ{T) in i t s inter ior and s u c h t h a t / i s a n a l y t i c on and within C. T h e n , u s i n g

Lemma 3, we h a v e

E(dλ)

( T )

= £ un f ί
^ Jrr(r \ Jr

<r(T) >c (ξ-λ)n + l
E(dλ)

DEFINITION 3. An operator T is said to be of type m in case it is a spec-

tral operator with resolution of the identity E and

71=0

j\in /•

f^ feF{T).

THEOREM 10. Let N be the radical part of the spectral operator T; then

T is of type m if and only ifNm+ί = 0.

Proof. If Λ'm + ι = 0 then clearly the formula of Theorem 9 reduces to that

of Definition 3. Conversely, if T is of type m we see, by placing
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in these two formulas, that

COROLLARY. A spectral operator is of scalar type if and only if it is of

type 0.

We shall next endeavor to characterize operators of finite type in terms of

the rate of growth of the resolvent. To this end we introduce the following

definition,

DEFINITION 4. Let E be the resolution of the identity for the spectral opera-

tor T. If ξ <£ σ( T, E (σ)X), and in particular if ξ fc. σ, the operator Tσ(ξ) is

defined on X as follows. For each % in X, Tσ(ξ)x is that uniquely determined

point y £ £ ( σ ) X for which (ξl - T)γ = E (σ)x. Thus Tσ(ξ) is a bounded

linear operator in X formed by first projecting with E{σ) and then operating

with the inverse of ( ξl - T) in E (σ) X.

THEOREM 11. In Hilbert space a spectral operator T is of type m - 1 if

and only if there is a constant K such that, for every Borel set σ,

(*) \dis(ξ,σ)mTσ(ξ)\ <K, ξf. o, | £ | < m + l .

Proof. In view of Theorem 10 i t i s sufficient to prove that the condition

( * ) is equivalent to the condition Nm = 0. If Nm = 0, and ξ.£ σ, then

r l E(dλ)

(λ-ξ)n+ι

from which the condition ( * ) follows.

The converse will require the following lemma.

LEMMA 4. Let T be a spectral operator in Hilbert space X and let E be its

resolution of the identity. Then there is a constant M such that for any finite

collection A; (j = 1,2 , , n) of bounded operators in X which commute with

T, and any collection σ/ (/ = 1, 2, , n) of disjoint Borel sets9 we have

<_ M sup
1 < / < n
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Proof. It is known (see [16]) that there is a linear one-to-one map B with

βX = X, with β and β" both continuous and such that for each Borel set σ the

projection

P ( σ ) = β £ ( σ ) β - 1

is self-adjoint. If βy = β^yβ" ι then

β

By Theorem 5, Aj commutes with E (σ) and hence βy commutes with P (σ). Thus

7=1

< sup I β y

/

) Λ : I 2 < S U P

which proves the lemma.

Now let T = S + N be the canonical form of the spectral operator T which we

assume enjoys the property (*) of the theorem. Since

and

we have

Γ = 0

(T)
(S-ξI)PE(dξ) =

/ {T-ξl)mE(dξ).
Jcτ(T)

(p > 1),

Now let σ(T) be partitioned into the Borel sets σy (/ = 1, 2 , , n ( 8)), each of

diameter at most 8 > 0, and let ξj G σy (/ = 1, 2, , n (δ)). Let Cj be the circle

with center ξj and radius 2δ. Then since the distance from a point λ on Cj to
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σj is at least δ we have

Let

< 2mK, λ 6 Cj.

2δexp(2Wp),

so that

« ( S )

{T-ξl)mE{σj)=
9 77/ Jr., 1

)mTσ.(λ)dλ

n(&)

P 7 = 1
2πί

But

sup
2πi

and by Lemma 4 therefore

which shows that

THEOREM 12. In Hubert space a spectral operator T whose spectrum is

nowhere dense is of type m — 1 if and only if its resolvent has at most mth

order rate of growth for ζ near the spectrum.

Proof. This theorem is an immediate corollary of Theorem 11.
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4. Algebras of spectral operators. In this section we shall characterize

commutative algebras of spectral operators. To this end we shall need the

following preliminary lemmas.

LEMMA 5 . // T is of class ( Γ ) with resolution of the identity E ( T ) 9 and

/ E F(T)9 then f ( T ) is of class ( Γ ) and its resolution of the identity is given

by the formula

Proof. The foregoing formula clearly yields a spectral measure commuting

with f(T). Also x*E (/ ( T ) , σ)x is countably additive if x* G Γ. Now if

λ 0 i. σ then the function

λo-/U)

i s a n a l y t i c on t h e c l o s u r e of f " ι ( σ ) a n d h e n c e if C i s a n a d m i s s i b l e c o n t o u r

s u r r o u n d i n g t h e c l o s u r e of f"1 (σ) w e h a v e

( — ί h(λ)Tί( (λ)dλ)(λ0I-f(T))E(TJ'ι(σ)) = E(T,f-ι(σ)),
\2πi JC f yσ) I

which shows that

σ ( f ( T ) , E ( f ( T ) , σ ) l ) Cσ,

and this completes the proof of the lemma.

At this point we introduce the notion of an integral which will be needed

later. For the purposes of the following theorem the Riemann integral will

suffice, but for subsequent work the next lemma will be needed for a more

general integral. Accordingly let 1 be a set, B a field of its subsets with

3R E B , and let B(ϊϊl) be the normed linear space of all complex bounded func-

tions on 3K which are measurable B. The norm in B ( Έ) is given by | / | =

sup m | / ( m ) | . Let £ be an additive operator-valued function on B with

| £ ( e ) | < M, e G B .

For a finitely valued function
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we define the integral

and note that this definition is independent of the representation of /. Also

f (m)E (dm) = s u p | Σ QLiX*E (σ()x \
M \ γ\ • I v * I I

< s u p \θίi\ v a r x*E (e)x < s u p | CCΛ-1 4 s u p \x*E(e)x | <_ 4 Λί s u p \f(m)\.

T h u s if / G l 3 ( l ) i s the l imit in 13(3!) of two s e q u e n c e s {fj a n d { g n } of

f i n i t e l y v a l u e d f u n c t i o n s in 13 (35!) t h e n

lim / fn(m)E (dm) = lira J gn(m)E(dm),
n ]]i n J j ί

and this limit is taken as the definition of the integral

JMf{m)E{dm).

It is clear that in case SO! is a compact set in the plane and / is continuous the

integral as defined coincides with the Riemann integral. In case £ is a spectral

measure on 13 for which x*E(e)x is countably additive on 13 for each x £ X

and each Λ:* in a total linear manifold Γ C X*, we say that £ is a spectral

measure of class (13, Γ ) .

LEMMA 6. Let 13 be a σ-field of subsets of a set 35! with 35! G13. Let E be a

spectral measure of class (13, Γ ) , and for f E 13 (S!) let

J<mf(m)E{dm).

Then there is a constant v(E) such that

\S{f)\ <v(E)\f\, /

Also for every / E 13(31!) the operator S(f) is a scalar type operator of class

( Γ ) whose resolution of the identity E ( S ) is given by the equation



342 NELSON DUNFORD

Proof. The first conclusion follows from the foregoing definition of the

integral. Now if E is a spectral measure the map / — > S ( f ) of 13(5?) into

B ( X ) is a homomorphism; that is, it preserves multiplication as well as ad-

dition. Thus, if λ 0 jέ σ, the operator

= J (λo-f(m))-ιψ i(σ){m)E(dm)

sat is f ies the equation

(λ0I-S(f))U=E(fι(σ)),

which shows that

σ(S(f), E(fι{σ))l)Cσ.

Thus S is a spectral operator whose resolution of the identity is given by

To see that 5 is a scalar type operator we decompose the closure of /(SK)

into a finite number of disjoint parts σ;, each of diameter at most 6. Let λ; G σ{.

Then

\Σ,λiψσί(f(m))-f(m)\ < 6, m e ϊ ! ,

and so

S ( / ) = lim Σ λ ί £ ( Γ 1 ( σ ι ) ) = lim / £ λiφσ. (λ)E (S,dλ) = fλE (S, d λ ) ,

which proves that S is of scalar type.

D E F I N I T I O N S . If T, U, . . . , V are in S ( X ) , the symbol « ( Γ , ί/, . . . , V)

will stand for the smallest subalgebra of β ( X ) which is closed in the norm

topology of Z?(X), which contains Ί% U? m ,V9 and /, and which contains the

inverse W~ι of any of its elements provided that the inverse ex i s t s as an ele-

ment of B (3£). The algebra U(U,T9 •• , F ) will sometimes be called the full

algebra generated by U9T9 •••? V. If σ is a compact set in the complex plane,
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the symbol CR(σ) will stand for the algebra of all complex functions / ( λ ) ,

λ G σ which may be approximated uniformly on σ by rational functions. The

norm in CR (σ) is

| / | = max | / ( λ ) | ,

λeσ

so that CR(σ) is a subalgebra of C{σ), Two B-algebras are said to be equi-

valent in case they are topologically and algebraically isomorphic.

THEOREM 13. Let T be a spectral operator and S its scalar part. Then, as

a vector direct sum,

where 3i is the radical in 2I(Γ, S). Furthermore, 21 (S) is equivalent to

CR (σ (T)), and every operator in 21 (T9 S) is a spectral operator.

Proof. If / i s rational and analytic on σ( T) = σ(S), then f(σ(S)) = σ(f(S))

and thus

max | / ( λ ) | < | / ( S ) | < max | / ( λ ) | t ; ( £ ) .

λβσiS) λeσ(S)

Thus 21 (S) is equivalent to CR{σ{S)). Since 21 (S) has no radical it is seen

that 21 (S) © K is a direct vector sum contained in 2I(7\S). Now let N be the

radical part of T. It follows from Theorems 8 and 9 and Lemma 6 that the ca-

nonical decomposition of / ( T) for / G F ( Γ) is

Hence in particular if T'1 exists its canonical decomposition is

( i ) T ι = S ι + N2.

Also

and thus for a polynomial P in T and S we have
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where Q is a polynomial and /V5 a generalized nilpotent. Since for m in the space

B! of maximal ideals of 21 ( T, S) we have

it is seen that <?(5) = P(S,S) and thus

(ii) P(7,S)

If P t is also a polynomial in two variables, the operator

will be defined as an element of 21(7, S ) if and only if Px (λ, λ ) 5̂  0 for λ <E σ ( 7 ) .

In this case we see from ( i ) and ( i i ) that

( i i i ) R(T9S) = R{S9S) + N6.

Since R{S9S) is of type 0, this is the canonical form for R{T,S). An arbitrary

ί/ E 21 ( 7, S) is a limit, U = lim Rn, of rational functions /?„ in 7 and S. Since

and 7 (m ) = S (m ), we have

sup |Λ n (λ,λ)-/ip(λ,λ) | =sup |{ΛI1(71,S)-
λGσ(S) w

Hence Rn(λ,λ) converges uniformly on σ(S) to a function / E CR (σ (S)).

Thus Λ Λ ( S , S ) — » / ( S ) in 21 ( S ) , and ί / E 2 I ( S ) © K. It follows from Lemma

6 that every operator in 21 ( S ) is a sca lar type operator and thus it i s s e e n , by

Theorem 8, that every operator in 2 1 ( 7 , S ) is a spectra l operator.

THEOREM 14. Let E be the resolution of the identity of the spectral opera-

tor T. Let SR be the space of maximal ideals is the algebra

21 = 2I(£(σ), σ aBorelset).

Let Rγ be the radical in the algebra

2I1 = 2I(7,E(σ), σ aBorelset).
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Then 21 is equivalent to C ( ϊ ), and

Furthermore^ every operator in ^X γ is a spectral operator.

Proof. Elements of the form

n

(i) ί/= £ Cί;£(σ;), £ ( σ ί ) ^ 0 , σ σy = 0 , ί ^ /, U σ; = σ ( 7)
ι = i i

a r e d e n s e in 21 s i n c e if s u c h a n e l e m e n t h a s a n i n v e r s e t h e i n v e r s e i s a g a i n of

t h e s a m e form. F u r t h e r m o r e , if E (σι) £ m (Ξ ~8 t h e n U(m)= Cί;. T h u s , u s i n g

L e m m a 6, we h a v e

s u p I U(m) I = s u p | θ t j | < I V I 1 s u p |(Xj| v ( £ ) = s u p | ί/ (m) \ v (E ) ,
TO i i m

and therefore

s u p \ U ( m ) \ < \U\ < s u p \ U ( m ) \ v ( E ) , U G U ,

which shows that 21 is equivalent to a subalgebra of C ( ϊ ί ) . Since the projec-

tions E (σ) generate 21, they distinguish between points in ϊl. Also it is clear

that the element

is related to the operator U given in ( i) by

ί/(m)= V{m), in e 1 .

Thus, by the Stone-Weierstrass theorem, 21 is equivalent to C ( l ) . Hence 21 © K

is a vector direct sum and a subalgebra of 21 1 . It is also closed in 21 j since if

mλ is a maximal ideal in 211 we have, for an arbitrary operator U = S + N with

S e 2 1 , / V e K ,

I S I w ί f i Γ 1 < s u p | S ( m ι ) | = s u p | £ / ( m ι ) | < | ί / | < | S | + | / V | .
mi m

Also since 21 ^ C(ϊϋ) it is seen that 21 © ϊf ί is a full algebra of operators;
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that is, it contains the inverse IF"1 of any of its elements provided that ft"1

exists as an element of β ( X ) . Thus 21 t C 21 © ϊt{ C2ΐ t. Finally, to see that

every operator in 21 ι is a spectral operator it will, in view of Theorem 8, suffice

to show that every U G 21 is a scalar type operator. Consider a finitely valued

measurable function

/ ( λ ) = Σ,CLiψσ.{λ)9 λ G σ(S).

We may suppose that σj σy = 0 ( i ^ y ) , and U ^ = σ ( S ) , so that the values of

/ are the numbers C(;. The operator

/(S)= f f(λ)E(dλ)= £ ai

as was shown above, has the property that except for λ in a set σ with E (σ) = 0

we have | / ( λ ) | <_ f (S). Thus if we define the norm

I / \E = E-ess. sup | / ( λ ) | = inf sup | / ( λ ) | ,
E{σ) = / λGcr

the operator f (S) satisfies the inequality

\f\E < l / ^ ) | < | f | E t ; ( £ ) .

The general operator U in 21 is the limit of a sequence fn(S)9 where fn(λ) is a

finitely, valued measurable function. Thus

f iλ) = lim fn{λ)

exists uniformly except on a set σ C σ(S), where E (σ) = 0, and

ί/= / f(λ)E(dλ).

Jσ(S)

Hence, by Lemma 6, U is a scalar type operator.

DEFINITION 6. If T = S + /V is the canonical decomposition of the spectral

operator Γ, and E is its resolution of the identity, by EB{σ(T)) will be meant

the space of all £-essentially bounded Borel measurable functions defined on

σ(T) = cr(S). The norm is
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| / | = £ - e s s . sup | / ( λ ) | = inf sup | / ( λ ) | .

λGσ-(s) E(σ) =/ λGσ

According to what has just been shown we may s ta te :

THEOREM 15. In the notation of Theorem 14 we have 21 equivalent to

EB(σ(T)\

THEOREM 16. If S is a scalar type operator with resolution of the identity

Es and f is an E-essentially bounded Borel function on σ(S), then

σ ( / ( S ) ) = Π f ( σ ) .
E(σ)=I

Proof. If λ 0 f. f ( σ ) , where E (σ) = 1, then

1 , λ 6 σ,

0 , λ jί σ,

is a bounded Borel measurable function and

λ ( S ) ( λ o / - / ( S ) ) = /,

so that λ 0 G p ( / ( S ) ) . T h u s / ( α ) D α ( / ( S ) ) if E(σ) = I, and

Π

Conversely, if λ 0 G p ( / ( S ) ) we see from Theorem 15 that ( λ o - / ( λ ) ) " 1 is

^-essent ia l ly bounded on σ{T). Hence there is a Borel se t σ with E(σ) = I

and

| λ o - / ( λ ) | - 1 <M, λ G σ .

Hence λ 0 ί / ( σ ) . This shows that

σ { f { S ) ) D f ( σ ) D Π f ( σ ) ,

and completes the proof.
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THEOREM 17. Let ^l(τ) be the full algebra generated by a family T of

commuting spectral operators together with their resolutions of the identity. If

the Boolean algebra determined by the resolutions of the identity of the operators

in T is bounded^ then$ as a vector direct sum9

where 31 is the radical in 21 (r) and 214 is equivalent to the algebra of continuous

functions on the space of maximal ideals in 21 ( r ) .

Proof. Note first that if T9 U G T have resolutions of the identity E(T9 )9

E (U9 )? respectively, then for every pair σ9 μ of Borel sets in the plane the

projections E(T9σ)9 E (U\ μ) commute. This follows from a double application

of Theorem 5. Thus the various projections E(T9σ) determined by Borel sets

σ and operators T G r determine a Boolean algebra 210, and by assumption there

is a constant M with | £ | <_ M for E G 2I0. We shall first show that there is a

constant K such that

( i ) ^ \ x * E i X \ <K\x\\x*\9 χ e l 9 i * e ϊ * ,

i = l

provided that E( G2I0 and E(Ej = 0 for i φ. j. To see this, let (x*Ex)r be the

real part of x*Ex. Then, if E(Ej = 0 (i φ j)9 we have

Σ,\(x*EiX)r\= Σ'(x*Eix)r- Σ {χ*EiX)Γ

= (x* ( Σ Έi )χ )Γ - {x* ( Σ " Ei )x )r < 2M I x I I x* I ,

where Σ ( Σ ) represents the sum over those i for which (x*Eix)Γ >_ 0 (< 0).

Similarly for the imaginary part of x*Ex. Thus

which proves ( i ) .

Now consider elements U G 21 (r) of the form

(ii) ί/ = S + /V,

where



SPECTRAL OPERATORS 349

(iii)

with

0 i G ,•£/ = 0, ^ /, Ex + . . . + £ „ =

and where Λ G 5ΐ, the radical of 21 (τ) If m E 3Jί, the space of maximal ideals in

21 ( r ) , then in view of ( i i i) there is an i with Eiim) = 1, Ej{m) = 0 (/ ^ i ) .

Thus αj = ί/(wi) = S(m) and

ί iv) sup
i

= sup
m

F r o m ( i ) a n d ( i i i ) i t i s s e e n t h a t

ISI = sup I Σ, Ui i x I £ s u p I Cvj I A'

* = * * = i

and hence, by (iv) 9

( v ) K - ι \ S \ <\U\ < \ S \

The inequality ( v ) shows that if Un = Sn + Nn is a convergent sequence of

operators, each of the form ( i i ) with Sn of the form ( i i i ) and Nn G 3ΐ, then

ί S j } and ί WΛ } are also convergent sequences . Let 211 be the algebra of all

limits S o = ϋmrc Sn, where Sn has the form ( i i i ) . Since for the operator ( i i i ) we

have, as shown above,

s u p \ S ( m ) \ < \ S \ < s u p \ S ( m ) \ . K,

it is seen that 211 is equivalent to a subalgebra C of C(Sϊί), and the Weierstrass

theorem5 shows that C= C ( l ) . Clearly therefore, 211 © 5R is a direct sum, is

contained in 21 ( r) , contains every E (T,σ) with T E r and σ a Borel set in the

plane, and contains every T G τ This last statement, namely that r C 211 w SR,

follows since the canonical reduction T - S + iV has the property that /V G 3S and

S G 2 I 1 # TO complete the proof it will suffice to show that 211 w K is a full

algebra; that is, it will suffice to show that if T G 21 ί © 3ΐ, and T " 1 G β ( X ) ,

5As proved by M. H. Stone [13] for real algebras C(3J1) and by 1. Gelfand and G.
Silov [9] for complex algebras C (Ίίl).
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t h e n 7 1 " 1 G ? I 1 ® ft. L e t T-S + N b e t h e c a n o n i c a l form of T; t h e n s i n c e

T ( m ) = S {m) Φ- 0 , m E 5F, w e s e e t h a t S"ι e x i s t s a n d i s in 21 ι b e c a u s e S~ι ( ) E

C ( S » ) . T h u s

where A/ = - T'ιNS"1 EΪi. Thus 2It © 3ί is a full algebra containing r and

every projection E{T9σ) (T Gr), and hence 21 (r) = ?It © 51.

THEOREM 18. Le£ 13 be the Borel sets in the compact Hausdorff space 3!,

and let 21 be an algebra of operators on the complex B-space X which is equi-

valent to the algebra C (Έ.) of continuous functions on ϊί. Then there is a func-

tion A on β to B (X ) with the properties :

( i ) A is a spectral measure in X of class (B, X);

( i i ) if S {f) is the element in 21 corresponding to the element f in C(S5ί)

under some homeomorphic isomorphism then9 for every x G X and x* E X ,

x*S{f)x = J f{m)xΛ(dm)x*,

(i i i) the adjoint S* of every S in 21 is a scalar type operator of class X

(iv) if X is reflexive^ every S in 21 is a scalar type operator of class X .

Proof. Let S{f) be the operator in 21 corresponding to the function / E C ( ϊ l )

under some homeomorphic isomorphism of 21 onto C(3K). Then for % in ϊ and

x* in X* we have # * S ( / ) Λ ; a linear functional on C(SOf) and hence, by the Riesz

representation theorem, there is a uniquely determined regular measure μ( ,

x,x*) such that

x*S(f)x =Jm f (m)μ(dm,x,x*), f<=C(Έ), x£l, x*eΓ.

S i n c e μ ( e $ x 9 x * ) i s u n i q u e l y d e t e r m i n e d by e9x9 Λ;* i t i s , for e a c h e E D , b i -

l i n e a r in x a n d %*. S i n c e

1/1=1

it is seen that μ(e9x9x*) is continuous in x and #*. Hence for fixed e and

there is a point A (e )#* E X* such that

μ(e,%,Λ:*) = %^ ( e ) x * .
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I t f o l l o w s f r o m t h e b i l i n e a r i t y a n d b o u n d e d n e s s o f μ t h a t A (e) E B (X ) . T h u s

( i i ) i s p r o v e d a n d a p a r t o f ( i ) i s p r o v e d . T o c o m p l e t e t h e p r o o f o f ( i ) w e h a v e ,

f o r e v e r y p a i r /, g G C ( ϊ l ) ,

Lf(m)f g(μ)xA{dμ*dm)x*=f f(m) f g{μ)xA{dμ)x*
iί IK JΛ dm

f(m)g(m)xA(dm)x*=x*S(fg)x

= x*S(f)S(g)x=j^ f(m)S(g)xA(dm)x*

= JΈf(m)jψg(μ)xA(dμ)A(dm)x*.

Thus, s ince a functional on C ( ϊ ί ) determines the regular measure uniquely, we

have

A(σn δ)=A(σ)A(δ), σ, δ G B ,

and this completes the proof of ( i ) .

The integral instead of being thought of as a Lebesgue integral in the weak

operator topology may be thought of as an integral in the uniform topology as

defined immediately preceding Lemma 6. Thus, by Lemma 6, each of the opera-

tors

is a scalar type operator in X of class X, which proves ( i i i ) . In case X is

reflexive, E (σ) = A* (σ) is a spectral measure in X and hence, by Lemma 6,

S ( / ) =

is a scalar type operator of class X , which proves (iv) and completes the proof

of the theorem.

THEOREM 19. The adjoint Γ* of every operator T in the algebra sΆ(τ) as

defined in Theorem 17 is a spectral operator of class X. // X is reflexive, every

T G ?I ( T ) is a spectral operator of class X .
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Proof. This follows immediately from Theorems 8, 17, and 18.

Theorem 19 shows that the sum and product of two spectral operators in a

reflexive space X will again be spectral operators provided that the Boolean

algebra determined by all the projections in both resolutions of the identity is

bounded. If X is Hubert space, J. Wermer [16] has shown that such is the case.

In general, however, the Boolean algebra determined by two bounded Boolean

algebras of projections, all of which commute, is not bounded. Also it is not

always true that the sum of two spectral operators is a spectral operator. Ex-

amples proving both of these statements have been constructed by S. Kakutani

[ 10].

Examples of spectral operators other than normal operators on Hubert space

are easy to construct, and some interesting classes have been discussed by

J. Schwartz [ 1 2 ] . 6

Besides Theorems 8, 13, 14, 19, which are useful in the construction of

spectral operators, we shall mention one more which will be needed in the

perturbation theory of J. Schwartz.

THEOREM 20. // T is a compact operator in a reflexive space X, then T

is a spectral operator if and only if the integrals

( i ) — ί T(λ)dλ
2πi Jc

are bounded as C varies over all admissible contours in the resolvent set. In

this case the resolution of the identity is countably additive in the strong opera-

tor topologyj and the integral ( i ) is the value of the resolution of the identity

on the domain bounded by C.

Proof. Let λ 0 = 0, λn £ 0 (n = 1, 2, ) be the points in the spectrum of

T. Let

E(λn) = / T{λ)dλ U = l , 2 , . . ),
2πi JCn

where Cn is a circle containing λn but no other spectral point. Since the Boolean

6Other spectral operators occurring in analysis will be found in the forthcoming
book Spectral Theory by N. Dunford and J. Schwartz. Conditions on the rate of growth
of the resolvent which are sufficient to ensure that T be spectral will be found in
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algebra determined by the E (λn) is bounded, it may be embedded in a complete7

Boolean algebra. We may therefore define

oo

£(λ o ) = / - U £(λ π )

and

£(σ)= U £ ( λ j ,

σ arbitrary. If β is the Boolean algebra of all subsets of the plane, it is clear

that the map σ—>E(σ) is a homomorphism of 13 onto a Boolean algebra of

projections in X. From our hypothesis it follows that

( i i ) \E(σ)\ <K, σ e B .

Now let σn C σn +ι C and σ - U σ n . Then

( i i i ) E(σ)= U £ ( λ π ) = U U £ ( λ m ) = U E(σn),

λn G σ n λnλm

and s i n c e E(σn)x = x ( τ z > m ) if x£E(σm)'£f we s e e from ( i i ) a n d ( i i i )

t h a t E {σn )x — > x if x G E (σ) X. A l s o s i n c e

we have E (σn) x = 0 if x G E (σ ') X. Thus E (σn)x —> £ (σ)% for every x in

X, and E (σ) is countably additive on lϋ in the strong operator topology. To

complete the proof that T is spectral, it will suffice to show that

(iv) σ(T,E{σ)X)Cσ, σ G β .

If λ 0 ii σ, t h e n E (σ) h a s t h e form ( i ) , from w h i c h ( i v ) f o l l o w s . If λ 0 G σ, t h e n

a n y s p e c t r a l p o i n t λn ί σ i s in p ( T$ E ( ί λn \ κ ) X ) and h e n c e in p ( 7 , £ ( σ ) X ) ,

w h i c h p r o v e s ( i v ) .

F i n a l l y l e t σ be an o p e n and c l o s e d s u b s e t of σ(T), and l e t A (σ) be t h e

p r o j e c t i o n d e f i n e d by ( i ) , w h e r e σ i s t h e i n t e r s e c t i o n of σ(T) a n d t h e d o m a i n

b o u n d e d by C. T h e n , s i n c e

7Complete relative to the order A C B (ΛB = A ). See, for example [ β ] .
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σ{T,A(σ)%) C σ, σ( T,A (σ') X ) C σ',

Theorems 3 and 4 show that

E(σ)A(σ) = A(σ), E{σ)A(σ') = 0,

and hence that
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COMMUTING SPECTRAL MEASURES ON HILBERT SPACE

JOHN WERMER

1. Introduction. By a "spectral measure" on Hubert space H we mean a

family of bounded operators E (σ) on H defined for all Borel sets σ in the plane.

