ORTHONORMAL CYCLIC GROUPS

PAUL CIVIN
ORTHONORMAL CYCLIC GROUPS

PAUL CIVIN

In an earlier paper [1] a characterization was given of the Walsh functions in terms of their group structure and orthogonality. The object of the present note is to present a similar result concerning the complex exponentials.

THEOREM. Let \(\{ A_n(x) \} \) \((n = 0, \pm 1, \cdots; 0 \leq x \leq 1) \) be a set of complex-valued measurable functions which is a multiplicative cyclic group. A necessary and sufficient condition that \(\{ A_n(x) \} \) be an orthonormal system over \(0 \leq x \leq 1 \) is that the generator of the group admit a representation \(\exp(2\pi i c(x)) \) almost everywhere, with \(c(x) \) equimeasurable with \(x \).

As the sufficiency is immediate, we present only the proof of the necessity. Let the notation be chosen so that the generator of the group is \(A_1(x) \), and

\[
A_n(x) = (A_1(x))^n \quad (n = 0, \pm 1, \cdots).
\]

The normality implies \(|A_1(x)| = 1 \) almost everywhere. Hence there is a measurable \(a(x), 0 \leq a(x) < 1 \), such that

\[
A_1(x) = \exp(2\pi i a(x))
\]

almost everywhere. Let \(b(x) \) be a function [2, p. 207] monotonically increasing and equimeasurable with \(a(x) \). Also let

\[
c(x) = \inf \{ u : 0 \leq u \leq 1, b(u) \leq x \} \quad (-\infty < x < \infty).
\]

The orthonormal condition becomes

\[
\delta_{0,n} = \int_0^1 \exp(2\pi ni b(x)) \, dx = \int_{-\infty}^{\infty} \exp(2\pi niy) \, dc(y),
\]

where the latter integral is a Lebesgue-Stieltjes integral. Thus for any \(\varepsilon > 0 \),

Received February 6, 1953.
Pacific J. Math. 4 (1954), 481-482

481
\[\delta_{0,n} = \int_{b(0)}^{b(1)} \exp(2\pi niy) \, dc(y) \]

\[= \int_{b(0)}^{b(1)} \exp(2\pi niy) \, dc(y) + \exp(2\pi ni \, b(0)) \, m \{ x : b(x) = b(0) \}, \]

and the latter integral is interpretable as a Riemann-Stieltjes integral.

Integration by parts yields

\[\delta_{0,n} = \exp(2\pi ni \, b(1)) - 2\pi ni \int_{b(0)}^{b(1)} c(y) \exp(2\pi niy) \, dy. \]

If \(f(y) = y, 0 < y \leq 1, \) and \(f(y + 1) = f(y) \), a direct calculation shows that

\[\delta_{0,n} = \exp(2\pi ni \, b(1)) - 2\pi ni \int_{0}^{1} f(y - b(1)) \exp(2\pi niy) \, dy. \]

Formulas (1) and (2), and the completeness of the complex exponentials, imply the existence of a constant \(k \) such that for almost all \(y, 0 < y \leq 1, \)

\[f(y - b(1)) + k = \begin{cases} 0, & 0 < y \leq b(0) \\ c(y), & b(0) < y \leq b(1) \\ 0, & b(1) < y \leq 1. \end{cases} \]

Since the supremum of \(c(y) \) is one, and \(f(y) \) has no interval of constancy, one infers that \(k = 0, b(0) = 0, \) and \(b(1) = 1. \) Thus \(c(y) = y, 0 < y \leq 1, \) which is equivalent to the proposition that was asserted.

References

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any of the editors. Manuscripts intended for the outgoing editors should be sent to their successors. All other communications to the editors should be addressed to the managing editor, E.G. Straus, at the University of California Los Angeles 24, California.

50 reprints of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is $12.00; single issues, $3.50; back numbers (Volumes 1, 2, 3) are available at $2.50 per copy. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues, $1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to the publishers, University of California Press, Berkeley, California.

*To be succeeded in 1955, by H.L. Royden, Stanford University, Stanford, California.

**To be succeeded in 1955, by E.G. Straus, University of California, Los Angeles 24, Calif.
Paul Civin, *Orthonormal cyclic groups* .. 481
Kenneth Lloyd Cooke, *The rate of increase of real continuous solutions of algebraic differential-difference equations of the first order* 483
Philip J. Davis, *Linear functional equations and interpolation series* 503
F. Herzog and G. Piranian, *Sets of radial continuity of analytic functions* . 533
P. C. Rosenbloom, *Comments on the preceding paper by Herzog and Piranian* .. 539
Donald G. Higman, *Remarks on splitting extensions* 545
Margaret Jackson, *Transformations of series of the type* Ψ_3 557
Herman Rubin and Patrick Colonel Suppes, *Transformations of systems of relativistic particle mechanics* .. 563
A. Seidenberg, *On the dimension theory of rings. II* 603
Bertram Yood, *Difference algebras of linear transformations on a Banach space* .. 615