We suppose:

( i) If σ0 denotes the empty set and σ± the whole plane, then

where / is the identity,

(ii) For all σί9 σ2,

M σ ι n σ 2 ) = E(σι )E(σ2 );

and for disjoint σl9 σ2,

E (σ t u σ2 ) = E(σι ) + E (σ2 ) .

(i i i) There exists a constant M with | | £ ( σ ) | | < M9 all σ. It follows that

£ ( σ ) 2 = £ ( σ ) f o r each σ, and E (σi )E (σ2 ) = 0 if σl9 σ2 are disjoint.

Mackey has shown in [ 3 ] , as part of the proof of Theorem 55 of [ 3 ] , that if

E (σ) is a spectral measure with the properties just stated, then there exists a

bicontinuous operator A such that A" ι E (σ)A is self-adjoint for every σ. In a

special case this result was proved by Lorch in [ 2 ] . We shall prove:

T H E O R E M 1. Let E(σ) and F (η) be two commuting spectral measures on

H; that is,

E(σ)F(η) = F(η)E(σ)

for every σ, η. Then there exists a bicontinuous operator A such that A" E(σ)A

and A"1 F (η)A are self-adjoint for every σ, η.

As a corollary of Theorem 1, we shall obtain:
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THEOREM 2. // J 1 ? T2 are spectral operators on H9 in the sense of Dun ford

[ l ] f and Ί\Ί2 — T2 T\9 then Ί\ + T2 and Ίγ T2 are again spectral operators.

2. Lemmas. We shall use two lemmas in proving Theorem 1.

LEMMA 1. Let PXiP2$ 9Pn be operators on Hilbert space with

Suppose that3 for every set bγ , δ2, , δn of zeros and ones,

Σ s i p i \ \ < M

Then for every x we have

,-=,

This Lemma is proved in [ 3 , p . 147]; we include the proof for completeness .

Proof. We note that

where the sum is taken over all possible se t s ( e l f €2, >>, en)9 where e t = ±1 .

Hence

n
I 2 s V * I I Ό I I 2

1 = 1

for some choice of the e^ and e^. Now
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where the δ̂  and the δj are 1 or 0

Hence

Let now P + = Σ / ^ , summed over those i with €^ = 1; and let P~

summed over those i v/ith e ' =• — 1« Ί h e n

(p + _ p- Ϋ = »+ + Γ = / and 11 P \ - P χ 112 = α% .

Now jj ,'-' + |j < M and Π /'- | | < ,i; anri s

<{2M)2ax < (2MΫ Σ \\Piχ\\2
\\iχ\

LEMMA 2. Let E(σ) and F (η) be commuting spectral measures on Hubert

space. Then there is a fixed K such that for any set σ 1 ? cr29 ?<7rt of disjoint

Borel sets, and set η^ η2, , ηn of arbitrary Borel sets.

Proof. F i x x. By ( i i i ) t h e r e e x i s t c o n s t a n t s L and M, with | | £ ( σ ) | | <_M9

F (77 ) 11 < Zv for any σ, η . L e t 0"Λ + t he the complernent of

U σ .

T h e n

j

by Lemma 1;
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C = 4 M 2 Σ,\\E{σv)F(ηv)x\\*,

since E (σv)E(σi) = E(σvn σ{)

by commutativity of the E (σ) and F (η);

v=l

since | | F ( η v ) | | < L ;

C < ( 4 A f 2 ) 2 . L 2 | | * | | 2 ,

by Lemma 1. Hence

In the proof of Theorem 1 we shall use the method of Mackey in [ 3 ] , together

with Lemmas 1 and 2.

3. Proof of Theorem 1. By a "partition" π of the plane we mean a finite

family of Borel sets σ 1 ? σ 2, , σn, mutually disjoint and with union equal to

the whole plane. If (x, y) denotes the given scalar product in H, and

are two partitions, set

1=1 /=!

It is easily verified that the quantity (x9y)Ή π is a scalar product in H.

Further, it follows by Lemma 2 that the operators



COMMUTING SPECTRAL MEASURES ON HILBERT SPACE 359

(i = 1 , 2 , . . . , rc; ; = 1 , 2 , . . . , m , )

satisfy the hypotheses of Lemma 1.

Hence Lemma 1 yields

Ί n m

— 11*11' < Σ Σ \\E{σ.)F{η.)x\\2 <

where K depends only on sup σ 11 E (σ) 11 and sup 11 F (η ) \ | . But

Finally, each E (σi ) and F (17.) (« = 1, 2, n; j = 1, 2, , m) is self-

adjoint in the scalar product (x9 γ)Ή π , as is readily verified.

For each pair of vectors x,y EH, now, let Sxγ be the disk in the complex

plane consisting of all z with

If 5 denotes the cartesian product of the disks SXy over all pairs x9 y9 then S

is a compact topological space, by Tychonoff's theorem. Further, as we saw

above,

H e n c e b y S c h w a r z ' s i n e q u a l i t y , a p p l i e d t o t h e s c a l a r p r o d u c t (x9 y ) _ , w e
7 7 1 * "2

see that the number (x9y)Ή lies in the disk SXy for every pair x9y% Hence

there is a point p π π in S whose x? y- coordinate is (x9y)π n .

Let us now partially order the set of points pπ π in S by saying that

Pπ'ifττ'2
 i s " g r a t e r than" p ^ ^ (in symbols Pπ^π^ > P ^ , ^ ) i f ^ί i s a re-

finement of the partion πι, and 7Γ2 is a refinement of the partition π2 This

ordering makes the set of points ρπ ^ in 5 into a directed system. Since S is

a compact space, this directed system has a point of accumulation p. Let {x9y)p

denote the (x9y) coordinate of p.

Then given a finite set of vector pairs (xi9 y f.), i = 1, 2, , n, and e > 0,

and a pair π®, π® of partitions, we have
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for some

Since {xiy)Ή π is a scalar product for all TΓI, 772 it thus follows that (x9y)

HHis a scalar product, and since the norm
Ή

f

is equivalent to the original

norm with constants of equivalence independent of ni9 π2, it follows that

is also equivalent to the original norm.

Finally, fix a Borel set σ and vectors x9y. Let π° be the partition defined

by σ and its complement, and 77° be arbitrary. Then, if

we have

since 77! is a refinement of 77°, and so σ is a finite union of sets involved in

the partition 771. Thus

(E(σ)x,y)p = (x,E(σ)y)p,

and so the E(σ) are self-adjoint with respect to the scalar product (x?y) ,

and similarly the F(η) are self-adjoint with respect to this scalar product.

Since \\x\\ is equivalent to the given norm, it now follows that there exists

a bi-continuous operator A with {x, y) = {Ax^Ay), and hence AE {σ)A~ ι and

AF(η)A"1 are all self-adjoint.

4. Proof of Theorem 2. By Theorem 8 of [ l ] , an operator T is spectral if

and only if there exist two commuting operators S and N such that N is quasi-

nilpotent and S admits a representation:

S=JλE(dλ),

where E (dλ) denotes integration with respect to a certain spectral measure.
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Such an 5 is called in [ l ] a " s c a l a r type operator . "

Now, by hypothesis, 7\ and T2 are commuting spectral operators. We write

in accordance with the preceding. Then by Theorem 5 of [ l ] the operators

Si? S 2 9 ΛΊ , /V2 all commute with one another. We thus have

Ίi + T2 = Sι + S2 + Q and 7\ T2 = 3^2 + Q',

where Q and Q' are quasi-nilpotent, Q commutes with S t + S 2 , and Q' commutes

with SιS2. By Theorem 8, quoted above, it is thus sufficient to show that

S t + S2 and S t S2 are spectral operators of type 0; that is, of scalar type.

Let Eι(σ) and E2(σ) be the spectral measures for Sί and S 2 , respectively.

By Theorem 5 of [1] it follows, from the fact that Sx S2 ~S2Si9 that Eι(σ)

and E2(σ) commute with one another for all σ. By our Theorem 1, then, there

exists an operator A such that the operators AEι(σ)A"1 and AE2(σ)A~ι are

all self-adjoint. Hence

Jι —ASγA"1 and J2 = AS2 A'

are normal operators. Also Jγ J2 = / 2 / i ? s ince Sx S2 = S 2 S i It follows that

11 + ]2 a n d Ji JΓ2 a r e again normal operators, for they commute with their ad-

joints as we verify by direct computation, using the fact that J \ and / * commute

and ]2 and / * commute, since J\ and / 2 commute.

Thus A ( S t + S 2 ) A" ι and A(SιS2)A~ι are normal operators and so of scalar

type. But if / is a scalar type operator and A bi-continuous, then, as is easi ly

seen, A"1 JA is again a scalar type operator. Hence S t -f S2 and Si S 2 are scalar

type operators, and all is proved.
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AN EXAMPLE CONCERNING UNIFORM BOUNDEDNESS

OF SPECTRAL MEASURES

S H I Z U O K A K U T A N I

1. Introduction. Let 3C = {x \ be a Banach space with a norm \\x | | . A bound-

ed linear operator E which maps 3C into itself is called a projection if E2 = £ .

We do not require that \\E\\ < 1, where

P l l = sup \\Ex\\.
\\χ\\< i

Let B = { σ \ be a Boolean algebra with a unit element 1. We denote the zero

element of ID by 0, and two fundamental operations in 0 by σ t u σ 2 and α j Π ^ .

A family \E(σ) \ σ E Q\ of projections E (σ) of 3C into itself is called an X-

spectral measure on 13 if the following conditions are satisf ied: ( i ) £ ' ( 0 ) =

0 ( = zero operator ), ( ϋ ) £ ( l ) = l ( = unit operator), ( i i i ) E (σj n σ2) = E{σγ )E(σ2)

for any σl9 σ2 E 13, ( i v ) σγ n σ 2 = 0 implies E (σγ Ό σ2) = E (σ ±) + E {σ2) An

3C-spectral measure | £ ( σ ) | σ G β j is said to be uniformly bounded if there

exis ts a constant K < oc such that 11 E (σ) \ \ < K for all σ G 13.

Let 13 = { σ}, 13'= ί σ ' i be two Boolean algebras with a unit element, and let

13* = 13 ® 6 ' be the Kronecker product of 13 and 13 . Now 13* may be considered

as the Boolean algebra of all open-closed subsets <τ* of S*, where S* = S x S ' is

the topological Cartesian product of two Stone representation spaces S, S ' of

13, 13 , respectively. Every element σ* E 13* is expressible in the form:

n

i . l ) σ*= U σ. xσf

where σ̂  G 13, a? G 13 ' (ι = 1, , π ) .

Let \E{σ) I σ G 13 ! and [E'(σ') \ σ ' G l 3 ' } be two 3C-spectral measures on

13, B ' , respectively, which are commutative with each other; that i s ,

Received March 4, 1953.

Pacific J. Math. 4 (1954), 363-372

363



364 SHIZUO KAKUTAM

for any σ G ά, σ'G Ϊ3 . Let us put

n

(1.2) F(σ*)= Σ£(σ.U'(σ;)
ί = l

if σ* G 13* is of the form (1.1) and if σi x σf' (i = 1, •• ,N ) are disjoint. Then

it is easy to see that F(σ*) is uniquely determined (although the expression

(1.1) with disjoint σ. x σ ' is not necessarily unique), and j f' (σ* ) j σ* G 13* j

is an 3£-spectral measure on 13*; {F(σ*) | σ* G IS*} is called the direct product

%-spectral measure of \E ( σ ) | σ G 13 } and \ E ' ( σ ' ) | σ ' G fc ' } .

It was asked by N. Dunford [2] whether the uniform boundedness of {E (<τ) |

σ G B } and \E'{σ') \ σ'e 13 Ί implies that of | F ( σ * ) | σ* G 13* }. This question

was answered in the affirmative by J. Wermer [5] in case 3£ is a Gilbert space.

The main purpose of this note is to show that the answer is negative if 3C is a

general Banach space; that is, we want to prove the following proposition:

PROPOSITION. There exists a Banach space 3C and a commutative pair of

uniformly bounded ^spectral measures for which the direct product ^spectral

measure is not uniformly bounded.

Such an example will be given in § 3. In our example, the Banach space 3C

is given as a cross product space C(S) ® C (S ') of two Banach spaces of

continuous functions which will be defined in § 2 This Banach space is not

reflexive and hence it remains open to decide whether the answer to the question

is positive or negative in case 3C is a reflexive Banach space.

2. The Banach space C(S)® C(S'). Let S = ί s }, S ' = \s'\ be two compact

Hausdorff spaces. Let C(S), C(S') be the Banach spaces of al] complex-valued

continuous functions γ (s ), z (s ') defined on S9 S' with the norms

l l y l l ^ = max | y ( s ) | , I M L = m a x | * ( s ' ) | .
s£S s'£S'

L e t

S * = SxS' = \s* = {s,s')\s eS, s ' e S ' l

be the topological Cartesian product of S and S', and let C(S ) be the Banach

space of all complex-valued continuous functions

%(s* ) = x (s$ s ')
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def ined on S w i t h t h e norm

| | * Hoc = m a x \x(s* ) I .
s* £ 5*

Now C(S), C(S ) may be c o n s i d e r e d a s c l o s e d l i n e a r s u b s p a c e s of C(S*) by

i d e n t i f y i n g y(s)eC(S), z(s')eC(S') wi th x ( ss s ' ) E C ( S * ) d e f i n e d by

x(s,s') = γ{s)9 x(s,s') - z ( s ' ) ,

r e s p e c t i v e l y .

C o n s i d e r C(S ) a s a normed r i n g with t h e norm | | Λ ; | | O C T h e n C(S) a n d

C(S ) are c l o s e d s u b r i n g s of C ( S * ) . L e t C ( S ) ® C ( 5 ) be t h e s u b r i n g of

C ( 5 ) a l g e b r a i c a l l y g e n e r a t e d by C(S) a n d C(S ); t h a t i s 9 the s e t of a l l func-

t i o n s x (s^ s ' ) E C ( S * ) of the form:

( 2 . 1 )

where γ {s) E C {S)9 Z((S')EC(S) ( i = l 3 •• 9 τz). From the Stone-Weier-

s t r a s s theorem it follows that C(S)®C(S') is dense in C(S*).

Let us now introduce a new norm on C (S)®C (S ) defined by

where inf is taken for all poss ible representations of x(s,s') E C (S)®C (S )

in the form (2 .1 )•

It is easy to see that | | | * | | | i s a norm on C ( 5 ) ® C (S ) and sat is f ies

L <

for a l l x(s,s')eC(S)®C(S'). L e t C(S)®C(S') be t h e c o m p l e t i o n of

C (S)®C (S ) with respect to the norm | | | * | | | . The completion C (S) ® C (S )

is obtained from C(S)®C(S') by means of Cauchy sequences in C (S)®C (S )

with respect to the norm | | | * | | | . Since a Cauchy sequence with respect to | | | * | | |

is a Cauchy sequence with respect to H^H^? we may consider C (S) ® C (S )

as a subset of C (S* ):

LEMMA 1. Let C (S) ® C {S ) \\e the set of all functions x0 ( s * ) E C ( 5 )

for which there exists a sequence {xn ( 5 * ) | n = 1 ? 2 , ••• i of functions from
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C (S)(x)C (S') with the following properties:

( i ) l i m | | # 7 i — * o I loo = 0 , t h a t i s l i m x n ( s * ) = % * ( s ) uniformly o n 5 * ;
n —»oo 7i—» oo

( i i ) lim 111 xm - xn \ \ | = 09 ί/mί is, ! xn \ n = 1, 2, }
m9n-* oo

i s α Cauchy sequence with respect to the norm \\\x | | | .

If we put

| | | * o III = l i m I I K I I I ,
7Z —» o o

ίΛeτι C ( S ) ® C ( S ) is a Banach space with respect to the norm \\\x \\\ and con-

tains C ( S ) ® C ( S ) a s a dense subset.

The proof is easy and so it is omitted. It is interesting to observe that

C (S) ® C (S ) is a normed ring with respect to the norm 11| x \\ |.

C (S) ® C (5 ) is called the minimal cross product Banach space of C{S)

and C(S ). It is easy to see that the minimal cross product Banach space

S ® 3 of anY two Banach spaces 9) and 3 c a n he defined in a similar way.

D ® 3 i s o n e of the cross product Banach spaces defined and discussed by

R. Schatten and J. von Neumann [3; 4 ] .

3. Construction of an example. Let us now consider the case when both S

and S are Cantor sets. Let S = S be the set of all real numbers s of the form

(3.1) s = 2
3 2 3"

where en (s ) = 0 or 1 (n = 1, 2, ). Let 13 = { σ \ be the Boolean algebra of all

open-closed subsets σ of S.

Let S* = S x S be the Cartesian product of S with itself, and let 13 = { σ* i be

the Boolean algebra of all open-closed subsets σ* of S*. It is clear that B* =

B ® B ; that is, B* consists of all subsets σ* of 5* which are expressible in the

form (1.1), where σ/, σ[ £ 6 (i = 1, , π ) .

For each σ E 6, let φσ(s) be the characteristic function of σ, and put

E ( σ ) x ( s , s ' ) = φ ( s ) x ( s , s ' ) , E ' ( σ ) x ( s , s ' ) = φ ( s ' ) x ( s , s ' ) .
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It is clear that E(σ), E'(σ) are projections of X = C(S) φ C(S') into itself,

and that \E ( σ ) | σ G 13 }, { E '(σ) \ σ G 13 ί are X-spectral measures on 13. Both of

these spectral measures are uniformly bounded since E ( σ ) , E (σ) have norm 1

for any σ G l3 with σ ^ 0. Since

EU)E'(σ') = E\σ')E{σ)

for any σ ? σ ' G To, we can consider the direct product X-spectral measure

ί f ( σ * ) | σ * G B * } , defined on B* = 6 0 1 3 . We shall show that { F (σ*) | σ* G B* }

is not uniformly bounded.

Let us define a sequence of functions { pn ( s* ) | n = 0, 1, 2, \ defined on

5* = S x S as follows: p ( s * ) s Ion S*, and

(3.2)

where €,(s) is the kth. coefficient in the expansion (3.1) of s. It is easy to see

that pn(s*) takes only the values ±1 and belongs to C(S)(x)C(S ) for n = 0, 1,

2, . Let us put

σ* = U * | p Λ ( s * ) = l j U = 0,1,2, . . . ) .

Then σ* G B* for n - 0,1, 2, , and it is easy to see that

pn = { 2 F ( o * n ) - I ) p 0 (n = 0 , 1 , 2 , - . . ) .

Thus, in order to prove the proposition of § 1, it suffices to prove the following

lemma:

LEMMA 2. Let S be the Cantor set. Let {pn(s*)\ n = 1, 2, \ be a se-

quence of functions defined on S = S x S bγ ( 3 . 2 ) . Then

l i m I! I Pn 111 = ° ° ,
ft —» oo

where the norm \\\ pn \\\ °f Pn * s defined by ( 2 . 2 ) .

In order to prove this lemma, let us put

ex(s) € 2 ( s ) e Λ ( s )

2 2 2 2n
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Then ί = τ ( s ) is a mapping of S onto the closed unit interval

/ = U | 0 < t < 1 !

which is one-to-one except for a countable set. Let

μ(σ) =m(τ(σ))

be a measure defined on B - \ σ ί which corresponds to the Lebesgue measure m

on /. Let us consider the L2-space L2 (S; μ) on S with respect to the measure μ,

where the norm is given by

(3.4) lly||2 =

Let o^ be the open-closed subset of S consisting of all s G S such that

(3.5)

We observe that

i - 1
a = i , .• f 2 Λ ) .

2"

μ(σ\n)) = Tn

a n d t h a t pn(s$s ' ) i s c o n s t a n t ( = e)

2 ). Further, if we p u t

( i = 1, •• , 2 n )

. = ± 1 ) on e a c h σ t x σ-n (i9 j = 1, ,

(3.6)

for ES and s'Eσjn) ( / = 1, -•• ,2n), t h a t i s , p^n)(s) = e\j) if s G σ\n\ then

~ ^ ( s ) ( / = 1 , , 2 7 1 ) f o r m a n o r t h o - n o r m a l s e t i n L2(S;μ).the functions

Consequently, by Bessel's inequality,

(3.7) I. p (s,s')y(s)μ(ds) μ(ds')

2n
P{n)(s)γ(s)μ(ds)
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for any y (s ) £ L2 (S; μ). From this it follows that

(3.8) p(sss')y(s)z(s')μ(ds)μ(ds')
n

IIΛ

V
II

V
li

u
L

1

— •

h

I
lly

p (5

IMi ^ i i 2

2

! )

) [μ(ds') [ \z(s')

for any y ( s ) , z ( s ) £ C(S). From (3.8) it follows further that

<3-9> l ί f pΛs,s')x(s,s')μ(ds)μ(ds') <J—.\\\:
I Js Js ~ \ 2n

for any x(s,s') £C{S)®C{S'). Since

p (5,5 ' ) G C ( 5 ) 0 C ( S / ) and (p ( s , 5 ' ) ) 2 = 1

on S x S , we obtain, by setting x ( s , s ' ) = pn (s, s') in (3.9), that

(3.10) ip n \ i i > (n = 1,2,

and hence lim „ _ oo 111 pn 111 = oo .

4. Remarks. Let us consider the bounded linear operators Ts T defined on

C{S)® C(S') by

(4.1) Tx(s,s') =f{s)x(s,sf),

(4.2) T'x{s,s') = f(s')x(s,s'),

where f (s) is a continuous function defined on S by

, e i ( s )
(4.3) f ( s ) = 3 I + + +

• ) •
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It is easy to see that T9 T are spectral operators of sca lar type and are given

by

(4.4) T = / f(s)E(ds),

(4.5) Ί* = [ f(s')E'(ds'),

where \E (o) \ σ G B ! and {E (σ) \ a E B } are a commutative pair of uniformly

bounded spectral measures defined in § 3.

It i s poss ible to show that T + T is not a spectral operator of scalar type.

In order to show this we first observe that the range 5** of / ( s ) + / ( s ' ) on

S* = S x S ' is a totally disconnected se t . Let B* be the Boolean algebra of all

open-closed subsets <τ* of S os the form:

α* = {s* = (s,s')\f(s) + / ( s ' ) e σ * * } ,

where α** i s an open-closed subset of S**. It suffices to show that the family of

projections { F (σ* ) | σ* G 13 } is not uniformly bounded.

For each rc, let { η^n' | i = 1, 2, } be a sequence of period 2n; thus

Further, let the sequence consist only of + 1 and - 1 such that (ηf1 , •••,

^ ) runs through all 2 n different sequences of length n consist ing of + 1 and

- 1 as ΐ runs through 1, , 2n The existence of such a sequence was proved

by N.G.de Bruijn [ l ] . Let us put

(4.6) πn(s*) = πn(s9s') = η ^ ,

if seσ\n\ s ' G σ j ^ U, j = 1, , 2 " ) . Then \πn ( s * ) | ra = 1, 2, ! is a

sequence of functions from C(S) (x)C {S ) taking only the values + 1 and - 1

such that the se t

σ * = \s*\πn(s*) = + l ! e B£ for n = 1,2, ••• .

Thus, by the same reason as in § 3 , it suffices to show that

lim 11| ΠΊi UI = oo .
n -* oo
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Let us put

= πn(s,s')

if s'e σ(jn\ Then {ήn)(s)\j = 1, , 2Λ ! is a set of functions from L2 (S; μ)

such that

is an orthonormal system for ί = 1, , 2Λ - rc + 1. This follows from the fact

that

implies

(4.7) π^ (s)μ{ds)

I 2n

- ft

(The last equality holds because

happens 2n~ι times and

happens 2""1 times as i runs through 1, , 2n.)

Thus, for any y G L 2 ( S ; μ ) , BesseΓs inequality

(4.8)
i+n- 1

f π*jnHs)y(s)μ(ds)

holds for i = 1, , 2" - /ι + 19 and hence
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(4.9) / I j πn(s$s')y(s)μ(ds)\2μ(ds')

TT I f π(

j

n)(s)y{s)μ(ds)\i

* ? ( [ τ l •')

n

From this follows, exactly as in § 3, that

(4.10) I / πn(s9s')x(s,s')μ(ds)β(ds') < J - | | |%|
1 J S JS ~ Y n

for any x (s9 s ' ) G C (S ) ® C {S )? and hence

for ^ = 19 29
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UNBOUNDED SPECTRAL OPERATORS

WILLIAM G. BADE

1. Introduction. Our purpose in the present paper is to study the structure

and operational calculus of unbounded spectral operators. Bounded spectral

operators have been introduced and studied by N. Dunford in [2] and [ 3 ] , and

the present paper is an investigation in the unbounded case of certain of the

results of [ 3 ] . Interest in the abstract theory of unbounded spectral operators

arises from important results of J. Schwartz [7] , who has shown that the

members of a large class of differential operators on a finite interval determine

unbounded spectral operators in Hubert space.

Let 13 denote the Borel subsets of the complex plane, and let X be a com-

plex Banach space. We shall call a mapping E from 13 to projection operators in

X a resolution of the identity if it is a homomorphism. That is,

E ( e ) E ( f ) = E ( e f ) , E ( e ) u E { f ) = E ( e u f ) , e , f e 13

£ ( e ' ) = / - £ ' ( e ) , E(φ) = 0, E(p) = l, e e B ;

E ( e ) i s bounded,

| £ ( e ) | <M, e G B ;

a n d 1 the vector-valued set function E(e)x is countably additive. Here φ is the

void set, p the plane, and e ' the complement of e in p.

A closed operator T will be called a spectral operator if there is a resolution

of the identity E such that:

(1) The domain D (T) of T contains the dense subspace X0 = l x \ x - E (σ)x9

σ G IS, σ bounded | .

(2) I f σ e 6 , E ( σ ) D ( T ) c D ( T ) a n d E ( σ ) T x = TE { σ ) x , x e D ( T ) .

l rΓhe last condition is somewhat more restrictive than in [ 3 j .

Received March 4, 1953. This paper was prepared under Office of Naval Research
contract number onr 609(04). The author is grateful to Professor Dunford for suggesting
this investigation.

Pacific J. Math. 4 (1954), 373-392
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(3) σ ( Γ , £ ( g ) ϊ ) C σ where σ{ 7 ,1(σ) X ) is the spectrum of T in the sub-

space E (σ) X .

If σ is a bounded set, then Ί is a bounded spectral operator in the subspace

E(σ)X, and in this subspace its structure and operational calculus are known

from [ 3 ] , The idea of the present paper is to determine the properties of T in

X from those of the sequence of approximating bounded spectral operators

TE {σn ), where 1 σn \ is an increasing sequence of bounded sets for which

l U σΛ=/.
* n = l '

We outline briefly the main results:

The simplest type of spectral operator S is that of scalar type:

= lim / XE(dλ)x,

where this limit exists and

en =

each spectral operator T we can construct an associated scalar type oper-

ator S from its resolution of the identity. One of the principal results of the

bounded case is the characterization theorem [3, Theorem 8] that T is a bound-

ed spectral operator if and only if T — S + /V, where S is a bounded scalar type

operator and N is a generalized nilpotent operator commuting with S, In the

unbounded case the relation of T to S is not so simple, as we shall show by

examples. The operator Λ' = T — S (with suitably defined domain) may be bound-

ed but not a generalized nilpotent or even unbounded with spectrum covering

the plane. We give a sufficient condition (Theorem 4.1) that 7 -S + N shall

be a spectral operator.

If S is a spectral operator of scalar type, it has an operational calculus

exactly analogous to that of an unbounded normal operator in Hubert space

(which is an example of a spectral operator). To each 13orel measurable function

/ on σ(S) we can assign a densely defined closed operator/(5) which is also

a spectral operator of scalar type, the operators corresponding to f and | f \

having the same domain. In case 7 = S + N is a general spectral operator we

can, by the formula
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00
 N

n
 r

f(T)x = HIT; Σ, ~ j f
in)
(λ)E(dλ)x,

assign a densely defined operator f(T) to each function analytic and single-

valued in the complement of a set θ for which E{θ)~ 0. (Here \en\ is an in-

creasing sequence of compact sets on each of which / is analytic and with

E(Unτzι en ) = /.) However, as we shall show by an example, this operator need

not be a spectral operator without other restrictions. If / is a rational function,

f(T) is always a spectral operator. Conditions are given to ensure that f(T)

is bounded. A result of the calculus is the theorem that a closed operator T

with nonempty resolvent set is a spectral operator if and only if (λ/ — T)~ι is

a bounded spectral operator for some λ jέ σ(T), In case T is of the form Γ = S + /V,

where N is a generalized nilpotent, we obtain quite an extensive operational

calculus of spectral operators. In order that f (T) shall be a spectral operator

it is sufficient that the singularities of / ( λ ) in the finite plane (with the pos-

sible exception of a finite set of poles on σ(T)) shall not get arbitrarily close

t o σ ( 7 ) .

2. Closed extensions. In this first section we establish the existence of

a closed extension of certain densely defined operators. This result will be

the main tool of the paper and it will be convenient to formulate it under rather

general conditions. We shall suppose throughout this section the existence of

a resolution of the identity E.

DEFINITION 2.1. Let Q be an operator defined on a dense subspace DQ(Q)

of X. Let there be associated with Q a class 21 of Borel sets satisfying:

(a) 21 is closed under finite unions and contains any Borel subset of one

of its members;

(b) H e G2I, then£(e)3C C D0(Q)andQ is bounded in E(e)l;

(c) E(e)QE(e) = QE(e), e β 21

(d) 21 contains an increasing sequence \en\ such that £ ( U W = 1 en)-l.

Under these conditions we say Q satisfies condition id) and write

X ĵ = \x \ x - E (e)x for some e G 21 }.

An important case occurs when 21 consists of all bounded Borel sets. We

shall be interested in finding a particular closed extension of Q, The con-

struction will be based on two lemmas.
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LEMMA 2.1 . Let \dn\ and \en\ be two increasing sequences of sets from

or which

E( U dΛ = E( U βΛ] = /.

//% G Ϊ j ατιJ lim^^oo O£ (dn)x existsi then

lim ζ ? £ ( e Λ ) Λ ; = lim QE(dn)x.
n —»oo 77. —» oo

Proof. Given 6 > 0, let m 0 be chosen so that if m > m0 then

\QE(dm-dmo)x\ < - 1 .
όih

Now, as £ ( U m = 0 e π ) = / and 0 is bounded in £ (dmQ)^, we can find an n 0 such

that, if n > rc0,

| ρ £ U m o - e ; i ) * | < I .
o

For any such fixed n > no we can, for the same reasons, find an mi > mo so

that

\QE(en-dmι)x\ < | .
o

Now, since

Q) = E(en -dmι) + E{en)E(dmι - dmQ) -E(dmQ -

it follows that

DEFINITION 2 2. Let {en\ be any increasing sequence of s e t s from

for which £ ( U m = 1 en) = I. We define

= {* I lim QE{en)x e x i s t s } ,

and se t Qx = lim^^oo Q£ ( e Λ ) % for % G D (())•
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LEMMA 2.2. The operator Q with domain D(Q) is closed and is the minimal

closed extension of Q on Xψ. Further5 if xED (Q), and e £ \i, then E {e)xEu (Q)

and E ( e ) Q x = QE (e)x. Also, 09 with domain E (e) D (Q)$ is the minimal closed

extension in E ( e ) X of Q on Xor , 211 = ί eσ \ σ G 21 | .

Proof. C l e a r l y , f i r s t , if e £ 2I(<?) and * G D ( £ ) , t h e n QE (e)x = E (e)Qx

s i n c e we can s u p p o s e e a member of the s e q u e n c e { en \, Now l e t xn £zD{Q)

(n = 1, 2, ) and

x0 = lim Λ;^, y 0 = lim ()Λ;Λ .
Π —» oo 72 —» oo

For any m,

and

Oh ( e w ) x0 = lim ^ £ ( e m )xn

n —»oo

a s @ i s bounded in £ ( e m ) 1 . Uut s i n c e

QE (em)xn = E (em)Qxn ,

we have

lim QE {em )x0 = lim £ ( e m )y0 = y0 .

Thus χ0 <ED(Q) and Qx0 = yQ. Clearly the extension is minimal. Finally let

x eD(Q), e £B. Then

£ ( e ) ^ = lim E{een)x

a n d

converges to £ (e )()*. The last statement follows easily.

We will also need:

LEMMA 2.3. Let \en\ be an increasing sequence of sets from 21 for which
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<t U en
* n = l

//, for each n, λ e p (Q, E ( e n ) X ) αrac?

lim (λl-QTιE(en)x

n—»oo

exists for each % G Ϊ , ί/ien λ E ρ(Q).

Proof. Clearly XI - Q is a closed one-to-one mapping of

D(λ/-ρ) = D(ρ)

into X. We must show it is onto. Let x G X and

yn = (λl-Q)-ιE(en)x.

Then lim^^oo y^ = y exists by hypothesis, and

l i m (λΙ-Q)y = l i m E {en)x = %.

n —»

Hence y G D (^) and (λ/ - Q )γ = Λ.

We note that if T is a spectral operator and To is the closed operator ob-

tained by taking for ?ί the class of bounded Borel sets and defining Qx = Tx9

x £ X^, then T = J o ΓAus α spectral operator has no proper closed extension

which is a spectral operator.

3. Scalar type spectral operators. We begin by studying the simplest type

of spectral operators, those which can be constructed from a resolution of the

identity E by integrating scalar functions. The integral we use for bounded

functions over bounded sets is that introduced by Dunford [3, Lemma 6] We

particularly recall the relations

(3.1) — — i n f \f(λ)\ < I f f ( λ ) E ( d λ ) \ < υ ( E ) s u p | / ( λ ) |
V^E) λβe J e λGe

and

(3.2) f f(λ)g(λ)E(dλ)= f f(λ)E{dλ) fg(μ)E(dμ),
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where e is a bounded Borel set, v(E)= 4M, and / and g are bounded Borel

measurable functions. 1 We denote by ΪFL the set of Horel raeasurable functions

/ each of which is finite-valued in the complement of a set φr for which

A ( ό / ) = 0.

If / G ϊίl, we let ?I be the class of bounded Borel sets on which | / ( λ ) | is

bounded and take

en = { λ I | λ | < n, | / ( λ ) | < n\ ( n = 1 , 2 , . . . ) .

We define

= lϊm

on the set D(f(S)) of % for which this limit exists . Lemma 2.2 shows that

f (S) is a closed operator, and Lemma 2.1 that we would have obtained the same

result by using any other increasing sequence { σn \ from ?τ for which

We shall denote by S the operator obtained by taking f {K) — λ and call it the

scalar operator associated with E (or if E is the resolution of the identity of

a spectral operator 7, we call S the scalar operator associated with T), Now

S is a generalization of an unbounded normal operator in Hubert space. 2 The

method we have used to construct the operators f (S) is an extension of the

method of forming direct sums of ϋilbert spaces ( s e e [ 6 , p. 4 3 ] ) .

T H E O R E M 3 . 1 . Concerning the operator f ( S ) υ e h a v e :

( 1 ) iffeh, t h e n ί Π f ( S ) ) = ί ) ( \ f \ ( S ) ) ;

( 2 ) ///, g e ϊϊl α n r f | / ( λ ) | < Λ | f f ( λ ) | , then U (g ( S ) ) C U ( / ( S ) ) ;

( 3 ) g(S) is bounded if and only if g is essentially bounded with respect

to\E(e)\;

(4) i f f e ^ a n d g ( S ) i s b o u n d e d , t h e n g ( S ) D ( / ( S ) ) C D (f ( S ) ) .

Proof, \\e note that ( 3 ) follows from formula ( 3 . 1 ) . To prove ( 1 ) , let

1 The first half of (3.1) does not appear explicitly in [3] but follows from the
second half and (3.2).

2 "Maximal normal operator" in the terminology of Stone [ 8 ] ,
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6 > 0 be given, and let

We define s ( λ ) to be | / ( λ ) | [ / ( λ ) ] " 1 for λ £ μ, and zero for λ G μ. T h e n if

x G D (/ ( S ) ) , for any n we have

\f{λ)\E(dλ)x = s(S) f f(λ)E(dλ)x+ f \f(λ)\E(dλ)x.

But | s ( S ) | < ! ? ( £ ) , and the l a s t term is in norm not greater than e υ{E). It

follows that the s e q u e n c e

is a Cauchy s e q u e n c e if

a l s o i s o n e . T h u s D ( / ( S ) ) C D ( | / | ( S ) ) T h e converse i n c l u s i o n and ( 2 ) are

proved s i m i l a r l y . F i n a l l y ( 4 ) follows from ( 3 . 2 ) , s i n c e

f{λ)E(dλ)g(S)x= f f(λ)g{λ)E(dλ)x = g(S) f f(λ)E(dλ)x.
n Jen Jen

T H E O R E M 3.2. Let { and g e lΐl.

( 1 ) If x G D ( / ( S ) ) n D ( g ( S ) ) , then x £ D ( ( / + g ) (S )) and [f (S) +

x = (f+g)(S)x.

( 2 ) If xeDig(S)) and g(S)x € D (f ( S ) ) , ί^ew x e D ( ( / g ) ( S ) )

Proof. ( 1 ) is clear. For ( 2 ) , let II consist of the bounded Borel s e t s on

which both / ( λ ) and g ( λ ) are bounded, and let

, \g(λ)\ a n d | λ | < n

Then, for any n,
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f f(λ)E(dλ)g(S)x= lira f f(λ)E(dλ) f g(μ)E(dμ)

= / fMg(k)E(dλ)x,
en

since [e f {λ)E {dλ) is a bounded operator. Thus / ( S ) g{S)x ~ {fg){S)x.

For the next theorem we will need a lemma which it will be convenient later

to have formulated for a general spectral operator.

LEMMA 3 . 1 . // T is a spectral operator E(σ(T)) = l9 and if { en\ is an in-

creasing sequence of bounded Borel sets for which

then

= u

Proof. The argument follows that of [ 3 , Theorem ]_]. Let

μ = U σ{T,E{en)X).

Clearly μC σ( T). If σ is a closed subset of μ', then, for each n9 σ ( T9 E (σen) 3C)

is a subset of both σ and σ{T9 E (e n ) 3C). Thus

E(σen) = 09 £ ( σ ) = 0, and £ ( μ / ) = 0 .

Hence E (μ) = I and μ = σ( T).

THEOREM 3.3. / / / G ΪH, ίAe/2 / ( S ) is α spectral operator whose resolution

of the identity is given by

) = E(fι(e)),

and spectrum by
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σ(f(S))= Π JJ7).
E ( e ) = I

Proof, I et σ be a fixed Borel set. If λ 0 i <J then

is bounded, and the equations

g ( S ) ( λ o / - / ( S ) ) * = *, xeE(σ)D(f(S)),

U 0 I - f ( S ) ) g ( S ) x = x9 x £ E ( σ ) X ,

s h o w λ o / - / ( S ) i s a c l o s e d o n e - t o - o n e m a p of E ( σ ) D (f ( S ) ) o n t o E ( a ) % .

T h u s σ ( / ( 5 ) , / , γ ( σ ) ϊ ) C σ .

N o w l e t

By I 3, Theorem 16 I,

Π
E(e)=E{en)

Now, by Lemma 3.1,

σ ( / ( S ) ) = U

Let

Π
E ( e ) = 7

Clearly μ^Cμ for each n. If

U

we can pick a 8 > 0 and for each rc a ίjorel set σΛ C en such that

and dist. (λ, / (σn )) > δ .
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Now if

n=l

then E ( σ 0 ) = / and λ jέ / ( σ 0 ) , and thus λ jέ μ. Hence

=5 U
71 = 1

4. The relation of T to its scalar operator. One of Dunford's principal re-

sults for bounded spectral operators is the characterization theorem [3, Theorem

8] that T is a bounded spectral operator if and only if T = S + N, where

S=J λE(dλ)

is the associated scalar type operator and N is a generalized nilpotent operator

commuting with Ί. The absence of such a theorem in the unbounded case greatly

complicates the theory. While in each subspace £(σ)3C, σ bounded, N =T -S

will be a generalized nilpotent, the natural closed extension provided by Lemma

2.2 of N on Xs)j, ( ?ϊ the class of bounded Borel sets ) may be bounded but not a

generalized nilpotent, or even unbounded. We now construct two examples which

exhibit these possibilities.

EXAMPLE 1. For each n, let §rc be rc-dimensional unitary space and let

$2 be the space of sequences [ xn J, where

•ίδ
Then § is a Hubert space. We denote by E (n) the orthogonal projection mapping

§ onto § . The Boolean algebra E of projections

7i Gσ

where α is any subset of the positive integers, is a resolution of the identity
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of the self-adjoint operator S which we define in § by

Sxn = (nξln ,...,nξnn)

and extend by Lemma 2.2 to

The operator N we define in § n by

The extension to § yields an operator of norm one which is nilpotent of order

n on § Λ We shall show that the operator

is a spectral operator. Let σ be any subset of the positive integers and CX jέ σ.

If 7i E σ, the operator

ι=o (Oί - n)ι + ι

is the resolvent operator of T in the subspace § . Because of the quadratic

nature of the norm in Hubert space, CX will be in the resolvent set of T in

E (σ)ξ> if and only if | Ka( T, § Λ ) | is uniformly bounded for all n in σ. But this

is satisfied; in fact,

lim | Λ ( Γ , S ) | = 0,
n-*oo

where n is not restricted to σ. For, given 1 > e > 0, we can pick an n0 so

large that

I (X - 7i Γ L < — for n > n0 .
2

Then, if 7i > τι0 ,

n-l i

i = 0 I Oί — 7i I
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Thus σ(T, E(σ)S^) C σ, and T is a spectral operator. To show that N is not a

generalized nilpotent, let x — \ X(\9 where

T h e n 1*1 = 1, but

I y v n

Λ

The transformation N is of a type studied by H. Hamburger [ 4 ] .

EXAMPLE 2. In this case let §^ be two-dimensional unitary space for

each n9 and form ξ> as the Hubert space of sequences \xn\ with xn- (ζlniζ2n ) ^

$}n as before. In fyn we define

Sxn = (wf l Λ, ^^2^)»

and T = S + N. Then

<oo

with similar expressions for D(S) and D(/V). As D(S) C D(Λ'), we have

D ( Γ ) = D ( S ) . Now /V has the entire plane as its spectrum since, clearly,

OGσ(IΫ), and, if β £ 0, the formula

shows that | Rβ{N$ $2n) \ is unbounded with n. However, Γ is a spectral operator.

If σ is a set of integers and Oί f£ σ then, for n G σ,

\a-n (a-n)2 (Ci-n)

Thus | β α ( ^ » § n ) | i s bounded, n & σ.
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The last example shows the degree of pathology that may arise. It is in-

teresting that we do have the following result which covers the case of Example

1.

THEOREM 4.1. Let S be an unbounded scalar type operator, and let N be a

bounded operator which commutes with the resolution of the identity for S and

is a generalized nilpotent on each of the subspaces £(σ)3C, σ bounded. Then

T - S + N is a spectral operator with the same resolution of the identity.

Proof. The relation σ ( Γ , £ ( σ ) ϊ ) C σ is clearly satisfied for all bounded

Borel sets. Let σ be an unbounded Borel set and let

en = \λ\\λ\ <^n\.

By [3, Lemma 3], the resolvent of T in E (σen ) 3£ is given by

-i ^ i f £ ( ^

j=0 σen \ A — μ )

We conclude the proof by showing that

lira (λl-T)'1 E(σen)x

exists for each x £ £ ( σ ) 3 £ and applying Lemma 2.3 in that subspace. We show

in fact that the series

E(dμ)

converges. For given 0 .< e < 1, we may pick τι0 so large that

2\N\ < e dist ( λ , e π ' o ) , 2v(E) < dist (λ , e n

and pick an nx > «o such that for any m and n with m > n > n

\i + l

Then, using (3.1), we get
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m r E{dμ) e m . I r
Ϊ+Σ\N\1\J ,
2 i=n I Jσe"o

E(dμ)

1, " w £ίi<
2 dial ( λ , β ί 0 ) fr, ϊ'

5. Operational calculus for a general spectral operator. When T is a bounded

operator and / is a function analytic on σ ( ί ) , it is well known [ l ; 9 ] that a

comprehensive operational calculus is obtained by defining

(5.1) = — f fix) (\i-τrιdλ,
9 7τ / *r

w h e r e C i s a b o u n d e d p o s i t i v e l y o r i e n t e d c o n t o u r c o n t a i n i n g σ(T) a n d e x c l u d i n g

t h e s i n g u l a r i t i e s of /. A l s o ,

(5.2) σ ( f ( T ) ) = f ( σ ( T ) ) .

Moreover, in the c a s e t h a t Γ ( = S + /V) i s a bounded s p e c t r a l operator , Dunford

h a s shown [ 3 , Theorem 9 ] tha t the operator f{T) may be e x p r e s s e d in terms of

the v a l u e s of / and i ts d e r i v a t i v e s on σ ( T) by the formula

(5.3)

the series converging absolutely in the uniform operator topology. We shall

make formula (5.3) the basis of an operational calculus in the unbounded case.

Given an unbounded spectral operator T, we denote by R the class of func-

tions / each analytic and single-valued in the complement of a closed set θr for

which E (θr) = 0. If for / e R we take

n = I λ I | λ | < n, d ist ( λ ,θf)> - I ,
} n J

then ί en \ is an increasing sequence of closed sets for which

E U e n = / ,
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and on each of which / is analytic. Moreover, T - S + N is a bounded spectral

operator in E ( e n ) 3C . Defining

f(T)x= lim Σ, — f fU)(λ)E(dλ)x

on the set D (f (T)) of x for which this limit exists, we obtain via Lemma 2.2

a closed densely defined operator. The class K is closed under sums and prod-

ucts, and by an argument exactly analogous to that of Theorem 3.2 we obtain:

T H E O R E M 5.1. Let f and g E R .

(1) // x e D ( f ( T ) ) n D ( g ( T ) \ t h e n x G D ( ( / + g ) ( T ) ) a n d ( / ( Γ ) +

g ( T ) ) x = ( f + g ) ( T ) x .

( 2 ) // xED(g(T)) and g(T)x G D (f (T))9 then xeD((fg)(T)) and

f(T)g(T)x = (fg){T)x.

As we show now by an e x a m p l e , the operator f(T) n e e d not be a s p e c t r a l

o p e r a t o r . L e t T be the operator of E x a m p l e 2 w h o s e spect rum is the s e t of

p o s i t i v e i n t e g e r s . T a k i n g

/ ( λ ) = γ 2 c o s e c 771λ + — J,

we s e e t h a t the spect rum of f {T) in E(σ)Sj) for σ any finite s u b s e t of σ(T)

i s the range of / ( λ ) on σ, t h a t i s , l i e s in the pai r of p o i n t s ± 1 . By L e m m a 3 . 1 ,

t h i s must be true a l s o of the c l o s e d operator f(T) on D (f ( T ) ) if it i s a s p e c -

t r a l opera tor . However , 0 G σ ( / ( Γ ) ) s i n c e , for xn G ίξ)Λ,

si]howing t h a t the norm of [/ ( T ) ] " ι in §n i s unbounded with n. In fact , σ(f (T))

i s the whole p l a n e .

In c o n n e c t i o n with E x a m p l e 1, it i s worth not ing t h a t there are bounded

o p e r a t o r s which are s p e c t r a l o p e r a t o r s on e a c h of an i n c r e a s i n g s e q u e n c e

E ( e n ) X of s u b s p a c e s for which

Y U e π ) = / ,
* n=ί '
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without being spectral operators on X. Such an operator in the case of Example

1 is given by S" ι + N9 where

en = {p I 1 < p <n\.

We n o w g i v e c o n d i t i o n s u n d e r w h i c h f (T) i s a s p e c t r a l o p e r a t o r .

THEOREM 5.2. Let T be a spectral operator, and let f be analytic on σ{T)

with the exception of a finite set θ- (p{, p2 , 3 p^ ) of poles for which

E{θ) = 0, and let f be either analytic at infinity or have a pole there. Then

f (T) is a spectral operator with resolution of the identity

(5.3) £ / ( e ) = £ ( f - 1 ( e ) )

and spectrum

(5.4) σ ( / ( Γ ) ) = / ( σ ( D ) .

For the proof we shall need the following lemma:

LEMMA 5.1. Let f and T satisfy the conditions of Theorem 5.2. Then

σ(f(T))Qf(σ(T)).

Proof. C l e a r l y we can s u p p o s e t h a t f{σ(T)) i s not the ent i re p l a n e . L e t

λ 0 j έ / ( σ ( T ) ) , and define the function g{λ) to be [ λ o - / ( λ ) ] ~ ι where / i s

a n a l y t i c and zero at the p o l e s of / . T h e n g i s a n a l y t i c on σ{T) and at inf inity.

T o show t h a t g(T) is a bounded operator , we can s u p p o s e that σ ( 7 ) i s not

the whole p l a n e , s i n c e otherwise g i s c o n s t a n t . Now A . E . T a y l o r [ 1 0 ] h a s

shown t h a t if T i s a c l o s e d operator w h o s e spectrum d o e s not cover the p l a n e ,

and g i s a function a n a l y t i c on σ{T) and a t infinity, then there i s an unbounded

C a u c h y domain D such that σ ( T) C D9 D i s c o n t a i n e d in the domain of g, and

an o p e r a t i o n a l c a l c u l u s i s e s t a b l i s h e d by def ining

g(λ)(λI-T)'ιdλ9

K

where K is the positively oriented bounded contour forming the boundary of D.

The operator g[T] is bounded, and, in the case T i s bounded, g [ T ] = g ( Γ ) ,

the operator of ( 5 . 1 ) . Now, recall ing the equivalence of ( 5 . 1 ) and ( 5 . 3 ) when

T is a bounded spectral operator, we let

- Ien = σ ( Γ ) n λ | | λ | < n, d i s t ( λ , < 9 ) > -
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and note that

g [Π= T-T ί gU)U)E{dλ)
•- i en

in E (en) X . T h u s , in X ,

III= lim

Moreover, g ( Γ ) = [ λ 0 / - / (71 ) ] " 1 i n £ ( e J X . Thus, by Lemma 2.3, λ 0 £σ(f(T)).

Proof of Theorem 5.2. Let σ be a fixed Borel set. Then

σ(T9E(f'ι{σ))X)Cf-ι(σ).

We now apply either ( 5 . 2 ) or the preceding lemma in the subspace E ( / " ι ( σ ) ) X,

depending on whether or not f~ι (σ) is a bounded set , to conclude that

σ(f{T),E(f'ι(σ))l)Cf(f'ι(σ))Cσ.

T h a t σ ( / ( Γ ) ) = f ( σ ( Γ ) ) follows from (5.2) and Lemma 3.1.

COROLLARY. Any polynomial in a spectral operator is a spectral operator.

A closed operator T is a spectral operator if and only if, for some λ0 j έσ(Γ),

(λ 0 / - T)mί is a bounded spectral operator.

Proof. The first statement is clear, as is the necessity of the second. For

the sufficiency we note that

T = / ( U o / - TYι ) , where / (λ) = λ0 - - .
A

If we restrict /V to be a generalized nilpotent we obtain a broad operational

calculus of spectral operators. All we need require of an analytic function / is

that its singularities in the finite plane (with the exception of a finite set of

poles as before) shall not be arbitrarily close to σ ( T ) .

THEOREM 5.3. Let T be a spectral operator and T = S + N9 where N is a

generalized nilpotent. Let f be a function for which there exists a constant

r > 0 such that f is analytic {with the possible exception of a finite set
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$ = (p t , , p^ ) of poles for which E (θ) — 0) in the open set

μ f = { λ \ d i s t ( λ , σ ( Γ ) ) < r } .

Then f (T) is a spectral operator whose resolution of the identity and spectrum

are given by ( 5 . 3 ) and ( 5 . 4 ) . The class of such functions is closed under sums

and products. If f if bounded on μ/ , then f (T) is bounded.

The proof proceeds exactly as before once we have:

LEMMA 5.2. / / / satisfies the conditions of Theorem 5.3, then

σ(f(T))Cf(σ(T)).

Proof. L e t / a n d r b e g i v e n a n d λ 0 £ f ( σ ( T ) ) . A g a i n w e d e f i n e g ( λ ) t o b e

)"1 where /is analytic and zero at the poles of /. Then as λ0 £f(σ(T))

there is a constant s > 0 such that g is analytic and bounded in

μ = U | d i s t ( λ , σ ( Γ ) ) < 2s i.
σ

T h e f o r m u l a

where C is a circle of radius s, shows that if | g ( λ ) | < K on μ , then

g(n)(λ)

Since

Ks-n, λ£σ(T).

lim \Nn\ι/n=0,
n—»oo

the series

n=0 "" v * '

converges in the uniform operator topology. Moreover, if

λ | | λ | < n9 dist (λ
l )

, θ) > - L
n )
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g{T) i s t h e r e s o l v e n t o f f ( T ) o n E{en)£. A p p l i c a t i o n o f L e m m a 2 . 3 s h o w s

t h a t λ 0 £ σ(f(T)).
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WEAK AND STRONG LIMITS OF SPECTRAL OPERATORS

WILLIAM G. BADE

The present paper is a contribution to the theory of spectral operators in

Banach spaces developed by N. Dunford in [8] and [ 9 ] . A bounded operator S

is a spectral operator of scalar type if, roughly speaking, it has a representation

5= / λE(dλ)
•Ms)

where E ( ) is a resolution of the identity similar to that possessed by a normal

operator in Hubert space. The initial problem we are concerned with is to find

conditions under which a weak or strong limit of scalar type spectral operators

is again in this class. The results are then applied to the study of certain weak-

ly closed algebras of spectral operators.

Section 1 contains a brief summary of definitions and results from [8] and

[ 9 ] . In §2 conditions are found under which a strong limit of scalar type spectral

operators is a scalar type spectral operator, the principal restriction imposed in

the limiting operators being on the nature of their spectra. The operators need

not commute.

Suppose that the underlying space X is reflexive. If 21 is an algebra generated

by a bounded Boolean algebra 33 of projections, then by a theorem of Dunford

[ 9 ] , each operator in 21 is a scalar type spectral operator. We show (Theorem

4.1) that every operator in the weak closure K of 21 is a scalar type operator,

and characterize 32 as the algebra generated (in the uniform topology) by the

strong closure of S. The principal tool used is the equivalence (due to Dunford

[ 7 ] ) of strong closure and lattice completeness for bounded Boolean algebras

of projections. We give a new proof of this theorem.

The paper concludes with a characterization of the weakly closed algebra

generated by a single scalar type spectral operator with real spectrum. Our proof

of this theorem gives a more direct proof of the corresponding result of Segal

[22] for Hubert space.
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contract onr 609(04) with the Office of Naval Research.
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1. Preliminaries. In this section we collect certain definitions and results,

principally taken from [ 9 ] .

Two projections in a Banach space X are said to be ordered in their natural

order% Eί <^ E2 if EιE2 ~ E2Eι = Et. This is equivalent to the conditions

and

The natural order partially orders the set of all projections in X, and any pair

of commuting projections Eι and E2 has a least upper bound

Eγ v E2 = Eγ + E2 - EiE2

and greatest lower bound

E^ Λ E2 — Eγ hi2

If { Ea \ is an arbitrary set of projections and X admits the direct sum de-

composition X = IU©H where

ϊϊi=Ί^ίuα£αxι, n = n α u - £ α ) x,

then the projection with range lU defined by this decomposition is denoted by

Vα Ea and is the least upper bound of the set {Ea }. Correspondingly the greatest

lower bound ΛaEa with range ITl1 is defined by the decomposition X = 1T11© ίl 1

where

if it exists.

Throughout much of this paper we will be concerned with Boolean algebras

of projections; that is, sets of commuting projections containing 0 and the

identity / which are Boolean algebras under the operations E± v E2 and E± Λ E2.

A Boolean algebra δ of projections is bounded if there is a constant M such

that I £ I < M for E G δ. δ is complete if it contains Vα Ea and Λ α £ α for every

subset {Ea \ C δ . We remark that δ may be complete as a lattice but not com-

plete as a Boolean algebra of projections in X in the present sense.

Let § be a σ-field of subsets of a set Ω. A homomorphic map E ( ) of £ξ onto

a bounded Boolean algebra of projections in X will be called a spectral measure.

Thus
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£ ( σ u δ ) = £ ( σ ) v £ ( S ) , £ ( σ n S ) = £ ( σ ) Λ £ ( S ) ,

(1.1)
£ ( Ω ) = /, E ( σ ' ) = I - E ( σ ) , \ E ( σ ) \ < M

σ, 8 £ g .

The set function x*£( )xs x € X, x* £ 36*, satisfies (see proof of [9, Theorem

17])

(1 .2 ) v a r x * E ( - ) x < 4 M \ x \ \ x * \ .

The spectral measure E( ) is countably additive if x* E ( )% is countably

additive for each x G X, %* G X . Countable additivity of £ ( ) implies that the

vector valued set functions E ( )x are countably additive for x G X [8, page

579].

If F( ) is a spectral measure in the conjugate space X of X we say F( )

is (yi)-countably additive if F ( )#*% is countably additive for all x* G X and

Λ G X.

We will need a notion of integration of scalar functions with respect to a

spectral measure [9, Lemma 6] . Let E( ) on ( Ω , ^ ) be either a countably

additive spectral measure in X or an (X )-countably additive spectral measure

in X . Then for / an essentially bounded measurable function on Ω, the integral

/ π f (ω)E (dω) is defined as the limit

(1.3) / /(ω)£Uω)= lira ff(ω)E{dω)
Ω n -»oo Ω

in the uniform operator topology, where the functions

f n ( ω ) = Σ a in kσ.n(ω), n = 1, 2 , ,

form a sequence of finite linear combinations of characteristic functions of dis-

joint sets σ{n G % converging uniformly to / on Ω and

f fn(ω)E(dω)= ΣainE(σin).
Ώ

This integral satisfies

(1.4) — e s s Ω i n f | / (ω ) | < | J f (ω )E {dω ) \ < 4ilί ess Q sup | / ( ω ) | .

A countably additive spectral measure on the Borel sets of the complex plane
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is called a resolution of the identity. A bounded operator T in X is called a

spectral operator of scalar type if there is a resolution of the identity E ( )

such that

E(μ)T=TE(μ)

μ E Borel sets

σ(T;E(μ)X)Cμ

and

= ίT= ί λE(dλ).
Jσ{T)

Here σ (T; E (μ)X) is the spectrum of the restriction of T to the range oίE(μ).

In exactly the same way we have the notions of an (X )-countably additive

resolution of the identity and a scalar type spectral operator of class (X ) in

X . In either case E{ ) i s unique and E (σ{T)) = /. Moreover if F ( ) is a

countably additive ( ( X )-countably addit ive) spectral measure on ( Ω , ^ ) , the

operator

= J f(ω)F(dω)

defined by (1.3) is a spectral operator of scalar type (scalar type and class

(X )) whose resolution of the identity E ( S (/")) is given by

E(σ; S(f)) = F{f'ι(σ)), σ G Bore l s e t s .

Finally we will need the following specialization of a theorem of Dunford

[9, Theorem 17].

1.1 THEOREM. Let S be a bounded Boolean algebra of projections in a

reflexive space and let 21 be the algebra generated by S in the uniform operator

topology. If Sϊ denotes the compact Hausdorff space of maximal ideals in 21,

then 21 is equivalent to C(Έ) under a topological and algebraic isomorphism S.

There is a spectral measure E( ) defined on the Baire sets of ϊ ! such that if

f e C ( l ) , then

1.2 REMARKS. By the discussion above each operator in 21 is a scalar type
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spectral operator. It is easily seen that 31? may be identified with the Stone

representation space of the Boolean algebra S. Since 351 is totally disconnected,

the class $ of Baire sets of S is generated by the open and closed sets. Thus

\E(σ) I σ E 2 ! is an extension of δ and lies in the strong closure of δ by the

strong countable additivity of E ( )x9 x E X.

2. Strong limits of operators with restricted spectra. In this section we

determine conditions under which a limit in the strong operator topology of

scalar type spectral operators is again in this class. The principal restriction

imposed on the limiting operators is on the distribution of their spectra. For

application in later sections our principal result (Theorem 2.3) is stated in

terms of Moore-Smith convergence, or convergence of nets in the terminology of

Kelley [15]. We recall that the strong operator topology for S ( X ) is generated

by neighborhoods of the form

the weak operator topology by neighborhoods of the form

N{T0 ; * ! , . . . , * „ , * * , . . . , * * , e) = {T\\xf(T-T0)xi\<e9i = l,-.-9n\.

A net ί Ta I, CC E A9 converges strongly to T E B ( X ) if

lim Ta x — Tx9

 χ E X .

a

It converges weakly to T if

lim x*Tαx = x*Tx, x e X, x* E X* .
a

If V is an unbounded closed subset of the complex plane we denote by

Coo ( y ) the β-space of complex valued continuous functions on V which vanish

at infinity (A function / vanishes at infinity on V if given e > 0 there is a

number K with \f(λ)\<ei{λeV,\λ\>K.)lίV is bounded we let C*, (F ) =

C(V).

2.1. DEFINITION. A closed nowhere dense set V in the complex plane

will be called an R-set if the set of functions

μ - λ
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is a fundamental in C^ (V).

It is easily shown that V is an fi-set if and only if rational functions are

dense in C^ (V). To approximate a rational function q in C^ (V) by linear

combinations of functions of the prescribed type when V is unbounded, one

approximates by Riemann sums the integral in the representation

? ( λ ) = — f ^ l dμ, λeV.

Here C is a clockwise contour consisting of small circles exterior to V which

contain the poles of q. We leave to the reader the fact that the approximation

may be made uniform on V, The case where V is bounded is treated by a similar

argument.

The characterization of /?-sets is apparently an unsolved problem of approxi-

mation theory. It is known that not every closed nowhere dense set is an /?-set.

The most important example of an /v-set is, of course, the real line. That i^-sets

form an extensive class of sets is shown by the following lemma.

2.2. LEMMA. In order for a closed nowhere dense set V to be an R-set it

is sufficient either that V has plane measure zero or that V does not separate

the plane.

The case that V is bounded follows from important theorems of approximation

theory. By a theorem of Lavrentieff [16] (see also Mergelyan [18]) polynomials

are dense in C(V) if V does not separate the plane. Hartogs and Rosenthal

[12] have shown that rational functions are dense in C(V) if V has plane

measure zero. If V is unbounded let Vx = V u { oo} have the usual topology as a

subset of the complex sphere. If β £ V the mapping Φ defined by Φ ( λ ) =

{β - λ ) " 1 maps Vγ homeomorphically onto a closed and bounded nowhere dense

set W containing zero. If feC^iV) then φ (z ) = / (Φ" 1 {z )) is in C{W) and

vanishes at zero. Moreover φ is rational if and only if / is rational, and W does

not separate the plane or has measure zero if and only if V has the same proper-

ty.

We now suppose that ί T α ! , αG/4, is a net of bounded scalar type spectral

operators with limα Tax = Tx, x G X, T eB (X). The operators Ta need not

commute or be uniformly bounded in norm. We examine the spectral properties of

T under two assumptions.

(A). If Ea( ) denotes the resolution of the identity for Ta9 then there is

a constant M such that | Ea(σ)\ < M, Ot G A9 σ G Borel sets.
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(B). There is a fixed closed (possibly unbounded) R-set V with σ ( Ta) C

V9 aeA.

2.3. THEOREM. // Γ G f i ( ϊ ) is the strong limit of a net \Ta\ of scalar

type spectral operators satisfying conditions ( A ) and ( B ) , then Γ* is a scalar

type spectral operator in X of class ( X ) . // X is reflexive, T is a scalar type

spectral operator in X.

It should be remarked that for applications in later sections we will need

only the case that V is the real line. The method of proof is a straightforward

extension of that used by Stone in [23] to prove the spectral theorem in Hubert

space. The proof will require two lemmas.

2.4. L E M M A . If λ £ V then λ G p{T)9

\R(λ; T)\ < md(λ9V)'1

{where d{λ9 V) = d i s t . (λ , V))9 and

α

Proof. Since

R(λ,Ta)= f (λ-μYlEσ(dμ)

we have from (1.4)

\*\d(λ,V) .. _ _ v
(λI-Ta)x

a)x\ > —
4M

from which it follows that

The last conclusion follows from the identity

R{λ; Ta)x-R(λ;T)x = R(λ;Ta)(T-Ta)R(λ;T)x.

2.5. LEMMA. Given x E X, x* G X , there is a unique measure p( ;x*9x)9

bilinear in x and x*9 which satisfies



4 0 0 WILLIAM G. BADE

x*R(λ;T)x = /
JV λ - μ

var (p( ; * * * ) ) < 4/W | * | | ** I.

Proof. By (1.2)

var**£ σ ( O * < 4M'|%'| 1**1 .

Thus the set of measures \ x*Ea ( ) * }, α G i , is a net in the closed sphere

S about the origin of radius 4>M \ x \ \x*\ in the space R ( V) of regular measures

on the Borel sets of V. Since R ( V) is the conjugate space of Coo(V), the set

S is compact in the w*-topology [ 1 ] ; that is, the topology generated by neigh-

borhoods of the form

\ θ \ θ e R ( V ) , \J f . ( λ ) θ ( d λ ) ~ f / . ( λ ) 0 o U λ ) | < e , * = 1 , . . . , * } ,

where / t , •••,/„ ^Coo(V). It follows [ 1 5 ] that the net {x*Ea(- )x] has a cluster

point p ( x*fx); that is, given (X0EA9 every neighborhood of p contains a

measure % * £ α ( )x for some α >. C(o. In particular if λ |έ ^, 6 > 0, and α 0 eA$

then

x*Ea{dμ)x- I p(dμ;x*,x]
X a Ί / A — ιι

7

for some Cί >_ CX0. By Lemma 2.4,

lϊm**ftU; Ίa)χ = .
a

Th

•V λ - μ

The uniqueness of p( ; * * , * ) and its bilinearity in x and ** follow from the

fact V is an K-set.
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To continue the proof of the theorem, we now extend the measure ρ( x*9 x)

on V to all Borel sets of the plane in the obvious way. Since for any Borel set

\ p ( e ; x * 9 x ) \ < 4 M \ x * \ \ x \ ,

there is a unique operator A (e ) in X satisfying | A (e ) | <_ 4Λ/ and

p {e; x*9 x ) ~ A (e )x*x, x* £ X , x G X .

It wi l l now be shown t h a t the family {A{ )} i s a r e s o l u t i o n of the i d e n t i t y for

T*. L e t v £ V. T h e n

(2.1) R(v; T*) A ( β 0 )x*x=f - J — A{dμ)x*x

for each Borel set e 0 for the equation

(2.2) I A ( d μ ) ( v ; ) ( λ ; ) /
V λ-μ JV λ - μ

where

θ(e) •I.
A(dμ)x*x

v-μ

is valid for every λ jέ Vs λ ^ v. Since the corresponding functions (λ — μ)"

are fundamental in Coo(V)9 forniula (2.1) follows from equating the measures

in (2.2). However,

R{v\ Γ * M ( e o ) x * x = / ^ A(dμ)A{eo)x*x,
V v-μ

and the same uniqueness argument for the measure yields

A{eo)A {eί ) = A(e0 n e t )

for arbitrary Borel s e t s e 0 and eί. Hence A(e) is a projection. In view of the

countable additivity of A( )x*x9 it remains to show that σ (T ) = I and

σ ( Γ*, /4(e)3C) C e" for arbitrary e. The second statement follows from formula

( 2 . 1 ) since R (v Γ* )/l (e )%*% has a unique analytic continuation to all of

e ', because σ ( Γ* ) n ~e i s nowhere dense. To prove the first statement let e 0 be
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any compact subset of V — σ( T ). Since

R ( λ ; T * ) A ( e o ) = A ( e o ) R ( λ ; T* ) f o r λ G p ( T * ) ,

A {e0 ) commutes with T*. Thus

σ(T*,A(eo)X*) Cσ(T*).

But again R(λ; T* )A (eo)x*x has a unique analytic continuation to βo, from

which it follows that A ( e 0 ) = 0, and hence A ( V - σ( I * ) ) = 0 as V -σ(T*)ia

the union of an ascending sequence of compact s e t s . Finally if C is any contour

enclosing the bounded set σ(T ),

χ*χ = f I /
Jσ(T*)\ 2πi JC λ - a

dλ A(dμ)x*x = A(σ(T*))x*x,

showing A(σ(T )) — I. If X is reflexive the projections E (e ) = /I* (e ) form a

resolution of the identity for T in X. This completes the proof.

2.6. T H E O R E M . Let a net { Ta \, α G A, of bounded scalar type spectral

operators satisfying conditions ( A ) and ( B ) converge strongly to a bounded

scalar type spectral operator T. Let h be a bounded Borel function on V with

set K of discontinuities. If E(K)=Q where £ ( • ) is the resolution of the

identity for T, then h (Ta) converges strongly to h(T ).

Proof. We c o n s i d e r f i rs t the c a s e t h a t h G C ^ ( F ) . By L e m m a 2.4, R(λ T),

λ jέ F , i s t h e s t r o n g l imi t of R(λ;Ta), and h e n c e l i m α g(Ta) = g{T) s t r o n g l y

for g in a d e n s e s u b s e t of 6 ^ ( F ) . If | h — g \ < £, t h e n

( λ ( λ ) ) - g ( λ ) £ α U λ ) * |

< 8 A ί e | * | + \ g ( T a ) x - f ζ ( T ) x \ , x G l ,

from which the conclusion follows for h G C^ ( F ) . In the case ή is a bounded

Borel function whose set K of discontinuities sat is f ies E {K) = 0, choose

g G CooίF) such that g ( λ ) = 0, λ G X, and g(λ) > 0 for λ G F - X. The

function g Λ is in C^ ( F ) . Moreover, the range of g ( T) is dense in X; for given

Λ; G X and e > 0 there is a closed subset σ of F disjoint from K such that
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\x — E (σ)x\ < e . T h e n

E (σ)x = g ( T)γ w h e r e γ= I
J σ

E(dλ)x

"σ g(λ)

Now if Λ; G X ,

\h{Ta)g{T)x-h(T)g{T)x\

<\h(Ta)g(T)x-h(Ta)g{Ta)x\+\{hg)(Ta)x-(hg)(T)x\

< Uί e s s sup \h(λ)\.\g(T)x-g(Ta)x\ + \(hg)(Ta)-(hg)(T)x\.

λev

By the previous case g(Ta) and (hg) (Ta) converge strongly to g(T) and

(hg) {T). Thus l im α h ( T a ) y = h(T)y ίor y in a dense set . Since the h (Γ α ) are

uniformly bounded, h ( Tα) converges strongly to h ( T).

Theorem 2.6 generalizes a theorem of Kaplansky [ 1 4 ] for the case that the

Tα are self adjoint operators on Hubert space and Kc\ σ(T) - 0. The present

theorem contains a result of Rellich [ 2 1 ] that if { Tn \ is a sequence of self

adjoint operators converging strongly to 7\ then

lim En{{ - oo, λ])x = E (( - oo, λ])x9 x E X

for each λ not in the point spectrum of T.

3. Bounded Boolean algebras of projections. It is natural to ask when a

Boolean algebra 33 of projections may be embedded in a complete Boolean

algebra of projections. Under the assumptions that X is reflexive and δ is

bounded, Dunford in [7] constructs the projection Vα Eα corresponding to any

subset ί Eα } C_ 33, and states the theorem that the least complete Boolean

algebra of projections containing 33 is the closure of 33 in the strong operator

topology. In this section we will give a proof of Dunford's theorem by showing

first that the strong closure of 33 (denoted by B s ) is complete. It will then be

required to show that a complete bounded Boolean algebra of projections is

strongly closed. Actually we will show it contains every projection in the

weakly (equivalently, strongly) closed algebra which it generates. This stronger

result will be needed in § 4.

The proofs will require the following lemma on monotone nets of projections.

3.1. LEMMA. Let \Eα\, α 6/4, be α net of projections in α reflexive space
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X satisfying \ Ea | < U$ a G A. If Ea < Eβ whenever a < β9 then limα Ea

exists in the strong operator topology and limα Ea = V Ea. Correspondingly

if Eβ < Ea whenever Cί <_ yS, then limα Ea = Aa Ea in the strong operator

topology.

This result is due to Lorch [17] for the case of monotone sequences. A proof

of the general case has been given by J. Y. Barry [ 3 ] .

3.2. THEOREM. // δ is a bounded Boolean algebra of projections in a

reflexive space9 then 33s is a complete bounded Boolean algebra of projections

containing δ .

Proof. Clearly | £ | <M HE G B s . If £, E l9 F and Fι are in δ, | ( £ -

E \ ) x \ < e , a n d \ ( F - F ί ) x \ < e9 t h e n

| ( £ F - E x F x ) x \ < \ ( E F - E ί ^ ) * ! + | ( £ F i - E ι F ι ) x \ < 2 M e .

Thus the mapping [E9F] — > £ F is a continuous map of 33 x δ —>Z?(X) in

the strong operator topology. Thus 33s is a bounded Boolean algebra of projec-

tions. If 23O is any subset of 33 s, let Σ be the family of all finite subse t s of

33O, directed by inclusion. If σ = \ El9 , En \ C 33O let Eσ - Eγ v E2 v v En.

The net {E σ }, σ G Σ , is monotone in the natural order of projections. By

Lemma 3.1, we have

lim Eσ = Vσ £ σ G f ,
σ

The next lemma is an extension of a result of Dixmier [5] for Hubert space

(see also Michael [19]) . The proof is similar, but we give it for completeness.

3.3. LEMMA. // X is B-space9 a convex subset of B (X) has the same clo-

sure in the weak operator topology as it does in the strong operator topology.

Proof. Under either the weak or the strong operator topology β ( X ) is

a locally convex linear topological space. In view of the separation theorem for

convex se t s [ 4 ] it i s enough to show that these two spaces have the same con-

tinuous linear functionals; or, since the strong topology is stronger than the

weak, that a functional continuous in the strong topology is continuous in the

weak topology. If 0 i s continuous in the strong topology, there is a finite subset

! x ι , , xn 1 of X and an £ > 0, such that | Tx( \ < €9 i = 1 , , n, T G S ( ϊ ) ,

implies | θ ( T) | < 1. Let 3 t>e the Banach space of rc-tuples ζ=[zl9 9zn]9

zι G X with -norm | ζ\ = maxί < t < n \ z; | . If Φ is the mapping of B ( X ) into
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3 defined by Φ ( T ) = [ Txγ , , Txn ], it is easily seen that the functional

fQ on Φ ( S ( X ) ) defined by fo(ζ)=0(T) is well defined and continuous. If /

is a continuous extension of / to all of 3> then / has the form

w h e r e xf G X * . C o n s e q u e n t l y Θ { T ) = f ( Φ ( T ) ) h a s t h e f o r m

n
f) ( Ί ] > /y ̂  I γ ,
\J \ 1 ) — / ΛJ 1 JL i *

Immm/ I l

It follows that θ is continuous in the weak operator topology.

3.4. THEOREM.1 A complete bounded Boolean algebra of projections in a

reflexive space contains every projection in the weakly closed algebra it gener-

ates.

Proof. Let 21 be the algebra generated by 33 in the uniform operator topology,

and let Uw be the closure of 21 in the weak operator topology. Since Uw is an

algebra, it is the weakly closed algebra generated by 33. Moreover, Uw = 21s by

Lemma 3.3. Let F2 = F, F G 2ΪS. The proof that F G 33 will be made by showing

that to each pair (y, z ) where y G lΐl = F X and z G U = (/ — F ) X there can be

associated a projection EyZ G 23 such that EyZy-y-Fy^ and EyZ z - 0 = Fz.

For if this is granted, the projection

is in 33 since 33 is complete. If x0 E I , XQ = yQ + zθ9 yQ G lΐl, z0 G Γl, then

V

y GίR £ r ^ o = ^o f o r e a c h z G i α ' a n d VyGlU £ y ^ o z o - 0. Thus EyQ = yQ,
£ z 0 = 0 and E = F.

We now construct the projections EyZ. It should be remarked that the con-

struction uses only the fact that 33 is σ-complete. Let y and z be fixed elements

of lΐl and H respectively. Then since F G 21s, elements An G 21 may be selected

such that

(3.2) | y - 4 π y | < 1/2", | Λ B z | < 1/2", n = l , 2 , . . ,

^ h i s theorem does not answer the question: if a sequence { En\ (̂  23 converges
weakly to a projection F, does { En } converge strongly to F?
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and each An is a finite linear combination of disjoint projections \Eι , , £ s }

in 33. It is now convenient to use the fact (Theorem 1.1) that 21 is equivalent

to C(ϊJί) where 35! is the space of maximal ideals in 21. Thus Λn - S (f ) where

fn is a finite linear combination of characteristic functions of disjoint open and

closed sets, and An = Jsgj fn(m) E (dm), where the integral is that of § 1. Let

e be an arbitrary positive number and

If E (σne) is the projection corresponding to σne, the remainder of the proof

consists of showing we may take

Let

Since the sequence ί Ene } is monotone decreasing,

lim Eney = E06y

by Lemma 3.1. Defining

4i6= / fn(m)E(dm)
Jorne

we have

(M + l )
+ 4 A f e | y |

2"

Thus

(3.3) \Eoey-y\ < Ule\y\.

Now
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Enez = lim γsnE{σie)z
p —» °O

by Lemma 3.1. But

= \\E(σne) + E(σ(n + ι ) e ) (1 -E(σne))

' σ ; e ) ) l z | <M £ | £ ( σ i e ) z | .

Since by (1.4)

e\E (σie)

we have

4M2

\E(σi€)z\ < , i > n.
e2ι

Thus

4M3

< e2n"1

and

(3.4) Eoez = 0

by Lemma 3.1. If 0 < δ < e then Eoe < £ 0 g so if €„ =

0 — —1 0 6 "— 11111 0 €. 9

we have Eoy - y and Eoz - 0 by (3.3), (3.4) and Lemma 3.1, Thus we may

take EyZ = Eo . This completes the proof.

3.5. COROLLARY. A bounded Boolean algebra of projections in a reflexive

space is complete if and only if it is strongly closed.

4. Weakly closed algebras. The theorems of § § 2 and 3 enable us to prove

the following result.
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4.1. THEOREM. Let S be a bounded Boolean algebra of projections in a

reflexive space9 and let S be the weakly closed algebra generated by δ. Then

S is generated in the uniform topology by 23s. Each operator in 52 is a scalar

type spectral operator whose resolution of the identity has its range in B s .

Proof. Let A be an element of 3S. Then since S = Uw = I s there is a net

\Aa\ C SI such that /I* = limα Aa x, x G X. Let 4 α = S ( / α ) , /α G C ( ϊ ί ) . Now

fa = ga + iha where gα and Aα are real, and Aa = 5 α + i Cα, B a = S ( g a ) > C a =

S{ha). Moreover,

raΛm)E(dm) {Aax - .

where

Since \raβ(m)\ < 1,

ga{m) - gβ(m)

fa(m)-{βim)

o,

1
raβ(rn) E (dm) < 4,M

Thus { Bax \ is a Cauchy net for each x G X. The operator 5 defined by

&*; = lim Bax $ x G X

is in SE since the inequality

I Bx I < 4M lim = Uί

shows B is bounded. Similarly the net {Ca\ converges strongly to a bounded

operator C G 32, and A = B + iC.

By Theorem 2.3 β and C are scalar type spectral operators. To show that A

is a scalar type spectral operator it is sufficient to prove that the resolutions

of the identity of B and C generate a bounded Boolean algebra.2 It will be

2Cf. [9, Theorem 19]. It is not known whether in a reflexive space the sum of two
commuting scalar type spectral operators is a scalar type spectral operator. An example
to the contrary has been given by Kakutani [13] in a non reflexive space.
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shown that E ( B) and E ( C) have their range in B s . Let σ be any bounded

closed subset of the real line and let { φ S be a monotone decreasing sequence

of continuous functions with

lim φ (λ) = kσ(λ)9 -co < λ < oc.

by Theorem 2.6 φn{B) E S for each n. But φn{B) converges weakly to E ( σ ; B ),

and thus E (σ; B) Ξ S. But then E (σ; B) e"Bs by Theorem 3.4. The assert ion

that the range of E ( B ) is in 33s now follows from the countable additivity

of E ( . ; / ? ) # , x G Ϊ . The operator C is treated in the same way. Theorem 1.1

may be applied to the bounded Boolean algebra S s to complete the proof.

4.2. COROLLARY. In a reflexive B-space the uniformly closed algebra

generated by a complete bounded Boolean algebra of projections is weakly

closed.

4.3. REMARK. The use of Theorem 3.4 in the proof of Theorem 4.1 to show

£ ( • B ) C 8 s can be -av^kίed if X is separable. In this case σ(B) contains

at most denumeίably many eigenvalues, and Theorem 2.6 shows

lim £ ( ( - oo, λ ] ; Ba ) * = £ ( ( - o c , λ ] ; B)x, x £ 1

a

for a dense set of numbers λ.

4.4. DEFINITION. A scalar type spectral operator will be said to be real

if σ (Λ ) is real.

Our next objective is to characterize the weakly closed algebra generated

by a single real scalar type operator and the identity. We will require certain

preliminary material.

4.5. DEFINITION. A compact lίausdorff space Ω is extremely disconnected

if the closure of every open set is open. A positive regular Borel measure μ on

Ω is normal if it vanishes on sets of the first category. An extremely discon-

nected compact Uausdorff space Ω is hyperstonian if it has sufficiently many

normal measures that the union of their supports is dense in Ω.

Stone has shown [26] that the representation space of a complete Boolean

algebra is characterized by the property of being extremely disconnected. It can

be shown [ l ϋ ] that corresponding to each Borel set e of an extremely discon-

nected space there is a unique open and closed set σ such that the symmetric

difference ( e ~ σ ) u ( σ ~ e ) i s o f the first category. The notion of a hyperstonian
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space is due to Dixmier [6] who has proved that a compact Hausdorff space

is the space of maximal ideals for a commutative tF*-algebra on Hubert space

if and only if it is hyperstonian. A hyperstonian space Ω is of countable type

if each mutually disjoint family of open and closed subsets of Ω is at most

countable. By a theorem of Dixmier [6] each hyperstonian space contains a

family Ω^ i G/ of mutually disjoint open and closed subsets whose union is

dense, with the property that each Ω; is of countable type.

Now let S be a complete bounded Boolean algebra of projections in a re-

flexive space with representation space 31!. If x G X, Λ:* E X*, the measure

x*E ( )x on SJί vanishes on sets of the first category. Thus the positive mea-

sure v ( x*9 x ) defined by

v (σ %*s x ) = tot. var. x*E(σ)x
σ

is normal. Clearly the union of the carriers of such measures is dense in 3?.

Following Segal [22] we call a projection E E 33 countably decomposable if

each mutually disjoint family of projections in 33 bounded by E is at most

countable. Thus we have proved:

4.6. THEOREM. A complete bounded Boolean algebra of projections in a

reflexive space contains a family of mutually disjoint countably decomposable

projections whose least upper bound is the identity.

4.7. DEFINITION. Let A be a real scalar type operator. We denote by

3£ (A ) the weakly closed algebra generated by A and /. An operator B is an

extended bounded Baire function of A if for every countably decomposable pro-

jection E in SE(i4), B commutes with E and the contraction Bg of B to E X is

a bounded Baire function (in the usual sense) of the contraction Ag of A.

The concept of an extended bounded Baire function is due to Segal [22].

One verifies easily that the contraction of A to EX is a real scalar type spectral

operator.

4.8. THEOREM. The algebra S (A ) generated in the weak operator topology

by a real scalar type operator A and 1 consists of all extended bounded Baire

functions of A.

Note that since A is real 3E(/4 ) is also the weakly closed algebra generated

by the resolution of the identity E ( A ) of A. (Cf. the discussion in the proof

of Theorem 4.1.) Let S3 be the Boolean algebra of projections in 3£(/4). Then

E ( A ) is strongly dense in 33 by Theorem 4.1. Clearly each extended bounded
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Baire function of A lies in ΊH(A ) since it lies in the uniformly closed span of

S by (1.3). Conversely, let 33 e 5 U ) and let £ E E U ) be countably decom-

posable. Since Bj? is in %{Aj?) it is sufficient for the rest of the proof to

suppose the identity / is countably decomposable. We next show that the al-

gebra 21 generated in the uniform operator topology by £ ( A) consists of all

bounded Baire functions of A. If

n

f=Σ, «ikn
ΐ = l

where the sets μ. are disjoint Baire sets, then

If E (μ.)x = x9 \x\ = 1, then \f{A)x\ = | Cί;- | . Thus the inequality

£ ( . ,A)~ e s s sup | / ( λ ) I = \f{A)\ < 4M(E( . , , 4) - e s s sup | / ( λ ) | )

is established for finitely valued functions. From this follows a result of

Dunford [9 ; Theorem 15] that 21 is equivalent to the algebra of all £ ( , A )-

essential ly bounded Baire functions on σ{A), But each bounded Baire function

is a uniform limit of finitely valued functions. It remains to show 21 is weakly

closed. However, this follows from Corollary 4.2 and the next lemma (which is

valid for arbitrary Boolean algebras ).

4.9. LEMMA. A σ-complete bounded Boolean algebra of projections in a

reflexive space with the property that each mutually disjoint subset is countable

is complete.

If 33 is not complete it contains a monotone net whose least upper bound

does not belong to 33. By transfinite induction one may construct from the net a

family of mutually disjoint projections of cardinality > ftQ.

Theorem 4.8 is due to von Neumann [27] for the case of a self adjoint

operator on a separable Hubert space. The generalization to the case of an

arbitrary Hubert space is proved by Segal [22] as a corollary of his treatment of

multiplicity theory. Our proof of Theorem 4.8, via Corollary 4.2, yields a more

direct proof of Segal's theorem.

It is important to know when an algebra 3? is 32(^4) for some A G 52. An

answer is given by the following theorem.
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4.10. THEOREM. For a bounded Boolean algebra S3 of projections in a re-

flexive space the following conditions are equivalent.

( a ) . 33 is separable in the strong operator topology.

(b) . SS is separable in the weak operator topology.

(c ). % is generated in the weak operator topology by an element A G 3S and

the identity.

Clearly ( c ) implies (b) . Let \An\ be weakly dense in 52. Since each An may

be approximated in the uniform topology by a linear combination of projections,

there is a sequence {Em \ C 33 which generates 5S in the weak topology. By

Theorems 4.1 and 3.4 the countable Boolean algebra δ 0 generated by { Em \ is

strongly dense in 33, proving ( a ) .

The proof that ( a ) implies ( c ) follows a well known argument. Let 210 be the

algebra generated by 33O in the uniform operator topology and let ϊ ϊ 0 be its space

of maximal ideals. By a theorem of Gelfand [11] 35! 0 i s separable metric. Since

ϊ)?0 is totally disconnected, it is homeomorphic to a subset of the Cantor dis-

continuum [2; p. 121], and thus C(3J1O) contains a real function h which dis-

tinguishes points in 3H0. By the Stone-Weierstrass theorem [25] and Theorem

1.1, A = S{h) and / generate 2I0. But 2I0 is weakly dense in 52.

When X is separable every subset of B (X ) is separable in the strong operator

topology. This fact for Hubert space is due to von Neumann [27]. However, the

proof in [20, p. 12] extends in a natural way to any Banach space.
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PERTURBATIONS OF SPECTRAL OPERATORS,
AND APPLICATIONS

I. BOUNDED PERTURBATIONS

J. SCHWARTZ

1. Introduction. Λ principal theorem on self-adjoint boundary-value problems

is the existence of a complete orthonormal set of eigenfunctions. This corre-

sponds to the diagonal reduction of a hermitian matrix, and to the spectral

theorem for self-adjoint operators in Hubert space. How much remains true if we

drop the fundamental condition of self-adjointness? Infinite dimensional ex-

amples show that, in general, we cannot expect even the existence of a single

eigenvector.

Nevertheless, there does exist a class of operators which behave in a "reg-

ular" fashion from this spectral theoretic point of view, namely, the spectral

operators introduced in [4, p. 560]. The paper [4] , while extensively devel-

oping the theory of these operators, still leaves open a very significant question.

Are many (or any) of the nonsymmetric integral, differential, and so on, oper-

ators arising in the more "c lass ica l" branches of analysis spectral? The main

result of the present paper is a positive answer to the foregoing question.

The principal indication that a positive answer is to be expected comes from

a classical series of papers [ l ; 2; 3; 11; 13; ],in which it is demonstrated that for

certain general types of boundary-value problems involving nonsymmetric linear

differential operators, expansions in eigenfunctions exist and converge in much

the same way as ordinary Fourier series. The method in all of these papers is

"analytic;" that is, it operates with asymptotic estimates of the solutions of

the various differential equations and of the partial sums of the various series

arising. The method in the present paper is abstract, and is phrased in terms of

Banach spaces, linear operators, and so on. This has the advantage of greater

simplicity in proof, and greater generality in applications. For instance, we shall

be able to prove results on certain types of partial differential operators which

appear difficult to prove by an analytic method.

The general idea of our abstract method is the following. Let 7 be a spectral

Received March 4, 1953. The research contained in this paper was done under contract
onr 609 (04) with the Office of Naval Research.

Pacific ]. Math. 4 (1954), 415-458

415
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operator. Let B be an operator which is, in some sense, small relative to 7.

Then T + B will be a spectral operator. A less stringent restriction on B will

yield a weaker conclusion on the spectral nature of 7 + B. In particular, there

are many cases in which it can be asserted that the set of generalized eigen-

vectors of 7' + B spans our Banach space, but not that 7 + B is spectral.

2. Preliminaries. Let X be a (complex) reflexive Banach space. A bounded

operator in X is an everywhere-defined continuous linear mapping of X into it-

self. An unbounded operator is a linear mapping of a dense linear subspace of X

into X. The set on which the operator T is defined is its domain, denoted by

Jy ( 7 ). The open set of λ in the complex plane, for which

( Γ - λ/)" 1 = ( I - λ ) " 1

is everywhere defined and bounded, is the resolvent of 7. Its closed comple-

ment, which is bounded for bounded operators, is the spectrum σ(T) of 7.

DEFINITION 1. An operator T is regular if its spectrum σ( T) is not the

entire complex plane, and if ( 7 - λ)" 1 is compact for some λ £. σ( 7).

REMARK. Except in the trivial case where X is finite dimensional, a reg-

ular 7 cannot be bounded. For, if 7 is bounded,

/ = ( 7 - λ ) ( 7 - λ ) ' 1

is compact; and this implies immediately that X is finite dimensional.

LEMMA 1. If T is regular, then:

(a) Its spectrum is a denumerable set of points with no finite limit point.

( b) ( 7 - λ ) " ι is compact for every λ ^ σ ( 7).

( c) Every λ0 G σ( 7) is a pole of finite order ι/(λ0 ) of the resolvent Rχ =

( 7 - λ)" *. // a vector f satisfies

(T -λo)
kf=O,

then f satisfies

( T - λ o ) v ( λ o ) / = 0 .

The set of all such vectors f makes up a finite dimensional linear space, called

the space of generalized eigenvectors of 7 corresponding to the eigenvalue λ0 .

If E{λ0) is the idempotent function of T corresponding to the analytic function
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which is one on λ 0 and zero elsewhere on the spectrum of T9 then E (λ0) pro*

jects X onto the space of generalized eigenvectors corresponding to λ 0 .

Proof. We can suppose, without loss of generality, that θ£σ(T), and that

T~ is compact. If we then make use of the identity

parts (a ) , (b) ? and the first statement in (c ), of our result follow readily from

the corresponding statements in the ordinary Fredholm theory of compact oper-

ators. (For this theory, see, for instance, [7, Chap. VII. ].) We have

(T - λ o ) f c / = O

if and only if

so that the second and third parts of the lemma also follow by a simple applica-

tion of the corresponding result for compact operators.

To prove the last part of the lemma, we may argue as follows: If C is a small

closed curve surrounding the point λ0 and traversed once in the positive sense,

then by definition

£(λ0) = — / (λ - τyιdλ
2πi JC

1

2πi

1

2πi

where C is a small curve surrounding λ"1, and traversed in the positive sense.

This last integral can easily be evaluated in terms of the functional calculus

for bounded operators (cf [4 ] ) , and turns out to be the idempotent analytic

function E ()CQ

ι ) of T" l corresponding to the analytic function which is one on

λ"0

L and zero elsewhere on σ{T"ι)9 and now the desired result for T follows

readily from the corresponding result for Γ"1.

REMARK. It is to be noted that we have actually proved a little more than is

stated in Lemma 1. We have, in fact, proved that the points of σ(T) and the non-

zero points of σ(T" ι) are in one-to-one correspondence through the map
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\-ι

and, that if we call E (λ 0 ) ( £ ( λ 0 )) the spectral measure of the point λ0 corre-

sponding to the operator T (the operator Tι), then

E(λ0) =E(Xo

ι).

This result is, of course, merely a particular case of the "unbounded" analogue

of the general "Spectral Mapping Theorem" of Dunford [ 4 ] .

Now, by [6, Theorem 20], it follows that if S is a compact spectral operator,

and E(e) is its spectral resolution, then E{\0) is the projection associated

above, with the point λ0 ( for ΛQ Eσ(S) ; for λ0 £σ(S)9 E(λ0) = 0). Conversely

if S is a compact operator, and ^ ( λ o ) is the spectral" measure of the point λ0,

then S is spectral if and only if there is a uniform bound for all sums Σ ι = ι £ ( λ j )

taken over finite subsets λpλj , , λjς of σ(S); that is, if and only if the

various projections E(λ0), λ0 E σ ( T ) , generate a uniformly bounded Boolean

algebra of projections. We can carry this result over to unbounded operators in a

trivial way, making use of the following:

LEMMA 2. Let T be a regular unbounded operator*

(a) // (λ 0 - T)~ι is spectral for some λ0 <έσ{T), then (λ - T)~ι is spectral

for all λ ^ σ ( T). In this case we say that T is an unbounded spectral operator.

(b) The regular operator Ί is spectral if and only if the spectral measures

E{λ0) of the υaήous points λ0 Eσ(T) generate a uniformly bounded Boolean

alge bra.

Proof. Suppose that T~ι is spectral. Then the spectral measures E(λ0) of

the points λ0 E σ ( Γ ι ) generate a uniformly bounded Boolean algebra. Since

the projections E(λ0) generate a uniformly bounded Boolean algebra. The con-

verse argument to this argument evidently goes through. Moreover, since the

spectral measure Ei(λQ) corresponding to the operator Ί + c i s evidently

E{λQ — c ) , it i s evident that T has the property of part ( b ) if and only if T + c

does. But this immediately implies part ( a ) .

3. Bounded perturbations. We now come to the main point of the paper.

THEOREM 1. Let T be a regular spectral operator, and suppose that λn is an

enumeration of its spectrum. Let dn denote the distance from \ n to the rest of
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the spectrum. Suppose that for all but a finite number of n? E i\n) projects onto

a one dimensional subspace; suppose that

Σ
i-l

Let B be a bounded operator.

( a ) If Σn = ι d"n < 00, then T + B is spectral.

(b) // X is Hilbert space and T is normal^ and Δ * n = ιd~2 < co, then T + B

is spectral. 2

Proof. P u t R \ = ( λ ~ - T ) ' 1 for λ j έ σ ( T ) . T h e n w e h a v e

(1) (λ - T - BY1 = (/ -

whenever (/ - RχBY1 exists. Now, by Lemma 3 below, there exists a constant

K > 0 such that

Hence no λ at a greater distance than KB from the spectrum of T is in the spec-

trum of T + B? since, for such λ, \R-\B | < 1. It follows also that T + B is regular.

From (1) it follows that

£ λ = (λ - T - BY1 = {/ + RχB(I - RχBYι\Rχ

= R\ + R\B(I - R\BYιRχ.

That is,

l -RλBTιRλ.

Let Cn be a circle about λ^ of radius dn/2 .Then, for λ £ Cn9 we have \R\\ <

~n

ι, and thus when n is large enough to ensure ZKd^1 < 1, we have

|(/ - RχBYι\ < (1 - 2Kd'n
ιYι.

Since c/n—»oc, we may replace this estimate, at least for all but a finite number

The series Z^ j = 1 E (λj) converges in the strong operator topology.

^ Of course, Γ + B is also regular. This is proved in the course of the following
argument; but c.f. also Lemma 17 below.
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of Cn9 by

| ( / - R\B)'ι\ < 2.

It then follows that

8K2\B\d-n

2.

If we integrate this inequality around Cn in the positive sense, we obtain the

inequality

- En\ < 8K2\B\d;1 ,

where E(λn) i s the spectral measure of λn corresponding to the operator 7, and

where En i s the sum of the spectral measures E ( λ ) corresponding to T + B of

the points λ of the σ{T + B) lying within Cn .

Lemma 4 below then implies that for n sufficiently large, En has a one-dimen-

sional range. It follows immediately that there must be exactly one point λ ^ o f

σ(T + B) in Cn, and that En = E'{λ'n). That i s ,

\E{λn) - E\λn)\ < %K2\B\d'n
ι

for all but a finite number of n. From the above, case ( a) of our theorem follows

immediately.

To prove case (b) , we have only to refine our estimates slightly. We have,

from (1),

Rλ = {/ + RχB + (RλB)2 (I - RλB)'1 \Rλ.

We then obtain the expression

so that for λ G Cn, and n sufficiently large,

\Rλ-Rk-RλBRλ\ <

The question now is, what is the integrated form of this inequality? The only

problem is to find

Fn = -A- / R\BRλdλ,
2πι JCn
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and this is easily done.

Indeed, ί{^ has the Laurent expansion

- λnT
ιE(λn) + R°(λn) - kn)

around \n. In this expression R°(λn) is a "partial resolvent" of T; that is, we

have

Λ ° ( λ n ) = lim (/ - E{λn))Rχ.

Thus, R°(λn) is that analytic function of T which corresponds to the analytic

function f{z) which is equal to ( z - λn)"ι everywhere on σ(T) but in the im-

mediate neighborhood of \n9 where we put f(z)=0 In terms of this Laurent

expansion, we readily find that

Having majorized

Fn = E(,λn)BR°(.λn) + R°(λn)BE(λn).

\E\λ'n) - E(λn) - Fn\

by the terms iβK3 \ B \2 d^2 of an absolutely convergent series, we have only to

prove that a uniform bound exists for finite sums ΣI i = ι F W £ of the terms Fn .

Since a term of the form E(λn) BR° (λn) can be treated as an adjoint of a term

of the form R° (λn) BE (λn)9 we have only to show that a uniform bound exists

for finite sums

of these latter terms. It follows from Lerαma 3 below that a constant K exists

such that

| K ° ( λ n ) | < K-V

Thus

R0(λn.)BE(λn.)f <\B\κ
I = 1
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ί l 1 ^ ί l ? 11//2 f °° Ί

Σ ^ 2 Σ l £ ( λ B ί ) / ι < i s i κ ' Σ 4"2

' ι = l *- i = i * * ί = i

VI.

since the normality of T implies that the projections £ ( λ ; ) are orthogonal per-

pendicular projections in the Hubert space X. Thus both parts of our theorem are

proved.

Before continuing with the main line of our discussion, we shall state and

prove the lemmas referred to in the foregoing proof.

Lemma 3, below, depends on the functional calculus for our unbounded oper-

ators; before proceeding to the proof of this lemma, we must discuss the func-

tional calculus. We consider a regular unbounded operator S with a denumerable

spectrum ί \n \. We shall allow a finite set λ p λ 2 , ••• , λ^ of the eigenvalues to

be multiple poles of the resolvent, but shall require that all the remaining eigen-

values are simple poles of the resolvent. In addition, we require that

In this situation, we can set up the functional calculus for T by setting

/ ( π = Σ Σ, a - λiVHλi) + 2^
i -1 / =0 / / =N +1

for every function / which is uniformly bounded on the spectrum σ(S) and which

belongs to the class Cv( λ ^ near the spectral point λ;( 1 £ ί <./V). It may be

remarked that, here and in all that follows, the finite number of multiple poles

λi,λ2> ••• 9 λjv of the resolvent function (λ— 5)" 1 contribute only a finite number

of terms, whose influence on any of our arguments it will be trivial to determine

by inspection. Thus, to avoid notational complications, we shall assume, without

loss of generality, that all the λj are simple poles of the resolvent; that is, that

/V = 0. In this case, our proposed expression for the functional calculus is

f(T) = £ f(λi)E(λi),
1=1

where / ( λ ) is any function uniformly bounded on the spectrum.

Functional calculi of this sort are discussed in [6] , in a much more general

situation. In particular, it follows from [6, Lemma 6] that the series defining

f (T) converges in the strong topology, and that there exists an absolute con-
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s t a n t K ~ K{T) s u c h t h a t we h a v e

| / ( Γ ) | < A'- max | / ( λ ) | .

λeσ(T)

From this fact, we have:

LEMMA 3. // S is a regular spectral operator all but a finite set of whose

eigenvalues \ n are simple poles of the resolvent^ and S also satisfies

then there exists an absolute constant K such that

| ( λ -Syι\ < K d i s t (λ , σiS))'1

for all λ not within a fixed radius e of any multiple pole of the resolvent.

Lemma 3 involves the operator R° (λn) defined as the constant term in the

Laurent expansion

(x-sr1" £ ί M +R°{λn) + ...
A - An

of the resolvent function around λn» Since

it is evident that

(2) R°(λn) = Σ(λn - λ ί Γ
ι £ ( λ ί ) .

We obtain, as an immediate consequence of this formula:

LEMMA 3 . If S is a regular spectral operator having the properties described

in Lemma 3S then there exists an absolute constant K such that if λn(Ξσ(S) and

dn = min dist ( λn, λ ;) ,
iftn

then for the operator R° (λn) defined by formula ( 2 ) we have

|Λ ° (λ n ) | <K'd'n
ι.
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LEMMA 4. 3 Let E be a projection of X onto an n-dimensional space, E' is a

projection in X satisfying

\E-E'\ - i μ r 1 ,

then E' also projects X onto an n-dimensional space.

Proof We have

l £ - EE'\ <-\E\ \E\'1 < 1

and

so that

\ E ' \ < \ E \ + ^ \ E Γ ι < 2 \ E

\ E Έ - E ' \ < 2 \ E \ . - \ E \ ~ ι = 1 .

If we then consider £ £ ' as a mapping of £ ( X ) into itself, it follows that £ £ '

has an inverse. Thus E' maps X onto a space of dimension n at least. Applying

the same argument to £'£, we see that £ ' maps X onto a space of dimension n at

most. It follows that the dimension of £'( X) is exactly n.

Part (b) of Theorem 1 is capable of some improvement. Inspection of the

proof of this result reveals that the only thing essential is that the spectral

measures E{X() should be orthogonal projections. But, by a theorem of Lorch and

Mackey (proved in [17]), any uniformly bounded Boolean algebra{£i of projec-

tions in ίlilbert space can be reduced to a Boolean algebra of orthogonal pro-

jections by an inner automorphism

£ —>D" ι £D,

where D is a bounded operator in Hubert space with a bounded inverse. Since

such an inner automorphism evidently preserves all operator theoretic properties

of the sort involved in our proof, we may state:

Corollary lb ' . 4 // T is a regular spectral operator in Hilbert space, if all but

3 A similar lemma is found in [ 18, remark after Corollary 2.5] .

This improvement of Theorem lb was pointed out to the author in conversation with
N Dun ford.
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a finite number of its eigenvalues λn are simple poles of the resolvent and corre-

spond to one-dimensional eigenspaces, if

I s 1

and ίfy putting

dn = min dist (\ n,,

we have Σ α Γ 2 < oo , then T + B is a spectral operator for any bounded B.

4. Two counterexamples. It would be useful to be able to prove Theorem 1

without the restriction to simple eigenvalues. Unfortunately, the appropriate

generalization is not true, even if the eigenvalues are restricted to be simple

poles of the resolvent, and even if the eigenvalues go to infinity very rapidly

The following example shows this to be the case:

EXAMPLE 1. We take two infinite sequences φ + and φ" of vectors to be,

together, an orthonormal basis for Hubert space X. We let T be the self-adjoint

unbounded operator defined by

Then λft =n\ is a simple pole of the resolvent, but a double eigenvalue. We then

let B be the compact operator defined by

It may be noted that if we realize X as a space of L2 functions, taking

φ + = cos 2πnx, φ~n - sin 2πnx,

say, then B is an operator defined as an integral transform with an analytic

kernel. At any rate, this peturbation breaks up the double eigenvalue n\ into two

single eigenvalues n\ and n\+(n\)~ι, with the corresponding eigenfunctions

nφ* - φ" and φ*. A brief calculation shows that the corresponding projections

E{n !) are defined by
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(re !)</>.* = 0 for n έ j ,

Thus, the spectral measures of the points in the spectrum of 7 + B are not

uniformly bounded, so that / + B is surely not spectral.

This example also indicates that the spectral property of 7 + B fails because

we do not group the two projections arising out of the double eigenvalues of /

together in forming our spectral sums. We shall see later that this is very typical

behavior.

In view of the importance for our proof of the property described in Lemma 3,

we shall give an example which shows it to fail if we allow regular operators

with an infinity of double poles of the resolvent. This is:

EXAMPLE 2. We introduce an orthonormal basis for ίiilbert space X con-

sisting of two infinite sequences of vectors φ , φ~, as in Example 1. We let 7

be the smallest closed operator satisfying

TΦn = n2Φn + "Φή* TΦn = n^n'

Ί hen σ( Ί) is the set of points n2, and (λ - T)~ι is defined by

(λ - TYιφ+

n = (n2 - KΓHφ* - n{n2 - λ ) " 1 ^ )

( λ - TT1Φ; = (n2 - λ Γ ' 0 ; .

Hence 7 is regular. If we put kn = n2 — w2, then

d(kn,σ(T)) = nA

for all large n, while

has norm at least 1.

5. Basic properties of ordinary differential operators. We wish ultimately

to apply our abstract theory to the study of linear differential operators. We shall

take our formal differential operators to have the form
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n I dV

where

α^(%) = 1, an,ι (x) = 0 ,

and where the coefficient function α ; ( # ) belongs to the c lass C°° [ 0, l l . The

restriction on the coefficients an and an.x is not as severe as might at first

appear, since any operator r of the form ( 3 ) in which an{x) ψ 0 and an(x) is

real can be reduced to one of the restricted form we have chosen by an elementa-

ry transformation.

In connection with the study of the rc-th order differential operator T, it is

convenient to introduce the Banach space Λn - An[0, l ] consisting of those

functions / i n Cn~ ι such that f^n"1' (x) i s absolutely continuous and such that

/ ' " ' G L 2 [ 0 , 1 ] . We introduce the norm in An by the definition

I / I = ( [l \f{n)(x)\2dx\K + max max | / ( i ) U ) | .
'^° J o < χ< l o< i< Λ-1

A fundamental formula in the study of r is then the Green's formula, which we

can obtain readily by partial integration:

(4) Λ τf{x)JUΓ)dx- Γ f{x)τ*g(x)dx = F^f.g) - F0(f>g).

ϊlere, / and g are arbitrary elements of ^ " [ θ , l ] , T is the formal differential

operator

n

and r * is the formal differential operator

ι = 0

where
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The operator r * is called the formal,, or Lagrange, adjoint of τ The bilinear

forms Fi ( / ^ ) and Fo (/, g) are given by the formulas

n- i

M/,g) = Σ

i , 7 = 0

rc- 1

i,7=o
where the coefficients Ci;y and βij are calculated readily from the functions
ai(x)> We can see, in particular, that

ft; = «*/ = 0 for i + 7 > n - 1,

Thus, the matrices /3;y and Cί;y are nonsingular subdiagonal matrices, and hence

define nonsingular bilinear forms.

If a formal differential operator r is given, we set up a corresponding un-

bounded operator TQ in the Hubert space L2 [ 0, l ] as follows:

( a ) J9 ( To ) is the set of all Cn functions / defined in [0, l ] and vanishing

outside some compact subset of the interior of [0, 1 ].

(b ) If / G J9 ( To ), Tof is defined simply as rf.

Our principal analytic problem at this point is to determine the adjoint of Γo

The solution is contained in the following:

LEMMA 5. The adjoint Γ* of the operator To is the operator 7\ defined as

follows:

( a ) Its domain is A .

(b) lffeA^\ T*f=τ*f.

Proof. It follows immediately from Green's formula that Tι C 7*. To prove

the opposite inclusion, we proceed by stages.

( a ) Consider first an element z E L2 such that TQz = 0. That is, (z9TQ y)

= 0 for every Toy in the range of To. We shall show that z G Cn. Let Σ be the

n-dimensional space of solutions of τ*σ = 0. We shall show that if /G L2 is

orthogonal to Σ, then (/«, z) = 0. Since Σ is finite dimensional and hence closed,
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we shall be able to conclude that z G Σ, which will give us the desired result

z^Cn.5 *$e begin by proving the somewhat weaker statement contained in:

SUBLEMMA 5. //

(a) / is orthogonal to Σ>

(b) /eC",

(c) /(%)== 0 outside some compact subset of (0,1),

then f is orthogonal to z.

Proof. We know by the standard theory of ordinary differential equations that

the equation rf = / has a unique solution / e Cn which satisfies the boundary

conditions

0 = f ( 0 ) = / ' ( 0 ) = . . = f ( " - l ) ( 0 ) .
A

If we c a n only verify t h a t f (x) = 0 o u t s i d e s o m e c l o s e d s u b i n t e r v a l of ( 0 , 1 ) , w e
A A A

will know that / £ J9 ( To ), so that / = Tof, and therefore (f9z) - 0. Now / is ,

in some interval [0 , e ] , the unique solution of the equation rf = 0 satisfying the

boundary conditions

0 = f ( 0 ) = / ' ( 0 ) = • • • = / ( n - ι ) ( 0 ) = 0 .
A

ί ίence f (x) Ξ 0 in [ 0, e ] . 7v'e could apply the same argument to an interval

L1 — £, l ] , if only we knew that

and it is this which we propose to verify. This we can do as follows: let

Then we have, from Green's formula,

0 = / τf(x)σ{x)dx- fl f{x)τ*σ(x)dx
Jo Jo

That is , F\ {f> σ) = 0 for every σ G l Since there exis ts a σ £Z with any pre-

assigned values

σ ( l ) , σ ' ( l ) , . . . . σnn-ι(l),

It may be noted that the method of proof of this lemma is actually that adapted to
proving the following result:

THEOREM. Let a distribution δ satisfy an ordinary linear differential equation with
C coefficients. Ίhen 8 is itselj a C junction.

In connection with tins proof, see 19, Theorem 1.1 J, where the same result is proved
by a different method.
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it follows that

A A A/ λ

Γ / Ί \ __ f ( Λ \ _ . . . _ / V^~ U / l ] _ Λ

A

by the nonsingularity of the form Fγ (f?σ). This concludes the proof of the sub-

lemma.

Now we must show that hypotheses (b) and ( c ) of the sublemma can be

dropped without invalidating the conclusion. Indeed, let / be a function which

is orthogonal to Σ. Let cri,<72? * ? on be an orthonormal basis for Σ Then, by

approximating σ{ sufficiently closely by a Cn function φi which vanishes out-

side a compact subinterval of (0,1) , we can ensure that the matrix (φi,σj) — mij

is nonsingular. Now, let / be approximated by a sequence f^ of Cn functions

which vanish outside a closed subinterval of (0,1) . Then, if m . • is the inverse

matrix of m/y,

A n n

/=i l=ι

is a sequence of Cn functions orthogonal to Σ which vanish outside a compact

subinterval of (0,1) , and such that lim k _ ^ fu — /• Since, by the sublemma,

(f^z) = 0, we are able to conclude that (/s z ) ~ 0.

To complete the proof of Lemma 5 it still remains to consider the case

T*z - gs where g Φ 0 and g GL2, and to show that z E An. We know by the stand-

ard theory of ordinary differential equations that there exists a solution Zγ E An

of the equation τ*2 x = g. Now, as remarked at the beginning of the proof of

Lemma 5, Zi E J9 ( T*). Henceu

By what we have already proved, z - z ι E C71 and

τ * ( z - ^ ) = 0.

Hence it follows that z £ An and that

Thus the proof of Lemma 5 is complete.

Lemma 5 has as a consequence an interesting topological property of our

formal differential operators, expressed in:
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LEMMA 6. Suppose that fm is a sequence of elements of An

9 and that fm and

τfm conυerge {weakly) in the topology of L2 [θ, 1]* Then fm converges {weakly)

in the topology of An[0, l ] {and conversely).

Proof. Let us introduce a norm in J9 ( T ) in two ways:

\f\2 = I / I , + m a x m a x \fU)(x)\.
o<i<n-ι

Then, since 7* is closed, 35 ( 7Q ) is complete in the first norm. On the other

hand, it follows from this that J9 ( 7 * ) is complete in the second norm. Since

I/Ί2 — I/Ίi> ^ f°HOΛWS fΓorn a well-known principle in the theory of Banach

spaces [7, Theorem 11.7] that | / | t and | / | 2 are equivalent. On the other hand,

it is evident on inspection that \f\2

 a n ( ^ t n e n o r n Ί introduced for An determine the

same topology. Hence it follows that \f\γ determines the same topology in An as

the norm of An

9 and this proves our lemma.

On the basis of these two lemmas we can proceed systematically to set up

the exact operator theory of differential operators. We first make:

DEFINITION 2. Let r be a formal differential operator of order n, and let

n- l n-1 A

( 5 ) A.{f) = 2 2 4 . / ( i ) ( 0 ) + Σ, A μ f { ί ) ^ 1 ) = 0» 0" = l A)
i =0 ί = 0

be a set A; linear boundary conditions. Then we define an operator 7 in L2 [0,1]

by putting:

( a ) i 9 ( T ) = [ f £ An
]Γ Aμί

(i\θ)+ Σ, Λi}f^Hl) = 0, / = I,

(b) I f / G J 9 ( J ) , Tf=rf.

Then T is said to be the differential operator determined by the formal operator r

and the boundary conditions [31. Any such operator is called a differential

operator.

LEMMA 7. Any differential operator T is a closed operator in Hilbert space

with a dense domain. Moreover, the range of T is closed.
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Proof. Let fn —» f> Tfn —» g. Then, by Lemma 6, we have / G An

9 fn — > /

in the topology of An It is then evident that / satisfies the boundary conditions

which define Ts so that / £ J9 (7 ). Moreover, if T is defined by the formal

operator r , we have τfn —> rf in the topology of L2, so that Tf = r{ - g;

thus T is closed.

Let I\ be the differential operator defined by the formal operator r and the

boundary conditions

/ ( 0 ) = / ' ( 0 ) = . . . = / U - l } ( 0 ) = / ( l ) = / ' ( l ) = . . . = / ( Λ - ι ) ( l ) = 0.

Then 7 is an extension of T\ . Now, it is clear that the differential operator T

defined by the boundary conditions Aj(f) = 0 will remain the same if we drop

from our list of conditions all Aj which are linear combinations of Ak with k < j .

Hence, without loss of generality, we can suppose that the vectors

[A j 0

form a linearly independent set. Thus, we can find a finite set of functions

φχ9 Φ2 •> » Φk - & ( T ) such that

It follows that

w h e r e S i s the f in i te d i m e n s i o n a l s p a c e g e n e r a t e d by t h e v e c t o r s φΐ(i = 1,2,

. . . ,k) H e n c e , if R ( T) d e n o t e s t h e r a n g e of T, we h a v e

H ( T ) = H i T , ) + S}

A

where S is a finite dimensional space. Hence, we have only to show that R ( 7\ )

is closed. Now, suppose that R ( 7\ ) is not closed. Then there exists an element

g and a sequence /Λ G 19(7!) such that Γi/W—> g3 but g ^ R ( 7 t ). It then

follows from the closure of the operator 7\ that / does not converge. Hence

there exists e > 0 and a sequence m^ni of indices approaching infinity such that

\frni ~ fnt\ > C-

Putting
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we have | g; | > e, 7\ gι —> 0. If we then put

gi = gi/ \gi\,

we have \gι\ = 1, 7\ gi—> 0. A subsequence of gi converges weakly: we can

suppose without loss of generality that this subsequence is the sequence gi

itself. It then follows by Lemma 6 that gi converges weakly in the topology of

An

9 and hence in the topology of C°. Therefore gi(x) is a uniformly bounded

sequence which converges at each x (0 < x < 1); this implies that ^converges

in the topology of L2 [ 0,1J. From the closure of Tί we find, putting

g = lim gi9

i -»oo

that | g | = 1, Txg =0. But then g is a nonzero function in Cn which satisfies the

equation Tg = 0 and the boundary conditions

this contradiction proves Lemma 7.

If we examine the part of the foregoing proof which concerns the operator 7\ 9

we see that we have actually shown:

COROLLARY. Let T be a differential operator with an inverse T~ι. Then

T~ι is a continuous mapping from the range K(T) of T to L2

We strengthen this conclusion in:

LEMMA 8 Let T be a differential operator with an inverse T~ . Then T~

is a continuous mapping from the range R( T) of T into An? and a compact map-

ping from R( T) into L 2 [ 0,1 ].

Proof. We know that if Tfn converges, fn converges. It follows by Lemma 6

that fn converges in the topology of An, proving the first part of the lemma. Now

suppose that Tfn converges weakly: since T ι is continuous, fn converges weak-

ly. It follows by Lemma 6 that fn converges weakly in the topology of An

9 and

hence in the topology of C°; so fn{x) is a uniformly bounded sequence of func-

tions converging at each x £ [0, 1 ]. Then it follows that fn converges in the

topology of L 2 Since T"ι thus transforms weakly convergent sequences into

strongly convergent sequences, T ι is compact.

LEMMA 9. Let T be the differential operator defined by the formal operator

T of order n and by the boundary conditions (5). Then T is the differential
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operator T± defined by the formal operator T* and by a set of boundary conditions

Bi(f)-Σ β f / / ( / ) ( O ) + Σ, Bijfli){l) = O ( ί = 1,2,-.,* ')
/=o /=o

obtained from the conditions (5) as follows:

Let Si [σ^ e 2 " " 1 ] (i = 1 k') be a basis for the set of solutions of
the equations

Ai(σ)= Σ, Aijσi + Σ Aij°n+J (i = 1 . . . A)
;=0 y=0

derived from equations ( 5 ) , and let

n- l

ί/ie bilinear functional arising in Green's formula ( 4 ) . ΓΛerc:

l-o l = o

Proof. It follows immediately from Green's formula that 7\ C. Γ*. To prove

the converse, let φι be a C71 function such that

Then Am(φi) = 0 (m = 1 . . . A;), so that ^ G J 9 ( 7 ) . If / G J9 ( Γ*) , it follows

that

0 = {Tφi9f) -(φi9T*f) = Ft(φi9f) -FQ(φi9f)

= Σ B l 7 / ( / ) (0 )+ Σ β ι 7 / ( / ) ( D ,
/=o 7=0

so that / £ β( 7\). From this it follows immediately that 7\ = Γ*.

LEMMA 10. Let Ί be a differential operator, and suppose that for some
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complex λ both T - λ and 7 * - λ have an inverse. Then T(T*) is a regular

operator, T and T* have spectra related by σ(T) = σ ( Γ * ) , and determine spec-

tral measures Eγ and E2 related by Ex ( λ ) = £ * ( λ ) .

In this case, we call T a regular differential operator.

Proof. By Lemma 7 and its corollary, the range of T - λ is closed and

( Ί - λ ) " 1 is continuous. To show that ( Ί - λ)" 1 is everywhere defined, that is,

that

R( T - λ) = H9

we have then only to show that no nonzero z £ H is orthogonal to ( T - λ) 19 ( T).

However, any such z would satisfy ( T — λ) z = 0, and we have ruled out this

possibility in our hypothesis. This, together with Lemma 8, proves the first part

of our lemma. The remaining parts follow, via the remark after Lemma 1, from

the corresponding results for bounded operators, all of which are well known

(Cf. [7, Lemma V.4].)

For application to the spectral theory of differential operators we shall need

the criterion contained in:

LEMMA 11. Let T be a regular operator in a Banach space X and let

λ 0 Gσ( T). Let /*,/*, ••• 9fn be a basis for the solutions of{T* - λ o ) / = O , 6

and let Σ be the space of solutions of ( T — λ 0 )σ = 0. Then λ 0 is a multiple

pole of the resolvent ( Γ — λ)~ ι if and* only if some nonzero σ G Σ satisfies

/ * ( σ ) = 0 ( » = 1,2, . . , π ) .

Proof, ^'e can readily see, by Lemma 1 ( c), that λ0 is a multiple pole of the

resolvent if and only if there exists a solution g of the equation ( T - λ0 )
2g = 0

which is not a solution of ( T - λ0 ) g = 0; that is, if and only if some nonzero

σ £ Σ is in the range of ( T - λ0 ). Now, if σ = ( T - λ0 ) g9 then

f*(σ) = f?((T - λ j g ) = ( I * - λ o ) f t ( g ) = 0 .

Conversely, if f*{σ) = 0, then it follows that σ is in the closure of the range of

T - λ 0, and our lemma will be proved once we show that T - λ 0 has a closed

6 The general theory of adjoint unbounded operators in a Banach space is discussed
more fully in Lemmas 18 and 19 below. It is well to remark, however, that we are faced
with the usual confusion as to adjoints in Hubert space, where, contrary to our practice
in other Banach spaces, we make use of the Hermitian, rather than the pure Banach-
space, adjoint. This has the effect of introducing complex conjugates in many of the
Hilbert-space formulas where the corresponding Banach-space formulas do not have
complex conjugates. This should not cause any essential difficulty to the reader.
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range. This, however, is easy to show s ince

( 7 - λ o ) J 9 ( 7 ) = ( 7 - λ o ) £ ( λ o ) i 9 ( 7 ) + ( 7 - λ o ) ( / - £ ( λ o ) ) J 9 ( 7 )

= ( 7 - λ o ) £ ( λ o ) J 9 ( 7 ) + ( / - E(λo))l.

The first space on the right i s finite dimensional and the second is closed, so

that ( Γ - λ 0 ) 19(1) i s closed.

LEMMA 12. Let E be a projection of a B-space X onto a finite dimensional

range, and let E : X —> X be its adjoint. Then, if c^1,ς62> * ' > φn is a basis

for £X ice can find a unique basis φ*, ι//*, , φn °f £3G* such that φ*{φ;)

- δ y; and then

Ef= Σ ΦiΦUf) for any / G X.

Proof, Any element Ef can be written uniquely as

n
Ef'= ]C ΦiaiU)f

where the α t (/) are linear functionals. If fm —> / and α t (fm) —XX;, it is clear

that Cίj = C(j (/'). Hence, by the closed graph theorem of Banach spaces [7, Theo-

rem 11.8] the uniquely determined linear functionals Otj are continuous. Ilence

&ι ( f) = ψ*( f ) for some φ* G X* .

From
n

Ef- Σ ΦiΨΐU)

it follows readily that

so that 0*.ι/f2 " ' ^ s P a n £ * X * T o s e e t h a t *A*'^2' ••• »Ψπ a r e Hnearly

independent, let 2^j = 1 OLUJJ* = 0; then

V ( Σ
 α

* 1= 1

so that Lemma 12 i s completely proved.
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As the final lemma of this section, we state a useful elementary principle in

the theory of spectral differential operators.

LEMMA 13. Let Ί be a spectral differential operator, and let λ; be an

enumeration of the points in σ(T). Then, if f G J9 ( T ), the "expansion"

1=1

converges unconditionally in the topology of An.

Proof. The series Σ i = ι ( λ / ) / certainly converges unconditionally in the

topology of L 2 . On the other hand, so does the series

W = i
= Σ

1 = 1

Hence, by Lemma 6, the original series converges unconditionally in the top-

ology of Λn.

6. Application. The second order differential operator. In this section we

wish to apply the theory developed up to now to various second order differential

operators arising out of the formal differential operator

u)d \ 2
q{x).

Our peturbation theorem. Theorem 1, reduces the study of this operator to the

much simpler operator — (d/dx) . What we need about the latter is summarized,

however, in:

LEMMA 14. The unbounded operator T defined by the formal differential

operator r = - (d/dx)2 and the boundary conditions

( 6 ) / ( 0 ) - A 0 / ' ( 0 ) = 0, / ( I ) - k j ' i l ) = 0 , ko.hu arbitrary,

is a spectral operator satisfying all the hypotheses of case ( b ) of Theorem 1.

REMARK. We can also admit the boundary conditions determined by k0 = oc

and/or kγ = oc that is, the conditions / ' ( 0 ) = 0 and / ' ( I ) = 0, respectively.

Proof. Since it is easy to treat all special cases in which k0 or ^ is zero

or infinity by a separate argument much like the argument given below, we shall
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assume for simplicity that we have none of these special cases to deal with. If

we put λ = s 2 , the general solution of the equation

- / " ( x ) - λ / ( * ) = 0

is sin s (x + α), where OC is an arbitrary constant. This satisfies the boundary

condition at zero if

tan sα = kos 9

and satisfies the boundary conditions at one if

tan 5 (1 + α) = k xs .

Thus, Γ - λ can only fail to have an inverse if λ = s 2 , where s is a root of the

equation

\Kγ — /CQ )S QS

(7) tans = = , d φ 0.

I + kokχs
2 1 + ds2

It is readily seen by making use of Lemma 9 that T is the differential operator

defined by r* and by the adjoint boundary conditions

/ ( 0 ) - k f ' ( O ) = 0 ; / ( I ) - A t / ' d ) = 0 .

Thus the adjoint operator T* - λcan only fail to have an inverse if T - λ fails

to have an inverse; that is, if and only if s satisfies (7) . Since not every s

satisfies (7) , it follows immediately from Lemma 10 that T is regular.

Our next task is to locate the zeros of (7) more exactly. Since tan s is

periodic of period π and has only the zero 5 = 0 in its period-strip, it follows

readily that (7) has a countable sequence Zjς9zk + ι , of zeros which can be

numbered in such a way that

zn = nπ + 0 ( 1 ) .

From this preliminary estimate we readily obtain the estimate

cnπ
tan zn ~ ~ c{dnπ)~ι

1 + d(nπ)2

Hence it follows that

zn = nπ + c(dnπ )" ι + 0(n"2).
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We thus obtain an enumeration λn (n = k, k + l9 ) 7 of the eigenvalues of T

such that

λn = {nπ)2 + 2cd~ι +0{n"1).

Hence, if dn is the distance from λn to the remainder of the spectrum,

dn ~ π2(2n + 1),

so that

oo

Σ dl2 < oo .

It is evident from the form of the boundary conditions defining our operator

that each λn can correspond to at most one function φn (up to a scalar multiple)

which satisfies

(T - λn)φn = 0.

Thus, if E {λn) is to be anything but a projection onto a one-dimensional range,

λn must be a multiple pole of the resolvent. By Lemma 11, the condition for this

is ( φ m φn) ~ 0, where ψn is the (unique) solution of

( Γ * -~λn)ψn = 0 .

Since, however, T is defined by the complex-conjugate boundary conditions of

those that define Γ, it is clear that

ψn (x) = Φn(χ)

Hence, λn can only be a multiple pole of the resolvent of T if

p (φn(x))2dx = 0.

Now, we have

φn (x) = sin zn(x + an) = sin (znx + βn),

where βn must be determined so as to satisfy

Z'n S i ϊ l β" = C 0 S

It follows readily that

Note: k need not be equal to one.
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βn = π/2 - (nπk0 )" ι + O ( n " 2 ) ,

so that

φn{x) = cos {znx + δ Λ ) , 8n = Uπ&o)"1 + O ( n ' 2 ) .

It follows that

Λ U 2 J ίι o ι

I \φn\χ'' dx ~ I cos nπx dx — — ,
Jo Jo 2

so that only a finite set of λ^ can be multiple poles of the resolvent of 7. For

those λn which are simple poles of the resolvent of T, the projection E(λn) is,

by Lemma 12, the operator determined by the integral kernel

A A

Φn(χ)φn(y) = &n(χ>y)>

A

where φn is a scalar multiple of φn9 the scalar being chosen so as to make

/

I A

(Φn

(x))2dx = 1 .

We have φn - cnφn, and a simple computation reveals that

cn = 2" 1 / 2 +0(n-2);

hence it follows that

j (cd~ι x + kQ)

En(x,y) = — cos nπx cos rcTry - sin nπx cos

sin nπy cos nπx +

which gives a decomposition of En into four terms

A

(8) En = £„ + /!„ + Bn + Δn.

It is now trivial to find a uniform bound for

/ an arbitrary finite set of integers, by making use of the decomposition ( 8 ) .
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We have

En\ < 1,
n£j

since the En are a family of orthogonal projections. We have

since

| Δ n | = O ( r f 2 ) and Σ n2 < oc.
7 1 = 1

The operators An and Bn have the form

^here

/ ί j = 0 ( / ι " 1 ) a n d \ B n \ = 0 ( n ι ) ,

a situation studied above in the proof of part ( b ) of Theorem 1 ? where the argu-

ment given proves not only the uniform boundedness of Σ r , An, but also,

with suitable slight modifications, the law

lim = o.

All that remains to complete the proof of our lemma is a proof that

By Lemma 15 below,

either projects onto an infinite dimensional space or is zero. But,

lim Σ E ( λ n ) ) - a - Σ
n-m n~m

= 0 .
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Hence, by Lemma 4,

has a finite dimensional range for all sufficiently large m9 and hence, a fortiori,

ECQ has a finite dimensional range.

THEOREM 2. Le£ T be the unbounded differential operator defined by the

formal differential operator τ = — (d/dx)2 and the boundary conditions

( 9 ) / ( 0 ) - kof'(O) = 0 / ( I ) - ^ / ' ( l ) = 0 ,

where k0 and hi are arbitrary, possibly infinite? complex numbers. Then if B is

an arbitrary bounded operator^ T + B is a spectral operator.

Proof. This follows from Lemma 14 and Theorem 1.

COROLLARY 1. Let T be the unbounded differential operator defined by the

formal differential operator

\dxl
+

and by the boundary conditions ( 9 ) ? where q(x) £ C°°.8 Then T is a spectral

operator.

This corollary is the "convergence in mean" form of the theorem of Birkhoff-

Hilb. As far as pointwise convergence is concerned, we can state:

COROLLARY 2 Let T be as in Corollary 19 and let / E J 9 ( T ) . Then if λ/

is an enumeration of σ( T\ the series

converges unconditionally in the topology of A 2 . 9

Proof. This follows immediately from Corollary 1 and Lemma 13.

8 This much is what we have proved explicitly. But, with a little more "analyt ic
c a r e , " we would see that it is sufficient that q (x) be measurable and bounded.

9 We shall see (Corollary 2 of Theorem 3 ) that this series converges to /.
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It may be noted, moreover, that Theorem 1 and Lemma 14 yield a much wider

class of spectral operators than the analytic method of Birkhoff-Hilb. For in-

stance, the differential-difference operator

rf(χ) = ( — J f(χ) + q ( χ ) f ( χ + α )

(in which x + Cί i s understood to be taken modulo 1, and q{x) is bounded and

measurable), with appropriate boundary conditions, i s immediately seen to be

spectral, as is the integro-differential operator

K ( x > y ) f { y ) d y ,

provided only that the integral kernel K defines a bounded operator.

7. Theorems on the spectral measure of infinity. Suppose that T is an un-

bounded regular spectral operator in a Banach space X, and that { λj} is its

spectrum. Let E(λi) be the associated spectral measure. Then we put

£ ( o o ) = / - £

i-l

It is clear that E (oo) / = / if and only if

E(λι)f = 0 , for 1 < i < oc.

This leads us to the following more general:

DEFINITION 3. If T is an unbounded regular operator in the Banach space

X, with spectrum ί λi i and spectral measure E(λι)9 we put

S^iT) = \f\E{λi)f = 0, I < i < ocl

LEMMA 15. The space Soo(T) either is infinite dimensional or consists only

of zero.

Proof. We can suppose without loss of generality that 0 ί σ{T)9 and put

U = T ι . It then follows by the remark following Lemma 1 that

σ ( V ) = u : ι l u \o\,
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A

and that the spectral measure E of U is defined by

E(λγ) = c ( λ . ) .

Hence, if / G S^ = Soo ( T ), we have

E(λ'.ι)Uf = LΈ(λ]ι)f = 0,

so that US^C^Svo. Moreover, by [15, Theorem 8.2c], (U - λ)~ι f is regular at

every point λ̂  ι if / G S^; thus if / G S^, ( ί/ - λ)" ι has no singularity other than

the origin, lience £/, regarded as an operator in S^, is quasi-nilpotent. If S^

were finite dimensional, it would follow that for some finite k, U S^ — 0. Since

U has the inverse T, this would imply that S^ contained no nonzero vector.

LEMMA 16. The space S o o ( 7 ) is the set of all / G X for which (T - λ ) " 1 /

is an entire function of λ.

Proof. If (T — λ)" / is entire, then if we let C be a small circle around λj

we find that

0 = — f (T - λ Y ' f d λ = - E { λ i ) f
2πi JC

Conversely, if E (λj) / = 0, it follows from [15, Theorem 8.2c] that (T - λ ) " 1 /

is regular at λ;. Since this holds for every λj G σ( T ) , it follows that ( T - λ ) " 1 /

is entire.

LEMMA 17. L e i T be a regular spectral operator in a Banach space X.

Suppose that all but a finite number of the poles μ of the resolvent function

( T - λ ) ~ ι are simple, and that S ^ ( Γ ) = 0. Let

dι = d i s t { μi, o( T)) 9

and let B be bounded.

( a ) If dι—>oc> T + B is regular.

( b ) // lim^ _̂  ̂  di> 0, ί/iβre exists an € > 0 swc/i ί/m£ Γ + β is regular when-

ever I β I < e.

( c ) // lim j _ oo (/ j > 0 and B is compact, T + B is regular.

Proof. This lemma is needed to make the statement of Theorem 3 below

plausible and possible. The proof results incidentally from the proof of Theorem
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3, so that it is not necessary to give the details here.

THEOREM 3. Let Ί be a regular spectral operator in the Banach space X.

Suppose that all but a finite number of the points in σ{T) are simple poles of

the resolvent function ( ΐ - λ ) " 1 and that S^ ( T) = 0. Let Ut be a sequence of

bounded domains with U°°=1 Uι the entire plane, and put Vι -boundary (Ui);

*let

Vi n σ ( 2 ) = φ and dt = d i s t {Vi9σ(T));

and let B be a bounded operator.

( a ) // di — » o o , SoolT + B) - 0 .

( b ) // lira i^oo di > 0, there exists an e > 0 such that Soo ( 7 + B ) = 0

whenever \ B \ < £ .

( c ) // lim i ^ oc dt> 0, and B is compact, S^ ( T + B ) = 0 . ι °

Proof. We first show that if μl9 μ2, , μ/v is a finite set of points in the

plane, we can find a domain U containing all of them such that V = boundary ( U )

has a minimum distance from σ(T) greater than d = 1/2 lim c?t (or, in case ( a ) ,

greater than an arbitrarily prescribed d) and such that the minimum distance from

V to μι is greater than a constant D which may be as large as we p l e a s e . This

is done as follows: we take j Q so large that

di > " lim dk if i > ; 0 *

and let K be a prescril>ed very large closed circular domain. Γut

/o

A'' = A u U Ut,
1 = 1

and let Uί > U2, , I'\} be a covering of A . Then we have only to take

M

U= U Ui.

1 0 I t w o u l d be i n t e r e s t i n g t o know t h a t i n c a s e ( h ) of T h e o r e m 3 w e c a n d i s p e n s e

w i t h t h e r e s t r i c t i o n {El < £ , but I do not know w h e t h e r or not t h i s i s p o s s i b l e .
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Now, let / £ Soo( T + B), and let

f(λ) = (Γ + B - λTιf.

We shall show that the entire function /(λ) is uniformly bounded, so that /(λ)

is constant, /(λ) = g, and hence f=(T + B~λ)g for all λ. From this it is

evident that g = 0? so that / = 0 . To demonstrate the uniform boundedness we

proceed as follows: Let λ1»λ2> > λn be the set of all multiple poles of the

resolvent, and let Λ be an arbitrary point in the complex plane. Take, in the

first part of this proof,

Mi> 2̂> * •* 'IJ-N = A, λ t , •• ,λn.

Then, by Lemma 3, there exists an absolute constant c such that \R\\ < cd"1

for λ E V, where Rχ = ( 7 - λ ) ' 1 . If we put

Rλ = (T + B - λ ) " 1 ,

we have ( cf. formula (1) in the proof of Theorem 1)

Hence, if

| β | < c ' ι d { l - 8 )

with δ > 0, Rχ exists for λ G F, and

But then

I V I ^ δ-ιcd-*\f\V
for λ G V9 so that, by the maximum modulus principle,

I V I < δ - 1 erf-1 i / l

everywhere in V. Hence we have

| / ( Λ ) | = \RfJ\ < 8-ιcd-ι\f\;

t h a t i s , / ( λ ) i s uniformly b o u n d e d . T h i s p r o v e s T h e o r e m 3 in c a s e s ( a ) and ( b ) .

T o h a n d l e c a s e ( c ) , we o b s e r v e t h a t s i n c e Σ £ = = 1 E(λi) c o n v e r g e s s t r o n g l y
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to /, 2^i-{ E(λi)f converges to / uniformly as / ranges over any compact

subset of X. Since we now assume that B is compact, it follows that Σ j = 1

E(λι)B converges to B in the uniform topology of operators. We choose I\'o so

large that

Then, if we out

we have

B - c'ιd(l - δ ) .

* 0

C = β - Σ E(λi)B,
ι = l

However, if d^ is the minimum distance from λ to any of the points λt , it follows

by the discussion of the functional calculus of T preceding Lemma 3 that there

exists an absolute constant c x such that

r - i

for 1 <_ i <_ /Vo and for dχ sufficiently large. We now determine the domain V of

the first paragraph of this proof by putting

where Nι >_ NQ is so large that the set λ1,λ2> > λ^ includes all the multiple

poles of the resolvent, and where

D = 2 | β | Λ ' o c 1 δ " 1 .

It then follows, as in the proof of parts ( a) and ( b) of Theorem 3, that Rχ exists

for λ G V, and that

r ^ λ | < z8'ιcd'1;

from this point on we can argue just as in cases ( a) and ( b ) .

Thus all cases of Theorem 3 are proved.
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COROLLARY ]. Under the hypotheses of Theorem 1, Ί + B is a spectral

operator such that S^ (7 + B) - 0.

Proof. \̂ e choose the domains {// of Theorem 3 as follows: If i is even,

i = 2rι, we take TJι to be the interior of a circle of radius d[ about the point λi,

where dι is the distance from λ; to the rest of σ( T). If i is odd, i = 2n + 1, we

take V i to be the set of all points z with \z\ <n but | z - λ; | > rf^/4 for all i.

COROLLARY 2. // T is the differential operator of Theorem 2, and B is

bounded, then every function f Z L 2 [ 0 , 1 ] can be expanded in a series of ei gen-

functions (including, possibly, a finite number of solutions of eq nations of the

type

(T + 8 ~ λ)kf= 0)

of Ί + B which converges unconditionally in the topology of L2 Any function of

class Λ2 which satisfies the appropriate boundary conditions can be expanded

in a series of ei gen functions converging unconditionally in the topology of A2.

Theorem 3 also applies to a class of operators which are not necessarily

spectral. To discuss this class of operators, we shall first extend the elementary

theory of the adjoint from closed operators in Hubert space to closed operators

in an arbitrary reflexive Canach space. If X is a reflexive βanach space, so is

the direct sum X © X (in any suitable norm), and we have evidently

(X © X)* = X* © X*.

The space X © X admits the evident automorphisms

A x : (x,y) — > ( y , x ) >

Λ2 : (x,y) — > ( - > , % ) .

We h a v e

A\ = - Λl = / , Λ-i2 = - -VIi

If HI is a closed manifold in a Uanach space Y, its annihϋator M is the closed

subspace of Y defined by

, i r = \y* = Y*\y*{M) = ϋ } .

If Y is reflexive, we have evidently ί/̂  = M. If 7 is a linear transformation in



PERTURBATIONS OF SPECTRAL OPERATORS, AND APPLICATIONS 449

X (Note : we continue to suppose that 19 ( 7 ) i s dense in X.)? i t s graph Γ ( T) i s

the subset of X © X defined by

Γ ( Γ ) = \ ( x , T χ ) \ x £ D ( T ) \ .

Clearly, Γ( T) is closed if and only if T is closed. We have evidently

Γ ( Γ ' ) = Axr(T),

whenever T 1 is defined (or, equivalently, whenever Λ^ViT) is the graph of a

single-valued operator). We define the closed linear operator 7 in X* by putting

Γ(Γ*) = U 2 Γ(7)]-\

T h e o p e r a t o r 7 * i s s ing le va lued, s i n c e ( 0 , y*) G Γ ( Γ * ) i s e q u i v a l e n t to

y* (%) = () for all x Ξ D( T); and s i n c e D{T) i s d e n s e in X, t h i s g ives y - 0 .

It may also be remarked that if T i s bounded, t h i s definit ion of 7 * a g r e e s with

the u s u a l o n e .

LEMMA 18. ( a ) U(T*) is dense.

( b ) 7** = T.

( c ) T and Γ * h a v e b o t h b o u n d e d i n v e r s e s if e i t h e r d o e s , a n d ( T ~ ι )

= ( I*)" 1 .

( d) If E is a bounded operator, ( 7 + B) = T + B .

Proof. The proofs are exactly like those in the Ililbert-space case. If D ( Γ*)

is not dense, we can find an x G X such that

χD( T*) = 0,

while x 7̂  0. Then

Λ2(0,χ) = ( - * , 0 ) Ξ Γ ( 7 * ) = A2Γ(T),

so t h a t

(0,χ)eΛ2

2Γ(T) = Γ(T),

and hence x - T (0) = 0, a contradiction. This proves ( a ).

To prove (b) , we observe that

Γ ( Γ * * ) = { A 2 V { T * ) ) J - = A 2 ( Γ { T * ) ) M = A 2 ( A 2 Γ ( T ) ) = - Γ ( ϊ ) .
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To prove ( c ) , we observe that

Thus ( T )~ ι = ( T~1)* even if either or both of the transformations are unbound-

ed, multi-valued, or not everywhere defined, so that ( c) follows as a special

case.

To prove ( d ) we note that it i s evident that

Γ ( J * + β*) c Γ ( ( Γ + β ) * ) .

On the other hand, if %* G D (( T + B )* ), so that

* * ( ( 7 + B)y) = (T + B)*x*(y)

for every y £ D(T), we have clearly

**(T;y) = {(T + β)*Λ;* - β V } ( > )

for> eD{T); thus%* G D ( Z * ) , and

T*** + β*Λ;* = ( T + β )* * * .

LEMMA 19. (a) If one of T and T* is regular, both are.

(b) 9ehaveσ{T)=σ(T*).
A

( c) // Tαrcd Γ* are regular, their spectral measures E and E are related by

E{λ) = E*(X).

( d ) If T and T* are regular and one is spectral, so is the other.

Proof. By Lemma 18 ( c) and ( d ) , we have

((T - λ ) " 1 ) * = ((T - A ) * ) " 1 = ( Γ * - λ ) " 1

with both s ides of this equation existing as bounded operators for exactly the

same λ. This proves ( b ) and ( a ) , since for bounded operators U and U are

either both compact or both not compact

To prove ( c ) , we note that £ ( λ ) may be characterized as

E(λ) = f (T - λ)'ιdλ9
2πi JC

where C i s a sufficiently small circle about λ. But then
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£ * ( λ ) = -

is evident. However, since (d) follows immediately from ( c ) , Lemma 19 is

entirely proved.

Suppose that T is a regular operator in X. Then by sp ( T), the spectral span

of Γ, we denote the smallest closed manifold containing all the manifolds

£ ( λ ) X . Thus, xEsp(T) if and only if x can be approximated by linear com-

binations of solutions f of equations

(7 - λ ) f e / = 0,

that is, by generalized eigenvectors of T. Thus, if T is known to be a regular

spectral operator,

1 = 1

For nonspectral regular operators in a reflexive space, however, we may state:

LEMMA 20. // T is a regular operator in the (reflexive) Banach space X,

thensp(T)=SOΰ(T*)Λ-.

REMARK. For spectral operators, the conditions

s p ( T ) = X and Soo(T) = 0

are clearly equivalent; but for nonspectral operators the condition for sp( T) = X

given by the lemma is 5oo ( 7*) = 0 and not Soo(T) = 0 . Indeed, H. Hamburger

[10, pp. 74-79] has constructed an example of a compact operator U in Hubert

space X whose generalized eigenvectors span X, and which is such that an

infinite dimensional closed subspace Xo of X exists such that £/X0 C_ Xo, and

U is quasi-nilpotent in Xo. If we put Γ = (C/*)"1, we have sp( T) Φ- X, while

S o o ( Γ ) = 0 .

Proof of Lemma 20. It is clear that if λ G σ( T) and we have

E ( λ ) f = / , w h i l e E ( μ ) * g* = 0 f o r e v e r y μ G σ ( T ) = σ ( T * ) ,

then

g*(f) = g*(E
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Thus, it is clear that sp( T) ς. Soo ( Γ*)"1'. Conversely, if f£ sp( T), there exists

a functional g* G X* such that

g * ( / ) = 1, g * ( s p ( Γ ) ) = 0 .

Since g*(E{λ)f) = 0 for any / ' G X and any λG σ ( Γ ) , it follows that

E(λ)*g* = 0 for every λ G σ( I ) = σ(T*).

Thus ^ G S ^ Γ * ) ; and since g * ( / ) = l, it follows that / £ S^ ( J * ) .

Lemma 20 and Theorem 3 together give us a fairly general insight into the

range of situations in which a "spectral density" property sp ( T) = X is to be

expected of an operator 7. However, in applying these results it is convenient to

be able to deal, wherever possible, with solutions of the equation ( T - λ) / = 0,

rather than with solutions of the equation ( T - λ) / = 0. The next lemma

describes a simple case in which this is possible.

LEMMA 21. Let T be a regular spectral operator in the Banach space X.

Suppose that all but a finite number of the countable set \λn\ of points in σ(T)

are simple poles of the resolvent function and correspond to one-dimensional

eigenspaces. Let dn be the minimum distance from λn to the other points in

σ( Ί). Then all but a finite number of points in σ(T + B) are simple poles

corresponding to one-dimensional eigenspaces if

( a ) dι approaches infinity, and B is bounded; or

(b) l i m _^ ̂  dι > 0 , and \B\ is less than some positive constant e(T); or

( c ) l i m . dι > 0 , and B is compact.

Proof, The proof in each of these three cases is very much like the proof in

the corresponding case of Theorem 3. We shall show that there exists an N such

that μ G σ(T + B) and | μ | >_ N imply that μ is a simple pole of the resolvent

Rχ of T + B and corresponds to a one-dimensional eigenspace. Indeed, if

λ £ σ{T + B), there exists an /G X such that | f \ = 1 and such that

{ T + B - λ ) f = 0 , s o t h a t ( T - λ ) f = - B f .

From this last equation it is evident that if ( T - λ ) " 1 = R\ exists, it must have

a norm which is at least | β | " 1 . By Lemma 3, there exists an absolute constant

c = c( T) such that

\(T - λ ) ' ι | < α Γ 1
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if λ is not within a distance d of any point in σ( T), and if N is so great that

every multiple pole λ0 of Rχ satisfies | λ0 | < /V. It follows that every point μ of

σ(T + B) with I μ | <_ N is within a distance c" ι \ B \ of a point λn E σ{ T). More-

over, if we suppose that c~ι \ B\ < dn/2 (which covers cases a and b), then we

see as in the proof of Theorems 1 and 3 that the resolvent

lχ = (T + B - λ ) " 1

exists everywhere on the circle Cn with center λ^ and radius dn/% at least if

N is chosen to be sufficiently large (or, in case b, for | β | sufficiently small).

We have, as usual,

and, for Λ' sufficiently large (or | β | sufficiently small), this leads, as in the

proof of Theorems 1 and 3, to an estimate

E ( λ n ) -En\ < i \ E ( λ n ) \-1

In this formula, En is the sum of all the projections E{μ) for μ interior to Cn,

where E is the spectral measure corresponding to T + B, If follows by Lemma 4

that En is a projection onto a one-dimensional subspace, so that there is exactly

one point μn £ σ( T) interior to Cn, and E(μn) is a one-dimensional projection.

Since we have already shown that every μ £ σ( T) with | μ | <_ N must belong to

the interior of some Cm our Lemma is proved in cases ( a ) and (b) .

It is not hard to see that the same argument will work in case ( c) as soon as

we are able to show that | R\'B \ —> 0 if λ^ is a sequence with | λ^ | —» oo , and

with

d i s t ( λ ' , σ ( Γ )) > € > 0 .
n

However, since it is evident from the functional calculus that Rχ^ converges

strongly to zero as n —> oc, and since B is compact, it follows that | R\'n δ |—*0

as n —> oc. In this way we are able to dispose successfully of case ( c), so that

Lemma 21 is proved in entirety.

REMARK. It is not hard to see that a proof like that of Lemma 21 will estab-

lish the existence of certain cases in which the hypothesis that the resolvent R\

of T has only simple poles corresponding to one-dimensional eigenspaces will

yield the corresponding property for T + B9 so that we can be sure that not even

one pole of the resolvent Rχ of T + B is multiple. In general, the situation is
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this: Multiple poles of Rχ can only arise out of multiple poles of Rχ, or out of

simple poles of Rχ which are multiple eigenvalues, or, finally, out of the

"fusion" of several poles of T under the influence of the perturbation B. If we

rule out the first two causes, and demand that B be too small to move any pole

of Rχ far enough to cause two poles of Rχ to meet, we can be sure that Rχ has

only simple poles. On the other hand, it is clear that if Rχ has multiple poles or

multiple eigenvalues, no demand that B be small can be strong enough to ensure

that Rχ has no multiple poles . 1 1

8. Applications to differential equations. Theorem 1 is usually inapplicable

in the theory of partial and singular ordinary differential operators because the

very simple behavior of the eigenvalues required in the hypotheses of Theorem 1

ordinarily fails. However, even in these cases, Theorem 3 can often be applied

to yield interesting results. Let us begin by considering the ordinary singular

differential operator

r-/±y
\ ax)

on the half-open interval / = [ 0 , o c ) , and make the assumption that q'(x) > 0,

q(x)—»oc. Then, as is well known ( cf. [ 16, p. 19]), any boundary condition

/ ( 0 ) + A/'(0) = 0 (0 < k < oc)

determines a self-adjoint operator T as follows:

(a) J9(Γ) is the set of all functions / which belong to Λ2[09N] for every

Λ7 > 0, such that τ{ £ L 2, and such that / (0 ) + kf\ 0) = 0.

( b ) Tf = rf ίorfe J 9 ( Z ) .

Moreover ( cf. [16, p. 113 and p. 134]), the operator T is without continuous

spectrum, and has only a finite number Λ'(λ) of eigenvalues (counted with

appropriate multiplicities) below any fixed λ. This number is given asymp-

totically as λ —> + oc by the formula

Λ'(λ)

where μ(λ) is the uniquely determined solution of q{μ{λ)) = λ . This formula

makes it easy for us to evaluate

1 1 For a detailed discussion of this type of question, cf. [18].
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c = c{r) = lim λ'ιN{λ),
λ—» oo

and by use of Theorem 3 we are able to state:

THEOREM 4. ( a ) // the singular differential operator r is such that c{r)

= + oc, and T is the self-adjoint operator in Hilbert space X associated above

with T , then sp ( J + B) = X /or e^ery bounded operator B.

(b) // instead of c(r) = +oc we άαve c ( r ) > 0, ίAerc sp( Γ + 5 ) = X /or αZZ

bounded operators B with \B\ < e = e ( τ ) , and for every compact operator B.

REMARK. It is easy to see that e ( r ) = l / 2 c ( τ ) is an acceptable deter-

mination.

Proof. The proof results immediately from Lemma 20 and Theorem 3> the

only point in question being the method by which we are to choose the domains

U{ of Theorem 3. However, it is clearly possible to choose arbitrarily large real

λj such that the distance from λ t to σ(T) is not less than c ( τ ) / 2 . If we put

Ui = {x + iy \ x < λi \,

we complete our proof.

The same argument evidently applies to any self-adjoint operator 7 which is

is without continuous spectrum, and for which we have

c(T) = lim λ'ιN(k) > 0 ,
λ—* σo

where N(λ) is the number of eigenvalues μ (counted with multiplicities and

supposed finite) such that — λ <̂  μ <̂  λ. This observation applies to an extensive

class of elliptic partial differential operators. Thus, for instance, Hilbert-Cour-

ant [ 12, Chap. 6, Theorem 17] gives the value

c(T) = (477)"1 I) p'ι{x,y)dxdy
G

for the partial differential operator T defined in terms of the formal operator

d 3d d

r = _ p (x, y ) _ p (%9 j ) + a (Xf y

ox ox oγ όy
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and in terms of any one of a wide family of boundary conditions. Here, G is a

bounded domain whose boundary is of measure zero, and I is an unbounded

self-adjoint operator in the Hubert space X = L2{G). The functions p ( x, y) and

q(x, y) are required to be real and infinitely differentiable in a neighborhood of

the closure of G, while we assume that p ( x, y ) > 0 everywhere on the closure of

G. This means, however, that the corresponding partial differential operator

T + B9 defined in terms of the formal operator1 2

d d d d
r ' = - — p(χ*r) - — p(χ,r) — + q(χ,y) + iq'(χ,y)9

ax ox ay ay

has the property sp ( T + B) = X, provided only that | q\ x, y) \ < 6 for some

sufficiently small 6> 0.

Many other instances are known in which a self-adjoint formal elliptic oper-

ator T has nonzero constant c ( T ) . For instance, GSrding [8] shows that if the

domain G C En is bounded, and T is real, formally self-adjoint, or order m9 and

has constant coefficients, then we have an asymptotic expression of the form

/V(λ)λ^π / m ~ d(τ).

This allows us to apply Theorem 3, case ( a) whenever n < m, and cases (b) and

( c) of Theorem 3 whenever n — m.

To apply Theorem 3 when n > m9 we must proceed in a slightly different way.

Let us suppose that T is an unbounded self-adjoint operator without continuous

spectrum such that Λ ;(λ) is finite and

lim Λ/(λ)λ"έ > 0,

where 6 > 0. Then the operator 7 satisfies

lim /V1(λ)λ"1 = oc

for some sufficiently large k {Nι{λ) is the number of eigenvalues μχ of T such

1 2 To define exactly the functional domains and boundary conditions involved in the
theory of partial differential equations would involve us in a very extensive analytic
discussion, which has, after all, nothing to do with our problem, since we can take the
same domain for T + B as was required to make T self-adjoint (or, more generally, spec-
tral). This difficulty leads to a slight vagueness in the formulations of the rest of this
section, but not to any real lack of rigor in the results.
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that —λ <_ μL <̂  λ; that is, the number of eigenvalues μ of 7 such that — λ <_

μ < λ 1 ' ). Now, if β is a bounded operator such that every product

i B i ι f2 ... B i n

9B

with at least one /. nonzero, is a bounded operator, it follows readily that

( T + B) satisfies all the hypotheses of Theorem 3. It then follows that

s P ( ( T + B)k) = X.

However, from [ 15, Theorem 9.4] it follows readily that

sp(S) = X and sp(S ) = X

are equivalent restrictions on a regular operator S. That is, we can conclude that

s P ( 7 + B) = 1.

To give a concrete example of a case in which this argument applies, we

have only to use the result of Girding, and consider the formal operator τ+ K,

in which r is self-adjoint elliptic partial differential operator with constant co-

efficients in a bounded domain G, and K is an integral operator

Kf{ x) = / K(x,y)f(y)dy

in which the kernel is a C°° function of both its arguments, defined when each

argument is in a neighborhood of the closure of G. $e are able to conclude that

the appropriate unbounded operators T defined in terms of such formal operators

also have the "spectral spanning" property sp( T) - X.
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ON A THEOREM OF BEURLING AND KAPLANSKY

M. COTLAR

1. Introduction. The object of this paper is to remark that a natural and

simple proof of the theorem of Beurling and Kaplansky (Theorem 1 below) can

be obtained by adapting to general groups a classical proof already given in the

books of Wiener [8] and Zygmund [ 9 ] . In fact, Theorem 1 is an immediate con-

sequence of a lemma (Lemma 1 below) which was proved by these authors in

the case when the group is the integers or the real numbers. An easy generaliza-

tion of Lemma 1 (Lemma 2 below) yields immediately the generalization of the

Beurling and Kaplansky theorem stated as Theorem 2 below. For the history

of the development of this theorem, see [3, p. 149] and [ 5 ] ; the book [3] did

not appear until the present paper had been submitted, but it seemed wise to

add the reference.

2. Statement of results. Let A = { α, b, \ be a locally compact abelian

group and X = {x9y9 ••• 1 the dual group ( the group operations will be written

multiplicatively )• Let

denote the set of all integrable functions with respect to the Haar measure of A,

the L ι-norm of /, f(x) the Fourier transform of f(a)9

the product of convolution (that is, the product in the group algebra),

the ordinary product of functions, and

( x 9 a ) = x ( a ) = a { x )

Received January 12, 1953. The author is a fellow of the John Simon Guggenheim
Memorial Foundation.
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the va lue of the charac ter x G X at the point a EA. S u b s e t s of A wi l l be denoted

by C, / ) , . . . , s u b s e t s of X by P, Q, S, , and s u b s e t s of L 1{A ) by /, / , .

The spectrum S(f) of a function feLι{A) is the s e t of the p o i n t s x Gλ 7

such t h a t f (x) = 0, and the spectrum S ( / ) of a s e t / C L ι(A ) i s the s e t of the

p o i n t s x G X such t h a t / (x) = 0 for all / G /.

$ e s u p p o s e known the following T a u b e r i a n theorem of Segal and Godement

( s e e [ 1 ] or [ 4 ] ) .

T H E O R E M A . / / / is a closed ideal of Lι{A)y and fβLι(A) is such that

S (I) is interior to S (f )9 then f G /.

Theorem A is a c o n s e q u e n c e of the regular i ty ( in the s e n s e of S i l o v ) of the

a l g e b r a L ι(A ), and the following Lemma A ( s e e [ 7 J, [ l ] , or [ 4 ] ) .

L E M M A A . Given f G Lι(A) and e > 0, there is a function g G L ι(A ) with

the following properties:

( i ) / (x) - 0 implies g (x ) = 0 ; that is, S (f ) C S {g).
Λ

( i i ) If h — f — g$ then h(x) vanishes in a neighborhood of the point oo {that

is outside of a compact set P CX).

( » i ) \\g\\ < 6

It i s known [ 6 ] t h a t T h e o r e m A i s not t rue if S(f) i s m e r e l y c o n t a i n e d in

but not i n t e r i o r to S{f); h o w e v e r , if S{I) c o n s i s t s of a s i n g l e p o i n t , t h e fol-

l o w i n g t h e o r e m i s t r u e :

T H E O R E M 1 ( B e u r l i n g a n d K a p l a n s k y ) . // / is a closed ideal such that

S ( / ) consists of a single point x Q y then S ( f ) D S ( / ) implies f G /.

This is a special case of the following:

T H E O R E M 2 . Let I be a closed ideal such that the boundary P of S{I) is

a reducible set {or that the intersection of P with the boundary of S{f) is a

reducible set) Then S {f ) D S ( / ) implies f G /.

A set is said to be reducible if it contains no nonvoid perfect subsets.

Theorem 1 was proved by Beurling in the case when A consists of the real

numbers, using complex-variable methods. Kaplansky proved the theorem in the

general case using the structure theory of groups. A direct and simple proof of

Theorem 1 is given in a recent paper of Ilelson [ 2 ] , and in the same paper is

given a complete proof of Theorem 2.
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We want to show that a still more natural and simple proof of Theorems 1 and

2 can be obtained as follows.

2. Proofs. We first reduce Theorem 1 to the following Lemma 1 (observe

that Lemma A is obtained from Lemma 1 by replacing the point x0 by oo)

LEMMA 1. Given a point x0 G S ( / ) , / G Lι(A), and e > 0 ? there is a func-

tion g E Lι(A) with the following properties:

( i ) S(f)CS(g):
A

(i i) if h = f — g9 then h (x ) vanishes in a neighborhood U (x0 ) of the point

( H i ) | | g | | < e.

It is easy to see that Theorem 1 is an immediate consequence of Lemma 1

and Theorem A. In fact, if S(I) cons is t s of a single point x0 G S ( / ) , then by

Lemma 1 there is a function h such that | | / - λ | | < e, and χ0 is interior to

S(h); hence, by Theorem A, h £ /. Since 6 is arbitrary and | | / - / ? | | < e, it

follows that / G /, and this proves Theorem 1.

Similarly it is easy to see that Theorem 2 is an immediate consequence of

Theorem A, Lemma A, and the following Lemma 2.

LEMMA 2. Given a compact reducible set Q C S (f ), / G L (A)9 and e > 0,

there is a function g G Lι{A ) with the following properties:

( i ) S ( / ) c S ( g ) ;

( i i ) if h - f - g$ then h ( x ) vanishes in a neighborhood U {Q) o f t h e s e t Q ;

( i ϋ ) l l g l l < e

Hence Theorems 1 and 2 will be proved if we prove Lemmas 1 and 2.

3. Proof of Lemma 1. Without loss of generality we may suppose # 0 = l

of X. Then by hypothesis

/ ( * „ ) = J f(a)da = 0.
A

Given e > 0, there is a compact set C C A such that

( 1 ) / \f(a)\ da < 6 / 4 ,
A-C
I
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hence also

( 2 ) I [ f(a)da\ = I / f(a)da\ < e / 4 .

If p (a) i s a n y f u n c t i o n from Lι(A), a n d g = p * f, vie h a v e

g ( α ) = / f{b)p(ab-χ)db= ί + ί f(b)p(ab-ι)db,

A C - n

(3) | | g | | < / I / / ( M p ί α ό " 1 ) ^ !

•'/I JA-C

Using (1) and (2), and denoting the characteristic function of the set

C = A — C by φ r , 9 we have

- C

= ί l I(3a) Λ'= ί l I f(b)φrAb)p{ab-ι)db\da

= W(fΦc,) *p\\ < c

= I I P I I f \f(a)\da< e/4 | | P | | ,

(3b) M < [ \ [ f(b)[p(ab-ι)-p(a)]db\da

+ I \ I f(b)db\ \p(a)\da
JA JC

< ί s u p f\p{ab-ι)-p{a)\da} \\f\\

b'1) by pL e t u s denote p (ab'1) by p (a); then

( 4 ) | | g | | < € / 2 | | p | | + 11/11 sup

bee

Since
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g(x) = f(x)p(x),

A A

/ {x) = 0 implies g(%) = 0, and inequality ( 4 ) shows that Lemma 1 will be

proved if we prove the following proposition.

PROPOSITION A. Given e > 0 and a compact set C C Λ9 there is a function

p(a) such that:

a) p ELι(Λ) and \\p\\ < 2 ;

b ) there is a neighborhood U ( 1 ) of the point 1 G/Y such that p(x) = 1 for

xeU(l);

e ) | | p — p | | < 6 for b in the compact set C.

Proof of Proposition A. Take two compact neighborhoods V and F ' of the

1 G X, of measures η and r\\ and such that

(5) F C F ' ; τy'< 4^,

and define

(6) pU)=i/7?5<L * < L , ! = 1A? \Φ*Φ'\,

A A

<£ = <
A A

where φ = φy (φ' = φy,) is the characterist ic tunction of the se t V(V').

Since φj <p E L 2 ( A 7 ) , by P l a n c h e r e l ' s theorem p(x) is the Fourier transform

of a function p{a) G L ι ( i ) . Since V C V, there is a neighborhood [/ = {/( 1)

such that F U CV'9 and from ( 6 ) it is clear that p ( # ) = 1 for x G U. Using

the Plancherel theorem it is easy to see that p (a) sat is f ies a l so the conditions

a ) and c ) , provided F ' is taken small enough (cfr. [ δ ] ) For instance, let us

prove condition c ) . Since the Fourier transform of φ — φ is <p(x) [(x, b) — l ] ,

and s ince φ(x) = 0 outside of F ' F ' , it follows that iϊ b EC, and F ' i s small

enough, then

\\φb-φ\\2=\\[(x,b)-l]φ\\2<eι\\φ\\2 = eιη
l\

for every b G C, where 6i > 0 is arbitrarily small Since

p{a) = 0 ( α ) φ'{a)/η,

by Plancherel's theorem,

| | p 6 - p | | ι = l / η \ \ φ φ ' ~ φ b φ ' b \ \ < l / η ί \ \ φ ' ( φ - φ b ) \ \ + \ \ φ b ( φ ' - φ ' b ) \ \ ]
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< l / η l \ \ Φ ' \ \ 2 e , \\Φ\\2 + \\Φ\\2 e t l l ώ ' I I J < 2 e t ( T ^ ' ^ Λ ? < 4 e t ,

and this proves condition c ) .

REMARK. AS we already mentioned, the foregoing proof of Lemma 1 is an

adaptation of a proof given in Zygmund's book. Zygmund considers the particu-

lar case when A consists of the integers and X is the unit circle, so that the

functions f (x) are periodic functions with absolutely convergent Fourier series,

and he takes for p (x) the function

p{x)= 1 if I Λ; I ^77,

p ( * ) = 0 if | * | > 2η,

p(x) linear if η <_ | x \ <^ 2η .

Then he proves that the total variation of the derivative of the function is

bounded by a fixed number, and from this he deduces properties a ) , b), c) of

the function p ( α ) . This is the only point in Zygmund's proof which does not

apply to general groups; however, it is easy to see that the function p used by

Zygmund is exactly what formula (6) reduces to when V is taken to be an in-

terval, and thus the proof can be adapted to the general case.

4. Proof of Lemma 2. Let QcS(f) be a compact reducible set, and let

Q^ι'=zQ' be the set of the points x such that any neighborhood of x contains

an infinite subset of Q. Define

and form in the usual way the sequence of derivative sets:

QjQ{ι)DQ{2)i..*DQ{a)D . . . .

Let w be such that

Q (w) = Q {w +1) .

then Q^w>j is a perfect set; and since Q is reducible, Q^w'= 0. If w = 1, then

Q is a finite set and n successive applications of Lemma 1 yields Lemma 2 in

this case. We will now prove Lemma 2 by induction on w.

Suppose that Lemma 2 is true if (? = 0 for lί; < wo; we shall prove that
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it is also true if Q^w' =-. 0 for w = w0. Consider first the case when w0 = w' + 1.

Then Q ' is a finite set, and hence there is a function h E Lι{Λ) such that

H / - A I I < e/2, S ( / ) c S U ) ,

and h(x) vanishes on an open set U D () . Since Q— U has the property

and y' < u>0, by the inductive assumption there is a function A' such that

S(f)cS(h)CS(h'), \\h- h'\\ < e/2,

Λ A

and h'{x) vanishes on an open set ί/'D Q — U. Hence h'{x) vanishes on U u ί/'D

0 , and

If 7̂ o i s n°t of the form w '-i- 1? then by definition

ρ = n ρ ( W ) .
lί; < w o

hence for some M;' < ^ 0

 w e must have Q = 0, and by the inductive assump-

tion Lemma 2 is true in this case.

This proves Lemma 2.
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ASYMPTOTIC LOWER BOUNDS FOR THE

FREQUENCIES OF CERTAIN POLYGONAL MEMBRANES

G E O R G E E. F O R S Y T H E

1. Background. Let the bounded, simply connected, open region R of the

{x9y) plane have the boundary curve C. If a uniform elastic membrane of unit

density is uniformly stretched upon C with unit tension across each unit length,

the square λ = λ{R) of the fundamental frequency satisfies the conditions

( subscripts denote differentiation )

Δw = uxx + Uyy = - λu in R ,

( l a )

λ = minimum ,

with the boundary condition

( l b ) i ί U , r ) = 0 o n C .

The solution u of problem (1) is unique up to a constant factor. It is known

[13, p. 24] that λ is the minimum over all piecewise smooth functions u satisfy-

ing ( lb) of the Rayleigh quotient

(2) pU)= if \Vu\2dxdy/[[u2dxdγ,
JJR / JJR

where \^u\2 = u2 + u2. In many practical methods for approximating λ one

essentially determines p{u) for functions u satisfying ( l b ) which are close to

a solution of the boundary value problem (1). See [9, p. 112; 6, p. 276; 11, and

12]• By (2) these approximations are known to be upper bounds for λ; they

can be made arbitrarily good with sufficient labor. It is obviously of equal

importance to obtain close lower bounds for λ; cf. [14].

The lower bounds for λ given by Polya and Szegδ [13] are ordinarily far

Presented to the American Mathematical Society May 2, 1953, under a slightly dif-
ferent title; received by the editors May 15, 1953. The work on this report was sponsored
in part by the Office of Naval Research, USN.
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from close. Those obtainable from p(u), ffR u2dxdy, and ffR \Δu\2 dxdy by

methods due to Temple [15], D. H. Weinstein [17], Wielandt [18], and Kato [8]

(for expositions see [3] and [16]) are arbitrarily good, but presuppose know-

ledge of a lower bound for the second eigenvalue λ2 of the problem (1) . The

same is true of Davis's proposals in [ 4 ] . It is possible, following Aronszajn

and Zeichner [ l ] , to get close lower bounds for λ by minimizing p{u) over a

class of functions u permitted some discontinuity in R (method of A. Weinstein);

the author has no knowledge of the practicability of the method.

A common method of approximating λ is to replace the boundary value prob-

lem (1) by a similar problem in finite differences. Divide the plane into squares

of side h by the network of lines % - μh3 y - vh (μ, v - 0, ± 1 , ± 2, ). The

points {μhyvh) are the nodes of the net. A half-square is an isosceles right

triangle whose vertices are three nodes of one square of the net. Assume that

(3) R is the union of a finite number of squares and half-squares.

Then every interior node of R has four neighboring nodes in R u C.

Define Δ/̂ , a finite-difference approximation to Δ, by the relation

{x, y) = v (x + h, y ) + v (x - h9 y ) + v(x,γ + h) + v (x, y - h) - 4>υ(x9 y ) .

Let λ/j be the least number satisfying the following difference equation for

a net function v defined on the nodes (x,y) of the net:

(4a) Δ/jf = - XfrV at the nodes in R ,

with the boundary condition

(4b) v = 0 at the nodes on C.

One can interpret λ/̂  as the square of the fundamental frequency of a network

of massless strings with uniform tension h9 fastened to C, and supporting a

particle of mass h2 at each node. That is, a certain lumping of the distributed

masses and tensions of problem (1) yields problem (4) .

It is easily verified for a rectangular region of commensurable sides π/p,

π/q9 and for h such that (3) holds, that one has u = v = sin px sin qγ9 and that

X,

λ (ph/2)2 + (qh/2)2

 P

2+q2 12

Hence λ/j < λ for all h, and one can use λ/j as a lower bound for λ. However,
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since λ is known exactly for rectangular regions, relation ( 5 ) contributes

nothing to its computation. For general regions /?, it was s ta ted [ 3 , p»405]

in 1949 that nothing could be said about the relation of λ/j to λ .

2. A new result. An asymptotic relation resembling ( 5 ) will now be es-

tablished for any convex polygonal region R satisfying ( 3 ) . Such regions are

polygons of at most eight s ides , having interior vertex angles of 45°, 90°, or

135°. The following theorem 1 will be proved in § 3 by use of the lemmas of § 4 :

THEOREM. Let R be a convex region which is a finite union of squares

and half-squares for all h under consideration. Let u solve problem ( 1 ) for R9

and let

Then, as h —> 0, one has

(6) — < 1 - — h2 + o(h2) ( λ — > 0 ) .
λ ~ 12

It is a consequence of the theorem that, for all sufficiently small h, say

for h £ h0, λfr is a lower bound for λ. The ordinary finite-difference method

thus complements any method based on Rayleigh quotients; and, since λ/j —> λ

as h—> 0, together two such methods can confine λ to an arbitrarily short

interval. In particular, Polya [11 and 12] devises modified finite-difference

approximations to problem (1) which furnish upper bounds to λ for all h. Hence

arbitrarily good two-sided bounds to λ can be found by finite-difference methods

alone.

The constant a of the theorem is the best possible for a rectangle R of

sides π/p, π/q. For this region, we have a- ( p 4 + q4) ( p 2 + q )~ l, and (6)

is seen by (5) to be actually an equality up to terms o {h2 ).

Using heuristic reasoning, Milne [9, p. 238, (97.5)] finds an approximate

formula which, specialized to the fundamental eigenvalue and set in our notation,

says

(7) i i ^ i _ ^ ! + o ( A 2 ) (A-»0).
λ ~ 24

1 The author gratefully acknowledges many helpful conversations with his colleague
Dr. Wolfgang Wasow on the subject of this paper.
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For a rectangle of sides π/p9 π/q, the coefficient of -h2/l2 in (7) is (p2 + q2)/2.

Since

the coefficient of h2 in ( 7 ) is low for all rectangles with p φ- q, and exact for

squares. Hence (7) cannot ordinarily be expected to be exact in its h2 term.

The use of the theorem to bound λ is limited by our lack of knowledge of

h0. However, it is the author's conjecture that, for the regions R of the theorem,

λh < λ for all h.

The convexity of R is vital to the statement and proof of the theorem; in

fact, by the remark after Lemma 4, a = oo for nonconvex polygons. A heuristic

argument, supported by the numerical example of § 5, has in fact convinced the

author that, for nonconvex polygons, λfr > λ for all sufficiently small h.

The restriction of R and h to satisfy ( 3 ) is less essential, but is used in

two ways: ( i ) to be sure that no interior node has a neighboring node outside

R; ( i i ) to prove that Γ = 0 in Lemma 7. With an appropriate alteration of Δ/j

near C, and with a modification of Lemma 7, one can extend the present method

to obtain formulas of type ( 6 ) without assuming (3) —and even for convex

regions R bounded by piecewise analytic curves C. See [ 5 ] . Analogous results

can be expected in n dimensions.

3. Proof of the theorem. Let K be the class of functions u which vanish

on C, such that (uux)x and (uuy)γ are continuous in R u C. Applying Gauss's

divergence formula (27) with p - uuX9 q = uiiy, one finds that, for all u in K,

Green's formula is valid in the form

jj \Vu\2dxdy= -jj u/iudxdy.

Hence, for all u G K, p(u) in ( 2 ) can be rewritten with —ffR uΔudxdy in the

numerator.

Since, by Lemma 1, the function u which minimizes ( 2 ) and solves ( 1 )

belongs to K, and since any function in K is piecewise smooth, one may alter-

natively define λ as the minimum, over all functions in K, of the quotient

(u) = -fl uΔudxdγ/11 u2dxdγ.
JJR I JJR
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Analogously, without having to worry about function classes, one can show

that λh is the minimum, over all net functions v satisfying (4b), of the quotient

(8) Ph(v) = -h2 ΣΣ,

where the sums are extended over all nodes Nfr of the net inside R.

The key to proving the theorem is to se t the solution u of problem ( 1 ) into

the Rayleigh quotient ( 8 ) of problem ( 4 ) . It will be shown that

p A U ) 1
( 9 ) — = 1 ah2 + o(h2) ( Λ — > 0 ) .

λ 12

Since λh < _ P J , ( M ) , the theorem follows from ( 9 ) . Henceforth u will always

denote a solution of problem ( 1 ) .

The denominator of p^u) is a Riemann sum for JfR u2 dxdγ. Since u2 is

continuous and hence Riemann integrable over R9

(10) h 2 2 J L . u 2 = ]) u 2 d x d γ + o(l) ( h — > 0 ) .
R

(It can be shown that one can replace o ( l ) by o(h2) in ( 1 0 ) , but we shall

not need to do this.)

The nodes Nfr inside R are divided into two c l a s s e s :

Nf : those at a distance h from some 135° vertex of C
h

Nf': the other nodes of N^.

Split the numerator of pΛu) accordingly:

(11) -h2Σ,Σ, u^u = - h2 ΣΣ, uAhu - h2 ΣΣ, UΔAB = SA '(B) + S A " ( U ) .
Nh N> Nh<-

To estimate Sf(u) note that, since there are at most eight 135° vertices,

the number of nodes in N^ is at most 8, for any h. At any node in N^ ,

h2\uAhu\ <
h

u - Hi
max | V u | 2 ,
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where the maximum of \Vu \ is taken for all points (x9y) within a distance 2 A

of some 135° vertex. Hence, by Lemma 2, as A —> 0 through values such that

(3) holds,

(12) | S £ U ) | < 32Λ2 max | V w | 2 = o{h2) ( A — > 0 ) .

Now, using the notation and assertion of Lemma 5, one obtains

(13) S£'{ll) = - h2 <L^2^ UΔU - 2-*2^ u(Uχχχχ + Uyyyy) .

I V " 1 2 JV,"
a h

S i n c e zx s a t i s f i e s ( l a ) ,

(14) -A 2 Σ Σ α Δ w = λ Λ 2 Σ Σ ^2 = λ A 2 Σ Σ ^ 2 + o ( A 2 ) (A
N"

the last step is correct because u(x9y) —> 0 as (x9γ) —> C.

Combining (13) and (14), one finds that, as A —> 0,

A 4

SΛ"U) = ΛA2 Σ Σ u2— Σ Σ u{uzxxx + u
Nh 1 2 N'h

( 1 5 )

A2 / /
= λA2 Σ Σ U2 - yy U(uχχχχ + Wyyyy )i/^0?y + O ( A 2 ) ,

"A 1 2 R

by Lemma 6. The integrals used in this proof exist, by Lemma 3. Using (11),

(12), (15), and Lemma 7, one finds that

(16) -A2 Σ Σ u

= λA 2 Σ Σ u 2 - — ] j ( u 2 + u 2 ) d x d y + o ( h 2 ) (A
Nh

 l Z R

Dividing (16) by the denominator of p^{u), one gets
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h ttκL ϊ y y
ph{u)=λ -v o(h2).

1 2 h2 Σ,Σ U2

H e n c e , by ( ] 0 ) ,

A2A R L yy
(17) p A («) = λ + o(h2) (Λ

1 2 f f « 2

If one divides (17) by λ, and notes from (2) that λ [fRu2dxdy = ffR | Vu \2dxdy,

it is seen that

PhU) h2 fίR^L+Uyy
— = 1 + o(h2) (h—>0).

λ 1 2 ffR\Vu\2dxdy

By the definition of a we have proved (9) and hence the theorem.

4. Some lemmas. Lemma 1, suggested to the author by Professor Max

Shiffman, is used to establish Lemmas 2 to 7, which were applied to prove the

theorem. In all the lemmas R is the convex union of squares and half-squares

of the network, while u = u (x9 γ ) is a function solving problem (1) in R.

LEMMA 1. The function u is an analytic function of x and γ in R u C,

except at the 135° vertices of C. Let r9 0 be local polar coordinates centered

at a 135° vertex Pk, with 0 < 0 < 3/7/4 in R. Then

(18) u = Ύk

r4/3 s i n ( 4 ( 9 / 3 )

where γ, is a constant, and where E^ir^θ), together with all its derivatives,

is bounded in a neighborhood of

Proof. By reflection one can continue u antisymmetrically across each

straight segment of C, and ( l a ) is satisfied by the extended u at all points

of R u C except the 135° vertices. The first sentence of the lemma then follows

from [2, p. 179].

For (ξ,η)eR, write t = ξ + iη. For each t, let w = / (zs t) be an analytic

function of the complex variable z = x + ίy which maps R into the unit circle

I w I < 1, with f (t, t) = 0. To study f near a vertex zk of C, one may assume
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that / (zfo ί ) = l . Let the interior vertex angle of C at z^ be 77/θĈ  (θί& = 4, 2, or

4/3). It is a property of the Schwarz-Christoffel transformation [10, p. 189] that

(19) f(z,t)=l+(Z-zk)
akgk(z,t),

where g^ is an analytic function of z regular at z^.

Let G {z, t) = G (x9 y; ξ, η) be Green's function for Δw in R. Now G (z, t) = -

(2π)~ι log \f(z,t)\; see [ 10, p. 181]. It then follows from (19) that, in the

notation of the lemma, when 0C& - 4/3,

(20) G(zyt) = γk(t)r4/3 sin (40/3 ) + r 7 / 3 Ek(ry θy t).

Moreover, y^U) and Ek(r9θ9t) are integrable over /?, since the only discon-

tinuity of G (z, t) is a logarithmic one at t - z.

The function u is representable by the integral [2, pp. 182-3]

JJ G(x$y;ξ9i(21) u(x,y)=λJJ G(x,y;ξ,η)u{ξ,η)dξdη.

Substituting (20) into (21) proves (18) and the lemma.

LEMMA 2. \Vu(x,y)\ —> 0 as (*, y ) — > a n y 135° vertex of C.

Proof. By ( 1 8 ) , \Vu\ = 0 ( r ι / 3 ) , as ( * , y ) _ » a n y 135° vertex of C.

LEMMA 3. The functions u2 , uxιιXXX9 uuXXXX9 u , UyUγγy, and uuyyyy are

Lebesgue-integrable in R.

Proof. By Lemma 1 these functions are continuous in R u C, except at the

135° vertices P^. At these vertices (18) implies that they are 0 ( r " 4 / 3 ) and are

hence integrable.

LEMMA 4. The Lebesgue integrals fc UyUyydx and fc uxuxxdy exist.

Proof. Analogous to that of Lemma 3.

REMARK. Lemmas 2, 3, and 4 are false for polygonal regions R which are

not convex, since in general the exponent in (18) is α^, where TΓ/OĈ  is the

interior angle at the vertex P^.

LEMMA 5. At each node (x9γ) in R of the network of section 1, one has
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(22)
 ±

where

(23)
xxxx xxxx

uyyyy = uyyyy {x> ? + θ " h ) ' ~

Proof. By Lemma 1, u ^ ^ is continuous in the open line segment from

(x - h, y) to (x + h9y) (though infinite at any 135° vertex). Since u is con-

tinuous in R u C, it follows from Taylor's formula [7, p. 357] that, if we fix y

and set φ {x ) = u (x, y ),

φ(x + h) + φ(x~h)~2φ(x)

= h2φ" (x)+ — h4[φ""(x + 0th) + θ""(x - θ2h)],
24

where 0 < 0, < 1 (i = 1, 2). By the continuity of φ'"\ the last bracket equals

2φ""{x + θ'h\ where-1 < θ* < 1.

A similar formula for 0 ( y ) = U(Λ;, y), when added to the above and divided

by A2, yields (22) and (23).

LEMMA 6. Define N£' as in § 3 . For each node (x, y) in N^'9 use the nota-

tion of (23 ). Then, as h '—>0 over values such that (3 ) holds, one has

( 2 4 ) h2ΣΣu(u^χχχ + uy' )=JJ u(uxxxx + uyyyy)dxdy + o{l) (h

Proof. For all (#, y) in the entire plane E2 define

U ( Uxxxx + Uyyyy ) , \l(x9y)^R\

0, elsewhere .

By the proof of Lemma 3 one sees that f (x,y) is 0{r"4/3) in the neighborhood

of each 135° vertex P^ of C, and continuous elsewhere. Divide the nodes (x, y) =

{μ]ι,vh) of N^'CR into four classes K^ (i = 1,2,3,4) according to the parity

of (μ,v). Fix any class K^\ For each vertex (%, y) in £**' let 5(%, y) be the

union of the four closed network squares of E2 which contain (x, y ) . The area
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of e a c h S ( x 9 y ) i s 4 A 2 ; o r d i n a r i l y c e r t a i n of t h e S ( x 9 y ) c o n t a i n p o i n t s n o t i n

R . D e f i n e

0, for (ξ,η) £ U S U , y ) .

Then ffr (&η) —> / (ζ, η ), as h — » 0 , for almost all (<f, η) in the plane. Using

the fact that no node of Λ'^' is adjacent to a 135° vertex of C, one can show that

for all i, uniformly in h, \f^ (ζ, η)\ < F(ξ,η), where F is an integrable func-

tion in E2

Each term of the sum ( 2 4 ) for which (x, y)<ΞK^ι'is equal to

Ll ( ξ, η )dξdη .

Uence, applying Lebesgue's convergence theorem, one sees that, as h —»0,

for each i,

JV."n K ( £ )

tl
(25)

Summing (25) over j = 1, 2, 3, 4 proves (24) and the lemma.

LEMMA 7. One has

(26) JJ u (a*%*x + w y r y y )flferfy = yy (u2

χχ + Myy )dxdy.

Proof. The following applications of Gauss's divergence theorem in the

form

(27) JJ (pχ+q )dxdy= J (pdy-qdx

can be justified by integrating over the region R* interior to a smooth convex

curve C* inside /?, and then letting C* —> C appropriately. The continuity of
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the integrals in the limit follows from Lemmas 1, 3, and 4.

In the divergence theorem for p = uuxxx> q — uuyyy9 the line integral vanishes,

and one finds

JJ U(UXXXX + Uyyyy)dxdγ = ~ jj ( U %U χ χ χ + U yU y y y

A second application of the divergence theorem with p = uxuXX9 q = UyUγγ, com-

bined with (28), shows that

(29) JJ u(uxxxx + Uyyyy)dxdy = JJ {u2

χχ + u2 )dxdγ + Γ,
R R * *

where V - fc (uyUyydx — uxuxxdy).

By ( l a ) , uxx - - Uyy on C9 whence Γ = fc Uyy {uydx + uxdy). On the seg-

ments of C parallel to the axes, uxx = Uyy - 0, so that there the contribution

to Γ is zero.

Now the vector V^ = (uX9Uy) is perpendicular to C. On the segments of C

making a 45° or 135° angle with the %-axis, ( u p ^ ) is parallel to (uX9Uy),

whence (uy9ux) is perpendicular to C. Thus Uydx + uxdy = 0 when (dx$dy) is

tangent to C, so that the contribution to Γ from these 45° and 135° segments of

C is also zero.

Hence Γ = 0, and the lemma follows from (29).

5. Numerical example. Let 1^ be the six-sided, nonconvex, L-shaped region

whose closure is the union of the three unit squares

~ l < x < 0 , 0 < y < 1;

0 < # < 1, 0 < y < 1;

0 < Λ; < 1, - 1 < y < 0.

The fundamental frequencies λ/ι = λ/ ι (^ 1 ) and corresponding net functions v

were computed by B. F. Handy on the SWAC (National Bureau of Standards

Western Automatic Computer) for I/A = 3, 4, , 8. The computation used a

power method; for some initial net function v09 (h Δ/j +5l)mv0 was determined

for large positive integers m9 where / is the identity operator. On the basis of

Collatz's inclusion theorem [3, p. 289], the values in the accompanying table

are believed to have errors less than 5 x 10"6. Observe that λh(Rι) is less for

h = 1/8 than for h = 1/7.
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TABLE

λh(R2)

1/2

1/3

1/4

1/5

1/6

1/7

1/8

9.07180

9.52514

9.64143

9.67860

9.69083

9.69384

9.69316

12.00000

13.73700

14.37340

14.67081

14.83259

14.93003

14.99315

Since Rί is not convex, the theorem of § 2 does not apply, but a heuristic

argument suggests that λfr (R{) - λ(Rι) = 0 ( Λ 4 / 3 ). A least-squares fit to the

values of λ^iRγ) for 1/8 <_ h < 1/4 of a function of type

yielded the values

(30) α t = 9.63632, β χ = 2.40286, γχ = - 5.97212.

The maximum of | λ/j (Rί) - φ^h)] for the five values of h is .00013. Hence CLί

is a working estimate of λ(/?L).

The fact that β > 0 in (30) supports the author's conjecture that, for

nonconvex polygonal domains satisfying (3), λ/j > λ for all sufficiently small

h.

The table also gives Bandy's values for the second eigenvalues of Rί9 which

are the fundamental eigenvalues λ/j(/?2) of the trapezoidal halfdomain R2 of

Ri for which x > y. Since the theorem does apply to R2, a least-squares fit to

the values of Xh(^2 ) f°Γ 1/8 < h <^ 1/4 of a function of type

seemed appropriate, and yielded the values

α 2 = 15.19980, β2 = - 13.22219.

The maximum of | λ/j (R2 ) - φ (h) \ for the five values of h was .00010. Hence

CX2 is a working estimate of λ(R2)>

The value of β2 is negative, in agreement with (6), but the quantity
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- 12/32/cί2

 = 10.4387 is something like one-fifth larger than an estimate of the

corresponding quantity a{R2) of the theorem. One therefore suspects that a is

not the best possible constant in (6) for the region R2 .

In the table, note the relative closeness of the values of λn (R2 ) to the work-

ing estimate, CC2» of λ(/?2 )> e v e n for a coarse net. Thus the value 12 for λy2(R2 ),

which is obtained by pencil and paper from a simple quadratic equation, is

comparable to the lower bounds 12.1 and 5?72/4 obtained respectively by com-

parison with λ for the circular membrane of equal area [13, p. 8] and with λ for

the rectangular region 0 < x < 1; - 1 < y < 1. The value λ 1 / 3 (/? 2 ) = 13.737

requires getting the least eigenvalue of a 7th-order matrix, a relatively easy

procedure with a desk machine.

The monotonicity of λn(R2) supports the author's conjecture2 that, for the

R of the theorem, λn < λ for all h.

2See page 470.
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